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ABSTRACT 

This study deals with the comparison of stresses and displacements of a circular ring obtained 

by two numerical formulations, namely the Stiffness Method and the Hybrid Method, applied to 

isoparametric quadrilateral elements. After explaining the formulation of the hybrid method in 

finite elements, an orthogonalization method proposed previously for hybrid elements is 

applied. Then, the computational cost per element of the stiffness method and of the hybrid 

method with and without orthogonalization have been evaluated for the first time. A circular 

ring loaded by two opposing forces is analyzed in order to compare the solution obtained by the 

hybrid method and the stiffness method with experimental and analytical results. The agreement 

between analytical and experimental results with those numerical is better in the case of the 

hybrid method than in the case of the stiffness-method. It is observed that the element ratio 

needed to obtain a given relative error is one magnitude order greater in the stiffness method 

than in the case of the hybrid method. 

Keywords: Force method; Stiffness method; Hybrid formulation; Circular ring 

Nomenclature 

   , lia a nodal displacements vector of the element and of the structure 

a thickness of the circular ring 

A cross sectional area of the circular ring 
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 B  displacement-strain matrix 

e difference between the average radius and the radius of the neutral surface 

  *,   E E  equilibrium matrix 

E Young’s modulus of material 

 jF  stress parameters vector 

 G  flexibility matrix 

G shear modulus of material 

*I  equivalent moment of inertia 

 ,  
eK K  SFM stiffness matrix of the element and of the structure 

k stiffness constant of the dynamometer 

 L  matrix of differential operators 

M  bending moment 

 N  matrix of displacement interpolation functions 

N  axial force 

iN  displacement interpolation functions 

   ,i lP P  external forces vector of the element and of the structure 

P concentrated force acting on the circular ring 

ri, ro inner and outer radius of the circular ring 

(r, θ) polar coordinates 

aR  average radius of the circular ring 

eR  radius of the neutral surface of the circular ring 

 S  compliance matrix of the material 

t element thickness 

 u  vector of displacements at any point in the element 

U* complementary strain energy 

X the redundant unknown 

 Y  matrix of stress interpolation functions 

  displacement 

   strain field vector in element domain 

 Poisson’s ratio 

,   natural coordinates 
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 i  stress field vector in element domain 

 

1. Introduction 

The Stiffness Method (SM) applied to finite element method (FEM) has been widely used in 

structural mechanics and mechanics of solids [1, 2].This method is derived from the application 

of the Principle of Virtual Work (PVW). In the SM a compatible displacement field is assumed 

in each element. The equilibrium conditions are considered in terms of nodal displacements that 

are the unknowns of the problem. 

The other basic approach for structural analysis is the Force Method (FM) [2]. This method is 

derived from the application of the Principle of Complementary Virtual Work (PCVW), 

assuming an equilibrated stress field. Then, the compatibility equations are satisfied as a 

function of assumed stress parameters.  

Fraeijs de Veubeke [3] showed that the SM and the FM are the lower and upper bounds of the 

exact solution, respectively. In the SM approach, all the admissible displacements of the system 

are not included. Therefore, the modeled system is more constrained than the actual case and the 

solution is over-stiff, being its energy a lower bound. In the FM all the admissible stresses of the 

system are not included, being the modeled system less constrained than the actual one. Thus, it 

is more flexible and its energy is an upper bound.  

Regarding FM, Patnaik [4] formulated the Integrated Force Method (IFM) for discrete 

structures, introducing the use of both equilibrium equations and compatibility conditions. IFM 

and FM were compared analytically and numerically [5]. The advantage of IFM with respect to 

FM is that it is not necessary to select the redundant forces. Then, the governing equations of 

IFM can be directly automated for computer analysis. The formulation of IFM was extended for 

continuous systems in ulterior studies [6, 7]. New elements for finite element analysis via IFM 

have been proposed [8-13]. 

The Dual Integrated Force Method (IFMD) was also proposed by Patnaik et al. [14]. As IFMD 

is a dual form of IFM, both provide identical solutions for stresses and displacements. The 

formulation of IFMD is equivalent to that of IFM, but the structure of the governing equation of 

IFMD is similar to SM, as the primary unknowns of IFMD are the nodal displacements. 
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On the other hand, Pian [15] introduced the Hybrid Method (HM). Pian and Chen [16] proposed 

some alternative ways to formulate HM. Punch and Atluri [17] analyzed the stability and 

coordinate invariance of linear and quadratic serendipity hybrid stress elements. Pian [18] 

presented a review of the evolution of hybrid and mixed FEM. Wu and Cheung [19] proposed 

two approaches in order to improve the HM performance. Pian [20] pointed out some remarks 

on the first developments of the HM and proved the equivalence of the elements proposed by 

different authors. 

HM are usually formulated based on the Hellinger-Reissner variational principle. Recently, 

Adarraga et al. [21] showed that this principle is equivalent to the application of the PVW and 

the PCVW which are equivalent to equilibrium and compatibility conditions, respectively. 

Therefore, the variational formulation of HM includes compatibility conditions, besides 

equilibrium conditions. In the same article, it has been shown that IFMD can be derived directly 

from the application of PVW and PCVW. The consequence is that IFMD and HM are 

equivalent. As they are based on the fulfillment of equilibrium equations as SM and 

compatibility conditions as FM, in the ensuing analysis the denomination Stiffness-Force 

Method (SFM) is used for the first time. It is worth noting that compatibility conditions are 

related to the fact that displacement and rotation fields are exact differentials [22]. That means 

that not only displacements, but also rotations are continuous single valued functions. 

Therefore, from a mathematical point of view, the continuity of third order derivatives of the 

displacements or C3 continuity is required [23, 24]. Nevertheless, in the formulation of 

quadrilateral elements by SM only the continuity of displacements or C0 continuity is required. 

One of the significant issues regarding SFM is the selection of the assumed optimal stress 

modes [25-29]. Zhang et al. [30] proposed a method to determine the assumed stress modes free 

of spurious zero energy modes, based on the basic orthogonal deformation modes. Recently, a 

new method to select the optimal stress field in a systematic and quantitative way has been 

developed [31]. 

Furthermore, in SFM the inversion of the flexibility matrix to compute the stiffness matrix is 

required, increasing the computational cost. In order to minimize the computational 
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requirements, Saether [32, 33] proposed an explicit formulation. Zhang et al. [34, 35] suggested 

an orthogonalization method based on the definition of an inner product. 

The aim of the present study is to compare SFM with SM in the case of general quadrilateral 

elements. With this purpose, the formulation of SFM has been briefly reviewed and the 

orthogonalization method proposed by Zhang et al. [35] has been applied. Then, an analysis of 

the computational cost of each element in the different FEM formulations has been carried out. 

A circular ring acted on by two opposing forces is analyzed. This problem has been selected 

because experimental results of stiffness concerning a commercial dynamometer are available. 

Moreover, analytical results are determined by applying the theorem of Engesser-Castigliano 

[36]. Finally, numerical results obtained by SFM and SM are compared with experimental and 

analytical results. 

 

2. Stiffness-Force Method 

2.1. Formulation 

SFM is developed based on PVW and PCVW. Displacements and stresses are interpolated 

separately and the governing equation has the nodal displacements as unknowns. Stresses are 

not obtained from the constitutive relations after differentiating the displacements in order to 

determine strains, but they are obtained directly from stress parameters. Usually, the absence of 

numerical differentiation of displacements is argued as the reason for obtaining better results in 

SFM. Nevertheless, from our point of view the fact of having introduced compatibility 

conditions by means of PCVW in the formulation is other important factor.  

According to PVW [37] and assuming that each element has ne independent displacements, the 

virtual work done by the external forces in an element is equal to the virtual work of the 

stresses: 

        
 

  
TT i i

V

dV a P  (1) 
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Where V is the volume of the element;    and   ia  are the virtual strain and nodal 

displacement vectors;    is the stress vector;  iP  is the nodal external forces vector; and i = 

1 to ne are the displacement degrees of freedom of the element. 

The displacements  u  at any point of the element are calculated from the nodal displacements 

by means of the interpolation functions of SM: 

      iu N a  (2) 

Where  ia  is the nodal displacements vector and  N  is the matrix of displacement 

interpolation functions. 

Element displacements  u  are related to the strains    through the matrix of differential 

operators  L : 

       L u  (3) 

Therefore, replacing Eq. (2) in Eq. (3), the strains    can be related directly to the nodal 

displacements  ia : 

           i iL N a B a  (4) 

Where  B  is the nodal displacement-strain matrix. 

In SFM, an independent stress field is also adopted. Considering that each element has me 

independent stress modes, the stresses    at any point of the element are interpolated in terms 

of the stress parameters  jF  [21]: 

       jY F  (5) 

Where  Y  is the matrix of stress interpolation functions and  jF  are the stress parameters, 

with j = 1 to me. 

The stress interpolation functions are formulated from the stress functions that are derived from 

complete polynomials [2] that satisfy equilibrium equations. Replacing Eqs. (4) and (5) in Eq. 

(1), it results: 
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            
 

 
 

 
 


T TTi j i i

V

a B Y dV F a P  (6) 

As   ia  are arbitrary, the equilibrium Eq. (6) can be written as follows: 

     j iE F P  (7) 

Where  E  is the element equilibrium matrix of order ne x me, defined as: 

      
 

 
T

V

E B Y dV  (8) 

Otherwise, the PCVW [37] states that: 

        
 

  
TT i i

V

dV P a  (9) 

Where    and   iP  are the virtual stress and external forces vectors. 

Taking into account the relation between strains    and stresses   : 

       S  (10) 

Where  S  is the compliance matrix of the material. Replacing Eqs. (5), (7) and (10) in Eq. (9), 

it results: 

               
 

 
 

 
 


T TT Tj j j i

V

F Y S Y dV F F E a  (11) 

As   jF  are arbitrary, Eq. (11) can be written as follows: 

       
Tj iG F E a  (12) 

Where  G  is the flexibility matrix of the element, defined as: 

       
 

 
T

V

G Y S Y dV  (13) 

The stress parameters  jF  of the element are obtained from Eq. (12), being: 

        
1


Tj iF G E a  (14) 

Now, replacing Eq. (14) in the equilibrium equation defined in Eq. (7), it gives: 
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         
1


Ti iP E G E a  (15) 

Equation (15) can be written as: 

       
e i iK a P  (16) 

Where   
eK  is the SFM stiffness matrix of the element given by: 

     
1

   
TeK E G E  (17) 

The stiffness matrix of the structure  K  is obtained by the assembly of the elemental stiffness 

matrices like in the case of SM. Hence, the governing equation of SFM is: 

     l lK a P  (18) 

Where l = 1 to ns and k = 1 to ms, being ns and ms the degrees of freedom of displacements and 

forces of the complete system, respectively. 

Once the nodal displacements are known the stress parameters are obtained from Eq. (14) and 

the stresses    at any point of the element are determined by Eq. (5). The strains    are 

obtained from strain-stress relation of Eq. (10). 

One of the main drawbacks of SFM is the requirement of determining the inverse of the 

flexibility matrix [G] to compute the stiffness matrix. In this way, different approaches have 

been proposed to improve the computational efficiency of SFM [32-35]. 

 

2.2. Quadrilateral elements 

In this section, interpolation functions of forces and displacements of an isoparametric 

quadrilateral element shown in Fig. 1 are described [26]. The displacement interpolation 

functions are the same as those used in SM: 

 

  

  

4

1

4

1

1
1 1

4

1
1 1

4

 

 





   

   

 

 

i i i i i

i

i i i i i

i

u N u u

v N v v

 (19) 

Where i  and i  are the natural nodal coordinates. 
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Using the stress interpolation functions defined in [26, 35] for the four-node isoparametric 

quadrilateral element, Eq. (5) can be written as: 

 

1

2 2

21 3

2 2

31 3

1 1 3 3 4

5

1 0 0
1 1

0 1 0

0 0 1

  

  

  

 
             

       
             

  

x x

y y

s s

F

FN a a

FN b b
t t

N a b a b F

F

 (20) 

Zhang et al. [34, 35] proposed an orthogonalization method to avoid the determination of the 

inverse of [G]. Moreover, they carried out an explicit formulation in order to obtain the stiffness 

matrix of quadrilateral hybrid stress elements. 

 

2.3. Number of floating-point operations 

Considering the same number of elements in SM and SFM, the global stiffness matrix is of the 

same order in both cases. Then, the main difference between them is the construction of the 

stiffness matrix of each element. Table 1 shows the computational cost for the stiffness matrix 

of 2D four-node isoparametric element in three cases:  

 Basic SFM without diagonalization and with numerical integration  

 SFM formulated in explicit manner according to the orthogonalization proposed in [34, 

35] 

 SM with numerical integration 

 

Table 1. FLOPs concerning the calculation of the stiffness matrix of the 2D 4-node 

isoparametric element. 

Step Basic SFM SFM explicit formulation SM 

 E  and  G a 2179 - - 

*

  E b - 289 - 

 K c 579 360 1766 

TOTAL 2758 649 1766 
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aBasic SFM: Eq. (8) and Eq. (13), integration with 4 Gauss points, one matrix product (8x3, 

3x5), one matrix product (5x3, 3x3), one symmetric product (5x3, 3x5); SFM explicit and SM: 

not applicable. 

bSFM explicit: see [35]; Basic SFM and SM: not applicable. 

cBasic SFM: Eq. (17), inverse by Cholesky (5x5), one triangular back substitution and one 

matrix product (5x5, 5x8), one symmetric product (8x5, 5x8); SFM explicit: see [35], one 

symmetric product (8x5, 5x8); SM: integration with 4 Gauss points, one matrix product (8x3, 

3x3), one symmetric product (8x3, 3x8). 

 

Figure 2 is a symbolic representation of the FLOP comparisons shown in Table 1. The saving of 

the computational cost concerning the explicit formulation of SFM is 60 % with respect to SM 

and 75 % with respect to Basic SFM.  

Otherwise, the formulation used to compute stresses is different in SFM and SM. Table 2 shows 

the computational cost of stress calculation for 2D four-node isoparametric element in the same 

cases as in Table 1.  

 

Table 2. FLOPs concerning the calculation of stresses of the 2D 4-node isoparametric element. 

Step Basic SFM SFM explicit formulation SM 

 jF
a 2702 369 - 

  b - - 572 

  c 240 393 60 

TOTAL 2942 762 632 

aBasic SFM: Eq. (14), repeated calculation of [E] and [G], inverse by Cholesky (5x5), two 

matrix products (5x5, 5x5 and 5x5, 5x8), one matrix-vector product (5x8, 8); SFM explicit: see 

[35], repeated calculation of  *

E , one matrix-vector product (5x8, 8); SM: not applicable. 

bSM: one matrix-vector product (3x8, 8); Basic SFM and SFM explicit: not applicable. 

cBasic SFM and SFM explicit: Eq. (5) and see [35], one matrix-vector product (3x5, 5); SM: 

one matrix-vector product (3x3, 3). 
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Figure 3 is a symbolic representation of the FLOP comparisons shown in Table 2. The saving of 

the computational cost of SFM with explicit formulation with respect to Basic SFM is 70 %. 

The reduction of the computational cost of SM with respect to SFM explicit is 20 %. 

If the differences in the calculation of the stiffness matrix and the stresses are added, the saving 

of computational cost of the explicit SFM with respect to SM is approximately 40 % and with 

respect to Basic SFM it is 75 %. 

 

3. Analytic approach of a circular ring acted on by two forces 

3.1. Circumferential stresses 

A scheme of the circular ring under study is shown in Fig. 4. The outer radius of the circular 

ring is represented by ro and the inner radius by ri. The cross section of the ring is rectangular, 

its thickness is defined as a and its width as t. According to the approach of Winkler for curved 

bars [36, 38], the circumferential normal stress distribution is given by: 

 
 eM r RN

A Aer



   (21) 

Being (r, θ) the polar coordinates; N the axial force; A the cross sectional area; M the resultant 

moment;  / lne o iR a r r  the radius of the neutral surface; e = Ra – Re the difference between 

the average radius and the radius of the neutral surface and Ra = ro + a/2 the distance from O to 

the centroid of the cross section. 

In curved beams significant radial stresses can be developed owing to the initial curvature of the 

beam. These radial stresses are inversely proportional to the radius of curvature of the beam, r 

[36]. As in the case under study the radius of curvature is large, radial stresses σr and shear 

stresses τrθ are assumed to be negligible compared with circumferential stresses σθ. 

 

3.2. Displacements  

In order to calculate displacements, the theorem of Engesser-Castigliano is used. As a first 

approach, the effect of radial stresses is neglected and that concerning shear stresses is 

introduced assuming that they have a parabolic distribution through the thickness. As a 
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consequence, the value of shear factor 6/5 corresponding to straight beams is used. Thus, the 

derivative of the complementary strain energy with respect to a force Fi is given by: 

 

   * '  '

6
5

'

*


  

   
i L L L

U MM NN
dl dl

F EI E

VV

A
dl

GA
 (22) 

Being : 

2 2
*

2
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


 


 

These parameters are a consequence of the hyperbolic distribution of circumferential stresses of 

Winkler’s approach, given in Eq. (21). 

After having determined the internal forces and moments, the vertical displacement at B can be 

computed using Eq. (22): 

 
3

*

1
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208

a
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aaPR PR
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PR

GA

 







 
   
 

 (23) 

The relative displacement between points B and C of Fig. 4 is 2 BC B .  

 

4. Analytic, numerical and experimental results 

4.1. Displacements 

The circular dynamometer of rectangular cross section shown in Fig. 5 has been analyzed. 

Experimental load-displacement data provided by the manufacturer CONTROLS will be used 

for comparative purposes [39]. The geometrical features and the elastic properties provided by 

the manufacturer are: 

 ro = 91 mm,     ri = 78 mm,     a = 13 mm and t = 51 mm 

E = 210 GPa,     G = 80.8 GPa and  = 0.3. 

The load-displacement relationship provided by the manufacturer is linear. The values of the 

stiffness k of the dynamometer determined experimentally, analytically, and numerically by SM 

and SFM are shown in Table 3. The numerical results have been obtained with a mesh of 48 

elements. The values obtained by SFM are closer to the experimental value and the analytical 

approach than that given by SM. 
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The analytic value of the stiffness obtained from Eq. (23) agrees with the experimental one, 

being the relative error 0.8%. Therefore, hereinafter numerical and analytical results will be 

compared. 

 

Table 3. Stiffness constant k of the dynamometer in N/mm 

 Experimental Analytical approach SFM SM 

k(N/mm) 20756 20914 21385 27223 

 

The displacements of the dynamometer have been determined numerically by SM and SFM, 

both implemented in MATLAB. The problem has been solved with different meshes of 2D 4-

noded quadrilateral elements. Figure 6 shows the model carried out with 48 elements. 

Figure 7 shows the values of the normalized displacements with respect to analytical values for 

different meshes obtained by SFM and SM. The convergence to the analytic approach is faster 

with SFM solution than with SM. 

The relative errors with respect to those analytical are shown in Fig. 8. The relative error for a 

mesh of 48 elements obtained by SFM for displacements is close to 2%. In order to obtain that 

relative error by SM it is necessary a mesh of 1200 elements. It is apparent that in the current 

example the computational cost is not an issue. Nevertheless, besides the low computational 

cost per element pointed out previously, the model needed is 25 times coarser in order to get the 

same error. In other words, it is possible to model larger systems for the same computational 

cost in the case of plane problems that include bending. 

 

4.2. Stresses 

The experimental value of the stiffness constant of the dynamometer is given by the 

manufacturer and the analytical value is obtained from the complementary strain energy, based 

on the stress distribution. Furthermore, experimental and analytical displacement results agree. 

As the stress field of Eq. (21) leads to correct displacements, the analytical stress distribution is 

considered suitable and the numerical results will be compared with respect to it. 
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Figure 9 shows circumferential stresses of section A of Fig. 4 at the inner and outer radius of the 

dynamometer obtained by SFM and SM for different meshes. The convergence is faster for 

SFM than for SM. Figure 10 shows the distribution of circumferential stresses along the 

thickness of section A for a mesh of 48 elements. SFM results agree better with the analytical 

approach than the stresses given by SM. The relative errors with respect to values obtained by 

Eq. (21) are shown in Fig. 11. In the case of SFM that error is less than 2 % at the inner and 

outer radius. In order to obtain that relative error by SM it is necessary a mesh of 600 elements. 

Therefore, in the case of stresses the model needed is 12 times coarser in order to get the same 

error.  

 

5. Summary and conclusions 

The FEM has been implemented in 2D four-node isoparametric quadrilateral elements using the 

hybrid formulation, namely Stiffness Force Method, that is based on the two fundamental 

principles of virtual work.  

An analysis of the number of FLOPs of the Stiffness Method and the Stiffness Force Method 

has been carried out. Explicit SFM is the method with the lowest computational cost.  

A circular ring acted on by two opposing forces has been analyzed analytically and numerically 

by SM and SFM. The analytic approach in displacements has been verified by comparing it 

with experimental data. The numerical results show that the displacements and stresses obtained 

by SFM converge faster to analytical results than those obtained by SM. Moreover, it is 

observed that the number of elements needed to obtain a given relative error is much greater in 

the case of SM than in SFM. Therefore, using SFM, besides the improvement in computational 

cost per element, the number of elements for a given model could be significantly reduced. 
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Figure captions 

Fig. 1 The 2D four-node isoparametric quadrilateral element: (a) global coordinates; (b) natural 

coordinates 

 
Fig. 2 FLOP comparisons for constructing the stiffness matrix 

 
Fig. 3 FLOP comparisons for obtaining the stresses 
 
Fig. 4 Scheme of the circular ring 

 
Fig. 5 Circular dynamometer 

 
Fig. 6 Coordinate system, discretization, loading and boundary conditions of the 48 elements 

FEM model of the circular ring 

 
Fig. 7 Vertical displacement at B obtained with SFM and SM normalized with respect to 

analytical values 

 
Fig. 8 Relative error of the vertical displacement at B with respect to analytical values 

 

Fig. 9 FEM results of the stresses at A, normalized with respect to analytical values: (a) at the 

inner radius; (b) at the outer radius 

 
Fig. 10 Analytical and FEM solutions of the stresses throughout the thickness at A, for 48 

elements 

 
Fig. 11 Relative error estimation of the stresses at A with respect to analytical approach: (a) at 

the inner radius, (b) at the outer radius 
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