
“© 2019 IEEE.  Personal use of this material is permitted. Permission from IEEE must be 
obtained for all other uses, in any current or future media, including reprinting/republishing 
this material for advertising or promotional purposes, creating new collective works, for resale 
or redistribution to servers or lists, or reuse of any copyrighted component of this work in 
other works.” 

 

I. Isasi et al., "A Multistage Algorithm for ECG Rhythm Analysis During Piston-Driven 
Mechanical Chest Compressions," in IEEE Transactions on Biomedical Engineering, vol. 66, no. 
1, pp. 263-272, Jan. 2019, doi: 10.1109/TBME.2018.2827304.. 

 

https://doi.org/10.1109/TBME.2018.2827304


IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING 1

A Multistage Algorithm for ECG Rhythm Analysis
during Piston-Driven Mechanical Chest

Compressions
Iraia Isasi, Unai Irusta∗, Member, IEEE Elisabete Aramendi, Unai Ayala, Erik Alonso,

Jo Kramer-Johansen, and Trygve Eftestøl, Member, IEEE

Abstract—Goal: An accurate rhythm analysis during1

2 cardiopulmonary resuscitation (CPR) would contribute 
3 to increase survival from out-of-hospital cardiac arrest. 
4 Piston-driven mechanical compression devices are frequently 
5 used to deliver CPR. The objective of this work was to design a 
6 method to accurately diagnose the rhythm during compressions 
7 delivered by a piston-driven device. Methods: Data was gathered 
8 from 230 out-of-hospital cardiac arrest patients treated with 
9 the LUCAS 2 mechanical CPR device. The dataset comprised 

10 201 shockable and 844 nonshockable ECG segments, whereof 
11 270 were asystole (AS) and 574 organized rhythm (OR). A 
12 multistage algorithm (MSA) was designed, which included two 
13 artifact filters b ased o n a  r ecursive l east s quares a lgorithm, a 
14 rhythm analysis algorithm from a commercial defibrillator, and 
15 an ECG-slope based rhythm classifier. D ata w as partitioned 
16 randomly and patient-wise into training (60%) and test (40%) 
17 for optimization and validation, and statistically meaningful 
18 results were obtained repeating the process 500 times. Results: 
19 The mean (standard deviation) sensitivity (SE) for shockable 
20 rhythms, specificity (SP) for nonshockable rhythms, and total 
21 accuracy of the MSA solution were: 91.7 (6.0), 98.1 (1.1) and 
22 96.9 (0.9), respectively. The SP for AS and OR were 98.0 
23 (1.7) and 98.1 (1.4), respectively. Conclusions: The SE/SP were 
24 above the 90/95% values recommended by the American Heart 
25 Association for shockable and nonshockable rhythms other 
26 than sinus rhythm, respectively. Significance: It is possible 
27 to accurately diagnose the rhythm during mechanical chest 
28 compressions and the results considerably improve those 
29 obtained by previous algorithms.

30 Index Terms—Artifact suppression, cardiac arrest, 
31 cardiopulmonary resuscitation (CPR), electrocardiogram (ECG), 
32 mechanical chest compressions, piston-driven compressions, 
33 recursive least squares (RLS).
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I. INTRODUCTION

Early electrical defibrillation a nd h igh-quality chest 
compressions during cardiopulmonary resuscitation (CPR) 
are key for the outcome of out-of-hospital cardiac arrest 
patients [1]. Current treatment guidelines for cardiac arrest 
highlight the importance of minimizing interruptions in 
compressions during CPR [1]. However, for a reliable 
shock/no-shock decision, current defibrillators require 
interrupting compressions to avoid artifacts in the ECG. An 
accurate shock/no-shock decision during CPR would improve 
therapy in two ways. For nonshockable rhythms it would 
do away with unnecessary interruptions in CPR to check 
the rhythm. These interruptions, which compromise coronary 
perfusion pressure, worsen chest compression fraction and 
may result in decreased survival [2]. For ventricular fibrillation 
(VF) it would contribute to a quicker identification of the 
need to shock the patient, which is important given the high 
oxygen demands of VF [3].

Strategies to allow an accurate shock/no-shock decision 
without interrupting CPR therapy include analyzing the 
rhythm during pauses in compressions for ventilation, and 
using signal processing techniques to allow a reliable 
shock/no-shock decision during compressions. Pauses in 
compressions for ventilations occur approximately every 20 s 
in 30:2 CPR, and an accurate rhythm analysis during those 
pauses has already been demonstrated [4], [5]. However, those 
techniques are inapplicable to compression only CPR.

Solutions based on digital signal processing for a 
reliable shock/no-shock decision during compressions have 
followed two main approaches [6]: the design of adaptive 
filters to suppress the artifact followed by a defibrillator’s 
shock/no-shock decision algorithm, and shock/no-shock 
decision algorithms based on robust ECG features minimally 
affected by the artifact. Adaptive filters address the 
spectral overlap between resuscitation cardiac rhythms 
and compression artifacts, and the time-varying spectral 
characteristics of the artifact. However, these filters require 
additional reference signals correlated to the artifact like 
compression force [7], thoracic impedance [8] or blood 
pressure [9]. Several solutions based on these signals have been 
developed including Wiener filters [ 10], r ecursive adaptive 
matching pursuit algorithms [11], [12] or Kalman state-space 
models [13]. Given the quasi-periodic nature of CPR artifacts, 
adaptive solutions to estimate a time-varying Fourier series 77
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model of the artifact have also been proposed, including Least78

Mean Squares (LMS) [14]–[16] or Kalman [17] solutions.79

Filtering schemes that use only the ECG to both characterize80

and remove the artifact include approaches based on coherent81

line removal [18], LMS [19] and Kalman filters [20].82

Finally, two types of algorithms based on robust83

ECG-features have been proposed to classify the ECG84

during CPR: features computed without filtering like the85

morphological consistency algorithm [21], [22] and adaptive86

rhythm sequencing [23], or after filtering the artifact [24], [25].87

Despite progress, current solutions do not allow a reliable88

rhythm analysis during CPR [6], either because filtering89

residuals may resemble VF in patients in asystole (AS), or90

because spiky residuals are interpreted as the QRS complexes91

of organized rhythms (OR) in patients in VF [15], [16].92

In all of these studies artifacts originate from manual93

compressions delivered by rescuers. Mechanical compression94

devices are increasingly used in resuscitation although95

evidences of improved survival are not conclusive [26], [27],96

and have become popular in scenarios such as transportation,97

invasive-procedures or prolonged CPR [28]–[31]. Mechanical98

devices deliver compressions at a constant rate and depth99

in adherence with current resuscitation guidelines. There are100

two types of automated compressors available: pneumatically101

driven pistons like the LUCAS 2 (Physio-Control Inc/Jolife102

AB, Lund, Sweeden), and load distributing bands like the103

Auto Pulse (Zoll Circulation, Chelmsford, Massachusetts,104

USA) [32]. Preliminary attempts to remove the LUCAS 2105

artifact with simple comb filters were promising on a limited106

dataset [33], even though filtering was later shown to be as107

challenging as for manual CPR artifacts when tested on a108

more comprehensive dataset [34]. Although mechanical CPR109

artifacts have a fixed frequency, they present larger amplitudes,110

significant filtering residuals, and many harmonics that make111

filtering the artifact challenging [34].112

This study introduces a new method for a reliable113

114 shock/no-shock decision during piston-driven mechanical 
115 compressions. The approach uses two recursive least-squares 
116 (RLS) filters to reduce CPR artifacts, followed by three 
117 shock/no-shock decision stages based on a standard 
118 defibrillator algorithm and on an ECG-slope decision 
119 stage. The complete solution is therefore named multistage 
120 algorithm (MSA). The manuscript is organized as follows: 
121 Section II describes the study dataset; Section III introduces 
122 the time-varying Fourier series model of the artifact, an 
123 algorithm to estimate the order of the model, and the adaptive 
124 filter to track the time-varying Fourier coefficients; Section IV 
125 describes the building blocks and the general architecture 
126 of the MSA solution; Section V describes the performance 
127 metrics, data partition and optimization/test procedures; and 
128 the results, conclusions and discussion are presented in 
129 Sections VI to VIII.

II. DATA COLLECTION AND PREPARATION130

Data from 263 out-of-hospital cardiac arrest patients treated131

with the LUCAS 2 piston-driven chest compression device132

(Physio-Control Inc., Redmond, WA, USA) were reviewed.133

The cardiac arrest episodes were collected by the advanced 134

life support responders of the emergency services of Oslo 135

and Akershus (Norway) during 18 months in 2012 and 2013. 136

Responders used Physio-Control’s Lifepack 15 defibrillators 137

that continuously record the ECG and impedance signals. The 138

LUCAS 2 device delivers compressions in a fixed position, 139

with constant depth (40-53 mm depending on chest height), at 140

a constant rate (102± 2 min−1), with a 50% duty cycle, and 141

allowing full chest recoil after each compression [35]. 142

Anonymized data from the defibrillators was exported to 143

Matlab (MathWorks Inc., Naick, MA) using Physio-Control’s 144

Code Stat data review software, and resampled to a 145

sampling frequency of 250 Hz. The data included the ECG 146

and impedance signals of each episode together with the 147

compression instants detected by the Code Stat software. 148

The start of use of the LUCAS-2 device was marked when 149

the compression rate stabilized at the device’s fixed rate of 150

102 min−1 [34]. Then, 20 s signal segments with the same 151

underlying rhythm were extracted during the device usage. The 152

segments contained an initial 15 s interval during compressions 153

to develop and evaluate our solution for the shock/no-shock 154

decision during chest compressions, followed by a 5 s interval 155

without compression artifacts to annotate the patient’s rhythm. 156

Fig. 1 shows two examples. Ground truth rhythm labels were 157

adjudicated by consensus among two independent reviewers, a 158

clinical researcher and a biomedical engineer, both specialized 159

in resuscitation data science [34]. The rhythm annotators, who 160

were not involved in the conception and development of the 161

methods, examined the 5 s interval without artifacts (see Fig. 1) 162

to annotate the rhythms. Segments were annotated as: VF and 163

ventricular tachycardia (VT) in the shockable rhythm category, 164

and OR and AS in the nonshockable category. Presence 165

of pulse could not annotated because patient charts with 166

clinical pulse annotations and/or capnography levels were not 167

available. So the OR category includes both pulseless electrical 168

activity and pulsed rhythms. Intermediate rhythms like fine 169

VF (amplitude<200 µV) were discarded. The American Heart 170

Association (AHA) does not establish a shock/no-shock 171

recommendation for intermediate rhythms because the benefits 172

of defibrillation are unclear for those rhythms [36]. 173

The final annotated dataset consisted of 1045 segments 174

from 230 patients, segments like the two examples shown in 175

Fig. 1. There were 201 shockable segments (5 VT and 196 176

VF) from 62 patients, 270 AS segments from 99 patients and 177

574 OR segments from 160 patients. In what follows rhythms 178

will be grouped into three categories: shockable (VF/VT), OR 179

and AS. This is the typical rhythm class definition used in 180

the literature on shock/no-shock decisions during CPR [15], 181

[23]–[25]. The prevalence of VT in our dataset is low, although 182

it is comparable to that of most similar studies [15], [16], [23], 183

184

185

so a separate analysis for VT would not be meaningful.

III. QUASI-PERIODIC MODEL OF THE ARTIFACT 

A. Signal model 186

During chest compressions the ECG signal recorded by 187

the defibrillator, scor(n), is corrupted by additive chest 188
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Artifact filtering, rhythm analysis during CCs Rhythm annotation

Artifact filtering, rhythm analysis during CCs Rhythm annotation

Fig. 1. Two examples of 20 s ECG segments corresponding to a patient in VF (example (a)) and to a patient in OR (example (b)). In both examples, the top panels 
show the ECG recorded by the device (the corrupt ECG, scor), and the bottom panels show the ECG after filtering the compression artifact (the estimated rhythm, 
ŝecg). In the top panels, the initial 15 s of the ECG are corrupted by the LUCAS 2 artifact. The last 5 s show the underlying rhythm in an interval free of artifact. 
Filtering (bottom pannel in both examples) reveals the underlying rhythm.

compression artifacts, scc(n), resulting in [11], [15]:189

scor(n) = secg(n) + scc(n) (1)

190 where secg(n) is the patient’s clean ECG reflecting the actual 
191 underlying heart rhythm. Methods focus on estimating the 
192 artifact scc(n). An extensively used approach is to assume 
193 scc(n) to be quasi-periodic and thus model the artifact as 
194 a truncated Fourier series of N terms [14]–[16] with no 
195 DC-component. The Fourier series can be expressed in terms 
196         of the amplitude and phase coefficients, ck(n) and θk(n), or as 
197 a sine-cosine series with in-phase and cuadrature amplitudes, 
198 ak(n) and bk(n), in the following way:

scc(n) = A(n)
N∑
k=1

ck(n) cos(kω0n+ θk(n)) = (2)

= A(n)
N∑
k=1

(
ak(n) cos(kω0n) + bk(n) sin(kω0n)

)
(3)

199 where A(n) is an amplitude term to model intervals with 
200 compressions, A(n) = 1, and without compressions, A(n) = 
201 0, such as hands-off intervals for ventilations. Smooth 
202 transitions between intervals were defined as described in [15], 
203 [37]. The spectral components of the artifact, its Fourier 
204 coefficients, are considered time-varying and will be tracked 
205 using an adaptive RLS filter (see subection III-C). The 
206        frequency ω0 is the fundamental discrete frequency of the

compressions which for a piston-driven compression device 207

is constant: 208

ω0 = 2πfLUCASTs (4)

with fLUCAS = 1.694Hz ≡ 101.6min−1 [34], and Ts the 209

sampling period. 210

B. Estimating the number of harmonics N 211

Previous works have assumed the number of harmonics N 212

to be fixed for all cases. However, the spectral content of the 213

artifact is very variable from case to case both in manual [15] 214

and mechanical compressions [34], and depends on factors like 215

the rescuer, the patient or electrode placement. Estimating 216

N in manual CPR is unfeasible or inaccurate because 217

compression frequency changes with every compression. In 218

mechanical CPR the frequency is fixed and simple spectral 219

methods can be used to estimate the number of significant 220

coefficients in (2). Assuming constant ck coefficients, which 221

suffices for approximate power computations but not for 222

rhythm analysis, we can express the power of the artifact in 223

short ECG intervals using Parseval’s theorem: 224

Pcc ≈
N∑
k=1

c2k =
N∑
k=1

(
a2k + b2k

)
(5)
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In this work we determined the number of significant225

harmonics as the first integer N ≤ 30 for which the following226

inequality holds:227

100 · Pcc,N+3 − Pcc,N

Pcc,N
≤ γ with Pcc,K =

K∑
k=1

c2k (6)

228 i.e. when the addition of 3 new harmonics increased the 
229         relative power by less than the threshold γ, optimized in 
230 the simulation phase. The problem then reduces to efficiently 
231         estimating the amplitudes ck located at fixed frequencies kω0. 
232 The Fourier coefficients were estimated using the 
233 Generalized Goertzel Algorithm. The standard Goertzel 
234 algorithm allows the direct evaluation of isolated terms of 
235 the discrete Fourier transform. Its generalization extends the 
236 method to compute spectral components at any frequency [38], 
237         in our case the kω0 frequencies. Therefore, X(kω0), the 
238 spectral components of the signal x(n) at our frequencies of 
239 interest were computed using the following equations [38]:

s(n) = x(n) + 2 cos(kω0)s(n − 1) − s(n − 2) (7)

X(kω0) =
(
s(Lg) − e−jkω0 s(Lg − 1)

)
e−jkω0Lg (8)

240 where Lg is the length of the signal x(n). For mechanical chest 
241 compression artifacts we assume that the ECG components at 
242        kω0 are negligible when compared to the harmonics of the 
243 artifact, and therefore x(n) = scor(n). We used the initial 5 s 
244 window (Lg = 5 · fs) with compressions to estimate the ck, 
245         and formed a windowed signal xw(n) = scor(n)·wβ (n), where 
246        wβ (n) is a Kaiser window with form factor β = 4.5 to reduce 
247 spectral leakage. The ck coefficients were obtained as:
248

ck = |X(kω0)| =
∣∣∣∣ 2

W4.5(0)
Xw(kω0)

∣∣∣∣ (9)

249    Here W4.5(0) is the spectral component of the Kaiser window      
250   at  the origin, and Xw(kω0) are the spectral components of           
251        xw(n) at the harmonic frequencies.

252 C. Estimation of the ak(n) and bk(n) coefficients

253 Constant Fourier coefficients were assumed to determine N , 
254 the order of the model for each case. However, a proper rhythm 
255 analysis requires tracking the time-varying characteristics of 
256 the spectral components of the artifact, the coefficients in (3). 
257 These were estimated using an RLS Fourier analyzer [39], 
258 adapted to estimate mechanical CPR artifacts [40]. The 
259 RLS filter p resents i mproved c onvergence a nd adaptability 
260 characteristics when compared to the LMS approach formerly 
261 used for CPR artifact suppression [14]–[16]. First we define 
262 two vectors for the coefficients a nd r eference s ignals (the 
263 harmonic components):

Θ(n) = [a1(n) b1(n) . . . aN (n) bN (n)]T (10)

Φ(n) = [cos(ω0n) sin(ω0n) . . . cos(Nω0n) sin(Nω0n)]
T

(11)

Then the estimated chest compression artifact, ŝcc(n), is:264

ŝcc(n) = A(n)ΘT(n−1)Φ(n) (12)

Filter coefficients are updated using the RLS algorithm to 265

minimize the error between the corrupt ECG and the estimated 266

artifact at the harmonics of the mechanical chest compression 267

frequency. The error signal is the ECG of the estimated 268

underlying rhythm, ŝecg, and the update equations are: 269

ŝecg(n) = scor(n)− ŝcc(n) (13)

F(n) =
1

λ

[
F(n−1)− F(n−1)Φ(n)ΦT (n)F(n−1)

λ+ ΦT (n)F(n−1)Φ(n)

]
(14)

Θ(n) = Θ(n−1) + F(n)Φ(n)ŝecg(n) (15)

where the gain matrix and coefficient vector were initialized 270

to F(0) = 0.03I2N and Θ(0) = 0T . The forgetting 271

factor of the RLS algorithm, λ, governs the performance 272

of the filter and is set very close to unity. The choice of 273

the forgetting factor is a compromise between the tracking 274

capabilities and misadjustment and stability. Forgetting factors 275

very close to unity (λ > 0.995) mean low misadjustments 276

and good stability, but reduced tracking capabilities. This is 277

desirable when the underlying rhythm (error signal) presents 278

abrupt changes like QRS complexes, for instance in some OR 279

rhythms. Smaller values of λ (0.980 < λ < 0.995) produce 280

fast tracking capabilities but larger misadjustements and poorer 281

stability. This may be desirable when the underlying rhythm 282

is negligible, such as during AS. The different qualitative 283

behaviors of the filter will be exploited by the MSA solution 284

that uses two configurations of the RLS filter, as described in 285

the following section. 286

IV. ARCHITECTURE OF THE SOLUTION 287

A. Rhythm analysis 288

Filtering should reveal the underlying heart rhythm of the 289

patient, consequently ŝecg(n) was used to diagnose the rhythm 290

as shockable or nonshockable. Two different approaches were 291

used to diagnose the rhythm: an AHA compliant rhythm 292

analysis algorithm designed to diagnose clean ECG, and an 293

ECG feature designed to discriminate OR and VF rhythms 294

after filtering the CPR artifact. 295

The rhythm analysis algorithm used was originally designed 296

to diagnose artifact-free ECG, and uses 3 consecutive ECG 297

intervals of 3.2 s to give a shock/no-shock decision. Succinctly, 298

for an in depth description consult chapter 4 (pages 63-111) 299

of [41], the decision is performed in three different stages. 300

The first one discriminates asystole segments by identifying 301

the absence of electrical activity based on the amplitude and 302

power of the ECG. In the second stage, three parameters 303

that identify the presence of QRS complexes are fed in 304

a binary classifier based on a multiple logistic regression 305

model to discriminate OR and shockable rhythms [42]. Finally 306

a patch is added to discriminate fast ventricular from 307

supraventricular rhythms [43]. The code for the computations 308

of the features is avaliable through [44]. The algorithm was 309

developed and tested following AHA recommendations for 310

arrhythmia analysis algorithms in defibrillators [36], and is 311
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312 fully AHA compliant [41], [42]. Furthermore, it is currently 
313 in use in the Reanibex R-series defibrillator (Bexen Cardio S. 
314 Coop., Ermua, Spain).

The algorithm was designed to diagnose artifact-free ECG,315

316 and uses 9.6 s ECG intervals to give a shock/no-shock 
317 decision. In this work we fed the rhythm analysis algorithm 
318 with a 9.6 s interval of the filtered ECG (from 3.4 s to 13 s), 
319 the first 3.4 s were left out to avoid RLS filter transients.

The OR/VF discrimination feature is based on the slope of320

321       the filtered ECG [25], and was computed using the same signal  
322     interval of ŝecg(n) fed to the rhythm analysis algorithm (from      
323         3.4 s to 13 s). The slope was obtained as the first difference, it 
324 was then squared and passed through a moving average filter 
325 of M samples (80 ms) and normalized by its maximum value, 
326 to obtain:

d(n) =
1

M

M−1∑
m=0

(ŝecg(n−m)− ŝecg(n−m− 1))2 (16)

d(n) =
d(n)

max{d(n)} n = 0, ..., La − 2 (17)

327 where La = 9.6 · fs is the length in samples of the interval. 
328 The discrimination feature is called slope baseline (bS) [25] 
329 and was obtained as the 10th percentile of d(n) in the analysis 
330 interval. OR rhythms present large slopes only around QRS 
331 complexes leading to low values of bS. In contrast, VF 
332 rhythms present evenly distributed slopes, thus larger values 
333 of bS. The averaging filter c ontributes t o e liminate t he effect 
334 of filtering residuals [25].

335 B. Architecture of the MSA solution

The general architecture of the MSA solution for336

337 the shock/no-shock decision during mechanical chest 
338 compressions is shown in Fig. 2, and is composed of three 
339 stages. The process starts by determining the number of 
340 significant harmonics of the artifact using the generalized 
341 Goertzel method (section III-B). In stage 1, the corrupt ECG 
342        is coarsely filtered using the RLS filter with a λ1 ∼ 0.990, 
343 to identify AS segments. If the rhythm analysis algorithm 
344 identifies a nonshockable rhythm the process ends, otherwise 
345 stage 2 is activated. In stage 2, the corrupt ECG is finely 
346        filtered using the RLS filter with a λ2 ∼ 0.999, in order to 
347 preserve quick ECG variations like QRS complexes. Again if 
348 the algorithm identifies a nonshockable rhythm the process 
349 ends, otherwise stage 3 is activated. In stage 3, the finely 
350 filtered ECG is used to compute bS and discriminate OR 
351 from VF. Four free parameters were left to optimize the 
352 performance of the solution: the threshold to determine the 
353        order of the CPR artifact model (γ), the forgetting factors of 
354        the filters (λ1 and λ2), and the bS threshold (ρ).

V. EVALUATION AND OPTIMIZATION355

The performance of the method was evaluated by356

357 comparing the shock/no-shock decisions of our method for 
358 the filtered i ntervals w ith t he c linicians’ r hythm annotations 
359 for the artifact-free intervals. The following metrics were

Signal flow

Decision flow

Proccessing stage

Treatment decision

Sh/NShstage 1

stage 2

stage 3

scor(n) ŝecg1(n)

ŝecg2(n)

N

NSh

NSh

NSh

Sh

Sh

Sh

no

yes

GGA
γ

RLS
λ1

RLS
λ2

RAA

RAA

compute
bS

>ρ

Fig. 2. Architecture of the MSA solution for shock (Sh) and no-shock (NSh) 
decisions during mechanical compressions. The solution is composed of three 
analysis stages: a first stage based on a coarse RLS adaptive filter (λ1 ∼ 0.99), 
a second stage with a fine RLS filter (λ2 ∼ 0.999) and a third stage based on 
the slope analysis (bS) of the filtered ECG. In stages 1 and 2 the decision is 
based on an AHA commpliant rhythm analysis algorithm (RAA). The order N 
of the RLS filters is determined using the Generalized Goertzel Algorithm 
(GGA). The stages are activated sequentially and the process ends when a no-
shock decision is reached in stages 1 or 2, or with any diagnosis at stage 3.

computed: sensitivity (SE), the proportion of correctly 360

identified shockable segments; specificity (SP), the proportion 361

of correctly identified nonshockable segments; accuracy (Acc), 362

the proportion of correct decisions; and balanced accuracy 363

(BAC). The BAC is the mean value of SE and SP, 364

BAC = 1
2 (SE + SP) (18)

and gives an unbiased measure of the method’s perfomance 365

which is desirable during optimization given the different 366

prevalences of shockable and nonshockable segments in our 367

dataset. BAC can be interpreted as a particular case of the 368

unbiased mean of sensitivities for multiclass problems [45]. 369

Data was partitioned patient-wise, 60% of patients were 370

included in the training dataset to optimize the values of γ, 371

λ1, λ2, and ρ, and 40% of patients were left for testing to 372

compute SE, SP, BAC and Acc. Since the partition of the 373

data can have a significant impact on the results, the process 374

was repeated for 500 random 60/40 patient-wise partitions to 375

obtain statistically meaningful results. We used 500 bootstrap 376

replicas because in our preliminary experiments a number of 377

replicas above 300 ensured the repeatability and reliability of 378

the estimates of the statistical distributions of the performance 379

metrics. These distributions of the performance metrics were 380

tested for normality using the Kolmogorov-Smirnov test, and 381

382were reported as mean value and standard deviation since they 
followed normal distributions. 383

For each of the 500 partitions the optimization process 384

comprised three steps. First, the pair (γ, λ1) that maximized 385

the BAC for stage 1 of the training set was determined by 386

doing a greedy search in the 0 < γ < 0.07 and 0.985 < 387
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λ < 0.995 ranges. Second, the value λ2 that maximized388

the SP for OR in stage 2 was determined by searching the389

0.9950 < λ < 0.9999 range. Third, two values of ρ were390

determined using the training segments that made it to stage391

3. The first (ρ1) and second (ρ2) values set the threshold of392

correctly detected VF segments at 99% (high SE) and 95%393

(high SP), respectively.394

The results were compared to those obtained for the395

filtering methods proposed in the literature to suppress chest396

compression artifacts from piston-driven devices: the LMS397

filter [15], [34] and the comb filter [33], [34]. For a fair398

comparative assessment, the training/test procedure used for399

the RLS was replicated. Therefore, the filters were optimized400

as in stage 1 of the solution proposed in this paper, that is by401

adjusting (γ,BW ) in the comb filter and (γ, µ) in the LMS402

filter. In the comb filter BW refers to the bandwidth around403

each notch (multi-notch filter), and for the LMS filter µ is the404

step size of the LMS algorithm. The algorithmic details can405

be found in the original references [15], [33], [34].406

VI. RESULTS407

The dependence of the order of the model, i.e. the number408

409 of harmonics N , with the power threshold γ is shown in 
410 Fig. 3. For small values of the threshold, γ < 0.005, the 
411 median model order is above 20 but the variability is large. 
412 For instance, for γ = 0.005 model orders ranged from 8–30, 
413 and in 90% of cases were in the 11–27 range. This indicates 
414 that although many harmonics are required to accurately 
415 represent the piston-driven chest compression artifact (N > 
416 15), the variability is large from case to case, and that it is 
417 important to adjust the order of the model in the prefiltering 
418 stage. Furthermore, Fig. 3 shows differences in model order 
419 depending on the underlying rhythm. Nonshockable rhythms 
420 (AS and OR) presented larger orders than shockable rhythms, 
421 because in the latter Goertzel’s coefficient estimation may be 
422 affected by the spectral overlap of the underlying rhythm and 
423 the artifact.

Fig. 4 shows filtering examples for the three rhythm types,424

425        and the two filter configurations, coarse (λ1 = 0.990) and fine 
426        filtering (λ2 = 0.999). Both filter configurations reveal the 
427 underlying VF equally well in the example in panel (a). For 
428 nonshockable rhythms, coarse filtering has a larger negative 
429 effect on signal amplitude in OR rhythms, as shown by the 
430 lower amplitude of the QRS complexes in the example of panel 
431 (b). However, fine filtering leaves a larger filtering residual 
432 than can mislead rhythm analysis during AS, as shown in the 
433 example of panel (c). So a compromise between both filtering 
434 characteristics is needed for an accurate rhythm analysis. For 
435        a better understanding of the filter characteristics (λ1/λ2) 
436 with OR rhythm the reader can consult the additional filtering 
437 examples in the supplementary materials, which also provide 
438 additional filtering experiments that explain the differences 
439 observed for OR rhythms for the two filter configurations.

The effectiveness of the RLS filter is summarized in Fig. 5,440

441 which shows the SE, SP and BAC of the rhythm analysis 
442 algorithm after filtering the chest compression artifact. This is 
443 equivalent to using only stage 1 in the filtering solution. The

figure shows four implementations of the filter: for a fixed 444

order (N = 30, γ = 0), and for three case dependent orders, 445

with a small threshold (γ = 0.002, i.e. large N ), intermediate 446

treshold (γ = 0.070, i.e. intermediate N ) and large threshold 447

(γ = 0.400, i.e. small N ). In addition the filter’s optimal 448

working range in the BAC sense is highlighted. The best 449

results were obtained for small γ, and the figure shows that a 450

case dependent order was particularly important to improve SP, 451

which is where CPR suppression filters are known to fail [6]. 452

The performance metrics for the 500 random patient-wise 453

training/test partitions are shown in Table I. All metrics are 454

reported as mean (standard deviation). Metrics were computed 455

for different configurations of the filtering solution including 456

only one, two or all three stages described in Fig. 2. The 457

results are compared to the single stage LMS and comb filters 458

proposed in the literature, and to the results obtained for the 459

unfiltered ECG. Filtering increased the BAC by over 20-points 460

in all cases. The RLS filter was the best single stage method, its 461

BAC was 1.2-points above that of the LMS filter. Furthermore 462

the addition of stages 2 and 3 increased the overall BAC 463

by around 3-points and most importantly the SP by over 464

8-points. Stage 3 allows a trade-off between the SE and SP 465

of the solution. The 3-stage MSA solution produced SE/SP 466

pairs above the minimum 90/95 values recommended by the 467

AHA [36] for rhythm analysis on clean ECGs. As in previous 468

works on shock/no-shock decision during manual CPR, the 469

performance goal for nonshockable rhythms was fixed at 95 % 470

specificity [9], [14]–[16], [24]. This is the AHA performance 471

goal for asystole and for rhythms other than normal sinus 472

rhythm. For safety reasons, the AHA recommends a 99 % 473

specificity for normal sinus rhythms. However, organized 474

rhythms during cardiac arrest are rarely normal sinus rhythms, 475

since restoration of a normal rhythm and pulse would imply 476

ceasing chest compression therapy. 477

The average characteristics of the optimal MSA solution 478

Fig. 3. Distribution of the number of harmonics as a function of the harmonic 
selection threshold (γ). The graph shows the median value and the 25-75 
percentile range for the complete dataset. Data is shown for all cases 
differentiated by rhythm type: OR, AS and shockable.
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Fig. 4. An example of unfiltered and filtered AS (a), OR (b) and VF (c) rhythms. The first graph of each panel shows the unfiltered ECG, whereas the other two 
show the filtered ECG for both filtering stages, coarse filtering (λ1 = 0.990) in the middle and fine filtering (λ2 = 0.999) in the bottom graphs.
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Fig. 5. Performance metrics for a single stage RLS filter. Data was obtained for the whole dataset and is shown as a function of the forgetting factor of the filter (λ) 
for four thresholds: γ = 0 (N = 30 fixed), γ = 0.002 (large N ), γ = 0.07 (intermediate N ) and γ = 0.4 (small N ). The highlighted region shows the optimal 
range of the filter in the BAC sense, and shows that the best results were obtained for small γ (red).

479 were λ1 = 0.9899 (0.0006), γ = 2.3 (1.3) · 10−3, 
480 λ2 = 0.9990 (0.0003), ρ1 = 7.7 (4.3) · 10−3 and 
481 ρ2 = 16.7 (4.4) · 10−3. On average 70.7% of segments were 
482 diagnosed in stage 1, 5.4% in stage 2 and 23.9% in stage 3. 
483 The drawback of an RLS based solution is the processing 
484 time, and in particular the recursion formula for the gain 
485 matrix which involves the multiplication of 2N ×2N matrices 
486 (equation (14)). Our Matlab implementation of the RLS filter 
487 (single stage) on an i7 3.2 GHz single-core processor and 
488 16 GB of memory took on average 85 ms, considerably 
489 more than the 17 ms and 8 ms obtained for the LMS and 
490 the comb filters, r espectively. T he c omputational demands 
491 of the RLS filter a re a cceptable f or t he i mplementation on 
492 current monitor/defibrillators, b ut p rocessing d emands could 
493 be reduced by an order of magnitude using an MSA solution 
494 based on the comb filter, of five-fold using the LMS filter.We
495 implemented those solutions, by replicating the optimization 
496 process used for the RLS filter and using for stage 2 a 
497 bandwidth range of 0.08 < BW < 0.2 Hz for the comb filter, 
498 and a step size range of 0.0009 < µ < 0.002 for the LMS 
499 filter, which are equivalent to the range of large forgetting 
500 factors in the RLS filter. Table II compares the MSA solutions 
501 based on the RLS, LMS and comb filters, and shows there 
502 is a trade-off between diagnostic accuracy and computational 
503 demands. The table also shows the classification per rhythm 
504 type, to describe the effect of each stage of the MSA solution 
505 on the accuracy for each rhythm type. In fact, the AHA’s 
506 requirements for all rhythm types were only met by the

3-stage RLS based solutions. 507

VII. DISCUSSION 508

This paper introduces a MSA solution for an accurate 509

shock/no-shock decision during mechanical CPR. The solution 510

introduces and/or combines several features that contribute 511

to an increased decision accuracy: an improved CPR artifact 512

filter with a per case filter order (genelarized Goertzel 513

algorithm) and better tracking characteristics (RLS filter), 514

a two-stage filtering approach to improve SP, and a final 515

VF/OR discrimination algorithm to balance the SE and SP 516

of the solution. It improves the BAC, SP and Acc of 517

previous solutions by more than 5-points, 12-points and 518

10-points, respectively. The MSA is the first solution to meet 519

AHA’s criteria for SE/SP during mechanical compressions, 520

with a specificity above the 95 % AHA recommendation for 521

nonshockable rhythms other than sinus rhythm. 522

Mechanical compressions are delivered at a fixed frequency, 523

this allowed the realization of a simple and computationally 524

efficient method to determine the order of the model. Previous 525

attempts to remove the LUCAS 2 artifact focused on the 526

identification of an overall optimal model order [33], [34], 527

but our results show that model orders vary considerably 528

from case to case and that a case dependent order 529

contributes to an improved SP. RLS Fourier analyzers present 530

improved convergence, shorter transients and better tracking 531

properties [39] than the previously used LMS [14], [15], [19] 532

or Kalman filters [17]. The RLS filter improved the BAC 533
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534 of the LMS filter b y 1 .2-points, a nd t he e ffect w as larger 
535 on the SP (see table I). The last two characteristics of 
536 the MSA solution were inspired by two recent solutions to 
537 allow accurate shock/no-shock decisions during manual CPR. 
538 Iterative artifact filtering was introduced within the enhanced 
539 adaptive filter (EAF) [16]. In our case, two filtering stages were 
540 sufficient, a  c oarse fi lter to  ma ximize BA C (s tage 1)  an d a 
541 fine fi lter to  im prove th e de tection of  OR  rh ythms (s tage 2). 
542 The analysis of the slope, an approach introduced by Ayala et 
543 al. [25] to classify the filtered E CG, i mproved t he S P o f our 
544 method by 2-4 points depending on the configuration o f the 
545 detection threshold. These two additions boosted the SP above 
546 95% and were particularly important to increase SP for OR 
547 rhythms by 10 to 14-points (see table II).

Mechanical chest compression devices are popular in548

549 emergency services. Data from a US cardiac arrest registry 
550 indicated that 45% of participating services routinely used 
551 mechanical devices [46]. Current resuscitation guidelines 
552 for instance recommend their use in situations where 
553 sustained high quality manual chest compressions are 
554 impractical or unsafe [32]. It is therefore important to 
555 devise methods to reduce the compression artifact and 
556 allow an accurate shock/no-shock decision during therapy. 
557 When compared to filtering m anual c ompression artifacts,

TABLE I
PERFORMANCE OF THE MSA SOLUTION PRESENTED STEP-WISE AND

COMPARED TO PREVIOUS PROPOSALS BASED ON LMS AND COMB FILTERS.

Method SE (%) SP (%) BAC (%) Acc (%)

Before filtering 50.7 83.9 67.3 77.5
MSA solution

stage 1 98.1 (1.0) 87.0 (1.8) 92.5 (1.1) 89.1 (1.5)
stage 2 97.4 (2.0) 93.5 (1.2) 95.5 (1.0) 94.3 (1.0)
stage 3 (high SE) 95.0 (4.0) 95.4 (1.8) 95.2 (1.4) 95.3 (1.1)
stage 3 (high SP) 91.7 (6.0) 98.1 (1.1) 94.9 (2.6) 96.9 (0.9)

LMS [34] 98.6 (1.0) 84.0 (1.8) 91.3 (1.2) 86.8 (1.6)
Comb [33], [34] 97.1 (2.0) 84.3 (1.8) 90.7 (1.3) 86.8 (1.6)

TABLE II
COMPARISON BETWEEN MSA SOLUTION BASED ON RLS, LMS AND

COMB FILTERS, INCLUDING PROCESSING TIMES.

SP (%)

MSA solution SE (%) AS OR ptime (ms)

RLS based
stage 1 98.1 (1.0) 93.0 (2.7) 84.2 (2.2) 85
stage 2 97.4 (2.0) 95.3 (2.2) 92.7 (1.5) 110
stage 3 (high SE) 95.0 (4.0) 96.3 (2.3) 95.0 (2.1) 111
stage 3 (high SP) 91.7 (6.0) 98.0 (1.7) 98.1 (1.4) 111

LMS based
stage 1 98.6 (1.0) 87.7 (3.1) 82.3 (2.3) 16
stage 2 96.0 (2.0) 94.2 (2.3) 92.0 (1.6) 21
stage 3 (high SE) 94.4 (3.0) 95.0 (2.3) 92.3 (1.6) 21
stage 3 (high SP) 90.4 (5.0) 95.3 (2.2) 92.4 (1.5) 21

COMB based
stage 1 97.1 (2.0) 86.7 (4.1) 83.2 (2.6) 8
stage 2 94.6 (2.0) 91.2 (3.4) 89.3 (2.1) 11
stage 3 (high SE) 92.4 (4.0) 93.6 (2.7) 93.1 (2.7) 11
stage 3 (high SP) 88.8 (6.0) 95.9 (2.4) 96.9 (1.7) 11

mechanical compression artifacts present advantages and 558

challenges. Mechanical artifact filtering is easier because the 559

compression frequency is fixed and the artifact waveform 560

pattern more stable [34]. Challenges include larger artifact 561

amplitudes [33], [34], and larger harmonic content, producing 562

models with very large orders and increased computational 563

cost. 564

Many CPR artifact filters for manual chest compressions 565

have used additional reference signals to model the 566

artifact [7], [9], [11]–[13], [16]. The acquisition of signals like 567

compression depth, acceleration or force makes defibrillator 568

hardware more complex and expensive, so these reference 569

signals are not universally available [6]. Irusta et al showed 570

that chest compression rate derived from the depth signal 571

was sufficient to accurately model the artifact [15]. In fact, 572

when compared on the same data and with the same 573

shock/no-shock decision algorithm, adaptive filters based only 574

on chest compression rate were as accurate as adaptive filters 575

using four reference channels [47]. Piston-driven mechanical 576

chest compressions are delivered at a fixed frequency, so the 577

problem is further simplified because depth or impedance are 578

no longer needed to determine the chest compression rate. 579

Furthermore, for manual CPR computing chest compression 580

rate from signals like impedance, depth or force requires 581

algorithms that accurately identify compression related fiducial 582

points (maximum depth). These fiducial points cannot be 583

always accurately determined, and this negatively affects the 584

performance of the adaptive solutions based only on rate [14]. 585

Our simulations for the MSA method on manual CPR 586

data (see Section I of the supplementary materials) confirm 587

this hypothesis. Artifact filtering during manual CPR based 588

only on the ECG involves an additional stage to determine 589

compression frequency for which methods using spectral 590

analysis [20], [48], empirical mode decomposition [19], or 591

coherent line removal [18] have been devised. Some of these 592

methods could be adapted in the future to implement a 593

prefiltering stage to determine a case dependent model for 594

manual CPR artifacts. Increasing the SP of shock/no-shock 595

decisions during manual chest compressions remains a 596

challenge but future solutions should probably include 597

multistage filters and post-filtering stages such as spiky artifact 598

detectors [16] and ad-hoc solutions to discriminate rhythms 599

based on the filtered ECG [21], [24], [25]. 600

This study has some limitations. First, the MSA method 601

is computationally demanding. The filtering stages could 602

be simplified using computationally efficient RLS Fourier 603

analyzers [39], LMS filters, or comb filters, but the cost would 604

be a lower accuracy. Second, compressions were delivered 605

using a piston-driven device, and artifact characteristics may 606

differ when load distribution bands are used. Third, data 607

were gathered using only one monitor/defibrillator model and 608

extrapolation of the results to other models may involve 609

adjusting the method for different sampling frequencies, 610

voltage resolutions and ECG acquisition bandwidth. And 611

fourth, data was gathered from a single emergency service, and 612

there may be differences in resuscitation protocols and device 613

usage across services [46] that may alter the characteristics of 614

the CPR artifacts. 615
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VIII. CONCLUSIONS616

This paper introduces the first method to give617

618 a shock/no-shock diagnosis compliant with AHA 
619 recommendations for shockable (SE above 90%) and 
620 nonshockable rhythms (SP above 95% for rhythms other 
621 than sinus rhythm) during mechanical chest compressions. 
622 The MSA method had an SE of 91.8% and an SP of 98.1%, 
623 for an accuracy of 96.9%. A two stage filtering approach 
624 combined with an ad-hoc algorithm to differentiate OR from 
625 VF were implemented to increase the SP, which was well 
626 below 90% in all previous studies. This new approach to 
627 rhythm diagnosis during chest compressions may open the 
628 possibility of diagnosing the rhythm without interrupting 
629 compression therapy.
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