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We design faster-than-adiabatic state
transfers (switching of quantum num-
bers) in time-dependent coupled-oscillator
Hamiltonians. The manipulation to
drive the process is found using a two-
dimensional invariant recently proposed in
S. Simsek and F. Mintert, Quantum 5 (2021)
409, and involves both rotation and tran-
sient scaling of the principal axes of the
potential in a Cartesian representation.
Importantly, this invariant is degenerate
except for the subspace spanned by its
ground state. Such degeneracy, in gen-
eral, allows for infidelities of the final states
with respect to ideal target eigenstates.
However, the value of a single control pa-
rameter can be chosen so that the state
switching is perfect for arbitrary (not nec-
essarily known) initial eigenstates. Addi-
tional 2D linear invariants are used to find
easily the parameter values needed and to
provide generic expressions for the final
states and final energies. In particular we
find time-dependent transformations of a
two-dimensional harmonic trap for a parti-
cle (such as an ion or neutral atom) so that
the final trap is rotated with respect to the
initial one, and eigenstates of the initial
trap are converted into rotated replicas at
final time, in some chosen time and rota-
tion angle.

1 introduction
A goal of current Physics for fundamental science
and technological applications such as metrology,
sensing, or information processing is to achieve
Xiao-Jing Lu: luxiaojing1013@163.com

a better control of states and dynamics of sin-
gle or few-body quantum systems such as ions or
neutral atoms. Both internal and motional states
have to be controlled. We shall focus here on
setting fast control protocols for two-dimensional
(2D) systems described by Hamiltonians of the
(dimensionless) form

H(t) = p2
x

2 +
p2
y

2 + 1
2M11x

2 + 1
2M22y

2 +M12xy,

(1)
with M real, symmetric (M12 = M21), and con-
trollable in time. More specifically, we wish to
consider a faster than adiabatic process to switch
eigenstates among the x and y oscillators, namely,
|n, k〉i → |k, n〉f , up to a phase factor, (where i
and f stand for initial and final configurations)
for arbitrary vibrational quantum numbers n, k
and the uncoupling condition M12 = 0 at bound-
ary times. This Hamiltonian may represent in
particular two oscillators on a line transiently
coupled, or one particle in a time-dependent 2D
trap, see other possible interpretations in ref. [1].
Since the different systems are mathematically
equivalent and the single particle system is easier
to visualize we shall from now on use a language
appropriate for the manipulation of a Cartesian
2D potential that holds a single particle. Specif-
ically we shall look for a process where the fi-
nal potential is rotated by π/2 with respect to
the initial one, see Fig. 1. This implies the
additional boundary relations (M22)f = (M11)i
and (M11)f = (M22)i. Other natural bound-
ary conditions such as (M11)f = (M11)i and
(M22)f = (M22)i, or rotations by a different ro-
tation angle will be also discussed later.

Faster-than-adiabatic, excitationless rotations
[2, 3, 4, 5, 6], in particular, form, together with
transport [7, 8, 9, 10], expansions/compressions
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[11, 12] or separations/mergings [13, 14], a basic
set of motional operations. These operations are
needed to make the architectures based on mov-
ing the qubits encoded in ions or neutral atoms
viable for practical implementations of informa-
tion processing [15]. Fast rotations have been per-
formed with increasing accuracy experimentally
but remain technically challenging [16, 17, 18, 19].
From the theory side, they also imply some dif-
ficulties, even for the simple setting of a rotating
harmonic trap. In essence, a point transforma-
tion (i.e., one that does not mix positions and
momenta) cannot separate the dynamics into in-
dependent normal dynamical modes, so that sim-
ple inverse-engineering methods known for the
one-dimensional modes and the corresponding 1D
invariants cannot be used to find a fast, excita-
tionless rotation protocol [6]. Several wayouts
have been investigated, such as purely numeri-
cal optimizations [20], or mode separations us-
ing more complicated transformations mixing po-
sitions and momenta [5]. However, numerical
optimizations need specific calculations for each
particular state and process, and the approach
based on non-point transformations was limited
by singularities in the protocol and conditions on
the rotation times and commensurate normal fre-
quencies [5]. Also, for a charged particle, if the
trap manipulation is complemented with a time-
dependent magnetic field perpendicular to the ro-
tation plane, and a time-dependent scaling of the
principal axes to compensate for non-inertial ef-
fects, fast rotations can be done without final
excitation [2, 3, 6]. We assume here that such
compensation is not viable, either because the
Hamiltonian does not represent a charged particle
or because of technical limitations. While these
mentioned wayouts might be effective solutions
in some cases, the need for a robust methodology
to design smooth, fast trap and state rotations,
remains. Here “robustness" refers, in the spirit of
simple shortcut-to-adiabaticity (STA) processes
[21], to independence with respect to the initial
state. In this work we look for, and find, such a
robust methodology. We shall make use of recent
work on two-dimensional invariants [1, 22]. First
we adapt to the rotation scenario a recently pro-
posed two-dimensional quadratic invariant com-
muting with initial and final trap Hamiltonians
[22] to define the time-dependent protocols for
the harmonic trap. Inverse engineering will pro-

ceed from the 2D invariant to the evolution of
the 2D harmonic potential, which will include
both rotations and scaling of the instantaneous
eigenfrequencies. Because of the degeneracy of
this invariant, an arbitrary initial eigenstate of
the Hamiltonian leads to a combination of states
in the degenerate subspace which in general does
not conserve the initial energy at final time.1 (An
exception is the non-degenerate subspace of the
ground state.)

To solve this problem we construct auxiliary
linear invariants following Tobalina et al. [1].
They will enable us to find the final state, as well
as the energy in terms of only a pair of complex-
valued classical trajectories. We can thus easily
find parameters for which the process performs as
a perfect rotation for any (not necessarily known)
initial eigenstate.

All numerical calculations of the dynamics are
performed in several ways in this paper: The
Wigner function provides a useful tool since it
evolves classically in a harmonic trap; we inde-
pendently test the results by means of a split-
operator, fast-Fourier transform approach, and
also using a finite basis in a moving frame. Ap-
pendix A gives details on the Wigner function
method.

In Section 2 we introduce the notation and
Hamiltonian; in Section 3 we describe the two-
dimensional invariant adapted from Simsek et al.
[22]; in Section 4, the potential is designed based
on the invariant, and in Section 5 the degeneracy
of the invariant is discussed; In Section 6, aux-
iliary linear invariants are introduced; Section 7
uses the different invariants to provide a generic
expression of the final state, and it describes how
to achieve perfect state transfers solving the de-
generacy problem. The article ends with a Dis-
cussion and technical Appendices.

1The solutions of the Schrödinger equation for a time
dependent Hamiltonian may be written in terms of or-
thonormal eigenstates |ΦN,α; t〉 of a Hermitian invariant,
where N is the eigenvalue and α a label to distinguish
orthogonal eigenstates in the degenerate subspace, as [23]
|ψ(t)〉 =

∑
N

∑
α
aNαe

iΘ
Nα

(t)|ΦN,α; t〉, where the aNα do
not depend on time and ΘNα(t) is the Lewis-Riesenfeld
phase, defined so that eiΘNα(t)|ΦN,α; t〉 is a solution of the
Schrödinger equation.
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Figure 1: (Color online) Schematic representation of ini-
tial (long principal axis in x direction) and final (long
principal axis in y direction) configurations of a 2D har-
monic potential as well as an intermediate configuration
with principal axes along q1 and q2.

2 Notation and model

As a relevant example of a physical setting that
leads to the Hamiltonian (1) we consider a two
dimensional space of (laboratory) fixed axes x̃, ỹ
and a particle of massm moving in an anisotropic
harmonic potential whose principal axes q̃1, q̃2 ro-
tate by θ (counterclockwise polar angle measured
from the x̃ axis to the q̃1 axis) and admits as well
a time dependence of the instantaneous eigen-
frequencies ω̃1,2(t). From now on we shall con-
sider dimensionless versions (without tilde) of the
corresponding coordinates, defined in terms of a
unit of position

√
h̄/(mω̃1(0)), unit of momen-

tum
√
h̄mω̃1(0), unit of time 1/ω̃1(0), and unit

of energy h̄ω̃1(0). The coordinate and momentum
transformations between laboratory and rotating
coordinates and momenta are

(
q1
q2

)
= W (t)

(
x
y

)
,

(
p1
p2

)
= W (t)

(
px
py

)
(2)

with

W (t) =
(

cos θ sin θ
− sin θ cos θ

)
. (3)

Adding kinetic and potential terms the lab-frame
Hamiltonian may simply be written as

H(t) = p2
x

2 +
p2
y

2 + 1
2ω

2
1(t)q2

1(x, y)

+ 1
2ω

2
2(t)q2

2(x, y)

= p2
x

2 +
p2
y

2 + 1
2ω

2
1(t)(x cos θ + y sin θ)2

+ 1
2ω

2
2(t)(x sin θ − y cos θ)2, (4)

which is of the form (1) with

M11 = ω2
1 cos2 θ + ω2

2 sin2 θ, (5)
M22 = ω2

1 sin2 θ + ω2
2 cos2 θ, (6)

M12 = M21 = (ω2
1 − ω2

2) sin θ cos θ, (7)

and

tan(2θ) = M12 +M21
M11 −M22

,

ω2
1 = cos2 θ

cos 2θM11 −
sin2 θ

cos 2θM22,

ω2
2 = − sin2 θ

cos 2θM11 + cos2 θ

cos 2θM22. (8)

3 The primary invariant to design the
harmonic trap evolution
The Hamiltonian (1) can be written as a 4 × 4
matrix

H = 1
2X̂

TΩX̂, Ω =
(
M 0
0 1

)
, (9)

where X̂T = (x, y, px, py), 1 represents a 2×2 unit
matrix, and M is a time-dependent (potential)
matrix

M =
(
M11 M12
M21 M22

)
. (10)

So far the formal results are valid for classical
or quantum particles. For a quantum particle
the components of X̂ are to be interpreted as
operators with the standard position/momentum
commutation relations. In the following, we will
construct the invariant to design the rotation fol-
lowing ref. [22], in a quantum frame. To find
an invariant, a quadratic ansatz may be assumed
with the form

I0(t) = 1
2X̂

TΓX̂, (11)
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Figure 2: (Color online) Snapshots at equal time inter-
vals of equipotential lines (time increases from lighter
to darker lines) of the trap for different values of the
control parameter λ. For λ = 0 the trap simply expands
in y-direction and compresses in x-direction. For λ 6= 0
the trap rotates anticlockwise with some deformation of
the principal axes. In all cases x and y initial and final
frequencies are switched. Parameters: tf = 5, w2 = 5.

where the subscript 0 will distinguish it from
other invariants to be defined later. The invari-
ant I0 has to satisfy the relation of all invariants
∂I(t)/∂t = i[I(t), H(t)], which implies

dΓ
dt

= ΩSΓ− ΓSΩ, S =
(

0 1
−1 0

)
. (12)

As invariants imply specific dynamics, H(t) may
be inverse engineered from I0(t), but care must be
exercised, as the generic form (11) might lead to
a H(t) without the desired form (9). To impose
the desired form, Γ is designed with the parame-
terization [22]

Γ= <
(

Ṗ †Ṗ −Ṗ †P
−P †Ṗ P †P

)
, (13)

where P is a 2× 2 complex matrix, < stands for
the real part of the matrix, and the dots are time
derivatives. Using Eq. (13) into Eq. (12),(

<(Ṗ †D +D†Ṗ ) −<(D†P )
−<(P †D) 0

)
= 0, (14)

where D = P̈ + PM . Any P such that D = 0
leads to an invariant consistent with Eq. (9), but

HaL

Λ = 1
Λ = 10
Λ = 20
Λ = 40

0 1 2 3 4 5
0.0

0.5

1.0

1.5

t

HbL

0 1 2 3 4 5
0.0

0.5

1.0

1.5

2.0

t

Θ 

Figure 3: (Color online) θ and θ̇ versus time for λ = 1
(purple solid line), λ = 10 (red short dashed line), λ =
20 (blue dot-dashed line) and λ = 40 (brown dotted
line). The peak cut in (b) reaches 10. tf = 5, w2 = 5.

Λ = 1
Λ = 10
Λ = 20
Λ = 40

0 1 2 3 4 5

-50
-40
-30
-20
-10

0

t

M
12

Figure 4: (Color online) Coupling term M12(t) for dif-
ferent λ. tf = 5, w2 = 5.
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additional restrictions are necessary to make M
real-symmetric. To that end it is useful to assume
a polar decomposition P = UR with U unitary
and R Hermitian and positive-semidefinite. R is
left as a free matrix and U is determined to make
M real-symmetric by defining A = U †U̇ , which
gives U fromA and the initial condition U(0) = 1.
Hermiticity of M requires

A = iR−2 + 1
2[R−1, Ṙ] + 1

2R
−1JR−1,

{J , R−2} = [Ṙ, R−1] + [R,R−2]Ṙ, (15)
where [x, y]z = xzy − yzx and {x, y} = xy +
yx is the anti-commutator. One then finds the
differential equation for R [22],

{R̈, R}+ {R2,M} = 2[Ṙ, R]A − 2RA2R, (16)
which guarantees thatM is real-symmetric for all
times if R is real and positive and Ṙ(0) = 0 [22].
Based on Eqs. (15) and (16), the Hamiltonian
is inverse engineered by designing R with proper
boundary conditions, and then using Eqs. (15)
and (16). An explicit expression for M in terms
of R may be found in Eq. (79) of ref. [22]. The
boundary conditions are chosen so that

[I0(0), H(0)] = [I0(tf ), H(tf )] = 0, (17)
which implies

R̈(0) = Ṙ(0) = 0, R̈(tf ) = Ṙ(tf ) = 0, (18)

R(0) = M(0)−
1
4 , R(tf ) = M(tf )−

1
4 . (19)

In simple scenarios without degeneracies ofH and
I, the commutativity at the boundaries (17) im-
plies a one-to-one dynamical mapping from ini-
tial to final eigenstates of the Hamiltonian, see
e.g. [11], carried out by the eigenstates of the
invariant. This is the basis for many inverse en-
gineering applications from I(t) (representing the
desired dynamics) to H(t) (the driving) [21]. The
current I0, however, is a degenerate operator, see
below, which makes the desired mapping possi-
ble, as we shall see, but not necessary. A basic
goal of this work is to find out the way to impose
that mapping.

4 Design of H(t) from the invariant
We consider the following initial and final poten-
tials

Vi = 1
2w

2
1x

2 + 1
2w

2
2y

2,

Vf = 1
2w

2
2x

2 + 1
2w

2
1y

2, (20)

Figure 5: (Color online) Trap frequencies squared ω2
1,2

versus time for different λ, the dashed line is for ω2
1 and

the solid line for ω2. The lines do cross at λ = 0 but
the crossing is avoided for λ 6= 0. tf = 5, w2 = 5.

where the initial and final frequencies in x and y
directions swap, and we use a special notation
for initial and final frequencies, namely, w1 ≡
ω1(0) = ω2(tf ) and w2 = ω2(0) = ω1(tf ). Let us
recall that with our units w1 = 1 but in several
equations we write w1 (instead of its value 1) to
achieve a more clear physical interpretation. Our
goal is to transform the potential from Vi to Vf
so that initial eigenstates |n, k〉i become their ro-
tated versions at final time, namely |k, n〉f , up to
a phase factor. An adiabatic rotation of the prin-
cipal axes would accomplish such transformations
but we want faster drivings using the invariant as
a guidance for inverse engineeringH(t). From the
boundary conditions in Eqs. (20) and (19), R has
to satisfy

R(0)=

w− 1
2

1 0
0 w

− 1
2

2

 , R(tf )=

w− 1
2

2 0
0 w

− 1
2

1

 .
(21)

(The exponents of R are instead +1/2 in [22],
which is a typo.)

Considering the conditions in Eqs. (18) and
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(19), R(t) is interpolated with a polynomial p(t),

R(t) = [1− p(t)]R(0) +p(t)R(tf )
+ (t/tf )3(1− t/tf )3Rc, (22)

where Rc is in principle an arbitrary real sym-
metric matrix and2

p(t) = 10(t/tf )3 − 15(t/tf )4 + 6(t/tf )5, (23)

so that the boundary conditions (18) are also sat-
isfied. A purely diagonal Rc implies that the prin-
cipal axes do not rotate. This would lead to a
mapping of the form |n, k〉i → |n, k〉f instead of
the desired |n, k〉i → |k, n〉f (up to phase factors).
Thus we choose instead

Rc = λ(w1w2)−1/4
(

0 1
1 0

)
(24)

with λ as a free parameter. Figure 2 shows snap-
shots of the trap (in the laboratory frame) at
equal time intervals between t = 0 and tf for dif-
ferent λ. For λ = 0 there is no rotation but a pure
compression (in x direction) and expansion (in y
direction) of the two orthogonal oscillators with
principal axes fixed in the laboratory frame. For
λ 6= 0 the principal axes rotate, more abruptly as
λ→ 0, see Fig. 3. For increasing values of λ the
rotation velocity shows first a maximum at tf/2
but eventually develops two maxima. The effect
of λ on the coupling term M12 is depicted in Fig.
4, and on ω2

1,2(t) in Fig. 5.

5 Degeneracy of I0

The invariant may be calculated at initial and fi-
nal times from the boundary conditions. In terms
of number operators for x and y oscillators it
takes the form

I0(tb) = nx(tb) + ny(tb) + 1, (25)

where tb = 0, tf . For simplicity it is useful to
subtract the constant and define I+ = I0− 1 as a
pure sum of number operators at boundary times,

I+(tb) = nx(tb) + ny(tb). (26)

2These forms of p(t) and R(t) are just a simple choice
and none of the formal results to be found later on de-
pend on them. Alternative forms may be used as long
as the boundary conditions are satisfied and R(t) remains
positive semidefinite, for example, to optimize robustness
with respect to perturbations, or other variables such as
transient energies[24].

Being an invariant, the spectrum of I+(t) is con-
stant, and degenerate at all times, except for
the ground state. The different subspaces can
be labelled by N = 0, 1, 2..., where N is the
sum of quantum numbers, and their dimension
is N + 1. The non-degenerate subspace N = 0
is spanned by the ground states of the Hamil-
tonian at boundary times. At any other time
the state that dynamically evolves from |0, 0〉i is
the nondegenerate ground eigenstate of I+(t). In
general it is not an eigenstate of H(t) except in
the limit of very slow, adiabatic processes. The
next subspace is N = 1, spanned by |0, 1〉i and
|1, 0〉i at initial time and by |0, 1〉f and |1, 0〉f
at final time. The states that evolve dynami-
cally from |0, 1〉i and |1, 0〉i remain orthogonal,
are degenerate eigenstates of I+(t), and span at
any time the subspace N = 1 of the invariant.
However there is in general no guarantee that the
state |0, 1〉i will become |1, 0〉f . A priori, all we
can say is that it will evolve into a linear com-
bination of |0, 1〉f and |1, 0〉f at tf . As a fur-
ther example, N = 2 is spanned at initial and
final time by |0, 2〉i,f , |2, 0〉i,f , and |1, 1〉i,f ; and
so on. Any state |n, k〉i evolves in time within
the invariant subspace n+k, which is spanned by
the states that evolve dynamically from the ini-
tial eigenstates but, except for the ground state,
the final state is in general a linear combination
of the eigenstates of H(tf ) that span the sub-
space, rather than the desired |k, n〉f . Numerical
calculations, see an example in Table I, demon-
strate that the energy increment when the state
starts at |n, k〉i takes a remarkably simple form,
namely,3

〈H(tf )〉 − Enk(0) = b(n− k)(w2 − w1), (27)

where Enk(0) = Ekn(tf ) = (n + 1/2)w1 + (k +
1/2)w2, and the proportionality constant b de-
pends, for given w1,2, only on the process time tf ,
and on λ, but not on n or k. This might at first
sight seem to indicate that at least |n, n〉i, n > 0
becomes |n, n〉f , but that is not the case in gen-
eral as we shall see. In fact we shall discuss later

3We found this expression of the final energy first
heuristically from the calculations using the Wigner func-
tion for different values of n and k as exemplified in Table
I. Later on we could find an analytical expression for the
time dependent wavefunction, see Eq. (44) below, that
allows to calculate the final energy analytically for given a
given pair k, n, as shown in the Appendix. This also gives
an expression for b.
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Initial state |0, 0〉i |1, 1〉i |1, 0〉i |0, 1〉i |2, 0〉i |0, 2〉i |3, 0〉i |0, 3〉i |2, 1〉i |1, 2〉i
Enk(t = 0) 3 9 4 8 5 13 6 18 10 14

δ 0 0 2.613 -2.613 5.227 -5.227 7.840 -7.840 2.613 -2.613

Table 1: For a given initial state |n, k〉i, Initial energy Enk(0) = (n+ 1/2)w1 + (k+ 1/2)w2 and final excess energy
δ = 〈H(tf )〉 − Enk(0). Parameters: tf = 1, λ = 20, w2 = 5.

the physical meaning of the constant b, which, for
a given tf , can be manipulated and made zero by
choosing the proper value of λ. We shall also see
that this choice corresponds indeed to the desired
process |n, k〉i → |k, n〉f , for all n, k. To proceed
further we need to introduce more invariants.

6 Construction of further invariants
To get a more explicit expression for the final
state and final energy for the processes designed
from I+(t), we shall make use of further invari-
ants. The linear operators [25, 26, 1]

G(t) = ux(t)px− u̇x(t)x+ uy(t)py − u̇y(t)y (28)

are invariants provided

üx +M11(t)ux = −M12(t)uy,
üy +M22(t)uy = −M21(t)ux, (29)

which are classical (Newton) equations of motion
driven by a Hamiltonian (1). We may thus re-
gard ux(t), uy(t) as the Cartesian components of
a classical trajectory. Note that the ux, uy might
be complex, representing in that case two tra-
jectories, since real and imaginary parts evolve
independently and solve the classical equations.
It proves useful to write G(tb) at boundary times
tb = 0, tf in terms of (initial and final) creation
and annihilation operators,

G(tb) =
∑
z=x,y

a†z(tb)√
2

[
i
√
ωz(tb)uz(tb)−

u̇z(tb)√
ωz(tb)

]

−
∑
z=x,y

az(tb)√
2

[
i
√
ωz(tb)uz(tb)+ u̇z(tb)√

ωz(tb)

]
,

(30)

where az(tb) =
√
ωz(tb)/2z + ipz/

√
2ωz(tb), z =

x, y. Different linear invariants may be con-
structed by choosing specific boundary conditions
for ux,y and u̇x,y. In particular, the initial condi-
tions [1]

ux(0) = i/
√

2ωx(0), u̇x(0) = −
√
ωx(0)/2,

uy(0) = 0, u̇y(0) = 0, (31)

define an invariant which is initially G1(0) =
ax(0). Instead, the initial conditions

u′x(0)=0, u̇′x(0)=0,

u′y(0)= i/
√

2ωy(0), u̇′y(0)=−
√
ωy(0)/2, (32)

define a different invariant which at time zero is
G2(0) = ay(0). Here we use the prime ′ to dis-
tinguish the trajectories with initial conditions in
Eq. (32).

We may construct corresponding quadratic in-
variants as I1(0) = G†1(0)G1(0) and I2(0) =
G†2(0)G2(0). Clearly I+(0) = nx(0) + ny(0) =
I1(0) + I2(0) so, for the H(t) inverse engi-
neered from I+(t), we have that G†1(tf )G1(tf ) +
G†2(tf )G2(tf ) = I+(tf ) = nx(tf ) + ny(tf ). This
implies that G1(tf ) and G2(tf ) have no a†z(tf )
components and the following relations hold for
the final values of the trajectories, see Eq. (30),

u̇x(tf )= iωx(tf )ux(tf ), u̇y(tf )= iωy(tf )uy(tf ),
u̇′x(tf )= iωx(tf )u′x(tf ), u̇′y(tf )= iωy(tf )u′y(tf ).

(33)

The corresponding G1(tf ) and G2(tf ) take the
form

G1(tf ) = cxax(tf ) + cyay(tf ),
G2(tf ) = c′xax(tf ) + c′yay(tf ), (34)

where, using Eq. (33),

cx=−i
√

2ωx(tf )ux(tf ), cy=−i
√

2ωy(tf )uy(tf ),

c′x=−i
√

2ωx(tf )u′x(tf ), c′y=−i
√

2ωy(tf )u′y(tf ),
(35)

which, taking into account that I+(tf ) = nx(tf )+
ny(tf ), satisfy the relations

c∗xcx+c′∗x c′x = 1, c∗ycy+c′∗y c′y = 1, c∗xcy+c′∗x c′y = 0.
(36)

A property of invariants that we shall use re-
peatedly is that if |ψ(t)〉 is a solution of the
Schrödinger equation, then I(t)|ψ(t)〉 is also a
solution, as can be readily be checked from the
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equation satisfied by I(t). We shall also use that
there is an elementary (ground state) solution
that begins at |0, 0〉i and ends at |0, 0〉f . If we
now take |1, 0〉i = G†1(0)|0, 0〉i as the initial state,
the final state will be

|ψ(tf )〉=G†1(tf )|0, 0〉f
= [c∗xa†x(tf )+c∗ya†y(tf )]|0, 0〉f
=c∗x|1, 0〉f + c∗y|0, 1〉f . (37)

Using the normalization condition at final time,
we thus find the additional relation

〈ψ(tf )|ψ(tf )〉 = c∗xcx + c∗ycy = 1, (38)

and similarly we find, using G2,

c′∗x c
′
x + c′∗y c

′
y = 1. (39)

We have found the relations (38) and (39) us-
ing for convenience a particular state, but notice
that they are general, i.e., they are valid as long
as H(t) is designed from the invariant I+(t). This
is because the coefficients do not depend on the
state considered but on the Hamiltonian evolu-
tion.

From the Eqs. (36), (38) and (39),

c∗xcx = c′∗y c
′
y, c∗ycy = c′∗x c

′
x. (40)

Thanks to the relations (36), (38), (39), and (40)
several important results will depend only on the
parameter

b ≡ c∗xcx, (41)

so we use a special notation for it. We shall find
shortly that this is exactly the parameter that
appears in the expression of the energy increment
(27).

7 Final state
7.1 Final state for a given initial eigenstate
|n, k〉i
Driven by the Hamiltonian designed using I0, the
evolution from the ground state |0, 0〉i will end
at the ground state |0, 0〉f . To see the fate of
an arbitrary initial eigenstate of H(0), |n, k〉i, we
construct the invariant which is initially

In,k(0) = [G†1(0)]n[G†2(0)]k√
n!k!

=
[a†x(0)]n[a†y(0)]k

√
n!k!

,

(42)

such that In,k(0)|0, 0〉i = |n, k〉i. At final time it
is

In,k(tf ) = 1√
n!k!

[G†1(tf )]n[G†2(tf )]k

= 1√
n!k!

[c∗xa†x(tf)+c∗ya†y(tf)]n[c′∗x a†x(tf)+c′∗y a†y(tf)]k

= 1√
n!k!

n∑
i=0

C(n, i)[c∗xa†x(tf )]n−i[c∗ya†y(tf )]i

×
k∑
j=0

C(k, j)[c′∗x a†x(tf )]k−j [c′∗y a†y(tf )]j , (43)

where C(n, k) ≡ n!
k!(n−k)! . The final state will be

|ψ(tf )〉 = In,k(tf )|0, 0〉f

=
n∑
i=0

k∑
j=0

√
C(n, i)C(k, j)C(n+k−i−j, k−j)C(i+j, i)

× (c∗x)n−i(c∗y)i(c′∗x )k−j(c′∗y )j |n+ k − i− j, i+ j〉f .
(44)

We can now compute the final energy
〈ψ(tf )|H(tf )|ψ(tf )〉 for the given initial state
|n, k〉i to find, for any n, k pair, Eq. (27) with
b = |cx|2, see the details in Appendix C.

7.2 Perfect state transfers
In view of Eq. (27), the zeros of b = c∗xcx (as
a function of the parameters λ, tf , and w2) play
an important role. For b = 0, the initial and fi-
nal energy are equal for all n, k. Moreover, since
cx = c′y = 0 for b = 0, see Eq. (40) (equiv-
alently ux(tf ) = 0 and u′y(tf ) = 0), cy and c′x
become complex numbers with unit modulus, see
Eq. (36), and with phases φy and φ′x that depend
on the final point of the trajectories, see Eq. (35).
The linear invariants G1,2 at final time become

G1(tf )|b=0 = eiφyay(tf ),
G2(tf )|b=0 = eiφ

′
xax(tf ), (45)

so that the final state corresponding to |n, k〉i is,
for b = 0,

|ψ(tf )〉|b=0 = In,k(tf )|0, 0〉f
=(c∗y)n(c′∗x )k|k, n〉f =e−i(nφy+kφ′

x)|k, n〉f . (46)

In other words, the condition b = 0 implies a
perfect-transfer STA protocol. Notice also the
quadratic invariant evolutions when b = 0,

I1(0) = nx(0)→ I1(tf ) = ny(tf ), (47)
I2(0) = ny(0)→ I2(tf ) = nx(tf ). (48)
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Figure 6: (Color online) b versus λ (a) for different final
times and w2 = 5; (b) for different w2 and tf = 5.
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Figure 7: (Color online) For given tf , λmin is the mini-
mum λ to realize b = 0.

As Fig. 6 demonstrates, for a given w2 and tf
one can always find values of λ that make b = 0.
Presently the existence of such values is just an
observation. Finding a reason why they do in-
deed occur is left as an open question. Figure 7
shows the minimum of such λ values as a func-
tion of tf . While the minimum value increases
for shorter times, the dependence on w2 is not as
simple. We emphasize that tf is arbitrary so that
the process may be clearly non-adiabatic during
the transient protocol. Figure 8 gives some ex-
amples of transient excitations consistent with a
vanishing final excitation for two different initial
states and two different process times.

Figure 8: (Color online) Instantaneous eigenenergies of
the Hamiltonian (blue solid lines) Enk(t) ≡ ω1(t)(n +
1/2) +ω2(t)(k+ 1/2), and the expectation value of the
energy (red points) versus time for two different initial
states |n, k〉i and w2 = 5. For (a) and (c): tf = 5,
λ = 18.81; for (b) and (d): tf=3, λ = 21.89.

8 Discussion

We have found that a combination of invari-
ants, the 2D invariant I0 proposed by Simsek and
Mintert [22], and the 2D linear invariants used in
Tobalina et al. [1], allow for fast inverse engineer-
ing state transfers, more specifically vibrational
quantum number swapping for any (not neces-
sarily known) quantum numbers, in coupled os-
cillators. The linear invariants and their powers
serve to solve the “degeneracy problem” of I0, by
which its commutation with the Hamiltonian at
boundary times does not guarantee perfect trans-
fer except for the ground state. They also pro-
vide explicit expression for the Lewis-Riesenfeld
final phase for each state, see Eq. (46). Differ-
ent systems may be described as coupled oscil-
lators, and we have paid special attention to a
particle in a trap whose final form is rotated by
π/2 with respect to the initial one. In this case
the method allows for rotations that produce fi-
nal eigenstates of the Hamiltonian rotated with
respect to the initial eigenstates. The method
can be extended to arbitrary rotation angles, see
Appendix B, as well as to more complex opera-
tions such as a trap translation combined with
its rotation, i.e. to the process considered in
[22]. The methodology presented here may be ex-
tended into problems in higher dimensions such
as ion separations [27]. A further extension con-
cerns the boundary conditions for the potential.
Suppose that a quantum number exchange is de-
sired, namely |n, k〉i → |k, n〉f up to phase fac-
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tors, with M12(0) = M12(tf ) = 0, as in the main
text, but such that the initial and final oscilla-
tors are equal, i. e., such that (Mjj)f = (Mjj)i,
j = 1, 2. The process may be designed in two
STA steps, the first one as in the main text, and
the second one as an STA expansion or compres-
sion of the oscillators [11] keeping the coupling
M12 zero. Quite different boundary conditions
and Hamiltonian parameter controllability have
been set in ref. [28], where an STA approach
based on counter-diabatic driving and unitary
transformations to get rid of terms difficult to
implement [29] was applied, see also ref. [30]. A
detailed comparison will be carried out elsewhere.

Finding perfect transfers requires fine tuning
an invariant parameter λ. This tuning is done by
calculating a complex valued classical trajectory,
so that a final boundary condition (ux(tf ) = 0)
is satisfied. The resulting processes are defined
by time dependent functions θ(t), ω1,2(t). As
the process time is decreased, one of the frequen-
cies for the principal axes may become imaginary,
which implies a repeller in that direction. This ef-
fect is well known in fast STA expansion or com-
pression processes [11] and may or may not repre-
sent a problem to implement it in the laboratory
depending on the physical setting. The detailed
discussion of specific implementations goes be-
yond the scope of the present article, but we point
out that in a trapped ion setting, the rotation of
the trap with varying frequencies and controlled
angular speed are possible with “point harmonic
traps” making use of concentric rings to imple-
ment a ponderomotive potentials and a rotat-
ing electrostatic quadrupole potential [20, 18, 31].
Different (two particle) implementations may be
based on two ions in controllable double wells
[32].
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A Use of the Wigner function to cal-
culate final energies

At initial time, the Hamiltonian is given by

H(0) = p2
x

2 +
p2
y

2 + 1
2ω

2
1(0)x2 + 1

2ω
2
2(0)y2. (49)

Consider as initial states the product of eigen-
states of the two harmonic oscillators with vibra-
tional quantum numbers n and k,

|Ψ(x, y; 0)〉 = |φ(1)
n (x; 0)〉|φ(2)

k (y; 0)〉 (50)

The corresponding Wigner function is
W (x, y, px, py; 0) = W

(1)
n (x, px; 0)W (2)

k (y, py; 0),
where

W (1)
n (x, px; 0) =

∫
dz
e−ipxz

2π φ(1)
n

(
x+ z

2; 0
)

× φ∗(1)
n

(
x− z2; 0

)
,

W
(2)
k (y, py; 0) =

∫
dz
e−ipyz

2π φ
(2)
k

(
y+ z

2; 0
)

×φ∗(2)
k

(
y− z2; 0

)
.

Because the driving is harmonic we may use
classical trajectories to propagate the Wigner
function, as well as Liouville’s theorem, namely,
W (xf , yf , px,f , py,f ; tf ) = W (x, y, px, py; 0),
where xf , yf , px,f , py,f is the classical trajectory
with initial conditions x, y, px, py at time t = 0.
Thus in the Weyl-Wigner formulation, the final
energy may be computed easily using the initial
Wigner function as weight function and classical
trajectories to compute the Weyl transform of
the energy operator, HW (tf ), which is simply the
classical expression of the energy, as H(tf ) does
not involve any cross terms between positions
and momenta,

〈H(tf )〉 =
∫
...

∫
dxdydpxdpyW (x, y, px, py; 0)

× HW (xf , yf , px,f , py,f ; tf ). (51)

The numerical computations proceed by dis-
cretizing the integral into a mesh of initial phase
points which serve as initial conditions to calcu-
late classical trajectories whose final values pro-
vide the corresponding final energies.
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B Arbitrary final rotation angle
In the main text, we consider rotations of the
trap from 0 to π/2. In fact the use of invari-
ants to design fast state transfer processes may
also be applied to an arbitrary final rotation an-
gle γ. Note that for an arbitrary rotation an-
gle γ the Cartesian coordinates x, y are still use-
ful as a fixed “laboratory frame” for calculations,
but they are no more a privileged frame to rep-
resent states and Hamiltonians, as x and y direc-
tions will be generally coupled in the final con-
figuration. Instead, it is convenient to express
initial and final states (similarly initial and fi-
nal number operators, or creation and annihi-
lation operators) in terms of uncoupled rotated
coordinates q1, q2 and momenta p1, p2, see Eqs.
(2) to (4). In that representation perfect rota-
tions take the form |n1, k2〉i → |n1, k2〉f , up to
phase factors, and at boundary times tb = 0, tf ,
H(tb) = H1(tb) +H2(tb), where

H1(tb) = p2
1

2 + 1
2w

2
1q

2
1,

H2(tb) = p2
2

2 + 1
2w

2
2q

2
2. (52)

The corresponding invariant is (using the lab
frame as in the main text) I0(tb) = 1

2X
TΓ(tb)X,

and

Γ=
(
R−2(tb) 0

0 R2(tb)

)
=
(
M1/2(tb) 0

0 M−1/2(tb)

)
,

(53)

where now the boundary conditions for R and
M at tb must be adapted to the corresponding
potential. Finally, we get

I0(tb) = n1(tb) + n2(tb) + 1, (54)

similarly to the main text, but now the number
operators correspond to the two uncoupled oscil-
lators in the orthogonal principal axes of the ini-
tial or final trap. The auxiliary invariants can be
worked out similarly to the main text to achieve
perfect state transfers.

C Eq. (27) and meaning of b

The initial state is assumed to be |ψ(0)〉 = |n, k〉i.
For any process where H(t) is found from the
invariant I+(t) the final state is given by Eq. (44),
where, there are in general several contributions
corresponding to a given state of the (final) basis.
It is thus useful to reorder the combination and
group them together as

|ψ(tf )〉 =
n+k∑
s=0

dn+k−s,s|n+ k − s, s〉f (55)

where the amplitude for each basis state is

dn+k−s,s =
Min(n,s)∑

i=Max(0,s−k)

√
C(n, i)C(k, s− i)C(n+k−s, k+ i−s)C(s, i)(c∗x)n−i(c∗y)i(c′∗x )k+i−s(c′∗y )s−i.

(56)
Using Eqs. (36), (38), and (39), the corresponding probability Pn+k−s,s = |dn+k−s,s|2 is

Pn+k−s,s =
∣∣∣∣ Min(n,s)∑
i=Max(0,s−k)

(−1)i
√
C(n, i)C(k, s− i)C(n+k−s, k+ i−s)C(s, i)

√
b
n+s−2i√

1− bk+2i−s
∣∣∣∣2.
(57)

Let us recall that b = |cx|2 = |c′y|2. Now let us compute the final energy making use of the fact that
the basis functions are eigenstates of H(tf ),

〈H(tf )〉 =
n+k∑
s=0

Pn+k−s,sEn+k−s,s(tf ) =
n+k∑
s=0

Pn+k−s,s

[
Ek,n(tf ) + (n− s)(w2 − w1)

]

=Ek,n(tf )
n+k∑
s=0

Pn+k−s,s+(w2−w1)
n+k∑
s=0

(n−s)Pn+k−s,s.

(58)
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where Ei,j(tf ) = (i+ 1/2)w2 + (j + 1/2)w1.
This gives Eq. (27) provided

n+k∑
s=0

Pn+k−s,s = 1, (59)

n+k∑
s=0

(n− s)Pn+k−s,s = b(n− k). (60)

The first relation follows directly from the nor-
malization of the state. The second one can be
worked out “by hand” for small n and arbitrary k
after some algebra, using Eq. (57), but the calcu-
lation grows rapidly with n because of the com-
binatorial nature of the problem. We have thus
used Mathematica to check its validity for arbi-
trary values of n and k (in particular in a loop
for all possible values up to n = 100, k = 100).
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