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Abstract 

This work presents the application of a procedure for replacing FEM subsystems with a 

high number of dofs (possibility of including mobile internal parts) using Equivalent 

Parametric Macroelements (EPMs) with a much reduced number of elements to 
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decrease significantly the analysis time with an acceptable error. This procedure is 

applied to the replacement of VGT mobile joints. The equivalence criterion proposed is 

based on elastic strain energies absorbed by both bodies. Said replacement involves 

resolution of a redundant non-linear equation system, iteratively focused via 

linearization and subsequent resolution via the Least Squares Method. The search for 

initial approximation is supported by Genetic Algorithm techniques. 

 

Key words: Variable Geometry Truss (VGT), Finite Element, Equivalent Parametric 

Macroelement (EPM), Energy Method, Optimization. 

 

1. Introduction. 

 

Variable geometry structures are those capable of modifying their geometry to adapt to 

different loads and working conditions. This is possible because some of the elements 

comprising them can vary their length. These elements are called actuators. Another 

characteristic making them interesting is their high stiffness to weight ratio, which has 

contributed to the application of variable geometry structures in the spatial research 

field. The study of these structures dates back to the 1980s [1]. A specific type within 

this group is based on spatial truss type structures known as Variable Geometry Truss 

(VGT). Its most common application is as manipulators [2, 3 and 4]. These trusses are 

formed via repetition of the main module whose topology can be highly varied [5, 

6].The most widely known VGT is the Double Octahedral, made up of two main 

octahedral modules [7, 8, 9]. 
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The MBAD1 (Multi Body Analysis and Design) workgroup of the University of the 

Basque Country has developed a five-module VGT prototype, where the geometry of 

the main module is also established upon the octahedral shape. The real structure is 

shown in Fig. 1. Each module is a parallel kinematic mechanism in itself with actuators 

set on the horizontal planes. These planes are joined among them using fixed length 

bars called longerons. The joint between these bars and the actuators is done by special 

joints. These joints have also been developed by the workgroup and are patented. In Fig. 

2 there is an exploded view of the joint where it can be appreciated the different 

elements comprising the same. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Five-Module VGT Prototype                                        Fig. 2. Exploded view of the joint. 

 

                                                 
1 http://www.ehu.es/mbad 
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To perform the analysis on the structure a finite element model was created in 

MSC/Nastran, preceded by another detailed cinematic model created using 

MSC/Adams. Fig. 3 shows both models indicating the different elements comprising the 

five-module VGT. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. VGT kinematic and FEM model 

 

In these structures it is necessary to perform the analysis on various configurations. A 

program has been developed in PCL (Patran Command Language) which automatically 

creates a FEM model in each position to enable diverse studies. Once the FEM model of 

the variable geometry structure has been created, its behavior is studied under different 

load cases and in different positions. As this is a detailed model, both creation and 

analysis time are excessive, so the need to reduce the model arises. There are different 

static model reduction techniques, where the most widely known are reduction via static 
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condensation [10, 11], iterative techniques [12, 13], macroelements [14, 15] and 

substructuring techniques [16].  

 

This paper presents the application of a static reduction technique for FEM models via 

replacement of certain submodels by equivalent parametric macroelements (EPMs). 

These macroelements will have a much lower number of elements than the submodels 

they replace, and consequently computation cost is drastically reduced. The technique is 

based on elastic strain energy equivalence between the submodel and its corresponding 

macroelement. This criterion has led to good results in other applications [17, 18]. 

 

The model to be analyzed is the variable geometry structure shown in Fig. 1, and the 

submodels to be replaced are the intermediate joints of the structure. These submodels 

consist of 3D tetrahedral and hexahedral type elements, likewise rigid and contact 

elements. Altogether there are approximately 2000 elements per submodel. Fig. 4 shows 

the FEM model of one of the joints. 

 

 

 

 

 

 

 

 

 

Fig. 4. Joint FEM Model 
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The following section defines the mathematical development of the macroelement in 

detail. Once its function has been understood, the methodology of the model reduction 

technique is explained; defining all the variables likewise the equations arising from 

energy equivalence. Below are the results obtained via application of this technique for 

the joint of the five-module VGT. Finally, a brief commentary on these results and the 

conclusions are shown. 

 

2. Mathematical definition of the joint macroelement. 

 

The macroelement as understood in this paper is a series of elements, which join 

together forming a new body. If this set of elements is intended to replace another 

model, it might satisfy certain restraints: firstly it must be cinematically equivalent to 

the replaced model and secondly equivalent from a structural viewpoint. The choice of 

the type of elements is free as far as the connections with the rest of the model and the 

internal mobility are preserved. In this case, the defined macroelement to replace the 

finite element submodel of the joint is formed by eight 3D beam elements with circular 

section and nine nodes, as shown in Fig. 5. Each of these nodes has six dofs, three 

translations (ux, uy, uz) and three rotations (θx, θy, θz). The beams are arranged so nodes 

1, 3, 6 and 7 correspond to the central points of the joint spherical bearings and nodes 8 

and 9 to the link points of the rings with actuator bars. It can be appreciated node 9 

really correspond to the point midway between the two link points of the double ring. 

Nodes 2, 4 and 5 are internal and have not physical correspondence with any of the 

joint. Node 4 is located on the central point belonging to the rotation axis of the joint 

rings. In Fig. 6 it can be appreciated the correspondence of the macroelement nodes 

with the joint submodel. 
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Fig. 5. Macroelement   Fig. 6. Submodel and macroelement 

             correspondence. 

 

2.1 Stiffness matrix. 

 

The macroelement stiffness matrix is obtained via the sum of expanded matrices of each 

element, once expressed into the global system. The axes of this global system are XYZ 

shown in Fig. 5. As the macroelement consists of 9 nodes each with 6 dofs, the final 

matrix is 54 x 54. The element matrices are 12 x 12, since 3D beam type elements were 

used. 

 

As said before, the macroelement must be cinematically equivalent to the submodel. 

The rings round the joint body can rotate in relation to the central axis. These rotation 
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angles shown in Fig. 5 have been defined as θ1 and θ2. The rotation condition must be 

included in the macroelement. This has been done releasing the rotation dof regarding 

the central axis on the nodes corresponding to elements 7 and 8. These elements would 

correspond to the rings in the submodel. The fact of releasing dofs on a node is equal to 

including the null force transmission condition in the same direction. The node 

undergoing this situation is number 4, where four elements concur numbered 3, 4, 7 and 

8. Elements 7 and 8, as mentioned before, would correspond to the rings and elements 3 

and 4 would represent the central axis of the real joint. Therefore, contribution of the 

moment in direction Z on node 4 of elements 7 and 8 must be cancelled. Fig. 7 shows 

released dofs, likewise the local systems of elements 7 and 8. Anyway on this node, 

effort continues being transmitted in that direction, although only between elements 4 

and 5. Introducing this condition means the stiffness matrix of elements 7 and 8 suffer 

certain modifications directly influencing the macroelement stiffness matrix. Below the 

mathematical development is shown in detail. 

 

 

 

 

 

 

 

 

 

 

Fig. 7. Released dofs 

 



FEM subsystem replacement techniques for strength problems in variable geometry trusses 

02 / 19 / 2007     Macareno     9 

Moment according to the released dof is not transmitted, so it is null. In element 7 it 

corresponds to Mz on the first node of the element. Thus, using its equilibrium equation 

(1) and equaling to zero it can be obtained the released dof which now becomes 

dependent on the rest. 
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Eq. (2) is replaced in all the matrix rows where term θz1 appears and the new matrix is 

obtained. This matrix has zeros in all the row and column corresponding to the released 

dof. This development is analogous for element 8. All relevant matrices are shown on 

the Appendix. 

 

Once the previous steps have been executed to achieve cinematic equivalence, the 

macroelement global stiffness matrix is obtained via coupling of all the matrices of each 

element in global coordinates. 

 

At this point, the macroelement has been completely defined, which depends on the 

physical properties (E, υ, G) and dimensions of the elements comprising the same, such 

as the section or radii. Any of these variables may be selected as a parameter. 

 

2.2 Macroelement stiffness matrix condensation. 
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The following step is to condense this matrix to a few numbers of dofs called masters. 

These master dofs must be chosen as they also exist in the submodel, in this case, the 

translation displacements in x, y, z of nodes 1, 3, 6, 7, 8 and 9. These nodes correspond 

with the ones which act as interface with the rest of the model. 

 

The purpose is to obtain the macroelement strain energy just from the displacements of 

the master dofs. Complete execution of this condensation is detailed in [10], however, 

the basic ideas are shown below. 

 

The formula used to calculate strain energy generically is: 

 

        KV
T

2

1
 (3) 

 

where {δ} is the displacement vector, which includes all the dofs. The aim of 

condensation is to reduce the number of dofs, where a new reduced matrix is obtained, 

which is still square and symmetric, although much denser than the original. The 

procedure requires the election of the master dofs, where the rest are slaves. A 

requirement of this technique is that no force acts on any slave dof. Eq. (4) relates the 

forces and displacements via the stiffness matrix. 

 

      PK    (4) 

 

Eq. (4) can be rearranged bearing in mind the previously chosen master and slave dofs. 
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Developing the submatrix product and including the condition that the forces on the 

slave nodes are null, the following equations are obtained: 

 

          msmsmmm Pkk    (6) 

 

          0 sssmsm kk   (7) 

 

From Eq. (7), the vector of slave displacements is written as a function of the masters 

 

        msmsss kk  
1

 (8) 

 

and is replaced in Eq. (6), obtaining: 
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Eq. (9) may be written: 
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being 
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This is the new stiffness matrix reduced to the master dofs and Eq. (12) is the new 

formula for obtaining the energy, which provides an identical value to that obtained via 

Eq. (3), where whole stiffness matrix and the displacements of all the dofs were used. 

 

      m

r

mm

T

m

r kV  
2

1
 (12) 

 

At this point, it has been explained the procedure to obtain the macroelement strain 

energy. Input variables are the displacements of the master dofs. However, the 

macroelement parameters must be defined and adjusted to achieve equivalence with the 

submodel. Here, the radii of the 3D beam elements with circular section have been 

chosen. Total number of parameters amounts to 8, likewise the number of elements. The 

stiffness matrix coefficients depend on these parameters and constants of the materials. 

It must not been forgotten that the two angles θ1 and θ2 also influence the matrix [K], 

and likewise [K]r. For the analyses performed in this study, the value of these angles 

has varied between 21 and 44 degrees. These are the maximum and minimum values 

when the structure is in its extreme positions. 

 

3. Definition of the equivalence method. 

 

The aim of the method is to find the values of some parameters which optimize the 

value of an equivalence function. As already mentioned, our study parameters are the 

radii of the macroelement beams. The function must be such as to indicate the degree of 
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equivalence between the submodel and the macroelement. In this case, it is proposed 

equivalence in terms of stored elastic strain energy. Below the variables intervening the 

method are defined. 

 

Vector {δ} consists of the set of h master dofs. In this particular case it has 18 

components, being the 3 linear displacements (x, y and z) of each of the 6 interface 

nodes, as explained before. Each vector {δ}i defines a displacement case i, being n the 

total number of cases. Matrix [δ] consists of the n vectors {δ} in columns, which 

dimension is h x n. 
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The submodel elastic strain energy is called U. It is a scalar value solely dependent on 

displacements {δ}. Therefore, an energy value Ui is obtained per displacement case i. If 

the calculation for n cases is repeated, the result is a vector {U} of n components. This 

vector is calculated once only and it is invariable, since it defines the reference energy 

per displacement case. Information on the submodel is found in this vector. 

 

   )( ii UU   (14) 

 

    nUUUU 21  (15) 
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Parameters are denominated Aj and the vector {A} is that comprising the total number of 

parameters p of the problem. For this macroelement, value p equals 8. As mentioned 

already, the parameters are radii of each circular section beam element. 
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The macroelement elastic strain energy is called V. As in the case of U, it is also a scalar 

value and dependent not only on displacements {δ}, but also parameter values. Vector 

column {V} comprises the n components Vi. 

 

    ),( AVV ii   (17) 
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3.1 Equation arrangement. 

 

The aim of the method consists of calculating parameter value (16) to minimize the 

error between the submodel and macroelement elastic strain energies U and V. For both 

entities the equivalence must be satisfied for any {δ}i. Thus a non linear system of 

equations will be obtained equaling each Ui to the corresponding Vi, the later being a 

value depending on the parameters. Should the number of equations be equal to the 

number of parameters (n=p), then under normal conditions there would be solution 
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satisfying energy equality in each displacement case. In fact, the demand for a model 

representing a sufficiently wide range of displacement fields means the number of 

equations must be greater than the number of parameters (n>>p). This leads to a system 

without an exact solution, thus the choice adopted must determine the parameter values 

for the best possible equation adjustment. The most widely used method in these cases 

is that of Least Squares. 

 

Resolution of the non-linear equation system will be performed iteratively. The function 

of the macroelement elastic strain energy will be linearized in each iteration via its first 

order Taylor series development:  
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k being the sub-index indicating the iteration number. Sub-index i corresponds to 

displacements case. To obtain this approximation there must be calculated first order 

partial derivatives. These derivatives are calculated using centered finite differences 

with the following formula: 
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where the value ΔAj has been defined as ΔAj =mAj. Value m is between 0 and 1. The fact 

of calculating these derivatives numerically is due to the complexity of the analytical 

form of the elastic strain energy function. Indeed, calculation of this function would 

imply obtaining the symbolic inversion of big matrices. 
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Applying Eq. (20) for each displacement and each parameter, the sensitivity matrix of 

dimensions n x p can be obtained. 
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Taking into account all the above, the following linearized equation system is 

formulated for k iteration, where approximate elastic strain energy is equaled to the 

submodel energy for each displacement case i. 
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This system must be solved for each iteration k via the Least Squares Method, for which 

the R error function is defined as follows: 
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To obtain values which minimize the error function the derivatives must be equaled to 

zero for each parameter. Thus, the following determined compatible equation system is 

reached of p equations and p variables. 
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The solution of this system is the {A}k+1 parameter vector. Set out below are the stop 

criteria taken into account in the iterative process. 

 

3.2 Stop criteria. 

 

To assess the degree of equivalence of the macroelement a value comparing the vectors 

{U} and {V} must be defined. The following formula is highly appropriate for this case: 
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With Eq. (25) it can be evaluated the error committed in each iteration. In the general 

case, as this is a Least Squares method, it will not get a zero error. Therefore, the most 

interesting stop criterion is that which values stabilization of the error committed. When 

the error percentage increase in two consecutive iterations is less than a certain q value, 

the iterative process may be deemed finished. 
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In Eq. (26) the absolute value is used because the error is expected to be less in each 

iteration if the method converges. As an additional criterion it can also be used the one 

based on the optimization parameters variation norm (27).  
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However, it must be borne in mind, that it is highly likely there will be a certain number 

of parameters whose variation has no decisive impact on the objective function value. 

Therefore, prior to assessing the application of Eq. (27), a detailed study must be 

performed on parameter sensitivity, as explained in the parameter control section. 

 

3.3 Initial approximation. 

 

The selection of initial approximation tasks requires special care, since it has been 

verified the method used is highly sensitive to said choice, both in process duration and 

stability. Here the use of genetic algorithm techniques has been chosen. A simple 

genetic code in real numbers with 5 digits in decimal base indicating the value of 

optimization variables has been used for this. The variables chosen for the genetic 

algorithm will be detailed in the results section. 

 

3.4 Parameter control. 
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Among the optimization methods, this one belong to those of steepest descend or 

gradient. The difference between the vector obtained as a solution and the previous in 

each iteration provides a direction vector of maximum gradient. This means that varying 

the parameters in this direction, a maximum variation of the objective function is 

achieved. This vector may be distorted in some cases. This is because the variation of 

some parameters has almost a null impact on the objective function; whereby its value 

may increase disproportionately without appreciable improvement in the solution. To 

prevent situations of this kind an increase control has been applied to the parameters. 

This control consists of applying a maximum value allowed. Once the maximum 

gradient vector has been obtained, variation of each parameter is calculated. If all values 

are lower than the percentage permitted, the process continues unchanged. Should said 

value be exceeded, the vector is scaled taking it to the allowed limit. This action 

prevents any parameter from growing exaggeratedly yet continues to maintain the 

maximum variation direction. The maximum variation value allowed is a parameter 

which may be either variable or fixed. Should it be variable, the most logical would be 

for it to decrease as the solution approaches optimum, to prevent leaping to another 

solution. In this study a fixed f value was chosen. 

 

Apart from delimiting the parameter maximum percentage variation, sometimes a 

compromise decision must be taken in relation to the value of some of them. Applicable 

to the extreme cases commented above of parameters varying disproportionately, 

without hardly any improvement in the solution. This behavior may be quantified using 

the information provided by the sensitivity matrix. Each matrix term indicates the 

variation in elastic strain energy Vi for a unit value increase in the corresponding 

parameter. When this value is close to zero, it means the energy hardly varies. This 
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value may be very low for one displacement case and high for another. Therefore, a 

value which considers all cases must be taken as a reference. This value has been 

defined as Sj, for each parameter. It must be calculated in each iteration since the 

sensitivity matrix also varies. 
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The value obtained in Eq. (28) includes the objective function sensitivity for all 

displacement cases in relation to parameter Aj. As previously indicated, this sensitivity 

enables function invariance evaluation in relation to the parameter in question. 
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3.5 Flow diagram of the optimization process and term glossary. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8. Flow diagram of the optimization process 
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Term glossary. 

 

n   total number of displacement cases 

i   subindex of current displacement case 

h   number of displacement vector dofs 

{δ}i   displacement vector of case i 

[δ]   vector displacement matrix 

Ui   elastic strain energy of the model for case i 

{U}   vector of elastic strain energies of the model 

Vi   macroelement elastic strain energy for case i 

{V}   vector of macroelement elastic strain energies 

p   total number of parameters 

j   current parameter subindex 

Aj   parameter j 

{A}   parameter vector 

m   increasing percentage of parameters in numerical derivation 

  sensitivity matrix 

k   iteration number 

R   error or objective function 

ε   absolute error  

q  relative error  

f  maximum variation in parameters control 

Sj   parameter j sensitivity 














A

V
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4. Results. 

 

This section sets out the optimization process results applied to the macroelement 

described in section 2. The material used is aluminum with the following 

characteristics: 

 

Young module:  E = 70 GPa 

Shear module:  G = 27 GPa 

Poisson Coefficient:  υ = 0.33 

 

Method application conditions: 

 

Number of macroelement parameters:  p = 8 

Number of master dofs:  h = 18 

Number of displacement cases:  n = 60 

Increased percentage in the sensitivity matrix calculation:  m = 0.01 

Maximum Number of iterations:  k_max = 15 

Value of admissible q:  q = 0.5 % 

Maximum variation in parameter control:  f = 10 % 

 

Step one is to create the 60 displacement cases, for which vectors {δ} are created 

randomly. The magnitudes of these displacements were chosen so they were higher than 

expected for the usual working conditions of the real joint. Thus, it is guaranteed correct 

macroelement behavior under normal conditions. The random function (29) is centered 

at zero with values between -10-5 and 10-5 meters. 
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 )12(10 5   Random  (29) 

 

Once created the matrix [δ] with the 60 vectors {δ} each of 18 components, vector {U} 

is calculated. This vector can be obtained in different ways, the most common being 

calculation of the model elastic strain energy for each displacement case as per the 

following formula: 

 

    i

T

ii FU  
2

1
 (30) 

 

{F} being the vector comprising components of reaction forces associated to master 

dofs where displacements are applied. Repeating Eq. (30) for all displacement cases, the 

vector {U} is obtained. As mentioned previously this vector is only calculated once. 

 

The search for initial approximation {A}0 was carried out executing the free Genetic 

Algorithm code “Pikaia” [19]. The values adopted for the algorithm values are as 

follows: 

 

Number of individuals in the population:  150 

Number of generations in the evolution:  400 

Encoding:  decimal 

Number of digits to encode e genotype:  5 

Crossover probability: 0.85 

Mutation mode: adjustable rate based on fitness 

Initial mutation rate:  0.005 
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Minimum mutation rate:  0.0005 

Maximum mutation rate:  0.25 

Reproduction plan: full generational replacement 

Elitism:  active 

 

In this work it was decided to limit the parameter value bearing in mind the physical 

features of the submodel. On the other hand, the search space was notably reduced 

taking into account the symmetry extant in the submodel, which implies a certain 

relationship “a priori” among some parameters.  

 

After 400 generations the values obtained for initial approximation (expressed in 

millimeters) were the following: 

 

    TA 810.2971.4822.10917.10000.25000.25999.8989.8
0
  

 

These are the values initially defining the macroelement; i.e. the values of the 8 radii of 

the circular section beams forming the same. Now the elastic strain energy Vi can be 

calculated for each displacement case. By calculating these values for the 60 cases, 

vector {V} is formed. Now, it can be assessed the degree of equivalence between the 

macroelement and the submodel, using the Eq. (25), which obtained a value of ε = 

0.0292. 

 

Fig. 9 represents the quadratic difference values of the U and V energies per 

displacement case i. This figure confirms the V values are considerably similar to those 

of U. 
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     Fig. 9. Difference between U and V energies for the 60 displacement cases. 

 

Taking this initial approximation, the method described in the previous section is 

applied to refine the parameter values. Fig. 10 shows the evolution of the error (ε) after 

10 iterations. It can be seen how it diminishes in each iteration, although each time with 

less intensity. Complete equivalence is impossible to achieve, since the macroelement 

has considerably fewer elements than the submodel. The macroelement purpose is to 

approximately represent the mechanical behavior of the submodel. In iteration k=10 the 

iterative process stop requirement is met: relative error q is now under 0.5 %. 

 

 

 

 

 

 

 

 

Fig. 10. Error evolution. 
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A1 A2 A3 A4 A5 A6 A7 A8

Iter. 1 8,989 8,999 25,000 25,000 10,917 10,822 4,971 2,810

Iter. 10 9,510 9,691 24,687 58,949 10,704 10,346 4,417 2,290

% 5,798 7,696 -1,250 135,795 -1,958 -4,397 -11,145 -18,511
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In these 10 iterations the error has reduced from 0.0292 to 0.0217, i.e. equal to a 

reduction of 25.64 %. Therefore, application of the method has considerably improved 

the initial solution. However, prior to considering the results correct, parameter 

variation needs to be studied in greater detail.  

 

Fig. 11 shows the parameter evolution in each iteration. Table 1 shows numerical values 

for the parameters in iterations one and ten, likewise their increase as a percentage. 

Growth of parameter 4 stands out because it goes beyond the limits. This parameter has 

an anomalous behavior as mentioned in the previous section. It grows 

disproportionately although error reduction is hardly significant. 

 

 

 

 

 

 

 

 

Fig. 11. Parameter evolution. 

 

Table 1. Values of parameters and their relative variation. 
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Iteration S1 S2 S3 S4 S5 S6 S7 S8

1 11,91 10,36 0,45 0,86 12,92 14,97 6,64 3,99

2 12,41 10,75 0,53 0,56 12,88 15,63 6,54 3,80

3 12,73 10,99 0,57 0,36 12,95 16,04 6,46 3,66

4 12,93 11,15 0,60 0,23 13,03 16,31 6,41 3,56

5 13,06 11,25 0,62 0,15 13,10 16,49 6,37 3,49

6 13,15 11,31 0,64 0,09 13,15 16,61 6,34 3,44

7 13,20 11,35 0,66 0,06 13,19 16,69 6,32 3,41

8 13,24 11,38 0,67 0,04 13,22 16,74 6,31 3,38

9 13,26 11,40 0,67 0,02 13,24 16,78 6,30 3,37

10 13,27 11,41 0,67 0,01 13,25 16,81 6,30 3,37
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Fig. 12 shows the parameter variation percentages. It can be seen all parameters except 

4 have stabilized and reached their optimum value. This figure shows how parameters 

control acts, limiting the maximum increase f of any parameter at 10 % in each iteration. 

 

 

 

 

 

 

 

 

 

Fig. 12. Variation percentages of parameters. 

 

The anomalous behavior of parameter 4 can be quantified using the information 

provided by parameter sensitivity Sj. The following table shows the values of Sj in each 

iteration. 

 

Table 2. Parameter sensitivity values. 
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It can be seen value S4 is not only very low but diminishes on each iteration. This means 

the error hardly varies according to this parameter. Having got this far, a compromise 

decision must be taken which provides a solution with a low error and realistic 

parameter values. Paying attention to the submodel, it can be seen it has quite a high 

degree of symmetry. Results obtained via the energy equivalence method are very 

coherent with this fact. It is sufficient to observe the clear similitude among some 

parameter values. E.g. it can be compared the symmetry extant between parameters 1 

and 2, likewise between 5 and 6. Furthermore, the values of both couples are quite 

similar. Macroelement parameters 3 and 4 would correspond to the central part of the 

joint on the submodel. Therefore it is logical to think they have very similar values, 

since in the submodel, this central part has a constant diameter. Therefore, a good 

solution would be to equal value A4 to A3. With this change, the error increases slightly 

to a value of 0.0237. Even so this error is 18.84 % less than that obtained with initial 

approximation. The results obtained with this method for the equivalence between the 

macroelement and the submodel are satisfactory, always within the limitations involved 

in drastically reducing the number of dofs of a system. 

 

The number of displacement cases in the resolution of this specific case was set at n=60. 

With a view to fully demonstrating the macroelement validity obtained, 10 

displacement groups were chosen. Group 1 was used to resolve this example and the 

other 9 groups created randomly, and the error calculated for each. Fig. 13 shows these 

values. The mean value is 0.0236, with a maximum deviation of 10%. With these data 

the value of n=60 is considered sufficient and the macroelement obtained valid for any 

displacement combination. 
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Fig. 13. Error comparison for several “displacement case groups”. 

 

5. Conclusions 

 

The study purpose is centered on replacing the Finite Element model of an articulated 

VGT joint (with an elevated number of 3D elements including contact elements) with 

an equivalent parametric macroelement (EPM) with few elements. Therefore, a method 

was defined to minimize an objective function based on the equivalence of elastic strain 

energy absorbed by the two models. Thus, the aim is to find EPM parameter values 

which minimized this function. 

 

The optimization method is based on the resolution of a non-linear redundant equation 

system, tackled via the Nonlinear Least Squares Method. For this an iterative diagram 

was proposed where the equations are linearized via the first order Taylor series 

development and subsequently solved via a Least Squares Method. This optimization is 

based on an initial solution via genetic algorithms. 
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The equivalence degree achieved for the EPM has been satisfactory. The adjustment 

percentage for different load cases over the reduced VGT exceeded 99 % in relation to 

the original detailed model while the analysis time has decreased in two orders of 

magnitude. 
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Appendix. Element stiffness matrices. 

 

 

 

 

 

 

 

 

 

Fig. 14. Stiffness matrix of elements 1,2,3,4,5 and 6 in local coordinates 

 

 

 

 

 

 

 

 

 

Fig 15. Stiffness matrix of elements 7 and 8 in local coordinates 

 

The row and column corresponding to the released dof θz1 all contain zeros. In this 

component, these elements do not contribute stiffness to the macroelement. 
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Figure Legends: 

 

Fig. 1. Five-Module VGT Prototype. 

Fig. 2. Exploded view of the joint. 

Fig. 3. VGT kinematic and FEM model. 

Fig. 4. Joint FEM Model. 

Fig. 5. Macroelement. 

Fig. 6. Real model and macroelement correspondence. 

Fig. 7. Released dofs. 

Fig. 8. Flow diagram of the optimization process. 

Fig. 9. Difference between U and V energies for the 60 displacement cases. 

Fig. 10. Error evolution. 

Fig. 11. Parameter evolution. 

Fig. 12. Variation percentages of parameters. 

Fig. 13. Error comparison for several “displacement case groups”. 

Fig. 14. Stiffness matrix of elements 1,2,3,4,5 and 6 in local coordinates. 

Fig. 15. Stiffness matrix of elements 7 and 8 in local coordinates. 

 

Tables: 

Table 1. Values of parameters and their relative variation. 

Table 2. Parameter sensitivity values. 

 


