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Abstract

A new method for obtaining the R-curve point to point by the Double Cantilever Beam
test is proposed. Besides the determination of new compliance and energy release rate
equations, the analytical model presented leads to calculate the crack length for every
pair of load and displacement values, without any optical measurement. In addition, a
simple trigonometric approximation is proposed for the calculation of large
displacement effects. The approach is checked with experimental results.
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1 Introduction

Initiation and propagation of interlaminar cracks is frequently pointed as the most
common form of damage in fiber-reinforced laminate composites. Linear elastic
fracture mechanics (LEFM) deals with the resistance to delamination by measuring the

energy dissipated per unit area of crack growth, that is, the strain energy rele@se rate



The Double Cantilever Beam (DCB) test is the magiybar method used for
determining mode | fracture toughness because aintplicity and practicality, and has
been standardized for carbon fiber reinforced @d&FRP) specimens’ preparation
and test procedures. Furthermore, the applicatidimeocompliance-based stability
criterion [1] and its experimental verification [&how stable crack growth for the DCB
specimen under displacement controlled loadingclwvmakes it well suited for
required measurements. In the test, however, therdifficulty due to the necessity of
measuring the crack length during the process.stdredards require a visual
measurement of the crack length, which is facddaby the use of correction fluid on
the edges of the specimen and, optionally, by sgeafi a travelling microscope. In
some cases the use of a transparent materiatdiéedithe crack front identification [3].
Nevertheless, sometimes the crack tip is not eaglentify and this can prompt errors
in the results.

The data analysis explained in ASTM [4] and ISOdtndards are based on the change
in the compliance, which results in a change @&istenergy. Hashemi et al. [6]
compared the different data reduction methods lbtaining the critical energy-release
rate of fiber composites concluding that a cormector the crack length was necessary
in the methods based on the Beam Theory. Thisdause forces and moments cause
deformation in the end region of the DCB, as a equnence of the beam not being
perfectly clamped. They developed the CorrectedrB€neory (CBT), providing a
correction in the crack length based on a compéaradibration. Williams [7] studied
the corrections for large displacement, as welbagnd block effects.

Many analytical models have been developed to préae delamination of the
unidirectional fiber reinforced laminated compo$teB specimen. Williams [8]

studied the effect of the root flexibility in orttnopic DCB specimens by using a



Timoshenko beam on an elastic foundation, whichavasxtension of Kanninen’s
method for isotropic materials [9, 10]. He conclddieat the beam root region in
orthotropic specimens acts as a short beam domditgtehear deformation, leading to
a large rotation at this place compared to theopit case. Whitney [11] used a higher
order plate theory to analyze the orthotropic gpead. The shear deformation effect on
the energy release rate of delaminated plates twdged by Bruno et al [12], where
important contribution was found for the DCB speeim

Olsson [13] analyzed the displacement of the crégketion of the specimen from the
Classical Beam Theory corrected for shear defoonatile also determined the end
displacement caused by the transverse compliante ian-cracked part and the Saint
Venant effects ahead the crack front. Taking ir@oant all these contributions, he
used a superposition technique to calculate theathvampliance. Olsson concluded
that Williams’ solution is slightly stiffer, being/hitney’s model more accurate
compared to the Finite Elements solution. Ozdil @adsson [14] used Euler—Bernoulli
beam on elastic foundation to model the un-crackgtn of angle-ply laminated DCB
specimens. Kondo [15] studied the DCB specimeireutd a Timoshenko beam
supported by a Winkler foundation, considering thatsymmetry of the specimen
permits no rotational stiffness at the foundati®prekrényes [16] presented an improved
analysis including Winkler—Pasternak foundatioangverse shear, Saint—Venant effect
and crack tip shear deformation. Hamed et al. €brisidered a second-order shear
deformation theory to model the DCB specimen. Pauamar et al. [18] used a higher
order shear deformation beam theory in terms oflguie variation for transverse
displacement over the thickness. Shokrieh et él. ptesented a method based on a
sixth-order beam theory on a Winkler elastic fourataking into account both

transverse shear and crack tip deformation. Howé&Wsson [19] reviewed models for



the DCB specimen concluding that the use of enapgpyoaches to incorporate the
crack tip compliance or Timoshenko beams on a Veéimidundation are the methods
that best fit the FEM results.

Yoshihara et al. [20] introduced a new method feasuring fracture toughness of
wood called the Compliance Combination Method. Thethod uses the longitudinal
strain of the top surface of a specimen, measunedglthe test, to obtain the
compliance independently from the crack lengthsMailue allows calculating the crack
length and thus, the energy release rate. Gundsasain[21] applied both the elastic-
plastic fracture mechanics theory and a solutiaiméoJ-integral in order to relate
fracture toughness with load and angular displacénbeing the latter measured during
the test.

De Moura et al. [22] proposed a data reduction mehfor wood fracture
characterization using the specimen compliancelaadrack equivalent concept,
avoiding the crack length measurement during prapag. Nevertheless, different
initial crack lengths have to be optically measu@dbtain root rotation correction. The
method estimates the flexural modulus from theahdompliance obtained in the test.
Therefore, the initial crack length corrected vatfactor to account for the root rotation
effects is provided. The crack equivalent concgtroduced to consider the fracture
process zone effect at the crack tip. This metrasiideen used in later works [23, 24]-
[25] to analyze mode | interlaminar fracture infelient composites.

The aim of the present work is to introduce a nesthod for the determination of the
energy release rate without any optical measureofahe crack length. With this
purpose, a new model that simplifies the stredsiloligion on the uncracked part of the
specimen is introduced. The crack length is obthlvesed on the compliance of the

model after having determined the elastic propeighe specimen. Furthermore, large



displacements effects are included in a simple mians this way, crack length is
defined point to point, and thus a continuous pfdhe R-curve can be also determined.
In order to check the accuracy of the crack lemgtfained by DCB, measurements have
been also carried out by End Notched Flexure (BN$is in the same specimens
without crack propagation. For this purpose, tiBeam Theory including Bending

Rotation effects” (BTBRs), proposed by Arrese le{26] , has been followed.

Nomenclature

a Delamination length (mm)

a, Initial crack length prior to crack propagationr)

A Cross sectional area (fim

B DCB specimen width (mm)

C Compliance of the specimen (mm/N)

Cs System compliance (mm/N)

Ef Flexural modulus (GPa)

E; Tensile modulus in the transversal direction (GPa

F,F,, F5 Equivalent point forces for distributed load. (N)

Gi3 In-plane shear modulus (GPa)
G, Strain energy release rate (3m
h Laminate half thickness (mm)
I Second moment of area (f)m
kg Stiffness of the system (mm/N)
L Beam length (mm)

M; Bending moment dt(N-mm)

Q; Shear strength at(N)



P Opening load on the DCB specimen (N)

q1, 93 Distributed forces in the model (N/m)

U Strain energy (N-m)

x Projection of the crack length in the horizomtméction (mm)
X1, X2, X3 Parameters of the distributed forces model (mm)

B1, B2, B3, B4 x1,x, andxsdependent parameters

Y1,Y2, V3 x, andx, dependent parameters
&; Beam displacement afmm)

Oexp Experimental displacement (mm)
Ospec Specimen displacement (mm)

2 Analytical approach

2.1 Introduction
Fig. 1 shows the configuration of the standardi2&B test. In order to achieve pure

mode |, a pre-cracked specimen is loaded at one leglgheans of bonded blocks or
piano hinges. To determine mode | delamination ltoegs a compliance-based method
Is used. Compliance is defined as the ratio of medisplacement of the crack mouth
(26) to the applied load at that poiit)( C = 26/P. Having a relationship between the
compliance and the crack length, the Strain EnRgjgase Ratdi(), which is a

measure of fracture toughness, is obtained byréifiteating the compliance with
respect to the crack length [27].

G = P%dcC (1)
1™ 2Bda

whereB is the width of the specimea,is the crack length andis the compliance of

the specimen.



The crack lengtla is usually measured visually, and a correctiotofais needed in
order to take into account the effect of rotatibtha crack tip. In this study a new
method based on the stiffness of the specimeresepted. Since the configuration is
symmetric, only the lower half of the specimen Wi considered in further

calculations.

2.2 Approximate crack length

The cracked part of the specimen will be modeled sisnple cantilever beam, with the
aim of determining an initial approximated crackdth (Fig. 2).

According to Engesser-Castigliano theorem, thevdévie of the strain energy with
respect to the applied force provides the displacenm the direction of the force. The

theorem applied to a beam of lengtiwith bending and shear effects is:

oU M oM Q 0Q (2)
(Si—a—Fi—J; aa—Fldx-FjL K —dx

WhereF; is the applied forca] is the displacement of the application poinEpin the
same direction) is the bending momeng, is the shear force; is the flexural
modulus;G,3 = G, is the shear modulus, assuming transverse isqtfapyhe second
moment of aread is the cross sectional areas the shear correction factor which in
rectangular section is 6/5.

Taking into account the shear forces and bendingembs it results:

Pa3 6Pa (3)

5= +
3E;I ' 5Gy3A

Eq. (3) allows defining the compliance as follows:

C=—= + =
P~ 3El] ' 5G4 3E]I

26 2ad 12a 2a3 3 E; h? (4)
L35
10 G5 a2



Since the compliance can be determined with the ihagistered by the test machine,

Eq. (3) leads to obtain the crack length by medrmaterative method according to:

C 3E;I ©)
aol- = 3 5
ENT AN
10 613 agi—l

It is worth noting that the crack length given ig.E5) is obtained from the
displacement of Eq. (3) that does not include ffeceof the rotation at the crack tip.

The initial crack lengtla,, is obtained neglecting shear effects, or in othends

assuming that,, is infinite. A similar procedure was followed fobtaining the crack
length of an ENF test [26]. Therefore, the valutaoied in Eq. (5) can be used as a first

approach for the determination of the crack length.

2.3 Interlaminar normal stressdistribution ahead of the crack tip
Fig. 3 shows a simplified model with distributeddes based on the results of the

models presented by different authors [8-15]. Thmedels present a common shape for
the stress distribution ahead of the crack tipclinas been approached to the one
caused by two triangular distributed forggandg;. The maximum intensities of the
distributed loads are,, andq;,, located at sections 1 and 3 respectively.

It is assumed that distributed loads equilibratedfiect of the applied load. Thus, force
and moment at the clamped end of the model arelnupite of the clamped condition

is not necessary in the determination of redunftanes, it is necessary for obtaining
displacements after applying the unit load method.

The resultant forces of the linear distributions: ar

q10%X1 q10X2 q30X3
Fy = > ;F2=—2 ; F3 = 2 ©)

Bending moments and shear forces for the diffezenes in Fig. 3 are:

0<x<xq;



X < x < X1+ xy;

F.
o = —— (3 = (3xy + 3x,)x% 4+ (3%,2 + 3%,%,)% — x,° — bx, 2
2 3x,x4
2x  (x—x)?
Qx, =F1(1——+—
k X1 X2X1 7)

X1+ x, <x <xy+x, + x3,

( X, + X, —x,% — 3x,%, — 2x,° (x —x; — x)3
|M,. = —F F.
4 3 ! < X1 X+ 3x; T 3x32
X1t X (x —x1 — x3)?
| Qx, = —F, +Fy ;
X1 X3

X1+ x,+x3<x<x1+x, +x3+a;

Xy + Xq —x3% — 3x,%1 — 2%, 2 23
Maz_F1< xl x + 3x1 +F3(x_x1_xZ_T)
X1+ x,
k Qo =—F + F3
X1

Five equations will be considered in order to abthe dimensions,, x,, x5, and the
forcesF,andF;, sinceF, = F;x,/x; .

From static equilibrium it results

X
ZFi=O—>F3=P+(1+x—2)F1 (8)
1



ZM‘ C 0o F = x1(x3 + 3a) (9)
e L7 0o 4 x0) (g + 225 + 2x3)

The other three equations are obtained imposinglisplacements at sections 1, 2 and
3 correspond to the transverse strain in the spatimo determine the effect of the
transverse strain, a half of the specimen is repldny a spring [9]. The stiffness of the
spring will be obtained by relating the extensidhe spring to the stiffness for a bar
(EA/L). In this casél is B times per unit length, andis half of the beam thickness.

2B B (10)
k=—0

While the displacement in 2 is zero, the value andl 3 is obtained as a function of the

point forces defined above.

5,=0 (112)

Displacements at sections 1, 2 and 3 are deternbypdae Engesser-Castigliano’s
theorem. In order to calculate the derivativesexiding moments and shear forces that
correspond to displacements in 1, 2 and 3 sectibagjnit load method is used in the
cantilever of Fig. 3. Thus, equating the displacet®iso obtained with those of Eq.

(11) the following expressions are obtained:

36G,,>
5Ef T 5Ef\/<1 — 5Ef1|533> (12)

x1= h

V6613

X1 14 14 10th2
xz N 2 B B 3Gl3x12 (13)
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Where:

]/1 = x1 + zxZ; ]/2 = xlz + 3x1x2 + szz; ]/3 = xlz + lexz + 2x22

Eq.
(12) leads to two possible solutions for the partamg. Sincex, andx; depend orx,,

two different possible stress distributions haverbachieved. Comparison to the
solutions given by the models proposed by othdrayB-15] leads to the choice of the
largest value ok, for further calculations.

The solution shows that parameteysandx, depend only on the mechanical properties
of the material and the geometry of the specimdmlgw is also a function of the

crack length according to Eq.

(14), that has been solved with Mathematica.

Fig. 4 shows the trend &y, for T6T/F593 composite tested in the present wimnk
different values of the thickneas In all cases a unique real positive solution leen
obtained. It can be seen that for each thickngsgemains practically uniform for the
usual values of the crack length. Therefore, itlvamronsidered constant for a uniform
thickness.

Table 1 shows the values of the parameters fomtterial studied.



2.4 Displacement at the end of the cracked beam

In the case of the vertical displacement a verticat load is applied at the end section
of the clamped beam of Fig. 3, in order to obthmderivatives of shear forces and
bending moments. Applying Eq. (2) with the expressifor moments and forces in Eq.

(7), and the derivatives obtained by the unit losthod, end point displacements:

1 B1 1 2Bh B3 2B4h (15)
— 3 2
6= 3Ef1Pa +4Eflpa +(A613 T BE, T 12E,1 Pat ZpF

The rotation at the crack tig{) can be determined in similar manner,
applying a unit moment at section 3 of Fig. 3, gein

__PF (16)
03 = 12E,1 (B3 +3p1a)
Where the factorg; only depend on the dimensiongs x,, x; being:

_x1% 4 3x0205 + 4x1x3 + 3%,% + 8x,x3 + 5x3°
1 X1 + 2x5 + 2x3

3
 x3 (g + 2%, + 2x3)

B2

X12%5 + 3x1x3% 4 3x1x5%3 + 3x,%%5 + 6x,x3% + 3x33
3T X1 + 2x5 + 2x5

X1+ 2%+ 3x3
x5 (g + 2%, + 2x3)
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2.5 Determination of the crack length

Taking into account that Eqg. (15) determinateseti point displacement for half

model, the Compliance of the DCB specimen is:



C - 26  2a° +Bla2 2a 4hB,a N psa N 4B,h (17)
- P 3E;l  2E[l AGs BE;  6E;l BE;

It is known that fiber bridging can be responsiiolean increasing crack growth
resistance during propagation [28, 29]. Nevertlsléss effect was not observed in the
specimens tested. Moreover, piano hinges will leel uis the tests in order to minimize
the dependence of the deformation on the gripsegpd load transfer [30].

Eq. (17) can be equated to the experimental valugated directly from the measured
load-displacement curve. As the crack length isothlg unknown quantity, it can be
obtained by means of an iterative or a “goal see&thod.

This procedure allows obtaining the crack lengtargt point of the test whefeands

are evaluated.

Eq. (17) has been compared with other expressmré compliance found in the

literature [13, 15], achieving very similar results the material studied.

26 Energyreeaserate

Replacing the derivative of the compliance withpees to the crack length in Eq. (1),

G, can be expressed as follows:

P2a®> P2Bia  P?  2hB,P?  B4P? (18)

G, = + + +
"7 BE;l ' 2BE;l ' BAG;; B?E; ' 12BEfl

Fiber reinforced composites often show an increpsiterlaminar fracture energy
during delamination, as observed experimentallguRres are frequently used in order
to predict accurately the response of the matdtiehg damage propagation, and are

obtained by plotting:, against the crack extension.



2.7 Largedisplacements effect

When testing thin laminates large displacementcedfeust be taken into account. The
analysis carried out by Williams [7, 31] is basedacal moments and leads to measure
these effects. This analysis is developed by mehaeliptical equations, which
numerical results are in tabular form for the diéie values of the end point angle of
the deformed beam.

In order to consider this effect, a new approagtragposed. A half of the specimen is
shown in Fig. 2, where is the length measured along the horizontal dioecti is the
crack length along the curved specim&ms a half of the displacementjs the secant
between the crack tip and the specimen endpardhe angle of the secant.

According to Fig. 2:

X = s cos6 (29)

52 (20)
s=x+1+tan?0 =x 1+F

Eq. (20) allows obtaining the influence of largeplacement on the cracked beam as a

Therefore,

function of the previously estimated crack lengtld deflection. The comparison
between this approximation and that of Williams slaswn that the differences are

under 0.2% for the specimens studied.

3  Experimental

3.1 Materialsand apparatus

T6T/F593 prepregs provided by Hexcel Compositesh \ai 57% volume-content of
fiber, were used to produce laminates. The platesewnanufactured by hot press
molding. Sixteen-layered unidirectional laminat€g;s, were made with a Teflon film

introduced during the piling up process in ordemigke the initial crack.



The specimens were cut with a diamond disc sawgbthe nominal thickness and
width of the specimens 3 and 15 mm, respectivehe €dges of the laminate were
discarded for the preparation of the specimensndPiainges were bonded to the
specimens and tests were performed using a univestang machine MTS—Insight 10
with a load cell of 250 N. In order to avoid thdluence of the resin rich area the
specimens were precracked in mode Il by a ENF testeasing the cracked length
around 5 mm.

Several specimens have been tested with the aiwalaofating the method proposed.
Nevertheless, results concerning two specimensaeali@ed in the present study:

e Specimen 1: It has been subjected to five loadathl@ycles in DCB
configuration. With the aim of checking the craekgths obtained by DCB, the
specimen has been tested in ENF configuration withoack propagation
before the first cycle and after each cycle, apglythe BTBR method that
provides reliable values of the crack length [26].

» Specimen 2: After having checked the crack lengilies obtained by DCB and
ENF in specimen 1, specimen 2 is tested continyousDCB configuration,
assuming that crack lengths obtained at each pditite test are valid. In this
way, it is possible to obtain the R-curve in a aumus manner.

As mentioned previously, fiber bridging has notrbebserved in any specimen.

3.2 Préiminary tests

For obtaining the elastic propertié and G,3, the procedure based on three-point
bending tests at different spans proposed by Mujg& was used, resulting in a
longitudinal flexural modulus of 116 GPa and a shmadulus of 4 GPa. Bending tests

were done for each specimen in the uncracked atriiee different spans.



Specimen displacemeni,.) was determined from load-displacement curves. The
experimental displacement,(,) is the addition of the specimen displacementtaed
displacement due to the system compliance.
Sexp = Ospec + CsP = Sspec = Gexp — CsP (21)

In order to analyze system compliance, a thin gileéé with bonded piano hinges was
tested five times as a DCB specimen. As the defoomaf the plate is negligible, the
slope of the obtained load-displacement curveseaconsidered to be the effect of the
system compliance. The average value obtainedhéostiffness of the system was
C, = 201x107°> mm/N.
C, includes the compliance effects concerning thieaiht parts of the testing system:

* Piano hinges bonded to the specimen.

* Load cell.

* Testing machine frame.

3.3 Determination of the crack length

In order to determine the crack length the DCBstagtre carried out in accordance
with the ISO standards [5]. As explained previou&lyload-unload cycles with crack
advance have been carried out in specimen 1, vanekhown in Fig. 5.

Load and displacement values obtained from DCB teste been exported to a
spreadsheet where both the experimental compliamdehe analytic compliance
defined by means of the presented method are eééclpoint to point in the range of
the test. To obtain a first approach of the analggimpliance, it is required to have the
initial value of the crack length given in Eq. (5).

After that, a goal seeking method is used to fim@drack length by equating both the

experimental compliance and the one determineddxi ), allowing the modification



of the initial crack length. Finally, the effectklarge displacements explained in
section 2.7. are taken into account to obtain #fendive value of the crack length. This
process leads to achieve a continuous plot oflek@and therefore the Energy Release
Rate along the test can be determined. Fghdvs the effects of the large
displacements in specimen 1 for rat&fy/a > 30%. There is a maximum difference of
5 mm between the curves due to the above mentieffiect.

Before the first load-unload cycle and after each a ENF test without crack advance
has been carried out with the aim of determinirggreral crack length, following the
methodology based on BTBR approach[26]. Thus, cleagths obtained by ENF tests
have been used for checking the values obtaind2G® in the same specimen.

Fig. 7 shows the continuous plot of crack lengthsimed by DCB in the five load-
unload cycles and the discrete values measured'BRBevery time the test is stopped
for specimen la, to as are the values measured by ENF tests, and coréspdhe
initial crack length in each load cycle. The conigam of results obtained by DCB and
ENF for different crack lengths in specimen 1 shbe/capability of the proposed
method for obtaining the crack length in a DCB.test

After having validated the crack length determioagprocedure presented, specimen 2
has been tested without stopping the test. Fiju&rates the determined crack growth

for this specimen.

3.4 Resistancecurves

Interlaminar fracture energy is experimentally aled to increase during the
delamination process. The R-curve for laminated pusite materials shows a
monotonically increasing,. value in the first few millimeters of crack exterswhich
then stabilizes with further crack growth. Unleig®f bridging is the primary reason for

this behavior other effects may be involved inghape of a resistance curve [33].



Fig. 9 shows the load-displacement graph and tariRe obtained by Eqg. (18), for
specimen 1. Zones 1 to 5 correspond to the five-lodoad cycles. Some
discontinuities (A to Ag) are observed in the graphs. Theoretically, thelcgrowth
proceeds slowly and continuously in infinite smatlrements. Nevertheless, uneven
increments take place when real tests are cartiedrbese little crack growth jumps
produce load drops, which are usually followed bgst. In this phase, the load
increases to a local maximum before continuingdéglamination growth [5].
Similar behavior has been observed in the graphsplecimen 2. Fig. 10 shows the
Load-displacement graph and the R-curve for thted@pecimen. The meaning of the
points marked in Fig. 10 is:
NL: Deviation from Linearity. It is assumed that deiaation starts to grow from
the tip of the initial crack. An initiation valuerfG;. should be calculated from
this point.
B1, B2: Points where the load drops abruptly.
C1, C2: Points where the load increases without crackvtir@fter unstable
propagation.
The drops showed in the R-curve are caused byhineamentioned drops in load-
displacement curve. The crack length increasesblystprovoking the drop in the R-
curve. After that the load increases reaching allo@ximum before the crack starts to
propagate again. The ISO standard [5] stateshigtdints where the crack growth is
arrested should be excluded, nevertheless in tsepted work all the points are plotted

in order to show the complete behavior of the frexprocess.

4  Summary and conclusions



A new analytical model regarding the complianca IDCB specimen has been
presented. Besides shear and system complianatsetrge displacements have been
taken into account. By means of this approach xagermental procedure for the point-
to-point determination of the R-curve has been psegd. The basic aspect of the
procedure is the determination of the crack letgited on the compliance of the
specimen. Results obtained for the compliance agitbethose obtained by other
authors. The experimental results obtained focthek length have been validated by
ENF tests with the BTBR method. The point to pqiat of the R-curve leads to
analyze the real behavior of the specimen, inclygimases of unstable delamination
growth.

The presented method allows a continuous plot@R¥curve without the need of any
optical measurement. This aspect is interestingnanothers, for carrying out DCB

tests in a temperature chamber.
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TABLE CAPTIONS

Table 1.- Parameters x4, x5, x3 for T6T/F593 (h = 1.5)



x1(mm) X (mm) x3(mm)

9,95 0,19 1,31

Table 1.- Parameters x4, x5, x3 for T6T/F593 (h = 1.5)



FIGURE CAPTIONS

Fig. 1. DCB specimen

Fig. 2. Lower half of the DCB specimen

Fig. 3. Distributed force along the beam

Fig. 4. Variation of x3 with the crack length (h=1, 1.5, and 2mm)
Fig. 5. Load-Displacement plot of specimen 1.

Fig. 6. Effects of Large Displacements (Specimen 1)

Fig. 7. Calculated versus measured crack length in specimen 1
Fig. 8. Calculated crack length in specimen 2
Fig. 9. (a) Load-Displacement plot and (b) R-curve in specimen 1

Fig. 10. (a) Load-Displacement plot and (b) R-curve for specimen 2



Fig. 1. DCB specimen
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Fig. 2. Lower half of the DCB specimen
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Fig. 3. Distributed force along the beam
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Fig. 4. Variation of x3 with the crack length (h=1, 1.5, and 2mm)
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Fig. 5. Load-Displacement plot of specimen 1.
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Fig. 6. Effects of Large Displacements (Specimen 1)
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Fig. 7. Calculated versus measured crack length in specimen 1



Crack Length (mm)

140

120

100

80

60

40

20

fl_-
"f’h’
/
_~
10 20 30 40 50 60

Displacement 26 (mm)

Fig. 8. Calculated crack length in specimen 2



40 -

35 A

25 A

Load (N)
N
o

15 A

1000

900

800

700

600

500

Gl (J/m2)

400

300

200

100

10 20 . 30 40 50 60
Displacement 26 (mm)

| WP BES
fg/ 2

o
®

) J ) 4

T T T T 1

0 20 40 60 80 100
Crack extension a-a, (mm)

Fig. 9. (a) Load-Displacement plot and (b) R-curvein specimen 1
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