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ABSTRACT

Binmore and Samuelson (1999) have shown that perturbations (drift) are
crucial to study the stability properties of Nash equilibria. We contribute to
this literature by providing a behavioural foundation for models of evolutionary
drift. In particular, this article introduces a microeconomic model of drift based
on the similarity theory developed by Tversky (1977), Kahneman and Tversky
(1979) and Rubinstein (1988),(1998). An innovation with respect to those works
is that we deal with similarity relations that are derived from the perception
that each agent has about how well he is playing the game. In addition, the
similarity relations are adapted to a dynamic setting.
We obtain di¤erent models of drift depending on how we model the agent´s

assessment of his behaviour in the game. The examples of the ultimatum game
and the chain-store game are used to show the conditions for each model to
stabilize elements in the component of Nash equilibria that are not subgame-
perfect. It is also shown how some models approximate the laboratory data
about those games while others match the data.
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NOTE

The present paper is an extension of Uriarte (2003). That work introduced
a model of drift which here is named as �drift based on socially induced simi-
larity relations�. Hence, the reader will note that Section 3 in both works are
substantially the same and that Proposition 4 of the previous work is numbered
as Proposition 1 in the present one. Here we propose three additional models of
drift and show the derived results. A shorter version of this work is forthcoming
in the Journal of Economic Behavior and Organization.
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A Behavioural Foundation for Models of Evolutionary Drift

1. Introduction
It is common place to observe that the Nash equilibrium selected by a the-

ory depends on the manner in which perturbations are handled (see, for ex-
ample, Selten�s (1975) perfect equilibrium and Myerson�s (1978) proper equi-
librium and, more recently, McKelvey and Palfrey�s (1995) quantal response
equilibrium). Binmore et al.(1995) and Binmore and Samuelson(1999),-B&S
henceforth- also emphasize the importance of perturbations, but they place
these in the selection or learning process that takes the players to equilibrium,
rather than perturbing the game itself. This paper follows the approach taken
by the latter authors.
B&S studied the stability properties of Nash equilibria and dealt, most no-

tably, with the issue of equilibrium selection, particularly in the Ultimatum
Game (or the Chain-Store Game). This game is chosen because it is often used
to justify subgame-perfect equilibria, even though the choices observed in the
laboratory experiments on this game are other than the subgame-perfect (too
many experiments have been carried out on the Ultimatum Game to quote them
here; see, for instance, Güth et al. (2001) and the references quoted there). B&S
show that states near equilibria that are not subgame-perfect can be stabilized
by drift. Although their result is not particularly close to the experimental data,
B&S have shown that evolutionary drift (which accounts for the perturbations
that a¤ect the selection or learning process through which equilibrium might be
achieved) is a relevant element in game theory.
The di¢ culty to match the experimental data of the Ultimatum Game is

that player�s behaviour in this game seems to be led by fairness considerations.
When the perception of a game is in�uenced by individual values or by social
norms and conventions it seems that di¤erent strategies in that game are, a
priory, valued di¤erently and therefore the tendencies to abandon them might
di¤er from one individual to another. If this is true then, how do we model this
behaviour?. B&S argue that drift could be a key tool to deal with this issue.
Drift may capture some of the real world imperfections left aside by the learning
process embedded in the selection dynamic model, thus adding more realism
to the equilibrating process. But the model of drift proposed by B&S lacks
psychological foundations and so little insight is given into what perturbations
one should expect.
It is in modelling such perturbations realistically that the present paper is

concerned. The approach we take is based on the similarity theory developed
�rst by Tversky (1977) in psychology, and later applied to choice theory by Kah-
neman and Tversky (1979) and Rubinstein (1988), (1998) to explain observed
choice behavior (such as the one leading to the Allais Paradox). To do so, the
present work develops a similarity theory valid for a dynamic setting to model
the behaviour of the perturbing agents (to whom we call the

P
agents).

The most relevant assumption in the article is that each
P
agent is endowed

with a threshold function which measures the vagueness or ambiguity felt by the
agent about how well is playing the game. The level of vagueness felt might be
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sensitive to the proportions of agents in his population playing the same strategy
he is currently using. The threshold function plays the role of a primitive con-
cept in modelling the

P
agents�choice behaviour. In essence, what a

P
agent

does is the following: he uses the threshold function to build a pair of similarity
relations, one de�ned on the space of all possible expected payo¤s to his current
strategy and the other on the space of proportions of agents in his population
playing that strategy. Then, with this pair of similarity relations, the

P
agent

builds a preference relation on the (product) space of payo¤s-strategy propor-
tions that tells him, at each period, how satis�ed is with his current strategy.
This preference relation and the agent�s aspiration set, which is assumed to be
the preferred set, change over time. Dissatis�ed

P
agents will switch strategy

and, as rule of thumb, choose every strategy with the same probability. Hence,
drift ensures that small fractions of all strategies, including those that are not
currently played in the population, will be continuously injected and perturb
the selection dynamic system.
Depending on the type of threshold function we deal with, we may build two

classes of similarity relations. If the vagueness felt by the agent decreases when
he observes that the proportion of agents playing his current strategy increases
then, we would obtain the "Socially Induced Similarity Relations" (which are
related to those introduced by Uriarte (1999) for the space of simple lotteries).
But when the level of vagueness felt is not sensitive to what the others are doing
then, we would obtain the "AINU Similarity Relations" (which are related to
those introduced by Aizpurua, Ichiisi, Nieto and Uriarte (1993)) or, in short,
AINU (1993)). Both classes of similarity relations are assumed to satisfy the
axioms introduced by Rubinstein (1988).
From the "Socially Induced Similarity Relations" we derive three models of

drift. In one model the
P
agents are endowed with extremely sensitive threshold

functions (the playing modes). This model seems to capture well the in�uence of
social norms and convention on the agents�behaviour. But, on the negative side,
the model presents, in some cases, a certain degree of "adhocery". We avoid
this issue, with two additional models of drift that use the data about expected
payo¤s and strategy proportions to determine endogenously the threshold func-
tion of each agent. Finally, from the "AINU Similarity Relations" we obtain
a model of drift that is sensitive only to payo¤s: perturbations decrease when
payo¤s increase (as, for instance, in B&S and, in a di¤erent setting, McKelvey
and Palfrey (1995)). Each model has di¤erent capabilities to stabilize Nash
equilibria that are not subgame-perfect. As a consequence, some models match
the experimental data about the Ultimatum Game, while others approach the
data.
The present article is organized as follows. Section 2 introduces the nota-

tion and explains (and justi�es) the methodology used in the paper. Section 3
presents a detailed account of how the "Socially Induced Similarity Relations"
are obtained and how the model of drift is built. This is the main section of
the paper. Its extension is well justi�ed as it facilitates the understanding of
Sections 4-5. Section 4 presents the "AINU Similarity Relations" and the drift
model based on them. Section 5 presents the results obtained with the four
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models of evolutionary drift. In that section it is used the example of the ulti-
matum minigame (or the chain-store game) to show the su¢ cient conditions for
each model to create stationary states with di¤erent stability properties in the
component of Nash equilibria that are not subgame-perfect. Section 6 relates
the results with those obtained, in particular, with the QRE model of McKelvey
and Palfrey (1998) and with the B&S model. Section 7 presents numerical calcu-
lations made for the Full Ultimatum Game of Roth et al. (1991) and Roth and
Erev (1995) showing that some models approximate the experimental results
while others match the results. Section 8 concludes the article.

2. Notation

Let G be a noncooperative �nite game in normal form, withK = f1; 2; ::::; ng
as the set of players. We assume that there are n large player-populations.
Randomly drawn members of the n player-populations, one from each popula-
tion, are repeatedly matched to play the game. For each player k 2 K , let
Sk = f1; 2; ::::;mkg be his �nite set of pure strategies, for some integer mk > 2 .
Throughout the paper, we shall refer to agent ki; a member of player-population
k 2 K playing strategy i 2 Sk. Thus, fki will denote the proportion of agents
in player population k 2 K who play strategy i 2 Sk at time t, with fk being
the vector collecting such proportions in population k and f = (f1;:::;fn) the
population state at time t. Hence, f 2 � = �nk=1�k; where �k is the simplex
of mixed strategies for player k 2 K . Fki = [0; 1] is the space of proportions
of agents in player-population k playing strategy i. Let �ki(f) denote the (ex-
pected) payo¤ to agent ki given the population state f at time t. The term
�k(f) =

Pmk

i=1 fki�ki(f) denotes the average expected payo¤ to player popula-
tion k 2 K: More speci�cations about payo¤s are given in section 3.2, below.

Methodology: Evolutionary Analysis and Laboratory Data
As B&S, we start with a system of continuous, deterministic di¤erential

equations that describe how the proportions of the player populations attached
to each pure strategy evolve over time. This system is represented by a selec-
tion dynamic model which one can �nd in biological models of natural selec-
tion. Then, for a better approximation to the underlying stochastic strategy-
adjustment process we add the drift term to the selection dynamics.
The relevance of evolutionary analysis to experimental data is emphasized by

Binmore, Gale and Samuelson (1995), Binmore and Samuelson (1999), Samuel-
son (1998) and Binmore et al. (2002) in relation to the in�uence of social norms
in the laboratory behaviour. In particular, the Ultimatum Game is relevant in
this respect because the theoretical prediction of subgame-perfection is contra-
dicted by experimental data. The in�uence of norms triggered by the framing of
the Ultimatum Game explains the short run behaviour which locate the initial
conditions of the laboratory learning in the basin of attraction of equilibria that
are not subgame-perfect. In the medium run, it can be seen that the perturbed
RD goes fast to equilibria that are not subgame perfect, lingering there until
reaches a complete stop. But long run analysis by means of the replicator dy-
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namics (RD) could be relevant too to the long run laboratory learning. Borgers
and Sarin (1997) have shown that the RD may serve as long-run approxima-
tions to simple learning rules related to that used by Roth and Erev (1995) -
the reinforcement learning rule- to explain experimental data.

3. Drift based on Socially Induced Similarity Relations.
It is natural to observe di¤erent behaviors when di¤erent agents face the

same decision problem. For this reason, diversity of tastes and values are central
to economic analysis. Thus, following the economist�s approach, to the society
that evolves according to the agents whose behaviour leads to the selection dy-
namic model, the so called SD� agents, ( Binmore et al. (1995), Borgers and
Sarin(1997), Schlag (1998) and Cabrales (2000) show how di¤erent individual
behaviours may lead to the most popular selection dynamic model, the Repli-
cator Dynamics ) we shall add a new type of agents, the so-called

P
agents.

Thus, the perturbed selection dynamic will have large player-populations and
inside each population we assume there are two types of agents, the SD� agents
and the

P
agents. Both population types are assumed to be equally large. We

proceed now to describe the features of the
P
agent ki.

3.1 The Threshold Function
We introduce �rst a function which plays the role of a primitive concept in

the model.
It seems natural to assume that the participant in a continuously repeated

interaction builds experience-based conjectures about how good or bad is playing
the underlying game and that he may relate that evaluation, for instance, to
the proportion of individuals who are playing exactly like him. We will assume
that the

P
� agent ki has, at each stage, information about those proportions

and thinks as follows: �the higher is the proportion of agents in my player
population who are currently using the same strategy as mine, the less ambiguity
( or insecurity or uncertainty or vagueness) I should feel about how well I am
playing the game�. Thus, we are relating the idea of �how well I am playing
the game� with society (i.e. the rest of agents in my player population) and,
therefore, with the social experience, conventions and norms that might exist
therein. We assume that it is a subjective measure. It will become clear that
we are not proposing a herding model. For some agents the measure depends
exactly on playing according to what the rest of the society is doing. But for
other agents, it depends less on what the others are doing and more on playing
according to certain moral judgements or social norms or, simply, on what the
experience is telling him (this would be the alert mode of playing described in
Remark 1a, below). Formally,

Assumption 1
Each

P
�agent ki is endowed with a di¤erentiable function dki, called

threshold function, in the set
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D =

�
dki : Fki ! [0; 1] : with dki(0) = 1; dki(1) = 0

and bfki > efki ) dki( bfki) < dki( efki)
�
::::::(1)

Given a proportion fki 2 Fki and any dki 2 D; dki(fki) measures the am-
biguity (about how well is playing the game) felt by the

P
agent ki when the

proportion of agents in player population k playing strategy i 2 Sk at time t is
fki. The ambiguity gradually decreases when he observes that more and more
agents from his population come to play the same strategy as his. For a dif-
ferent use of the strategy proportions information, see Young (1993a), (1993b)
and (1996).

Remark 1: The Playing Modes.
For any dki; bdki in D; if for all fki 2 (0; 1); dki(fki) < bdki(fki); then we say

that dki is sharper than bdki: Two important cases should be considered: for all
fki 2 (0; 1), the extremely sharp threshold function, d 2 D; for which d(fki)
takes values which are �very close� to 0 (i.e., d(fki) �= 0) and the extremely
unsharp threshold function, d 2 D; for which d(fki) takes values which are
�very close� to 1(i:e:; d(fki) �= 1 ). When dki = d, we would say that the

P
agent ki is in the alert mode of play and when dki = d then, we say the agent
is in the absent mode of play.

3.2. Vagueness Modelled by Socially Induced Similarity Relations.
We assume that the level of vagueness felt by the

P
agent ki, develops in-

tervals (in both the payo¤ and strategy frequency spaces) inside which events
are not distinguishable. To model these intervals we use the similarity theory
axiomatized by Rubinstein(1988),(1998). The main innovation with respect Ru-
binstein�s similarities is that those developed in this section are built with the
help of the threshold functions in D and therefore it can be said that they are
socially induced.
In essence, a similarity relation serves to capture the capacity of an individ-

ual to discriminate between events. Correlated similarity relations, a concept
introduced by Aizpurúa et al.(1993), describe how that discrimination capac-
ity changes depending on the values of some relevant parameter. For instance,
we shall de�ne here correlated similarity relations on Fki to capture the idea
that the e¤orts dedicated to discriminate on Fki increase if the payo¤s at stake
increase. Similarly, we de�ne correlated similarity relations on the set of all ex-
pected payo¤s to pure strategy i 2 Sk to formalize the idea that discrimination
between di¤erent payo¤s increases when the proportion fki increases (i.e. a �ner
discrimination is obtained if the accumulated experience is increased and this
is assumed to occur when more agents from population k come to play strategy
i).
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Without loss of generality, we may assume that the payo¤s to the
P
agents

are strictly positive and do not exceed 1 ( we might imagine that to put in
practice their similarity based decision procedure, the

P
agents would perform

suitable positive a¢ ne transformations of the payo¤ functions of the underlying
game G combined with local shifts of such functions; these operations, -assumed
to be the same for all

P
agents -, would leave invariant the best reply correspon-

dences and hence, the set of Nash equilibria of G: Thus, the game G0, obtained
by means of those transformations, and G are equivalent). Then, �ki(f) denotes
the expected payo¤ to SD agent ki and pki(f) the expected payo¤ to

P
agent

ki; with pki(f) 2 �ki = (0; 1].
Let (pki(f); fki) be the vector of expected payo¤-proportion of agents of

player population k attached to strategy i 2 Sk at time t. The dki function
serves for two purposes:
(a) To de�ne on �ki correlated similarities of the di¤erence-type: each

P
�

agent ki calculates expected payo¤s correctly but, due to the ambiguity about
his play, develops a similarity interval for pki(f): given fki, the interval is
[pki(f)�dki(fki); pki(f)+dki(fki)]. Thus, given fki, dki(fki) de�nes the thresh-
old level on �ki. By Assumption 1, if fki increases, the threshold decreases and
so the similarity interval of pki(f) shrinks.
(b) To build the �ki function which will be used to de�ne on Fki correlated

similarity relations of the ratio-type (see Rubinstein (1988)). Assuming that
each

P
agent ki is endowed with a dki 2 D, the function �ki is de�ned as

follows: given some fki 2 (0; 1); for all pki(f) > dki(fki)

�ki(pki(f)) =
pki(f)

pki(f)� dki(fki)
> 1::::::::::::::::::::(2)

Thus, given dki and a proportion fki 2 (0; 1); the domain of �ki will be the
payo¤s satisfying pki(f) > dki(fki). Hence, there is a family of �ki functions
parameterized by fki 2 (0; 1): If pki(f) 5 dki(fki) then, �ki is not de�ned and
we would have the degenerate similarity relation, i.e. a relation for which the
similarity interval of any point in �ki is the whole space �ki (see Rubinstein
(1988)).
The �ki function is a threshold function that measures the discrimination ca-

pacity on Fki:Hence, given pki(f); the similarity interval for fki is [fki=�ki(pki(f))
; fki:�ki(pki(f))]. Note that if the payo¤s at stake pki(f) increases then1, the
similarity interval of fki shrinks because @�ki

@pki(f)
< 0.

3.3. Satis�cing
P
Preferences and Endogenous Aspiration Sets.

For any vector (pki(f); fki) 2 �ki � Fki; attached to strategy i 2 Sk at time
t; the pair of similarity relations are used to de�ne a preference relation that
would determine the upper and lower contour sets relative to that vector as
well as its indi¤erence set (the procedure is described in Appendix 1). Figure 1
depicts the resulting (non-complete and non-transitive)

P
preference relation,

%kide�ned on �ki�Fki, when the
P
agent ki is outside the two playing modes

mentioned in Remark 1. We assume that the preferred set, denoted by U =
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U� [ U� [ U�, represents the
P
�agent ki0s aspiration set at time t. By

de�nition, as (pki(f); fki) changes the corresponding aspiration set, obviously,
changes.

pki(f)

fki

fki/λki

0 1

1

fkiλki

pki(f)+dki(fki)

Uδ

Lδ

Uα

Uβ

Lα

Lβ

pki(f)­dki(fki)

Figure 1. The
P

preference %ki. Given the vector (pki(f); fki); its upper and lower
contour sets, obtained by a procedure based on a pair of socially induced similarity
relations, are denoted by U and L, repectively. The indi¤erence set is the darkest area

We assume that a
P
agent ki is a

P
preference satis�cer, in the sense that

he chooses a strategy just to minimize the distance from (pki(f); fki) to his
aspiration set U . We should note that:
(i) given fki and dki, since @�ki

@pki(f)
< 0, the similarity interval of fki, [fki=�ki(pki(f))

; fki:�ki(pki(f))], shrinks if pki(f) increases. The horizontal wedge-shaped form
of Figure 1 shows this property.
(ii) an increase in fki (say, to fki ) has more subtle implications: given

pki(f) and dki, since dki(fki) < dki(fki), the similarity interval of pki, [pki(f)�
dki(fki); pki(f) + dki(fki)], will shrink. This property is shown by the vertical
triangle-like form of Figure 1. Furthermore, the change in fki creates a new
function, �ki , such that �ki(pki(f)) =

pki(f)

pki(f)�dki(fki)
< �ki(pki(f)) for every

pki(f) > dki(fki).
Therefore, both in (i) and (ii) we get a thinner indi¤erence set ski [(pki(f); fki)]

- the dark area of Figure 1- and a smaller value of �ki. A thinner indi¤erence
set implies a smaller distance from (pki(f); fki) to the aspiration set and hence,
the agent will feel more satis�ed with his current strategy. Since in this event
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we would have a smaller value of �ki, the function �ki could be thought of as an
indicator of the degree of satisfaction of

P
� agent ki. The smaller the value

of �ki; the happier would feel the agent with his current strategy.

3.4. The Dynamic of Drift
We take the ratio 1

�ki
as the probability that

P
agent ki will retain his

current strategy i 2 Sk in the next period ; 1� 1
�ki

will then be the probability
of switching to a di¤erent strategy in Sk.
The

P
� agent ki only has information about the strategy he is currently

using (i.e. the payo¤s and frequencies attached to strategy i) . The next as-
sumption describes his behaviour when he feels dissatis�ed with his current
strategy.

Assumption 3
When a

P
agent ki is dissatis�ed with his current strategy, he will choose the

mk�1 available strategies j 2 Sk; j 6= i; with the same probability 1
mk�1 (1�

1
�ki
).

Thus, the
P
agents follow the rule �try every other action if you feel dissat-

is�ed with your current strategy�. Given Assumption 3, the
P
agents perturb

the SD system by injecting strategies that are not currently played. We assume
that when a

P
agent switches strategy, he learns, by imitation or education, to

measure how well is playing with the newly adopted threshold function. Inside
the

P
agents of population k, strategy i 2 Sk = f1; 2; :::;mkg will be played by

those dissatis�ed
P
agents kj, j 6= i; coming from the rest of mk � 1 strate-

gies (the in�ow): 1
mk�1

Pmk

j 6=i fkj(1 � 1
�kj
). The out�ow is the proportion of

dissatis�ed
P
agents ki who abandon the strategy i: fki(1 � 1

�ki
): We shall

assume that the drift term added to the ki�th selection dynamics equation (see
equation (5) below) is just the di¤erence between these two �ows. Hence, those
who retain their current strategy are not included in the drift term. Therefore,
we would have

1

mk � 1

mkX
j 6=i

fkj(1�
1

�kj
)� fki(1�

1

�ki
)

If we simplify the notation by denoting �ki(f) = 1
mk�1

Pmk

j 6=i fkj(1� 1
�kj
) +

fki
1
�ki

then, the drift term takes the following form

[�ki(f)� fki]::::::::::::::::::::(3)

It is worth mentioning that �ki(f) in equation (3) is not exogenously given
as in B&S and the noise models of Hopkins (2002). B&S interpret �ki(f) as
mistake probabilities which might re�ect rules of thumb and favour the as-
sumption that each �ki(f) is �xed and positive. For instance, the speci�cation
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of �ki(f) could re�ect the rule of calculations based on a uniform distribu-
tion over strategies. The assumption implies that drift will point inward the
state space and this could become problematic because it prevents exact con-
vergence on the equilibria observed in the laboratory. In the present model,
�ki(f) =

1
mk�1

Pmk

j 6=i fkj(1 � 1
�kj
) + fki

1
�ki

is endogenous and so drift is not
necessarily inward-pointing, therefore the problem of approximate convergence
and quantitative matching with laboratory data can be avoided.

3.5. The Connection between Threshold Function, Socially In-
duced Similarity Relations and Drift
We have two limiting values of drift. If the

P
agent ki is almost completely

certain that is playing well (alert mode) then, no matter what the values of
pki(f) and fki are, the similarity intervals and the indi¤erence sets will have
almost an empty interior and so (pki(f); fki) is �near� the agent�s aspiration
set. In other words, the agent is very satis�ed with his current strategy and �ki
will have very small values. Hence, the probability 1� 1

�ki
of switching, which

is the source of drift, will be negligible. If the
P
agent ki were in the absent

mode then, the above implications will be reversed, his indi¤erence sets would
cover almost the entire space �ki�Fki and the agent could be said to be �highly
dissatis�ed�with his current strategy.
Payo¤s and strategy proportions will play an active role to determine the

value of �ki and therefore the level of drift when the agent is outside the two
playing modes (Figure 1 depicts this case). In this case, increases in fki and
pki(f) imply a decrease in drift2.

4. Drift based on AINU�s Similarity Relations.
Now we shall deal with similarity relations that are not socially induced.

To this end, we use the correlated similarity relations introduced by Aizpurua,
Ichiishi, Nieto and Uriarte (1993), - AINU-, for the space of simple lotteries. It
is assumed that each

P
agent feels a constant level of vagueness about how well

is playing. That is, we assume that the
P
agents of each player role k 2 K is

endowed with a threshold function gk, such that for every i 2 Sk

gk : Fki ! [0; 1] ; with gk(fki) = �k, for all fki 2 [0; 1] , being �k 2 [0; 1)

Hence, the threshold function that measures the ambiguity felt by the
P

agent ki is not sensitive to the proportions fki (thus, the agent is not in�uenced
by the social norms and conventions that those proportions might convey)).
Assuming that each

P
agent ki is endowed with the constant function gk, a

new function  ki is de�ned as follows: for all pki(f) > �k

 ki(pki(f)) =
pki(f)

pki(f)� �k
> 1::::::::::::::::::::(4)

Notice that the �ki function de�ned in (2) was parameterized by fki, so that
there is one �ki for each fki 2 (0; 1): This is not the case for the  ki function,
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because �k is constant. With the aid of gk and  ki, we can de�ne similarity
relations on the payo¤ and the strategy proportion spaces respectively. On
�ki we de�ne similarity relations of the di¤erence type, for which the similarity
intervals are [pki(f) � �k; pki(f) + �k]: On Fki, we de�ne correlated similarities
of the ratio type. With a choice procedure (described in Appendix I), we can
build a preference relation on �ki � Fki depicted in Figure 2. Note that for a
given payo¤ pki(f), the size of the indi¤erence set and, therefore, the drift level
introduced by the

P
agent ki depends on �k: Since @ ki=@pki(f) < 0 then, if

the expected payo¤ increases, the size of the indi¤erence set shrinks and the
level of drift decreases.

pki(f)

fki

fki/Ψki

0 1

1

fkiΨki

pki(f)+εk

U

L

U

U

L

L

pki(f)­ εkεk

Figure 2. The AINU
P

preference %ki. Given the parameters �I , �II and the vector
(pki(f); fki); the upper and lower contour sets, obtained by a procedure based on a

pair of AINU similarity relations, are denoted by U and L, repectively. The
indi¤erence set is the darkest area

We proceed as in the previous case to build the drift term and we get

1

mk � 1

mkX
j 6=i

fkj(1�
1

 kj
)� fki(1�

1

 ki
)

= �k[
1

mk � 1

mkX
j 6=i

fkj
pkj(f)

� fki
pki(f)

]
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5. Results
We present now the results which may be obtained with the two models

of drift described in the previous sections. The results refer to the drift spec-
i�cations needed to stabilize Nash equilibria, in particular, those that are not
subgame-perfect.
To this end, we shall consider �rst a simpli�ed version of the Ultimatum

Game (UG) (see Binmore et al. (1995)) whose strategic form is described in
Figure 3. Player I is the population of Proposers who has two available strate-
gies: to propose a high division (H) or a low division (L) of a cake of size 4.
Player population II, the responders, may choose, when they are o¤ered the low
division, between accepting it (Y) or rejecting it (N). The Chain-Store Game
has the same structure as the Ultimatum Minigame but is of a di¤erent eco-
nomic nature. The empirical results of these two games suggest that di¤erent
interpretations of (formally) the same game,- a game of entry-deterrence or a
bargaining game-, may have di¤erent observed behaviours.

H
L

(2,2) (3,1) (0,0)

Y N

I

II

( y) Y N
( x) H 2,2 2 ,2
L 3,1 0,0

Figure 3. The extensive and strategic forms of the Ultimatum Minigame.

5.1. Drift produced by Socially Induced Similarity Relations withP
agents in Playing Modes.
When the perception of a game is in�uenced by individual values or by

social norms and conventions then, di¤erent strategies in that game are a priory
valued di¤erently (i.e. before the game and during the play), and therefore the
tendencies to abandon them might di¤er from one individual to another. To
capture this situation, we assume that each

P
agent plays his current strategy

in a given playing mode. Note that given a game, the existence of a playing
mode attached to a strategy must be deduced, in our opinion, from the data
obtained in the laboratory about that game, as well as from the knowledge
of society�s modal tastes and values. In other words, the speci�cation of the
playing modes must be empirically determined.
For concreteness, the selection dynamics of this section is assumed to be

the standard Replicator Dynamics (RD). The resulting perturbed deterministic

14



RD, derived by the joint behaviour of the SD � ki agents (whose behaviour
leads to the RD) and the

P
�ki agents, will therefore be

�
fki = fki (�ki(f)� �k(f)) + [�ki(f)� fki]::::::::::::::::::(5)

Note that for each player-population k

mkX
i=1

�
fki =

mkX
i=1

fki (�ki(f)� �k(f)) +
mkX
i=1

[�ki(f)� fki] = 0

Example 1: The Ultimatum Minigame (UM)
Let the probabilities of playing H and Y be denoted as x and y, respectively.

This game has a unique Subgame-perfect equilibrium (x; y) = (0; 1) and a
component of Nash equilibria, denoted NC, the segment joining (1, 0) and (1,
2/3). Let �H , �L, �Y , �N ; dH ; dL; dY and dN denote the threshold functions
of the

P
agents playing strategy High, Low, Yes and No, respectively. Then,

the perturbed system (5) for the UM is the following (time index suppressed)

�
x = x(1� x)(2� 3y)� x(1� 1

�H
) + (1� x)(1� 1

�L
)

= x(1� x)(2� 3y)� xdH(x)=pH(y):+ (1� x)dL(1� x)=pL(y):::::::::::::::(6)
�
y = y(1� y)(1� x)� y(1� 1

�Y
) + (1� y)(1� 1

�N
)

= y(1� y)(1� x)� ydY (y)=pY (x) + (1� y)dN (1� y)=pN (x)::::::::::::::::(7)

The experimental �ndings about the UG are very robust ( see also the �nd-
ings of Güth et al.(2001) though) and show that people share a common notion
about what is a fair, reasonable or acceptable o¤er and that their play is largely
guided by those notions. How is this result interpreted in terms of our model?.
Let us suppose that someone�s behaviour is guided by the following norm: �Be
magnanimous and learn to say no to injustice�. Then, our model would capture
this (pregame) attitude by saying that this person would very likely play High
(in the role of proposer) and No (in the role of responder) in the alert mode.
The robustness of the experimental �ndings about the UM seems to suggest
that a high percentage of people are inequity averse and have an a priory idea
of what is the right way of playing the UG. This would mean, in terms of the
present model, that they would probably play the fair strategies in the alert
mode. But, we may think as well that some agents -mainly proposers- might
initially experiment with strategies that are not fair, just to see how the oppo-
nent reacts. We conjecture that those agents will play those strategies knowing,
in advance, that sooner or later must abandon them. In other words, they will
play in the absent mode.
Case I of Proposition 1 shows that, even if initially there is a very small

percentage of
P
agents playing H and N in the alert mode and the rest of
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agents in both populations are in the absent mode, (1; 0) 2 NC will be the only
asymptotically stable outcome. In other words, if the initial play for the per-
turbed system (6)-(7) is arbitrarily near, say, the subgame-perfect equilibrium,
(0; 1); where there is only a small percentage of highly fairness-motivated

P
agents in both player populations, the theorem shows that both the SD agents
(now the replicator dynamic agents) and the

P
agents learn to coordinate in

the non perfect equilibrium where all proposers choose H and all responders N .

Example 2: The Chain-Store Game (CH-S)
The UM and CH-S games describe di¤erent economic situations and there-

fore the drift terms need not be the same. We shall assume, for simplicity, that
both games have the payo¤s of Figure 3. Player I is now the potential entrant
and player II the incumbent (Monopolist). Thus, change in Figure 3, H and
L for NE (Not Enter) and E(Enter), respectively; Y (Yield) and F (Fight) are
now the strategies for player II. Hence, the CH-S game would correspond to
the (only) Weak Monopolist Game of Jung et al.(1994) in which the incum-
bent would prefer to share the market if entry occurred. We may conjecture
two di¤erent situations modelled by two di¤erent speci�cations of drift. For in-
stance, let us consider the case when potential entrant

P
agents playing NE

are in the alert mode, those playing E are in the absent mode (that is being
action E riskier, agents playing E have a high uncertainty about how well are
playing) and all

P
incumbent agents, i.e. those playing Y and F , are in the

absent mode or almost in that mode. Thus,
P
incumbents think to know well

the trade, overestimate their power and do not care about their play. Let x
denote the proportion of potential entrants playing NE and y the proportion of
incumbents playing Y: Then, in Proposition 1, Case II, below, we get (1; 1=2)
as a global asymptotic attractor.

The next situation would approach the case of experienced players with
su¢ cient time and learning with no experimenter-induced strong monopolist of
Jung et al.(1994). The appropriate speci�cation of drift for this situation could
be when both potential entrants playing E and incumbents playing Y are in
the alert mode, while the rest of agents in both populations are in the absent
mode. Then, in Case III of Proposition 1, we show that the subgame-perfect
equilibrium is a global asymptotic attractor (and elements of NC are not local
attactors). The next result is a full stability study of these two games.

Proposition 1
Case I. Suppose in the UM Game that the

P
H agents (i.e.

P
proposers

o¤ering H) are in the alert mode ( so dH = d ) and the
P

L agents are in the
absent mode ( dL = d ). Then, if responders playing Y are in the absent mode
( dY = d ) and those playing N are in the alert mode ( dN = d ), the only
asymptotic attractor is the equal-split Nash equilibrium (1; 0).
Case II. Suppose in the CH-S Game that the

P
NE agents are in the alert

mode ,( dNE = d) and the
P

E agents are in the absent mode (dE = d ). Then,
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if both
P
agents Y and F are almost in the absent mode and dY (:) = dF (:),

the only asymptotic attractor is (1; 1=2).
Case III. Suppose in the CH-S Game that the

P
NE agents are in the

absent mode (so dNE = d ) and the
P

E agents are in the alert mode ( dE = d
). Then if dY = d and dF = d, the only asymptotic attractor is the subgame-
perfect equilibrium (0; 1):
Proof : In Appendix II. �

Remark 2.1
It is easy to see that with the playing modes model of drift it can be stabi-

lized Nash equilibria in components with empty interior (see, for instance, the
game shown in p.382 of B&S(1999)). Hence, contrary to the B&S model, pre-
dictions could be based on arguments that do not depend on the size of the Nash
component (for the notion of �size of a component�, see B&S (1999), Section 6,
p.378).
Remark 2.2
The assumption of Case I that the pro�le of strategies that are a Nash

equilibrium are played in the alert mode and those outside the pro�le are played
in the absent mode can be weaken. If we only assume that the strategies that
are a Nash equilibrium are played in the alert mode, then we would get two
asymptotic attractors (1; 0) and the subgame-perfect equilibrium (0; 1):

5.2. Drift Produced when the
P

agents are outside the Playing
Modes and the Use of Laboratory Data
The previous model could be, in some cases, said that uses ad hoc assump-

tions about how the playing modes are assigned to strategies. To avoid this
issue, we propose now two methods (of course, they are not the only ones) to
determine the dki functions in D by using laboratory data. We could say that in
this way the

P
agents are endowed with an endogenously determined threshold

function dki, as the result of a process of interactive learning.
Method I: We should note �rst that in the set D; for any rki 2 [0; 1] ,

dki = rkid + (1 � rki)d 2 D: Then, we can use the laboratory data about fki
at each round to give values to rki and estimate the dki of each

P
agent ki.

Thus, for instance in the UM Game, dH and dL could be de�ned as: dH(x) =
xd(x) + (1 � x)d(x) and dL(1 � x) = (1 � x)d(1 � x) + xd(1 � x); dY and dN
are de�ned in a similar manner. An alternative de�nition would be, dki(fki) =
fkid(s) + (1 � fki)d(s), for some �xed s 2 (0; 1), but this would not imply any
change on Proposition 2 below.
Method II: A more interesting approach seems to be when we use both

fki and the data about the payo¤s pki(f) of each round to determine the dki
functions ( in the lab we would use the realized payo¤s ). We de�ne the threshold
functions as dki = [fkid + (1 � fki)d]

�(pki(f)) and assume that the degree of
alertness increases with payo¤s. That is, @�(pki(f))=@pki(f) > 0, so that when
pki(f) approaches 1, dki(fki) approaches d and the

P
agent ki would be near
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the alert mode and when pki(f) tends to 0 the agent would be near the absent
mode.
The equation system for the UM and CH-S games is now

�
x = x(1� x)(2� 3y)� xdH(x)=pH(y) + (1� x)dL(1� x)=pL(y):::::::::::::(8)
�
y = y(1� y)(1� x)� ydY (y)=pY (x) + (1� y)dN (1� y)=pN (x)::::::::::::::(9)

The next result shows that the perturbed system resulting from Method I
has the same properties as the unperturbed replicator dynamics .

Proposition 2
If each

P
agent ki is endowed with a threshold function de�ned as dki(fki) =

fkid+(1�fki)d then, the subgame-perfect equilibrium (0; 1) is the only asymp-
totic attractor of the system (8)-(9) and each element of the interior of NC is a
local attractor.
Proof: In Appendix II.

Proposition 3
If each

P
agent ki is endowed with a threshold function de�ned as dki =

[fkid+ (1� fki)d]�(pki(f)) with @�(pki(f))=@pki(f) > 0 then,
(a) if dH ; dL; dY and dN are convex functions, the asymptotic attractors are

(0; 1)and (1; 0) and
(b) if dH and dL are convex and dY and dN are concave functions, the

asymptotic attractors are (0; 1) and (1; 1=2).
Proof: In Appendix II.

5.3. Drift based on AINU�s type of similarity relations.
Let �I , �II 2 [0; 1) denote the constant levels of vagueness or uncertainty

about how well are playing felt by proposers and responders, respectively. Then,
the system would be

�
x = x(1� x)(2� 3y) + �I [�x=pH(y) + (1� x)=pL(y)]:::::::::::::(10)
�
y = y(1� y)(1� x) + �II [�y=pY (x) + (1� y)=pN (x)]::::::::::::::(11)

We have the following result, described by Figure 4.

Proposition 4
For values of �I=�II greater than 0, the system (10) � (11) has a unique

asymptotic attractor located in the vicinity of the subgame-perfect equilib-
rium (x; y) = (0; 1). As the ratio �I=�II approaches 0, there is an additional
asymptotic attractor, which in the limit, when �I=�II = 0; is the element
(x; y) = (1; 1=2).
Proof: In Appendix II.
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Figure 4. The ��correspondence shows the asymptotic attractors for each value of
the ratio �I=�II : The �gure assumes �II = 0:1 and �I taking values from 0 onwards.

6. Relation with the Literature
One might �nd some resemblances between the theory of this paper and that

of the quantal response equilibrium (QRE). In the latter, players make correct
estimates of expected payo¤s but have an additive payo¤ disturbance (or error).
Here, the

P
agents too make correct estimates of the expected payo¤s, but since

they have doubts about how well they are playing the game, the estimated value
is not distinguished from those on a similarity interval. In the QRE, experience
implies a decrease in the errors. The similarity theory used in the present paper
assumes as well that an increase in the number of

P
agents ki is equivalent to an

increase in experience and therefore the size of the similarity interval of expected
payo¤ pki(f) decreases and that if the payo¤s at stake increase perturbations
decreases. We �nd more coincidences between the QRE and the model of drift
based on AINU�s type of similarity relations which imply the above system (10)-
(11). Recall that �k; (k = I; II); is a parameter that measures the vagueness
felt by player k about how well is playing; this parameter determines the size of
the similarity interval of the expected payo¤s to each strategy i available to k:
[pki(f)��k; pki(f)+�k] . This is a "noisy interval" for both the QRE theory and
the present paper´s theory. Hence, the ratio � = �I=�II would be the relative
noise, between proposers and responders, in the payo¤ space. In the system
(10)-(11) we also see that the value of �k, (k = I; II), determines the degree of
in�uence of drift upon the replicator dynamic equation for each pure strategy
of player k. In other words, �k is also a parameter measuring the sensitivity of
player k0s replicator equations to the noise produced by each

P
agent ki. This

feature has some vague resemblance with the parameter � of the logit QRE
which measures the sensitivity of the response function to the level of error.
Needless to say that the main di¤erence between the two models is the

dynamic approach taken here. But, if we concentrate on the results, we �nd,
under some conditions, coincidences between the logit equilibria and the limit
points of some of the models of drift presented above. McKelvey and Palfrey
(1998) study the quantal response equilibrium of two extensive versions of the
chainstore paradox game, -the extensive (i.e. sequential) version and, what they
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call, the "strategy" version-, having both the same normal form, with the payo¤s
of the above Figure 3. The purpose is to test the invariance property. When
studying the features of the Agent QRE correspondence (for the probabilities of
each action) as a function of � they �nd that there is the AQRE that converges
to the subgame-perfect equilibrium and, as opposed to the extensive version, in
the strategy version, for a large �, there is an additional QRE that converges
on the imperfect equilibrium x = 1, y = 1=2 (recall that x is the probability of
NE and y is the probability of Y ). The present paper assumes, as usual, that
the invariance property is satis�ed. Let us turn our attention to Proposition 4
and to the �� correspondence of Figure 4 which summarizes this result. The
�� correspondence shows, for each �; the asymptotic attractors of the system
(10)-(11). For high values of �, there is only one limit point which is near (x;
y) = (0; 1), depending on the values of �I and �II . But, as � goes to 0, the
system converges in the limit, (i.e., when �I = 0); to x = 1, y = 1=2, as well as
to (an approximation of) the subgame-perfect equilibrium. When �I = �II = 0
the system (10)-(11) is reduced to the replicator dynamic equations and hence
the limit point will be (0; 1).
Let us look now to the model of drift produced by Socially Induced Similarity

Relations with
P
agents in Playing Modes. In Case II of Proposition I, x =

1, y = 1=2 appears again as an asymptotic attractor (of the system (6)-(7)).
How is this result explained?. McKelvey and Palfrey (1998) �nd empirical
support to their result in Schotter et al. (1994) and rationalize it in terms of
plausibility, in the sense that it is more likely to observe that player 2 perceives
the suboptimality of F only when player 1 has chosen E (see p.19 of MacKelvey
and Palfrey (1998)). We instead explain the result in terms of relative drift. As
we said above, in Case II we assume that incumbents overestimate their market
power and play without taking too much care, while potential entrants take a
lot of care and pay much more attention to their decisions. In other words, they
are more alert (and hence less noisy) than incumbents. Therefore, under the
assumptions of Case II, perturbations in the entrant population introduce NE
much more frequently than E, while in the incumbent population the

P
agents

are assumed to equally noisy and so perturbations introduce both Y and F with
the same frequency. Hence, as the frequency of NE increases, drift approaches
the component NC, where Y and F get equal payo¤. Then, the state of NC
which will be stabilized depends on the relative sharpness of dY and dF and,
since in Case II it is assumed that they are equally sharp, the stabilized state
will be (1; 1=2). We have seen in Proposition 4 that responders should be noisier
than proposers to stabilize x = 1, y = 1=2. This happen when the relative noise,
measured by � = �I=�II , is 0.
Therefore, we can conclude that the equilibria obtained in the Chain-Store

Game with both the model of drift based on AINU�s type of similarity relations
and the model of drift with

P
agents in Playing Modes might coincide, under

some conditions, with those of the logit equilibria.
It is also worth noting that Binmore et al. (1995), assuming endogenous

drift and uniform mistake probabilities for both populations, -i.e. �ki(f) = 1=2
for each k and each i-, show, in their Proposition 3, that the asymptotically
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stable outcomes are the subgame-perfect equilibrium, (0; 1) and (due to the as-
sumption of �xed and uniform mistakes (which implies inward pointing drift) an
approximation to (1; 1=2). A key element in Binmore et al.�s (1995) Proposition
3 is that responders should drift more than proposers and this can happen only
if drift is su¢ ciently sensitive to payo¤s. Similarly, Proposition 4 shows that to
stabilize (1; 1=2), the ratio of noise � = �I=�II should be 0.
Finally, Case I of Proposition 1 shows the conditions to stabilize the state

(1; 0) and be obtained as the only asymptotically stable outcome. This case
is related to the work of Abbink et al.(2001). We may say, in their words,
that we are dealing with fairness motivated agents, loyal to the strategy that
would implement the equal split equilibrium. Thus, in our model

P
responders

playing No would be �programmed�to punish unfair o¤ers. The result of Case
I predicts learning in both populations, whereas in Abbink et al.(2001), there
is only evidence for �rst movers learning. Remark 2.2 shows a less stringent
assumption to have (1; 0) as an outcome of the system.

7. Example 3: The Full Ultimatum Game.
In Roth et al. (1991) and Roth and Erev (1995) it is reported an experiment

with the Ultimatum Game3 carried out in four countries: Israel, Japan, USA
and Slovenia. It is observed that the norms that are commonly used in real-life
bargaining situations prompt individuals to initially allocate a signi�cant share
of the surplus to the responders. As argued by Roth and Erev (1995), players�
initial propensities can have a long-term in�uence in the players learning. In
the evolutionary framework, it can be said that the initial propensities in the
Ultimatum Game tend to be located in the basin of attraction of the observed
equilibria: that is, in the basin of f5g for Slovenia and USA and f6g for Israel
and Japan. Hence, both the initial propensities and the �nal outcomes are
the data that should be predicted by the theory. We report here a computer
simulation4 of this game using the four models of drift presented in section 5.
First, a few words about the B&S model. In Binmore et al. (1995) it

is said that the range of potential equilibria obtained with the B&S model
does not include, in general, the �fair outcome� in the Full Ultimatum Game
(we shall see below that this is not the case with the models developed in
this paper). It was reported there (see p.68) that even increasing the mistake
probabilities attached to the �fair� o¤er has little e¤ect on the results of the
calculations. Furthermore, even though the observed initial propensities are in
the neighborhood of the �nal outcomes of this game, simulations show that in
the B&S model the solution trajectories starting from those initial propensities
can lead, in many cases, towards the subgame-perfect equilibrium or equilibria
close to it. Hence, we may say that the predictions derived with the B&S model
are somehow inconsistent with the experimental results5:
A brief account of the numerical calculations is the following.
(i) Drift with

P
agents in Playing Modes.

We mentioned above that the degree of sharpness of dki could be used to
model how sensitive is agent ki to society�s norms and conventions which are
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encoded in the strategy frequencies fki. Let fAkig denote that the
P
agents

in population k play strategy i in the alert mode and that the rest of strategies
j 6= i in population k are played by

P
agents in the absent mode. Hence, we

shall assume that in Japan and Israel proposers and responders play strategy 6
in the alert mode and the rest of strategies are played in the absent mode; that
is fAI6, AII6g denotes the set of threshold functions of those two countries, and
fAI5, AII5g those of Slovenia and USA (where k = I stands for proposers and
k = II for responders).
The computations with the Full Ultimatum Game show that the observed

laboratory equilibria, f5g in USA and Slovenia and f6g in Israel and Japan,
appear as global asymptotic attractors6. This means that, contrary to what
happens to the reinforcement learning model, in the present model of perturbed
learning, the experimental outcomes can be obtained independently of the initial
play. Hence, to simulate the path to the observed outcomes in the Ultimatum
Game, the model does not need to take the observed initial play (or the initial
propensities of Roth and Erev (1995)) as given. This model of drift predicts
that the observed laboratory data, i.e. both the initial propensities and the
equilibria, are due to a rather high sensitivity of individuals to fairness-oriented
norms, leading them to use their analytical and perceptual resources at their
highest level, i.e. in the alert mode.
We conclude that this model of drift does account well for the �nal data,

but, on the negative side, it should be said that it is certainly ad hoc. We might
accept that the equal split strategy 5 be played by both players in the alert
mode, but how do we justify the same for playing 6?.

(ii) Drift with
P
agents outside the two Playing Modes and Lab-

oratory Data
To avoid the degree of "adhocery" that the previous model might have,

Table I and Table II (in Appendix III) show the modal equilibrium demands
(i.e. what player I demands for himself) for the models of drift in which the
threshold functions are endogenously formed as in Proposition 2, dki(fki) =
fkid+ (1� fki)d , and Proposition 3, dki = [fkid+ (1� fki)d]�(pki(f)). In both
tables, the entry in row i and column j is the modal equilibrium demand when
the initial conditions are that all proposers start playing i and all responders
start playing j (we follow Binmore et al.(1995) p.63-64 to decide when the
system has converged to a point). Table I shows that the modal demand of 6 is
independent of the initial demands made by proposers and the initial maximal
acceptable demands made by responders. The outcome of 6 is quite robust
as it appears in many of the cells of Table II. Furthermore, we should note
that 6 is also the outcome when the system, for these two models of drift, is
initialized with each of the strategies being played with probability 1/9. Hence,
the laboratory result of Japan and Israel could be matched without any ad
hoc model of drift. A di¤erent case is the outcome 5. Table II shows that it
appears when all responders start playing 5 and all proposers start playing any
demand from 1 to 5. But as we said above, there is a di¤erence between 5 and 6
and maybe it is not too ad hoc to think that fairness motivated agents in both
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populations will play the equal split strategy 5 in the alert mode.
(iii) Drift based on AINU�s similarity relations.
Table III summarizes calculations made for various levels of �xed vague-

ness �I and �II : The system is initialized with each strategy being played with
probability 1/9. As we decrease the vagueness (and hence, the perturbation)
of responders, �II , the outcome changes from 6 to 7; that is, the modal de-
mand tends to (but still is far from) the subgame-perfect equilibrium, 9. This is
in contrast with Binmore et al.(1995) where, when responders�(�xed) noise is
su¢ ciently small relative to that of proposers, the subgame-perfect equilibrium
appears. When �I = �II = 0, then the system coincides with the Replicator
Dynamics and the outcome is 7.

8. Conclusions
What we have done is to complete a (biologically based) selection dynamic

model by adding di¤erent models of drift originated by agents whose behaviour
is based on decision procedures compatible with similarity relations. We have
shown that the addition of this type behaviour, studied by authors like Kahne-
man and Tversky (1979), has positive implications. With a threshold function
that measures the ambiguity felt by each perturbing agent about how well is
playing, we build three models of drift based on Socially Induced Similarity
Relations. The playing modes model of drift combined with the Replicator Dy-
namics (RD) seems to �t well to explain the in�uence of norms and conventions,
such as fairness, but it could be said that the model makes a certain use of ad
hoc assumptions. To avoid this issue we endogenize the threshold functions by
using the data about payo¤s and strategy proportions and obtain two additional
models. We show that both of them are capable to stabilize equilibria that are
not subgame-perfect. If similarity relations are not socially induced, we get the
AINU model of drift. This last model shows resemblances with the QRE model
of McKelvey and Palfrey (1995) and stabilizes the same equilibria as McKelvey
and Palfrey (1998) in the Chain-Store Game.
We deduce that the failure of Binmore and Samuelson�s (1995) model to

match the observed data could be the sensitivity of drift to just payo¤s and to
being inward pointing (see section 6 above). In a di¤erent terrain, the results
mitigate somehow the Cheung and Friedman�s (1998) disappointing tests with
the (unperturbed) RD7.
There are things to be done in future works. One, in particular, is that

it should be tested experimentally in which sense the knowledge of how many
subjects are playing like me in�uences on my decisions8. This may help to
understand the building of new conventions or the robustness (i.e. survival) of
�old�individual and social values to evolutionary pressures. Another work left
for future research is to use the two classes of similarity relations mentioned
here to build, instead of drift, di¤erent models of selection dynamics.

9. Notes
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1. Given fki and dki

@�ki
@pki(f)

=
�dki(fki)

(pki(f)� dki(fki))2
< 0

This is the shrinking property of the correlated similarity relation de�ned by �ki
on Fki (see Uriarte (1999)). It means that if the expected payo¤ increases,

P
agent

ki�s perception increases.
2. We can compare the present model of drift with that of Binmore and Samuelson

�s (1999). The property @�ki
@pki(f)

< 0 has some similarity with B & S�s assumption
of a decreasing and Lipschitz continuous drift function on expected payo¤ di¤erences.
This property would also be satis�ed had we de�ned the functions �ki as

�ki(�k(f) =
�k(f)

�k(f)� dki(fki)

where �k(f)(> dki(fki)) is the di¤erence between the maximum and the minimum
of the expected payo¤s attached to player k0s strategies given the current strategy
frequencies in the opposing populations. Hence, perception increases with B & S �s
measure of potential cost of making a mistake, �k(f):In the present model, drift is not
the payo¤ sensitive under the two playing modes; that is, when dki = d, the derivative
@�ki
@pki(f)

is almost zero and if dki = d , �ki will be de�ned only when pki(t) = 1 and so

we cannot take derivatives. Hence, as dki moves away from d and d; �ki becomes
relatively more sensitive to expected payo¤s. As a consequence, we would approach a
model of drift such as the one proposed by B & S.

The �ki of the present paper can be said to be
P
�agent ki�s �adaptive mistake

probability�: Mistake probabilities are �xed in the B & S model and agents may avoid
the error by increasing their cognitive e¤orts when the potential cost of making the
mistake increases. Instead, the approach taken here seems to be more natural, as
agents can learn from their �mistakes�, by adjusting them. Endogenous �ki �s implies
that drift is not inward-pointing.

3. The experiment consisted of dividing an amount of money, 10 tokens, and the
interpretation of the Ultimatum Game is that Player I is proposing to Player II what
he is demanding for himself; the second player�s strategies are maximal acceptable
demands.

4. To run the simulations, we shall use the subclass of threshold functions in
the set D; dki(fki) = (1 � fki)

nki ; with nki 2 (0;1) and i 2 Sk . This subclass
is large enough for the purpose of computations. When nki ! 0 , the degree of
sharpness diminishes. For the simulations, we consider that the

P
agent ki is playing

strategy i in the alert mode when dki(fki) = (1� fki)10
8

; he would be in the absent

mode when 0 < nki � 1; say dki(fki) = (1 � fki)
10�8 . As in Binmore et al.

(1995), we approach equation (4) by means of the equation fki(t + �) � fki(t) =
�fki(t)(�ki(f)(t)��ki(f)(t))+�(�ki(f)(t)�fki(t)) , where the step size � = 0:01.
When dki = [fkid + (1 � fki)d]

�(pki(f)), we assume that �(pki(f)) = pki(f)=1 �
pki(f). We shall consider, like Binmore et al.(1995), that the system has converged
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on a point when the �rst 15 decimals are unchanging. Multiplying the number of
iterations of the above discrete equation by � we would get an approximation to how
much learning -number of times to asses strategies- has been needed to reach temporary
(medium run) and de�nitive (long run) stability.

5. Of course, we do not think that the issue is reduced to a mere quantitative
matching of the theoretical results with the laboratory data. What is relevant here is
the motivation of the perturbations that push the system to converge to the observed
equilibrium in a given country as being something closely related to, say, some cul-
tural characteristic that distinguishes the country that is being examined. The model
developed in Binmore et al.(1995) requires a mistake probability of 0.95 attached to
the equilibrium demand reached in each country and the remaining probabilities being
equal to one another. Under this speci�cation of drift and for some values of their
� and � parameters, only starting from those observed initial propensities or from a
neighborhood of them, the model may match the observed equilibria. The remaining
problems are the motivations for this speci�cation of drift that allows the quantita-
tive matching and the point made in the above note 3. Another issue is that, in the
Binmore et al. (1995) model of drift, agents�mistakes depend on their capability to
compute the potential cost - measured in expected payo¤s- of making a mistake.

6. There are other combinations leading to the same result; for instance, when
agents playing strategies in the vicinity of 5 and 6 are in the alert mode too, we
may simulate the path to the observed equilibria. What happens is that the basin of
attraction of 5 and 6 will shrink.

7. In the Matching Pennies Game, -just to mention the behaviour of the play-
ing modes model of drift with respect to an interior Nash equilibrium-, when all theP
� agents in both player populations are in the absent mode, the perturbed system

converges to the Nash equilibrium (1=2; 1=2):
8. After each round, every subject should be given information about the propor-

tion fki of people in his population who have used the same strategy as his current
one.

10. Appendix I:
10.1. Socially Induced Correlated Similarity Relations.
Given a pair of vectors, (pki(f); fki) and (pki(f); fki) in �ki � Fki; with fki

, fki 2 (0; 1); we de�ne similarity relations on �ki and Fki in the following way.
To simplify notation, we write pki(f) and pki(f) as pki and pki, respectively.
(i) On the space �ki , we de�ne correlated similarity relations of the dif-

ference type as follows: given fki;we say that pki is similar to pki; ( formally
written as pS�[fki]pki ), if and only if jpki � pkij 5 dki(fki) , where j:j stands
for absolute value. Note that dki(fki); the uncertainty or ambiguity level felt
by

P
agent ki given the proportion fki; becomes the threshold level in the

de�nition of this type of similarity relation. The vertical �cone-shaped�part of
Figure 1 is de�ned by the set of similars to pki(f) given any fki 2 (0; 1): When
fki = 0; the whole set �ki is similar to pki and when fki = 1 only pki is similar
to itself.
(ii) On Fki , we de�ne correlated similarity relations of the ratio-type as

follows: given pki and fki , we say that fki is similar to fki;( formally written
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as, fkiSF [pki, fki]fki ), if and only if 1=�ki 5 fki=fki 5 �ki. The �ki function
(recall that �ki is de�ned for a given strategy proportion fki ) de�nes a threshold
on Fki. The horizontal �cone-shaped�part of Figure 1 is de�ned by the set of
similars to a given fki; as payo¤s go from pki > dki(fki) to 1:

10.2. The
P
Preference on �ki � Fki

We shall assume that each
P

agent ki compares pairs of alternatives in
�ki � Fki with the aid of the above pair of correlated similarity relations, S�
and SF; to decide which of the two is preferred. Thus, the agent may de�ne
his

P
procedural preference %kion �ki � Fki and know his aspiration set U at

each t ( which we identify with the upper contour set of the vector (pki; fki) at
t ). That is, given a pair of vectors (pki; fki) and (pki; fki) in �ki � Fki , the
vector (pki; fki) will be declared to be preferred to (pki; fki), i.e. (pki; fki) �ki
(pki; fki); whenever

P
agent ki perceives that one of the following three con-

ditions is met. Note that since (pki; fki) is to be preferred, the conditional
similarity relation S� on �ki given fki and the conditional similarity relation
SF on Fki given pki and fki are to be used.

Condition � : pki > pki, and no pkiS�[fki]pki; while fkiSF [pki; fki]fki:

In words, pki is bigger than pki and, given fki , pki is perceived to be not
similar to pki ; while , fki is perceived to be similar to fki. U� in Figure 1 is
the area implied by this condition.

Condition � : fki > fki and no fkiSF [pki; fki]fki;while pkiS�[fki]pki:
In words, fki is bigger than fki and, given pki and fki; fki is perceived to

be not similar to fki; while, given fki; pki is perceived to be similar to pki:U�
in Figure 1 is the area implied by this condition.

Condition � : pki > pki and no pkiS�ki[fki]pki; fki > fki and
no fkiSF [pki; fki]fki.
That is, vector (pki; fki) is strictly bigger than (pki; fki) and no similarity is

perceived in both instances. U� in Figure 1 is the area implied by this condition.

Whenever both expected payo¤s and strategy proportions are perceived
to be similar, then the two vectors will be declared indi¤erent ; i.e. when
pkiS�[fki]pki, pkiS�[fki]pki, fkiSF [pki; fki]fki and fkiSF [pki; fki]fki, then
(pki; fki) �ki (pki; fki). When none of these four situations takes place, then
the two vectors would be non-comparable (see Figure 1).

10.2. AINU Similarity Relations.
(i) On the space �ki , we de�ne correlated similarity relations of the dif-

ference type as follows: we say that pki is similar to pki ( formally written as
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pkiS�pki ), if and only if jpki � pkij 5 �k. The vertical cilinder-shaped part of
Figure 2 is de�ned by the set of similars to pki given �k:
(ii) On Fki , we de�ne correlated similarity relations of the ratio-type as

follows: given pki, we say that fki is similar to fki;( formally written as,
fkiSF [pki]fki ), if and only if 1= ki 5 fki=fki 5  ki. The horizontal cone-
shaped part of Figure 2 is de�ned by the set of similars to fki; as payo¤s go
from pki > �k to 1:
The preference relation is de�ned by means of a procedure similar to the

previous case.

11. Appendix II:

Proof of Proposition 1:

Case I: Rewrite (6)-(7) as follows (we shall use the same notation for the
Ultimatum Minigame and for the Chain-Store Game)

�
x = (1� x)[x(2� 3y) + d(1� x)=pL(y)]� xd(x)=pH(y)::::::::::::::::(60)
�
y = y[(1� y)(1� x)� d(y)=pY (x)] + (1� y)d(1� y)=pN (x)::::::::::::(70)

Writing
�
x =

�
y = 0 in (6)-(7) yields (0; 0), (1; 0); (0; 1) (since dY (y) = 0 when

y = 1 ) and (1; 1), as the possible stationary points of the system. Recall that
the payo¤s to the

P
agents take values in (0; 1] and are obtained from those

of the original Ultimatum Minigame by making use of the invariance properties
of the set of Nash equilibria ( for instance, we may add 1 to each payo¤ of the
Ultimatum Minigame - see Figure 2- and then divide each by 4).
By Remark 2 we know that, since agents playing H and N are in the alert

mode and those playing L and Y are in the absent mode then, the probabilities
d(x)=pH(y) and d(1 � y)=pN (x) are almost 0 and can be ignored, while both
d(1� x)=pL(y)and d(y)=pY (x) are nearly 1 (due to the assumptions that d(:) is
almost 1 and that, by (2), pki(f) > d(fki) ). As a consequence, in the interior
of the state space, i.e. for values of x 2 (0; 1) and y 2 (0; 1), �x > 0 and �

y < 0:
When x = 1; all responders earn the same and so the system (6)-(7) is reduced
to

�
y = �yd(y) + (1� y)d(1� y)

and so
�
y < 0 for all y 2 (0; 1): When y = 1; it can be seen that

�
x > 0 for all

x 2 (0; 1): When x = 0; �y < 0 for all y 2 (0; 1) and when y = 0; �x > 0 for all
x 2 (0; 1): Therefore, (1; 0) is a global asymptotic attractor.

Case II: writing
�
x=

�
y = 0 in the system (6)-(7) yields (0,0), (1,0), (0, 1), (1,

1) and (1, 1/2) as the possible stationary points. As in the previous case,
�
x > 0
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in the interior of the state space. When x = 1;
�
y = �ydY (y) + (1� y)dN (1� y)

and since we have assumed that dY (:) = dN (:) then,
�
y 7 0 if y ? 1=2;thus,

�
y = 0 when y = 1=2: The rest of the behaviour in the boundary is the same as
in Case I, therefore, (1; 1=2) is a global asymptotic attractor.

Case III. After the study of the previous cases, It can be easily veri�ed that,
given the assumed playing modes,

�
x < 0 and

�
y > 0 in the interior of the state

space; in the boundary the behaviour is such that (0; 1) is a global asymptotic
attractor. �

Proof of Proposition 2: Note �rst that dki(fki) = fkid(fki) + (1 �
fki)d(fki) = (1 � fki) because for all fki 2 (0; 1); d(fki) is nearly zero and
d(fki) is nearly one ; hence, we may think of dki(fki) as if it were the linear
threshold function of set D: Thus, the (8)-(9) system can be rewritten as

�
x = x(1� x)(2� 3y) + x(1� x)[�1=pH(y) + 1=pL(y)]:::::::::::::(80)
�
y = y(1� y)(1� x) + y(1� y)[�1=pY (x) + 1=pN (x)]::::::::::::::(90)

We shall see that the trajectory of the above system coincides with that
of the replicator dynamics. If x 2 (0; 1) and y < 2=3 then,

�
x > 0 because

x(1 � x)(2 � 3y) > 0 and pH(y) > pL(y). On the other hand, for all values of
x 2 (0; 1) and y 2 (0; 1), �y > 0 because y(1�y)(1�x) and pY (x) > pN (x):When
x = 1,

�
x = 0 and pY (x) = pN (x) = pII(x), therefore

�
y = y(1� y)[�1=pII(x) +

1=pII(x)] = 0 for all y 2 [0; 1]:Now it is an easy task to show that the interior
points of NC are local attractors: take any point ! 6= (1; 0); (1; 2=3) in NC and
any neighborhood B of !; then, there will be another neighborhood ~O � B with
! 2 ~O, such that if the initial point is in ~O it is clear that the trajectory will
remain in B:
If x 2 (0; 1) and y > 2=3 then,

�
x < 0 because pH(y) < pL(y); since

�
y > 0,

then, it is easy to see that the system (80)�(90) converges to the subgame-perfect
equilibrium (0; 1) and so it is an asymptotic attractor.

Proof of Proposition 3: Note �rst that dki = [fkid+(1� fki)d]�(pki(f)) =
(1� fki)�(pki(f)), so the (8)-(9) system can be rewritten as

�
x = x(1� x)(2� 3y)� x(1� x)�(pH(y))=pH(y) + (1� x)x�(pL(y))=pL(y):::::::::::::(8")
�
y = y(1� y)(1� x)� y(1� y)�(pY (x))=pY (x) + (1� y)y�(pN (x))=pN (x)::::::::::::::(9")

Writing
�
x =

�
y = 0 in (8")-(9") yields (0; 0), (0; 1); (1; 0); (1; 1=2) and (1; 1)

as the possible stationary points of the system. When x = 1, dY and dN are the
same function because pY (x) = pN (x) = pII(x). Hence, the system (8")-(9") is
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reduced to
�
y = 1

pII(x)
[�y(1 � y)�(pII(x)) + (1 � y)y�(pII(x))]:Thus,

�
y = 0 when

y = 0; 1=2 and 1: Suppose 0 � y < 2=3 and let B be any neighborhood of
(1; 0) and ~O a neighborhood with (1; 0) 2 ~O � B. Then, x(1� x)(2� 3y) > 0;
on the other hand, pH(y) > pL(y) and if both dH = (1 � x)�(pH(y))and dL =
x�(pL(y)) are convex, the drift part will also be positive, hence

�
x > 0. The

component y(1 � y)(1 � x) of
�
y is positive and, as we approach x = 1, tends

to 0. Then, if, in the drift part of
�
y we assume that both dY = (1� y)�(pY (x))

and dN = y�(pN (x)) are convex functions, any trajectory starting in ~O will
converge to (1; 0) and so (1; 0) will be an asymptotic attractor. If dY and
dN were concave functions, those trajectories will diverge from (1; 0). With a
similar procedure, it can be shown that (1; 1=2) is an asymptotic attractor if
dY and dN are concave functions. It is rather simple to show that each of these
two asymptotic attractors is accompanied by another one, the subgame-perfect
equilibrium, (0; 1). The rest points (0, 0) and (1, 1) are easily excluded as limit
points.

Proof of Proposition 4. Suppose �rst that �I = 0 and �II > 0. Then, the
rest points of the system are (x; y) = (1; 1=2) and (0; ey), where, for a given value
of �II , ey is the positive root of the quadratic equation y(1�y)+ �II [�y=pY (x)+
(1� y)=pN (x)] = 0.
We show �rst that (1; 1=2) is an asymptotic attractor. Let x 2 (0; 1) and

y < 2=3, then
�
x > 0:On the other hand, as x approaches 1, pY (x) and pN (x)

tend to be equal. Hence, the replicator dynamic term y(1�y)(1�x) of �y tends to
0 and, for values of y 2 (1=2; 2=3), the drift term �II [�y=pY (x)+(1�y)=pN (x)]
tends to take negative values, making

�
y < 0. Using the same reasoning, for

values of y < 1=2, the drift term will be positive and so
�
y > 0. Therefore, for

any neighborhood B of (1; 1=2), we can �nd another neighborhood ~O � B with
(1; 1=2) 2 ~O, such that all trajectories starting in ~O will converge to (1; 1=2).
If x 2 (0; 1) and y > 2=3, then, �x < 0 and �

y > 0 because, for a value of �II
su¢ ciently small, the replicator dynamic term, y(1� y)(1� x); is greater than
0 and dominates the drift part. Then, it is easy to see that (x; y) = (0; ey) must
be an asymptotic attractor (where ey is in the vicinity of 1, depending on the
value of the parameter �II : as �II decreases in value,ey approaches 1 ):
Suppose now that both �I and �II > 0 then, the exact limit points of

(10) � (11) depend on the values of �I and �II . The element of the Nash
component (1; 1=2) cannot be now an asymptotic attractor because if we set
x = 1,

�
x = ��I=pH(y). Hence the drift part of (10) pushes the system away

from (1; 1=2), with increasing power as �I increases in value relative to �II : The
only asymptotic attractor in this case would be in the vicinity of the subgame-
perfect equilibrium (x; y) = (0; 1), its exact location depends on the values of �I
and �II .

12. Appendix III:
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Table I

1 2 3 4 5 6 7 8 9
1 6 6 6 6 6 6 6 6 6
2 6 6 6 6 6 6 6 6 6
3 6 6 6 6 6 6 6 6 6
4 6 6 6 6 6 6 6 6 6
5 6 6 6 6 6 6 6 6 6
6 6 6 6 6 6 6 6 6 6
7 6 6 6 6 6 6 6 6 6
8 6 6 6 6 6 6 6 6 6
9 6 6 6 6 6 6 6 6 6

Table II

1 2 3 4 5 6 7 8 9
1 6 6 6 4 5 6 6 6 6
2 6 6 6 4 5 6 6 6 6
3 6 6 6 4 5 6 6 6 6
4 6 6 6 4 5 6 6 6 6
5 6 6 6 6 5 6 6 6 6
6 6 6 6 6 6 6 6 6 6
7 6 6 6 6 6 6 7 7 7
8 6 6 6 6 6 6 6 6 6
9 6 6 6 6 6 6 6 6 6

Table III

�II = 0:1 �II = 0:01 �II = 0:001 �II = 0
�I = 0:1 6 7 7 7
�I = 0:01 6 7 7 7
�I = 0:001 6 7 7 7
�I = 0 6 7 7 7

7. References
Abbink, K., Bolton G E., Sadrieh, A. and Tang, F.-F (2001) �Adaptive

learning versus punishment in ultimatum bargaining�, Games and Economic
Behavior 37:1-25.
Aizpurua, J.M., Ichiishi, T., Nieto, J. and Uriarte, J.R. (1993) �Similarity

and Preferences in the Space of Simple Lotteries�, Journal of Risk and Uncer-
tainty 6: 289-297.

30



Binmore. K., Gale, J. and Samuelson, L. (1995) �Learning to be Imperfect:
the Ultimatum Game�, Games and Economic Behavior 8: 56-90.
Binmore, K. and Samuelson, L. (1999) �Evolutionary Drift and Equilibrium

Selection�Review of Economic Studies 66:363-393.
Binmore, K., McCarthy, J., Ponti, G., Samuelson, L. and Shaked, A. (2002)

�A Backward Induction Experiment�, Journal of Economic Theory 104: 48-88.
Börgers, T. and Sarin, R. (1997) �Learning through Reinforcement and

Replicator Dynamics�, Journal of Economic Theory, 77: 1-14.
Cabrales, A. (2000) �Stochastic Replicator Dynamics�, International Eco-

nomic Review, 41: 451-481.
Cheung, Y.-W. and Friedman, D. (1998) �A comparison of learning and

replicator dynamics using experimental data�Journal of Economic Behavior &
Organization 35: 263-280.
Jung, Y. J., Kagel, J.H. and Levin, D. (1994) �On the existence of predatory

pricing: an experimental study of reputation and entry deterrence in the chain-
store game�, RAND Journal of Economics 25: 72-93.
Güth, W., Huck, S. and Müller, W. (2001) �The Relevance of Equal Splits

in Ultimatum Games�, Games and Economic Behavior 37: 161-169.
Hopkins, E. (2002) �Two Competing Models of How People Learn in Games�,

Econometrica 70: 2141-2166.
Kahneman, D. and Tversky, A. (1979) �Prospect Theory: An Analysis of

Decision Theory�, Econometrica 47:263-291.
Myerson, R. (1978) �Re�nements of the Nash Equilibrium Concept�Inter-

national Journal of Game Theory 7:73-80.
McKelvey, R. D. and Palfrey, T. R. (1995) �Quantal Response Equilibria for

Normal Form Games", Games and Economic Behavior 10: 6-38
McKelvey, R. D. and Palfrey, T. R. (1998) �Quantal Response Equilibria for

Extensive Form Games�, Experimental Economics 1: 9-41.
Roth, A.E., Prasnikar, V., Okuno-Fujiwara, M., and Zamir, S.(1991) �Bar-

gaining and Market Behavior in Jerusalem, Ljubljana, Pittsburgh, and Tokio:
An Experimental Study�. American Economic Review 81: 1068-1095.
Roth, A.E. and Erev, I. (1995) �Learning in Extensive-Form Games and Sim-

ple Dynamic Models in the Intermediate Term�, Games and Economic Behavior
8: 164-212
Rubinstein, A.(1988) �Similarity and Decision-Making under Risk(Is there a

Utility Theory Resolution to the Allais Paradox?), Journal of Economic Theory
46: 145-153.
Rubinstein, A.(1998) �Modeling Bounded Rationality�, Cambridge, MA:

MIT Press.
Samuelson, L.(1998) �Evolutionary Games and Equilibrium Selection�, Cam-

bridge, MA: MIT Press.
Schlag, K. H. (1998) �Why Imitate and If So, How?�, Journal of Economic

Theory 78: 130-156.
Schotter, A., Weigelt, K. and Wilson, C. (1994) �A Laboratory Investigation

of Multiperson Rationality and Presentation E¤ects�, Games and Economic
Behavior 6: 445-468.

31



Selten, R.(1975) �Re-examination of the Perfectness Concept for Equilibrium
Points in Extensive Games�. International Journal of Game Theory 4:25-55.
Tversky, A. (1977) �Features of Similarity �, Psychological Review 84 (4):

327-352.
Uriarte, J.R. (1999) �Decision-making under Risk: Editing Procedures based

on Correlated Similarities, and Preference Overdetermination�, Review of Eco-
nomic Design 4, 1-12.
Uriarte, J.R. (2003) �A Model of Evolutionary Drift� Ikerlanak 01-03, De-

partamento FAE I-Ekonomi Analisiaren Oinarriak I Saila, University of the
Basque Country.
Weibull, J.W. (1995) �Evolutionary Game Theory�, Cambridge, MA: MIT

Press.
Young, H.P.(1993a) �The Evolution of Conventions�, Econometrica 61, 57-

84.
Young, H.P.(1993b) �An Evolutionary Model of Bargaining�, Journal of

Economic Theory 59, 145-168.
Young, H.P.(1996) �The Economics of Convention�, Journal of Economic

Perspectives 10, No.2, 105-122.

32


	Copia de Plantilla IKEELANAK.pdf
	il2005-19.pdf

