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ABSTRACT 

This paper shows the use of the Dual Integrated Force Method in the Finite Element Method 
and its application to unidirectional composite laminates. This method was developed by S.N. 
Patnaik for isotropic materials, considering not only the equilibrium equations but also the 
compatibility conditions. The method is applied to obtain the stiffness matrix of a four node 
rectangular plate element. Then, a three-point flexure test of a unidirectional off-axis composite 
has been analyzed. The results obtained with this method have been compared with those 
obtained from a previous analytic approach and with those obtained by commercial software of 
Finite Element Method, which is based on the Stiffness Method. 

Keywords: Dual Integrated Force Method, Stiffness method; Theorems of virtual work; 
laminate composites. 

1. INTRODUCTION

Usually, the Stiffness Method (SM) is used in the numerical analysis of composite materials. In 
spite that Hoa [1] published a book dealing with the application of Hybrid Method (HM) for 
stress analysis of laminated composites, it seems that these methods have been barely used in 
last years in the analysis of composites. Otherwise, it has been recently shown that the Dual 
Integrated Force Method (IFMD) developed by Patnaik and the HM developed by Pian are 
equivalent [2]. In the present work, a linear elastic analysis of an off-axis three-point flexure 
test which has been previously analyzed analytically, experimentally and numerically is carried 
out after formulating a plate element in IFMD, as an alternative to SM.  

In the three-point flexure test of unidirectional off-axis composites, bending-twisting coupling 
can cause the lift-off of the specimen on the fixture supports. When lift-off occurs, contact 
between specimen and fixture support is located at two opposite corners as shown in Figure 1, 
and twisting moments appear. Some works have dealt with the three-point flexure test of 
unidirectional off-axis composites. Mujika et al. [3] proposed an analytical method for 
determining in-plane shear modulus by three-point flexure of unidirectional composites 
oriented at 45º. In later works, the conditions for lift-off of the specimen were determined and 
the displacement field of an off-axis composite in three-point flexure was determined [4]. Lift-
off and no lift-off situations were considered and the approach was extended to the calculation 
of the displacement field for any fiber orientation. Five fibre orientations and ten different 
spans for each orientation were used for comparing analytic and experimental results of a 
carbon- epoxy composite. Results concerning the displacement of the load application point 
were compared, obtaining good agreement [5]. In a recent work, the analytical approach has 
been extended to multidirectional laminates [6]. 

The displacement and stress field of unidirectional off-axis composites in three-point flexure 
has been also analysed by FEM [7]. In this work a linear elastic analysis has been carried out, 
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using shell and solid elements based on the SM. The SM is a displacement based formulation 
directly derived from the Principle of Virtual Work (PVW), assuming a compatible 
displacement field. The application of the PVW ensures the fulfilment of equilibrium equations 
as a function of the nodal displacements. On the other hand, Force method (FM) [8] is based on 
the assumption of an equilibrated stress field. The force variables are the principal unknowns 
and are separated into static and redundant forces. The application of the Principle of 
Complementary Virtual Work (PCVW) ensures that the compatibility equations are satisfied, 
assuming an equilibrated stress field [9]. 
 
The Integrated Force Method (IFM) was developed in 1973 by Patnaik et al. [10,11] for 
discrete structures. In this method it appears the idea of using not only the equilibrium 
equations, but also the compatibility conditions. The application of the PCVW ensures that 
compatibility equations are satisfied as a function of the assumed stress parameters. In later 
works, IFM was applied to continuous systems [12,13] and was compared with the FM and SM 
[14-16]. In the finite element method, the stresses and displacements [17] obtained by IFM 
converge to the correct solution faster than the same solution generated by the SM. In 1998, 
Patnaik et al. [18] developed a dual form for the IFM which provides identical solutions for 
stresses and displacements, named IFMD. It was based on the same formulation that the IFM, 
but the structure of the governing equation is similar to SM. IFMD has two set of equations: 
one for the calculation of displacements, and other for the calculation of forces or stresses [19]. 
The SM has one set of equations to calculate displacements, and stresses are calculated by 
differentiating the displacements to determine strains, and then transforming strains in stresses 
by the Hooke’s law. Otherwise, the HM is based on the Hellinger-Reissner variational principle 
[20,21], assuming independent stress and displacement fields. As stated before, IFMD and HM 
are equivalent. 
 
A disadvantage of IFMD and HM is the additional computational cost of the inversion of the 
flexibility matrix required to construct the stiffness matrix. This disadvantage has been solved 
by Zhang et al. [22,23] by means of the diagonalization of the flexibility matrix. 
 
Recently, new applications of IFM to FE analysis have been published [24-29]. These works 
deal with the development of the new elements for thick and moderately thick isotropic plates, 
and the generation of equilibrium and flexibility matrix for plate elements. 
 
The aim of this manuscript is to formulate a plate element by IFMD, without considering out-
of-plane shear effects. This element is valid for symmetric laminates where membrane-plate 
coupling is not present, when shear effects are negligible. In particular, it is used for analysing 
the three-point flexure test of a unidirectional composite. As pointed out above, there are 
previous analytic, experimental and numeric results concerning this problem that have been 
used as reference. Moreover, results obtained by IFMD have been compared also with those 
provided by ABAQUS with the same number of shell elements.  
 

2. DUAL INTEGRATED FORCE METHOD 

2.1. Governing Equation  

 
In the present section the elemental formulation of IFMD has been obtained from the direct 
application of the PVW and PCVW. Its governing equation is similar to the equations of SM as 
the displacements are the primary unknowns.  
 
It is assumed that a continuum has been discretized in finite elements. Assuming that each 
element has n degrees of freedom in displacements, the PVW [9,30] states that,  
 



 

 3 

        
V

TT i idV a P    (1) 

 
Where i = 1 to n; V is the volume of the element; {ai} is the vector of virtual nodal 
displacements; {Pi} is the vector of nodal external forces; {} is the vector of virtual strains; 
and {} is the vector of stress components. 
 
Otherwise, the PCVW [9,30] states that: 
 

        TT i i

V
dV P a     (2) 

 
In the same manner than in SM, the displacements at any point of the element are related to the 
nodal displacements by means of interpolation functions [31,32]. From the displacements, 
strains at any point of the element are: 
 

         i iL N a B a    (3) 

 
Where [B] is the nodal displacement-strain matrix; [N] is the matrix of displacement 
interpolation functions; and [L] is the matrix of the differential operators, the same matrices 
than in SM. Furthermore, stresses and strains are related by the flexibility matrix of the material 
[S], being: 
 
     S   (4) 

 
In SM the stresses are obtained from the strains and displacements. However, in IFMD the 
stress field is approximated by using polynomials of the appropriate order [33-35]. The 
independent internal forces in a finite element are a set of independent forces that satisfy 
equilibrium equations and, by means of force interpolation functions, reproduce the stress field 
of the element. Assuming that each element has m degrees of freedom of forces, stresses at any 
point of the element are expressed as: 
 

     jY F   (5) 

 
Where j = 1 to m. Then, replacing equations (3) and (5) in equation (1), the equilibrium 
equation is obtained: 
 

 
        
   

j i

e j i

T

V
F P

E F P

B Y dV 

  

  (6) 

 

Being      e
T

V
E B Y dV   the equilibrium matrix of the element. This matrix has dimensions 

(n x m), being n and m the degrees of freedom of displacements and forces of the element, 
respectively. It is equivalent to the leverage matrix of HM. In HM Leverage matrix is obtained 
form the Hellinger-Reissner variational principle, putting it in terms of nodal displacements and 
internal forces by means of interpolation functions. This way of calculation does not show that 
this matrix relates the internal forces with external forces, relation shown in Equilibrium 
equation (6) [2,20].  
 
By replacing equations (4), (5) and (6) into the equation (2) it results: 
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Being       e T

V
G S Y dVY   the flexibility matrix of the element [8]. Extracting {Fj} from 

(7): 
 

    1 Tj e e iF G E a


         (8) 

 
Multiplying by [Ee] the two members of Equation (8) and replacing Equation (6): 
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 (9) 

 

Where        1 Te e e eK E G E


  is the stiffness matrix of the element corresponding to IFMD. 

The stiffness matrix of the system is obtained following standard assembly procedures. Thus, 
the governing equation of IFMD is: 
 

     l lK a P  (10) 

 
Where l = 1 to N, being N the degrees of freedom in displacements of the analyzed model. 
From Equation (10) the nodal displacements of the structure are determined. The internal forces 
of each element are obtained from Equation (8) and the stresses at any point of the element 
from Equation (5). Finally, the strains are obtained by the constitutive relation given in 
Equation (4). 
 
The drawback of IFMD is the great computational cost associated with the inversion of the 
flexibility matrix. Indeed, the difference in computational cost with respect to SM is located in 
the element formulation for the same number of elements, as the assembly of the total stiffness 
matrix and the solution of the equation system is similar in both cases. This aspect can be 
improved by the diagonalization of this matrix proposed by Zhang [22,23]. 
 

2.2. Formulation of a plate element 

 
The four node rectangular plate-bending element of Figure 2 is used for implementing IFMD. 
In the case of bending, the components of the strain field along the thickness are [15]:  
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Where   are bending and twisting curvatures, which are obtaining by: 

 
     d M   (12) 
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Where  M is the vector of resultant moments, and [d] the compliance matrix of the material 

given by [36]: 
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  (13) 

 
[Bp] is the nodal displacement-strain matrix and it is obtained by differentiation of the 
displacement interpolation functions. The shape functions for this element are formed 
combining the same third order Hermite polynomials than in SM in the case of the beam 
element with two nodes [31,32]: 
 

 

   
   
   
   

31
1 4

2 3
1 4

31
2 4

2 3
2 4

2 3

1

2 3

1

a

a

N

N

N

N

  

   

  

   

  

   

  

    

 (14) 

 
Where = x/a and  = y/b are natural coordinates. The polynomial displacement function is: 
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Where wi,xi, yi, are the twelve displacement degrees of freedom of the element, corresponding 
to a displacement and two rotations per node. The polynomial of Equation (15) has been 
obtained by eliminating the twist-terms from the fourth order complete polynomial [31]. That 
polynomial ensures the continuity of displacements between rectangular elements. The function 
of Equation (15) is the same used by Patnaik in the formulation of a plate element in IFMD 
[19]. By substituting Equation (11), the PVW becomes, 
 

        TT Ti
p

V

i iz a B dV a P       (16) 

 
And thus, 
 

        T
i i

p
S

T iM B aa dS P      (17) 

 
Where S is the surface of the plate and {M} the vector of resultant moments given by: 
 

    
T

t
M z dz   (18) 

 
Where t indicates the thickness. In the case of a plate, Equation (5) becomes in: 
 

     jM Y F  (19) 

 



 

 6 

Being the parameters  jF  in Equation (19) moments per unit length. Then, replacing 

Equation (19) in (17), as  Tia are independent, the equilibrium equation is: 
 

    e j iE F P     (20) 

 
When [Ee] is the equilibrium matrix of a plate element, being: 
 

  
T

e
p

S
E B Y dS        (21) 

 
For a rectangular plate, according to Equation (19), the selected force interpolation functions 
have been derived from the stress functions, based on third order Hermite polynomials [33,35] 
with nine independent parameters, being: 
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 (22) 

 
As in the case of interpolation functions of displacements, natural coordinates are used, being 
= x/a and =y/b. According to Equations (19) and (22), the matrix of the interpolation 
functions is: 
 

 

1 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 0 0 0 1

  
  

 
 
 
  

Y  (23) 

 
Replacing [Bp] from Equation (11) and [Y] from Equation (23) in Equation (21) the equilibrium 
matrix of the element is  
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According to Equations (11) and (12) the components of the strain field can be expressed as: 
 
     z d M    (25) 
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Then, replacing Equation (25) in the PCVW of Equation (2): 
 

         TT i i

V
z d M dV P a    (26) 

 
Taking into account Equation (18), Equation (26) can be expressed as 
 

         TT i i

S
M d M dS P a    (27) 

 
Replacing Equations (19) and (20) in Equation (27), 
 

          T T Tj e j j iF G F F E a     (28) 

 
Being [Ge] the flexibility matrix of a plate element, 
 

     Te

S
G Y d Y dS     (29) 

 
Replacing [Y] from Equation (23) and [d] from Equation (13) in Equation (29) the flexibility 
matrix of the element is 
 

 

1 1
3 3

1 1
3 3

1 1
9 9

1 1
3 3

1 1
3 3

1 1
9 9

2 2

2 2

2 2 2 2

2 2

2 2

2 2 2 2

4

0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

0 0 0 0 0 0

e

xx xy xs

xx xy

xx xy

xx xy

xy yy ys

xy yy

xy yy

xy yy

xs ys ss

G ab

a d a d
b d b d

a b d a b d

a d a d
b d b d

a b d a b d

d d d

d d d

d d d

































 (30) 

 
Replacing the equilibrium matrix of Equation (24) and the flexibility matrix of Equation (30) in 
Equation (9) the stiffness matrix of the element is obtained. The stiffness matrix of the system 
is achieved by assembling the stiffness matrices of the elements, in the same manner than in 
SM. After obtaining the displacements, the determination of other unknowns is different for 
IFMD and SM. Both calculation processes are summarized in Table 1. 
 

Table 1: Procedures to obtaining stresses in IFMD and SM 

Steps for the formulation IFMD SM 

Stiffness matrix      l l

IFMDK a P       l l

SMK a P  

Displacements  la   la  

Independent element forces        1 Tj e e iF G E a


  
Resultant moments     jM Y F  
Plate curvatures     d M       ipB a   

Strains    z   

Stresses    Q     
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The stiffness matrix for a lamina of the symmetric laminate necessary for determining stresses 
is given by [36]: 

  
xx xy xs

xy yy ys

xs ys ss

Q Q Q

Q Q Q Q

Q Q Q

 
   
  

  

3. ANALYTICAL MODEL 

 
For obtaining the displacement field of an off-axis specimen in three-point flexure [6], it has 
been divided in four parts as shown in Figure 3. Displacement field was the same in A, D parts 
and in B, C parts due to symmetry with respect to the central point of the specimen, named 
central symmetry. Moreover, each part has a different reference system, as shown in Figure 3. 
Neglecting shear effects, the displacement field in A, D parts is given by: 
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Where wM1 is the displacement term due to bending-twisting in A, D parts. On the other hand, 
the displacements of any point in B, C parts was given by, 
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(32) 

 
Where wM2 is the displacement term due to bending-twisting coupling in B, C parts. In 
Equations (31) and (32) P is the load; x and y are the Cartesian coordinates in the coordinate 
systems of A, B, C and D parts; x0 = x/L and y0 = y/L are normalized coordinates; L is the 
distance between the support cylinders (span); b is the specimen width; c = L/b is the span-to-
width ratio; h is the specimen thickness; L’ is the specimen length, g = L/L’ is the span-to-
overall-length ratio;  is the fiber orientation angle; and k is the twisting ratio. 
 
The twisting ratio k is the ratio between twisting moment when lift-off does not occur and when 
it does. When lift-off occurs k = 1, and when lift-off does not occurs, k<1 and the contact is 
assumed at the four corners. 
 
In a unidirectional laminate, in-plane stress components in the case that lift-off occurs are given 
by: 
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4. UNIDIRECTIONAL COMPOSITE IN OFF-AXIS THREE-POINT FLEXURE 

4.1. Geometry and material properties 

 
In a general multidirectional composite the plate behaviour is coupled with the membrane 
behaviour. In the case of a symmetric laminate, membrane-plate coupling does not exist. The 
formulation of a plate element takes into account the plate behaviour that basically includes the 
relation between bending and twisting curvatures and applied moments, as shown in Equation 
(12). In the case of membrane-plate coupling, shell elements would be necessary. Then, the 
element formulated is valid for the analysis of symmetric laminates under the action of 
moments. In particular, the unidirectional case is considered as there are previous analytic, 
experimental and numerical results [3-4,5,6,7].  
 
A three-point flexure test for the unidirectional off-axis laminate shown in Figure 1 has been 
analyzed by IFMD with four, eight and sixteen elements, for obtaining the displacement and 
stress field. The elastic properties correspond to a carbon fiber/epoxy composite [3], being: 
EL=142 GPa; ET=8.9G Pa; LT= 0.27; TT’= 0.3; GLT=4.8 GPa; GLT’=4.8 GPa; GTT’=3.4 GPa. 
 

4.2. Comparison with previous analytic and numeric results 

 
The results of IFMD analysis have been compared with the numerical analysis realized by 
Romera et al. [7] with the commercial software COSMOS/M based on the SM. In this analysis, 
named Complete Model, 1960 shell elements based in Reissner - Mindlin theory have been 
utilized. The load and support rollers have been modelled as infinitely rigid cylinders. The 
contact between the rollers and the specimen is modelled with node-to-node linear gap 
elements. Thus, when lift-off occurs, the contact between the specimen and the support 
cylinders is reduced to two points. Both results have been compared with those obtained by the 
analytical approach developed by Mujika et al. [4,5], which has been described in the previous 
section. This approach was compared with experimental results, as it has been pointed out in 
the introduction. 
 
Moreover, the results obtained from IFMD with sixteen elements have been compared with 
those obtained by the commercial software ABAQUS with the same number of general-
purpose conventional shell elements S4R, that neglect shear effects in the case of thin plates. 
Except in the Complete Model, all other methods assume that the contact between the load 
roller and specimen occurs at a point. 
 
The dimensions and the load are: L = 120 mm; b = 15 mm; h = 2.114 mm and P = 46 N. The 
fiber direction with respect to the longitudinal direction is 45º. This configuration corresponds 
to a lift-off case where, according to previous results, shear effects are negligible. In order to 
compare the results with those obtained by the analytical approach, it is assumed that the span 
is equal to the length of the specimen, g = 1.  
 
Figure 4 shows the convergence of the displacements on the load application point and on the 
lift-off corner regarding the number of elements. The displacements obtained in all cases are 
very similar to the Complete Model of COSMOS/M, but the convergence is faster in the case of 
IFMD. As the convergence in the mid-point displacement is achieved with 16 elements for 
IFMD and SM, displacements and stresses will be analyzed for this number of elements. The 
number of elements along the length and the width of the specimen are specified. 
 
Figure 5 shows the displacements in the middle line and in the load application line 
corresponding to the IFMD and SM with 16 elements, in comparison with the displacements 
obtained with the analytical approach. The displacements on the load line determined by IFMD 
agree better with the analytical and Complete Model results than those obtained by SM.  
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Figure 6 shows rotations through the length when y0 = 0.5, obtained by SM and IFMD with 16 
elements in comparison with the analytical approach. As in the case of the displacements, both 
x and y rotations obtained by IFMD agree better with the analytical results than SM results 
with the same number of elements.  
 
Figure 7 shows the distribution through the length of the x and s respectively when y0= 0.5. In 
the case of s, the Complete Model predicts a stress concentration effect in the middle point [7], 
and the analytical results are the average values of the numerical distribution. 
 
Figure 8 shows the distribution through the width of the x and s, when x0= 0.5. In the load 
line, x and s obtained analytically are the average values obtained in the Complete Model, and 
the Complete Model predicts a stress concentration effect. The values of x obtained by IFMD 
are closer to the analytical approach than those obtained by SM. 
 
Figure 9 shows the distribution through the width of x and s respectively, when x0 = 0.25. Out 
of the load application point, in the case of x and s the stress distribution in the analytical 
approach agrees with the average value obtained in the Complete Model. In this case, the 
results obtained by SM are better than those obtained by IFMD.  
 
According to previous figures, in spite of displacements results are better in the case of IFMD, 
the same conclusion is not valid in the case of stresses. In order to explain this unexpected 
result, curvatures are analyzed. Figure 10 shows the curvatures along the length x and s 
respectively, when x0 = 0.5. With respect to bending curvatures, the agreement with analytic 
results is very good in both numerical approaches, IFMD and SM. In the case of twisting 
curvatures s, the agreement with analytic results is better in the case of SM. It seems surprising 
that after having obtained better displacement and rotations results in the case of IFMD, the 
curvatures do not follow the same trend. That could be related to the different way in which 
curvatures are determined in both cases. According to table 1, in SM the curvatures are 
obtained from Equation (11) after having determined x and y rotations. In the case of IFMD, 
the curvatures are obtained from Equation (19), after having obtained internal moments without 
differentiating rotations. As stresses are obtained in both cases from curvatures, this can be the 
reason of the agreement in stresses obtained by IFMD and SM, shown in Figures 7, 8 and 9. 
 

5. SUMMARY AND CONCLUSIONS 

 
The IFMD has been formulated for a plate element valid for symmetric laminates and it has 
been compared with SM in the case of a unidirectional off-axis composite in tree-point flexure. 
Results obtained by both methods with 16 elements are compared with analytical and numerical 
results that correspond to a fine mesh. 
 
The results in displacements and rotations are better in the case of IFMD than in the case of 
SM. This is due probably to the fact that IFMD is based on the Principles of Virtual Work and 
Complementary Virtual Work, whereas SM is based only on the principle of Virtual Work.  
 
Nevertheless, in the case of stresses the results are very similar in both cases. This result is 
related to the different way of obtaining curvatures in both methods. In SM they are obtained 
by differentiation of the rotations and in IFMD they are obtained from internal moments. In the 
present case, the results of curvatures are similar in both cases and consequently, also stress 
results. 
 
Therefore, the results for a given discretization level are better in IFMD than in SM. In other 
words, for a given precision of results, the number of elements needed in IFMD is less than in 
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SM. Then, IFMD appears as an alternative for formulating laminate plate elements, although 
the diagonalization of the flexibility matrix should be developed for improving its 
computational cost.  
 
NOMENCLATURE 
 
{} Strain vector in the element  
{} Stress vector in the element  
{ai} Vector of nodal displacements  
{u} Vector of displacements at any point of the element  
{ai} Virtual displacement 
{Pi} Vector of external forces  
{F j} Vector of independent internal forces in the element 
{Fj} Virtual force 
[K] Stiffness Matrix 
[G] Flexibility matrix 
[E] Equilibrium matrix 
[Y]  Matrix of forces interpolation functions 
[N]  Matrix of displacements interpolation functions 
[L]  Matrix of differential operators 
[B]  Displacement- strain matrix  
[d] Compliance matrix of material 
EL longitudinal modulus 
ET transverse modulus 
LT in-plane Poisson’s ratio 
TT’  out of plane Poisson’s ratio 
GLT in-plane shear modulus 
GLT’ out of plane shear modulus relating first and third material directions 
GTT’ out of plane shear modulus relating second and third material directions 
 Fiber orientation angle 
L span 
L’ specimen length 
b specimen width 
x0 x/L 
y0 y/b 
c y/b 
g L/L’ 
h specimen thickness 
P load 
wM1 displacement at any point in A and D parts 
wM2 displacement at any point in B and C parts 
wv  displacement term due to traverse shear in A, B, C, D parts 
w1 total displacement at any point in A and D parts  
w2 total displacement at any point in B and C parts  
dij in-plane compliance coefficients, where i,j = x, y, s 
x in-plane normal stress in the longitudinal direction of the specimen 
y in-plane normal stress in the transverse direction of the specimen 
s in-plane shear stress 
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FIGURE CAPTIONS 

 
Fig. 1 Lift-off at supports in a laminate subjected to three-point flexure. 

Fig. 2 Four node rectangular plate element. 

Fig. 3 Parts of the specimen defined in the analytical approach.  

Fig. 4 Displacements field according to the number of elements. (a) On the load 

application point. (b) On the Lift-Off point. 

Fig. 5 Displacements. (a) In the middle line. y0 = 0.5. (b) In the load line.x0 = 0. 

Fig. 6 Rotations in the middle line along the length. (a) x; (b) y. 

Fig. 7 Stresses along the length. y0 = 0.5. (a) x; (b)s. 

Fig. 8 Stresses along the width. x0 = 0.5. (a) x; (b) s. 

Fig. 9 Stresses along the width. x0 = 0.25. (a) x; (b) s. 

Fig. 10 Curvatures along the length. y0 = 0.5. (a) x; (b) s. 
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Figure 1. Lift-off at supports in a laminate subjected to three-point bending. 



Fig. 2 

 3

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. Four node rectangular plate element. 
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Figure 3. Parts of the specimen defined in the analytical approach. 
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Figure 4. Displacements field according to the number of elements. (a) Load 
application point. (b) Lift-Off point.  
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Figure 5. Displacements. (a) In the middle line. y0 = 0.5. (b) In the load line. x0 = 0.5. 
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Figure 6. Rotations in the middle line, y0 = 0.5. (a) x; (b) y. 
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Figure 7. Stresses along the length, y0 =0.5. (a) x; (b)s. 
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Figure 8. Stresses along the width on the bottom face, x0 = 0.5. (a) x; (b) s. 
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Figure 9. Stresses along the width on the bottom face, x0=0.25. (a) x; (b) s. 
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 Figure 10. Curvatures along the length, x0=0.5. (a) x; (b) s. 


