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ABSTRACT 

A novel two-sense support for flexural tests has been designed and manufactured in 

Ikerlan. The aim of this support is to do two-sense bending fatigue tests. In order to 

reduce the displacement corresponding to a given stress, a novel test configuration, 

named five-point bending is modelled analytically. Basically it is a three-point 

configuration with two supports at the ends that exert forces in the same sense as the 

applied load. In this way, it is obtained a partial clamping that can be modelled by 

concentrated loads. The model has been checked carrying out quasi-static three-point 

and five-point bending tests at different spans in unidirectional carbon/epoxy composite 

specimens. Flexural modulus and the out-of-plane shear modulus have been obtained by 

linear regression in both cases, after having obtained experimentally the stiffness of the 

system.  
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INTRODUCTION 

Research on fatigue of composite materials is mainly based on studying the degradation 

of its mechanical properties caused by cyclic loading. Tension-tension and tension-

compression are the most accepted fatigue tests by international standards (ASTM 

D3479) since strain distribution across the specimen is practically uniform and damage 

develops more or less equally in all layers. Although these tests provide reliable S-N 

data of the tested material, pure traction loading rarely occurs in real applications. 
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Bending fatigue tests prove to be an excellent alternative since [1] bending often occurs 

in in-service loading condition, buckling due to compression is no longer an issue, 

required forces are much smaller and force and displacement are easy to measure. 

However, in the case of three-point bending, large deflections can be reached and the 

specimen might show permanent deflection after a few thousand cycles, which may 

cause impacts between the indenter and the specimen and alter the measuring data [2]. 

This problem occurs in the case that the specimen deforms always in the same sense, 

usually applying the load downwards. In a cycle the specimen changes from the initial 

undeformed state to the maximum deformed state and it returns to the undeformed state. 

In this case, the stresses at a fixed point are always of the same sign. If two-sense 

supports are used, after the return to the undeformed position, the load can be applied 

upwards in order to get the inverse deformed state. In this case, the sign of stresses at a 

given point change. Otherwise, if the ends of the specimen are clamped, the maximum 

stress value for the same displacement is greater than in the simply supported case [3]. 

Nevertheless, to get a clamped end with null rotation is not possible in a real sense. 

In the present study, a two-sense rotating support designed and manufactured in 

Ikerlan is used for carrying out flexural tests. The initial idea was to apply the support to 

bidirectional three-point bending tests. Nevertheless, locating two supports at each end 

of the specimen and applying a central load, partial clamping is obtained. Therefore, the 

stresses are greater for the same displacement and the problem of great displacements 

can be avoided. Fig. 1 shows the new configuration proposed, named five-point bending 

test. There is another five-point configuration that has been used for determining the 

interlaminar strength of composite laminates [4]. The difference between both 

configurations is that in the present work there are 4 supports and one load application 

point. In the other configuration there are 3 supports and 2 points of load application 

symmetrically located. 
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Fig. 1. Five-point bending test configuration with the novel two-sense supports. 

The objective of the present work is to describe the novel two-sense supports 

and to analyze the five-point bending test from a mechanical point of view. This 

analysis include the bending and shear effects in displacements and the variation of the 

contact point between the specimen and the support rollers, due to the bending rotations 

[5]. Three-point and five-point bending tests at different spans have been carried out in 

order to check the suitability of the proposed method in quasi-static tests, applying the 

load downwards. In both cases, after having determined the stiffness of the system, the 

flexural modulus and the out-of-plane shear modulus have been determined by linear 

regression. 

DESCRIPTION OF THE NOVEL SUPPORT  

In order to apply the load in both senses, the rotating support shown in Fig. 2 has been 

designed and manufactured in Ikerlan.  
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Fig. 2. Two sense rotating support: 3D view and side view 

It is divided in two main parts: the fixed one (dark grey), which is attached to the test 

machine and the rotating one (clear grey), which rotates around the main shaft. Both 

parts have rollers named main and secondary rollers, which can freely spin around their 

axes. In the rotating part, the secondary roller and its support are guided allowing the 

roller to adjust to different specimen thicknesses. The contact between rollers and the 

specimen is assured by means of two compression springs, dimensioned to avoid 

indentation. In this way, the supports can be adapted to different sections of the 

specimen. Once the contact is assured, the support of the secondary roller is fixed by a 

bolt to the rotating part, avoiding any relative movement during the test. It is worth to 

underline that the springs do not apply any force once the support is locked. Otherwise, 

the secondary rollers are able to rotate around the main roller axis. Thus, during bending 

the rotating part remains perpendicular with respect to the specimen. The rotation of the 

supports with respect to the mean axes can be appreciated in Fig. 1. 

THREE-POINT BENDING TEST  

The three-point bending test is analyzed taking into account the effect of span variation 

and the vertical displacement due to the change of the contact point between the 

specimen and supports. According to Fig. 1, when the load is downwards the span 

decreases and when the load is upwards the span increases. The rollers that have contact 

with the specimen appear in grey in each case. 
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Fig. 3. Three- point bending: (a) Without load; (b) Positive load; (c) Negative load. 

When the load is downwards it is defined as positive and when it is upwards it is 

defined as negative. As the contact point between the specimen and rollers vary due to 

bending rotation of the specimen, the distances with 0 sub-index in the undeformed 

configuration change. Variable distances are written without sub-index. The 

displacement of the specimen is given by [6]: 
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where Ef is the flexural modulus; 13G G=  is the out-of-plane shear modulus; I the 

moment of inertia with respect to the middle plane: 
3

12
whI = ; w the width of the 

specimen; L is the actual span that includes the change of the contact points; and h is the 

thickness of the specimen.  

There is a vertical displacement component due to the change in the contact point 

between the roller and the specimen that has not been taken into account up to now. Its 

effect is of the same order as that concerning span reduction [5]. According to Fig. 4, 

being C0 the contact point of the unloaded configuration and C1 the contact point of the 
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loaded configuration during the test, the vertical displacement due to the change of the 

contact point is: 

 ( )1 cosR Rδ θ= −  (2) 

 
Fig. 4. Horizontal and vertical displacements of the contact point. 

According to ISO 14125 [7] standard, bending angles are small when they are lesser 

than 0.3 rad (17º) [5]. Taking into account the Mclaurin series expansion of the cosine 

function and considering terms up to second degree, Eq. (2) becomes: 

 21
2R Rδ θ=  (3) 

Then, without taking into account the stiffness of the testing system, the experimental 

displacement δ3p is given by : 

 3 21
3 32

p
p sp pRδ δ θ= ±  (4) 

Being δsp the displacement of the middle point of the specimen and P the load. The sign 

+ corresponds to Fig. 3(b) where the load is positive and the sign – corresponds to Fig. 

3(c) where the load is negative. Taking into account the value of θ3p, Eq.(4) can be 

expresses as: 
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Otherwise, the initial dimensions are considered for the determination of the angle. Eq. 

(1) can be written as: 
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SPECIMEN CLAMPED AT BOTH ENDS WITH CENTRAL LOAD 

The clamped-clamped configuration is assumed as an ideal limit configuration where 

the bending angles at the ends are null. As the maximum stress for the same 

displacement at the central point is lesser than in the three-point case, this configuration 

is more suitable for fatigue tests. Moreover, there are not span variations due to bending 

angles. 

 

 

Fig. 5. Clamped-clamped configuration with central load. 

Fig. 5 shows the clamped-clamped configuration and Fig. 6 shows one half of the 

analysed specimen after imposing symmetry conditions. The bending moment in B is 

adopted as redundant unknown . 

 

 

Fig. 6. Unit moment for the determination of M’ and V’. 

Shear forces and bending moments in BC are:  
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The redundant unknown Y is determined by applying Engesser-Castigliano's theorem: 
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Where M’ and V’ are the derivatives with respect to Y. After replacing Eq. (7) in Eq (8) 

and solving it, the redundant unknown is: 
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 1
8Y PL= −  (9) 

The unit load method is used for obtaining the middle-point displacement in the left half 

of the system, as depicted in Fig. 7.  

 

Fig. 7. Load application in the basic system for obtaining M’ y V’. 

According to Fig. 4 the derivatives M’ and V’ for this system are:  
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The displacement of the middle-point is: 
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Replacing bending moments and shear forces of Eq. (7) and their derivatives of Eq. (10) 

in Eq. (11):  

 
3

3

3
16 10cc

f

PL PL
E wh Gwh

δ = +  (12)  

Eq. (12) can be written as: 
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Comparing Eqs. (6) and (13), the relative influence of shear is 4 times greater in the 

clamped-clamped configuration that in the case of three-point bending.  

NEW TEST CONFIGURATION: FIVE-POINT BENDING 

Redundant force 

As to get total clamping is not possible in a real sense, partial clamping is generated by 

the use of two sets of two-sense supports. Fig. 8 shows the undeformed test 
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configuration and the deformed configurations for positive and negative loads, 

respectively. The rollers that contact with the specimen in each case are in grey. 

 
 

Fig. 8. Five-point bending: (a) Without load; (b) Positive load; (c) Negative load. 

. 

 

Fig. 9. Applied load and roller reactions for a positive load. 

Fig. 9 shows the applied load and reactions, assuming the symmetry of the system and 

taking as redundant unknown the reaction force at the extreme supports. Fig. 10 shows a 

half of the system with the corresponding boundary symmetry conditions. 
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Fig. 10. Left half of the system with boundary symmetry conditions considered for calculations. 

Shear forces and bending moments in AB are:  
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In BC: 
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The redundant unknown X is obtained by the Engesser-Castigliano theorem of Eq. (8). 

In this case, M’ and V’ are the derivatives with respect to the force X. Replacing Eqs. 

(14) and (15) in Eq. (8) and after solving it the redundant unknown is: 
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Bending angles at support rollers 

The bending angles at supports A and B have influence in the distance variations among 

the supports during the test. In order to obtain the derivatives of moments and shear 

forces, unit moments are applied at A and B. In spite of Fig. 11 shows moments applied 

at both sections, they have to be applied separately. The derivatives of shear forces are 

null and then, the effect of shear in bending angles is null. 

 

Fig. 11. Unit moments for the determination of M’ and V’. 
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After determining the derivatives, by using the moments of Eqs. (14) and (15), the 

bending angles at A and B are:  
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 (17) 

As unit moments have been applied clockwise, if the resulting bending angle is positive 

it is clockwise, and if it is negative it is counter clockwise. 

Displacement of the middle-point 

Fig. 12 shows a half of the system with a unit load at the middle-point, which is used for 

applying the unit load method.   

 

Fig. 12. Application of a unit load in the basic system for obtaining M’ and V’. 

M’ and V’ are: 
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Replacing bending moments and shear forces of Eqs. (14) and (15) and their derivatives 

of Eq. (18) in Engesser-Castigliano's theorem, the displacement of the specimen at the 

middle point is: 
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The difference between Eq. (19) and Eq. (1) is the term related to the force X. Then, 

three-point bending can be considered as a particular case of five-point bending where 

0X = . The experimental displacement of the middle point is: 
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The term concerning θB is related to the vertical displacement of the contact point, in 

analogous manner as in Eq. (4) concerning three-point bending.  

Length variations 

As explained previously, there are length variations related to bending rotations 

of the specimen. The load can be positive or negative and the displacement of the 

central point has the same sign than the applied load.   

 

Fig. 13. Length variations between A and B when the load is positive. 

The rollers of the left part of the deformed configuration when the load is positive are 

depicted in Fig. 13. The radius of the support rollers is R. Taking into account the 

Mclaurin series expansion of the sine function and considering terms up to second 

degree as mentioned above in the case of cosine, it results that sinθ θ= . Then, the 

variations of contact length concerning A and B rollers are: 
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Thus, the modified distances taking into account the sign of the angles are:  
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Fig. 14. Length variations between A and B when the load is negative. 

According to Fig. 14, the contact length variation when the load is negative are:   
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The modified dimensions, taking into account the signs of the angles are:  
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As the expressions for a and L in Eqs. (22) and (24) are similar, they can be written for 

both cases as:   
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In spite of in Eq. (25) the difference in load sign is not considered, according to Eqs. 

(21) and (23) ξ parameters vary with the thickness h depending on the load sign. Then, 

it has to be taken into account that the small adimensional parameters ηa and ηL depend 

on the load sign. Otherwise, terms of second order or greater related to parameters η 

will be neglected. Replacing the values of L and a of Eq. (25) in Eq. (16), the force X 

can be expressed as:  
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By replacing Eq. (25) in Eq. (19) the middle point displacement is:  
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Where the ratio between the applied load and the redundant force considering initial 

dimensions is : 
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where 0

0
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Considering two different points at the same test, the variation of displacement is:  
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As the experimental displacement includes also the vertical displacement of the contact 

point, according to Eq. (20) and replacing the value of  given in Eq. (17) it results: 
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Combining Eq. (29) and Eq. (30)  
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 (31) 

where the following condensed nomenclature has been used for the correction 

terms: ( ) 1 21 2 L LLη η η+ = + , and so on. 

As the angle θB has the same sign that the load, the ± sign can be modified by a + sign, 

using the absolute value of the angle: 
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 the slope of the load-displacement curve, the bending modulus is:  
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Otherwise, the maximum strain is located at the middle of the specimen, where the 

moment is maximum, being 
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Three-point bending as a particular case of five-point bending 

As three-point bending can be considered as a particular case of five-point bending 

when 0X = , the bending modulus in three-point flexure can be determined from Eq. 

(33) with f = 0 as: 
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 (35) 

In the case that the load is positive, the modulus in 3-point bending is given by: 
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where ε3p is the maximum strain in three-point bending given by: 
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Diagrams of bending moments 

Fig. 15 shows the three configurations previously analyzed and the diagrams of bending 

moments normalized with respect to (PL). The maximum normalized moment occurs in 

three-point bending. In the case of the clamped-clamped beam the bending moments are 

the same at the clamped ends and at the central section. However, the moment fa at the 

support in five-point bending is lesser than that of the middle section. Therefore, the 

maximum stress zone in five-point bending is localized in the middle of the specimen, 

as in three-point bending. This is a positive aspect of the five-point configuration. In 

spite of the normalized moment for a given load P at the centre is lesser in five-point 

bending than in three-point bending , the displacement is greater in three-point bending.  

 
Fig. 15. Bending moment diagrams for the three configurations. 

Strain-displacement ratio 

In fatigue tests it is desirable to obtain a great ratio between the maximum strain and the 

maximum displacement in order to obtain a great value of stress for the same 

displacement. In order to determine the mentioned ratio, only bending effects are 

considered. Maximum strain corresponding to the maximum bending moment is:  
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Table 1 shows the ratios between the maximum strain and the maximum displacement, 
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ratio in three-point bending. Then, for the same displacement the stress is twice. In five-

point bending the ratio depends on the parameter α .   

 

Table 1. Ratio between maximum strain and maximum displacement due to bending. 
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ε
δ

 

Clamped-clamped 
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three-point bending 
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Fig. 16 shows the clamping degree, defined as the ratio between values that correspond 

to the clamped-clamped case and to five-point bending, respectively, being: 3 4
3 8

α
α

+
+

. 

When the parameter α varies between 0.1 and 1, the clamping degree varies between 

89% and 64%.  
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Fig. 16. Clamping degree as a function of the ratio α = a/L. 

Shear forces  

In five-point bending, the shear forces between support rollers that conform the partial 

clamping depend on α parameter. In the case of unidirectional composites those forces 

could lead to delamination of the specimen at these zones. Without taking into account 

the term due to shear, the parameter f given in Eq. (28) and only depends on α, being: 
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Fig. 17. Diagram of shear forces in five-point bending. 

Fig. 17 shows the diagram of shear forces in five-point bending. Fig. 18 shows the 

variation of f with respect to α for the same range considered in Fig. 16. Then, in order 

to get shear forces lesser than 0.5 P in the zone between rollers the ratio α must be α > 

0.22. 
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Fig. 18. Shear force factor as a function of the ratio α = a/L. 

DETERMINATION OF FLEXURAL MODULUS 

Three-point bending 

In three-point bending, according to Eq. (36) the flexural modulus can be expressed as: 
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Eq.(40) can be written as 
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Where E3pc is the usual expression of the flexural modulus corrected by the effect of the 

change of the contact point on the supports. Then, the following linear relation can be 

written 
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After determining E3pc in the same specimen for different spans, Ef and G can be 

determined by linear regression from Eqs. (42). If the same strain range is used in all 

cases, Eq. (42) can be written as: 
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Five-point bending 

Ef can be obtained from Eq.(33) as:  
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Grouping the terms related to bending in a parameter β, Eq. (44) can be written as: 
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where the sub-index c indicates that corrections are included. Eq. (45) can be written in 

the form 
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From Eq. (46) the following linear relation can be written as: 
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After determining E5pc in the same specimen for different spans, Ef and G can be 

determined by linear regression from Eqs. (47). 

In five-point bending the rotated angles are lesser than in three-point bending. If the 

correction terms are considered negligible, Eq. (47) becomes in: 
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EXPERIMENTAL 

Material, tests and apparatus 

Three specimens of T6T/F593 unidirectional carbon/epoxy from Hexcel Composites 

with 50% fiber volume content were used for experiments. Three-point and five-point 

bending tests were carried out at different spans using an electromechanical testing 

machine Tinius Olsen H300KU updated by Zwick/Roell. A 10kN load cell was used.  

The radius of the support cylinders was R=5mm and the spans used were (mm): 40, 48, 

60, 80 and 120. Three tests were carried out for each condition. The slopes of the load-

displacement curves were obtained for a fixed strain range between 0.25% and 0.45%. 

For this purpose, strains have to be determined during the test. If the calculation is 

carried out based on displacement data, the effect of local deformation and shear need to 

be included, but they are not known. Thus, strains were determined based on the 

measurement of loads according to Eqs. (37) and (34), for three-point and five-point 

tests, respectively, with approximate values of Ef and G. 
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Stiffness of the testing system 

If the displacement of the specimen is determined by the displacement of the load 

application, the stiffness of the system ksys must be determined. It can be done by and 

indentation test, determining the stiffness in a linear zone of the load-displacement 

curve [6]. Then, the primary displacement δpri measured by the machine can be 

corrected during the test subtracting the displacement due to the testing system for 

obtaining the experimental displacement δexp: 

 exp pri sysC Pδ δ= −  (49) 

Where 1
sys sysC k −=  is the compliance of the system. Other way for including the 

compliance of the system is to consider the system and the specimen as two linear 

springs subjected to the same load P, as depicted in Figure Fig. 19.   

 

Fig. 19. Experimental stiffness and system stiffnesses  

As the experimental displacement is the sum of the displacements of the specimen and 

the load, the relation between compliances is:  

 exp pri sysC C C= −  (50) 

The stiffness of the system includes all aspects away of the stiffness of the specimen: 

Testing fixture, load cell, testing machine structure and the local deformability of the 

specimen. This effects has been named also "local deformation effect" [6]. Otherwise, 

Fig. 20 shows the elastic supports assumed in the case of a five-point bending test.  

 

Fig. 20. Elastic supports considered in five-point bending 
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k1 is the stiffness corresponding to the testing system, the load application support and 

the local deformation of the specimen. k2 is the stiffness corresponding to the lower 

supports. ksys is the stiffness of the global system. The respective compliances are 

named as Ci. The stiffness of the outer support is not considered, as the force is applied 

in the opposite sense with respect to the other supports. Due to the difficulty of 

measuring this stiffness, it is assumed to be infinite in a first approach. 

Considering a rigid specimen, the relation between displacements, as a function of the 

compliances is: 

 ( )1
2 12sysPC P X C PC= + +  (51) 

According to Eq. (28), Eq. (51) can be written as: 

 ( )1
2 12sysC f C C= + +  (52) 

Thus, Csys depends on the value of f and it depends on the span used, according to Eq. 

(28). In three point bending f = 0 and thus 

 1
2 12sysC C C= +  (53) 

C1 can be determined by an indentation test carried out with a rigid basis, as shown in 

Fig. 21a. Otherwise, Csys can be determined in three-point bending with the specimen on 

a rigid basis supported at lower supports, as shown in Fig. 21b. 

a/  b/ 

Fig. 21. Test for determining different stiffnesses: a/ Determination of k1; b/ Determination of ks 

Extracting C2 from Eq. (53) it results 

 ( )2 12 sysC C C= −  (54) 
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Having obtained C2 by three-point bending, Csys in five-point bending can be obtained 

in each case from Eq (52). The experiments shown in Fig. 21 have been carried out up 

to 3000 N in order to prevent damage the supports. The stiffnesses have been obtained 

in the range 2000-3000 N being 

ksys = 9800 N/mm; k1 = 11600 N/mm 

Displacement rate 

The displacement rate was varied according to ISO 14125[7] in order to get a constant 

strain rate of 0.01min-1. Taking into account that displacement depend on shear and 

local deformation, these effects should be included. The ratio between the displacement 

and the strain is obtained from Eqs. (6) and (37) in the case of three-point bending and 

from Eqs. (19) and (34) in the case of five-point bending. Without considering 

corrections terms related to the change of the contact point, the displacement rate in 

each case was calculated according to 

 

 

2 32
0

3
0 0

2 32
0

5
5 0 5 0

1 1.2 4
6

8 3 4 1 1.2 4
12 4 3 2

f f
p

s

f f
p

p s p

E E bL h h
h G L k L

E E bL h h
h G L k L

δ ε

α ηδ ε
α η β β

    
 = + +   
     

    + +  = + +   + +      

 

 

 (55) 

where ksys = 10000 N/mm has been adopted as the stiffness of the system in both cases. 

Preliminary results 

In each specimen, three-point tests have been carried out with L0 = 200 mm. This span 

is considered great enough for neglecting shear and local deformation effects. Table 1 

shows the dimensions and the flexural modulus of the specimens. 

Table 2. Dimension and flexural modulus of the specimens 
 b (mm) h (mm) L0(mm) Ef (GPa) 

S1 15.4 3.02 200 106.5 

S2  15.2 3.03 200 104.4 

S3  15 3.03 200 105.3 
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According to Table 1, the approximate value of modulus for determining strains has 

been Ef = 105 GPa. With respect to the value of G needed in the case of five-point 

bending, it has been considered G = 4 GPa [6]. 

The same specimens have been also tested in three-point bending in a MTS machine for 

the same spans, with usual bending supports. The stiffness of the system was ks = 24000 

N/mm. The results obtained are shown in Table 3. 

Table 3. Values obtained with usual bending supports 
 S1  S2  S3  
Ef (GPa) 106.6 103.7 104.2 
G (Mpa) 3.8 4.3 4.6 

 

The differences between the flexural modulus Ef shown in Table 2 and Table 3 are 

below 1% for each specimen. 

Influence of shear and system stiffness with respect to bending 

The summands into brackets in Eq. (55) show the influence of shear and stiffness with 

respect to bending. Fig. 22 shows the comparison of those influences in three-point and 

five-point bending, assuming the following nominal properties and dimensions: 

Ef = 105.0 GPa; G = 4.0 GPa; ks = 10 kN/mm; a = 40 mm, h = 3 mm; b = 15 mm 
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System stiffness
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Fig. 22. Influence of shear and stiffnes with respect to bending: a/ Shear influence. b/ System 
stiffness 

According to Fig. 21, the influence of shear and system stiffness is more important in 

the case of five-point bending than in three-point bending. Otherwise, according to Eq. 

(55) the ratio between influences in both tests is the same. In both tests the influence of 

system stiffness is greater than the influence of shear for spans of 40 and 48 mm. For 

the span of 60 mm the influences are equal. For spans of 80 mm and 120 mm, the 

influence of shear is greater than the influence of system stiffness.  

Regression results for three-point and five-point bending 

It has been observed that in both cases the influence of the system stiffness is very 

important. In particular, in three-point bending, to use ks = 9800 N/mm lead to G values 

to be too great. Then, it has been assumed that in three-point bending the lower supports 

are rigid and thus ks = 11600 N/mm has been considered. This assumption is related to 

the fact that in the determination of ks shown in Fig. 21 the forces on the lower supports 

are vertical, in the same direction that the support. In three-point bending, the variation 

of the contact point is more pronounced that in the case of five-point bending. Thus, the 

load on the lower support does not act along the symmetry plane. As a consequence, the 

support is considered rigid in three-point bending as a first approach. 

Table 4 shows the results obtained by linear regression for five spans in the case of five-

point bending and for 6 span in the case of three-point bending, as the values 

corresponding to the span of 200 mm given in Table 2 have been also included.  

Table 4. Experimental results obtained by linear regression in three-point and five-point tests 
 S1  S2  S3  
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 3P 5P 3P 5P 3P 5P 
Ef (GPa) 105.7 104.3 103.5 101.8 104.6 102.5 
G (GPa) 4.1 4.1 3.8 3.9 3.8 4.1 
R2 0.958 0.981 0.958 0.981 0.973 0.987 

 

The results of Ef in Table 4 obtained by three-point and five-point bending agree well 

between them and agree also with values of Table 3 obtained in other testing machine. 

In all cases the flexural modulus obtained by three-point bending is slightly greater than 

that obtained by five-point bending. This fact could be related to the determination of 

the redundant force X, as it has not been considered the stiffness of the supports.  

Moreover, in spite of values of G obtained by three-point bending and five-point 

bending agree, they differ with respect to those obtained in Table 3. The discrepancy in 

G results could be related to the stiffness of the system. 

The regression coefficients in the case of five-point bending are greater than in the case 

of three-point bending. Otherwise it is noticeable the fact that small changes in the 

values of ks and k1 affect mainly in the result of G but not in the coefficient of regression 

in a significant manner.  

Calculations have been carried out with all the correction terms. Table 5 shows the 

flexural modulus obtained by both methods, determined with correction terms and 

without correction terms. It can be seen that in the case of five-point bending the 

difference is negligible in all cases, due to the small rotated angles at the ends. In the 

case of three-point bending, uncorrected values are 3% greater than corrected ones. 

Table 5. Differences between flexural moduli obtained with corrections and without corrections 
 S1  S2  S3  

Ef (MPa) 3P 5P 3P 5P 3P 5P 
Corrected 105.7 104.3 103.5 101.8 104.6 102.5 
Uncorrected 108.5 104.4 106.2 101.9 107.4 102.6 

 

Fig. 23 shows experimental and regression moduli obtained in three-point and five-

point bending. In the case of three-point bending the values corresponding to span 200 

mm have not been included in the figure. The variation range of five-point modulus 

values E5p is greater than that of three-point modulus values E3p. This fact could explain 

the better values of R2 obtained in the case of five-point bending. 
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Fig. 23. Experimental and regression moduli: a/ Three-point bending; b/ Five-point bending 

CONCLUSIONS 

A novel two-sense support system designed and manufactured in Ikerlan has been used 

for defining a five-point bending test. Flexural modulus and out-of plane shear modulus 

obtained with the novel supports in three-point and five-point bending tests agree 

reasonably with those obtained with a standard three point fixture in other testing 

machine. Moreover, the correlation coefficients of the linear regression in the case of 

five-point bending are better than in the case of three-point bending. Otherwise, the 

correction factors related to the variation of contact point between specimen and 

supports have more influence in the case of three-point bending than in five-point 

bending. This is due to the fact that the partial clamping in five-point bending reduces 

the bending angles at the ends.  
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The results obtained depend in a great extent on the stiffness of the system. It would be 

desirable to increase the stiffness of the bidirectional supports in the next version of the 

supports. 

Two-sense five-point bending is a promising test method for fatigue tests, as stresses of 

both signs can be obtained at the same point. Thus, after having checked the suitability 

of the analytic model of the five-point bending test, it can be applied to fatigue cases. 

The advantage with respect to three-point bending is that the stress is much greater for a 

given displacement. This reasoning is extensible also for obtaining the longitudinal 

strength of unidirectional composites in the regime of small displacements. 

Otherwise,the test configuration and model proposed is valid for any orthotropic 

material. 
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