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Abstract

The lack of stability in some matching problems suggests that alter-

native solution concepts to the core might be applied to find predictable

matchings. We propose the absorbing sets as a solution for the class

of roommate problems with strict preferences. This solution, which al-

ways exists, either gives the matchings in the core or predicts some other

matchings when the core is empty. Furthermore, it satisfies an interest-

ing property of outer stability. We also characterize the absorbing sets,

determine their number and, in case of multiplicity, we find that they all

share a similar structure.
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1 Introduction

Matching markets are of great interest in a variety of social and economic en-

vironments, ranging from marriages formation, through admission of students

into colleges to matching firms with workers.1 One of the aims pursued by the

analysis of these markets is to find stable matchings. There are, however, some

markets for which the set of stable matchings, i.e. the core, is empty. For these

cases, we suggest that instead of using the common approach of restricting the

preferences domain to deal with nonempty core matching markets, 2 other so-

lution concepts may be applied to find predictable matchings. We argue that

this alternative is a step in furthering our understanding of matching market

performance.

The approach that we take consists of associating each matching market

with an abstract system and then applying one of the existing solution concepts

to solve it. The modeling of abstract systems deals with the problem of choosing

a subset from a feasible set of alternatives. In these systems, a binary relation,

which represents transitions between alternatives enforced by some agents, is

defined. Various solution concepts have been proposed for solving abstract sys-

tems, such as the core, von Neumann-Morgenstern stable sets3 (von Neumann-

Morgenstern, 1947), subsolutions (Roth, 1976), admissible sets (Kalai, Pazner

and Schmeidler, 1976), and absorbing sets. The notion of absorbing sets, which

is the solution concept selected in our work, was first introduced by Schwartz

(1970) and it coincides with the elementary dynamic solution (Shenoy, 1979).

We focus our attention on one-sided matching markets where each agent is

allowed to form at most one partnership. These problems are known as room-

mate problems and are a generalization of the marriage problem, see Gale and

Shapley (1962). In them each agent in a set ranks all others (including herself)

according to her preferences. The abstract system associated with a roommate

problem is the pair formed by the set of all matchings and a domination relation

defined over this set which represents the existence of a blocking pair of agents

that allows us to go from one matching to another. Matchings that are not

blocked by any pair of agents are called stable. In this model the set of stable

matchings equals the core. Roommate problems that do not admit any such

1See Roth and Sotomayor (1990) for a comprehensive survey of two-sided matching models.
2See for example, Roth (1985) and Kelso and Crawford (1982).
3Elhers (2007) studies von Neumann-Morgenstern stable sets in two-sided matching mar-

kets.

2



matchings are called unsolvable. Otherwise they are said to be solvable.

Core stability for solvable roommate problems has been studied by Gale and

Shapley (1962), Irving (1985), Tan (1991), Abeledo and Isaak (1991), Chung

(2000), Diamantoudi, Miyagawa and Xue (2004)) and Klaus and Klijn (2007)

among others. With few exceptions, however, unsolvable roommate problems

have not been so thoroughly studied. When there is no core stability, interest is

rekindled in the application of other solution concepts to the class of roommate

problems. Such interest is further enhanced from the empirical perspective in

that as Pittel and Irving (1994) observe, when the number of agents increases,

the probability of a roommate problem being solvable decreases fairly steeply.

Here we propose the absorbing sets as a solution for the class of roommate

problems with strict preferences. In this context, an absorbing set is a set

of matchings that satisfies the following two conditions: (i) any two distinct

matchings inside the set dominate (directly or indirectly) each other and (ii)

no matching in the set is dominated by a matching outside the set. We believe

that the selection of this solution concept is well justified since for a solvable

roommate problem it exactly provides the matchings in the core, and for an un-

solvable roommate problem it gives a nonempty set of matchings. Furthermore,

this solution has the property of outer stability in the sense that all matchings

not in an absorbing set are (directly or indirectly) dominated by a matching

that does belong to an absorbing set.4 As a consequence of this property the

matchings outside absorbing sets can be ruled out as reasonable matchings.

Among the scant literature on unsolvable roommate problems the papers

by Tan (1990) and Abraham, Biró and Manlove (2005) are worthy of mention.

The former investigates matchings with the maximum number of disjoint pairs

of agents such that these pairs are stable among themselves and the latter

looks at matchings with the smallest number of blocking pairs. Although for

solvable roommate problems both proposals give the matchings in the core,

for unsolvable ones it is easy to check that neither of them satisfies the outer

stability property.

The notion of an absorbing set may perhaps be better understood if it is

illustrated with the following metaphor:

Consider a point associated with each matching, and imagine that initially

4For marriage problems Roth and Vande Vate (1990) show that there exits a convergence
domination path from any unstable matching to a stable one.
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all these matching-points shine with light. Then the following process continues

indefinitely: In each period each matching-point distributes its light equally

among all its dominated matching-points. In this way, a matching-point remains

lit either if it receives some light from another or if it is unable to transfer its

light to any other matching-point. After an infinite number of periods only those

matching-points belonging to a ”stable constellation” (absorbing sets) will be

permanently lit. Moreover, a stable constellation may be understood as an

”energetically closed system” formed by a minimal set of self-lighting matching-

points. In this terminology, a stable matching is precisely an energetically closed

constellation which consists of a single matching-point.

The contribution of this paper to the analysis of the stability of the roommate

problems can be summarized as follows:

First, we find that absorbing sets are determined by stable partitions. This

notion was introduced by Tan (1991) as a structure generalizing the notion of

a stable matching.5 We also prove that if a roommate problem is solvable then

an absorbing set is a singleton consisting of a stable matching and the union of

all absorbing sets coincides with the core.

Second, we characterize the absorbing sets in terms of stable partitions.

The characterization provided allows us to specify which and how many stable

partitions determine absorbing sets. We also identify the matchings in these

sets and give some of their features.

Third, we find that absorbing sets of an unsolvable roommate problem all

share a similar structure. In terms of the metaphor described above they look

like stable constellations forming ”replicas” of one another.6 Furthermore, we

observe that all matchings in all absorbing sets have an interesting property of

stability.

The rest of the paper is organized into the following sections. Section 2 con-

tains the preliminaries. In Section 3 we study the absorbing sets of a roommate

problem which are characterized in Section 4. We study the structure of these

sets in Section 5 and Section 6 gathers some final comments. An appendix with

the lemmas and their proofs concludes the paper.

5This author defines stable partitions to establish a necessary and sufficient condition for
the existence of a stable matching in roommate problems with strict preferences.

6This is illustrated in Figure 2.
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2 Preliminaries

A roommate problem is a pair (N, (<x)x∈N) where N is a finite set of agents and

for each agent x ∈ N , <x is a complete, transitive preference relation defined

over N . Let �x be the strict preference associated with <x. In this paper we

only consider roommate problems with strict preferences, which we denote by

(N, (�x)x∈N ).

A matching µ is a one to one mapping from N onto itself such that for

all x ∈ N µ(µ(x)) = x, where µ(x) denotes the partner of agent x under the

matching µ. If µ(x) = x, then agent x is single under µ. Given S ⊆ N , S = ∅,

let µ(S) = {µ(x) : x ∈ S}. That is, µ(S) is the set of partners of the agents in

S under µ. Let µ |S be the mapping from S to N which denotes the restriction

of µ to S. If µ(S) = S then µ |S is a matching in (S, (�x)x∈S).

A pair of agents {x, y} ⊆ N (possibly x = y) is a blocking pair of the

matching µ if

y �x µ(x) and x �y µ(y). [1]

That is, x and y prefer each other to their current partners at µ. If x = y, [1]

means that agent x prefers being alone to being matched with µ(x). An agent

x ∈ N blocks a matching µ if this agent belongs to some blocking pair of µ. A

matching is called stable if it is not blocked by any pair {x, y}. Let {x, y} be

a blocking pair of µ. A matching µ′ is obtained from µ by satisfying {x, y} if

µ′(x) = y and for all z ∈ N\{x, y},

µ′(z) =






z if µ(z) ∈ {x, y}

µ(z) otherwise.

That is, once {x, y} is formed, their partners (if any) under µ are alone in µ′,

while the remaining agents are matched as in µ.

Tan (1991) establishes a necessary and sufficient condition for the solvability

of roommate problems with strict preferences in terms of stable partitions. This

notion, considered by this author as a generalization of the notion of a stable

matching, can be formally defined as follows:7

Let A = {a1, ..., ak} ⊆ N be an ordered set of agents. The set A is a ring

if k ≥ 3 and for all i ∈ {1, ..., k}, ai+1 �ai
ai−1 �ai

ai (subscript modulo k).

7See Biró et al. (2007) for a clarifying interpretation of this notion.
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The set A is a pair of mutually acceptable agents if k = 2 and for all i ∈ {1, 2},

ai−1 �ai
ai (subscript modulo 2)8. The set A is a singleton if k = 1.

A stable partition is a partition P of N such that:

(i) For all A ∈ P , the set A is a ring, a mutually acceptable pair of agents or a

singleton, and

(ii) For any sets A = {a1, ..., ak} and B = {b1, ..., bl} of P (possibly A = B),

the following condition holds:

if bj �ai
ai−1 then bj−1 �bj

ai,

for all i ∈ {1, ..., k} and j ∈ {1, ..., l} such that bj 6= ai+1.

Condition (ii) may be interpreted as a notion of stability over the partitions

satisfying Condition (i).

The following assertion is proven by Tan (1991).

Remark 1 A roommate problem (N, (�x)x∈N) has no stable matchings if and

only if there exists a stable partition with some odd ring. Moreover, any two

stable partitions have exactly the same odd rings. 9

Using the notion of a stable partition Inarra et al. (2007) introduce some

specific matchings, called P -stable matchings, defined as follows:

Definition 1 Let P be a stable partition. A P -stable matching is a matching µ

such that for each A = {a1, ..., ak} ∈ P , µ(ai) ∈ {ai+1, ai−1} for all i ∈ {1, ..., k}

except for a unique j where µ(aj) = aj if A is odd.

Given the use made of the notions of a P -stable matching and a stable

partition in deriving our results, it may be helpful to illustrate them with the

numerical example given in Inarra et al. (2007).

8Hereafter we omit subscript modulo k.
9A ring is odd (even) if its cardinal is odd (even).
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EXAMPLE 1 Consider the following 6-agent roommate problem:

2 �1 3 �1 1 �1 4 �1 5 �1 6

3 �2 1 �2 2 �2 4 �2 5 �2 6

1 �3 2 �3 3 �3 4 �3 5 �3 6

5 �4 4 �4 1 �4 2 �4 3 �4 6

4 �5 5 �5 1 �5 2 �5 3 �5 6

6 �6 1 �6 2 �6 3 �6 4 �6 5

It is easy to verify that P = {{1, 2, 3}, {4, 5}, {6}} is a stable partition where

A1 = {1, 2, 3} is an odd ring, A2 = {4, 5} is a pair of mutually acceptable agents

and A3 = {6} is a singleton. This partition can be represented graphically as

follows:

Figure 1.- A stable partition P .

The P -stable matchings associated with the stable partition P are: µ1 =

[{1},{2, 3},{4, 5},{6}], µ2 = [{2},{1, 3},{4, 5},{6}] and µ3 = [{3},{1, 2},{4, 5},{6}].

3 Absorbing sets for the roommate problem

We study in this section the absorbing sets of the class of roommate problems

with strict preferences and find that every of these sets is determined by some

stable partition. We also show that if a roommate problem is solvable then

every absorbing set contains only one matching which is stable. Furthermore,

the union of all of them coincides with the core.

An abstract system is a pair (X,R) where X is a finite set of alternatives and

R is a binary relation on X . Two of the solution concepts proposed to solve an

abstract system are the core and absorbing sets. In what follows, we associate

a roommate problem with strict preferences with an abstract system and define

these two solution concepts in this particular setting. Let M denote the set of
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all matchings. Set X = M and define a binary relation R on M as follows:

Given two matchings µ, µ′ ∈ M, µ′Rµ if and only if µ′ is obtained from µ by

satisfying a blocking pair of µ. We say that µ′ directly dominates µ if µ′Rµ.

Hereafter the system associated with the roommate problem (N, (�x)x∈N ) is

the pair (M, R). Let RT denote the transitive closure of R. Then µ′RT µ if and

only if there exists a finite sequence of matchings µ = µ0, µ1, ..., µm = µ′ such

that, for all i ∈ {1, ..., m}, µiRµi−1. We say that µ′ dominates µ if µ′RT µ.

As it has been mentioned in the introduction, the conventional solution

considered in matching problems is the core. In roommate problems, however,

the core may be empty and absorbing sets stand out as a good candidate for

an alternative solution concept. For these problems an absorbing set can be

formally defined as follows:

Definition 2 A nonempty subset A of M is an absorbing set of (M, R) if the

following conditions hold:

(i) For any two distinct µ, µ′ ∈ A, µ′RT µ.

(ii) For any µ ∈ A there is no exists µ′ /∈ A such that µ′Rµ.

Condition (i) means that matchings of A are symmetrically connected by

the relation RT . That is, every matching in an absorbing set is dominated by

any other matching in the same set. Condition (ii) means that the set A is

R-closed. That is, no matching in an absorbing set is directly dominated by a

matching outside the set.

A nice property of this solution is that it always exists, although, in general,

it may be not unique. Theorem 1 in Kalai et al. (1977) states that if a set of

alternatives, X, is finite then the admissible set (the union of absorbing sets) is

nonempty (see also Theorem 2.5 in Shenoy (1979)). Thus either of these two

results allows us to conclude that any (M, R) has at least one absorbing set.

Absorbing sets also satisfy the property of outer stability which says that every

matching not belonging to an absorbing set is dominated by a matching that

does belong to an absorbing set.10

We are interested in determining which matchings form absorbing sets and

to that end we use the notion of a stable partition. Throughout the paper,

10This is shown in Kalai et al. (1976).
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however, we only consider stable partitions which do not contain even rings.

This does not imply a loss of generality since Proposition 3.2 in Tan (1991)

states that every even ring in a stable partition can be broken into pairs of

mutually acceptable agents preserving stability.

Let P be a stable partition. We denote by AP the set formed by all the P -

stable matchings and those matchings that dominate them. Our first theorem

establishes that an absorbing set is one of these sets AP . As it is shown in

Example 2, however, not every set AP need to be an absorbing set.

Theorem 1 Let (N, (�x)x∈N ) be a roommate problem. If A is an absorbing

set then A = AP for some stable partition P .

Proof. First, we prove that there exists a P -stable matching µ such that µ ∈ A.

Let µ be an arbitrary matching of A. If µ is a P -stable matching for some stable

partition P then µ = µ and we are done. Otherwise, by Theorem 1 in Inarra et

al. (2007), there exists a P -stable matching µ such that µRT µ and by Condition

(ii) of Definition 2 we have µ ∈ A.

Now, we prove that A = AP . By Lemma 2, we have AP = {µ} ∪ {µ ∈ M:

µRT µ}.

(⊆): Let µ ∈ A. We must show that µ ∈ AP . If µ = µ and given that µ ∈ AP

we are done. Suppose that µ 6= µ. Since µ ∈ A, by Condition (i) of Definition

2, we have µRT µ. Hence µ ∈ AP as desired.

(⊇): Let µ ∈ AP . We must show that µ ∈ A. If µ = µ since µ ∈ A we are done.

If µ 6= µ then µRT µ. As µ ∈ A, by Condition (ii) of Definition 2 it follows that

µ ∈ A.

We have seen that P -stable matchings are derived from stable partitions. On

the other hand, every absorbing set contains some P -stable matching. Thus,

informally, stable partitions may be interpreted as those structures which de-

termine absorbing sets.

Using the previous theorem we derive the following interesting result.

Corollary 2 If the roommate problem (N, (�x)x∈N ) is solvable then A is an

absorbing set if and only if A = {µ} for some stable matching µ.

Proof. If A is an absorbing set then, by Theorem 1, A = AP for some stable

partition P . Now, as the roommate problem is solvable, by Remark 1 the stable
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partition P does not contain any odd ring. Hence there exists a unique P -stable

matching µ which is stable by stability of P . Then AP = {µ} and therefore

A = {µ}. Conversely, if A = {µ} for some stable matching µ, then A satisfies

Conditions (i) and (ii) of Definition 2. Hence A is an absorbing set.

As a result of the corollary above we have that the union of all absorbing

sets coincides with the core. Thus absorbing sets may be considered as a gener-

alization of this solution concept in roommate problems with strict preferences.

To clarify the notion of absorbing sets we consider the following numerical

example which will also be used elsewhere in the paper to illustrate other results.

EXAMPLE 2 Consider the following 10-agent roommate problem:

2 �1 3 �1 4 �1 5 �1 6 �1 7 �1 8 �1 9 �1 1 �1 10

3 �2 1 �2 4 �2 5 �2 6 �2 7 �2 8 �2 9 �2 2 �2 10

1 �3 2 �3 4 �3 5 �3 6 �3 7 �3 8 �3 9 �3 3 �3 10

7 �4 8 �4 9 �4 5 �4 6 �4 1 �4 2 �4 3 �4 4 �4 10

8 �5 9 �5 7 �5 4 �5 6 �5 5 �5 1 �5 2 �5 3 �5 10

9 �6 7 �6 8 �6 4 �6 5 �6 6 �6 1 �6 2 �6 3 �6 10

5 �7 6 �7 1 �7 4 �7 9 �7 8 �7 7 �7 2 �7 3 �7 10

6 �8 4 �8 5 �8 7 �8 9 �8 8 �8 1 �8 2 �8 3 �8 10

4 �9 5 �9 6 �9 7 �9 8 �9 9 �9 1 �9 2 �9 3 �9 10

10 �10 1 �10 ..........................................................

In this example there are three stable partitions: P1 = {{1, 2, 3},{4, 7},

{5, 8},{6, 9},{10}}, P2 = {{1, 2, 3},{4, 8},{5, 9},{6, 7},{10}} and P3 = {{1, 2, 3},

{4, 9},{5, 7},{6, 8},{10}}. Consider stable partition P2. The associated P2-

stable matchings are: µ1 =[{1},{2, 3},{4, 8},{5, 9},{6, 7},{10}], µ2 =[{2},{1, 3},

{4, 8},{5, 9},{6, 7},{10}] and µ3=[{3},{1, 2},{4, 8},{5, 9},{6, 7},{10}] and the set

AP2
= {µ1, µ2, µ3}. Notice that any of these matchings dominates each other

but they are not directly dominated by any matching outside AP2
. Therefore

AP2
is an absorbing set. In addition, matching µ1 = [{1},{2, 3},{4, 8},{5, 9},

{6, 7},{10}] can be derived from the P1-stable matching µ = [{1},{2, 3},{4, 7},

{5, 8},{6, 9},{10}] by satisfying the following sequence of blocking pairs: {1, 7},

{4, 8}, {5, 9}, {6, 7}. Hence µ1 belongs to AP1
. It is easy to verify, however,
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that µ does not dominate µ1. Thus AP1
is not an absorbing set since it does

not satisfy Condition (i) of Definition 2.

4 Characterization of absorbing sets

Given a roommate problem with strict preferences, the main purpose of this

section is to characterize its absorbing sets, which, as we have already asserted,

are determined by some stable partitions. To do this we introduce an iterative

process which proves to be efficient for this task. In particular, given a stable

partition P (hence the set AP is immediately defined) the process determines the

set DP , which is formed by those agents that block some matching in AP . The

set SP formed by those agents that do not block any matching in AP happens

to play a crucial role in the characterization of absorbing sets. Specifically,

considering the set of stable partitions restricted to these sets of non-blocking

agents, only the maximal ones determine the absorbing sets. As a consequence

of this result, the number of these sets is obtained immediately. Furthermore,

the characterization provided allows us to put forward an interesting feature

of the matchings of an absorbing set. All these results are illustrated by using

Example 2.

Formally, given a stable partition P , let DP denote the set of agents that

block some matching in AP and let SP = N\DP . The set DP can be determined

by an iterative process in a finite number of steps. In order to do it, we define

inductively a sequence of sets 〈Dt〉∞t=0 as follows:

(i) for t = 0, D0 is the union of all odd rings of P .

(ii) for t ≥ 1, Dt = Dt−1∪Bt where Bt = {b1(t), ..., blt(t)} ∈ P (lt =

1 or 2), Bt * Dt−1, and there is a set At = {a1(t), ..., akt
(t)} ∈ P

such that At ⊆ Dt−1 and

bj(t) �ai(t) ai(t) and ai(t) �bj(t) bj−1(t), [2]

for some i ∈ {1, ..., kt} and j ∈ {1, ..., lt}.11

Given that P contains a finite number of sets, then Dt = Dt−1 for some

t. Let r be the minimum number such that Dr+1 = Dr. Then, by Lemma 3,

Dr = DP . Note that, for any set A ∈ P , either A ⊆ DP or A ⊆ SP . Let

11If such set does not exist then Dt = Dt−1.
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P |DP
= {A ∈ P : A ⊆ DP } and P |SP

= {A ∈ P : A ⊆ SP }. Then P |DP
and

P |SP
are stable partitions of the sets DP and SP respectively.

Before proceeding, we need an additional definition. Let P = {P |SP
: P is a

stable partition}. Given a stable partition P , we say that P |SP
is maximal in

P if there is not a stable partition P ′ such that P |SP
⊂ P ′ |SP ′ . Our next result

gives a characterization of the absorbing sets in terms of stable partitions.

Theorem 3 Let (N, (�x)x∈N) be a roommate problem. A is an absorbing set

if and only if A = AP for some stable partition P such that P |SP
is maximal

in P.

Proof. (=⇒): Let A be an absorbing set. Then, by Theorem 1, A = AP

for some stable partition P . We prove that P |SP
is maximal in P . Assume

that P |SP
is not maximal, i.e., there exists a stable partition P ′ such that

P |SP
⊂ P ′ |SP ′ . Let µ and µ′ be a P -stable matching and a P ′-stable matching

respectively. Thus, by Lemma 6, µ′RT µ. Now, since µ ∈ AP and A = AP we

have µ ∈ A. Hence, by Condition (ii) of Definition 2 µ′ ∈ A. But then, by

Condition (i), µRT µ′ and therefore, by Lemma 6, P ′ |SP ′⊆ P |SP
, contradicting

that P |SP
⊂ P ′ |SP ′ .

(⇐=): Let P be a stable partition such that P |SP
is maximal in P . We prove

that AP is an absorbing set, i.e., AP satisfies Conditions (i) and (ii) of Definition

2. By Lemma 2, AP = {µ}∪
{
µ ∈ M : µRT µ

}
where µ is a P -stable matching.

Let µ ∈ AP . If there exists µ′ ∈ M such that µ′Rµ then µ′RT µ. Hence µ′ ∈ AP

and Condition (ii) follows.

Now we show that AP satisfies Condition (i). It suffices to prove that µRT µ

for all µ ∈ AP such that µ 6= µ. If µ is not a P ′-stable matching for any stable

partition P ′, by Theorem 1 in Inarra et al. (2007), there exists a P ′-stable

matching µ′ such that µ′RT µ. Since µRT µ we have µ′RT µ (if µ is a P ′-stable

matching for some stable partition P ′ then µ′ = µ can be considered.) Thus,

by Lemma 6, P |SP
⊆ P ′ |SP ′ and since P |SP

is maximal in P , it follows that

P |SP
= P ′ |SP ′ . But then µRT µ′ and since µ′RT µ we conclude that µRT µ as

desired.

As an immediate consequence of the previous theorem and Lemma 7, the

number of absorbing sets in a roommate problem is straightforward to deter-

mine. This corollary implies a necessary and sufficient condition for the unique-

ness of the solution.
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Corollary 4 Let (N, (�x)x∈N) be a roommate problem the number of absorbing

sets is equal to the number of distinct maximal partitions of P.

Let A be an absorbing set. DA denotes the set of agents blocking some

matching in A, while the set SA = N\DA is formed by those agents that do not

block any matching in A. The following corollary, derived easily from Theorem

3 and Lemma 5, shows that all matchings in an absorbing set A have some

identical pairings formed by the agents in SA which, in addition, are stable

among them.

Corollary 5 Let (N, (�x)x∈N) be a roommate problem. For any absorbing set

A such that SA 6= ∅ the following conditions hold:

(i) For any µ ∈ A, µ(SA) = SA and µ |SA
is stable for (SA, (�x)x∈SA

).

(ii) For any µ, µ′ ∈ A, µ |SA
= µ′ |SA

.

To illustrate the iterative process and results described above, consider again

Example 2. We apply the process to the following stable partition P1 =

{{1, 2, 3},{4, 7},{5, 8},{6, 9},{10}}. Note that P1 contains a unique odd ring.

Then D0 = {1, 2, 3}. Let B1 = {4, 7} and A1 = {1, 2, 3}. Since 7 �1 1 and

1 �7 4, then D1 = D0 ∪ B1 = {1, 2, 3, 4, 7}. Consider now the sets B2 = {5, 8}

and A2 = {4, 7}. As 8 �4 4 and 4 �8 5, then D2 = D1 ∪B2 = {1, 2, 3, 4, 7, 5, 8}.

Finally, let B3 = {6, 9} and A3 = {5, 8}. Since 9 �5 5 and 5 �9 6, then D3 =

D2 ∪B3 = {1, 2, 3, 4, 7, 5, 8, 6, 9} and the process finishes. Hence DP1
= D3. By

repeating the same process to the remaining stable partitions, we obtain DP2
=

DP3
= {1, 2, 3}. Hence P1 |DP1

= {{1, 2, 3}, {4, 7}, {5, 8}, {6, 9}} and P2 |DP2
=

P3 |DP3
= {{1, 2, 3}}, and P1 |SP1

= {{10}}, P2 |SP2
= {{4, 8}, {5, 9}, {6, 7},

{10}} and P3 |SP3
= {{4, 9}, {5, 7}, {6, 8}, {10}}.

Notice that P2 |SP2
and P3 |SP3

are the maximal partitions of P . There-

fore, by Theorem 3 and Corollary 4, this roommate problem has exactly two

absorbing sets A and A′ where A = AP2
and A′ = AP3

.

Regarding Corollary 5, consider the absorbing set A = AP2
= {µ1, µ2, µ3},

formed by the following matchings: µ1 =[{1},{2, 3},{4, 8},{5, 9},{6, 7},{10}],

µ2 =[{2},{1, 3},{4, 8},{5, 9},{6, 7},{10}] and µ3=[{3},{1, 2},{4, 8},{5, 9},{6, 7},

{10}]. In this case, DA = {1, 2, 3} and SA = {4, 5, 6, 7, 8, 9, 10}. We observe that

µ1 |SA
= µ2 |SA

= µ3 |SA
being the matching [{4, 8},{5, 9},{6, 7},{10}] stable for

the roommate problem (SA, (�x)x∈SA
).
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5 Structure of absorbing sets

In this section we investigate the structure of the absorbing sets in case of

multiplicity. We also observe a property of stability verified by all matchings of

the absorbing sets.

Given an absorbing set A such that DA 6= ∅, let A |DA
= {µ |DA

: µ ∈ A}.

Analogously, if SA 6= ∅, let A |SA
= {µ |SA

: µ ∈ A}

Theorem 6 Let (N, (�x)x∈N) be a roommate problem. For any two absorbing

sets A and A′, the following conditions hold:

(i) DA = DA′ and SA = SA′ .

(ii) A |D
A

= A′ |DA′ .

(iii) A |S
A

and A′ |SA′ are singletons consisting of a stable matching in (S, (�x

)x∈S), where S = SA = SA′ .

Proof. Let A and A′ be two absorbing sets. Then, by Theorem 3, there exist

some stable partitions P and P ′ such that A = AP , A′ = AP ′ where P |SP
and

P ′ |SP ′ are maximal in P .

(i) Since SA = SP and SA′ = SP ′ and, by Lemma 9, SP = SP ′ , then SA = SA′ .

Therefore DA = DA′ .

(ii) It is very easy to verify that A |DA
and A′ |DA′ are absorbing sets in (D, (�x

)x∈D) where D = DA = DA′ such that A |DA
= AP |DP

and A′ |DA′ = AP ′|D
P ′

.

Since SP |DP
= SP ′|

D
P ′

= ∅, from Lemma 7, we conclude that A |DA
= A′ |DA′ .

(iii) It follows directly from Corollary 5.

The three conditions of the previous theorem provide all absorbing sets of

a roommate problem with strict preferences with a similar structure. Follow-

ing the metaphor described in the introduction we can say that absorbing sets

resemble identical stable constellations, as illustrated in Figure 2.

To explain numerically this last result, consider the two absorbing sets of

Example 2: A = AP2
and A′ = AP3

. Since DA = DA′ = {1, 2, 3} we have

A = {µ1, µ2, µ3} and A′ = {µ′
1, µ

′
2, µ

′
3} where µ1, µ2, µ3 are the P2-stable

matchings and µ′
1, µ

′
2, µ

′
3 are the P3-stable matchings (see Figure 2). Addition-

ally, A |DA
= {µ1 |DA

, µ2 |DA
, µ3 |DA

} and A′ |DA′ =
{
µ′

1 |DA′ , µ
′
2 |DA′ , µ

′
3 |DA′

}

where µ1 |DA
= µ′

1 |DA′ = [{1} , {2, 3}], µ2 |DA
= µ′

2 |DA′ = [{1, 3} , {2}] and
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µ3 |DA
= µ′

3 |DA′ = [{1, 2} , {3}]. Furthermore, A |SA
and A′ |SA′ are respec-

tively singletons consisting of the stable matchings µ = [{4, 8}, {5, 9}, {6, 7}, {10}]

and µ′ = [{4, 9}, {5, 7}, {6, 8}, {10}] in (S, (�x)x∈S) where S = {4, 5, 6, 7, 8, 9, 10}.

F

F

F

?

?

?

?

A

µ1 = [{1}, {2, 3}, ...]

µ2 = [{1, 3}, {2}, ...]µ3 = [{1, 2}, {3}, ...]

F

F

F

?
?

?

?

A′

µ′
1 = [{1}, {2, 3}, ...]

µ′
2 = [{1, 3}, {2}, ...]µ′

3 = [{1, 2}, {3}, ...]

Figure 2.- The two absorbing sets of the roommate problem in Example 2.

To conclude this section, let us introduce one more definition to explain

an interesting property of stability verified by the matchings in absorbing sets.

Given a matching µ we say that a pair of agents {x, y} matched under µ is

strongly stable if, for any matching µ′ ∈ M such that µ′RT µ, agents x and y are

also matched under µ′. In particular, from Corollary 5, we know that for every

matching µ in an absorbing set A those pairs matched under µ |SA
are strongly

stable. Furthermore, Theorem 6 (iii) shows that all matchings in all absorbing

sets have the same number of strongly stable pairs. These two results jointly

with the outer stability property guarantee that all matchings in all absorbing

sets have the greatest number of strongly stable pairs among the matchings in

M.
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6 Some concluding comments

In this paper we have claimed that the matchings of absorbing sets are pre-

dictable in the class of roommate problems with strict preferences. Our results,

however, leave three interesting questions opened for analysis.

1. Although the solution proposed seems to be very good at ruling out some

matchings with confidence, it may not be so efficient at selecting the most

”reasonable” ones. Thus, when an absorbing set has multiple matchings, a

discriminating criterion should be used if a more refined outcome is desired.

Let us discuss this briefly with the following numerical example.

EXAMPLE 3 Consider the following 4-agent roommate problem:

2 �1 3 �1 4 �1 1

3 �2 1 �2 4 �2 2

1 �3 2 �3 4 �3 3

1 �4 2 �4 3 �4 4

In this instance, the unique absorbing set is formed by the following match-

ings: µ1 = [{1, 2},{3, 4}], µ2 = [{1},{2, 3},{4}], µ3 = [{1, 4},{2, 3}], µ4 =

[{2},{1, 3},{4}], µ5 = [{1, 3},{2, 4}] and µ6 = [{3},{1, 2},{4}]. The application

of a standard criterion such as Pareto optimality12 over the unique absorbing

set gives the matchings µ1, µ3 and µ5.

2. A natural extension of the approach followed in this paper is the study of

absorbing sets as solution for roommate problems with weak preferences. In

this case, by contrast with roommate problems with strict preferences, when

the core is nonempty our solution concept can select more matchings than just

those in the core. The following example given by Chung (2000) shows this.

EXAMPLE 4 Consider the following 4-agent roommate problem:

4 �1 2 �1 3 �1 1

3 �2 1 �2 2 �2 4

1 �3 2 �3 4 �3 3

1 ∼4 4 �4 ..........

12Informally, a matching µ is said to be Pareto optimal if there is no other matching µ′

such that some agent is better off in µ′ than in µ and no agent is worse off in µ′ than in µ.
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In this instance, there are two absorbing sets: A = {[{1, 2},{3, 4}]} and A′ =

{[{1},{2, 3},{4}], [{2},{1, 3},{4}], [{3},{1, 2},{4}]}.

3. Another potential extension may be the application of our approach to more

general choice problems such as hedonic games13(See Dreze and Greenberg

(1980)), or network formation models (see, for instance, Jackson and Wolin-

sky (1996)). An arbitrary hedonic game can be associated with an abstract

system where the set of alternatives is the set of all coalitional partitions that

can be formed by the agents involved in the problem. Analogously, for network

formation models, Page, Wooders and Kamat (2005) define abstract systems

associated with these problems where the set of alternatives is formed by a

set of networks. In these two specific systems the binary relation represents

transitions from one alternative to another and, as in our paper, absorbing sets

could be proposed as a solution for them whenever their corresponding cores

are empty.

13Diamantoudi and Xue (2003) and Barberá and Gerber (2003) have pointed out that
roommate problems can be considered as a special case of hedonic games.
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7 Appendix

Lemma 1 Given a stable partition P . For any two distinct P -stable matchings

µ and µ′, µ′RT µ.

Proof. If P does not contain any odd ring then there exists a unique P -

stable matching and we are done. Suppose that P contains some odd ring. Let

A1, ..., Ar be the odd rings of P and T =
r⋃

i=1

Ai.

Set A1 = {a1, ..., ak}. As A1 is a ring then

ai+1 �ai
ai−1 �ai

ai, [3]

for all i = {1, ..., k}. By Definition 1, since µ and µ′ are P -stable matchings,

there are two agents al, as ∈ A1 such that µ(al) = al and µ′(as) = as. Now,

since µ(al) = al and µ(al−1) = al−2, by condition [3], {al, al−1} blocks µ,

inducing a P -stable matching µ1 for which µ(al−2) = al−2. Repeating the

process, we obtain a sequence of P -stable matchings µ0, µ1,..., µi, ... as follows:

(i) µ0 = µ.

(ii) For i ≥ 1, µi is the P -stable matching obtained from µi−1 by satisfying the

blocking pair {al−2(i−1), al−2(i−1)−1}.

Let m1 ∈ {1, ..., k} such that al−2m1
= as. Then µ = µ0, µ1, ..., µm1

is a

finite sequence of P -stable matchings such that, for all i ∈ {1, ..., m1}, µiRµi−1

and µm1
|A1

= µ′ |A1.

Consider now the ring A2. Reasoning in the same way as before, for µm1
and

µ′ we obtain a finite sequence of P -stable matchings µm1
, µm1+1, ..., µm1+m2

such that, for all i ∈ {m1 + 1, ..., m1 + m2}, µiRµi−1 and µm1+m2
|(A1∪A2)=

µ′ |(A1∪A2).

Repeating the same procedure to the remaining odd rings, eventually we obtain

a finite sequence of P -stable matchings µ = µ0, µ1, ..., µm, where m =
r∑

i=1

mi,

and such that, for all i ∈ {1, ..., m}, µiRµi−1 and µm |T = µ′ |T . Now, since

µm |(N\T )= µ′ |(N\T ), then µm = µ′ and the proof is complete.

Lemma 2 Let P be a stable partition and µ be a P -stable matching. Then,

AP = {µ} ∪
{
µ ∈ M : µRT µ

}
.

Proof. It follows directly from the definition of AP and Lemma 1.
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Lemma 3 Dr = DP

Proof. (⊆): First we prove that D0 ⊆ DP . Let A = {a1, ..., ak} be an odd ring

of P . We must show that ai ∈ DP for all i ∈ {1, ..., k}. Consider the P -stable

matching µ such that µ(ai) = ai. As µ(ai−1) = ai−2 and ai �ai−1
ai−2 and

ai−1 �ai
ai then {ai, ai−1} is a blocking pair of µ and therefore ai ∈ DP .

Now we prove that, for each t ∈ {1, ..., r}, the following conditions hold:

a) Bt ⊆ DP .

b) There exists a matching µt ∈ AP such that

µt(x) =





x if x ∈ Bt

µt(x) otherwise,

where µt is a P -stable matching.

We argue by induction on t.

If t = 1, we have A1 = {a1(1), ..., ak1
(1)} and B1 = {b1(1), ..., bl1(1)}.14 Since

A1 ⊆ D0 then A1 is an odd ring of P . Consider the P -stable matching µ

such that µ(ai) = ai. Since µ(bj) = bj−1, by [2], we have bj �ai
µ(ai) and

ai �bj
µ(bj). Hence {ai, bj} is a blocking pair of µ and therefore bj ∈ DP .

Let µ′ be the matching obtained from µ by satisfying this blocking pair. Now,

since ai �bj
bj−1, by the stability of P , ai−1 �ai

bj . As µ′(ai−1) = ai−2 and

ai �ai−1
ai−2, then {ai, ai−1} is a blocking pair of µ′ which induces a matching

µ̃ ∈ AP such that µ̃(x) = x if x ∈ B1 and µ̃(x) = µ(x) otherwise, where µ

is the P -stable matching such that µ(ai−2) = ai−2. Let µ1 = µ̃ and µ1 = µ.

Then, if l = 1 we are done. If l = 2, to complete the proof we need to show that

bj−1 ∈ DP . But this is trivial because as agents bj and bj−1 are alone under µ1,

{bj , bj−1} is a blocking pair of µ1 and therefore bj−1 ∈ DP .

Now assume that t ≥ 2. We consider two cases:

Case 1. At is an odd ring. Reasoning in the same way as before for the sets At

and Bt, the result follows.

Case 2. At is not an odd ring. Then At = Bs for some s < t. By the

inductive hypothesis, there exists µs ∈ AP such that µs(x) = x if x ∈ Bs and

µs(x) = µs(x) otherwise, where µs is a P -stable matching. As µs(ai) = ai and

µs(bj) = µs(bj) = bj−1, by [2], we have bj �ai
µs(ai) and ai �bj

µs(bj). Hence

{ai, bj} is a blocking pair of µs and therefore bj ∈ DP . Let µ′
s be the matching

obtained from µs by satisfying this blocking pair. Since ai �bj
bj−1, by the

14Abusing notation, we write ai and bj instead of ai(t) and bj(t) for all t.
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stability of P , ai−1 �ai
bj and as µ′

s(ai−1) = ai−1 then {ai, ai−1} is a blocking

pair of µ′
s, which induces a matching µ̃s ∈ AP such that µ̃s(x) = x if x ∈ Bt and

µ̃s(x) = µs(x) otherwise. Then, choosing µt = µ̃s and µt = µs and reasoning in

the same way as before, the result follows.

Finally, as D0 ⊆ DP and, for each t ∈ {1, ..., r}, Bt ⊆ DP we conclude that

Dr ⊆ DP .

(⊇): We prove that Dr contains all the blocking pairs of the matchings in

AP . Now, by Lemma 2, AP = {µ} ∪
{
µ ∈ M : µRT µ

}
where µ is a P -stable

matching. Hence it suffices to show that, for any finite sequence of matchings

µ = µ0, µ1, ..., µm such that, for all s ∈ {1, ..., m}, µs is obtained from µs−1 by

satisfying the blocking pair {xs, ys}, therefore {xs, ys} ⊆ Dr.

We argue by induction on s.

If s = 1, then {x1, y1} is a blocking pair of µ. Let A = {a1, ..., ak} and B =

{b1, ..., bl} be the sets of P such that x1 ∈ A and y1 ∈ B. Then x1 = ai and y1 =

bj for some i and j. As {x1, y1} blocks µ we have y1 �x1
µ(x1) and x1 �y1

µ(y1),

i.e., bj �ai
µ(ai) and ai �bj

µ(bj). Suppose, by contradiction, that {ai, bj} *

Dr. If {ai, bj}∩Dr = ∅ then A and B are not odd rings hence, by Definition 1,

we have µ(ai) = ai−1 and µ(bj) = bj−1. But then bj �ai
ai−1 and ai �bj

bj−1,

contradicting the stability of P . If ai ∈ Dr and bj /∈ Dr since µ(bj) = bj−1

we have bj �ai
ai and ai �bj

bj−1. Hence, by [2], bj ∈ Dr, and we reach a

contradiction. If we assume that ai /∈ Dr and bj ∈ Dr, a similar contradiction

is reached.

Suppose now that s ≥ 2. Then {xs, ys} blocks µs−1. Consider the sets A′ =

{a′
1, ..., a

′
k′} and B′ = {b′1, ..., b

′
l′} of P such that xs = a′

i and ys = b′j for some

i and j. First we prove that if xs /∈ Dr then µs−1(xs) = µ(xs). We argue by

contradiction. If µs−1(xs) 6= µ(xs) we have {xs, µ(xs)} ∩ {xi, yi} 6= ∅ for some

i < s. By the inductive hypothesis, {xi, yi} ⊆ Dr hence {xs, µ(xs)} ∩ Dr 6= ∅

and since xs /∈ Dr, it follows that µ(xs) ∈ Dr. But µ(xs) ∈ A′ so A′ ⊆ Dr and

therefore xs ∈ Dr, which contradicts that xs /∈ Dr. In a similar manner, the

reader may see that if ys /∈ Dr then µs−1(ys) = µ(ys). Now, reasoning in the

same way as before for {xs, ys} the result follows.

Lemma 4 Let P be a stable partition. Then, there exists µ∗ ∈ AP such that

µ∗(x) =






x if x ∈ DP \D0

µ(x) otherwise,
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where µ is a P -stable matching.

Proof. By Lemma 3 we have Dr = DP . We argue by induction on r.

If r = 0, consider µ∗ = µ, where µ is any P -stable matching.

For r ≥ 1, by Lemma 3 (see its proof), there exists µr ∈ AP such that µr(x) = x

if x ∈ Br and µr(x) = µr(x) otherwise, where µr is a P -stable matching.

Let N ′ = N\Br. Then P ′ = P\ {Br} is a stable partition of N ′ for which

DP ′ = Dr−1. Therefore, by the inductive hypothesis, there exists µ′ ∈ AP ′

such that µ′(x) = x if x ∈ DP ′\D0 and µ′(x) = µ′(x) otherwise, where µ′ is

a P ′-stable matching. Let µ∗ and µ be such that µ∗ |N ′= µ′, µ∗ |Br
= µr |Br

,

µ |N ′= µ′ and µ |Br
= µr |Br

. Clearly, µ is a P -stable matching. Now, we

show that µ∗ ∈ AP . If µ∗ = µr since µr ∈ AP we are done. Otherwise, as

µ∗ |N ′∈ AP ′ and µr |N ′ is a P ′-stable matching we have µ∗ |N ′ RT µr |N ′ .

Hence µ∗RT µr and since µr ∈ AP then µ∗ ∈ AP . Obviously µ∗ satisfies the

assertion in this lemma.

Lemma 5 Let P be a stable partition such that SP 6= ∅. The following condi-

tions hold:

(i) For any µ ∈ AP , µ(SP ) = SP and µ |SP
is stable for (SP , (�x)x∈SP

).

(ii) For any µ, µ′ ∈ AP , µ |SP
= µ′ |SP

.

Proof. By Lemma 2, AP = {µ} ∪
{
µ ∈ M : µRT µ

}
where µ is a P -stable

matching.

(i) Let µ ∈ AP . We prove that, for each x ∈ SP , µ(x) ∈ SP . Let x ∈ SP and

A ∈ P such that x ∈ A. Then A ⊆ SP . If µ = µ, as µ is a P -stable matching,

by Definition 1, µ(x) ∈ A and since A ⊆ SP we have µ(x) ∈ SP . If µ 6= µ

then µRT µ and since {x, µ(x)} ⊆ SP it follows that µ(x) = µ(x) and therefore

µ(x) ∈ SP . Clearly µ |SP
is stable.

(ii) Since µ |SP
= µ |SP

for all µ ∈ AP , the result follows directly.

Lemma 6 Let P and P ′ be two distinct stable partitions and let µ and µ′ be a

P -stable matching and a P ′-stable matchings respectively. Then, µ′RT µ if and

only if P |SP
⊆ P ′ |SP ′ .

Proof. (=⇒): It is trivial if P |SP
= ∅. Suppose that P |SP

6= ∅. Let A ∈ P

such that A ⊆ SP . We must prove that A ∈ P ′ and A ⊆ SP ′ . As µ′RT µ then
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µ′ ∈ AP hence AP ′ ⊆ AP . Therefore SP ⊆ SP ′ . Now, by Lemma 5, we have

µ′ |SP
= µ |SP

and since µ(A) = A, it follows that µ′(A) = A. Hence A ∈ P ′.

Moreover, as A ⊆ SP and SP ⊆ SP ′ then A ⊆ SP ′ .

(⇐=): By Lemma 4, there exists µ∗ ∈ AP such that µ∗(x) = x if x ∈ DP \D0

and µ∗(x) = µ(x) otherwise, where µ is a P -stable matching. First we prove

that there exists a P ′-stable matching µ̃ such that µ̃RT µ∗. Consider the P ′-

stable matching µ̃ such that µ̃ |D0
= µ |D0

. As µ∗(x) = µ(x) for all x ∈ D0

then µ̃ |D0
= µ∗ |D0

. Furthermore, if SP 6= ∅ since P |SP
⊆ P ′ |SP ′ we have

µ̃ |
SP

= µ |
SP

and as µ∗(x) = µ(x) for all x ∈ SP , it follows that µ̃ |
SP

= µ∗ |
SP

.

Then, for each x ∈ DP \D0, we have µ̃(x) ∈ DP \D0 (otherwise, µ̃(x) = µ∗(x) =

x hence x /∈ DP \D0). Let (DP \D0)
′ = {x ∈ DP \D0 : µ̃(x) 6= x}. First of all,

note that (DP \D0)
′ 6= ∅ (if (DP \D0)

′ = ∅ then µ∗ = µ̃ = µ and therefore

P = P ′). Now we can write (DP \D0)
′ = ∪s

i=1{xi, yi} where yi = µ̃(xi). Since

agents xi and yi are alone under µ∗ we can consider the finite sequence of

matchings µ∗ = µ0, µ1, ..., µs where, for all i ∈ {1, ..., s}, µi is obtained from

µi−1 by satisfying the blocking pair {xi, yi}. Then we have µs = µ̃. Therefore

µ̃RT µ∗ and since µ∗RT µ we conclude that µ̃RT µ. Finally, the result follows

directly by Lemma 1.

Lemma 7 Let P and P ′ be two stable partitions. AP = AP ′ if and only if

P |SP
= P ′ |SP ′ .

Proof. Suppose that AP = AP ′ . Let µ and µ̃ be a P -stable matching

and a P ′-stable matching respectively. By Lemma 2, we have AP = {µ} ∪
{
µ ∈ M : µRT µ

}
and AP ′ = {µ̃} ∪

{
µ ∈ M : µRT µ̃

}
. As AP = AP ′ then µ̃ ∈

AP and µ ∈ AP ′ . If µ̃ = µ then P = P ′ and we are done. If µ̃ 6= µ we have

µ̃RT µ and µRT µ̃. Hence, by Lemma 6, P |SP
= P ′ |SP ′ .

The converse is analogous.

Lemma 8 Let P and P ′ be two stable partitions. Then for each A ∈ P either

A ⊆ DP ′ or A ⊆ SP ′ .

Proof. Let A ∈ P . If A is an odd ring then A ⊆ DP ′ . If A is a singleton

the result is trivial. Assume, therefore, that A is a pair of mutually acceptable

agents. Let A = {x, y}. Suppose, by contradiction, and without loss of gener-

ality, that x ∈ SP ′ and y ∈ DP ′ . By Lemma 4, we know that there exists a
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matching µ′ ∈ AP ′ such that µ′(x) = x if x ∈ DP ′\D0 and µ′(x) = µ̃(x) other-

wise, where µ̃ is a P ′-stable matching. To reach a contradiction we prove that

{x, y} blocks µ′ by using a proposal-rejection procedure intuitively described as

follows. Let y0 = y. Let x1 denote the predecessor of y0 in P 15 and y1 = µ′(x1).

As agent y0 prefers x1 to being alone, y0 proposes x1. If x1 accepts the proposal

(that is, x1 prefers y0 to his partner under µ′) the pair {x1, y0} blocks µ′ and

the procedure concludes. Otherwise, let x2 be the predecessor of y1 in P and

y2 = µ′(x2). Since agent x1 prefers y1 to y0, then, by the stability of P , agent

y1 prefers x2 to x1. So y1 becomes a new proposer in the procedure and offers

x2 the possibility of forming a new pair. Then if x2 accepts the proposal, the

pair {x2, y1} blocks µ′ and the procedure concludes. Otherwise, it may continue

iteratively in this manner.

Formally, we define inductively a sequence of pairs 〈{xn, yn}〉∞n=0, that are

matched under µ′ as follows:

(i) x0 = µ′(y) and y0 = y.

(ii) For n ≥ 1, xn is the predecessor of yn−1 in P and yn = µ′(xn).

Given that N is finite there exists r ∈ N such that yn �xn
yn−1 for all

n = 1, ..., r − 1 and yr−1 �xr
yr. Thus the procedure generates the blocking

pair {xr, yr−1} of µ′ and therefore agents xr and yr−1 are in DP ′ . We now show

that r = 1. If, on the contrary, r ≥ 2 since yr−1 ∈ DP ′\D0 then agent yr−1 is

single under µ′. Hence xr−1 = yr−1. But then yr−2 �xr−1
yr−1, contradicts the

choice of r (xr−1 would accept the proposal of yr−2). So, r = 1 and since x1 = x

and y0 = y we have {x, y} blocks µ′. Hence x ∈ DP ′ and we have reached a

contradiction.

Lemma 9 If P and P ′ are two stable partitions such that P |SP
and P ′ |SP ′

are maximal in P, then SP = SP ′ .

Proof. Suppose, by contradiction, that SP 6= SP ′ . Then SP ∩ DP ′ 6= ∅ or

SP ′ ∩ DP 6= ∅. We assume, without loss of generality, that SP ∩ DP ′ 6= ∅

(otherwise, the argument will be identical except for that the roles of P and

P ′ which are interchanged). By Lemma 8, for each A ∈ P either A ⊆ DP ′ or

A ⊆ SP ′ . Let P ∗ = {A ∈ P : A ⊆ DP ′}∪{A′ ∈ P ′ : A′ ⊆ SP ′} be a partition of

N . It is easy to verify that P ∗ is stable. Now we prove that DP∗ ⊆ DP ∩ DP ′ .

15Given x ∈ N , we say that y is the predecessor of x in P if y is the immediate predecessor
of x in A, where A ∈ P such that x ∈ A.
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By the iterative process described in Section 4, there exists a finite sequence of

sets 〈D∗
t 〉

r∗

t=0 such that:

(i) D∗
0 is the union of all odd rings of P ∗.

(ii) For t ≥ 1, D∗
t = D∗

t−1 ∪D∗
t where B∗

t = {b∗1(t), ..., b
∗
l∗t

(t)} ∈ P ∗ (l∗t = 1 or 2),

B∗
t * D∗

t−1, for which there is a set A∗
t = {a∗

1(t), ..., a
∗
k∗

t
(t)} ∈ P ∗, A∗

t ⊆ D∗
t−1

and

b∗j (t) �a∗
i
(t) a∗

i (t) and a∗
i (t) �b∗

j
(t) b∗j−1(t), [4]

for some i ∈ {1, ..., k∗
t } and j ∈ {1, ..., l∗t }.

Then, by Lemma 3, DP∗ = D∗
r∗ . We prove by induction on t that, for each

t = 0, ..., r∗, D∗
t ⊆ DP ∩ DP ′ . If t = 0, this is trivial. Assume that t ≥ 1.

It is suffices to prove that B∗
t ⊆ DP ∩ DP ′ . By Lemma 8, we only need show

that b∗j (t) ∈ DP ∩ DP ′ . Since A∗
t ⊆ D∗

t−1, by the inductive hypothesis, a∗
i (t) ∈

DP ∩ DP ′ . Clearly b∗j (t) ∈ DP ′ (otherwise, B∗
t ∈ P ′ and since a∗

i (t) ∈ DP ′ , by

[4], b∗j (t) ∈ DP ′). So B∗
t ∈ P and since a∗

i (t) ∈ DP , from [4] it follows that

b∗j (t) ∈ DP , as desired.

Finally, since DP∗ ⊆ DP ∩ DP ′ we have SP ′ ∪ (SP ∩ DP ′) ⊆ SP∗ and therefore

P ′ |SP ′⊂ P ∗ |SP∗ , contradicting the maximality of P ′ |SP ′ .
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