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THE MIT BAG MODEL AS AN INFINITE MASS LIMIT

by Naiara Arrizabalaga, Loïc Le Treust, Albert Mas
& Nicolas Raymond

Abstract. — The Dirac operator, acting in three dimensions, is considered. Assuming that a
large mass m > 0 lies outside a smooth enough and bounded open set ⌦ ⇢ R3, it is proved that
its spectrum approximates the one of the Dirac operator on ⌦ with the MIT bag boundary
condition. The approximation, modulo an error of order o(1/

p
m), is carried out by introduc-

ing tubular coordinates in a neighborhood of @⌦ and analyzing one dimensional optimization
problems in the normal direction.

Résumé (Le modèle MIT bag obtenu comme une limite de masse grande)
Nous considérons l’opérateur de Dirac en dimension 3 dont la masse m > 0 est supposée

grande à l’extérieur d’un ouvert borné et régulier ⌦ ⇢ R3. Nous démontrons que son spectre
approche celui de l’opérateur de Dirac sur ⌦ qui intègre dans son domaine les conditions au bord
dites « MIT bag ». L’analyse asymptotique est réalisée grâce à l’usage de coordonnées tubulaires
et à l’analyse d’un problème d’optimisation unidimensionnel dans la direction normale.
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1. Introduction

1.1. Context. — This paper is devoted to the spectral analysis of the Dirac operator
with high scalar potential barrier in three dimensions. More precisely, we will assume
that there is a large mass m outside a smooth and bounded open set ⌦. From physical
considerations, see [8, 10], it is expected that, when m becomes large, the eigenfunc-
tions of low energy do not visit R3 r ⌦ and tend to satisfy the so-called MIT bag
condition on @⌦. This boundary condition, that we will define in the next section, is
usually chosen by the physicists [13, 10, 11], in order to get a vanishing normal flux
at the bag surface. It was originally introduced by Bogolioubov in the late 600s [8]
to describe the confinement of the quarks in the hadrons with the help of an infinite
scalar potential barrier outside a fixed set ⌦. In the mid 700s, this model has been
revisited into a shape optimization problem named MIT bag model [13, 10, 11] in
which the optimized energy takes the form

⌦ 7�! �1(⌦) + b|⌦|,

where �1(⌦) is the first nonnegative eigenvalue of the Dirac operator with the bound-
ary condition introduced by Bogolioubov, |⌦| is the volume of ⌦ ⇢ R3 and b > 0.
The interest of the bidimensional equivalent of this model has recently been renewed
with the study of graphene where this condition is sometimes called “infinite mass
condition”, see [1, 7]. The aim of this paper is to provide a mathematical justifica-
tion of this terminology, and extend to dimension three the work [16]. More precisely,
we show the convergence of the eigenvalues for the Dirac operator with high scalar
potential barrier to the ones of the MIT bag Dirac operator. In dimension two, this
follows by the convergence of the spectral projections shown in [16]. Regarding the
first eigenvalue of the MIT bag Dirac operator, we also find the first order term in the
asymptotic expansion of the eigenvalues given by the high scalar potential barrier,
showing its dependence on geometric quantities related to @⌦. This is a novel result
with respect to the ones in [16].

1.2. The Dirac operator with large effective mass. — In the whole paper, ⌦ deno-
tes a fixed bounded domain of R3 with C2,1 boundary.

Let us recall the definition of the Dirac operator associated with the energy of a
relativistic particle of mass m0 2 R and spin 1/2, see [17]. The Dirac operator is a
first order di�erential operator (H,Dom(H)), acting on L

2(R3;C4) in the sense of
distributions, defined by

(1.1) H = c↵ ·D +m0c
2
�, D = �i~r,

where Dom(H) = H
1(R3;C4), c > 0 is the velocity of light, ~ > 0 is Planck’s constant,

↵ = (↵1,↵2,↵3) and � are the 4⇥ 4 Hermitian and unitary matrices given by

� =

✓
12 0
0 �12

◆
, ↵k =

✓
0 �k

�k 0

◆
for k = 1, 2, 3.
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An infinite mass limit 331

Here, the Pauli matrices �1,�2 and �3 are defined by

�1 =

✓
0 1
1 0

◆
, �2 =

✓
0 �i

i 0

◆
, �3 =

✓
1 0
0 �1

◆
,

and ↵ · X denotes
P3

j=1 ↵jXj for any X = (X1, X2, X3). In the following, we shall
always use units with ~ = c = 1.

The Dirac and Pauli matrices are chosen in such a way that the Dirac operator
(H,Dom(H)) is self-adjoint, and satisfies

H
2 = 14(m

2
0 ��),

(see for instance [17, §1.1]). Let us also mention that its spectrum is

(�1,�|m0|] [ [|m0|,+1).

In this paper, we consider particles with large e�ective mass m � m0 outside ⌦.
Their kinetic energy is associated with the self-adjoint operator (Hm,Dom(Hm))
defined by

Hm = ↵ ·D + (m0 +m�⌦0)�,

where ⌦0 is the complementary set of ⌦, �⌦0 is the characteristic function of ⌦0 and
Dom(Hm) = H

1(R3;C4). The essential spectrum of (Hm,Dom(Hm)) is

(�1,�|m0 +m|] [ [|m0 +m|,+1).

In this paper, the mass m0 is not assumed to be positive since this assumption is not
used in the proofs (see also Remark 1.10).

Notation 1.1. — In the following, � := @⌦ and for all x 2 �, n(x) is the outward-
pointing unit normal vector to the boundary, L(x) = dnx denotes the second funda-
mental form of the boundary, and

(x) = TrL(x) and K(x) = detL(x)

are the mean curvature and the Gauss curvature of �, respectively.

Definition 1.2. — The MIT bag Dirac operator (H⌦
,Dom(H⌦)) is defined on the

domain

Dom(H⌦) = { 2 H
1(⌦;C4) | B =  on �}, with B = �i�(↵ · n),

by H
⌦
 = H for all  2 Dom(H⌦). Observe that the trace is well-defined by a

classical trace theorem.
If � is C2, the operator (H⌦

,Dom(H⌦)) is self-adjoint with compact resolvent
[15, 3, 9, 6, 4].

Notation 1.3. — We denote by h· , ·i the C4 scalar product (antilinear with respect
to the left argument) and by h· , ·i

U
the L

2 scalar product on the set U ⇢ R3.

J.É.P. — M., 2019, tome 6



332 N. Arrizabalaga, L. Le Treust, A. Mas & N. Raymond

Notation 1.4. — We define, for every n 2 S2, the orthogonal projections

(1.2) ⌅± =
14 ±B

2
associated with the eigenvalues ±1 of the matrix B.

1.3. Squared operators, heuristics, and main results. — The aim of this paper is
to relate the spectra of Hm and H

⌦ in the limit m ! +1.

Notation 1.5. — Let (�k)k2N⇤ and (�k,m)k2N⇤ be the increasing sequences defined by

�k = inf
V⇢Dom(H⌦)

dimV=k

sup
'2V

k'kL2(⌦)=1

��H⌦
'
��
L2(⌦)

= sup
{ 1,..., k�1}⇢Dom(H⌦)

inf
'2span( 1,..., k�1)

?

k'kL2(⌦)=1

��H⌦
'
��
L2(⌦)

,

and
�k,m = inf

V⇢H
1(R3;C4)

dimV=k

sup
'2V

k'kL2(R3)=1

kHm'kL2(R3)

= sup
{ 1,..., k�1}⇢H1(R3;C4)

inf
'2span( 1,..., k�1)

?

k'kL2(R3)=1

kHm'kL2(R3) ,

for k 2 N⇤ and m > 0. Here, N⇤ := Nr{0}. By the min-max characterization and the
properties given in Definition 1.2, the sequence (�k)k2N⇤ is made of all the eigenvalues
of the operator |H⌦|, each one being repeated according to its multiplicity. Similarly,
the terms of the sequence (�k,m)k2N⇤ that satisfy

�k,m < |m0 +m|

are the eigenvalues of |Hm| lying below its essential spectrum [|m0 +m|,+1), each
one being repeated according to its multiplicity. For k large enough, this sequence
may become stationary at |m0 +m|.

1.3.1. The quadratic forms. — At first sight, it might seem surprising that �k and
�k,m are related, especially because of the boundary condition of H⌦. It becomes less
surprising when computing the squares of the operators. This is the purpose of the
following lemma.

Lemma 1.6. — Let ' 2 Dom(H⌦) and  2 H
1(R3;C4). Then

(1.3) kH⌦
'k2

L2(⌦) = Qint(') := kr'k2
L2(⌦) +

Z

�

⇣


2
+m0

⌘
|'|2 d�+m

2
0k'k

2
L2(⌦) ,

where  is defined in Notation 1.1, and

kHm k2L2(R3) = kr k2
L2(⌦) + kr k2

L2(⌦0) + k(m0 +m�⌦0) k2
L2(R3)

�mRehB , i�
= kr k2

L2(⌦) + kr k2
L2(⌦0) + k(m0 +m�⌦0) k2

L2(R3)

+mk⌅�
 k2

L2(�) �mk⌅+
 k2

L2(�).

(1.4)
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Proof. — The equality (1.3) is proved for instance in [2, §A.2]. Let  2 H
1(R3;C4).

By integrations by parts,
kHm k2L2(R3) = k↵ ·D k2

L2(R3) + k(m0 +m�⌦0) k2
L2(R3) + 2mReh↵ ·D ,� i⌦0

= kr k2
L2(R3) + k(m0 +m�⌦0) k2

L2(R3) �mRehB , i�.

Then, note that, for all  2 H
1(R3;C4),

RehB , i� = k⌅+
 k2

L2(�) � k⌅�
 k2

L2(�). ⇤

Considering (1.4) leads to the following minimization problem, for v 2 H
1(⌦),

(1.5) ⇤m(v) = inf{Qm(u), u 2 Vv}, Qm(u) = kruk2
L2(⌦0) +m

2kuk2
L2(⌦0),

where
Vv = {u 2 H

1(⌦0
,C4) | u = v on �}.

A classical extension theorem (see [12, §5.4]) ensures that Vv is non-empty.

1.3.2. Heuristics. — In this paper, we will analyze the behavior of ⇤m(v) and prove
in particular (see Proposition 2.1) that there exists C > 0 such that for m large, and
all v 2 H

1(⌦;C4)

(1.6) o(1) > ⇤m(v)�
✓
mkvk2

L2(�) +

Z

�



2
|v|2 d�

◆
> �C

m
kvk2

H1(�).

Replacing m by m0 +m in (1.6), we get, for all  2 H
1(R3;C4),

(1.7) kHm k2L2(R3) > kr k2
L2(⌦) +m

2
0k k

2
L2(⌦)

+

Z

�

⇣


2
+m0

⌘
| |2 d�+ 2mk⌅�

 k2
L2(�) �

C

m
k k2

L2(�).

Take any eigenfunction ' of H⌦ and consider a minimizer u' of (1.5) for v = ' and m

replaced by m+m0. Then, letting  = 1⌦'+ 1⌦0u' 2 H
1(R3;C4), we get

kHm k2L2(R3) = kr'k2
L2(⌦) +m

2
0k k

2
L2(⌦) + ⇤m+m0(')�mk⌅+

'k2
L2(�).

With (1.6) at hand, we deduce that, for all j 2 N⇤,

�
2
j,m

6 �
2
j
+ o(1).

Conversely, if we are interested in the eigenvalues of (Hm)2 that are of order 1
when m ! +1, we see from (1.7) that the corresponding normalized eigenfunctions
must satisfy ⌅�

 = O(m�1) and, in particular, B =  + O(m�1). Thus, we get
formally, for all j 2 N⇤,

�
2
j,m

> �
2
j
+ o(1).

The aim of this paper is to make this heuristics rigorous. We now state our main
theorem.

Theorem 1.7. — Let ⌦ ⇢ R3
be a bounded domain of class C2,1

(i.e., the derivative

of the curvatures is bounded). The singular values of Hm can be estimated as follows:

(i) limm!+1 �k,m = �k, for all k 2 N⇤
.
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334 N. Arrizabalaga, L. Le Treust, A. Mas & N. Raymond

(ii) Let k1 2 N⇤
be the multiplicity of the first eigenvalue �1 of |H⌦|. For all

k 2 {1, . . . , k1}, we have

�k,m =
⇣
�
2
1 +

⌫k

m
+ o (1/m)

⌘1/2
,

where

(1.8) ⌫k = inf
V⇢ker(|H⌦|��1)

dimV=k

sup
u2V

kukL2(⌦)=1

⌘(u),

with

⌘(u) =

Z

�

⇣ |rsu|2

2
� |(@n + /2 +m0)u|2

2
+
⇣
K

2
� 

2

8
� �

2
1

2

⌘
|u|2

⌘
d�.

Here, (�k)k2N⇤ and (�k,m)k2N⇤ are defined in Notation 1.5, and  and K are defined

in Notation 1.1. We denote by @n the outward pointing normal derivative and by rs

the tangential gradient on �.

Remark 1.8. — The max-min formula (1.8) makes sense since ker(|H⌦| � � Id) ⇢
H

2(⌦;C4) for any eigenvalue � of |H⌦|.

Remark 1.9. — Hm and H
⌦ anticommute with the charge conjugation C defined, for

all  2 C4, by
C = i�↵2 ,

where  2 C4 is the vector obtained after complex conjugations of each of the compo-
nents of  (see for instance [17, §1.4.6] and [2, §A.1]). As a consequence, the spectrum
of Hm and H

⌦ are symmetric with respect to 0, and Theorem 1.7 may be rewritten
as a result on the eigenvalues of Hm and H

⌦.

Remark 1.10. — Let us define the operator (gH⌦,Dom(gH⌦)) on

Dom(gH⌦) = { 2 H
1(⌦;C4) | B = � on �}

by gH⌦ = H for all  2 Dom(gH⌦). It is the MIT bag Dirac operator with reversed

boundary condition (see Definition 1.2). The singular values of gH⌦ are approximated
by the singular values of Hm as m tends to �1. This follows immediately from
Theorem 1.7, conjugating all the operators by the chirality matrix

�5 =

✓
0 12
12 0

◆
,

and by using the algebraic properties

��5 = ��5�, �5(↵ · x) = (↵ · x)�5, �5B�5 = �B,

for all x 2 R3.

Remark 1.11. — Our proof of Theorem 1.7 also provides the convergence of the
eigenprojectors associated with the first eigenvalues of |Hm|. They converge towards
the eigenprojectors associated with the first eigenvalues of |H⌦|, see Lemma 4.1 and
Remark 4.2, and [16, Th. 1] for the two-dimensional case.
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Remark 1.12. — In view of Theorem 1.7, it is natural to ask if one has convergence
of Hm to H

⌦ in some resolvent sense when m ! +1. On one hand, in the recent
work [5] it is shown the convergence in the norm resolvent sense for the bidimensional
analogues of Hm and H

⌦. On the other hand, in [14] the authors study interactions
of the free Dirac operator in R3 with potentials that shrink towards @⌦, proving
convergence in the strong resolvent sense to �-shell interactions with precise coupling
constants. As m ! +1, our operator Hm may be seen as a degenerate case of the
interactions with shrinking potentials considered in [14] and, at a formal level, in this
case the resulting �-shell interaction leads to the operator H

⌦.
The above-mentioned results suggest that convergence in the norm (or at least

strong) resolvent sense may also hold in our three dimensional setting.

1.3.3. A vectorial Laplacian with Robin-type boundary conditions. — Let us also men-
tion an intermediate spectral problem whose study is needed in our proof of Theo-
rem 1.7 and that may be of interest on its own. We consider the vectorial Laplacian
associated with the quadratic form

Qint
m

(u) =kruk2
L2(⌦) +m

2
0kuk

2
L2(⌦) +

Z

�

⇣


2
+m0

⌘
|u|2 d�+ 2m

��⌅�
u
��2
L2(�)

(1.9)

for u 2 Dom(Qint
m

) = H
1(⌦;C4) and m > 0, where ⌅�

,⌅+ are defined by (1.2). By a
classical trace theorem, this form is bounded from below. More precisely, we have the
following result whose proof is sketched in Section 3.1.

Lemma 1.13. — The self-adjoint operator associated with Qint
m

is defined by

Dom(Lint
m

) =

⇢
u 2 H

2(⌦;C4)
���
⌅� (@n + /2 +m0 + 2m)u = 0 on �,
⌅+ (@n + /2 +m0)u = 0 on �

�

L
int
m

u =
�
��+m

2
0

�
u for all u 2 Dom(Lint

m
).

(1.10)

It has compact resolvent and its spectrum is discrete.

Using an integration by parts and the identities (1.2), we get

hu, Lint
m

ui⌦ = Qint
m

(u),

for all u 2 Dom(Lint
m

).

Notation 1.14. — Let (�int
k,m

)k2N⇤ denote the sequence of eigenvalues, each one being
repeated according to its multiplicity and such that

(1.11) �
int
1,m 6 �

int
2,m 6 · · ·

The asymptotic behavior of the eigenvalues of L
int
m

is detailed in the following
theorem.

Theorem 1.15. — The following holds:

(i) For every k 2 N⇤
, limm!+1 �

int
k,m

= �
2
k
.
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336 N. Arrizabalaga, L. Le Treust, A. Mas & N. Raymond

(ii) Let � be an eigenvalue of |H⌦| of multiplicity k1 2 N⇤
. Consider the unique

integer k0 2 N such that for all k 2 {1, . . . , k1}, �k0+k = �.

Then, for all k 2 {1, 2, . . . , k1}, we have

�
int
k0+k,m

= �
2 +

µ�,k

m
+ o (1/m) ,

where

(1.12) µ�,k := inf
V⇢ker(|H⌦|��)

dimV=k

sup
v2V

kvkL2(⌦)=1

�
k(@n + /2 +m0)vk2L2(�)

2
.

Here, (�k)k2N⇤ is defined in Notation 1.5, (�int
k,m

)k2N⇤ in Notation 1.14, and  in

Notation 1.1.

1.4. Organization of the paper. — In Section 2, we discuss the asymptotic prop-
erties of the minimizers associated with the exterior optimization problem (1.5). In
Section 3, we investigate the interior problem given by (1.9). Finally, in Section 4, we
prove Theorem 1.7.

In order to ease the reading, we provide here a list of notation regarding the spaces
and the quadratic forms, as well as the equation number where they are introduced,
that we will use in the sequel:

Key Space domain Variational space Quadratic form Infimum
(1.3) ⌦ Dom(H⌦) Qint �
(1.5) ⌦0

Vv Qm ⇤m(v)
(1.9) ⌦ H

1(⌦;C4) Qint
m

�
(2.1) V� Vv,� Qm ⇤m,�(v)

(2.12) bVm
bVm

bQm ⇤m,m�1/2(v)

(2.14) (0,
p
m) bVm,,K

bQm,,K ⇤m,,K

2. About the exterior optimization problem

The aim of this section is to study the minimizers of (1.5) and their properties
when m tends to +1. These properties are gathered in the following proposition.

Proposition 2.1. — For all v 2 H
1(⌦), there exists a unique minimizer um(v) asso-

ciated with ⇤m(v), and it satisfies, for all u 2 Vv,

Qm(u) = ⇤m(v) + Qm(u� um(v)).

Moreover, the following holds:

(i) Assume that � is C2
. There exist C,m1 > 0 such that, for every m > m1,

v 2 H
1(⌦),

Cmkvk2
H1(⌦) > ⇤m(v) >

✓
mkvk2

L2(�) +

Z

�



2
|v|2 d�

◆
� C

m
kvk2

L2(�).

Assume that � is C2,1
. There exists C > 0 such that, for every m > m1,
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(ii) for v 2 H
1(⌦),

✓
mkvk2

L2(�) +

Z

�



2
|v|2 d�

◆
+ o(1) > ⇤m(v).

Here, the term o(1) depends on v (not only on the H
1

norm of v).

(iii) for all v 2 H
2(⌦),

���⇤m(v)� e⇤m(v)
��� 6 C

m3/2
kvk2

H3/2(�),

(iv) for all v 2 H
2(⌦),

���kum(v)k2
L2(⌦0) �

kvk2
L2(�)

2m

��� 6 C

m2
kvk2

H3/2(�),

e⇤m(v) = m

Z

�
|v|2 d�+

Z

�



2
|v|2 d�+m

�1

Z

�

n |rsv|2

2
+
⇣
K

2
� 

2

8

⌘
|v|2

o
d�.

2.1. Organization of the section. — Since there are many steps in the proof of
Proposition 2.1, let us briefly describe the strategy:

– In Section 2.2, we explain why the minimizers exist, are unique, and we describe
their Euler-Lagrange equations.

– In Section 2.3, we prove Proposition 2.7. This proposition states that, when m

goes to +1, the minimizers are exponentially localized near the interface �. This
allows to replace our optimization problem on ⌦0 by the same optimization problem
on a thin (of size m

�1/2) neighborhood of �.
– In Section 2.4, we study the optimization problem in the tubular neighborhood.

In this “tube”, we can use the classical tubular coordinates, called (s, t), where s 2 �
and t represents the distance to �. In these coordinates, we are led to consider a
“transverse” optimization problem, that is a problem in one dimension (with respect
to t) with parameters involving the curvature of the boundary. Then, explicit compu-
tations provide the asymptotics of the 1D-minimizers.

– In Section 2.6, we establish Proposition 2.1. In particular, we use the projec-
tion on the 1D-minimizers to give the asymptotics of the minimizers in the tubular
neighborhood. Note that our refined bounds are proved under the assumption that
the boundary is of class C2,1. Indeed, we need at least C2,1 regularity to control the
tangential derivative of the transverse optimizers (which depend on the curvature, see
Lemma 2.20) when establishing, for instance, the accurate upper bound of ⇤m(v) (see
Corollary 2.15).

2.2. Existence, uniqueness and Euler-Lagrange equations. — Let us discuss here
the existence of the minimizers announced in Proposition 2.1 and their elementary
properties. We will see later that, in the limit m ! +1, this minimization problem
on ⌦0 is closely related to the same problem on a tubular neighborhood in ⌦0 of �.
For � > 0, m > 0, and v 2 H

1(⌦), we define

(2.1) ⇤m,�(v) = inf{Qm(u) | u 2 Vv,�},
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where Qm(u) = kruk2
L2(⌦0) +m

2kuk2
L2(⌦0) is defined in (1.5) and

V� = {x 2 ⌦0 | dist(x,�) < �},
Vv,� =

�
u 2 H

1(V�,C4) | u = v on � and u(x) = 0 if dist(x,�) = �
 
.

Remark 2.2. — Note that, since ⌦ is a smooth set, there exists �0 > 0 such that, for
all � 2 (0, �0), the set V� has the same regularity as ⌦.

2.2.1. Existence and uniqueness of minimizers

Lemma 2.3. — For � 2 (0, �0), m > 0, and v 2 H
1(⌦), the minimizers associated

with (1.5) and (2.1) exist and are unique.

Proof. — Let (un) and (u�,n) be minimizing sequences for ⇤m(v) and ⇤m,�(v) re-
spectively. These two sequences are uniformly bounded in H

1 so that, up to sub-
sequences, they converge weakly to u 2 H

1(⌦0) and v� 2 H
1(V�), respectively. By

Rellich-Kondrachov compactness Theorem and the interpolation inequality, the se-
quences converges strongly in H

s

loc for any s 2 [0, 1). The trace theorem ensures then
that the convergence also holds in L

2
loc(�) and L

2
loc(@V�), so that u 2 Vv and u� 2 Vv,�.

Since
⇤m(v) = lim

n!+1
Qm(un) > Qm(u) > ⇤m(v)

and
⇤m,�(v) = lim

n!+1
Qm(u�,n) > Qm(u�,n) > ⇤m,�(v),

u and u� are minimizers.
Finally, since V and V� are convex sets and the quadratic form Qm is a strictly

convex function, the uniqueness follows. ⇤

Notation 2.4. — The unique minimizers associated with ⇤m(v) and ⇤m,�(v) will be
denoted by um(v) and um,�(v), respectively, or by um and um,� when the dependence
on v is clear.

2.2.2. Euler-Lagrange equations. — The following lemma gathers some properties re-
lated to the Euler-Lagrange equations.

Lemma 2.5. — For all � 2 (0, �0), m > 0, and v 2 H
1(⌦), the following holds:

(i) (��+m
2)um = 0 and (��+m

2)um,� = 0,

(ii) ⇤m(v) = �h@num, umi� and ⇤m,�(v) = �h@num,�, um,�i�,

(iii) Qm(u) = ⇤m(v)+Qm(u�um) for all u 2 Vv, Qm(u) = ⇤m,�(v)+Qm(u�um,�)
for all u 2 Vv,�,

where ⇤m(v) and Vv are defined in (1.5), ⇤m,�(v) and Vv,� are defined in (2.1), and �0

is defined in Remark 2.2.

Proof. — Let v 2 H
1
0 (⌦

0). The function

R 3 t 7�! Qm(um + tv)
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has a minimum at t = 0. Hence, the Euler-Lagrange equation is (�� +m
2)um = 0.

The same proof holds for um,�. The second point follows from integrations by parts.
And for the last point, let u 2 Vv. We have, by an integration by parts,

Qm(u� um) = Qm(u) + Qm(um)� 2Re hu, (��+m
2)umi⌦0 + 2 hum, @numi�

= Qm(u)� ⇤m(v),

and the result follows. The same proof works for ⇤m,�(v). ⇤

2.3. Agmon estimates. — This section is devoted to the decay properties of the min-
imizers in the regime m ! +1.

As an intermediate step, we will need the following localization formulas.

Lemma 2.6. — Let m > 0 and � be any real bounded Lipschitz function on ⌦0
. Then,

(2.2) Qm(um�) = �h@num,�
2
umi� + k(r�)umk2

L2(⌦0).

The same holds for um,�.

Proof. — By definition, we have

Qm(um�) = m
2k�umk2

L2(⌦0) + k(r�)um + �(rum)k2
L2(⌦0)

= m
2k�umk2

L2(⌦0) + k(r�)umk2
L2(⌦0) + k�(rum)k2

L2(⌦0)

+ 2Re hum�,r� ·rumi⌦0 .

Then, by an integration by parts,
k�(rum)k2

L2(⌦0) = �h@num,�
2
umi� � 2Re hum�,r� ·rumi⌦0

+Re h��um,�
2
umi⌦0 .

It remains to use Lemma 2.5 to get

Qm(um�) = �h@num,�
2
umi� + k(r�)umk2

L2(⌦0).

The conclusion follows. ⇤

We can now establish the following important proposition.

Proposition 2.7. — Let �2(0, 1). There exist C1, C2>0 such that, for all �2(0, �0),
m > 0, and v 2 H

1(⌦),

(2.3) kem� dist(·,�)
umk2

L2(⌦0) 6 C1kumk2
L2(⌦0),

and

(2.4) (1� e
��m1/2

C2m
�1)⇤m,m�1/2(v) 6 ⇤m(v) 6 ⇤m,�(v).

Here, �0 is defined in Remark 2.2.

Proof. — Let us first prove (2.3). Given " > 0, we define

� : x 7�! min(� dist(x,�), "�1),

�m : x 7�! e
m�(x)

,
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and

⇠1 : [0, 1] �! [0, 1] ⇠2 : [0, 1] �! [0, 1]

r 7�! 1� rp
r2 + (1� r)2

r 7�! rp
r2 + (1� r)2

,

so that ⇠21 + ⇠
2
2 = 1. We denote c = k⇠1kL1([0,1]) = k⇠2kL1([0,1]) > 0. Let R > 0. Let

�1,m,R, �2,m,R be the Lipschitz quadratic partition of the unity defined by

�1,m,R(x) =

8
>><

>>:

1 if dist(x,�) 6 R/2m,

⇠1(2m/R dist(x,�)� 1) if R/2m 6 dist(x,�) 6 R/m,

0 if dist(x,�) > R/m,

and

�2,m,R(x) =

8
>><

>>:

0 if dist(x,�) 6 R/2m,

⇠2(2m/R dist(x,�)� 1) if R/2m 6 dist(x,�) 6 R/m,

1 if dist(x,�) > R/m.

We get, for k 2 {1, 2},

kr�k,m,RkL1(⌦0) 6
2mc

R
.

Since �m is a bounded, Lipschitz function and is equal to 1 on �, we get um�m 2 Vv.
By definition and using (2.2), we get

⇤m(v) = Qm(um) = �h@num, umi� = Qm(um�m)� k(r�m)umk2
L2(⌦0).

Then, we use the fact that r(�2
1,m,R

+ �
2
2,m,R

) = 0 to get

Qm(um) = Qm(um�m�1,m,R) + Qm(um�m�2,m,R)� k(r�m)umk2
L2(⌦0)

� k(r�1,m,R)�mumk2
L2(⌦0) � k(r�2,m,R)�mumk2

L2(⌦0).

Since Qm(um�m�1,m,R) > ⇤m(v) and

Qm(um�m�2,m,R) > m
2kum�m�2,m,Rk2L2(⌦0)

= m
2kum�mk2

L2(⌦0) �m
2kum�m�1,m,Rk2L2(⌦0) ,

we get that

m
2
⇣
1� �

2 � 8c2

R2

⌘
kum�mk2

L2(⌦0) 6 m
2kum�m�1,m,Rk2L2(⌦0)

6 m
2
e
2mmin(�R/m,1/")kumk2

L2(⌦0)

6 m
2
e
2�Rkumk2

L2(⌦0) .

Taking R > 0 big enough so that 1� �
2 � 8c2/R2

> 0, we have

kum�mk2
L2(⌦0) 6 Ckumk2

L2(⌦0) ,

where C does not depend on ". Taking the limit " ! 0 and using the Fatou lemma
we obtain (2.3).
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Let us now prove (2.4). We have for every � 2 (0, �0) that Vv,� ⇢ Vv, so that

⇤m(v) 6 ⇤m,�(v).

Let us consider a Lipschitz function e�m : ⌦0 ! [0, 1] defined for all x 2 ⌦0 by

e�m(x) =

(
1 if dist(x,�) 6 1/2m1/2

,

0 if dist(x,�) > 1/m1/2
,

with kre�mkL1(⌦0) 6 2cm1/2. Thanks to (2.2), we find

(2.5) ⇤m,m�1/2(v) 6 Qm(ume�m) = ⇤m(v) + kumre�mk2
L2(⌦0).

Then, by (2.3) we have

kumre�mk2
L2(⌦0) 6 e

��m1/2

4c2mkem� dist(·,�)
umk2

L2(⌦0) 6 C1e
��m1/2

4c2mkumk2
L2(⌦0).

Observing that
mkumk2

L2(⌦0) 6 m
�1⇤m(v),

and using (2.5) we easily get (2.4). ⇤

2.4. Optimization problem in a tubular neighborhood. — From Proposition 2.7, we
see that, in order to estimate ⇤m(v), it is su�cient to estimate ⇤m,m�1/2(v). For that
purpose, we will use tubular coordinates.

2.4.1. Tubular coordinates. — Let ◆ be the canonical embedding of � in R3 and g the
induced metric on �. (�, g) is a C2 Riemannian manifold, which we orientate according
to the ambient space. Let us introduce the map � : � ⇥ (0, �) ! V� defined by the
formula

�(s, t) = ◆(s) + tn(s),

where V� is defined below (2.1). The transformation � is a C1 di�eomorphism for all
� 2 (0, �0) provided that �0 is su�ciently small. The induced metric on � ⇥ (0, �) is
given by

G = g � (Id+tL(s))2 + dt2,

where L(s) = dns is the second fundamental form of the boundary at s 2 �, see
Notation 1.1.

Let us now describe how our optimization problem is transformed under the change
of coordinates. For all u 2 L

2(V�), we define the pull-back function

(2.6) eu(s, t) := u(�(s, t)).

For all u 2 H
1(V�), we have

(2.7)
Z

V�

|u|2 dx =

Z

�⇥(0,�)
|eu(s, t)|2 ea d� dt

and

(2.8)
Z

V�

|ru|2 dx =

Z

�⇥(0,�)

h
hrseu, eg�1rseui+ |@teu|2

i
ea d� dt,

where
eg =

�
Id+tL(s)

�2
,
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and ea(s, t) = |eg(s, t)|1/2. Here h· , ·i is the Euclidean scalar product and rs is the
di�erential on � seen through the metric. Since L(s) is self-adjoint on Ts�, we have
the exact formula

(2.9) ea(s, t) = 1 + t(s) + t
2
K(s),

where  and K are defined in Notation 1.1. In the following, we assume that

(2.10) � = m
�1/2

.

In particular, we will use (2.7) and (2.8) with this particular choice of �.

2.4.2. The rescaled transition optimization problem in boundary coordinates

We introduce the rescaling
(s, ⌧) = (s,mt),

and the new weights

(2.11) bam(s, ⌧) = ea(s,m�1
⌧), bgm(s, ⌧) = eg(s,m�1

⌧).

Remark 2.8. — Note that there exists m1 > 1 such that for all m > m1, s 2 � and
⌧ 2 [0,m1/2), we have bam(s, ⌧) > 1/2.

We set
bVm = �⇥ (0,

p
m),

bVm = {u 2 H
1(bVm,C4;bam d� d⌧) : u(·,

p
m) = 0},

bQm(u) = m
�1

Z

bVm

⇣
hrsu, bg�1

m
rsui+m

2|@⌧u|2
⌘
bam d� d⌧

+m

Z

bVm

|u|2bam d� d⌧,

cLm = �m
�1ba�1

m
rs(bambg�1

m
rs) +m

�
�ba�1

m
@⌧bam@⌧ + 1

�
.

(2.12)

Notation 2.9. — Given m > m1, and , K 2 R, we define

am,,K : (0,
p
m) �! R
⌧ 7�! 1 +

⌧

m
+
⌧
2
K

m2
.

We let

(2.13) A = kkL1(�) and B = kKkL1(�).

Remark 2.10. — We can assume (up to taking a larger m1) that for any

(m,,K) 2 [m1,+1)⇥ [�A,A]⇥ [�B,B],

we have am,,K(⌧) > 1/2 for all ⌧ 2 (0,
p
m).

In the following, we assume that (m,,K) 2 [m1,+1)⇥ [�A,A]⇥ [�B,B].
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2.5. One dimensional optimization problem with parameters. — We denote by
bQm,,K the “transverse” quadratic form defined for u 2 H

1((0,
p
m), am,,K d⌧) by

bQm,,K(u) =

Z p
m

0

�
|@⌧u|2 + |u|2

�
am,,K d⌧.

We let

(2.14) ⇤m,,K = inf{ bQm,,K(u) | u 2 bVm,,K},

where
bVm,,K =

�
u 2 H

1((0,
p
m), am,,K d⌧) | u(0) = 1, u(

p
m) = 0

 
.

The following lemma follows from the same arguments as for Lemma 2.3.

Lemma 2.11. — There is a unique minimizer um,,K for the optimization problem

(2.14).

Lemma 2.12. — Let u 2 H
2((0,

p
m), am,,K d⌧) and v 2 H

1((0,
p
m), am,,K d⌧) be

such that u(
p
m) = v(

p
m) = 0. We have

(2.15)
Z p

m

0
h@⌧u, @⌧vi am,,K d⌧ +

Z p
m

0
hu, vi am,,K d⌧

=

Z p
m

0

⌦bLm,,Ku, v
↵
am,,K d⌧ � h@⌧u(0), v(0)i,

where

bLm,,K = �a
�1
m,,K

@⌧am,,K@⌧ + 1 = �@2
⌧
� m

�1
+m

�22K⌧

1 +m�1⌧ +m�2K⌧2
@⌧ + 1.

Proof. — The lemma follows essentially by integration by parts and Notation 2.9. ⇤

Lemma 2.13. — We have that um,,K 2 C1([0,
p
m]) and

bLm,,Kum,,K = 0, ⇤m,,K = �@⌧um,,K(0),

where um,,K is defined in Lemma 2.11.

Moreover, for all u 2 bVm,,K ,

bQm,,K(u) = ⇤m,,K + bQm,,K(u� um,,K).

Proof. — This follows from Lemma 2.12. ⇤

The aim of this section is to establish an accurate estimate of ⇤m,,K .

Proposition 2.14. — There exists a constant C > 0 such that for all

(m,,K) 2 [m1,+1)⇥ [�A,A]⇥ [�B,B],

we have ���⇤m,,K �
⇣
1 +



2m
+

1

m2

⇣
K

2
� 

2

8

⌘⌘��� 6 Cm
�3

,
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and ����
Z p

m

0
|um,,K |2am,,K d⌧ � 1

2

���� 6 Cm
�1

.

Proof. — By Lemmas 2.11 and 2.13, the unique solution um,,K of the problem sat-
isfies ⇣

�@2
⌧
� m

�1
+m

�22K⌧

1 +m�1⌧ +m�2K⌧2
@⌧ + 1

⌘
um,,K = 0.

We expand formally um,,K as u0 +m
�1

u1 +m
�2

u2 + O(m�3):
(i) For the zero order term, we get

(�@2
⌧
+ 1)u0 = 0 and u0(1) = 1, lim

⌧!1
u0(⌧) = 0,

so that u0(⌧) = e
�⌧ .

(ii) At the first order,

(�@2
⌧
+ 1)u1 = @⌧u0 = �e�⌧ and u1(1) = 0, lim

⌧!1
u1(⌧) = 0,

so that u1(⌧) = �(/2)⌧e�⌧ .
(iii) At the second order,

(�@2
⌧
+ 1)u2 = @⌧u1 + (2 � 2K)⌧@⌧u0 = �

2

2
e
�⌧ +

⇣32

2
� 2K

⌘
⌧e

�⌧
,

u2(0) = 0 and lim
⌧!1

u2(⌧) = 0,

so that u2(⌧) =
�

2

8 � K

2

�
⌧e

�⌧ +
�
32

8 � K

2

�
⌧
2
e
�⌧

.

This formal construction leads to define a possible approximation of um,,K . Consider

vm,,K(⌧) : = �m(⌧)
�
u0(⌧) +m

�1
u1(⌧) +m

�2
u2(⌧)

�
,

�m(⌧) = �(⌧/
p
m),

(2.16)

where � : R+ 7! [0, 1] is a smooth function such that

�(⌧) =

(
1 if ⌧ 2 [0, 1/2],

0 if ⌧ > 1.

In the following, we denote vm ⌘ vm,,K to shorten the notation.
We immediately get that vm belongs to bVm,,K . Note that

(2.17) � @⌧vm(0) = 1 +


2m
+m

�2
⇣
K

2
� 

2

8

⌘

and

(2.18) kbLm,,KvmkL2((0,
p
m),am,,K d⌧) = O(m�3).

Using Lemmas 2.12 and 2.13, we have

⇤m,,K =

Z p
m

0

⌦
@⌧um,,K , @⌧vm

↵
am,,K d⌧ +

Z p
m

0

⌦
um,,K , vm

↵
am,,K d⌧
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and

⇤m,,K =

Z p
m

0

⌦bLm,,Kvm, um,,K

↵
am,,K d⌧ � @⌧vm(0).

By Lemma 2.12, the Cauchy-Schwarz inequality, (2.17), and (2.18), we see that
���⇤m,,K �

⇣
1 +



2m
+m

�2
⇣
K

2
� 

2

8

⌘⌘���

=

����
Z p

m

0

⌦bLm,,Kvm, um,,K

↵
am,,K d⌧

����

6 kbLm,,KvmkL2((0,
p
m),am,,K d⌧) · kum,,KkL2((0,

p
m),am,,K d⌧)

6 ⇤1/2
m,,K

kbLm,,KvmkL2((0,
p
m),am,,K d⌧)

6 Cm
�3⇤1/2

m,,K
.

From this, it follows first that ⇤m,,K = O(1) uniformly in (,K), and then the first
estimate of the proposition is established. Using Lemmas 2.12 and 2.13, the fact that
vm(0)� um,,K(0) = 0, and Cauchy-Schwarz inequality, we have

bQm,,K(vm � um,,K)

6 kbLm,,K(vm � um,,K)kL2((0,
p
m),am,,K d⌧)kvm � um,,KkL2((0,

p
m),am,,K d⌧)

6 Cm
�3kvm � um,,KkL2((0,

p
m),am,,K d⌧).

The second estimate of the proposition follows since

kvm � um,,Kk2
L2((0,

p
m),am,,K d⌧) 6 bQm,,K(vm � um,,K)

and kvmk2
L2((0,

p
m),am,,K d⌧) = (1/2) + O(m�1). ⇤

2.6. Asymptotic study of ⇤m,m�1/2(v). — From Proposition 2.14 and (2.12), we
deduce the following lower bound.

Corollary 2.15. — The following holds:

(i) Assume that � is C2
. There exists C>0 such that, for every m>m1, v2H

1(⌦),

Cmkvk2
H1(⌦) > ⇤m,m�1/2(v) >

✓
mkvk2

L2(�) +

Z

�



2
|v|2 d�

◆
� C

m
kvk2

L2(�).

(ii) Assume that � is C2,1
. There exists C > 0 such that, for every m > m1,

v 2 H
1(⌦),

✓
mkvk2

L2(�) +

Z

�



2
|v|2 d�

◆
+ o(1) > ⇤m,m�1/2(v).

Here, the term o(1) depends on v (not only on the H
1

norm of v).

Proof. — By Proposition 2.14, the lower bound of Point (i) follows. Let us focus on
Point (ii).
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By the extension theorem for Sobolev functions (see for instance [12, §5.4]), there
exist a constant C > 0 and, for all v 2 H

1(⌦), a function Ev 2 H
1(R3) that extends v

and such that kEvk
H1(R3) 6 Ckvk

H1(⌦).
Let us define the test function um by um = veum where

eum � �(s, t) =
(
vm,(s),K(s)(mt) for all (s, t) 2 �⇥ [0,m�1/2],

0 for all (s, t) 2 �⇥ [m�1/2
,+1).

Here, the function vm is defined in (2.16).
Let us first prove a general formula. Consider u 2 H

2(⌦0;R) and v 2 H
1(⌦0;C4).

With an integration by parts and using the fact that u is real-valued,
kr(vu)k2

L2(⌦0) =kurv + vruk2
L2(⌦0)

=kurvk2
L2(⌦0) +kvruk2

L2(⌦0) + 2Re hurv, vrui⌦0

=kurvk2
L2(⌦0) +Re huv,�v�ui⌦0 � Re hv@nu, vui�

=kurvk2
L2(⌦0) + huv,�v�ui⌦0 � hv@nu, vui� .

With an integration by parts only in the tangential direction,

huv,�v�ui⌦0 = huv,�v�tui⌦0 + 2Re hursv, vrsui⌦0 + kursvk2L2(⌦0),

where rs is the tangential derivative and ��t is the part of the Laplacian involving
the second order derivative in the normal variable t. Thus, we get

kr(vu)k2
L2(⌦0) =kurvk2

L2(⌦0) + huv,�v�tui⌦0 + 2Re hursv, vrsui⌦0

+ kursvk2L2(⌦0) � hv@nu, vui� .

By density, this formula can be extended to u in H
2
t

and H
1
s
. Therefore, we can

replace u by eum. We get

(2.19) Qm(um) = �hv@neum, veumi� +keumrvk2
L2(⌦0) + heumv, v

�
��t +m

2
�
eumi

⌦0

+ 2Re heumrsv, vrseumi⌦0 + keumrsvk2L2(⌦0).

With the explicit expression (2.16), we find

(2.20) � hv@neum, veumi� 6 mkvk2
L2(�) +

Z

�



2
|v|2 d�+

C

m
kvk2

L2(�) .

By using the dominated convergence theorem and the explicit expression eum, we get
that the other terms in (2.19) go to 0. Note here that this argument uses at most one
derivative of the functions (·) and K(·) (see the definition of vm,k,K in (2.16)). That
is why we need � to be C2,1.

With the definition of ⇤m,m�1/2(v), we find

⇤m,m�1/2(v) 6 mkvk2
L2(�) +

Z

�



2
|v|2 d�+ o(1).

To get the upper bound of Point (i), we follow the same steps as before except that
vm,k,K is replaced by

⌧ 7�! �m(⌧)u0(⌧),

in (2.16). In that case, we only need � to be C2. ⇤
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Using Proposition 2.7, Corollary 2.15 proves in particular (i) and (ii) in Propo-
sition 2.1. In this section we address the refinement of the lower bound and the
corresponding upper bound. From now on, we assume that � is C2,1.

2.6.1. Preliminary lemmas. — Let us state a few elementary lemmas that we will use
later.

Lemma 2.16. — There exists C > 0 such that, for all f, g 2 H
3/2(�), we have

kfgkH3/2(�) 6 CkfkH3/2(�)kgkH3/2(�).

Proof. — H
3/2(�) is a Banach algebra since 3/2 > dim�/2 = 1. ⇤

Lemma 2.17. — There exists C > 0 such that, for all f 2 H
3/2(�), we have

kfkH1/2(�) 6 C kfk1/2
L2(�) kfk

1/2
H1(�).

Lemma 2.18. — There exists C > 0 such that, for all f 2 H
1/2(�, T�) and g 2

H
1(�,C), we have

����
Z

�
f ·rsg d�

���� 6 CkfkH1/2(�)kgkH1/2(�).

Here, T� is the tangent bundle of �.

2.6.2. Lower and upper bounds

Notation 2.19. — In the following, we define
b⇧m : H1(⌦;C4) �! bVm

v 7�! [(s, ⌧) 2 bVm 7! v(s)um,(s),K(s)(⌧) 2 C4],

where bVm and bVm are given in (2.12), and um,(s),K(s) is defined by Proposition 2.11
with  = (s) and K = K(s).

Lemma 2.20. — Assume that � is C2,1
. We have, uniformly in s,

Z p
m

0
|rsum,(·),K(·)|2 d⌧ = O(m�2).

Proof. — Recall from Lemma 2.13 that
�
�a

�1
m,,K

@⌧am,,K@⌧ + 1
�
um,,K = 0.

Let us take the derivative with respect to s:
�
�a

�1
m,,K

@⌧am,,K@⌧ + 1
�
rsum,,K =

⇥
rs , a

�1
m,,K

@⌧am,,K@⌧

⇤
um,,K .

Taking the scalar product with rsum,,K and integrating by parts by noticing that
rsum,,K(0) = 0, we get
Z p

m

0
|@⌧rsum,,K |2am,,K d⌧ + krsum,,Kk2

L2(am,,K d⌧)

6
���
⌦⇥
rs, a

�1
m,,K

@⌧am,,K@⌧

⇤
um,,K ,rsum,,K

↵
L2(am,,K d⌧)

��� .

J.É.P. — M., 2019, tome 6



348 N. Arrizabalaga, L. Le Treust, A. Mas & N. Raymond

Since
a
�1
m,,K

@⌧am,,K@⌧ = @
2
⌧
+
⇣
@⌧am,,K

am,,K

⌘
@⌧ ,

we get
h
rs, a

�1
m,,K

@⌧am,,K@⌧

i
=
h
rs,

⇣
@⌧am,,K

am,,K

⌘
@⌧

i
=
⇣
rs

@⌧am,,K

am,,K

⌘
@⌧

=
⇣
(rs) @

@⌧am,,K

am,,K

+ (rsK) @K
@⌧am,,K

am,,K

⌘
@⌧ .

By an explicit computation and the Cauchy-Schwarz inequality, we find
���
⌦⇥
rs, a

�1
m,,K

@⌧am,,K@⌧

⇤
um,,K ,rsum,,K

↵
L2(am,,K d⌧)

���

6 Cm
�1k@⌧um,,KkL2(am,,K d⌧) · krsum,,KkL2(am,,K d⌧).

Since
k@⌧um,,KkL2(am,,K d⌧) 6

p
⇤m,,K ,

we get by Proposition 2.14
Z p

m

0
|@⌧rsum,,K |2am,,K d⌧ + krsum,,Kk2

L2(am,,K d⌧) 6 Cm
�2

. ⇤

Up to taking a larger m1 in Remark 2.8, we get the following result.

Proposition 2.21. — Assume that � is C2,1
. There exist positive constants C > 0 and

m1 > 0 such that, for all m > m1, and all v 2 H
2(⌦), we have

��⇤m,m�1/2(v)� e⇤m(v)
�� 6 Cm

�3/2kvk2
H3/2(�),

where

e⇤m(v) = m

Z

�
|v|2 d�+

Z

�



2
|v|2 d�+m

�1

Z

�

⇣ |rsv|2

2
+
⇣
K

2
� 

2

8

⌘
|v|2

⌘
d�.

More precisely, for all u 2 bVm such that

u(s, 0) = v(s), for all s 2 �,

we have

bQm(u) > e⇤m(v)� C

m3/2
kvk2

H3/2(�) +
m

2
ku� b⇧mvk2

L2(bVm, d� d⌧)

+
1

2m
krs

�
u� b⇧mv

�
k2
L2(bVm, d� d⌧)

,

and

bQm(b⇧m(v)) 6 e⇤m(v) + Cm
�3/2

�
kvk2

L2(�) + krsvk2L2(�)

�
.

Proof. — Let v 2 H
2(⌦). First, let us discuss the upper bound. For that purpose, we

insert b⇧mv in the quadratic form:

bQm(b⇧mv) = m

Z

�

bQm,(·),K(·)(b⇧mv) d�+m
�1

Z

bVm

⌦
rs

b⇧mv, bg�1
m

rs
b⇧mv

↵
bam d� d⌧.
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We have
m

Z

�

bQm,(·),K(·)(b⇧mv) d� = m

Z

�
|v|2⇤m,(·),K(·) d�,

and Z

bVm

⌦
rs

b⇧mv, bg�1
m

rs
b⇧mv

↵
bam d� d⌧ 6 (1 + Cm

�1/2)

Z

bVm

|rs
b⇧mv|2 d� d⌧.

Moreover, for all " > 0,
Z

bVm

|rs
b⇧mv|2 d� d⌧ 6 (1 + ")

Z

�
|rsv|2

Z p
m

0
|um,(·),K(·)|2 d⌧ d�

+ (1 + "
�1)

Z

�
|v|2

Z p
m

0
|rsum,(·),K(·)|2 d⌧ d�.

We now recall Lemma 2.20. Choosing " = m
�1 and using Proposition 2.14 we get

Z

bVm

|rs
b⇧mv|2 d� d⌧ 6 (1 + Cm

�1)
1

2

Z

�
|rsv|2 d�+ Cm

�1kvk2
L2(�).

Therefore,

bQm(b⇧mv) 6 m

Z

�
|v|2⇤m,(·),K(·) d�+m

�1 1 + Cm
�1/2

2

Z

�
|rsv|2 d�+Cm

�2kvk2
L2(�).

It only remains to use Proposition 2.14 to get the desired upper bound.
Let us now discuss the lower bound. Let u 2 bVm such that u = v on �. By Lem-

ma 2.13, we have

bQm(u) = m

Z

�

bQm,(·),K(·)(u) d�+m
�1

Z

bVm

hrsu, bg�1
m

rsuibam d� d⌧

= m

Z

�
|v|2⇤m,(·),K(·) d�+m

Z

�

bQm,(·),K(·)(u� b⇧mv) d�

+m
�1

Z

bVm

hrsu, bg�1
m

rsuibam d� d⌧.

Thus,

(2.21) bQm(u) > m

Z

�
|v|2⇤m,(·),K(·) d�+m(1� Cm

�1/2)ku� b⇧mvk2
L2(bVm, d� d⌧)

+m
�1(1� Cm

�1/2)

Z

bVm

|rsu|2 d� d⌧.

We have

rsu = b⇧mrsv +
�
rsu� b⇧mrsv

�
= b⇧mrsv +rs(u� b⇧mv) + [rs,

b⇧m] v

and
[rs,

b⇧m] v(s, ⌧) = v(s)rsum,(s),K(s)(⌧).

By Lemma 2.20, we obtain
Z

bVm

��[rs,
b⇧m] v

��2 d� d⌧ 6 Cm
�2kvk2

L2(�),
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and by Young’s inequality,

(2.22)
Z

bVm

|rsu|2 d� d⌧

> (1�m
�1)

Z

bVm

��b⇧mrsv +rs(u� b⇧mv)
��2 d� d⌧ �m

Z

bVm

��[rs,
b⇧m] v

��2 d� d⌧

> (1�m
�1)

Z

bVm

��b⇧mrsv +rs(u� b⇧mv)
��2 d� d⌧ �m

�1
Ckvk2

L2(�).

We also have

(2.23)
Z

bVm

��b⇧mrsv +rs(u� b⇧mv)
��2 d� d⌧ >

Z

bVm

��b⇧mrsv
��2 d� d⌧

+

Z

bVm

��rs(u� b⇧mv)
��2 d� d⌧ �

����2Re
Z

bVm

⌦b⇧mrsv,rs(u� b⇧mv)
↵
d� d⌧

����,

and by Lemmas 2.18 and 2.16,
����2Re

Z

bVm

⌦b⇧mrsv,rs(u� b⇧mv)
↵
d� d⌧

���� 6 CkvkH3/2(�)

��u� b⇧mv
��
H1/2(bVm, d� d⌧)

.

Then, using Lemma 2.17, we get, for all "0 > 0,
����2Re

Z

bVm

⌦b⇧mrsv,rs(u� b⇧mv)
↵
d� d⌧

����

6 Cm
�1
"
�1
0 kvk2

H3/2(�) +m
2
"0

��u� b⇧mv
��2
L2(bVm, d� d⌧)

+ "0

��u� b⇧mv
��2
H1(bVm, d� d⌧)

6 Cm
�1
"
�1
0 kvk2

H3/2(�) + (m2 + 1)"0
��u� b⇧mv

��2
L2(bVm, d� d⌧)

+ "0

��rs

�
u� b⇧mv

���2
L2(bVm, d� d⌧)

.

(2.24)

Combining Proposition 2.14, (2.21), (2.22), (2.23) and (2.24), we finally obtain

bQm(u) > m

Z

�
|v|2 d�+

Z

�



2
|v|2 d�+m

�1

Z

�

⇣ |rsv|2

2
+
⇣
K

2
� 

2

8

⌘
|v|2

⌘
d�

� C(m�2 + "
�1
0 m

�2 +m
�3/2)kvk2

H3/2(�)

+m(1� Cm
�1/2)

�
1� "0 � "0m

�2
� ��u� b⇧mv

��2
L2(bVm, d� d⌧)

+m
�1(1� Cm

�1/2) (1� "0)
��rs

�
u� b⇧mv

���2
L2(bVm, d� d⌧)

.

Taking "0 = 3/4 and m large enough, we get the result. ⇤

2.7. End of the proof of Proposition 2.1. — Item (iii) of Proposition 2.1 follows
from Propositions 2.21 and 2.7. It only remains to prove (iv). Consider the minimizer
um and a cut o� function �m supported in a neighborhood of width m

�1/2 near the
boundary. Then, we set

ǔm(s, ⌧) = (�mum) � �(s,m�1
⌧).
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We now use the lower bound in Proposition 2.21, that is,

bQm(ǔm) > e⇤m(v) +
m

2

��ǔm � b⇧mv
��2
L2(bVm, d� d⌧)

� C

m3/2
kvk2

H3/2(�).

Arguing as in the proof of Lemma 2.6 and recalling Item (ii) in Lemma 2.5, we get

bQm(ǔm) = Qm,m�1/2(�mum) = e⇤m(v) + k(r�m)umk2 = (1 + O(e�cm
1/2

))e⇤m(v),

where we also used (2.3). Therefore

��ǔm � b⇧mv
��2
L2(bVm, d� d⌧)

6 C

m5/2
kvk2

H3/2(�),

and then
���kǔmk

L2(bVm, d� d⌧) �
��b⇧mv

��
L2(bVm, d� d⌧)

��� 6 C

m5/4
kvkH3/2(�).

Using Proposition 2.14, we get that

���
��b⇧mv

��2
L2(bVm, d� d⌧)

�
kvk2

L2(�)

2

��� 6 Cm
�1kvk2

L2(�).

Therefore
���mk�mumk2

L2(Vm, dx) �
kvk2

L2(�)

2

��� 6 Cm
�1kvk2

H3/2(�).

Finally, Item (iv) follows by removing �m thanks to (2.3). The proof of Proposition
2.1 is complete. ⇤

3. A vectorial Laplacian with Robin-type boundary conditions

In this section, we study the vectorial Laplacian L
int
m

associated with the quadratic
form Qint

m
defined in Section 1.3.3.

3.1. Preliminaries: proof of Lemma 1.13. — We recall that the domain of L
int
m

is
the set of functions u 2 H

1(⌦;C4) such that the linear application

H
1(⌦;C4) 3 v 7�! Qint

m
(v, u) 2 C

is continuous for the L
2-norm. Using the Green-Riemann formula, we get that the

domain is indeed given by

{u 2 H
1(⌦;C4) | ��u 2 L

2(⌦;C4), (@n + /2 +m0 + 2m⌅�)u = 0 on �}.

By a classical regularity theorem, we deduce that the domain is included in H
2(⌦;C4).

The compactness of the resolvent and the discreteness of the spectrum immediately
follow.
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3.2. Asymptotics of the eigenvalues. — In this section, we describe the first terms
in the asymptotic expansion of the eigenvalues of Lint

m
. This is the aim of the following

proposition.

Proposition 3.1. — The following properties hold:

(i) For every k 2 N⇤
, we have limm!+1 �

int
k,m

= �
2
k

where the (�k)k2N⇤ are the

singular values of |H⌦|.
Let � be an eigenvalue of |H⌦| of multiplicity k1 2 N⇤

. Let k0 2 N be such that

�k0+k = � for all k 2 {1, . . . , k1}.

(ii) For all k 2 {1, 2, . . . , k1}, we have

�
int
k0+k,m

= �
2 +

µ�,k

m
+ o (1/m) ,

where

(3.1) µ�,k := inf
V⇢ker(|H⌦|��)

dimV=k

sup
v2V

kvkL2(⌦)=1

�
k(@n + /2 +m0)vk2L2(�)

2
.

(iii) Let (uk0+1, . . . , uk0+k1) be an H
1
-weak limit, when m ! +1, of a sequence

(uk0+1,m, . . . , uk0+k1,m)m>0

of L
2
-orthonormal eigenvectors of L

int
m

associated with the eigenvalues

(�int
k0+1,m, . . . ,�

int
k0+k1,m

).

Then, for all v 2 ker(|H⌦|� �), we have

�1

2
k(@n + /2 +m0)vk2L2(�) =

k1X

k=1

|hv, uk0+ki⌦|
2
µ�,k.

Here, (�k)k2N⇤ is defined in Notation 1.5 and (�int
k,m

)k2N⇤ in Notation 1.14.

For the sake of clarity, we will divide the proof of this proposition in di�erent parts.
This will be done in the next section.

3.3. Proof of Proposition 3.1. — Since Dom(H⌦) ⇢ Dom(Qint
m

), we have

(3.2) �
2
k
> �

int
k,m

for all k 2 N⇤ and all m > 0.

3.3.1. Lower bounds

Lemma 3.2. — Let k 2 N. The following properties hold:

(i) For all j 2 {1, 2, . . . , k}, we have limm!+1 �
int
j,m

= �
2
j
.

(ii) For all subsequence (mn)n2N⇤ going to +1 as n!+1, and all L
2
-orthonormal

family of eigenvectors (u1,mn , . . . , uk,mn) of L
int
mn

associated with (�int1,mn
, . . . ,�

int
k,mn

)

such that the sequence (u1,mn , . . . , uk,mn)n2N⇤ converges weakly in H
1
, we have that

the sequence (u1,mn , . . . , uk,mn)n2N⇤ converges strongly in H
1

and

(3.3) lim
n!+1

mn

��⌅�
uj,mn

��2
L2(�)

= 0

for all j 2 {1, . . . , k}.
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Proof. — Let us prove (i) and (ii) by induction on k 2 N⇤.

Case k=0. — There is nothing to prove.

Case k>0. — Assume that (i) and (ii) are valid for some k2N. Let (u1,m, . . . , uk+1,m)
be an L

2-orthonormal family of eigenvectors of Lint
m

associated with(�int1,m, . . . ,�
int
k+1,m).

By (3.2) and the trace Theorem [12, §5.5], the sequence (u1,m, . . . , uk+1,m)m>0 is
bounded in H

1(⌦;C4)k+1, and

(3.4) �
2
k+1 > lim sup

m!+1
�
int
k+1,m > lim inf

m!+1
�
int
k+1,m.

Hence there exists a subsequence (mn)n2N⇤ going to +1 as n ! +1 such that

lim
n!+1

�
int
k+1,mn

= lim inf
m!+1

�
int
k+1,m

and (u1,mn , . . . , uk+1,mn)n2N⇤ converges weakly in H
1(⌦;C4) to (u1, . . . , uk+1).

Using the induction assumption, we get that (u1,mn , . . . , uk,mn)n2N⇤ converges
strongly in H

1(⌦;C4) to (u1, . . . , uk), limm!+1 �
int
j,m

= �
2
j

and

lim
n!+1

m
��⌅�

uj,mn

��2
L2(�)

= 0

for all j 2 {1, . . . , k}. By Rellich-Kondrachov Theorem [12, §5.7], the sequence
(uk+1,mn) converges strongly in L

2(⌦;C4). This shows that (u1, . . . , uk+1) is an
L
2-orthonormal family. In addition, for all j1, j2 2 {1, . . . , k + 1}, j1 6= j2, and all

n 2 N⇤, we have

0 = Re hruj1,mn ,ruj2,mni⌦ +m
2
0 Re huj1,mn , uj2,mni⌦

+Re h(/2 +m0)uj1,mn , uj2,mni� + 2mn Re h⌅�
uj1,mn ,⌅

�
uj2,mni� ,

and taking the limit n ! +1,

0 = Re hruj1 ,ruj2i⌦ +m
2
0 Re huj1 , uj2i⌦ +Re h(/2 +m0)uj1 , uj2i� .

Since
lim

n!+1
Qint
mn

(uj,mn) = �
2
j
= Qint(uj)

for all j 2 {1, . . . , k}, where Qint is defined in (1.3), we deduce that the (uj)16j6k are
normalized eigenfunctions associated with (�2

j
)16j6k. By the min-max theorem, we

deduce that
lim inf
n!+1

Qint
mn

(uk+1,mn) > Qint(uk+1) > �
2
k+1.

Therefore
lim

m!+1
�
int
k+1,m = �

2
k+1

and
lim

n!+1
kruk+1,mnkL2(⌦) =kruk+1kL2(⌦) ,

and the strong convergence follows. Note that limm!+1 �
int
k+1,m = �

2
k+1 implies

that the previous arguments are valid for every weakly converging subsequence, thus
Items (i) and (ii) follow for k + 1. ⇤
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3.3.2. A technical lemma. — The following lemma is essential in the proof of Items (ii)
and (iii).

Lemma 3.3. — Let k 2 N⇤
and m > 0. Let u resp. uk,m be a L

2
-normalized eigen-

function of |H⌦| resp. L
int
m

associated with the eigenvalues � resp. �
int
k,m

. Then

(3.5) m(�int
k,m

� �
2) huk,m, ui⌦ = �1/2 h(@n + /2 +m0)uk,m, (@n + /2 +m0)ui� .

Proof. — On one hand, that u 2 Dom(|H⌦|) yields ⌅�
u = 0 on �. Moreover, since

u 2 H
1(⌦;C4) is an eigenfunction of |H⌦|, we indeed have u 2 Dom((H⌦)2), which

means that the linear application

H
1(⌦;C4) 3 v 7�! hH⌦

u,H
⌦
vi⌦ 2 C

is continuous for the L
2-norm. Using the Green-Riemann formula, we then get

⌅+(@n + /2 +m0)u = 0 on �.

On the other hand, from (1.10) we have

(
⌅+(@n + /2 +m0)uk,m = 0

⌅�(@n + /2 +m0 + 2m)uk,m = 0
on �.

By an integration by parts, we get

(�int
k,m

� �
2) huk,m, ui⌦ = h(��+m

2
0)uk,m, ui⌦ � huk,m, (��+m

2
0)ui⌦

= �h@nuk,m, ui� + huk,m, @nui�
= �h(@n + /2 +m0)uk,m, ui� + huk,m, (@n + /2 +m0)ui�
= h⌅�

uk,m,⌅�(@n + /2 +m0)ui�
= �1/2m h⌅�(@n + /2 +m0)uk,m,⌅�(@n + /2 +m0)ui� .

⇤

3.3.3. Proof of Items (ii) and (iii). — Let (u1,mn , . . . , uk0+k1,mn)n2N⇤ be a sequence
of L2-orthonormal eigenvectors of Lint

mn
that converges strongly in H

1(⌦;C4)k0+k1 to
an L

2-orthonormal family (u1, . . . , uk0+k1) of eigenvectors of |H⌦|. We have

span(uk0+1, . . . , uk0+k1) = ker(|H⌦|� �).

J.É.P. — M., 2019, tome 6



An infinite mass limit 355

By (3.5), for all v =
P

k1

k=1 akuk0+k we have

�1/2k(@n + /2 +m0)vk2L2(�)

= �1/2
k1X

k,j=1

akaj h(@n + /2 +m0)uk0+k, (@n + /2 +m0)uk0+ji�

= lim
n!+1

�1/2
k1X

k,j=1

akaj h(@n + /2 +m0)uk0+k,mn , (@n + /2 +m0)uk0+ji�

= lim
n!+1

k1X

k,j=1

akajmn(�
int
k0+k,mn

� �
2) huk0+k,mn , uk0+ji⌦

= lim
n!+1

k1X

k,j=1

akajmn(�
int
k0+k,mn

� �
2) huk0+k, uk0+ji⌦

= lim
n!+1

k1X

k=1

|ak|2mn(�
int
k0+k,mn

� �
2).

Since �int
k0+1,mn

6 · · · 6 �
int
k0+k1,mn

and Ck1 is finite dimensional, we get for j 2
{1, . . . , k1},

lim
n!+1

mn(�
int
k0+j,mn

� �
2) = lim

n!+1

✓
min

V⇢Ck1

dimV=j

max
a2V

kakl2=1

k1X

k=1

|ak|2mn(�
int
k0+k,mn

� �
2)

◆

= min
V⇢Ck1

dimV=j

max
a2V

kakl2=1

lim
n!+1

k1X

k=1

|ak|2mn(�
int
k0+k,mn

� �
2)

= �1/2 min
V⇢Ck1

dimV=j

max
a2V

kakl2=1

����(@n + /2 +m0)
k1X

k=1

akuk0+k

����
2

L2(�)

= inf
V⇢ker(|H⌦|��)

dimV=j

sup
v2V

kvkL2(⌦)=1

�
k(@n + /2 +m0)vk2L2(�)

2

= µ�,j ,

where k(a1, a2, . . . , ak1)k2l2 =
P

k1

k=1 |ak|2 for all (a1, a2, . . . , ak1) 2 Ck1 .
We obtain

lim
m!+1

m(�int
k0+j,m

� �
2) = µ�,j .

Note that a permutation of the limit and the summation sign at the third line of
the calculation above ensures that (uk0+1, . . . , uk0+k1) is an orthogonal family for the
quadratic form

v 7�! �
k(@n + /2 +m0)vk2L2(�)

2
.

This finishes the proof of Proposition 3.1. ⇤

J.É.P. — M., 2019, tome 6



356 N. Arrizabalaga, L. Le Treust, A. Mas & N. Raymond

4. Proof of the main theorem

We are now ready to address the proof of Theorem 1.7. For the sake of readability,
we will divide it in several parts.

4.1. First term in the asymptotic. — In this part, we work in the energy space
without using any regularity result such as Lemma 4.3.

4.1.1. Upper bound. — Let K 2 N⇤ and ('1, . . . ,'K) be an L
2-orthonormal family

of eigenvectors of |H⌦| associated with the eigenvalues (�1, . . . ,�K). Using Proposi-
tion 2.1, we extend these functions outside ⌦ by

euj,m =

(
'j on ⌦,

um+m0('j) on ⌦0
,

for j 2 {1, . . . ,K}. By Proposition 2.1, we get that

keuj,mk2
L2(⌦0) 6 (m+m0)

�2⇤m+m0('j) 6
C

m+m0
,

so that eu1,m, . . . , euK,m are linearly independent vectors. Let a1, . . . , aK 2 C, and we
denote 'a

m
:=

P
K

j=1 ajeuj,m. By Lemma 1.6 and Proposition 2.1, we have

kHm'
a

m
k2
L2(R3) =kr'a

m
k2
L2(⌦) +m

2
0k'a

m
k2
L2(⌦) �mRehB'a

m
,'

a

m
i� + ⇤m+m0('

a

m
)

6 Qint

✓ KX

j=1

aj'j

◆
+ o(1) =

KX

j=1

|aj |2�2j + o(1) 6 �
2
K

KX

j=1

|aj |2 + o(1).

We deduce that

(4.1) lim sup
m!+1

�
2
K,m

6 lim sup
m!+1

sup
'

a
m2span(eu1,m,...,euK,m)

k'a
mkL2(R3)=1

kHm'
a

m
k2
L2(R3) 6 �

2
K
.

4.1.2. Lower bound and convergence. — For m>m1, let K2N⇤ and ('1,m, . . . ,'K,m)
be an L

2-orthonormal family of eigenvectors of |Hm| associated with the eigenvalues
(�1,m, . . . ,�K,m). Here, m1 is defined in Remark 2.8 and Proposition 2.21. By (4.1),
there exists C > 0 such that

(4.2) C > sup
k2{1,...,K}

m>m1

kHm'k,mk2
L2(R3) .

Using (1.4) and Proposition 2.1, we get, for all k 2 {1, . . . ,K} and all m > m1, that

�
2
k,m

= kHm'k,mk2
L2(R3)

=kr'k,mk2
L2(⌦) +m

2
0k'k,mk2

L2(⌦) �m hB'k,m,'k,mi�
+ ⇤m+m0('k,m) + Qm+m0('k,m � um+m0('k,m))

> Qint
m

('k,m) + (m+m0)
2k'k,m � um+m0('k,m)k2

L2(⌦0)

� C

m
k'k,mk2

L2(�) .

(4.3)
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By the trace theorem, we deduce that there exists C > 0 such that
(4.4) C > sup

k2{1,...,K}
m>m1

k'k,mk
H1(⌦) .

Note also that by (4.3), (4.4) and the trace theorem, we get that
(4.5)

��k'k,mk
L2(⌦0)�kum+m0('k,m)k

L2(⌦0)

�� 6k'k,m � um+m0('k,m)k
L2(⌦0) 6 C/m.

Moreover, by Proposition 2.1, we obtain that

kum+m0('k,m)k2
L2(⌦0) 6 (m+m0)

�2⇤m+m0('k,m) 6 C(m+m0)
�1k'k,mk2

H1(⌦) ,

and we deduce that
(4.6) k'k,mk

L2(⌦0) 6 Cm
�1

.

Combining (4.3), (4.4), (4.6), and Proposition 3.1 with an induction procedure as in
the proof of Lemma 3.2, we get the following result.

Lemma 4.1. — Let K 2 N. The following properties hold:

(i) For all j 2 {1, 2, . . . ,K}, we have limm!+1 �j,m = �j.

(ii) For all subsequence (mn)n2N going to +1 as n ! +1, all L
2
-orthonormal

family of eigenvectors ('1,mn , . . . ,'K,mn) of |Hm| associated with (�1,mn , . . . ,�K,mn)
such that the sequence ('1,mn , . . . ,'K,mn)n2N converges weakly in H

1(⌦), we have

that the sequence ('1,mn , . . . ,'K,mn)n2N converges strongly in H
1(⌦) and

(4.7) lim
n!+1

mn

��⌅�
'j,mn

��2
L2(�)

= 0

for all j 2 {1, . . . ,K}.

(iii) Every weak limit ('1, . . . ,'K) of such a sequence is an L
2
-orthonormal family

of eigenvectors of |H⌦| associated with the eigenvalues (�1, . . . ,�K).

Remark 4.2. — In other words, Lemma 4.1 shows the convergence of the eigenspaces
associated with the K first eigenvalues of |Hm|. Indeed, for all converging subsequence,
the corresponding eigenprojector converges to the eigenprojector of |H⌦|. Thus, when
m goes to +1, the eigenprojector associated with the K first eigenvalues of |Hm|
converges to the one of |H⌦| associated to the K first eigenvalues. Of course, we have
no such convergence result for the individual eigenfunctions.

4.2. Second term in the asymptotic. — In this section, we will freely use the follow-
ing regularity result, whose proof is given in the appendix.

Lemma 4.3. — There exists a constant C > 0 such that for every m 2 R and every

eigenfunction u of Hm associated with an eigenvalue � 2 R, we have

kukH2(⌦) 6 C(1 + |�|)kukL2(R3).

Moreover, for every eigenfunction u resp. v of H
⌦

resp. L
int
m

associated with an eigen-

value � 2 R, resp. �
2 2 R, we also have that

kukH2(⌦) 6 C(1 + |�|)kukL2(⌦)

kvkH2(⌦) 6 C(1 + |�|)kvkL2(⌦).and
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4.2.1. Upper bound. — In this section, we prove the following lemma.

Lemma 4.4. — Let � be an eigenvalue of |H⌦| of multiplicity k1 2 N⇤
. Let k0 2 N be

the unique integer such that

� = �k0+1 = · · · = �k0+k1 .

Then

(4.8) lim sup
m!+1

m(�2
k0+k,m

� �
2) 6 e⌫�,k,

where, for k 2 {1, . . . , k1},

(4.9) e⌫�,k := inf
V⇢ker(|H⌦|�� Id)

dimV=k

sup
v2V

kvkL2(⌦)=1

e⌘�(v)

and

e⌘�(v) :=
Z

�

⇣ |rsv|2

2
� |(@n + /2 +m0)v|2

2
+
⇣
K

2
� 

2

8
� �

2

2

⌘
|v|2

⌘
d�.

Proof. — Let (u1,m, . . . , uk0+k1,m) be an L
2-orthonormal family of eigenvectors of Lint

m

associated with the eigenvalues (�int1,m, . . . ,�
int
k0+k1,m

). Let (mn)n2N be a subsequence
which goes to +1 as n tends to +1 and which satisfies

(i) lim sup
m!+1 m(�2

k0+k,m
� �

2) = limn!+1 mn(�2k0+k,mn
� �

2),
(ii) (u1,mn , . . . , uk0+k1,mn) converges in L

2(⌦) to (u1, . . . , uk0+k1),
where (u1, . . . , uk0+k1) is an L

2-orthonormal family of eigenvectors of H
⌦ associ-

ated with the eigenvalues (�1, . . . ,�k0+k1). By Lemma 4.3, this sequence is uniformly
bounded in H

2(⌦). By interpolation, the convergence also holds in H
s(⌦) for all

s 2 [0, 2).
Since (4.9) is a finite dimensional spectral problem, there exists an L

2-orthonormal
basis (wk0+1, . . . , wk0+k1) of ker(|H⌦|� � Id) such that

e⌘�
✓ k0+k1X

s=k0+1

asws

◆
=

k0+k1X

s=k0+1

|as|2e⌘�(ws) =
k0+k1X

s=k0+1

|as|2e⌫�,s�k0 ,

for all ak0+1, . . . , ak0+k1 2 C. Moreover, we have

ker(|H⌦|� � Id) = span(uk0+1, . . . uk0+k1) = span(wk0+1, . . . wk0+k1),

so that there exists a unitary matrix B 2 Ck1⇥k1 such that Bu = w, where u =
(uk0+1, . . . , uk0+k1)

T and w = (wk0+1, . . . , wk0+k1)
T . Using Proposition 2.1, we extend

these functions outside ⌦ by

euj,m =

(
uj,m on ⌦,

um+m0(uj,m) on ⌦0
,
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for j 2 {1, . . . , k0 + k1}. We also define

um : = (uk0+1,m, . . . , uk0+k1,m)T ,

wm = (wk0+1,m, . . . , wk0+k1,m)T := Bum,

ewm = ( ewk0+1,m, . . . , ewk0+k1,m)T := B(euk0+1,m, . . . , euk0+k1,m)T ,

Vk0+k,m = span(u1,m, . . . uk0,m, wk0+1,m, . . . , wk0+k),and
eVk0+k,m = span(eu1,m, . . . euk0,m, ewk0+1,m, . . . , ewk0+k),

for all k 2 {1, . . . , k1} and all m > m1. Let us remark that

dimVk0+k,m = dim eVk0+k,m = k0 + k

for all k 2 {1, . . . , k1} (choosing if necessary a larger constant m1 > 0). In the follow-
ing, we consider test functions of the form

vm =
k0X

j=1

ajeuj,m +
k0+k1X

j=k0+1

aj ewj,m,

where a1, . . . , ak0+k1 2 C satisfy
P

k0+k1

j=1 |aj |2 = 1, so that

kvmk2
L2(⌦) =

k0+k1X

j=1

|aj |2 = 1.

By Proposition 2.1, we have

(4.10) kvmk2
L2(R3) =kvmk2

L2(⌦) +kvmk2
L2(⌦0) = 1 +

kvmk2
L2(�)

2m
+ O(m�2),

and

(4.11) kHmvmk2
L2(R3)

= Qint
m

(vm) +m
�1

Z

�

⇣ |rsvm|2

2
+
⇣
K

2
� 

2

8

⌘
|vm|2

⌘
d�+ O(m�3/2).

From (4.10) and (4.11), we deduce that

m

⇣kHmvmk2
L2(R3)

kvmk2
L2(R3)

� �
2
⌘
6 m

�
Qint
m

(vm)� �
2
�

+

Z

�

⇣ |rsvm|2

2
+
⇣
K

2
� 

2

8
� Qint

m
(vm)

2

⌘
|vm|2

⌘
d�+ O(m�1/2).

Then, for k 2 {1, . . . , k1}, we get

m
�
�
2
k0+k,m

� �
2
�
6 sup

vm2eVk0+k,mr{0}
m

⇣kHmvmk2
L2(R3)

kvmk2
L2(R3)

� �
2
⌘

6 sup
vm2Vk0+k,m

kvmkL2(⌦)=1

m
�
Qint
m

(vm)� �
2
�
+ ⌘

m
(vm) + O(m�1/2),

(4.12)
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where

⌘
m
(v) :=

Z

�

⇣ |rsv|2

2
+
⇣
K

2
� 

2

8
� Qint

m
(v)

2

⌘
|v|2

⌘
d�.

The remaining of the proof concerns the asymptotic behavior of

µk,m := sup
vm2Vk0+k,m

kvmkL2(⌦)=1

m
�
Qint
m

(vm)� �
2
�
+ ⌘

m
(vm),

for k 2 {1, . . . , k1} when m goes to +1. Let us first remark that for every vm 2
Vk0+k,m, we have

vm =
k0X

j=1

ajuj,m +
k0+kX

j=k0+1

ajwj,m =
k0X

j=1

ajuj,m +
k0+k1X

s=k0+1

✓ k0+kX

j=k0+1

ajbj,s

◆
us,m,

where (bj,s)j,s2{k0+1,...,k0+k1} = B. Thanks to Proposition 3.1, we obtain

(4.13) mn

�
Qint
mn

(vmn)� �
2
�

=
k0X

j=1

mn(�
int
j,mn

� �
2)|aj |2 +

k0+k1X

j=k0+1

mn(�
int
j,mn

� �
2)

����
k0+kX

s=k0+1

asbs,j

����
2

=
k0X

j=1

mn(�
int
j,mn

��2)|aj |2 �

��(@n + /2 +m0)
P

k0+k

j=k0+1 ajwj

��2
L2(�)

2
+ o(1).

Using (4.12) and (4.13), and taking a1 = · · · = ak0+k�1 = 0, ak0+k = 1, we deduce
that

(4.14) lim inf
n!+1

µk,mn > e⌫�,k.

Let (vn)n2N be a maximizing sequence of µk,mn . For all n, there exists a unitary
vector a

n = (a1,n, . . . , ak0+k,n) 2 Ck0+k such that

v
n =

k0X

j=1

aj,nuj,mn +
k0+kX

j=k0+1

aj,nwj,mn .

Up to a subsequence, we can assume that (an) converges in Ck0+k to a unitary vector
a = (ak0+1, . . . , ak0+k). Then, Proposition 3.1, (4.13), and (4.14) ensure that

lim
n!+1

�
int
j,mn

� �
2 6 �

2
j
� �

2
< 0

for j 2 {1, . . . , k0}, thus there exists c0 > 0 such that

mn

k0X

j=1

|aj,n|2 6 c0

and
lim sup
n!+1

µk,mn 6 e⌘�(v) 6 e⌫�,k,
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where v =
P

k0+k

j=k0+1 ajwj . Thanks to (4.12), and noticing that limn!+1 µk,mn = e⌫�,k
and

lim sup
m!+1

m(�2
k0+k,m

� �
2) 6 e⌫�,k,

we conclude the proof. ⇤

4.2.2. Lower bound. — Let � be the first eigenvalue of |H⌦|, whose multiplicity is
denoted by k1 2 N⇤:

� = �1 = · · · = �k1 .

In the following, we look for the second term in the asymptotic expansion of �.
More precisely, we will show the following result.

Lemma 4.5. — For all k 2 {1, . . . , k1}, we have that

lim inf
m!+1

m(�2
k,m

� �
2) > e⌫�1,j ,

where e⌫�1,j is defined in (4.9).

Proof. — By Lemma 4.1 and Proposition 3.1, we have

lim
m!+1

�
2
k,m

= lim
m!+1

�
int
k,m

= �
2
,

for all k 2 {1, . . . , k1}. Let ('1,m, . . . ,'k1,m) be an L
2-orthonormal family of eigen-

vectors of |Hm| associated with the eigenvalues (�1,m, . . . ,�k1,m) for all m > m1.
By Lemma 4.3, there exists C > 0 such that

(4.15) C > sup
m>m1

j2{1,...,k1}

k'j,mk
H2(⌦) .

We remark that, for all k 2 {1, . . . , k1}, and all m > m1,

�
2
k,m

=kHm'k,mk2
L2(R3) = sup

(a1,...,ak)2Ck

Pk
j=1 |aj |2=1

����Hm

✓ kX

j=1

aj'j,m

◆����
2

L2(R3)

.

Let a = (a1, . . . , ak) 2 Ck be such that
P

k

j=1 |aj |2 = 1. We define

'
a

m
=

kX

j=1

aj'j,m.

Combining (1.4), (4.15), and Proposition 2.1, we get

(4.16) �
2
k,m

> Qint
m

('a

m
) +m

�1

Z

�

⇣ |rs'
a

m
|2

2
+
⇣
K

2
� 

2

8

⌘
|'a

m
|2
⌘
d�

+ (m+m0)
2k'a

m
� um+m0('

a

m
)k2

L2(⌦0) + O(m�3/2).
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By (4.5), we have that
��k'a

m
k2
L2(⌦0) �kum+m0('

a

m
)k2

L2(⌦0)

��

6 C/m
�
k'a

m
k
L2(⌦0) +kum+m0('

a

m
)k

L2(⌦0)

�

6 C/m
�
k'a

m
� um+m0('

a

m
)k

L2(⌦0) + 2kum+m0('
a

m
)k

L2(⌦0)

�

6 C/m
�
m

�1 + 2kum+m0('
a

m
)k

L2(⌦0)

�
.

In addition, using Proposition 2.1 and (4.15), we deduce that

���kum+m0('
a

m
)k2

L2(⌦0) �
k'a

m
k2
L2(�)

2m

��� 6 C

m3/2
.

Therefore,

(4.17)
���k'a

m
k2
L2(⌦0) �

k'a

m
k2
L2(�)

2m

��� 6 C

m3/2
.

Thanks to (4.16) and Proposition 3.1, we obtain

(4.18) m(�2
k,m

� �
2) > m

⇣
Qint
m

('a

m
)� �

2k'a

m
k2
L2(⌦)

⌘

+

Z

�

⇣ |rs'
a

m
|2

2
+
⇣
K

2
� 

2

8
� �

2

2

⌘
|'a

m
|2
⌘
d�+ O(m�1/2).

Let (uj,m)j2N⇤ be an L
2-orthonormal basis of L2(⌦;C4) whose elements are eigen-

vectors of Lint
m

associated with the sequence of eigenvalues (�int
j,m

). Since �int
j,m

converges
to �2

j
as m goes to +1, we get that

�
int
j,m

� �
2 > 0

for all j > k1 + 1 and all m > m1 (choosing if necessary a larger constant m1 > 0).
We then deduce that

m
�
Qint
m

('a

m
)� �

2k'a

m
k2
L2(⌦)

�
=

+1X

s=1

m
�
�
int
s,m

� �
2
�
|h'a

m
, us,mi⌦|

2

>
k1X

s=1

m
�
�
int
s,m

� �
2
�
|h'a

m
, us,mi⌦|

2
.

(4.19)

Let (mn)n2N⇤ be a subsequence which goes to +1 as n tends to +1 and such
that

(i) lim infm!+1 m(�2
k,m

� �
2) = limn!+1 mn(�2k,mn

� �
2),

(ii) (u1,mn , . . . , uk1,mn) converges in H
1(⌦) to (u1, . . . , uk1),

(iii) ('1,mn , . . . ,'k1,mn) converges in H
1(⌦) to ('1, . . . ,'k1),
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where (u1, . . . , uk1) and ('1, . . . ,'k1) are L
2-orthonormal families of eigenvectors

of H⌦ associated with the eigenvalue �. By Proposition 3.1, we have that

lim
n!+1

k1X

s=1

m
�
�
int
s,mn

� �
2
�
|h'a

mn
, us,mni⌦|

2

=
k1X

s=1

�
k(@n + /2 +m0)usk2L2(�)

2
|h'a

, usi⌦|
2

= �
k(@n + /2 +m0)'ak2L2(�)

2
,

(4.20)

where 'a =
P

k

j=1 aj'j . From (4.18), (4.19), and (4.20), we obtain

lim inf
m!+1

m(�2
k,m

� �
2) > e⌘�('a)

and
lim inf
m!+1

m(�2
k,m

� �
2) > sup

(a1,...,ak)2Ck

Pk
j=1 |aj |2=1

e⌘�('a) > e⌫�,k.

Then, the conclusion follows from this and the upper bound (4.8). ⇤

Remark 4.6. — When considering a larger eigenvalue � > �1, the proof above breaks
down since

k0X

s=1

m
�
�
int
s,m

� �
2
�
|h'a

m
, us,mi⌦|

2

is non positive and the non-wanted terms in (4.19) cannot be removed so easily
anymore. In the expression above, k0 denotes the unique integer such that

� = �k0+1 = · · · = �k0+k1 .

Appendix. Sketch of the proof of Lemma 4.3

The purpose of this appendix is to give the main ideas of the proof of Lemma 4.3.
We recall that the boundary is supposed to have C2 regularity. We do not intend to
give a rigorous proof but rather to enlighten why the classical arguments give uniform
bounds in m (see for instance [12, §6.3]). In particular, we restrict ourselves to the
operator Hm for ⌦ = R3

+ := {x = (x1, x2, x3) | x3 > 0}, and we consider the solution
u 2 H

1(R3;C4) of
Hmu = (↵ ·D + (m0 +m�R3

�
)�)u = f,

where f 2 H
1(R3;C4). By Lemma 1.6 and Proposition 2.14, we have

kfk2
L2(R3) >kruk2

L2(⌦) +m
2
0kuk

2
L2(⌦) +m0kuk2L2(�) +

2X

k=1

k@kuk2L2(⌦0)

+ 2m
��⌅�

u
��2
L2(�)

� C/mkuk2
L2(�) ,
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so that by the trace theorem, there exists C > 0 such that

C
�
kfk2

L2(R3) +kuk2
L2(⌦)

�
>kruk2

L2(⌦) +
2X

k=1

k@kuk2L2(⌦0) .(A.1)

Using the notation of [12, §6.3], we introduce the di�erence quotients

D
h

k
u(x) =

u(x+ hek)� u(x)

h
, h 2 R, h 6= 0, x 2 R3

, k 2 {1, 2, 3}.

For j 2 {1, 2}, we get that

HmD
h

j
u = (↵ ·D + (m0 +m�R3

�
)�)Dh

j
u = D

h

j
f,

and then, using (A.1), we obtain

C
���Dh

j
f
��2
L2(R3)

+
��Dh

j
u
��2
L2(⌦)

�
>
��rD

h

j
u
��2
L2(⌦)

+
2X

k=1

��@kDh

j
u
��2
L2(⌦0)

.

By [12, §5.8.2], we deduce that

(A.2) C
�
k@jfk2L2(R3) +k@juk2L2(⌦) +kfk2

L2(R3) +kuk2
L2(⌦)

�

>kr@juk2L2(⌦) +
2X

k=1

k@k@juk2L2(⌦0) .

We also have that, in ⌦,

�@23u = H
2
m
u+

✓ 2X

k=1

@
2
k
�m

2
0

◆
u = Hmf,

thus

(A.3)
��@23u

��
L2(⌦)

6 Ckfk
H1(⌦) .

Using (A.1), (A.2) and (A.3), we get the desired estimate.
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