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Abstract 

Influence Maximization (IM) is defined as the problem of finding the minimal IM-seed set of nodes 
maximally influential in a network. IM solution is formulated in the context of an influence spread 
model describing how the influence is propagated through the network. IM is relevant for 
applications such as viral marketing, and the analysis of infection diffusion in a community. Such 
communities are described by graphs model which have some kind of probabilistic description of 
how influence is propagated from one node to its neighbours. The cascade and threshold 
propagation models are the most popular in the literature. In this article, a new global heuristic 
search method for IM is proposed. We provide comparison over a collection of synthetic and real 
life graphs against other state-of-the-art heuristic search methods, namely Simulated Annealing, 
Genetic Algorithms, Harmony Search and the classical Greedy Search (GS) algorithm. Our new 
method (IMH) competes with the GS algorithm getting the minimal IM-seed set whose influence 
spreads the largest amount of nodes. Our method improves Greedy algorithm’s time execution. 

1 Introduction 

The analysis of influence propagation through social media started from the consideration of 
phenomena such as mobs, riots or strikes [18] as pure physical phenomena, stripped out of 
psychological considerations. That is, the quantitative model considers that individual decisions 
are taken as the fruit of social pressure defined by social interactions. The same model applies 
to propagation of innovations, rumours and advertising [14], so the topic become naturally part of 
the marketing research area. The research question was to determine the appropriate balance 
between marketing efforts and word-of-mouth propagation through personal social networks 
defined by strong and weak links. 

Cellular automata formalism allowed to build computational models to explore such questions. 
The two basic spread models of influence propagation are the Independent Cascade model (ICM) 
[14] and the Linear Threshold model (LTM) [18].

Social networks are represented by a weighted directed graph G(V,E,W) where nodes v∈V 

represent individuals of the community, edges (v,v’)∈E represent social relationships between 
them, and W are the weights of either nodes or edges. In the LTM diffusion model, nodes are 
weighted by a decision threshold wv ∈R, while in the ICM the weights are placed on the edges, 
they are propagation probabilities. Nodes can be active or inactive, i.e. they have been influenced 
or not. When a node becomes active it is possible to spread influence to an inactive node from 
its neighbourhood, and the influence propagation is modelled by an iterative process. In the LTM 
propagation model, a node becomes active when the percentage of active neighbours is above 
the threshold, i.e. 1/|V| sum=vav,v_σv_ (S)≥wv, where av,v_ ∈[0,1] is the entry in the adjacency 
matrix A such that av,v’ =1 iff (v,v’)∈E, and σv (S) is an indicator function that values 1 iff node v 

belongs to the influence spread of a IM-seed set S. When a node v becomes active it is added to 
the actual influence spread, i.e., σ (S)←σ (S)∪{v}. In the ICM, the weights wv,v’ ∈R are measures 
of the strength of the relation, i.e a probabilistic measure of the influence capability of one node 
over another. Obviously, we have wv,v’ =0 iff av,v’ =0. Each node activates its neighbours by 
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carrying out a stochastic decision by Monte Carlo sampling the Bernoulli distribution defined by 
edge probability wv,v’. A variation of the LTM allows an inactive to become active when the 
summation of influence degrees on the incoming links is greater than the node threshold. There 
are works such as [30] analysing the computational complexity of influence maximization problem 
in the deterministic LTM. In both ICM and LTM, there is no reversibility of states so that the 
influence propagation process will end when no more nodes may become active. In the literature, 
ICM and LTM propagation models are usually applied separately but some works subsume both 
models [37], in some cases new evidences such as trust are added to the propagation model 
[32]. In other words, we do not consider viral propagation models [39] which contemplate infection 
and recovery of individuals. Study of such models by mean field analysis [29] show that it is 
possible to determine the diffusion rate that ensures that the system reaches a steady state where 
the infection persists. Specifically, in this article we use ICM as the propagation model in the 
experiments. 
 

1.1 Influence maximization 

Influence Maximization (IM) [5, 22] is stated as the problem of finding the minimal subset of 
influential nodes (IM-seed nodes) with maximal influence, i.e. that affect the largest number of 
nodes in the network, where influence is computed by propagation in the network according to a 
spread model. The IM-seed nodes are the initially active nodes spreading their influence 
according to any of the propagation models discussed above. The most straightforward 
application is in marketing, when a new product hits the market, a company may want to select 
the smallest group of (most influential) seed customers to provide them the product for free in 
order to boost its popularity by propagating it in their social network by word-of-mouth [14]. 
Additionally, IM has been applied to design negotiation strategies addressing persuasion to the 
most influent agents [33], and to worm propagation containment in ad networks of smartphones 
[38]. 
 

1.2 Article contribution 

IM under both ICM and LTM propagation models is a NP-complete problem [22]. Therefore, 
exhaustive search and exact solutions are unfeasible in general, and research efforts are driven 
towards the proposition of efficient heuristics. The greedy selection of nodes (i.e. selecting the 
one contributing the largest increase of influence spread) is ensured to reach a solution which is 
at least a 67% of the global optima, due to the submodular nature of the influence spread function 
[22]. This article formulates a new method (IMH) for the selection of the minimal IM-seed set of 
nodes producing the maximal influence, which is several orders of magnitude faster than GS but 
provides the same influence results. 
 
 
 

1.3 Article organization 

The rest of the article is organized as follows: Section 2 presents some related works of the State 
of the Art. Section 3 presents the computational methods applied. Section 4 presents some 
experimental results. Section 5 concludes this article. 
 
2 Related works 

IM was proven to have NP-complete computational complexity in [22], for both LTM and ICM 
propagation models. In fact, the computational cost of spreading influence is #P hard, while the 
combinatorial search for the mini-max set of nodes in equivalent to NP hard problems. They also 
show that the greedy search solution is guaranteed to be at worst within (1−1/e)% of the optima 
for these propagation models, on the basis of previous results for submodular functions. In 
general, the estimation of the influence σ (S) of IM-seed node set S⊂V must be carried out by 
simulation,i.e. repeating the random process of influence propagation a number of times. 
Influence σ (S) was proven to be a submodular function for both LTM and ICM propagation 
models, as well as for their generalizations. The critical computational load is, therefore, in the 
estimation of influence σ (S), [19] propose a fast computation of σ (S) that stores some of the 
previously computed influence sets, so that they do not need to be recomputed each time. Its 
disadvantage is the large memory requirements to store the precomputed influences. Another 
approach to reduce the time complexity of influence computation is a a divide and conquer 
method [43] applied to IM on large-scale mobile social networks in two steps. First, the large-



scale social network is divided into communities selected according to information diffusion, 
assuming ICM propagation model. Second communities are selected to look for influential nodes 
by dynamic programming. Further, a model of parallel computation of the influence spread in each 
community is proposed. Similar community decomposition is proposed in [40] where IM-seed 
nodes are then selected from the communities. Another kind of acceleration is preprocessing the 
graph to obtain the spread trees which allow efficient computation of influence probabilities. This 
approach makes [27] in the context of targeted IM, where some nodes are the target of the viral 
marketing, while others are susceptible or immune. Dealing with immune nodes requires some 
care, but it is not a source of computational complexity. Besides, graph communities are useful 
to reduce influence computation problem complexity also in [27]. The greedy algorithm has 
quadratic complexity on the number of nodes (which can be large in real life social networks). 
There have been a number of optimizations trying to reduce the cost of spread computation. The 
Cost-Effective Lazy Forward selection) (CELF) method has been proposed [28], which consists 
in maintaining an ordered table of nodes and their marginal gain, so that candidates to be included 
in the IM-seed set are taken from the top of this list. An enhancement to CELF, the CELF++ [15] 
fully exploits influence spread function submodularity. Further, the Simpath algorithm [16] is 
based on the idea that under LTM propagation it is possible to compute an estimation of the 
spread by enumeration of the simple paths emanating of a node. Another optimization comes by 
the hand of a new propagation model called credit distribution [17], which avoids Monte Carlo 
simulation to achieve estimation of the spread on the basis of propagation traces. Another 
optimization considers the number of simple paths departing from a node as the indicator of 
spread potential [9] (ASIM), achieving a scalable algorithm for IM under the ICM. 
 
A different approach is the use of heuristics, such as Ant Colony Optimization (ACO) [6], to search 
for an almost optimal solution. One approach maps the IM problem into the problem of finding a 
cycle of prescribed length with maximum influence spread. ACO are well suited to find cycles in 
graphs, however the approach only contemplates the selection of IM-seed nodes, it does not 
reduce the complexity due to influence spread computation. Another heuristic search tested is 
Simulated Annealing (SA) [21], where the minimal set solution was trivially encoded as a binary 
vector and the influence spread was computed by Markov random simulation. 
 
To avoid the computation of the influence spread, some authors use node features such as 
betweenness, diversity of community belonging, or k-shell decomposition value as indirect 
measures of influence [7]. In this same line [41] proposes ‘supermediators’ using as indirect 
measure of influence the information spread, which decreases if the supermediators are removed 
from the network. 
 
3 Computational methods 

The straightforward approach is to perform an exhaustive search, where all possible combinations 
of IM-seed node sets are evaluated. In a systematic procedure, a search tree would be traveled 
where each node correspond to a solution. For NP-complete problems, such as IM, this and other 
exact global search methods are unfeasible. Therefore, we must resort to heuristic approaches, 
which provide suboptimal but good results in a reasonable time, such as the greedy search [22], 
which has quadratic complexity on the number of nodes. In this article, we explore a new 
application method comparing its results against other well-known heuristic algorithms: Simulated 
Annealing (SA), Genetic Algorithm (GA), Harmony Search (HS) and Greedy Search (GS) 
algorithm. In this section we provide an overview of these computational methods. All methods 
have been programmed and run in Matlab. The objective function to maximize is the influence 
spread, i.e. max S {σ (S)}. For a given candidate solution, σ (S) is computed by a ICM Monte 
Carlo approximation specified in the introduction section. Often the heuristic approaches need 
some codification of the candidate solution. The common codification is a vector of binary valued 
components such that Sv=1 iff node v has been included in the IM-seed solution S. For 
convenience, the components are not explicit in most algorithm presentations. Note that the 
vector space dimension is the size of the node set V. 
 

3.1 Simulated annealing 
Simulated Annealing (SA) was proposed [23, 24, 36] as a general purpose probabilistic 
metaheuristic for the global optimization of non-convex functions (often non-differentiable) in large 
search spaces. 



It is a nature inspired technique, mimicking the heating and cooling process followed to obtain 
some materials, for example high quality steel. SA was shown to provide the global optima under 
very strict conditions, and provides good approximations in a reasonable computational time. It 
generates a sequence of solutions whose objective function values converge to the global 
optimum value. 
 
A temperature parameter allows to control the search. The temperature parameter typically starts 
off high and is slowly ‘cooled’ or lowered in every iteration. At high temperatures, the process 
accepts state (solution) changes that deteriorate the objective function to a limited extent. This 
prevents the search from getting trapped in local optima at early stages. At decreasing 
temperatures, it becomes a hill climbing algorithm that only accepts improvements of the objective 
function. 
 
 
Algorithm 1 Simulated Annealing algorithm pseudocode 
1. s=s0 

2. For k=0 : kmax (exclusive): 
(a) T←temperature(k/kmax) 
(b) Pick a random neighbor, Snew←neighbour(S) 
(c) If Pa (σS,σ (Snew),T)>r, r∼U(0,1) 
(d) S←Snew 

3. Return s 
 
 
Algorithm 1 presents a pseudocode of the Simulated Annealing, where S is the current solution, 
which is a binary codification of the nodes, one bit per node which is on if the node belongs to the 
IM-seed influence set. Snew is a candidate new solution generated by the neighbour() function 
from the current solution, by randomly changing one of the components to its opposite value. The 
acceptance probability Pa (E(S),E(Snew),T) is a function of the temperature T and the difference 
of the objective function that is the influence spread of the IM-seed set σ (S) of the current and 
new candidate states. 
 

3.2 Genetic algorithm 
Genetic Algorithms (GA) [13, 20] were proposed as a general method for solving both constrained 
and unconstrained optimization problems based on a natural selection process that mimics 
biological evolution. The algorithm iteratively generates a population St of individual candidate IM 
solutions Si by the application of genetic operators, crossover and mutation, to the chromosomes 
in the previous generation St−1. At each step, the genetic algorithm randomly selects individuals 
from the current population and uses them as parents to produce the children for the next 
generation. Successive population generations ‘evolve’ toward an optimal solution.1 In GAs, the 
number of generations and the population size are critical parameters, in the experiments they 
are set proportional to problem complexity, i.e. number of nodes in the social network, so that 
effective computation time grows linearly. 
A typical GA is as follows: Start with a randomly generated population S0={S1,...,SN }, each 
chromosome is a candidate solution encoded as a binary valued vector. Calculate the fitness σ 
(Si) of each chromosome Si in the population St , the fitness allows to compute the selection 
probability. At each generation, create N offspring by crossover and mutation. For crossover, 
randomly draw a pair of parent chromosomes from the current population, according to an 
empirical probability distribution which is a increasing function of chromosome fitness. Selection 
is done ‘with replacement’, meaning that the same chromosome can be selected more than once 
to become a parent. According to crossover probability pc exchange the bits of the pair randomly 
to form two offsprings. If no crossover takes place, form two offspring that are exact copies of 
their respective parents. For mutation: mutate each bit the two offspring at each locus with 
probability pm (the mutation probability), and place the resulting chromosomes in the new 
population. Finally, replace the current population with the new population applying an elitist rule 
that preserves the best 20% chromosomes of the previous population. 
 
 
 
 



3.3 Harmony search 
Harmony Search (HS) [12] is a heuristic for global optimization of non-convex functions inspired 
in the musical improvisation process. It has been successfully applied to a variety of problems 
alone or hybridized with other methods. Some recent applications follow. The muzzle velocity of 
an electromagnetic railgun was optimized applying HS on the variables ranked by a previous 
orthogonal design method [3]. The optimization of an electrical transformer design [2] was 
achieved by a multiobjective HS endowed with crowding distance ranking and control parameter 
tuning by a Ricker map. 
 
Parameter tuning by HS of the proportional integral controllers of a distributed power generation 
system overcomes genetic algorithms and gradient descent approaches in [1]. A differential HS 
compares favorably with particle filter approaches for face tracking in video imagery [8]. A 
quasioppositional HS improves over fuzzified internal control models [42, 44] for the control of 
several standard power generation systems. The design of ensemble classifiers using HS for 
classifier-asfeature selection is discussed in [4]. An improved HS is successfully applied or thrust 
optimization of dynamic positioning of off-shore oil drilling platforms [45]. The variety of these 
applications show the versatility of the HS approach. 
 
Harmony Search (HS) [12, 26] is a global search heuristic algorithm inspired by the musical 
improvisation process proposed. In the HS algorithm, each musician (= decision variable) plays 
(=generates) a note (= a value) looking for the best harmony (= global optimum) all together. 
 
Harmony is defined by some objective function which we try to optimize (minimize or maximize). 
Since its initial proposal, there have been variations and improvements of HS in the literature to 
be applied in different contexts, for instance: discrete design variables, and global optimization 
through competition [10, 11, 25, 31, 34]. the optimization problem is specified as follows: 
 

I   minx {f (x)|x=[xi ∈Xi;i=1,...,N] } 
 
where f (x) is the objective function that corresponds to the musical harmony, Xi is the range set 
of design variable xi (we consider continuous design variables), and N is the number of design 
variables. The ‘harmony memory’(HM) matrix, equation (2), is the central data structure of the 
algorithm containing the current state of the search, given by the preserved harmony vectors plus 
their harmony value f (x), 
 
 
 

 

 

 

 

ordered so that f(xj)≥f(xj+1), so that f(xHMS) is the worst harmony value. Algorithm 2 shows a 
pseudo-code of the HS optimization procedure. In the first step problem data is read and algorithm 
parameters are initialized. First, we select the graph to be explored to solve IM. It can be a 
randomly generated graph or a real social network graph. Next, HS algorithm parameters 
controlling the optimization process are specified: the harmony memory size (HMS) specifying 
the number of solution vectors stored in the harmony memory, the harmony memory considering 
rate (HMCR) specifying if a variable improvisation is extracted from the memory, the pitch 
adjusting. 
 



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

rate (PAR), and termination criterion (maximum number of searches). In the next step the HM is  
initialized. Next we carry the improvisation of a new harmony. A new harmony vector, 
x’=(x’1,…,x’N) is generated based on memory considerations, pitch adjustments, and 
randomization. With probability HMCR the value of the design variable x’I is selected from the 
collection of values in the HM, i.e. x’i∈←{x1

i,…, xHMS
i} where ∈← denotes random selection from 

a set of values. In Algorithm 2, r∼U(0,1) denotes a random number with uniform distribution in the 
interval (0,1). If r>HMCR, in other words with probability 1−HMCR, the value of the variable is 
extracted from its range set Xi . The new value can be fine tuned with probability PAR after a 
positive test with HMCR. i.e. xi = v i,k±m where v i,k±m is either the next value of the range set of a 
discrete variable or a random mutation in continuous variables. In some implementation, the first 
variable is always assigned a value from the history. If there is pitch adjustment for xi , the pitch-
adjusted value of xi (k)) is xi←xi+αi where αi is a sample of a random variable following a uniform 
distribution U(−BW,NW), where BW is an arbitrary distance bandwidth for the continuous design 
variable. In the next step HM is updated. 
 
If the new harmony vector is better than the worst harmony in the HM in terms of the objective 
function value, the new harmony is included in the HM and the existing worst harmony is excluded 
from the HM. The HM is then sorted by the objective function value. 
 
Mapping IM into HS: For IM in social networks graphs, harmonies are binary vectors encoding 
the IM-seed set, i.e., a vector component value is 1 if the corresponding graph node belongs to 
the seed set, otherwise it is zero. IM is a multi-objective problem, because we want to achieve 
two goals: (i) maximize spread, and (ii) minimize IM-seed size. Given an harmony x and a 
probabilistic graph Gi, the evaluation returns: 
 
 
 

 

 

where V is the set of nodes in the network, σ (Sx) is the number of nodes that have been visited 
through the spread model (Independent Cascade Model) and Sx the number of actives nodes in 
the harmony x. In this way, the harmony which visits the largest amount of nodes in the network 
with the minimum active nodes in the harmony will be reported as local optimum at the end of the 
computational process. 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

3.4 Greedy Search 
A straightforward greedy search (GS) algorithm achieves a good deterministic approximation to 
the optimum solution of IM due to non-negativity, monotonicity and submodularity of σ (·) [22]. 
 
The influence spread is a set function σ :2V→R, which is non-negative, i.e. σ (S≥0) for all S⊆V, 

monotone, i.e. σ (S)≤σ (T) for all S⊆T, and submodular, i.e. σ (S∪{v})−σ (S)≥σ (T ∪{v})−σ (T) for 
all S⊆V and v∈V. For this kind of objective functions, it is shown that the greedy search would 
achieve a solution which is at least 63% of the global optimum [22]. 
 
There are two main steps in the GS specified. First, we compute the influence spread σ (vi) for all 
nodes in the graph. Second, main step is solution generation specified in Algorithm 3. At the 
beginning the solution IM-seed node set S is empty. Then we iterate the greedy search, consisting 
in looking for the node v∗ that provides the greatest increase in the influence _σ (v), until there is 

no increase in influence whatever the node chosen, i.e. _σ (v∗)=0. For the ease of notation, we 
assume that σ (Ø)=0. 
 

3.5 New heuristic for IM 
Our proposed new heuristic method starting step is to identify nodes with zero in-degree, i.e. no 
incoming edge ending to them, (S0 in step 2). The justification is that any IM-seed set whose 
influence covers all the graph must include them because they can not be influenced by any other 
node. The set of remaining nodes R0 consists of all nodes not in the initial solution S0 nor in its 
influence spread σ (S0,Ab) computed using the base adjacency matrix. The set R0 contains all 
candidate nodes to enlarge the solution, because the removed nodes add nothing to the influence 
spread of the actual solution S0. Next, the adjacency matrix is simplified removing edges ending 
into or departing from nodes removed from R0, because these edges will not play any role in 
ensuing influence computations. 
 
The algorithm proceeds by iterating the following steps until the set of remaining nodes Rt is 
empty. The first step is to find the node v∗ with maximal influence in one step σ1 ({v},At ), i.e. 
paths of length 1, using the simplified adjacency matrix At . The IM-seed solution is increased 
adding v∗, while the set of remaining candidate nodes is decreased removing v∗ and its one step 
influences. The adjacency matrix is updated accordingly. The heuristic of assuming that maximal 
one step influences would correspond to maximal influence spreads is a extreme form of 
greediness, but that appears to be effective from the experimental results. At the same time, 
removing only one step influences may leave candidate nodes which in fact do not improve the 
influence spread when added to the solution, however from the experimental results, it seems to 
have little effect. We will denote this heuristic as IMH in the following. 
 
 
 



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4 Experimental results 

In this section, we report experimental results comparing the HS, SA, GA, GS algorithms and the 
proposed IMH. The code and the data for these experiments can be found in the university group 
site.2 First we describe the construction of the experimental graphs. Next, we evaluate the IM 
solution methods comparatively on a large collection of synthetic graphs of increasing size, and 
on subgraphs of increasing size of a real life social network. Finally, we report response time 
results comparing GS and IMH. 
 
 

4.1 Graph construction 
A social network is defined as a directed graph G(V,E) where V is the set of nodes that represents 
the set of users and E the set of edges that represents the set of relationships among users. 
Given a directed graph G(V,E) edges are weighted by wij=1/degreein(j), thus the graph becomes 
a weighted graph G(V,E,W) where W is the set of weights that are values in the interval [0,1]. 
Some of the experiments reported here are done on synthetic graphs. To build such graphs we 
generate the random weights of a complete graph, determining the in-degree of each node. Thus, 
from the a probabilistic adjacency matrix we generate graph instances Gi(V,E’) where edges will 
appear according with the probabilistic weight. An weighted edge with a high weight has more 
probability to appear in the sampled graph G’i. We define G’=G’1,…,G’n as the set of sample 
graphs used to test the diverse IM heuristics. For the experiments referred below, the ICM 
influence propagation estimation consists in the average of the propagations over the set of 
sample graphs. Experiments involve the repetition of the search over a 100 synthetic graphs per 
size parameter value. 
 

4.2 Experimentation with synthetic graphs 
Figures 1, 2 and 6 show a comparison among HS, SA, GA, GS algorithms, and the proposed 
IMH. Figure 1 plots the average IM-seed node set size found by the algorithms for simulated 
social network graphs of increasing sizes. Figure 2 plots the average influence spread size. Figure 
3 plots the ratio of the influence spread size versus the size of the IM-seed set in order to visualize 
the relative success of each node in the IM-seed set. Figures 1a, 2a, and 6a give results for small 
size graphs. Figures 1b, 2b, and 6b give results for big size graphs. We have not computed SA 
for the bigger graphs due to its very slow convergence and large response times. If we consider 
the size of the IM-seed set obtained by each method, we find that for small size graphs (Figure 
1a) IMH and GS compete with GA to provide the smaller size IM-seed sets, while for large graphs 
(Figure 1b) GA and HS are always giving smaller IM-seed sets. This situation is reversed if we 
consider the size of the influence spread in Figure 2. Notice that GS and IMH give almost always 
the same influence spread solution, though in some cases GS is slightly different from IMH in 
Figure 2a, as confirmation that IMH is in fact an approximation of GS. The size of the influence 
spread found by the GA, HS and SA heuristics is much smaller, near half of the size of the spread 



found by GS and IMH. The ratio of the influence spread to the IM-seed set size plotted in Figure 
6 is a measure of the quality of the solutions, which shows that the new heuristic is far better than 
the GA. HS and SA heuristics. 
 
 

 

 

 

 

 

   

 

 

 

 

 

 

 

 

 



 

4.3 Experimentation with Epinions database 
In order to evaluate the algorithms on a realistic problem, we apply them to the trust graph from 
the Epinions site,3 which is a social web service where users provide reviews of products of any 
kind, ranging from music up to perfumes or construction hardware. These reviews are the base 
for the establishment of trust relations between users. Trust is a binary variable taking values in 
{−1,1}: a truster user can choose to trust (1) or distrust (-1) another, the trustee. Negative trust 
values are not published in the web service, but the anonymized dataset provided for 
experimentation, which is available to the public,4 contains also negative Trust values. This 
dataset has 841,372 data samples. Each sample is a triplet (A,B,tAB) composed of two user 
indexing numbers (no personal data of any form is included) and the binary Trust value of the first 
user on the second user. Therefore, Trust relations define a directed graph, with weighted edges.  
 
The influence propagation can be interpreted as the propagation of trust in the network. 
Experimentation is done on subnetworks of sizes that are in the ranges from 10 to 100, and from 
100 to 700. Figures 4, 5 and 6 show results of experimentation over these Epinions subnetworks. 
In all cases, the proposed IMH and GS algorithm provide the greatest influence spread, while GA 
and SA provide more compact IM-seed of lesser influence spread. Attending to the ratio plots in 
Figure 6 we find that there is significative superiority of the GS and IMH to the other methods. 
The GA and SA contain implicit mechanisms for the minimization of the IM-seed size, because 
they seek minimal representations through their feasible solution coding; however, they do not 
ensure the influence spread covering the complete social graph. This lack of completeness can 
be more relevant in some applications such advertisement. 
 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

4.4 Experiments measuring response time 
We carried out two experiments in order to compare the computational time cost of the GS 
algorithm and the proposed IMH method. The experiments were run on a 3 GHz 4 core Intel 
desktop computer with 34 Gb RAM, using Matlab implementations. The first experiment consists 
on solving IM on four different kinds graphs of 1000 nodes with increasing edge density. Table 1 
shows the average time spent to obtain their approximations to the optimal IM-seed set of 
influential nodes. The response time of the GS approach grows with the edge density. In contrast, 
IMH method always achieves a solution under one second. The reason of this phenomenal speed 
up is that the IMH does not compute the complete spread, but only considers the nearest 
neighbours of each node. Though this is a rather risky approach, results in the previous sections 
confirm that the approximation is good enough to compare with GS and other heuristics. We have 
made our own implementation of CELF whose time results are also show on in Table 1. CELF 
improves over the raw GS implementation, but it is still slower than IMH on average. 
 
For the second experiment we keep a small value of edge density in the graph but we increase 
the number of nodes of the experimental graphs. We test the algorithms on 100 graphs with sizes 
ranging from 1000 nodes to 10000 nodes, increasing a thousand nodes each time. Table 2 shows 
the time spent to get the minimal IM-seed nodes. Even for the smaller graph (1000 nodes) the 
time spent for execution of GS is already is some orders of magnitude of the IMH time. The CELF 
time is not so big, but, nevertheless far from IMH. When the graph size increases, the GS 



algorithm response time increases exponentially, due to the cost of computing the influence 
spread of each candidate node. 
 
In contrast, the proposed IMH method response time grow linearly, remaining below 2.5 seconds 
with the biggest graph. The optimization carried out by CELF trading space for computational time 
does alleviate the difference, but still managing the tables requires time and the response of CELF 
also grows exponentially, though more slowly than raw GS. 

 
 
 

 

 

 

 

 

   

 

 

 



 

 

 

 

   

 

 



 

 

5 Conclusions 

A new heuristic search method for Influence Maximization (IMH) is proposed in this paper. It 
relaxes the influence spread search by considering only paths of length 1 however, it is 
guaranteed to terminate covering the entire graph. We provide comparison with other well-known 
heuristics, namely Simulated Annealing, Genetic Algorithm, HS and GS algorithm over a 
collection of synthetic and real social network graphs. The proposed heuristic method compares 
with the GS algorithm, providing the largest influence spread results with minimum IM-seed 
nodes, improving other heuristics. 
 
Moreover, the proposed IMH method is always faster than Greedy algorithm. Future works will 
address the formulation of methods able to deal with very large social networks, with node sites 
escalating in the order of hundreds of million nodes, which is closer to current real life social 
networks. 
 
Our proposed heuristic IMH is very suitable for parallel implementation because candidate nodes 
to be included in the seed set can have their influences computed in parallel. Future works may 
address the implementation in CUDA or similar parallel programming environments in order to 
experiment with general purpose GPUs [35]. Parallel implementations would allow to deal with 
very large social networks, such as facebook in a modest computing environments. 
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