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Abstract

The  study  examines  the  application  of  a  general  minimum distance  error  function  to  the  dimensional  kinematic  
synthesis  of  bidimensional  mechanisms.  The  minimum distance  approach  makes  it  possible  to  solve  the  problem 
maintaining the same generality as that of the minimum deformation energy method while solving the problems that  
occasionally appear in the former method involving low stiffness mechanisms. It is a general method that can deal both 
with unprescribed and prescribed timing problems, and is applicable for path generation problems, function generation,  
solid guidance, and any combination of the aforementioned requirements as introduced in the usual precision point 
scheme. The method exhibits good convergence and computational efficiency. The minimum distance error function is  
solved with a sequential quadratic programming (SQP) approach. In the study, the synthesis problem is also optimized 
by using SQP, and the function can be easily adapted to other methods such as genetic algorithms.
In the study, the minimum distance approach is initially presented. Subsequently, an efficient SQP method is developed  
by using analytic derivatives for solving. The next point addresses the application of the concept for the synthesis of 
mechanisms by using an SQP approach with approximate derivatives. This delivers a situation where the optimization is 
performed on an error function that itself consists of an inner optimization function. A few examples are presented and  
are also compared with the minimum deformation energy method. Finally, a few conclusions and future studies are 
discussed.
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Introduction

The synthesis  of  mechanisms is  a  matter  of  broad interest,  as  it  can be derived from the high volume of  related 
publications that appeared in the last few years. In the process of development of a mechanism, we first approach the  
type synthesis that deals with the selection of the types of elements that are to be employed to construct the mechanism.  
Second, it is necessary to tackle topology synthesis (also termed as number synthesis) that is related to the amount and  
distribution of the selected elements. Finally, dimensional synthesis is used to obtain the dimensions of the elements, 
and thus the mechanism finally fulfils the requirements. The study is related to this final step, we provide a brief review 
of the methods available for  the dimensional  synthesis  of  mechanisms.  The dimensional  synthesis  of  mechanisms  
potentially corresponds to the step that attracts maximum interest in the scientific community. This is because most of  
the type and topology synthesis is typically performed in an intuitive way since the number of factors involved is 
extremely high including costs and availability of elements, weight, and expertise. The aforementioned considerations 
are extremely difficult to quantify.
The definition of a dimensional synthesis problem can also be significantly different. The most usual paradigm is that of  
the  precision  points  where  we  define  a  set  of  precision  points  and  the  mechanism is  required  to  fulfil  a  set  of  
requirements for each precision point. This is a significantly flexible approach that is typically employed in numerical  
methods.  Alternative  options  are  typically  used when the  target  of  the  optimization is  of  homogeneous  nature  as  
observed in path generation, solid guidance, or function generation. In this case, it is possible to define the objective of 
the optimization in the form of analytic functions or tables representing the functions. This last type of option is less  
flexible in the sense of the problem to be solved although it allows the use of a wider set of methods. Thus, in addition  
to the typical case for analytic methods, there are also a few specific cases of numerical methods that require the  
aforementioned type of formulations. While using precision points, another point of interest is if the input element 
position is known for each precision point. In this case, we refer to prescribed timing. If it is unknown, it is termed as  
unprescribed timing. The second problem is more difficult to solve, as the prescribed timing allows the solution of the  
position problem and subsequently computes the degree of verification of the precision point.
In order to solve the dimensional synthesis of mechanisms, three families of methods are typically used as follows:  
graphical methods, analytic methods, and numerical methods. Graphical methods were most frequently used in earlier  
studies of dimensional synthesis of mechanisms. They are applicable to simple mechanisms, because the graphical  
constructions increase in complexity and are cumbersome when applied to complex mechanisms. A few examples of 
the aforementioned methods are found in references [1]-[3]. A few examples of analytic methods are found in [4]-[9]. 
They typically rely on closure equations, and thus it  is necessary to formulate the aforementioned equations. This  
typically implies that the algorithms should be developed on a per topology basis. In any case, the major disadvantages  
of analytic methods are that they are typically restricted to a specific type of requirements (typically path generation, 
function generation, or solid rigid guidance) and that the number of parameters to be determined should be equal to or  
exceed that of the precision points in the case of problems defined by precision points. This last condition is derived  
from the fact that analytic methods are not suitable to obtain an approximate solution albeit an exact one. The last group  
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of methods is numerical. As previously mentioned, the aforementioned methods typically apply the precision point  
definition of the problem. Additionally, they typically require a transformation to a precision point approach in the case  
of problems in which the definition is in another form. This is typically not a major concern, and thus numerical  
methods typically correspond to the most flexible and allow path or function generation or solid guidance as well as any 
type of requirements or combinations. There are two important families of numerical methods based on the use or no  
use of heuristics. Non-heuristic methods are typically based on classical optimization techniques where the function to  
be optimized is analysed, and the most frequently used approach is sequential quadratic programming that requires the  
derivatives of the function that can be obtained in either in an approximate or an analytic manner. Conversely, heuristic  
methods typically rely on the simulation of natural phenomena such as the evolution of species (genetic algorithms and 
evolutionary  algorithms)  and  biological  behaviour  of  nervous  systems  (neural  networks).  Applications  of  the  
aforementioned methods are found in references [10]-[22] among others. Non-heuristic methods have been examined 
extensively since heuristic methods require intensive computational effort, and thus they were developed later. A few 
applications of  the aforementioned methods can be found in references [23]-[28].  Most  of  the numerical  methods 
attempt to solve the prescribed timing problem to simplify the problem. Furthermore, several real problems can be 
formulated in this manner. The disadvantage of the approach is its loss of generality. A few examples of methods  
suitable for non-prescribed timing problems can be found in [24],[25],[26],[10]. Most of the aforementioned methods 
are  based  on  the  minimal  deformation  energy  function  defined  by  Avilés  et  al  in  [24].  The  function  exhibits  a 
significant advantage in the sense of versatility although it exhibits the limitation wherein it favours mechanisms with  
extremely low stiffness in topologically complex mechanisms, and this can lead to inadequate solutions. In the present 
study, a new approach is presented (as opposed to computing an energetic function) wherein the configuration of the 
mechanism that delivers the lower distance with respect to the set of requirements that appear in each precision point is  
computed. The function can be considered as a formal generalization of the study presented in [10] where the energetic 
function was modified to approximate the distance, and this allowed for the use of genetic algorithms for the synthesis  
of mechanisms with unprescribed timing and based on precision points. A preliminary approach for the optimization of  
the function was presented in [29]. In the study, derivatives are obtained in an analytic way, and the application of the  
function to the optimization of mechanisms with an SQP method is presented.

 Minimum distance approach

We consider the problem shown in figure  1 as an introduction to the problem. The coupling node in the fourbar is 
required  in  the  considered  precision  point  to  reach  the  indicated  target  point.  The  minimum deformation  energy  
approach  ([24],[30])  models  the  mechanism as  constructed  by  linear  elastic  elements.  With  respect  to  the  given  
precision point, we compute the configuration of the mechanism that verifies the restrictions with the lower deformation  
energy. This corresponds to figure 1.b. This defines the minimum deformation energy problem that should be solved for 
each precision point.  The summation of the obtained energies for  each precision point  is  the error function to be  
optimized. The minimum distance approach defines a similar concept although the mechanism is constructed on rigid 
elements that cannot be deformed. In the aforementioned conditions, in the general case, it is not possible to precisely  
verify the requirements in a precision point. Thus, we compute the configuration of the mechanism that delivers the 
lower  distance  to  the  requirements.  The  minimum  distance  position  problem  involves  obtaining  the  assembled 
configuration that delivers the lower distance from the mechanism to the requirements. With respect to the example, the  
solution is presented in figure 1.c.

Figure 1 :a) Mechanism with a precision point with a node to point requirement. a) solution for the minimum 
deformation energy problem. c) solution for the minimum distance problem

As in the case of the minimum deformation energy approach, the error function for the synthesis can be constructed as  
the summation of the distance to the requirements for each precision point. This can also be weighted to consider the  
different relevancies of the precision points.

Evidently,  there  are  situations  where  multiple  requirements  are  introduced  in  a  single  precision  point.  In  the 



aforementioned cases, we can use a weighted squared summation of the distances to each of those requirements as used  
in the minimum deformation energy approach. There are also situations in which the nature of requirements is different. 
The aforementioned restrictions are termed as after node to point although also we can introduce restrictions where the 
distance can be angular or node to line or similar. In any case, the aforementioned approach can be applied. With  
respect to the current document, we reduce the requirements to those of node to point and node to line where the target  
is fixed. Thus, the synthesis point is expressed as follows:

[1]

where:

: weight factor for requirement in the synthesis point

: distance from the point declared in the requirement to the required target point.

: vector containing the dimensions of the mechanism.

: coordinates of the nodes of the mechanism.

For example, with respect to the case of a node to point requirement:

[2]

where,

 the x coordinate of the point that the node should reach

the y coordinate of the point that the node should reach

the x coordinate of the node required to reach  

the x coordinate of the node required to reach  

Evidently and are part of . If  defines a possible assembled configuration of the mechanism, the dimensions 

of the mechanism as defined by must match those of the undeformed elements of the mechanism. For example, in 
order to obtain a mechanism defined by truss elements, the following restrictions should be satisfied as follows:

[3]

being:

: original (undeformed) length of the k-th truss

:length of the k-th truss as defined by the coordinates of the nodes

This is termed as the length approach. An evident alternative (that is easier to implement) is derived as follows:

[4]

Which (as shown later) leads to different derivatives albeit similar performance. This is termed as the squared length 
approach. Given this, the problem of minimum distance is defined as follows:

minimize:

with respect to:

subject to:

[5]

or subject to:

[6]

When the minimum distance problem is defined, we approach the synthesis problem. In order to formulate the same, we 



consider that the best mechanism is that which delivers the lower value in all the synthesis points. It is possible to  
approach the problem via Pareto considerations although this not of significant practical use. Thus, a weighted approach 
is considered again. The synthesis problem error function that is used is defined as follows:

[7]

where,
: number of synthesis points to be considered.

: weight factor for the synthesis point .

As shown in [31], we use as vector of variables to be optimized or a set of initial coordinates. The final option 
allows  the  inclusion  of  the  assembly  configuration  in  the  optimization  although  it  leads  to  more  complicated 
developments. In this stage, the optimization computes derivatives via finite differences, and thus the use of coordinates 

is selected. Thus, the optimization problem involves minimizing with respect to .

Minimizing the minimum distance function

The main problem while attempting to approach the synthesis of mechanisms is the computational cost. Thus, it is  
necessary to reduce it to the maximum possible extent. The minimum distance function appears in the inner loop of the  
process, and thus it is important to focus on it. In order to reduce the cost to the maximum possible extent, we resort to a  
Sequential  Quadratic  Programming (SQP)  approach.  This  is  also  important  because  we can  use  the  result  in  the  
previous precision point as a starting vector for solving the next, and thus a reliable starting vector is exhibited. This is  
extremely  important  while  using  SQP.  In  order  to  introduce  the  dimensional  restrictions,  a  Lagrange  multiplier 
approach is applied. In order to further reduce the computational cost, both first and second analytical derivatives of the  
aforementioned  restrictions  are  also  obtained.  This  also  contributes  to  increasing  precision  in  the  solution  of  the 
problem. The required derivatives include those of the error function and those of the restrictions. With respect to the  
derivatives of the error function, we obtain them through the addition of the derivatives of the different targets of the 
optimization. This leads to an assembly algorithm that is similar to that of the finite element techniques. Within the  
limits considered in the study, the problem is warranted as free of saddle points or undesired extrema. Thus, a simple 
Karush-Kuhn-Tucker  solver  is  considered  based  on  the  null  subspace  approach.  The  specific  solution  in  the  null  
subspace method is selected as the minimal least squares solution to improve numerical behaviour. The final symmetric  
system of equations is solved by using the method presented in [32]. It is important to note that the introduction of 
angular requirements can easily lead to situations with saddle points in other circumstances.

Requirements

With respect to the case of node to point requirements, the following expression is obtained:

[8]

Where, the following expression holds:

[9]

The non-null elements appear in the rows that correspond to the node to verify the requirement. With respect to the  
second derivative, the following expression is obtained:

[10]

Additionally, the following expression holds:



[11]

Evidently,  the  crossed  derivatives  are  null  for  this  type  of  requirement,  and  thus  a  diagonal  matrix  is  reached.  
Additionally, for each component, the non-null elements appear in the rows corresponding to the node to verify the  
requirement. It is also easy to observe that for a problem with only node to point requirements, the Hessian before  
restrictions is always positive definite.

The node to line requirement can be defined in several ways. In order use the advantage of floating point properties in 
the study, the use of angles is avoided. This avoids trigonometric functions in the code. This is important due to their  
lack of efficiency, and the loss of precision (due to non-strict implementation of IEEE754) in a few implementations.  
Thus, the line requirement is defined by the tangent of the angle with respect to the horizontal and the signed minimum 
distance of the line to the origin of coordinates. Thus, the tangent varies from to , and the distance is positive 
when the line that delivers the distance in y is positive (see figure 2).

Figure 2: Line definition for the node to line requirement

In the conditions, the distance to line is computed as follows:

[12]

where and denote the parameters that define the line that the node is required to reach. In this case, it is important  

to consider that eq. [12] can lead to numerical problems in cases where   is of significant magnitude. In order to 
avoid the aforementioned problems, the implementation includes the alternatives shown in eq. [13] as follows:

[13]

With respect to the derivatives, the following expression is obtained:



[14]

Furthermore, the equation is suitable for . In the case of , it is advisable to use the following 
expression:

[15]

If , then the following expression is obtained:

[16]

The second derivative is as follows:

[17]

This is not a problem if , while in other case it is advisable to use the following expression:



[18]

In all  the  aforementioned cases,  there  is  the possibility  of  division by .  Although this  could be a  problem in 
significantly old systems, all IEEE754 compatible systems and most of the modern systems can manage the situation by  
returning 0 unless the number to be divided also corresponds to infinity, and this is never the case in the presented  
expressions.

Restrictions

The  derivatives  of  the  dimensional  restrictions  are  addressed.  Given  the  purposes  if  simplicity,  only  truss  length 
restrictions  are  examined.  There  are  two possible  approaches  as  previously  discussed.  With  respect  to  the  length  
approach, we consider a truss that connects nodes  and as follows:

[19]

and:

[20]

With respect to the alternative squared length approach:

[21]

and:



[22]

The length approach delivers more complicated derivatives although it is also necessary to consider that it can also lead 
to a better performance in terms of convergence.

Convergence of the minimum distance function

Prior  to  approaching  synthesis,  it  is  important  to  verify  that  the  optimization  of  the  minimum distance  function 
accurately converges.  Thus,  a  few experiments are performed. This also serves to compare the behaviour of  both 
formulations.  It  is  also  interesting to  note  how the  function behaves  in  comparison to  the  minimum deformation  
algorithm. The first example (figure 3) is a fourbar with a single point to line requirement. In this case, this is a situation 
where the minimum achievable distance is zero, and thus the minimum distance and minimum deformation energy 
methods typically yield the same result.

Figure 3: Fourbar in a starting position and requirement (left). Solution obtained with minimum distance and minimum 
deformation energy (right)

The  problem  is  solved  with  the  minimum  distance  algorithm  (both  with  length  restrictions  and  squared  length  
restrictions) and the minimum deformation energy algorithm. In all the cases, the algorithms converge to the same 
solution, and the computational cost is excessively low such that it cannot be measured with precision (it could be 
derived from the average of several executions although it is better to compare it in more complex problems). The  
amount of iterations to convergence is also similar. Figure 4 shows the convergence graph obtained for the minimum 
distance problem by using squared lengths for introducing restrictions. The other approach for introducing restrictions  
leads to similar results. This is also observed for the minimum deformation energy algorithm although numerical values  
in this case are not comparable due to the differences in the nature of the error functions.
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Figure 4: Typical convergence graph. Values with log(fitness)<-64 are rounded to -64

The next problem addresses a problem without an exact solution, and this corresponds to a typical situation while 
dealing with mechanism synthesis. It is also a fourbar mechanism although a node to point requirement is presently 
introduced.

Figure 5: Problem description. Fourbar with node to point requirements

Evidently, the differences among the minimum distance and minimum deformation energy problem are significantly  
visible. First, a comparison of both restriction formulations is performed. The use of direct length restrictions leads to 
the result shown in figure 6 (left).

Figure 6: Result obtained with minimal distance function. Left: solution obtained with simple length restrictions. Right: 
solution obtained with restrictions formulated as lengths are raised to the power of two

The  result  obtained  with  the  formulation  of  restrictions  based  on  lengths  raised  to  the  power  of  two  lead  to  a 
surprisingly better result as shown in figure 6 on the right. As shown in the performed experiments, the difference in the 
result is significantly common in problems with multiple local minima and where the initial configuration is far from 
the aforementioned minima. In the aforementioned cases, different values obtained for the Hessian of the restriction can  
lead to different results.  This does not imply that the formulation of lengths raised to the power of two is better.  
Occasionally, a formulation leads to a better minimum value although both lead to the same final solution in most  
situations. With respect to the convergence, we observe the evolutions of the aptitude and restriction violation as shown 
in figure 7.
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Figure 7:Evolution of fitness and restriction error. Left: Restrictions based in lengths. Right: Restrictions based in 
lengths raised to the power of two

As shown in  figures  7 left  and  right,  the  first  iteration  is  equal  in  both  formulations.  This  is  because  the  initial 
configuration is undeformed, and thus only the gradient of the restrictions is considered in the iteration. In the second 
iteration, the difference in the Hessian matrix leads to different search spaces for both algorithms, thereby leading to  
different results. It is significantly interesting that the first formulation leads to a result that is worse than the initial  
vector although this is not uncommon while optimizing functions with multiple local optima. The minimal deformation  
energy algorithm leads to a configuration and evolution as shown in figure 8.
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Figure 8: Solution obtained with minimal deformation energy function (left) and optimization evolution (right)

Evidently, it is not possible to compare the fitness obtained with the minimal deformation energy function with that  
obtained with the minimal distance function although we can compare the number of iterations that are slightly lower  
(although similar) and a computational cost as that as noted in the previous example that is excessively low such that it  
is examined in more complex examples. The most important problem of the deformation energy formulation is that it  
can favour low stiffness mechanisms that are typically useless.

The following example is a complex one. It is based on the double butterfly mechanism. The mechanism kinematics is  
significantly complex to solve and especially when compared to those of a fourbar. The problem is shown in the figure  
below:

Figure 9: Double butterfly mechanism with a precision point

The minimum distance problem solution with both formulations for restrictions is shown in figure 10:



 

Figure 10: Solution obtained for the minimum distance problem with both simple and alternative length restrictions.

The evolution of both algorithms is shown in figure 11:
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Figure 11: Evolution of the Fitness and Restriction Error. Left: Simple length restrictions. Right: Alternative 
formulation

As shown in this  case,  the results  are  opposite  to  those of  the fourbar.  In  this  case,  the simple length restriction 
formulation leads the optimal best result while the lengths raised to the power of two yield a slightly worst result. In the 
experiments performed, there is no specific benefit on by using a formulation or the other. In terms of computational 
cost, both algorithms approximately correspond to 1 ms for each of the 10 iterations. This is confirmed in several tests  
with different configurations of the same problem.

The result obtained with minimum deformation energy are shown in the figure below along with the convergence 
graph.
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Figure 12: Minimum deformation energy solution and evolution.

The minimum deformation problem is typically solved with a slightly lower number of iterations. This is logical given  



that restrictions are not used in the optimization, and this favours convergence. The main problem is that the obtained 
solution is not an assembly configuration although it can be used to obtain an estimation of the error (the deformation 
energy).

The next problem is based on the same double butterfly linkage although the requirement in this case is significantly far  
from the initial position.

Figure 13: Double Butterfly with a requirement far from the initial configuration

The results obtained with the minimal distance function are shown in figure 14:

Figure 14: Solutions. Left: by using simple length restriction formulation. Right: by using lengths raised to the power of 
two

In this case, the results are equal. This is not uncommon. The convergence graphs are shown in the figure below:
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Figure 15: Convergence graphs. Left: Restrictions formulated as simple lengths. Right: Restrictions formulated as 
lengths raised to the power of two.

Although both algorithms lead to the same result, the second algorithm involves a long computation period. Although  
this difference is significantly rare (in the first tests, the effect is unnoticed), it should be considered since it increases  



computational cost from 1 ms to 10 ms. It only occurs with the aforementioned difference in requirements far from the  
initial solution, and thus it is not a significant problem for synthesis purposes. It appears that the simplification of the  
Hessian in the second restriction formulation can lead to small penalties in convergence.

The minimal distance result and its convergence graph is shown in figure 16:
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Figure 16: Solution obtained by using minimum deformation energy and convergence graph.

Here it is possible to observe the biggest disadvantage of the minimum deformation energy method. The algorithm can  
easily change the assembly configuration of the mechanism, thereby leading to an impossible solution. In the presented 
solution, the single element defined by nodes CHIK folds. This type of folding is overcome with specific formulations  
as those presented in [33] although all the assembly changes cannot be solved in this manner. The minimum distance 
method  significantly  avoids  assembly  changes  albeit  not  all.  This  is  because  there  is  a  significant  change  in  
configuration of the initial iteration when the minimum energy approach forces the nodes to their requirements and  
especially  if  the  requirement  is  far  from  the  initial  solution.  This  is  not  always  a  disadvantage  because  it  can  
occasionally lead to a configuration that is reachable without a change in the assembly configuration, and the minimum 
distance algorithm is unable to reach the same because it converges to another local solution. In any case, this mostly 
corresponds to a disadvantage than an advantage.

Minimizing the synthesis function

In order to apply the minimum distance function to the synthesis of mechanisms, it should be minimized. This can be  
performed in two significantly different ways. The first method is useful whenever a mechanism that nearly verifies the  
requirements or a similar set is known. This occurs in the packaging industry where the packaging mechanism of a  
machine should be adapted to another one with similar requirements. The other problem occurs when clues on the  
dimensions of the mechanism to be used are not available. In the first case, numerical optimization techniques including 
gradient descent or SQP are of the maximum interest. In the second case, heuristics are typically more useful. However,  
in the latter case, the use of a numerical technique to further improve the results is significantly interesting. In the study,  
an SQP method is used for two reasons.  The first  reason is that  a distance based function was already proven as 
successful along with genetic algorithms (although it is significantly different than the approach presented here). The 
second is that a numerical method is of interest in both situations, and thus it is interesting to implement it before the  
heuristics. The SQP method matches the one used to optimize the minimum distance function. However, in this case, a 
finite difference approach is used to obtain the derivatives. The use of finite differences as opposed to a BFGS or  
similar quasi-Newton approach is because exact derivatives can be obtained and the use of a finite difference approach 
yields  results  that  resemble  the  exact  derivatives  approach,  and  thus  it  serves  to  prove  the  utility  of  the  method 
(although at a higher computational cost). Given the results obtained in the previous examples, the restrictions are 
modelled by using the length formulation. It is important to note that since a set of initial coordinates are used for the 
optimization, the system is typically be undefined, and thus it is necessary to use a method that can deal with this  
problem.

Examples of mechanism synthesis

As previously  discussed,  the  obtained  results  are  heavily  dependent  on  the  starting  proposed  solution.  Given  the 
significant  number  of  local  extrema  of  the  function,  a  small  change  in  the  coordinates  of  the  nodes  or  in  the  
optimization algorithm can change the result. If the initial configuration is not adequate, the result always corresponds  
to a better mechanism. However, it is occasionally necessary to change the starting solution several times to obtain an 
adequate final result. As previously mentioned, the algorithm can improve a mechanism with a behaviour similar to that 
required. This does not mean that a good result far from the starting point is occasionally achieved. In the case in which 
a good initial guess is not available, the use of a heuristic method is potentially useful to retrieve a good estimate. The 
aforementioned starting vector can subsequently be improved with this algorithm. In any case, the use of heuristics is 



beyond the scope of  this  study.  The computer  used to  perform the calculations for  the mechanism synthesis  is  a  
XeonE5645@2.4 GHz. The code is programmed in a single thread configuration, and thus there the advantage of the 
multiprocessor characteristics of the computer are absent except for the advantage of the other cores that perform the 
operative system duties. The first example is based on a simple fourbar. The path to be described is not associated with  
that traced by the mechanism in the initial configuration as shown in in figure 17. The fixed nodes coordinates are not 
part of the optimization, and thus their coordinates are restricted by using linear restrictions.

Figure 17: Synthesis of a fourbar, unprescribed timing

The problem corresponds to an unprescribed timing type because the input link position for each precision point is not  
defined. The problem includes 5 independent variables and 7 coordinates, and thus it does not possess an exact solution. 
It is important to state that the mechanism exhibits a degree of freedom, and thus only 5 variables really define the  
mechanism although there are 6 variables. This is important because it implies that the optimization always leads to an 
underdetermined system of equations. Thus, the solver should be able to deal with the same. The resulting linkage along 
with the convergence graph of the synthesis is shown in figure 18. The total time of the calculation is less than 3 s.
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Figure 18: Minimum Distance result and convergence graph

The  minimum distance  positions  of  the  mechanism to  each  of  the  precision  points  are  shown in  figure  19.  It  is 
interesting to investigate the relative performance of the algorithm when compared to the formulation of the minimal  
distance problem based on central differences. First, the obtained results need not coincide. Second, for the problem, the 
obtained result with central differences is obtained at a similar iteration count at a cost corresponding to a factor of 10 to  
that of a fourbar (approximately 30 s). More complex mechanisms further increase the factor.
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Figure 19: Minimum distance positions of the solution

The use of fourbars as a basis for examples of optimizations is widespread. This provides an idea of the complexity of  
the problem of kinematical synthesis. The next example is significantly more complex. It is a path generation performed 
by a double butterfly mechanism. The problem is described in figure  20. The difficulty of the mechanism is that it 
cannot be decomposed in simple loops. Furthermore, it again corresponds to a non-prescribed timing problem. In this 
case, the fixed node coordinates are allowed to change. The final obtained result is shown in figure 21. The minimum 
distance positions are shown in figure  22. The evolution of the fitness is shown in figure  23. The convergence is 
achieved in approximately 14 iterations. Initially, the convergence is fast.  However, at the later stages, the central  
differences approach for the derivatives leads to a slowdown. The use of analytically formulated derivatives can avoid 
the aforementioned problem.

Figure 20: Path Synthesis for a double butterfly linkage



Figure 21: Obtained result

Figure 22: Minimum distance positions in the solution
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Figure 23: Fitness evolution

The final example corresponds to a function generation performed with a double butterfly. It also includes a small set of  
precision points (only 4), and thus it is further differentiated from the previous examples wherein several precision 
points are introduced. The upper fixed node (J) is allowed to change location while the other two node locations (nodes 
A and B) are not included in the optimization. Furthermore, the lengths of trusses AC and BD are fixed. This is  
necessary to ensure that the optimization process delivers zero lengths for the aforementioned trusses. The problem is  
described in figure 24.

Figure 24: Function synthesis in a double butterfly mechanism

The resulting mechanism along with the convergence graph is  shown in figure  25.  Convergence was achieved in 
approximately 30 iterations with a total  time of approximately 35 s.  Typically,  a  decrease in the precision points  
increases the number of iterations required for convergence. This is potentially because the problem is less stiff, and 
thus it exhibits a smaller number of local extrema. This typically implies that the initial solution is also typically farther  
from the local optima that it reaches.
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Figure 25: Obtained solution and convergence graph

Minimum distance configurations are shown in figure 26:

Figure 26: Minimum distance positions for each of the precision points

Conclusions and future work

In the study, a new error function for the optimization of mechanisms is presented. The main advantage of the error 
function  is  its  flexibility.  It  allows  unprescribed  and  prescribed  timing  problems.  When  compared  with  methods  
including minimum deformation energy, it exhibits the same advantages although it avoids the problem of low stiffness 
mechanisms. The minimization of the minimum distance error function with an SQP method is presented, and it is 
demonstrated that it accurately converges. The analytic derivatives of the requisites of node to point and node to line are 
obtained. This significantly reduces the computational cost of the solution of the minimum distance problem, and thus  
the synthesis is reached at a reasonable cost. The minimization of the synthesis error function is approached with the  
same SQP method although derivatives in this case are obtained in a central differences approach. The use of this type 



of numerical optimization improves an initial solution and is of interest in industrial areas where mechanisms with 
different although similar requisites are required such as packaging. The synthesis method indicated that it can deal with 
simple mechanisms, such as fourbars, and also with more complicated linkages such as the double butterfly. Future  
developments include the introduction of increased requirements such as node to node distance. The development of 
analytic derivatives should also improve the performance of the algorithm. The application of heuristics to the synthesis  
problem is of special interest such as genetic algorithms. The aforementioned approach is already demonstrated as 
successful when it is applied to an approximate minimum distance function, and thus it is potentially useful with respect 
to the exact minimum distance function examined in the study. This leads to a good starting point that subsequently be 
numerically improved with the presented SQP synthesis approach.
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