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Abstract. The control of Variable Speed Wind Turbines (VSWT) to achieve optimal balance of power generation stability and
rotor angular speed is impeded by the non-linear dynamics of the turbine-wind interaction and sudden changes of wind direc-
tion and speed. Conventional approaches to design VSWT controllers are not adaptive. However, the wind shear phenomenon
introduces a strongly non-stationary environment that requires adaptive control approaches with minimal human intervention, 
i.e. very little supervision of the adaptation process. Reinforcement Learning (RL) allows minimally supervised learning. Specif-
ically, Actor-Critic is designed to deal with continuous valued state and action spaces. In this paper we apply an Actor-Critic RL
architecture to improve the adaptation of the conventional VSWT controllers to changing wind conditions. Simulation results
on a benchmark VSWT model under strongly changing wind conditions show that Actor Critic RL approach with functional
approximation provide great enhancement over state-of-the-art VSWT controllers.

Keywords: Wind-turbine, control, reinforcement, learning, adaptive 

1. Introduction (d) the need of adaptive controllers [2,4,22,24,37,41]
to reduce the maintenance costs, and (e) the require-

With the growing demand for renewable (green) en- ment of different control strategies depending on the
ergies, the use of Wind Turbines (WT) has got a great operation region [25]. 
impulse and its acceptance is widely spread, becoming The works reported in the literature tackling the WT
a big part of the energy market in some countries, like  control problem have two  shortcomings. Firstly  they
Spain where WT peak production in specific days ac-  are based on the assumption of the  detailed knowl-
counted for over 30% of the country’s electrical power edge of an accurate dynamical model of the interac-
production. Their main disadvantage is that the energy tion between the WT and the environment. Secondly,
generation depends on the wind conditions. Therefore, they are not adaptive and thus, they are unable to com-
much effort is being put to improve their performance  pensate for model inaccuracies or  non-stationary en-
under the most challenging conditions [32], to ensure     vironments as it  is  often the case  in  WT operation.
that they are capable of a steady production, so that    They follow a classical control theory approach, apply-
they can be a reliable energy source. The control of    ing conventional analytical techniques [7,8,49], multi-
WT poses some strong challenges: (a) it is a multi- model quadratic control [21], sliding control [5], non-
objective control task, (b) it involves multiple control linear H∞ control [8], k-step ahead prediction [29],
variables, (c) the system has very complex dynamics,      and fuzzy logic reasoning systems [1,17,34,38,45,53] 

to provide more flexible control. They can be quite op- 
timal in very narrow conditions, however they need 

F  
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proaches assume a  single  control objective. The few  of the external circumference drawn by the rotor blade
published multiobjective WT control approaches, treat  tips. The ratio of power actually converted into elec-
the objectives (i.e., rotor speed and electrical power  tricity is called the power coefficient given by the WT-
generation) as independent, so that the problem is de-  specific power coefficient function cp (λ, β), which is
composed into as many independent control problems  itself a function of the angle of the rotor blades β and
as objectives.  the tip speed ratio λ = ωr · R/v, where ωr is the rotor

We   have  found  few  attempts  to  use  Reinforce- speed (rad/s). The aerodynamic power Pa (in W ) cap-
ment  Learning  (RL)  in  WT  control design [26,44].  tured by a wind generator is then given by the expres-
In this paper, we consider two baseline WT multi- sion: 
variable  controllers,  which  will  be  denoted  by  the 1 
names of their authors: Boukhezzar [7] and Vidal [49]. Pa =ρ · π · R2 · cp (λ, β) · v3, (1) 
Scalarized Multi-Objective Reinforcement Learning  2 
(MORL) [39] is used to improve these controllers with and the aerodynamic torque Ta (in N·m) can be calcu- 
respect to  user-defined criteria. The process is as fol- lated from the following relation: 
lows: First, we build a Value Function Approximation 
(VFA) [10] of the baseline controller (either Boukhez- Ta = Pa/ωr. (2) 
zar or Vidal). Second, the VFA model is used by the 

MORL agent in an Actor-Critic framework [13] aim-   There are two kinds of WT designs [33,34]: fixed
ing to improve the baseline controller through interac-  speed and variable speed. Fixed Speed Wind Turbines
tion with the environment, following an online explo-  (FSWT) consist of induction generators directly cou-
ration/exploitation strategy. The user’s  objectives are  pled to the electricity transmission grid running at a
introduced in  the  MORL  as  the reward function af-  nearly constant rotational speed. They are relatively
ter scalarization of the multi-objective function, which  cheap, and require  little  maintenance,  but they are

is achieved by a  weighted combination of the single-  aerodynamically efficient only within a short range of
objective functions, where the  weights are set  by the  wind speeds, they draw big amounts of reactive power

user according to a priori defined priorities. The over-  (stored energy that returns to the source), and suffer
all problem tackled here is among the  most challeng-  strong structural loads. Variable Speed Wind Turbines
ing in the context of current  RL  research [16,27,36],  (VSWT), on the other hand, adjust the rotor speed us-
and might be useful to demonstrate the value of RL for  ing a blade pitch controller. They are decoupled from
practical real life problems.  the grid by power electronic converters, which intro-

The structure of the paper is as follows: In Section 2 duce power losses, consequently VSWT electrical con-
we  review the  basic  concepts  involved in Variable- version is less efficient than FSWT. On the other hand,
Speed Wind Turbines (VSWT) control, and the dy- VSWT are aerodynamically efficient for a wider range
namical system model used for the simulation in our of wind speeds than FSWT, compensating in the long
experiments.  Section  3  offers  some  background  on   run the electrical conversion inefficiency and other ad-
RL methods with continuous state and action spaces, ditional costs. The main trend in industry in  the last
defining the Actor-Critic methods that we will be us-      years  is  to  favor  VSWT  over  FSWT.  New  control
ing in the experiments. Then, we present how a con- strategies such as the one presented in this paper are
ventional controller is approximated in Section 4. In key to further take advantage of variable speed mecha-
Section 5  we describe the design of  the experiments     nisms improving the quality of the power and reducing
and the results. Finally, we give our conclusions in Sec- the maintenance costs. 
tion 6. 

2.1. Control goals 
 
2.  Variable speed wind turbines The VSWT controllers aim to fulfill three goals: 

– Control of  electrical  power  generation  Pe,  to 
A  WT  extracts kinetic energy from the   wind and maintain a reference power output Pref, minimiz- 

transforms it  into electrical power.  Theoretically, the ing the power generation error ep = Pref − Pe. In
power potential from the wind Pw is given by Pw = this work, Pref is assumed to be the nominal out-
1 ρ · π · R2 · v3, where v is the wind speed in m/s, ρ is put power Pnom of the VSWT as specified by the 2 
the air density in kg/m3, and R is the radius in meters manufacturer. 
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1 
λ1 = 1 0.035  . (6) 

(λ + 0.08 · β) − (β3 + 1) 
In our experiments, parameters were set according

to the specifications of the Controls Advanced Re-
search Turbine available at the National Wind Technol-
ogy Center in Golden, Colorado. 

2.3. VSWT baseline controllers 
 

Classical VSWT control techniques often use the
blade pitch to control the rotor speed when the VSWT
is in the operational region below the nominal-speed, 

Fig. 1. Schematic representation of the one-mass model of a VSWT. and the generator torque to control the power output
Ta  is the aerodynamic torque, ωr is the speed of the rotor, Kt is the when it is in the operational region above the nominal-
total external damping, Jt is the total inertia of the turbine, and Tg 
is the generator torque. speed.   Modern   multi-variable   control approaches, 

however, control both the blade pitch β (in the fol- 
– Minimize  the  rotor  angular  speed  error  eω    =     lowing equations, the pitch is given in radians) and
ωref − ωr. Likewise, we assume that the reference the  generator torque Tg  (in  N·m)  [7,8,29,40,49].  In
rotor angular speed ωref  is  the VSWT’s  nominal  our computational experiments, we have improved by
value ωnom. RL  two  recently proposed multi-variable controllers, 

– Minimize the transient loads of the control vari- which we call the baseline controllers: 
ables.  The Boukhezzar controller [7] defined by the equa-

tions: 
2.2. Dynamical model 

T˙ = 1
 
c e − 

1 (
T T −K ω T −T 2

 
, (7) 

In our computational experiments, we use the most g ωr 0 p   Jt a  g t r g g 
common dynamical model in  the VSWT  control lit- β̇   = K e . (8) 
erature [5,7,8,29,40,49]. The schema of this one-mass  p ω

 

system is represented in Fig. 1. The equation describ- where c0 and Kp are the adaptation gains of the con- 
ing the dynamics of the rotor speed is as follows: troller’s two outputs. 

Ta − Ktωr − Tg The Vidal controller [49] defined by equations: 
ω̇ r = , (3) Jt  1 

where  K   and  J   are  the  total  external  damping  (in Ṫg = [−Tg (aωr+ω̇ r) +aPref+Kαsgn (ep)] ,   (9) 
t t ωr 

N·m/rad) and the total inertia of the turbine (in kg·m2),   / t 
respectively. From Eq. (2), the electrical power Pe pro- β̇= 1 

K  e  (1+sgn (e  )) +K  e   · dt. (10) 
duced by  the generator can be  calculated as follows:  2  p  ω ω i  ω

 0 
where  a and  Kα  parameters control the  torque con- 

Pe = Tg · ωr. (4) troller convergence time. Parameters Kp and Ki are 
The  power  coefficient function  is  unique to each the gains of the proposed blade pitch PI controller. 

wind turbine type, and manufacturers usually provide  Wind measurement  and  prediction  is  often  very 
a look-up table for operation purposes. Some approx- noisy, so it is not often directly used by control mod- 
imation methods have been proposed when  this table ules. It is mainly used for cut in and cut off of the tur- 
is not available. We have used the following numerical bine when there is too slow or too fast wind. Therefore, 
approximation [29]: current controller designs use the relation between the 

generator speed and the wind speed to avoid explicitly

c (λ, β)= 0.5 
( 

116 
− 0.4 · β − 5

  
exp 

−16.5 
,  

using a wind speed measurement in the control algo-
p 

λ1 
rithm. Vidal and Boukhezzar controllers, instead of us- λ1 

(5) ing the direct measurements of wind speed, derive the 
control information from the 1-mass model that relates 

where β is the angle of the rotor blades in degrees, and the generator torque and the wind speed. 
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3.1. Reinforcement learning ←−c  ∈ S. The centers of the RBFs can be disposed in 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

dimensional input: _π (_s) = 
 
π1 (_s) π2 (_s) . . . πm (_s)

 
. consist of two separate structures: an Actor, which im- 

 
 
 

The feature space is a real-valued vector space Φ ∈ 
 

–  The actor receives observation of the state _st, 
 
 

 

190 3. Background on reinforcement learning Rf , spanned by a set of f features. Each feature cor- 233 

 responds to an RBF, characterized by a center point 234 

191  235 

 a grid sampling the state space. Assuming that state 236 

192 The  interaction between  an  agent and its environ- variables can be taken independently (i.e. there are no 237 

193 ment in RL is modeled by Markov Decision Processes interactions), a specific set of center points ci,j  ∈ R 238 

194 (MDP) [46], which are defined by a state space S, an is defined for the i-th state variable {ci,1, ci,2 . . . ci,fi } 239 

195 action space A, a transition function P , and a reward distributed  along  its  range  of  values  [mini, maxi}]. 240 

196 function R giving a measure of how good  the current The designer may want to use a different number of 241 

197 system state is. Learning the control of a system mod- feature centers fi for each state variable xi. Each pos- 242 

198 eled as a MDP (S, A, P, R) is the search for an action sible combination of center points for each state vari- 243 

199 selection policy π : S  → A maximizing the expected able are associated with a different feature using some 244 

200 accumulated reward for any state of the controlled sys- mapping function ψ (i, j) that gives the index k of the 245 

201 tem s  ∈  S. Accumulated discounted rewards define center point ci,k associated with the j-th feature of the 246 

202 the function to be maximized, called the value function i-th  state  variable.  For  any  given state _s,  the feature 247 

203 V π (s), which defines the value of being in state s and vector φ = [φ1 (_s) φ2 (_s) . . . φf (_s)] is calculated using 248 

204 following policy π thereafter as activation functions φj (_s), i.e. Gaussian Radial Basis 249 

 Functions (RBF): 

V π(s)= Eπ 

 
  ∞  

· γk−1 s = s
 

(11) n ( 2      t 
φ (_s) = exp   −

lxi − ci,ψ(i,j)l , (12)
k=1 j 2σ2 

i=1 

250 

205 where st is the state observed in time step t, rt is the  

206 reward, and γ is the discounting factor [0, 1]. where the parameter σ is the spread of the Gaus- 251 

 sian function shaping the activation function, and 252 

 
207 3.2.  Value function approximation x1, x2 . . .  xn are the values of the n state variables in 253 

 _s  =  [x1x2 . . . xn]. The value function V  is approxi- 254 

208 Real-world control problems often  require the use mated as the inner product V (_s) = θ_ T  · φ_ (_s), where 255 

209 of continuous state and action spaces. The state space θ_t  = [θ1θ2 . . . θf ] is the vector of weights to be learned 256 

210 
S ⊆ R is spanned by the state variables x1, x2 . . .  xn, by the RL algorithm. Action selection policy will also n 257 

211 and the action space is defined as A ⊆ Rm, spanned by be represented using a RBF based VFA decomposition, 258 

212 m control variables u , u  . . . u   .  RL methods build therefore we need to specify notational differences _θ V 1 2 m 259 

213 estimations of the value function V  in order to eval- and φV  from θ_πi  and φπ,i corresponding to the VFA of 
260 

214 uate the current policy to make decisions, and to up- V  and _πi, respectively. 261 

215 date it during the learning process. In the case of multi-  

216 dimensional continuous states _s  = [x1x2 . . . xn], the 3.3.  Actor-Critic RL architectures 262 

217 value  function  V π (_s)  can  not  be  approximated  in  

218 tabular  form,  so  that  a  Value Function Approxima- Several RL methods have been proposed in the lit- 263 

219 tor (VFA)  [10,48,50] must be built. VFA  can  be lin- erature to learn the control of systems with continuous 264 

220 ear combinations of some local basis functions, such states and actions. We require online and model-free 265 

221 as Radial Basis Functions (RBF), or global non-linear methods (that don’t assume the knowledge of an accu- 266 

222 functions, such as neural networks approximations [14, rate model of the environment), because they promise 267 

223 43,51].  A  continuous state-action  policy with multi- adaptive learning to environments with unknown or 268 

224 ple outputs _π (_s) has an n-dimensional continuous in- even slowly  changing dynamics. Because they allow 269 

225 put space and an m-dimensional output space, and can for continuous state and action spaces, the most ap- 270 

226 be  decomposed  into  m single-output  policies of n- propriate are Actor-Critic architectures [13,15], which 271 

227  272 

228 We will denote by _a = [u1u2 . . . um] the action vectors plements a policy _π, (i.e. carries out the decisions), and 273 

229 generated by  these  multidimensional policies. VFAs a Critic, which builds the estimation of the actor’s pol- 274 

230 using linear combinations of RBFs map the input space icy’s value V π . 275 

231 
 
232 

S into a feature space Φ building a map φ : S  → Φ. The Actor-Critic learning cycle proceeds as follows: 276 

 
277 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

_ 

– The actor generates an action vector _at according tion Critic Learning Automaton (CACLA)  [13,48] up- 
to its own policy _π. date rule: 

– The action  is  executed, so  that the  environment 
 ∂πi (_st) reaches a new state _st+1 with associated reward _θ π,i ← _θ π,i + αt · (ui − πi (_st)) · ,  (14) t+1 t 

r received by the agent. ∂_θ π,i
 

t+1 t 

– The critic uses the reward to update its estimation for i = 1 , . . .  , m. This update rule is applied only if 
– of the policy’s value function in state _st, the Critic’s last update was a positive increment, be- The updated value function is used by the actor to cause negative shifts do not necessarily improve the 

update its policy _π. policy value. The dimension of vectors θ_ V   and θ_ π,i 

The Actor’s greedy optimal policy is to choose the is equal to the number of features used to represent action
with  maximal  value  in  the  current  estimation          the  respective  function.  Z_  has  the  same  number  of of  the
state-action  value functions. However, for  the          features as  _θ V .  The  number  of  operations per  com-
learning process to be able to improve on this policy,      puting cycle can be reduced setting activation thresh-
the system needs some exploration mechanism that al-   old values or  a maximum number of active features.
lows to test actions different from the ones dictated by    Discrete RL methods usually disregard the importance
the  greedy policy. Without exploration the  agent will       of the initial value estimations, often learning policies
be deterministically selecting always the same actions       from scratch after initializing them either randomly or
in the same state. In continuous state-action spaces, ex- with null values. In high dimensional continuous state-
ploration is achieved adding a perturbation term _μ =        action spaces though, good initialization is critical for
[μ1μ2 . . .  μm] ⊆ Rm to the actor generated action to the success of the learning algorithm [12]. 
obtain  the  action  actually  executed: _a  =  _π (_s) + _μ, 
a = [u1u2 ... um]. In our simulations, each μi fol- 3.4. Multi-Objective RL 
lows a normal probability distribution N 

(
0, σ2

 
. The 

t 

variance parameter σt determines the breadth of explo- Conventional RL  deals with  a scalar  reward func-
ration at time step t. It can be a fixed value or be de-  tion, therefore it is only suitable for single-objective
creased along time using some annealing process.  control tasks. Multi-Objective Reinforcement Learn-

Both Actor and Critic update their parameter vectors ing (MORL) methods [11,31,39,47], on the other hand,
θπ,i and θV  following some update rule determined by  deal  with  sets  of  scalar  reward  functions.  Each  re-

the specific algorithm chosen. In our experiments, we  ward function usually defines one of the objectives
use  a  Temporal-Difference (λ) (TD (λ)) critic [46],  to be maximized by the control algorithm. This ap-

which updates its estimates using the following rule:  proach suits  well  some  real-world problems [42,52]
because often the objectives cannot be  independently

_θ V   ← θ_ V  + αt maximized and they can even be conflicting. Although 
t+1 t 
(
r + γ · V̂ (_s ) − V̂ (_s )

) 
· Z_ ,  (13) 

metaheuristic  search  methods  such  as  genetic  algo- 
t+1 t t+1 t t t+1 rithms have been widely used to approach multi-

objective problems [18,40,52], only a few instances of
where αt  is the learning gain and the  eligibility trace MORL can still be found in the literature. The tax-

vector is defined onomy of online model-free MORL approaches given
in [39], classifies them depending on whether they

Z_t+1 = γλZ_t + φ_ V (_st). learn a single policy or multiple policies. Single pol-
icy uses an scalarization function [9,30] which is a

We  use  the  TD (λ)  Critic  update  rule because it weighted combination of  the  objectives,  prioritizing
is computationally  inexpensive,  therefore  it  is  well  them. Learning multiple policies [31]  can  be benefi-
suited for high-dimensional real-world problems, such        cial because it allows to produce a costumized scalar
as WT  control  tasks.  Low-dimensional  applications  policy specified by a scalarization weight vector after
might benefit  from  using  some more  advanced, but    the learning phase, but it is also computationally more
also computationally more expensive methods as Nat-    expensive. In this paper, we have worked with single-
ural  Actor-Critic  [6],  or  Least  Squares-based  meth-     policy learning using  a preset vector of scalarization
ods [3,23] such as Least Squares Policy Iteration [28] weights. 
or Least Squares Policy Evaluation [35]. The actor pol- Under the known weights multi-objective scena-
icy parameters are updated using the Continuous Ac- rio [30], the weights prioritizing the different objec- 
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tives are known in advance. The control goals are in- χu (i)= min + 
 (
i − 

1 
fi 

    / 1 
fi 
  

 
troduced in the Multi-Objective RL framework in the i 2 2 
form of a set of o reward functions {Ri (_s)}◦i=1. Thus, · (maxi − mini) . (15) 
the agent receives a vector of reward values at each 
time step. This reward vector is scalarized using a lin- Cubic distribution: 
earized scalarization function [31] R (_s) = 

 o wi ·  ( 1        / 1       3 
i=1 fi fi Ri (_s). In our experiments, we have used a set of linear χc (i) = mini + i − 

reward functions Ri (_s), each depending on a specific 2  2 
state variable xi: · (maxi − mini) . (16)

Ri(_s) = 1 − |(xi − x∗i ) /ti| ,  Error variables ep and eω are best approximated with
the cubic function. The bounds of these state variables 

where _s = [x1x2 . . . xn]. The i-th reward signal gives          are  set  mini   =  − maxi,  so  that  most  of  the  center

a measure of how far the current value of variable xi is   points are distributed in the vicinity of the zero error

from some predefined reference value x∗ point. This allows a more accurate representation of

has a maximum value of   for ,  
i . The reward          

the policy inside the tolerance region. Uniform distri- 1 xi  = x∗i   decreasing lin- bution has been used for the rest of state variables, for 
early with the euclidean distance from x∗

j . It is positive          which zero is not a distiguished value. 
within the tolerance region limited by tj (expressed in 
the same units as the variable x∗

j ), and values outside          4.2.  Weight initialization 
this tolerance area become increasingly negative to en- 
courage the agent toward the tolerance region. The weights of each VFA  feature dimension of the 

Actor θπ,i, i = 1, .   .. , m are initialized as follows, to 
approximate the output of the baseline controller: 

4. Baseline controller approximation 
θπ.i = πi(_s), 
j 

Because learning from scratch the control of such a where πi is the i-th output variable of the policy, and
high-dimensional non-linear system as a VSWT is un- the state _s  is the vector of center points associated with 
feasible, we propose a two-step approach to build an the i-th feature: _s = 

l
c1,ψ(1,i) . . . cn,ψ(n,i)  ..... Because 

Actor-Critic system improving a baseline controller: each output of the two baseline controllers depends on 
First, the Actor’s policy is initialized using a VFA ap- a different set of state variables, the set of state vari-
proximation of the baseline (either Vidal or Boukhez-    ables used by each output of the controller is also dif-
zar) controller’s output. Secondly, the Actor-Critic ferent: 
agent is allowed to control the system for exploration – Tg , Ta, ωr and ep for the Boukhezzar torque con- 
and online learning of an improved controller config- troller Eq. (7). 
uration. We  consider in this section the details of how – eω for the PI controller proposed by Boukhezzar 
the baseline controllers are approximated, we assume Eq. (8). 
that the outputs of the baseline controller can be ex- –  Tg , ωr, ω̇ r  and ep  for the Vidal torque controller 
pressed as a set of policies 

{
πi (_s )

}m   
, each involv-  Eq. (9). i i=1 

ing  possibly different subsets of  variables  that span – eω and
 
eω dt for the PID controller proposed by 

state subspaces {_si ∈ Si}m   . i=1 Vidal Eq. (10). 

4.1. Distribution of the VFA center points us 
For the Critic  estimation of the value function, we 

e the union of the sets of variables on which depend 
We  approximate the controller using a set of Gaus- 

the Actor outputs: Tg , Ta, ωr, ep and ew for the esti- 

sian RBFs  Eq. (12) for each state  variable, with each 
mation of the value    of the Boukhezzar controller;  Tg, 
ωr, ω̇ r, ep, eω and eωdt for the Vidal controller. 

i-th state variable’s center points denoted by ci,j , j = 
1 , . . .  , fi. We  have  used  two  different  center point 
placement distribution functions χ :N  ∈ [0, 1) → R ∈ 5. Experiments 
[0, 1] mapping the index j of a center point ci,j to a po- 
sition along the desired range of values [mini, maxi}]: We conduct a set of experiments with the Boukhez-

Uniform distribution: zar  and  Vidal  baseline controllers to  assess  the im- 
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provement provided by the Actor-Critic RL. We denote 
the baseline policies resulting from the Boukhezzar and 
Vidal baseline controllers as π̂b  and π̂v ,  respectively. 
In this section we will first comment on the precise 
parameter settings for the computational experiments, 
secondly we report the results achieved. 
 
5.1. Experimental design 
 

We first initialize an Actor whose policy approx- 
imates the baseline controller as described in Sec- 
tion 4. At each experimental run, the Actor performs 
1000 episodes, each 360 s long, of interaction with the Fig. 2. Wind profile used for evaluation purposes in the computa- 

VSWT simulation model. Runs were  repeated apply- tional experiments. 
ing two different schedules for the exploration param- 
eter σ (Section 3): a linearly decaying, and a constant  activation to calculate the feature vector because oth-

value. We denote policies learned with a decaying σ erwise the number of updates required every time step by  π̂b
∗

and  π̂v
∗ ,  and  policies  learned  with  constant  σ         is intractably high. This strategy reduces the number by π̂b

∗∗

and π̂v
∗∗. In any case, the initial value is set to          of updated features to 3n. The number of VFA feature σ  =

10−5 · (maxi − mini}).  In  the case  of  the lin-          center values is set as follows: ear decay, the value of σ is updated at the end of each –  π̂b    (ep, ω, Ta, Tg ) is approximated using 80 cen- Tg 

episode, ensuring that it reaches 0 in  the  final evalu- ter values for each state variable (a total amount 
ation episode. The Actor’s learning gain was  fixed to of 804 features). 
α = 0.1 and the Critic’s learning gain to α = 0.01 (no –  π̂v   (ep, ω, ω̇ , Tg ) is approximated using 80 cen- Tg 

attempt was made to tune these parameters). The time ter values for each state variable (a total amount
step of the control algorithms is 0.01 s, and  the simu- of 804 features). 
lation integration step is set to 2.5·10−3 s. –  π̂b  (eω ) and π̂v (eω ) only depend on eω  and thus 

β β 

The parameters of the baseline controllers  must be might be approximated with a higher number of
tuned empirically, using as  a  starting point those re- features: 104. 
ferred to in  [49]. The best Boukhezzar controller re- –  The  value  functions  V̂ b (ep, ω, Ta, Tg , eω )  and 
sults  were  obtained  with  parameter  values  c0  = 10, V̂ v (ep, ω, ω̇ , Tg, eω)  are  approximated  with  50 
Kp  = 1 and Ki  = 0. The best Vidal torque controller center values for each state variable. Because eω
performance  indices  were  obtained with parameters is a function of ω, we neglect the latter, having a
a = 1 and Kα  = 6·103  used in combination with the total number of 504 of features. 

PI controller proposed by Boukhezzar Eq. (8), instead  The parameters  of  the one-mass  VSWT  model
of the original Vidal blade pitch controller Eq. (10). match those of the Controls Advanced Research Tur-

Four reward signals are used to  model the control  bine available at the National Wind Technology Center
goals, each one is a function of a different state variable   in Golden, Colorado (Table 1). The wind profiles were
xi with tolerance value ti. The four state variables as- generated using TurbSim [20], a wind turbulence sim-
sociated with these rewards are those to be minimized ulator commonly used in the literature. Seven different
according to the control objectives set in Section 2: ep,         mean speeds were used to generate the wind profiles 
eω , T ġ   and β .̇ The baseline values of the state variables      used in the learning episodes, and another is used for 
are x∗

j   = 0, because in fact they model some form of          evaluation purposes. Before each learning episode, the
error. The tolerance values are set equal to either the  wind  profile  was  generated using  a  different random
mean value (error variables) or the standard deviation  seed and randomly selecting one of the seven mean
(control variables) of values taken by these variables   wind speeds (9, 9.5, 10,  10.5, 11,  11.5 and  12 m/s).
when the system is under the baseline controllers πb     On the other hand, the profile used in all the evaluation
and πv. The weights of the scalarization function are      episodes was  unique and  had  a  mean  wind  speed  of
all set to 1, because we give the same importance to all        10.25 m/s. The profile used in the evaluation episodes 
performance indices. is plotted in Fig. 2. Note that it is a non stationary pro- 

During the learning phase, we have only considered      cess, very noisy and with  varying local trends whose
the 3 VFA features per state variable with the highest duration and other features are difficult to predict. 
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Table 1 
Performance statistics of the Boukhezzar controller (πb), the approximated policy without any learning (π̂b) and the policies learned with the 
two different exploration schedules (π̂b

�  and π̂b
��) 

 πb π̂b π̂b
� π̂b

�� 

ep 

r1 
eω 

r2 
β 
r3 
Tg 

r4 
4 L 

wi · ri 
i=1 

17.949 (± 27.540) 

0.12
−
2 

0.795 
(± 0.095) 

0.13
−
1 

5.105 
(± 0.092) 

0.429 
136,771 (± 4,931) 

0.695 

−4.467 

274.010 (± 2,326) 

0.15
−
1

26.401 
(± 0.138) 

0.14
−
0 

6.587 
(± 0.096) 

0.370 
136,722 (± 6,440) 

0.596 

−4.438 

7.464 (± 25.661) 

0.12
−
2 

0.253 
(± 0.093) 

0.13
−
0 

5.107 
(± 0.090) 

0.413 
136,713 (± 4,807) 

0.686 

−3.328 

6.785 (± 23.559) 

0.12
−
2 

0.321 
(± 0.096) 

0.13
−
1 

5.092 
(± 0.092) 

0.425 
136,818 (± 4,886) 

0.694 

−3.285 

 

 
 
Fig. 3. Evolution of power error (ep) in Watts in a complete episode for the baseline Boukhezzar controller πb, the approximated π̂b and the 
controllers learned using two different exploration schedules: π̂b

� and π̂b
��. 

 

 
 
Fig. 4. Rotor speed error (eω ) in rad/s in a complete episode for the baseline Boukhezzar controller πb, the approximated π̂b and the controllers 
learned using two different exploration schedules: π̂b

�  and π̂b
��. 

 
5.2. Results 5.2.2. Boukhezzar controller 

Figures 3 and 4 plot the values of ep and eω during 

5.2.1. Performance measures  
an evaluation episode 360 s long. Figures 5 and 6 plot

In order to compare the performance of the different 
the outputs of the controllers (Tg and β). The differ-

controllers, we have calculated the following statistics  
ences between the controllers cannot be easily ascer-
tained in some cases and Figs 3–6 show the little ad- 

(lxl denotes the sum of the absolute values): justments performed by the learning algorithm to the
– lēpl to measure the power control quality, original behaviour of the controller. After the learning
– lēω l to measure the rotor angular speed control phase, the controllers learned show small differences

quality, that improve the original controller. Because these dif-
– std(β̄) and std(T̄g ) to measure the load effected ferences are the result of random exploration instead of

on the control signals. an analytical reasoning process, they need not  follow
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Fig. 5. Generator torque (Tg ) in N·m in a complete episode for the baseline Boukhezzar controller πb, the approximated π̂b and the controllers 
learned using two different exploration schedules: π̂b

�  and π̂b
��. 

 
 
 
 
 
 
 
 
 

Fig. 6. Blade pitch angle (β) in rad in a complete episode for the baseline Boukhezzar controller πb, the approximated π̂b and the controllers 
learned using two different exploration schedules: π̂b

�  and π̂b
��. 

 
 
 
 
 
 
 
 
 

 
Fig. 7. Power error (ep) in Watts in a complete episode for the baseline Vidal policy πv  , its functional approximation π̂v , and RL tuned policies 
π̂v

� and π̂v
�� using two different exploration schedules: π̂v

�  and π̂v
��. 

 
an underlying logic. The results can be better under-  order of magnitude greater because of this power drop.

stood from the statistics given in Table 1.  The power error is a complex non-linear function of
First conclusion, after analysis of the plots and the the control variables and might be expected to am-

performance statistics, is that the VFA model π̂b is, in-  plify the output differences. Another conclusion look-
deed, a good approximation of the baseline controllers  ing at Fig. 3 is that the policies derived by Actor-Critic
πb: both Figs 3  and 4 show that the  policies’ outputs  RL produce a more stable output. In Table 1, the per-
are very similar. Around t = 300, the rotor speed has  formance statistics show that the CACLA tuned con-

transitory oscillations, and eventually makes the power          trollers π̂b
∗ and π̂b

∗∗ have a lower mean power error: re-
drop when the rotor speed reaches its local minimum,          spectively, lepl is reduced by factors 0.584 and 0.621
but otherwise, the behavior of the approximated ac-          relative to the error achieved by  the baseline controller. 
tor mimics quite effectively the  output of  πb. Obser- On the other hand, the rotor speed error eω  is very 
vation of Fig. 3 and the values of lepl shows that the          similar except for the approximated policy, and the dif-
power error incurred by the approximated actor is  an       ferences can  otherwise  be  neglected.  The  differences 



 

 
 
 

Table 2 
Performance statistics  of the Vidal controller  (πb), the approximated  policy without any learning (π̂b) and the policies  learned with the two 
different exploration schedules (π̂b

� and π̂b
��) 

 πv π̂v π̂v
� π̂v

�� 

ep 

r1 
eω 

r2 
β 
r3 
Tg 

r4 
4 L 

wi · ri 
i=1 

24.955 (± 21.837) 

0.12
−
1 

1.495 
(± 0.095) 

0.13
−
0 

5.074 
(± 0.090) 

0.421 
136,718 (± 4,836) 

0.681 

−4.467 

24.534 (± 22.224) 

0.12
−
2 

1.453 
(± 0.095) 

0.13
−
0 

5.086 
(± 0.090) 

0.420 
136,721 (± 4,843) 

0.681 

−4.438 

16.629 (± 20.531) 

0.12
−
4 

0.663 
(± 0.097) 

0.13
−
1 

5.218 
(± 0.092) 

0.425 
136,789 (± 4,947) 

0.676 

−3.328 

13.295 (± 19.430) 

0.12
−
1 

0.330 
(± 0.096) 

0.13
−
1 

5.070 
(± 0.092) 

0.425 
136,832 (± 4,870) 

0.688 

−3.285 

 

 
 
Fig. 8. Rotor speed error (eω ) in rad/s in a complete episode for the baseline Vidal policy πv  , its functional approximation π̂v , and RL tuned 
policies π̂v

�  and π̂v
�� using two different exploration schedules: π̂v

� and π̂v
��. 

 

 
 
Fig. 9. Generator torque (Tg ) in N · m in a complete episode for the baseline Vidal controller πv , the approximated π̂v  and the controllers 
learned using two different exploration schedules: π̂v

�  and π̂v
��. 

 

 

Fig. 10. Blade pitch angle (β) in rad in a complete episode for the baseline Vidal controller πv , the approximated π̂v  and the controllers learned 
using two different exploration schedules: π̂v

�  and π̂v
��. 
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Table 3 
Parameters used in our experiments 

tains better results in the two experiments, but the dif-
ferences are not statistically significant. 

We recall that the performance improvement is mea-
sured during the learning phase via a linear scalariza-
tion function. This means that the improvement can be
guided by the user by setting different reward weights
wi or different tolerance values ti. These values should
be chosen depending on the specific preferences of the 
system designer. For lack  of space, we have only  re- 

Air density ρ 1.29 kg·m 
Turbine external damping Kt 400 N·m/rad 
Turbine inertia Jt 3.92·105 kg·m2 
Nominal electrical power Pnom 600 kW 
Nominal rotor speed ωnom 42 rpm 
Tower height h 36.6 m 
Blade pitch β [−5, 30] deg. 
Generator torque Tg [0, 162] N ·m 
Blade pitch angular speed β̇  [−10, 10] deg/s 

ported the results obtained using equal weights for all
among the standard deviation of the two control signals the objectives and tolerances based on the performance
are also very small. In all the cases, the VFA approxi-  of  the baseline controllers, but different weights and
mated policy gets slightly worse results than the base-    tolerances can be easily set to change the priorities be-
line policy. The CACLA improved policies are both tween the control objectives. 
very similar to the original controller. The mean re- 
ward values support these results, showing that they 
are aligned with the performance measures defined: the 6. Conclusions 
higher the reward value, the higher the performance in- 
dex. The total sum of the different mean rewards also  In this paper we present a novel approach to improve
shows that  the learning algorithm is  able  to produce an existing controller using model-free online scalar-

better policies with respect to the reward functions and ized Multi-Objective Reinforcement Learning. First, a
the scalarization function used in the  experiment: the baseline controller is approximated using Value Func-

sum of the average rewards show −2.753 and −2.651 tion Approximation, and then, this approximation is
against the −3.776 scored  by the baseline controller. adapted online by an actor-critic RL agent using the
None of the CACLA learned policies improves on both scalarized multi-objective reward function. In our ex-

objectives the original controller, but the quality loss in periments, we have used an instance of Actor-Critic
rotor speed is compensated by the great improvement learning: the Actor implements a policy and the Critic
in electrical power control. estimates this policy’s value. By means of exploring

outputs different from the actor’s policy and observing
5.2.3. Vidal controller the critic’s value updates, the system is able to learn 

We  have plotted in Figs 7 and 8 the  error variables better control solutions. 
measured during the evaluation episode of the original  We have carried out computational experiments of
Vidal controller, the VFA approximated policy, and the this approach on a one-mass mathematical model of a
policies learned by CACLA. Figures 9 and 10 show the Variable-Speed Wind Turbine, successfully improving
values of the control variables, and Table 2 displays the two different controllers from the literature [7,49]. The
performance statistics of each controller. results show that the performance of the RL tuned con-

Surprisingly, the policy VFA π̂v has a slightly lower  trollers improves significantly the baseline controllers
rotor  speed  error  leωl  than  the  original  controller.  in a tough non-stationary wind scenario test, achieving
Nevertheless, the rest of the performance scores in Ta-  adaptation to the changing conditions. This improve-
ble 2 are worse (though surprisingly similar) for the  ment is achieved without fine tuning of the RL learn-
approximated controller as expected.  ing parameters. This suggests that there is even fur-

As in the previous experiment, CACLA learned pol- ther room for improvement. The VSWT control is a
icy does not improve the baseline controller in all ob-  very challenging application of this approach because
jective indices. However, π̂v

∗  outperforms the baseline          of the complex underlying dynamic system. Using RL
controller with respect to two of the four performance for online adaptation opens some interesting possi- indices
(with small decreases in the other two), and πv

∗∗ bilities, such as adding other relevant measured vari-
outperforms the base controller with respect to three of     ables unused by the baseline controller (i.e., the wind
the four indices. An interesting observation suggesting speed). Besides, model-free RL-based controllers are
robustness of the CACLA approach is that the explo- not  prone  to  underperform because  of  an  inaccurate
ration schedule does not seem to have a great influence          model, and they can also seamlessly benefit from ad- 
on the learning results. The constant gain schedule ob-          ditional techniques such as noise filtering of the input 
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variables [19]. Our future work will focus on learning 
multiple policies simultaneously and bringing thus the 
problem from the known weights scenario to the more 
complex and even more appealing unknown weights 
scenario [30], that allows the user to set the weights af- 
ter the learning process, thus virtually providing a solu- 
tion for any set of weights. Another venue of improve- 
ment to our approach would be to devise an automatic 
method to decide the number of features per state vari- 
able and their distribution [10]. 
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