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Abstract

Coal-�red power plants may enjoy a signi�cant advantage relative to
gas plants in terms of cheaper fuel cost. Still, this advantage may erode or
even turn into disadvantage depending on CO2 emission allowance price.
This price will presumably rise in both the Kyoto Protocol commitment
period (2008-2012) and the �rst post-Kyoto years. Thus, in a carbon-
constrained environment, coal plants face �nancial risks arising in their
pro�t margins, which in turn hinge on their so-called �clean dark spread�.
These risks are further reinforced when the price of the output electricity
is determined by natural gas-�red plants�marginal costs, which di¤er from
coal plants�costs.

We aim to assess the risks in coal plants�margins. We adopt parameter
values estimated from empirical data. These in turn are derived from
natural gas and electricity markets alongside the EU ETS market where
emission allowances are traded. Monte Carlo simulation allows to compute
the expected value and risk pro�le of coal-based electricity generation.
We focus on the clean dark spread in both time periods under di¤erent
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future scenarios in the allowance market. Speci�cally, bottom 5% and 10%
percentiles are derived. According to our results, certain future paths of
the allowance price may impose signi�cant risks on the clean dark spread
obtained by coal plants.

Keywords : Clean dark spread, clean spark spread, EU Emissions Trad-
ing Scheme, Monte Carlo.

JEL Codes: C6; E2; D8, G3.
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1 Introduction

One of the main and most obvious consequences of electricity market liberal-
ization is the fact that now utilities provide electricity at a variable price (as
opposed to a �xed rate as in the traditional regulated framework). In addition,
as integration gathers pace and a¤ects fuel markets (such as coal or natural gas),
input costs also become volatile. In a deregulated market, presumably only as-
sets that enjoy a positive di¤erence between the price of electricity and the price
of a particular fuel used to generate it under prevailing market conditions will be
operated. It is this spread that determines the economic value of a generation
asset that can be used to transform the input fuel into output electricity. Thus,
power operators pay close attention to the dark and spark spreads; Alberola
et al. [2]. The dark spread represents the theoretical pro�t that a coal-�red
power plant makes from selling a unit of electricity having purchased the fuel
required to produce that unit of electricity. Similarly, the spark spread refers to
the equivalent for natural gas-�red power plants. (This idea is analogous to the
concept of the "crack spread" used in the oil/re�ning industry; Deng et al. [6].
It refers to the prices of crude oil and re�ned products like diesel or gasoline.)
On the other hand, within the EU Emissions Trading Scheme (ETS), the

price of emission allowances can a¤ect the cash �ows of a power plant during its
entire lifetime. Upon the introduction of carbon costs, the former spreads must
be corrected by the allowance price. They become, respectively, the clean dark
spread and the clean spark spread. As is well known, the option to switch from
coal to natural gas in its inputs represents an abatement opportunity for a utility
to reduce CO2 emissions in the short term. Therefore, the equilibrium between
these spreads sets the carbon price above which it becomes pro�table for an
electricity producer to switch from coal to natural gas; Laurikka and Koljonen
[14]. Conversely, as long as the carbon price remains below this switching price,
coal plants are more pro�table than gas plants, even after taking carbon costs
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into account. These indicators help to determine the preferred fuel used for
power generation. Final consumers are also a¤ected since allowance prices will
presumably be passed on to electricity prices (either fully or in part).
This paper can be of interest also to U.S. utilities. In the EIA [8] reference

case, coal-�red power plants continue to be the dominant source of electricity
generation through 2030. Thus, coal share generation increases from 49% to
54%, and coal plants account for 40% of total capacity additions from 2006 to
2030. However, technology choices for new plants and utilization of existing
capacity are a¤ected by relative fuel costs and changes in environmental poli-
cies. Right now, there is no federal cap-and-trade mechanism to control CO2
emissions. But a few multi-state or regional schemes are on the way, and federal
legislation can eventually be established well before the next coal plants reach
the end of their useful lives. If so, failure now to account properly for uncertain
emission costs in investment decisions can press utilities into a rush for coal
only to get their �ngers burnt in the longer term. Indeed, many utilities are
beginning to assess the potential cost of future carbon regulations within their
resource plans. Following Barbose et al. [4], the mere prospect of that reg-
ulation is already having an impact on utilities�decision-making and resource
choices.
Several papers address the valuation of electricity generating assets assuming

separate dynamics for input and output prices. Hlouskova et al. [10] consider a
coal-based electricity producing turbine in a liberalized market. They adopt a
discrete-time model for the electricity spot price, which is a �rst-order autore-
gressive process with time-varying mean and a jump component. Coal price,
instead, is assumed constant. Focusing on the relevant spot market for electric-
ity in Germany, they value a typical electricity generating turbine alongside its
optimal schedule. The (multi-stage) decision problem is solved by Monte Carlo
simulation in conjunction with backward dynamic programming. Besides, the
spot price model is used to simulate possible price paths for their sample pe-
riod. The simulated pro�t-loss distribution represents the risk pro�le of the
plant. This information can be used to integrate physical production assets
with �nancial contracts for the purpose of enterprise-wide risk management.
Deng et al. [6] value both generation and transmission assets starting from

futures contracts for electricity and the relevant fuel (e.g., natural gas). First
they consider the case in which the futures price processes of electricity and
gas for the relevant maturities follow geometric Brownian motions. Then they
assume speci�c mean-reverting processes. Later on, Deng [5] extends the former
model by adopting a more realistic electricity spot price model which explicitly
takes into account jumps and spikes. Yet this process continues to be a one-
factor model and as such has its drawbacks in matching the correlation structure
of electricity forward prices with di¤erent maturities.
Laurikka [13] addresses the valuation of power technologies within an emis-

sions trading scheme. He presents a simulation model in an operating environ-
ment with multiple exogenous and one-factor mean-reverting stochastic prices
(among them, electricity, emission allowance, coal, natural gas). Laurikka and
Koljonen [14] consider a similar environment; unlike the previous work, they
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consider two simple mean-reverting stochastic variables (the price of electricity
and the emission allowance) and two deterministic variables (fuel price and the
number of free allowances). Again, they adopt the Monte Carlo approach for
plant valuation purposes.
Näsäkkälä and Fleten [15] follow a di¤erent approach. They take the view-

point of an investor holding a license to build a gas-�red power plant. But they
directly model the spark spread as a sum of short-term deviations (assumed
to follow a simple mean-reverting process) and equilibrium price (assumed to
follow a geometric Brownian motion). One advantage is that, as electricity and
gas are often used for the same purposes (such as heating or cooling), their
seasonal variations have similar phases and thus the seasonality decays from the
spark spread. Also, it enables a more thorough and intuitive description of the
investment decision process. As they point out, though, when using the spark
spread process some information about its uncertainty structure may be lost
compared to models with separate processes for input and output. However,
after developing the two approaches, their results indicate that, with their data,
the di¤erence is small.
The purpose of this paper is to assess the risks in coal plants�earnings. Fol-

lowing a similar approach to Näsäkkälä and Fleten [15], we adopt the viewpoint
of a utility which is operating a coal-�red power plant with a long useful life
ahead (it is similar for an investor holding a license to build a coal-�red plant).
Assuming it operates under the EU ETS, from the outset we naturally focus
on the clean dark spread. Arguably, the prices of coal, natural gas, carbon and
electricity are governed by stochastic processes. However, we do not propose
separate dynamics for each of them. Somehow we blend the two approaches
mentioned above. We start from the notion of the clean dark spread. But, in-
stead of directly modelling it, we decompose it into three separate elements with
simple interpretations. Then, we assume a speci�c continuous-time stochastic
process for each of them.
First, we note that electricity price typically arises from supply and demand

schedules. Thus, electricity is sold at the price requested by the marginal gen-
erating unit in the matching process. The cost of fuel composes most of the
marginal cost of electricity. The structure of the merit order of suppliers may
vary signi�cantly from one country to another. Usually the marginal units are
natural gas-�red plants; consequently the price of electricity is determined by
the margin of this kind of technology, namely the clean spark spread (plus, pos-
sibly, other items as operating and maintenance costs, etc.). (Because gas-�red
turbines produce relatively little pollution, and are quick and easy to start and
ramp up, they are often the technology of choice for load following and peak
generation; Douglas and Popova [7].) Yet the rest of the generating �eet in gen-
eral, and coal-�red plants in particular, show a di¤erent pattern of fuel costs,
emission costs, and the like. Under these circumstances, gas plants are better
suited than coal plants to o¤set, at least partially, the risk in the cost side with
the risk in the revenue side. Indeed, base load generators face their greatest risk
of loss when prices and consumption fall, largely because they incur signi�cant
costs when they must shut down and restart base load power plants. Therefore
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their margins face a greater risk; note, though, that this does not necessarily
mean less expected pro�ts.
The �rst element in our decomposition of the clean dark spread is thus

the clean spark spread. Similarly, the second one is also a composite item,
namely the fuel price gap between coal and gas (per megawatt hour generated);
the reason for doing so is explained below. But we do not further decompose
these variables into other, more fundamental ones (e.g. the prices of electricity,
gas, and so on); we directly model them as speci�c one-factor mean-reverting
processes. As for the third element, the price of carbon dioxide, we assume it
follows a standard geometric Brownian motion, and is treated as such in isola-
tion. This may be a good compromise between information loss and intuitive
explanation.
We estimate the three stochastic processes from actual market data. Thus

we get numerical values of the underlying parameters. We then run a number
of simulations for each of these three components. The whole time horizon
comprises ten years, which span the Kyoto Protocol�s commitment period (2008-
12) and the next �ve-year period 2013-17. This time horizon is subdivided into
many shorter time steps. At each step in a given simulation the resulting clean
dark spread is derived; it is measured in euros per megawatt hour. Since this
sum is received for one megawatt hour produced, income in that step equals
the spread times the number of megawatts hour generated over that step. (The
amount earned over any one time step may be interpreted as the sum that is
contributed to the utility�s income statement in that step.) Last, we just add
up all the step contributions until the end of the time horizon considered. Thus
we get an estimate of the cumulative income over the two �ve-year periods for
a given simulation. Following this process a number of times allows us to assess
not only the expected earnings but also the risk pro�les. We note that there
is no discounting in the valuation process since this is not deemed essential to
the objective of the paper. According to our results, the earnings do remain
positive over the commitment period. This no longer holds necessarily, though,
in the immediate post-Kyoto period.
The remainder of our paper is organized as follows. In Section 2 we intro-

duce some preliminaries about clean spreads along with the technical parameter
values that will be used below. In Section 3 we explain the three stochastic
processes that the aforementioned variables are assumed to follow. We describe
our sample data and also the numerical estimates of the relevant parameters.
In Section 4 we show the main results of our simulations regarding coal-based
power plants under the EU ETS. Section 5 concludes.

2 Some preliminaries

2.1 Conceptual framework

Two di¤erent spreads can be de�ned. First, for a gas-�red plant the clean spark
spread (CSS) is:
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CSS = PE �
PG
EG

� PCO2
IG; (1)

where PE denotes electricity price (e=MWh), PG is the price of natural gas
(e=MWh),1 EG is the net thermal e¢ ciency of a gas-�red plant, and PCO2 is
the price of a EU emission allowance (e=tCO2). Last, IG stands for the emission
intensity of the plant (tCO2=MWh); this in turn depends upon the net thermal
e¢ ciency of each gas-�red plant.
According to IPCC [11], a plant burning natural gas has an emissions factor

of 56.1 kgCO2=GJ .2 Since under 100% e¢ ciency conditions 3.6 GJ would be
consumed per megawatt hour, we get:

IG =
0:20196

EG

tCO2
MWh

: (2)

Thus the complete formula for the CSS is:

CSS = PE �
1

EG
(PG + 0:20196� PCO2

): (3)

Similarly, following IPCC [11] a plant burning bituminous coal has an emis-
sion factor of 94.6 kgCO2=GJ under 100% e¢ ciency conditions; then:

IC =
0:34056

EC

tCO2
MWh

: (4)

Thus the complete formula for the Clean Dark Spread (CDS) is:

CDS = PE �
1

EC
(PC + 0:34056� PCO2

); (5)

where PC is the price of coal (e=MWh), and EC denotes the net thermal
e¢ ciency of a coal-�red plant.
We can solve for PE in Eq. (3) and then substitute into Eq. (5), thus linking

the two spreads. This yields:

CDS = CSS +
1

EG
(PG + 0:20196� PCO2

)� 1

EC
(PC + 0:34056� PCO2

): (6)

Or, equivalently:

CDS = CSS + (
PG
EG

� PC
EC

) + (
0:20196� PCO2

EG
� 0:34056� PCO2

EC
): (7)

With regard to the right-hand side, the �rst term represents the margin de-
rived by natural gas plants. The second one is the fuel price gap (adjusted for

11 MWh = 3.412 mmBTU, and 1 mmBTU = 0.293083 MWh.
2This corresponds to 15.311 kgC=GJ , since one ton of carbon is carried on 3.67 tons of

CO2.
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relative e¢ ciency rates). To the extent that this gap is positive, it is to the
advantage of coal-�red plants. The last term, though, stands for the disadvan-
tage of coal plants because of their higher carbon emissions, which is further
aggravated by their lower e¢ ciency levels.
Both spreads are equal CSS = CDS when:

PG
EG

� PC
EC

=
0:34056� PCO2

EC
� 0:20196� PCO2

EG
; (8)

i.e., when the advantage in fuel price is wiped out by the higher emission costs.
For high enough allowance prices, CDS can reach a low value or even become

negative. Speci�cally, we would get CDS = 0 when:

CSS +
PG
EG

� PC
EC

=
0:34056� PCO2

EC
� 0:20196� PCO2

EG
; (9)

i.e., when the higher costs of carbon permits o¤set not only the fuel price gap
but the CSS as well.
Henceforth we adopt the typical case: EG = 0:55 and EC = 0:40. Then Eq.

(2) implies overall emissions of IG = 0:3672 tCO2=MWh from a gas plant; and
Eq. (4) implies overall emissions of IC = 0:8514 tCO2=MWh from a coal plant.
In this case, CDS = 0 when:

CSS +
PG
0:55

� PC
0:40

=

�
0:34056

0:40
� 0:20196

0:55

�
PCO2

= 0:4842PCO2
: (10)

Hence, an increase of one euro in the allowance price reduces the CDS by 0.4842
e=MWh.

2.2 Sample data

Our sample consists of four data sets: (1) daily electricity prices on PowerNext
(France) from November 27th 2001 to February 6th 2008; (2) daily gas prices at
Zeebrugge (Belgium) from April 4th 2001 to February 2nd 2008 as provided by
Bloomberg; (3) daily spot carbon prices on the EU ETS from June 20th 2005
to January 28th 2008 as provided by BlueNext; (4) daily ARA coal one-month
futures prices on the European Energy Exchange (Leipzig, Germany) from May
2nd 2006 to February 5th 2008. (In addition, prices of futures contracts on
EU allowances from ICE have been used but only in Section 3.4 below, so we
make no further reference to them here.) Sample prices come from markets
that are geographically very close to each other. We focus on the time span
over which the four price series are available, namely May-1-2006 to Jan-28-
2008. We transform the daily series into weekly average prices. Thus, we have
a complete data set over 92 weeks.
Figure 1 shows the time path of CSS and CDS series. Their main statis-

tics appear in Table 1. The average CDS value is signi�cantly higher than
the mean CSS. To a large extent this is due to low CO2 allowance prices;
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see Figure 2. Also, the advantage in fuel prices for a coal plant amounts
to 8.8666 e=MWh on average. We can get a crude estimate of the carbon
price necessary to have CSS = CDS; a rough computation would lead tobPCO2

= 8:8666
0:4842 = 18:31e=tCO2. Similarly, Table 1 suggests that one would have

CDS = 0 for ePCO2 =
11:281+8:8666

0:4842 = 41:61e=tCO2. Below we propose and then
estimate the stochastic processes that will allow us to set long-term equilibrium
values and provide more exact estimates.

Table 1. Basic statistics of CSS and CDS weekly series.
CSS CDS PG

0:55 �
PC
0:40

Average (e=MWh) 11.281 19.766 8.8666
Median (e=MWh) 8.2827 13.472 8.9994
Minimum (e=MWh) -17.338 -11.047 0.83517
Maximum (e=MWh) 89.580 111.22 15.801
Standard deviation 15.717 18.839 4.0317
Coe¤. variation 1.3932 0.95312 0.45470
Skewness 2.4997 2.4814 -0.14031
Excess kurtosis 9.0810 7.6654 -1.0235

3 Stochastic models and econometric analysis

Following Eq. (6), �rst we assume speci�c continuous-time stochastic processes
for each of the three items on the right-hand side. Then, we focus on their
discrete-time counterparts. We estimate the coe¢ cients on these regression
equations with actual data from the markets involved. The relations between the
coe¢ cients in the discrete -time equations and the parameters in the continuous-
time processes allow us to get numerical estimates of the latter from the former
set of values. Subsequently we will use these parameter values in our MC sim-
ulations of the separate inputs to the CDS (and their sum).

3.1 The Clean Spark Spread

We adopt the simplest mean-reverting stochastic process (also known as an
Ornstein-Uhlenbeck or O-U process):

dSt = kS(Sm � St)dt+ �SdWS
t ; (11)

where St denotes the value of the CSS at time t. This current value tends to
the level of the CSS in the long term Sm at a speed of reversion kS . Besides, �S
is the instantaneous volatility of the CSS, and dWS

t stands for the increment to
a standard Wiener process.
This model allows CSS to take on negative and positive values. It is shown

in Appendix A that St has a conditional mean

E(St) = S0e
�kS(t�t0) + Sm(1� e�kS(t�t0));

which amounts to
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E(St+�t) = Ste
�kS�t + Sm(1� e�kS�t):

Also, the conditional variance is

V ar(St) =
�2S
2kS

[1� e�2kS(t�t0)]:

Since both mean and variance remain �nite as t!1, this process is stationary.3
Eq. (11) is the continuous-time version of a �rst-order autoregressive process

in discrete time:

St+�t = Sm(1� e�kS�t) + Ste�kS�t + "St+�t = aS + bSSt + "St+�t; (12)

where "St � N(0; �S" ), and the following notation holds:

aS � Sm(1� bS)) Sm =
aS

1� bS
;

bS � e�kS�t ) kS = �
ln bS
�t

:

This process for the CSS is stationary if bS < 1. Figure 3 shows the partial
autocorrelation function of the CSS weekly series. Also, as shown in Appendix
A:

(�S" )
2 =

�2S
2kS

[1� e�2kS�t])

) �2S =
2kS(�

S
" )
2

1� e�2kS�t =
2(�S" )

2 ln bS
�t[bS2 � 1]

:

The last three equations will allow us to recover the continuous-time process
parameters (kS , Sm, �S) upon estimation of the regression coe¢ cients (aS , bS)
and the standard deviation of the regression residuals (�S" ).

3.2 The adjusted price gap between coal and natural gas

Now we turn to the second term in Eq. (6)�s right hand. Figure 4 shows the
prices of natural gas and coal along with the resulting gap between fuel prices
(in e=MWh produced) with the assumed e¢ ciency rates. Again we adopt an
Ornstein-Uhlenbeck process for the di¤erence PG=0:55 � PC=0:40. We have
another AR(1) process as its counterpart in discrete time:

Ct+�t = Cm(1� e�kC�t) + Cte�kC�t + "Ct+�t = aC + bCCt + "Ct+�t; (13)

3The CSS can be traced back to several individual prices of inputs and outputs. It may be
worth noting that Eq. (11) can be a good approximation of this spread even if the underlying
prices themselves do not follow O-U processes (Sodal, Koekebakker, and Aadland [16]).
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where Ct denotes the price gap at time t, Cm is the level of the gap in the long
term, and kC stands for the speed of reversion. The remainder of the notation
goes as before.

3.3 Joint estimation of CSS and fuel price gap

It is possible that both the CSS series and the price gap series are a¤ected
by common factors. This possibility suggests that separate estimation of each
equation may not be suitable. Instead, we estimate them as a �rst-order vector
autoregressive (VAR) process:

St+�t = aS + bSSt + "
S
t+�t; (14)

Ct+�t = aC + bCCt + "
C
t+�t: (15)

The VAR(1) estimates of the coe¢ cients in Eqs. (14) and (15) appear in the
left hand of Table 2; they are statistically signi�cant. From the series of residuals
in both regressions we compute a correlation coe¢ cient �S;C = 0.2538. The right
hand of Table 2 shows the values of the underlying parameters in the stochastic
processes (�t = 1/52, weekly observations) implied by these estimates.

Table 2. Estimates of the CSS and fuel price gap series.
Coe¢ cient Estimate t�statistic Parameter EstimatecaS 5.7196 3.400 kS 34.0747cbS 0.5202 6.071 Sm 11.9216caC 1.3285 2.629 �S 127.65cbC 0.8494 16.374 kC 8.5068

�S" 13.2060 Cm 8.8256
�C" 2.0458 �C 15.9928

A low value of cbS implies that the process for CSS quickly reverts back to
its long-term mean, as can be seen in the high value of kS . Figure 5 displays
both the observed CSS values and those predicted by the model. Instead, cbC is
closer to one, which means that the fuel price gap behaves more like a random
walk, as shown by a lower speed of reversion kC .
Threshold allowance price for CDS = CSS and CDS = 0. Using the

parameter values of Sm and Cm in a deterministic context yields:
a) CDS = CSS for a carbon price bPCO2

= Cm
0:4842 = 18:23 e=tCO2. Be-

low this level, CDS > CSS would hold and coal-based technology would be
preferred.
b) CDS = 0 for a carbon price ePCO2 =

Cm+Sm
0:4842 = 42:85 e=tCO2. Above

this level, CDS < 0 would hold and coal-�red plants would be shunned.
The results of the above analysis broadly agree with the empirical evidence

in Table 1. There, the implied values were 18:31 e=tCO2 and 41:61 e=tCO2,
respectively.
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Thus, if electricity price is set by gas-�red plants, a sizeable rise in the
allowance price would be enough to o¤set the initial advantage in fuel price
enjoyed by coal-�red plants. These stations could even cease to be pro�table in
the absence of carbon-capture units.

3.4 Stochastic process for the emission allowance price

During the Kyoto Protocol�s commitment period (2008-2012) we assume that
carbon price At (in e=tCO2) follows a geometric Brownian motion (GBM):

dAt = �Atdt+ �AAtdW
A
t : (16)

Therefore, the expected value for the allowance price in the near future is:

E(At) = A0e
�t for t < 5: (17)

At the end of this period we assume there will be a sudden jump J in price,
which would push the expected value upwards:

t = 5� : E(At) = A0e
5�;

t = 5+ : E(At) = A0e
5� + J:

From then on, we assume allowance scarcity is just right as an environmental
policy measure and price evolves once again following a GBM:

E(At) = A0e
�t + Je�(t�5) for t > 5: (18)

No further jumps are assumed in subsequent years for the sake of simplicity.
Though environmental policy is conceivably expected to become stricter and
push allowance prices to new heights at the end of this period, it is hard to
foresee what will happen then.4

Estimation. The European Climate Exchange (ECX) manages the Euro-
pean Climate Exchange Financial Instruments (ECX CFI), which are traded
at the London-based International Petroleum Exchange (later acquired by the
Intercontinental Exchange, or ICE). Futures prices from ICE have been used
here.
As this paper was developed, there were futures contracts for both the three-

year trial trading period (2005-2007) and the commitment period (2008-2012).
Our sample starts on May 1st 2006 and closes on March 26th 2008. We thus
have 495 daily prices for each of the �ve futures contracts maturing from Dec-08
to Dec-12.

4 In January 2008 the European Commission presented a proposal to revise and strengthen
the ETS. Some of the main changes are the following: (a) There will be one EU-wide cap on
the number of emission allowances instead of 27 national caps. The annual cap will decrease
along a linear trend line, which will continue beyond the end of the third trading period
(2013-2020). (b) A much larger share of allowances will be auctioned instead of allocated free
of charge. (c) Harmonised rules governing free allocation will be introduced.
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Parameter estimation for the commitment period is developed as follows.
First, we focus on the days for which observed futures prices are available.
Then we estimate the spot price on each day by means of cubic splines that
pass along the observed quotes on those days; see Figure 6 for a particular day.
This procedure is brie�y described in Appendix B. Estimation results of the
spot price and nearby futures prices are plotted in Figure 7.
According to Ito�s Lemma, the transformed variable Xt � lnAt follows a

stochastic process:

dXt = (��
�2A
2
)dt+ �AdW

A
t : (19)

Hence, in discrete time:

yt = � lnAt = lnAt � lnAt��t = (��
�2A
2
)�t+ �A

p
�t�3t ; (20)

where �3t is a standard Gaussian white noise.
We carry out our estimation according to the maximum likelihood (ML)

method:

arg min
�;�A

TX
t=1

[�1
2
ln(
�2A
�t
)� 1

2

(yt � (�� �2A
2 )�t)

2

�2A�t
]:

This method (conditioned on the �rst observation A0) provides the estimators
of the mean and variance of yt. They are given by:

bm =
1

T

TX
t=1

yt; bs2 = 1

T

TX
t=1

(yt � bm)2: (21)

On this occasion, we use the whole series of (almost �ve hundred) daily returns.
These equations yield: bm = 0:00051248, bs2 = 0:00082893.
The ML estimators of the drift (b�) and volatility (b�A) parameters are derived

from their relations to the mean and variance parameters. Note that bothbm and bs2 are expressed in daily terms, whereas b� and b�2A are customarily
expressed in yearly terms. We take the number of trading days over a year
to be 250. Therefore we have �t = 1=250, and ML estimation yields: b�2A =bs2=�t = 250bs2 = 0:2072. Hence we get a volatility estimate of b�A = 0:4552. In
this respect, if instead we adopt moving windows of 50 observations, volatility
estimates evolve as shown in Figure 8. A value (here assumed constant) of
0.4552 does not seem o¤ the mark.5

Regarding the estimation of the drift, this would be:

b� = bm
�t

+
bs2
2�t

= 250bm+ 125bs2 = 0:2317:
5Also, Abadie and Chamorro [1] estimate �A from a similar sample by applying the Kalman

�lter. The numerical value is 0.4683.
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Thus, the drift parameter of the process for Xt is: b�� b�2A=2 = 250bm = 0:1281.
According to Gourieroux and Jasiak [9], asymptotic variances are given by:

Vasy(b�2A) = 2�4A
T

= 0:00017529; Vasy(b�) = �2A
T�t

+
�4A
2T

= 0:10577:

While volatility can be estimated accurately, this does not hold for the drift.
Its asymptotic variance converges only mildly as the number of observations
increases because of the term T�t which, in our case, amounts to 490=250 =
1:96; this is why it has fallen only to half b�2A. Consequently, in what follows we
use the volatility estimate but not that of the drift; instead, we adopt a range
of possible values � = f�0:025; 0:00; 0:025; 0:05; 0:075; 0:10g and analyze their
e¤ect.
Last, residuals from regression Eqs. (14), (15), and (20) allow us to compute

the correlation coe¢ cients: �S;A = -0.0122, �C;A = 0.0994.

4 Monte Carlo simulation

As stated earlier, our aim is to study value and risk involved in coal stations
operating under the EU ETS after Kyoto Protocol�s expiration. We accomplish
this by means of simulation techniques.6

4.1 The components of the CDS in isolation

Correlated random variables are generated according to the scheme (see Appen-
dix C):

St+�t = Sm(1� e�kS�t) + Ste�kS�t + �S

s
1� e�2kS�t

2kS
�1t ; (22)

Ct+�t = Cm(1�e�kC�t)+Cte�kC�t+�C

s
1� e�2kC�t

2kC
[�1t�S;C+�

2
t

q
1� �2S;C ];

(23)

lnAt+�t = lnAt + (��
�2A
2
)�t+ �A

p
�t[�1t�S;A +

+�2t
�C;A � �S;A�S;Cq

1� �2S;C
+ �3t

s
1� �2S;A �

(�C;A � �S;A�S;C)2
1� �2S;C

];

or
6Alesii [3] develops a similar approach and shows a numerical example in the context of

shipping �nance.

13



At+�t = Ate
(���2A

2 )�t+�A

vuut�t[�1t�S;A+�
2
t

�C;A��S;A�S;Cp
1��2

S;C

+�3t

s
1��2S;A�

(�C;A��S;A�S;C )2

1��2
S;C

]

;
(24)

where �1t , �
2
t and �

3
t are standardized Gaussian white noises with zero correlation.

The �rst expression above is derived after replacing �S" in terms of �S . Similarly
in the second expression. At the same time, if samples from a standardized
bivariate normal distribution are required, an appropriate procedure is the one
shown above, where �S;C ; �S;A and �C;A are the correlation coe¢ cients between
the variables in the multivariate distribution.
In order to get numerical estimates 40,000 sample paths for St, Ct and At

are generated. Each path comprises 600 steps; this means �ve steps per month
since the horizon considered is ten years, namely the �ve-year commitment
period plus the next �ve years.
Starting values appear in Table 3; they have been computed above. As ini-

tial values of the CSS and the gap in fuel prices (in e=MWh) we adopt the
long-term equilibrium values. The initial allowance price is the one estimated
on 03/26/2008, the last day of the sample used to estimate this market�s para-
meters.

Table 3. Initial parameter values of the MC simulation.
CSS S0 = Sm = 11:9216 kS = 34:0747 �S = 127:65
Fuel price gap C0 = Cm = 8:8256 kC = 8:5068 �C = 15:9928
Allowance price A0 = 22:0923 � �A = 0:4552
Correlation �S;C = 0:2538 �S;A = �0:0122 �C;A = 0:0994

Computations are realized per unit of installed capacity (MW) and assume
that the coal-�red plant operates 80% of the time on average (i.e. 8; 760�0:8 =
7; 008 hours over a year). (For any other percentage rate, computations would
vary proportionately for each MW of installed capacity.) Hence we assume a
yearly production of 7,008 MWh for each megawatt installed. Since 60 time
steps are used per year, this implies that 116.8MWh will be generated per step
for each MW of capacity.
At the �nal time t = 10, the distributions of the CSS and the fuel price gap

are characterized by the statistics in Table 4. The theoretical mean for t = 10
amounts to the long-term level estimated before. The theoretical volatility for
t = 10 is computed according to the following formulas (see Appendix A):

�S;t=10 = �S

s
1� e�20kS
2kS

= 15:4629; �C;t=10 = �C

s
1� e�20kC
2kC

= 3:8066:

Table 4. Statistics of theoretical and simulated CSS and fuel price gap.
CSS Fuel price gap

Theoretical Simulated Theoretical Simulated
Mean 11.9216 11.8502 8.8256 8.8525
Volatility 15.4629 15.3780 3.8066 3.8673
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As for the allowance price, the �nal distribution at time t = 10 of the
allowance prices depends on the growth rate � used and the jump that would
take place at the end of the commitment period. For example, in the case of
� = 0:05 and a jump of 2:5 euros, the theoretical value of the mean would be:

E(At=10) = Aoe
0:50 + 2:5e0:25 = 39:6341;

as opposed to the mean from the 40,000 simulations of 40:143 e=tCO2.
On the other hand, when � = 0:05 and the jump size is 0:0e, the theoretical

value of volatility would be:

�A;t=10 = �A
p
10 = 1:4395:

This �gure is very close to the value of 1:4409 derived from computing the
standard deviation of the (natural log) prices of the emission allowance at the
end of the MC simulation. These similarities attest to the goodness of our
sample paths.

4.2 The overall CDS

Tables 5-7 below show our results under di¤erent scenarios. We focus on average
earnings as derived from CDS values in Table 5 along with the 5% and 10%
percentiles in Tables 6 and 7. (We disregard other inputs to the plant�s net �nal
pro�t.)
As already mentioned, the ten-year horizon is partitioned into 600 time

steps, or 60 steps per year. Also, we are assuming a yearly production of 7,008
MWh for each megawatt of capacity installed; thus 116.8 MWh are generated
over each step. The contribution of one step to the utility�s economic results
emanates from this output electricity and the accompanying CDS over this
step. Aggregating over the �rst 300 time steps we compute the cumulative
contribution of the plant to the �rm�s pro�ts during the Kyoto period 2008-
2012; similarly for the last 300 steps and the post-Kyoto period 2013-2017. No
discounting is involved to better resemble what would show up in the utility�s
internal �nancial statements.
Look, for instance, at the Kyoto period under the assumption � = 0:0% (�rst

row in Table 5). When emission allowances are not expected to appreciate, the
plant earns 352,000 euros over that time horizon (for megawatt installed). The
output generated over this �ve-year period amounts to 7; 008 � 5 = 35; 040
MWh. Therefore the �rm would get on average some 10.05 e/MWh.7 Next
period (2013-17), if the expected drift rate remains at zero and there is no
jump in allowance price, the average CDS remains almost the same, namely
348,000 euros (see next line in Table 5). (These values are not exactly equal
since random samples are being generated in both cases and average values

7This is much lower than the average CDS of 19.76 that appears in Table 1. This is partly
due to low allowance prices during that sample period (Figure 2). According to our analysis,
this is not what carbon market seems to suggest for the near future.
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may diverge slightly.) Obviously, if carbon price jumps upwards the CDS falls
accordingly; similarly for changes in the value of the drift rate, �.

Table 5. Expected earnings per megawatt installed (thousand e)
� = �2:5% � = 0 � = 2:5% � = 5% � = 7:5% � = 10%

2008-12 374 352 327 300 271 239
2013-17
J = 0.0 e 413 348 270 174 58 -84
J = 2.5 e 373 306 224 126 6 -140
J = 5.0 e 333 263 179 78 -45 -194
J = 7.5 e 293 221 134 29 -97 -249
J = 10 e 253 178 89 -19 -148 -304

Table 6. Earnings 10% percentile (thousand e) in 2013-17.
� = �2:5% � = 0 � = 2:5% � = 5% � = 7:5% � = 10%

J = 0.0 e 17 -126 -300 -511 -770 -1,091
J = 2.5 e -41 -187 -365 -583 -847 -1,166
J = 5.0 e -98 -249 -431 -652 -922 -1,247
J = 7.5 e -156 -310 -496 -723 -996 -1,328
J = 10 e -216 -374 -564 -797 -1,077 -1,409

Table 7. Earnings 5% percentile (thousand e) in 2013-17.
� = �2:5% � = 0 � = 2:5% � = 5% � = 7:5% � = 10%

J = 0.0 e -357 -586 -854 -1,187 -1,596 -2,096
J = 2.5 e -423 -652 -930 -1,271 -1,685 -2,191
J = 5.0 e -494 -727 -1,011 -1,355 -1,776 -2,290
J = 7.5 e -562 -800 -1,093 -1,443 -1,871 -2,386
J = 10 e -634 -880 -1,176 -1,534 -1,965 -2,492

It can be seen in Table 5 that, over the commitment period (2008-12), the
expected average CDS takes on a positive value. Nonetheless, for values of the
drift parameter � � 5%, the expected CDS may turn to negative in the period
2013-17, the more so depending on the potential jump in allowance prices during
the transition from one period to the next. These results are displayed in Figure
9.
Tables 6 and 7 show the Earnings at Risk (EaR) of coal-�red plants in

the 2013-17 phase. According to Table 6, in the absence of a jump and for
� = 5:0%, there is a 10% of potential states in which losses would surpass
511,000 euros for each megawatt of capacity installed if electricity is produced
under such circumstances. As shown in Table 7, in the same scenario (J = 0:0
e and � = 5:0%), the losses would go beyond 1 million euros in the worst 5%
of situations. See Figure 10. Presumably a coal-�red plant would not operate
under such circumstances, unless other reasons imply so (signed guarantees or
the like). (Nonetheless the �gures may be taken as such so as to maintain the
level basis for comparisons.)
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5 CONCLUSIONS

Present and future liabilities by EU utilities in relation to CO2 emissions create
a setup previously unknown. Current legislation entails new costs and risks to
the generating �rms. Fortunately they are getting better gauged as markets
develop and price series get longer.
We assume that electricity fetches a market price which is determined by

natural gas combined-cycle plants operating as the marginal generating units.
We further assume that the price gap between gas and coal follows a mean-
reverting process. Even though coal-�red plants enjoy an initial advantage in
terms of cheap fuel for generating electricity, an increase in the price of the
emission allowances may erode signi�cantly their pro�t margins. Given that
the future path of the allowances is hard to forecast (specially after 2012), we
have designed potential scenarios depending on the drift rate of the allowance
price and the jump size of the price at the end of the commitment period. Under
these assumptions we have assessed the risks on the pro�t margins of coal plants.
Margins do remain positive over the Kyoto Protocol�s commitment period.

This no longer holds necessarily, though, in the immediate �ve years after the
Protocol�s expiration. Expected margins may switch to negative, or remain
slightly positive but with a high risk of becoming negative in many cases. In
such scenarios, this would lead to shut down the coal plant thus reducing the
chances to recover the investment costs.
Realization of scenarios involving steep growth in the allowance price would

be incompatible with investing in new coal plants. It could even trigger the
abandonment of plants currently in operation but with relatively short useful
lives as carbon prices climb ever higher. However, the decision to abandon a
power plant may be a¤ected by provisions in the National Allocation Plants
concerning assigned allowances in the case of plant closures. Also, a high al-
lowance price could be compatible with coal-based electricity generation if there
are gains in e¢ ciency rates and the plants are retro�tted with carbon capture
and storage units, for example.
Similarly, in the case of developing countries still una¤ected by the Kyoto

Protocol, the signing and ensuing adaptation may put current investments in
this technology at risk. Consequently, the decision to undertake new investments
should take this possibility into account.

A Moments of a mean-reverting O-U process

We start from the stochastic model:

dSt = k(Sm � St)dt+ �tdWt:

Next we adopt the notation in Kloeden and Platen [12]. The homogeneous
equation is:

dSt
St

= �kdt:
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Therefore, its fundamental solution is �t;t0 = e�k(t�t0) and making Yt =
��1t;t0St = e

k(t�t0)St derivatives can be computed:

dYt
dSt

= ek(t�t0);
d2Yt
dS2t

= 0;
dYt
dt

= kek(t�t0)St:

By Ito�s Lemma:

dYt = d(�
�1
t;t0St) = kSme

k(t�t0)dt+ ek(t�t0)�tdWt;

hence we deduce that:

St = S0e
�k(t�t0) + e�k(t�t0)k

Z t

t0

ek(s�t0)ds+ e�k(t�t0)�

Z t

t0

ek(s�t0)dWs:

The �rst moment can be easily reached:

E(St) = S0e
�k(t�t0) + Sm(1� e�k(t�t0));

therefore:

E(S1) = Sm:

The variance is given by:

V ar(St) = e
�2k(t�t0)�2

Z t

t0

e2k(s�t0)ds =
�2

2k
[1� e�2k(t�t0)]:

B Estimation of the cubic spline

Each day we need to trace a curve that passes through all the points in the
price/time space for which futures prices are available. For this purpose we use
four pieces of curves of the form:

yt = a08t
3 + b08t

2 + c08t+ d08 for t08 5 t 5 t09;

yt = a09t
3 + b09t

2 + c09t+ d09 for t09 5 t 5 t10;

yt = a10t
3 + b10t

2 + c10t+ d10 for t10 5 t 5 t11;

yt = a11t
3 + b11t

2 + c11t+ d11 for t11 5 t 5 t12;
where t08; t09; t10; t11 and t12 denote the time of maturity of the futures contracts
from December-08 to December-12. For the sake of simplicity, and without loss
of generality, we take t08 = 0; then t09 = 1; t10 = 2; t11 = 3 and t12 = 4.
Since there are 16 parameters to estimate we need the same number of

restrictions to get a unique solution:
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a) The pieces of the cubic functions must reach the points actually observed;
this provides eight equations.
b) The �rst derivatives in t09; t10 and t11 must coincide; three equations.
c) Coincidence of the second derivatives in t09; t10 and t11; three equations.
d) The last two conditions have been chosen so as to get a natural spline;

this requires that second derivatives at the initial and �nal points take on a
value of zero.
The �rst cubic on each day, substituting the time to maturity of the Dec-08

futures contract with negative sign, allows to get an estimate for the spot price
of the emission allowance on that day A0. This can be seen in Figure 6.

C Generation of mean-reverting correlated vari-
ables

Let e1, e2, and e3 be standard normal deviates. Random samples of correlated
variables can be generated as follows:

x1 = f11e1; (26)

x2 = f21e1 + f22e2; (27)

x3 = f31e1 + f32e2 + f33e3; (28)

if Cov(x1;x2) = �12, Cov(x1;x3) = �13, and Cov(x2;x3) = �23.
Random deviates with this correlation structure must satisfy:

E(x21) = 1 =) f11 = 1;

E(x1x2) = �12 =) f21 = �12;

E(x22) = 1 = f221 + f
2
22 =) f22 =

q
1� �212;

E(x1x3) = �13 = f11f31 =) f31 = �13;

E(x2x3) = �23 = f21f31 + f22f32 =) f32 =
�23 � �12�13p

1� �212
;

E(x23) = 1 = f231 + f
2
32 + f

2
33 = �

2
13 +

(�23 � �12�13)2
1� �212

+ f233 =) f33 =

s
1� �213 �

(�23 � �12�13)2
1� �212

:

Henceforth:

x1 = e1; (29)

x2 = e1�12 + e2

q
1� �212; (30)

x3 = e1�13 + e2
�23 � �12�13p

1� �212
+ e3

s
1� �213 �

(�23 � �12�13)2
1� �212

: (31)
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Clean Dark Spread (CDS) and Clean Spark Spread (CSS)
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Figure 1: Clean dark spread and clean spark spread, May-2006 to Jan-2008.
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Figure 2: Carbon price (e/MWh) for gas- and coal-based technologies (assum-
ing net thermal e¢ ciencies EG = 55% and EC = 40%).
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Partial Autocorrelation Function
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Figure 3: Partial autocorrelation function of the CSS series.
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Figure 4: Natural gas (Zeebrugge) price, coal ARA price, and fuel price gap.
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Real and Estimated CSS
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Figure 5: Actual and estimated CSS series.
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Spot Cubic Spline Estimation
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Figure 7: Spot estimates and nearby futures prices.
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Figure 8: Volatility of spot allowance price over 50-days moving windows.

26



-350

-250

-150

-50

50

150

250

350

450

-2.5% 0.0% 2.5% 5.0% 7.5% 10.0%

alpha value

th
ou

sa
nd

 €

Mean Kyoto
Post Kyoto Jump = 0.0 €
Post Kyoto Jump = 2.5 €
Post Kyoto Jump = 5.0 €
Post Kyoto Jump = 7.5 €
Post Kyoto Jump = 10.0 €

Figure 9: Expected earnings in the Kyoto period (2008�12) and beyond (2013-
17).

27



-2,500

-2,000

-1,500

-1,000

-500

0

500

-2.5% 0.0% 2.5% 5.0% 7.5% 10.0%

alpha value

th
ou

sa
nd

 €

Post Kyoto mean Jump = 0.0 €
Post Kyoto Jump = 0.0 € quantile 10%
Post Kyoto Jump = 0.0 € quantile 5%
Post Kyoto mean Jump = 10.0 €
Post Kyoto Jump = 10.0 € quantile 10%
Post Kyoto Jump = 10.0 € quantile 5%

Figure 10: Earnings at Risk beyond Kyoto (2013-17): 5% and 10% percentiles.
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