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Aim: Chest compressions delivered by a load distributing band (LDB) induce artefacts in the 

electrocardiogram. These artefacts alter shock decisions in defibrillators. The aim of this study 

was to demonstrate the first reliable shock decision algorithm during LDB compressions. 

Methods: The study dataset comprised 5813 electrocardiogram segments from 896 cardiac 

arrest patients during LDB compressions. Electrocardiogram segments were annotated by 

consensus as shockable (1154, 303 patients) or nonshockable (4659, 841 patients). Segments 

during asystole were used to characterize the LDB artefact and to compare its characteristics 

to those of manual artefacts from other datasets. LDB artefacts were removed using adaptive 

filters. A machine learning algorithm was designed for the shock decision after filtering, and its 

performance was compared to that of a commercial defibrillator’s algorithm. 

Results: Median (90% confidence interval) compression frequencies were lower and more 

stable for the LDB than for the manual artefact, 80 min−1 (79.9-82.9) vs 104.4 min−1 (48.5-

114.0). The amplitude and waveform regularity (Pearson’s correlation coefficient) were larger 

for the LDB artefact, with 5.5 mV (0.8-23.4) vs 0.5 mV (0.1-2.2) (p<0.001) and 0.99 (0.78-1.0) vs 

0.88 (0.55-0.98) (p<0.001).  The shock decision accuracy was significantly higher for the 

machine learning algorithm than for the defibrillator algorithm, with sensitivity/specificity pairs 

of 92.1/96.8% (machine learning) vs 91.4/87.1% (defibrillator) (p<0.001). 

Conclusion: Compared to other cardiopulmonary resuscitation artefacts, removing the LDB 

artefact was challenging due to larger amplitudes and lower compression frequencies. The 

machine learning algorithm achieved clinically reliable shock decisions during LDB 

compressions. 
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Abstract

Aim: Chest compressions delivered by a load distributing band (LDB) induce artefacts in the

electrocardiogram. These artefacts alter shock decisions in defibrillators. The aim of this study

was to demonstrate the first reliable shock decision algorithm during LDB compressions.

Methods: The study dataset comprised 5813 electrocardiogram segments from 896 cardiac arrest

patients during LDB compressions. Electrocardiogram segments were annotated by consensus as

shockable (1154, 303 patients) or nonshockable (4659, 841 patients). Segments during asystole

were used to characterize the LDB artefact and to compare its characteristics to those of manual

artefacts from other datasets. LDB artefacts were removed using adaptive filters. A machine

learning algorithm was designed for the shock decision after filtering, and its performance was

compared to that of a commercial defibrillator’s algorithm.

Results: Median (90% confidence interval) compression frequencies were lower and more stable

for the LDB than for the manual artefact, 80 min−1 (79.9-82.9) vs 104.4 min−1 (48.5-114.0).

The amplitude and waveform regularity (Pearson’s correlation coefficient) were larger for the

LDB artefact, with 5.5 mV (0.8-23.4) vs 0.5 mV (0.1-2.2) (p<0.001) and 0.99 (0.78-1.0) vs 0.88

(0.55-0.98) (p<0.001). The shock decision accuracy was significantly higher for the machine

learning algorithm than for the defibrillator algorithm, with sensitivity/specificity pairs of

92.1/96.8% (machine learning) vs 91.4/87.1% (defibrillator) (p<0.001).

Conclusion: Compared to other cardiopulmonary resuscitation artefacts, removing the LDB

artefact was challenging due to larger amplitudes and lower compression frequencies. The machine

learning algorithm achieved clinically reliable shock decisions during LDB compressions.

Keywords

Out-of-hospital cardiac arrest (OHCA), Cardiopulmonary Resuscitation (CPR), Shock decision

algorithm, Load Distributing Band (LDB), Machine Learning (ML), shock/no-shock decision.



1. INTRODUCTION

The cardiopulmonary resuscitation (CPR) guidelines stress the importance of high-quality CPR

and early defibrillation for a successful outcome after out-of-hospital cardiac arrest (OHCA). 1

Chest compressions during CPR introduce artefacts in the electrocardiogram (ECG) that impede

a reliable rhythm analysis by the defibrillator. 2 Therefore, the current practice mandates CPR

interruption to analyse the ECG and provide a reliable shock decision. These “hands-off” intervals

for rhythm analysis lead to intermittent lack of cerebral and myocardial blood flow, and may

compromise the outcome of the patient. 3–7 Methods allowing a reliable shock decision without

interrupting CPR would therefore be of great value.

Shock decision algorithms during manual CPR rely on artifact suppression filters. 8 These filters

use additional signals like the thorax impedance 9–13 or the compression depth 9–12 to adapt to the

time-changing characteristics of manual chest compressions. However, shock decision algorithms in

defibrillators were designed to analyse artefact-free ECGs, and thus show a degraded performance

even after filtering the artefact. 12,13 To address this limitation, research has focused on machine

learning (ML) algorithms that analyse the ECG after filtering the CPR artefact. 14–17 These

algorithms learn the characteristics of the filtered ECG, inluding those of the filtering residuals,

and have been shown to meet the American Heart Association’s (AHA) sensitivity and specificity

requirements for shock decision algorithms.

The use of mechanical compression devices is rising in the prehospital setting, although none of

the more recent clinical trials have demonstrated improved survival. 18–20 The benefits of mechanical

CPR include guaranteed compression rate and depth, and the possibility for high-quality chest

compressions even during transport and invasive procedures. 21–23 At present there are two main

mechanical chest compression technologies: piston-driven and load distributing band (LDB)

devices. ECG analysis algorithms for a reliable shock decision during mechanical CPR have

only been demonstrated for piston-driven devices. 24–27 These studies have shown that a fixed

compression rate and depth results in a much more periodic artefact than that of manual CPR. 25

Therefore, simpler adaptive filters that exploit the periodic nature of the artefact have been

successfuly used to remove mechanical artefacts without the need of additional reference signals.

These adaptive filters in combination with ML-algorithms for the shock decision produced solutions

compliant with the AHA requirements. 26



This study demonstrates the first method for a reliable shock decision during LDB compressions

using a combination of a CPR artifact filter and a ML-algorithm. The analysis also includes a

characterization of the LDB artefact in the time and frequency domain, a preliminary step needed

to properly design the CPR artefact suppression filters.



2. MATERIALS AND METHODS

2.1. Data collection

The data used in this study were extracted from the randomized controlled Circulation

Improving Resuscitation Care (CIRC) 18 trial conducted between March 2009 and January 2011

by emergency services in the United States (three services) and Europe (two services). The CIRC

trial was designed to compare the effectiveness of an LDB device (AutoPulse, ZOLL, Chelmsford,

Massachusetts, USA) against manual CPR in terms of survival to hospital discharge. 18 Data from

969 OHCA patients from one US (Hillsborough) and two European (Nijmegen and Vienna) services

were used to conduct this study. The LDB device provides chest compressions in a fixed position,

a constant rate of 80 min−1 (fLDB = 1.33 Hz) and a depth of 20% of the patient’s anterior posterior

diameter of the chest. Anonymized waveform data from the Lifepak 12 and 15 monitor-defibrillators

(Physio-Control, Redmond, WA, USA) was exported to Matlab (MathWorks Inc., Natick, MA)

using Physio-Control’s Code Stat data review software, and resampled for processing with a

sampling period of Ts = 4 ms. The data included the ECG and thorax impedance signals together

with the compression instants detected by the Code Stat software. The ECG was band limited to

0.5–40 Hz (4th order Butterworth filter), a typical ECG monitor bandwidth used in defibrillators.

The use of the LDB device was identified when the compression rate stabilized at the device’s

fixed rate of 80 min−1 for at least 20 s (see Fig. 1). Then, 22 s signal segments were automatically

extracted following these criteria: unique rhythm type in the entire segment, and an interval of 16 s

with LDB compressions followed or preceded by a 6 s interval without compressions (see highlighted

segment in Fig. 1). The intervals during compressions were used to develop the shock decision

algorithms, whereas the artefact-free intervals were used to annotate the underlying rhythm.

Rhythms were annotated as shockable (coarse ventricular fibrillation (VF), i.e. with amplitude

larger than 200µV, pulseless ventricular tachycardia (VT)) or nonshockable (asystole, organized

rhythm) by consensus of an experienced anesthesiologist (LW) and two biomedical engineers (UI

and EA), all specialized in cardiac arrest data management.

2.2. LDB artefact characterization

Segments during asystole were used to characterize the artefact. First, spectral characteristics

were analysed using the normalized power spectrum density, computed as the average of the power



spectrum of each segment normalized to unit area (Fig. 2). Multiple segments from the same

patient were weighted to avoid patient-bias. Second, parameters like the peak-to-peak amplitude

and waveform regularity were estimated to characterize the artefact in the time domain. Waveform

regularity was quantified by Pearson’s correlation coefficient (PCC) between each compression

cycle and the segment’s compression cycle template (the average of all cycles). 25 PCC values

close to ±1 correspond to periodic waveforms, whereas values close to 0 indicate irregularity.

Finally, the signal to noise ratio was calculated as the power ratio between the clean ECG and

the artefact for shockable and organized rhythms in a logarithmic scale (in decibel, dB). 9,28 The

power of the artefact was calculated as the power difference between the artefacted ECG (16 s

interval) and the clean ECG (6 s interval). All characteristics were compared between the LDB

artefact, the piston-driven artefact and the manual artefact. The datasets used in Aramendi et

al 25 (piston-driven CPR), and Isasi et al 16 (manual CPR) were used for this purpose.

2.3. LDB artefact suppression method

The LDB artefact presents an almost periodic waveform due to the fixed rate and depth of

mechanical compressions. Consequently, the compression rate (fLDB) can be used to model the

artefact accurately. 26,27 The spectral characterization of the artefact (Fig. 2) shows that the

power content is concentrated around the harmonics of fLDB. Therefore, we propose a model of

the artefact composed of N harmonically related sines and cosines with amplitudes ak(n) and

bk(n): 12,26

scpr(n) =

N∑
k=1

ak(n) cos(2πkfLDBnTs) + bk(n) sin(2πkfLDBnTs) (1)

where n is the discrete time index (t = nTs) and fLDB = 1.33 Hz (80 min−1). The artefact was

estimated by calculating the amplitudes ak(n) and bk(n) using the recursive least squares (RLS)

algorithm. 26,29 The CPR artefact was then subtracted from the corrupt ECG to obtain the filtered

ECG. Filter design consists in the selection of the number of harmonics, N , and the adaptability

of the filter, λ. Consult 27,30 for further details on the adaptive RLS filter.

2.4. Shock decision algorithm

The ML-algorithm for shock decision consisted of three stages. First, ECG features were

computed using 8 s segments of the filtered ECG (4 s−12 s interval). Then the most discriminative



subset of features was selected using state-of-the-art feature selection techniques. Finally, features

were combined in a Support Vector Machine (SVM) classifier for the shock/no-shock decision.

In total 38 ECG features were computed using methods recently developed for ECG rhythm

analysis during piston-driven chest compressions. 26 These features were based on the Stationary

Wavelet Transform decomposition and include time domain, frequency domain and signal

complexity characterizations of the ECG.

In the feature selection procedure four features were sequentially added to the SVM classifier

and then three were sequentially removed at each interation. 26,31 The criterion to add/remove

features and to set the soft margin (C) and the width of the gaussian kernel (γ) in the SVM was

to maximize the balanced accuracy. The balanced accuracy is the arithmetic average of sensitivity

and specificity and thus gives equal importance to shock and no-shock decisions. Similar ML

approaches and ML parameter optimization procedures have been used in the design of shock

decision algorithms during piston-driven CPR. 26

2.5. Diagnostic evaluation

Data were randomly partitioned patient-wise into training (70%) and test (30%) sets ensuring

that the prevalences of shockable and nonshockable rhythms in both sets resembled those of the

whole dataset. The training set was split into 5-fold cross validation (CV) partitions for feature

selection and SVM parameter optimization. The feature selection algorithm was run until the

optimal 15 feature set was obtained. These features were then used to determine the values of

the SVM parameters that maximized the balanced accuracy in the ranges: 10−1 ≤ C ≤ 102

and 10−3 ≥ γ ≥ 101. The optimized ML-algorithm was then used to obtain the shock/no-shock

decisions in the test set, which were compared with the ground truth labels to obtain the sensitivity,

specificity, balanced accuracy and total accuracy. The process was repeated 100 times with random

70/30 train/test partitions to obtain statistically meaningful results. Two additional experiments

were conducted to obtain baseline accuracy results. First, the ML-algorithm was optimized and

evaluated before and after filtering, to quantify the benefits of filtering the LDB artefact. Second,

the accuracy of a commercial defibrillator (Reanibex R series, BexenCardio, Ermua, Spain) 12 was

obtained before and after filtering, to evaluate the increase in accuracy of the ML-algorithm over

the classical diagnostic approach.



3. RESULTS

Shockable rhythms comprised lethal ventricular arrhythmia, predominantly ventricular

fibrillation VF (19.2%), but also VT (0.7%). Nonshockable rhythms included asystole (27.8%) and

organized rhythms (%52.3). In total 5813 segments (from 896 patients) were extracted, whereof

1154 (from 303 patients) were shockable and 4659 (from 841 patients) nonshockable.

3.1. Characteristics of the artefact

Fig. 2 shows the spectral analysis of the LDB, the piston-driven and the manual CPR artefacts.

Mechanical CPR artefacts presented very stable compression frequencies, with 90% of the power

concentrated around the first 7 harmonics (see errorbars) of the compression frequency. Manual

CPR artefacts showed great variability in compression frequency that resulted in a spread spectrum

with 90% of the power concentrated around the first 3 harmonics. So, mechanical CPR artefacts

have more harmonics and higher bandwidths than manual CPR artefacts. The median compression

frequencies (90% confidence interval, CI) were 80.1 min−1 (79.7 – 82.9), 101.7 min−1 (101.1 – 102.1)

and 104.4 min−1 (48.5 – 114.0) for the LDB, the piston-driven, and the manual compressions

respectively. The median artefact amplitudes were 5.5 mV (0.8 – 23.4), 1.2 mV (0.2 – 4.8) and

0.5 mV (0.1 – 2.2) for the LDB, piston-driven and manual artefacts, respectively. The amplitude

was significantly larger (p<0.001 for the Mann-Whitney U test) for the LDB artefact. This

was consistent with the median signal to noise ratios observed, which were −7.4 dB (−21.1 – 5.3),

−2.6 dB (−12.3 – 6.5) and −0.2 dB (−13.6 – 11.7), respectively. The median PCC values obtained

for LDB, piston-driven and manual compressions were 0.991 (0.776 – 0.999), 0.979 (0.729 – 0.998)

and 0.883 (0.550 – 0.979), respectively. PCC values showed significantly larger regularity for LDB

devices (p<0.001), when compared to other modes of CPR, but also larger for any mode of

mechanical CPR when compared to manual CPR (p<0.001).

3.2. Diagnostic accuracy of the shock decision

Fig. 3 shows the sensitivity, specificity and balanced accuracy values (averaged over the 100

test partitions) for the shock decision during LDB use as a function of the filter’s adjustable

parameters, for both the ML-algorithm and the algorithm of a defibrillator. The defibrillator

algorithm showed near-optimal performance with a balanced accuracy exceeding 88.0% for N > 30

and λ ∼ 0.985–0.990. The ML-algorithm achieved a balanced accuracy above 93.5% for N > 30



and a wider range of λ ∼ 0.975 – 0.990. Table I compares the performance of the defibrillator

algorithm and the ML-algorithm before and after filtering. The optimal working point of the RLS

filter, N = 35 and λ = 0.989, was used to remove the artefacts from the ECG. Filtering increased

the balanced accuracy of the commercial and ML-algorithm by over 26 and 8 points, respectively.

The increased balanced accuracy was due mainly to an increase of over 56 (commercial algorithm)

and 13 (ML-algorithm) points in sensitivity. After filtering the sensitivity of the defibrillator’s

algorithm was above 90%, the minimum value recommended by the AHA, but the specificity

was almost 8 points below the 95% AHA recommendation. The ML-algorithm increased the

balanced accuracy by over 5-points, but most importantly the specificity by over 8-points, obtaining

sensitivity/specificity pairs that met the values recommended by the AHA.

The left panels on Fig. 5 show examples in which the defibrillator algorithm and the

ML-algorithm correctly classify the ECG after filtering (panels a, b and c). In the examples on

the right, filtering residuals confound the defibrillator’s algorithm which was designed to analyse

clean ECGs. These examples are correctly classified by the ML-algorithm since it was trained

with filtered ECGs, and thus learnt the characteristics of filtering residuals. Two possible causes

of error are shown in Fig. 5: disorganized filtering residuals that resemble VF during asystole and

organized rhythms (panels e and d, respectively), and spiky artefacts for each compression during

VF that can be confounded as QRS complexes (panel f).



4. Discussion

The use of mechanical CPR devices has grown considerably in the last years through two

main technologies, LDB and piston-driven devices. Mechanical CPR guarantees high-quality chest

compressions when manual compressions cannot be delivered safely. Examples of such situations

include ambulance transportation, 32,33 primary percutaneous coronary intervention, 34,35 as a

bridge to extracorporeal CPR, 36 and to facilitate uncontrolled organ donation after circulatory

death.37

This study describes the first method to give an AHA compliant shock/no-shock decision

during chest compressions provided by a LDB device. The solution consists of an adaptive filter

that removes the CPR artefact, followed by a ML-algorithm that obtains an accurate diagnosis

based on multiple ECG features. Similar approaches have been used to design shock decision

algorithms during manual 15 and piston-driven chest compressions. 26 The sensitivity/specificity

values obtained in previous studies for manual (95.2/95.6%) and piston-driven (97.5/98.2%) CPR,

and those obtained in this study for LDB devices (92.1/96.8%) provide clinically reliable solutions

that cover rhythm analysis during chest compressions in any situation.

Chest compression artefacts in the ECG act as major confounders for shock decision algorithms.

The sensitivity of a commercial shock decision algorithm designed to work on clean ECGs dropped

from a nominal 99% 38 to 35% in the presence of LDB artefacts. This is mainly because artefacted

ECGs show an organized activity locked to the compression frequency (80 min−1) which resembles

an organized rhythm even during VF. The ML-algorithm substantially increased the sensitivity of

the commercial algorithm due to its ability to select features that are minimally affected by the

artefact. Still, the sensitivity of the ML-algorithm without filtering was 79%, far from the 90%

recommended by the AHA.

The addition of the adaptive filtering stage substantially increased the performance of both

the ML and the commercial algorithm. AHA requirements were only met by the use of

the ML-algorithm, which showed an improvement of 9.8-points in specificity and 0.7-points in

sensitivity over the commercial algorithm for the filtered ECG. 12 The defibrillator algorithm was

very affected by the configuration of the artefact suppresion filter (see variability in Fig. 3), while

the ML-algorithm learnt to classify ECGs in the presence of filtering residuals.

The performance of the ML-algorithm in this study is similar to that of a recently demonstrated



ML-algorithm during manual CPR. 15 The characteristics of manual compressions are rescuer

dependant, so the variability of the resulting artefact anticipates a more challenging filtering

problem. However, manual artefacts showed significantly smaller artefact amplitudes and less

harmonic components (smaller bandwidths) than LDB artefacts and both effects compensated

yielding similar accuracies. That was not the case for piston-driven chest compressions, as recently

shown in Isasi et al. 26, for which the solution showed 5/2 points of sensitivity/specificity above

the LDB solution. Three factors could explain the lower performance during LDB compressions.

First, the LDB compresses a larger portion of the chest, producing artefact with amplitudes 5 times

larger than for the piston driven device (5.5 mV vs 1.2 mV, p<0.001). Second, the compression

rate of the LDB device is lower (80 min−1 vs 100 min−1), and consequently more harmonics of the

chest compression frequency fall in the frequencies of interest of the ECG (see Fig. 2). Third,

the LDB compression pattern is trapezoidal, compared to the more sinusoidal piston-driven and

manual artefact patterns, which causes more spectral broadening.

The SVM algorithm could be replaced by other machine learning algorithms. A Logistic

Regression and a Random Forest algorithm were also evaluated in this study following a similar

procedure. The differences in balanced accuracy between the three ML-algorithms were not

statistically significant (p>0.3 for the McNemar test, in all comparisons) although the SVM

achieved the best overall accuracy and specificity values. In the future deep neural network

algorithms could be investigated. Deep learning algorithms outperform classical ML-algorithms

when large volumes of annotated data are available. 16 The accuracy for shock advice during LDB

use should increase if deep learning solutions are trained with sufficiently large datasets.

4.1. Limitations

The main limitations of this study are related to the data. Although the dataset came from

two different monitor-defibrillators, both models are from the same vendor. So, the methods may

need adjusting if ECG data from other vendors is used. Moreover, data was gathered by three

emergency services and there may be differences in resuscitation protocols and LDB device usage

across services. These differences in treatment may alter the characteristics of the CPR artefacts

and thus the algorithms may need fine-tuning. However, the mechanical CPR is more uniform

than manual CPR, so we do not anticipate major changes in our algorithms to accomodate data

from different services.



5. Conclusions

The first method for an automatic and clinically safe shock decision during LDB CPR was

demonstrated, meeting AHA requirements. Filtering the LDB artefact was challenging because of

the larger amplitudes and a ML-algorithm was required to provide a reliable shock decision on the

filtered ECG.

The proposed solution together with solutions already available for piston-driven and manual

chest compressions would cover rhyhm analysis in every CPR scenario. This may open the

possibility of bringing uninterrupted mechanical and manual CPR into real practice, eliminating

the no-flow intervals for rhythm analysis, and thus contributing to improve OHCA outcomes.
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Figure Legends

1 A 40 s interval from an OHCA episode showing the ECG and the thorax impedance
(Imp) signals. Activity shows manual CPR followed by a pause for the LDB device
application and immediate resumption of mechanical CPR. The compression rate
for manual CPR was variable and fluctuated around 120 min−1, but when the LDB
device was applied the chest compression frequency stabilized around 80 min−1.
Note the clear change in the impedance pattern during mechanical compressions,
with much larger amplitude, quicker compression/decompression cycles and a duty
cycle around 50%. The interval highlighted in grey corresponds to a 22 s segment
included in the dataset. The first 6 s were used to annotate the ground truth rhythm
(organized) of the patient in a compression-free interval, and the last 16 s with
artefact were used to develop the algorithms. . . . . . . . . . . . . . . . . . . . . . 15

2 Normalized power spectral density (PSD) recorded during asysole for (a) the LDB
device, (b) the piston-driven device, and (c) manual CPR. The errorbars represent
median (80% confidence interval) of the power concentrated around each harmonic
of the compression frequency. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3 The mean values of balanced accuracy (BAC), specificity (Sp) and sensitivity (Se)
obtained in the 100 test repetitions of the 70/30 partitions for the diagnosis of
the filtered ECG using (a) a defibrillator’s algorithm and (b) a ML-algorithm.
The performance is given as a function of the adaptability (λ) and the number
of harmonics (N) of the RLS filter. . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4 Examples of segments correctly classified by the defibrillator’s algorithm and
the ML-algorithm (left), and incorrectly classified by the defibrillator’s algorithm
but correctly classified by the ML-algorithm (right). The ground truth (GT)
classification is shown on the top right corner in the interval without compressions,
and the diagnoses of the defibrillator (defib) and the ML-algorithm. The wrong
diagnoses of the defibrillator were caused by the inability of the filter to properly
remove artefacts. This leads to very disorganized filtering residuals that resemble a
VF during asystole or organized rhythms (d,e), or to spiky filtering residuals that
look like QRS complexes during VF (f). . . . . . . . . . . . . . . . . . . . . . . . . 18



Figure 1: A 40 s interval from an OHCA episode showing the ECG and the thorax impedance (Imp) signals. Activity
shows manual CPR followed by a pause for the LDB device application and immediate resumption of mechanical
CPR. The compression rate for manual CPR was variable and fluctuated around 120 min−1, but when the LDB device
was applied the chest compression frequency stabilized around 80 min−1. Note the clear change in the impedance
pattern during mechanical compressions, with much larger amplitude, quicker compression/decompression cycles and
a duty cycle around 50%. The interval highlighted in grey corresponds to a 22 s segment included in the dataset.
The first 6 s were used to annotate the ground truth rhythm (organized) of the patient in a compression-free interval,
and the last 16 s with artefact were used to develop the algorithms.
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Figure 2: Normalized power spectral density (PSD) recorded during asysole for (a) the LDB device, (b) the
piston-driven device, and (c) manual CPR. The errorbars represent median (80% confidence interval) of the power
concentrated around each harmonic of the compression frequency.
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Figure 3: The mean values of balanced accuracy (BAC), specificity (Sp) and sensitivity (Se) obtained in the 100 test
repetitions of the 70/30 partitions for the diagnosis of the filtered ECG using (a) a defibrillator’s algorithm and (b)
a ML-algorithm. The performance is given as a function of the adaptability (λ) and the number of harmonics (N)
of the RLS filter.



Figure 4: Examples of segments correctly classified by the defibrillator’s algorithm and the ML-algorithm (left), and
incorrectly classified by the defibrillator’s algorithm but correctly classified by the ML-algorithm (right). The ground
truth (GT) classification is shown on the top right corner in the interval without compressions, and the diagnoses of
the defibrillator (defib) and the ML-algorithm. The wrong diagnoses of the defibrillator were caused by the inability
of the filter to properly remove artefacts. This leads to very disorganized filtering residuals that resemble a VF
during asystole or organized rhythms (d,e), or to spiky filtering residuals that look like QRS complexes during VF
(f).



Table Legends

1 Sensitivity (Se), specificity (Sp), balanced accuracy (BAC) and total accuracy (Acc)
for the commercial and the ML-algorithm before and after filtering. The performance
of the ML-algorithm is given as median (95% CI) for the 100 test data repetitions
of the 70/30 partitions. The commercial shock decision algorithm is a previously
designed and trained algorithm, so its performance corresponds to the entire dataset. 20



Table 1: Sensitivity (Se), specificity (Sp), balanced accuracy (BAC) and total accuracy (Acc) for the commercial
and the ML-algorithm before and after filtering. The performance of the ML-algorithm is given as median (95% CI)
for the 100 test data repetitions of the 70/30 partitions. The commercial shock decision algorithm is a previously
designed and trained algorithm, so its performance corresponds to the entire dataset.

Method Se (%) Sp (%) BAC (%) Acc (%)

Defibrillator
Before filt. 35.4 90.2 62.8 79.3

After filt. 91.4 87.1 89.3 88.0

ML-algorithm
Before filt. 78.9 (72.4 – 86.6) 93.6 (91.3 – 95.4) 86.3 (82.5 – 89.3) 90.7 (88.7 – 92.5)

After filt. 92.1 (91.0 – 93.0) 96.8 (96.1 – 97.2) 94.5 (93.8 – 95.0) 96.0 (95.4 – 96.2)


