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ABSTRACT 

The information from nociceptors is processed in the dorsal horn of the spinal cord by 

complex circuits involving excitatory and inhibitory interneurons. It is well documented 

that GluN2B and ERK1/2 phosphorylation contribute to central sensitization. STriatal-

Enriched protein tyrosine Phosphatase (STEP) dephosphorylates GluN2B and ERK1/2, 

promoting internalization of GluN2B and inactivation of ERK1/2. STEP activity was 

inhibited by genetic (STEP knockout mice) and pharmacological (recently synthesized 

STEP inhibitor, TC-21539) approaches. STEP61 protein levels in the lumbar spinal cord 

were determined in male and female mice of different ages. Inflammatory pain was 

induced by complete Freund’s adjuvant injection. Behavioral tests, immunoblotting and 

electrophysiology were used to analyze the effect of STEP on nociception. Our results 

show that both genetic deletion and pharmacological inhibition of STEP induced 

thermal hyperalgesia and mechanical allodynia, which were accompanied by increased 

pGluN2BTyr1472 and pERK1/2Thr202/Tyr204 levels in the lumbar spinal cord. Interestingly, 

STEP heterozygous and knockout mice presented a similar phenotype. Furthermore, 
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electrophysiological experiments showed that TC-2153 increased C fiber-evoked spinal 

field potentials. Interestingly, we found that STEP61 protein levels in the lumbar spinal 

cord inversely correlated with the increased thermal hyperalgesia associated with age 

and female gender in mice. Consistently, STEP knockout mice failed to show age-

related thermal hyperalgesia, while gender-related differences were preserved. 

Moreover, in a model of inflammatory pain, hyperalgesia was associated with increased 

phosphorylation-mediated STEP61 inactivation and increased pGluN2BTyr1472 and 

pERK1/2Thr202/Tyr204 levels in the lumbar spinal cord. Collectively, present results 

underscore an important role of spinal STEP activity in the modulation of nociception. 
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ABSTRACT 

The information from nociceptors is processed in the dorsal horn of the spinal cord by 

complex circuits involving excitatory and inhibitory interneurons. It is well documented that 

GluN2B and ERK1/2 phosphorylation contribute to central sensitization. STriatal-Enriched 

protein tyrosine Phosphatase (STEP) dephosphorylates GluN2B and ERK1/2, promoting 

internalization of GluN2B and inactivation of ERK1/2. STEP activity was inhibited by 

genetic (STEP knockout mice) and pharmacological (recently synthesized STEP inhibitor, 

TC-21539) approaches. STEP61 protein levels in the lumbar spinal cord were determined in 

male and female mice of different ages. Inflammatory pain was induced by complete Freund’s 

adjuvant injection. Behavioral tests, immunoblotting and electrophysiology were used to 

analyze the effect of STEP on nociception. Our results show that both genetic deletion and 

pharmacological inhibition of STEP induced thermal hyperalgesia and mechanical allodynia, 

which were accompanied by increased pGluN2BTyr1472 and pERK1/2Thr202/Tyr204 levels in the 

lumbar spinal cord. Interestingly, STEP heterozygous and knockout mice presented a similar 

phenotype. Furthermore, electrophysiological experiments showed that TC-2153 increased C 

fiber-evoked spinal field potentials. Interestingly, we found that STEP61 protein levels in the 

lumbar spinal cord inversely correlated with the increased thermal hyperalgesia associated 

with age and female gender in mice. Consistently, STEP knockout mice failed to show age-

related thermal hyperalgesia, while gender-related differences were preserved. Moreover, in a 

model of inflammatory pain, hyperalgesia was associated with increased phosphorylation-

mediated STEP61 inactivation and increased pGluN2BTyr1472 and pERK1/2Thr202/Tyr204 levels in 

the lumbar spinal cord. Collectively, present results underscore an important role of spinal 

STEP activity in the modulation of nociception. 

Keywords: STEP61, thermal hyperalgesia, mechanical allodynia, pGluN2B, pERK1/2, age, 

gender, CFA 
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INTRODUCTION 

Primary sensory neurons detect pain-producing stimuli [22]. There are different types of 

nociceptors [15] and the majority of them terminate in the dorsal horn of the spinal cord with 

a distribution pattern that is determined by their sensory modality and the region of the body 

that they innervate. In the spinal cord the information is processed by complex circuits 

involving excitatory and inhibitory interneurons and is transmitted by projection neurons to 

several brain areas [40]. 

Afferent inputs to dorsal horn neurons are mediated by glutamate via activation of AMPA 

and NMDA receptors [25]. The NMDA receptor (NMDAR) subunit GluN2B plays a critical 

role in central sensitization. Noxious stimuli rapidly induces GluN2B phosphorylation 

(pGluN2B) at Tyr1472 causing its redistribution to the membrane surface of spinal dorsal 

horn neurons [11; 29; 48; 51; 55]. After the activation of glutamate receptors, there is a large 

influx of extracellular calcium, which, in turn, activates multiple intracellular protein kinase 

cascades, including extracellular signal-regulated kinases 1/2 (ERK1/2) [20; 21; 44]. Like 

GluN2B, ERK1/2 phosphorylation (pERK1/2) has also been implicated in central 

sensitization [7; 8; 12; 20; 23]. 

STriatal-Enriched protein tyrosine Phosphatase (STEP) is a neural specific phosphatase 

that normally opposes the development of synaptic strengthening [14]. STEP has two major 

splicing isoforms (the membrane-associated STEP61 and the cytosolic STEP46), with STEP61 

being the only isoform expressed in the dorsal spinal cord neurons [28; 34; 51]. Multiple post-

translational modifications regulate STEP levels and activity, including 

phosphorylation/dephosphorylation [14]. Phosphorylation by cAMP-dependent protein kinase 

(PKA) of a regulatory serine residue within the binding domain for all STEP substrates (the 

kinase interacting motif) inactivates STEP isoforms [33], whereas activation of NMDARs 

results in the dephosphorylation and activation of STEP through a calcineurin/PP1 pathway 
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[32; 41]. STEP dephosphorylates the glutamate receptor subunits GluN2B and GluA2, leading 

to their endocytosis, and the kinases ERK1/2, p38, Fyn and Pyk2, thereby controlling the 

duration of their signal [14]. Consistent with these findings, mice null for STEP have higher 

levels of pERK1/2 in the striatum, amygdala and hippocampus [42; 43] and increased surface 

expression of GluN2B in the hippocampus [42]. Importantly, in addition to GluN2B and 

ERK1/2 (references as above), also Fyn and p38 have been implicated in the regulation of 

nociception [1; 20; 30]. Accumulating evidence supports that STEP levels and activity are 

down- or up-regulated in multiple neurodegenerative and psychiatric disorders [14]. In 

contrast, its role in the spinal cord is now beginning to be unraveled. While we were preparing 

this manuscript, another group reported that STEP61 acts as an intermediary for GABAergic 

inhibition to regulate mechanical nociception and pain sensitization [28]. Moreover, STEP61 

signaling downstream the activation of noradrenergic α2 receptor attenuates ERK1/2 

activation and inflammatory pain [50]. Here, we used STEP knockout (KO) mice [44] and a 

recently synthetized STEP inhibitor [49] and we extend these findings by showing that 

STEP61 activity in the lumbar spinal cord modulates physiological nociception, as well as 

inflammatory pain likely through the regulation of pGluN2BTyr1472 and pERK1/2Thr202/Tyr204 

levels. 
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MATERIALS AND METHODS  

Animals 

Male and female STEP KO (STEP−/−) [43], heterozygous (STEP+/−) and wild-type (STEP+/+) 

mice (C57BL/6J background), and male Sprague Dawley rats (200-250 g) were housed in 

cages lined with sawdust under a standard 12/12 h light/dark cycle (lights on at 08:00 am) 

with food and water available ad libitum. Every effort was made to minimize animal suffering 

and to use the minimum number of animals per group and experiment. Experimental 

procedures were approved by the Local Ethical Committee of the Universities of Barcelona 

and the Basque Country, following European (2010/63/UE) and Spanish (RD 53/2013) 

regulations for the care and use of laboratory animals. 

Drug preparation and delivery  

STEP inhibitor (TC-2153; benzopentathiepin 8-(trifluoromethyl)-1,2,3,4,5-benzopentathiepin-

6-amine hydrochloride) [49] was dissolved in 2% DMSO and injected (10 mg/kg; 

intraperitoneal, i.p.) 1 h before the behavioral assessment. For spinal application, stock 

solutions were obtained by diluting drug powder in DMSO, and working solutions were 

prepared in artificial cerebrospinal fluid (aCSF; in mM: 130 NaCl, 3.5 KCl, 1.25 NaH2PO4, 

24 NaHCO3, 1.2 CaCl2, 1.2 MgSO4, 10 D-(þ) glucose; pH 7.4) immediately before delivery. 

Small volumes (10-15 µl) of either aCSF or drug solution were applied by controlled 

superfusion via a silicone, 40-50 mm2 pool attached to the dorsal surface of the spinal cord. 

To induce inflammatory pain, 10 l of complete Freund’s adjuvant (CFA; Sigma, St. Louis, 

MO, USA) were injected into the plantar surfaces of both hind paws of 3-month-old wild-type 

and STEP KO male mice. 

Hargreaves test 

To allow acclimation to the testing environment, animals were placed in the examination 

room 30 min before analysis. Then, animals were placed in Plexiglas enclosures with glass 
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floors suspended 30 cm from the table top and allowed to habituate for 15 min prior to testing. 

The hind paws were individually stimulated from below using a halogen heat source from the 

Hargreaves apparatus (Ugo Basile, Varese, Italy) [18]. The intensity of the beam (40 W for 

mice and 80W for rats) was selected to produce an average baseline threshold of 

approximately 8 s. A 20 s cut-off was employed to prevent tissue damage in non-responsive 

subjects. The latency to produce a nocifensive paw withdrawal response was used to measure 

thermal hypersensitivity. Each hind paw was targeted three times in alternating order, 

producing six scores of nociception that were averaged and analyzed. 

Mechanical sensitivity 

To assess mechanical sensitivity, the withdrawal threshold to punctate mechanical stimulation 

of the hind paw was determined by the application of calibrated Von Frey filaments (North 

Coast Medical, Inc. Morgan Hill, CA, USA). The Von Frey filaments [3.92, 5.88, 9.80, 19.60, 

39.21, 58.82, 78.43 and 147.05 mN; equivalent to 0.4, 0.6, 1, 2, 4, 6, 8 and 15 g] were applied 

vertically to the plantar surface of the hind paw and gently pushed to the bending point. The 

50% withdrawal threshold was determined by using the up-down method as previously 

described [9]. A brisk hind paw lift in response to Von Frey filament stimulation was 

considered a withdrawal response.  

Electrophysiological recording 

To measure the ability of STEP to modulate C fiber-evoked spinal field potentials, 

electrophysiological recordings were performed during spinal superfusion with successively 

increasing, cumulative concentrations of the STEP inhibitor TC-2153 (10 nM-10 mM). The 

electrophysiological setup was essentially as described previously [2]. Briefly, the left sciatic 

nerve was exposed, gently freed from connective tissue and placed onto platinum hook 

electrodes for bipolar electrical stimulation. Bilateral dorsal laminectomies were performed at 

vertebrae T13–L1, the vertebral column was immobilized to a rigid frame and the duramater 
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overlaying lumbosacral spinal segments were carefully removed. Single monophasic, square 

wave electrical pulses were delivered as test stimuli to the sciatic nerve trunk at a mid-thigh 

level on a per-min basis by means of a computer-controlled stimulus isolator, and the elicited 

spinal field potentials were amplified (analog band-pass set at 1-550 Hz), displayed on an 

oscilloscope, and digitized to a PC-based computer at a 10 kHz sampling rate via an A/D 

converter card (MIO16, National Instruments, Austin, TX, USA). Field potentials evoked in 

superficial laminae of the spinal dorsal horn by activation of C fibers (3-3.5 mA pulses of 0.5 

ms duration) were extracted from 90-200 ms latency bands (<1.2 m/s conduction velocity) 

and quantified as described previously [5]. 

Western blot 

Animals were sacrificed and the lumbar spinal cord rapidly removed on ice. Tissue was 

homogenized in lysis buffer [50 mM Tris-HCl (pH 7.5), 150 mM NaCl, 10% glycerol, 1% 

Triton X-100, 100 mM NaF, 5 μM ZnCl2 and 10 mM EGTA] plus protease inhibitors 

[phenylmethylsulphonyl fluoride (2 mM), aprotinin (1 μg/ml), leupeptin (1 μg/ml) and 

sodium orthovanadate (1 mM)] and centrifuged at 16,100 x g for 20 min. The supernatants 

were collected and the protein concentration was measured using the Dc protein assay kit 

(Bio-Rad, Hercules, CA, USA). Western blot analysis was performed as previously described 

[37]. The following primary antibodies were used: anti-STEP (23E5; 1:1,000) (Santa Cruz 

Biotechnology, CA, USA), anti-pERK1/2Thr202/Tyr204 (1:1,000) and anti-pGluN2BTyr1472 

(1:500) (Cell Signaling Technology, Beverly, MA, USA), anti-pSTEPSer221 (1:1,000; 

Millipore Temecula, CA, USA) and anti-tubulin (1:50,000; Sigma, St. Louis, MO, USA). The 

anti-STEP antibody is raised against an 18 aa sequence mapping at the N-terminus of STEP46 

of rat origin. Since STEP46 sequence is entirely contained within STEP61 this antibody 

recognizes both STEP61 and STEP46. In our hands, it easily detects both STEP61 and STEP46 

and sometimes lower molecular weight STEP isoforms in striatal extracts and each isoform 
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can be identified based on its molecular weight. In agreement with previous studies [28; 34; 

51] we only detected the STEP61 isoform in spinal cord homogenates. Then, membranes were 

washed with Tris-buffered saline containing 0.1% Tween-20 (TBS-T), incubated for 1 h (15 

min for loading controls) at room temperature with the corresponding horseradish peroxidase-

conjugated antibody (1:2,000; Promega, Madison, WI, USA) and washed again with TBS-T. 

Immunoreactive bands were visualized using the Western Blotting Luminol Reagent (Santa 

Cruz Biotechnology) and quantified by a computer-assisted densitometer (Gel-Pro Analyzer, 

version 4, Media Cybernetics). 

Statistical analysis 

Experimental data were analyzed using the GraphPad Prism (v. 5.01, GraphPad Software, 

Inc). Data are presented as mean ± SEM. Statistical analysis was performed by using the 

unpaired Student’s t-test (95% confidence), one-way or two-way ANOVA with Bonferroni’s 

post hoc test, and simple linear regression as appropriate and indicated in the figure legends. 

In all cases, a difference was considered to be significant if p < 0.05.  
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RESULTS 

STEP knock-out mice have thermal hyperalgesia and mechanical allodynia 

As a first approach to study the role of STEP in thermal nociception, we subjected 3-month-

old male STEP+/+, STEP+/− and STEP−/− mice to the Hargreaves test. The results showed that 

both STEP dosage reduction (heterozygous mice) and deletion (KO mice) produced a lower 

paw withdrawal latency (one-way ANOVA; F(2,43) = 34.83; p < 0.001). Interestingly, the lack 

of one allele of STEP produced the same effect as the total deletion (Fig. 1A). We next asked 

whether STEP could also be involved in other types of nociception, such as a response to a 

mechanical stimulus. For that, we analyzed the threshold of evoked mechanical pain in 

response to Von Frey filaments in 3-month-old wild-type (STEP+/+) and STEP KO (STEP−/−) 

male mice. Similarly to that observed for thermal stimulus, we observed that the lack of STEP 

also reduced mechanical threshold (Fig. 1B). Western blot analysis confirmed the lack of 

STEP61 protein expression in STEP KO mice and a reduction of 46.7% in heterozygous mice 

compared to controls (one-way ANOVA; F(2,13) = 28.8; p < 0.001; Fig. 1C). As readout of 

STEP activity we analyzed the phosphorylation status of two of its substrates implicated in 

nociception, pGluN2BTyr1472 and pERK1/2. Consistent with the reduction or lack of STEP61 

expression we found higher levels of pGluN2BTyr1472 (one-way ANOVA; F(2,13) = 15.19; p < 

0.01; Fig. 1D), pERK1 (one-way ANOVA; F(2,13) = 6.02; p < 0.05; Fig. 1E) and pERK2 (one-

way ANOVA; F(2,13) = 22.18; p < 0.001; Fig. 1E), whereas no changes were observed in total 

GluN2B or ERK1/2 (data not shown). In line with the results obtained in the Hargreaves test, 

there were no differences in pGluN2BTyr1472 and pERK1/2Thr202/Tyr204 levels between STEP+/− 

and STEP−/− mice.  
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Pharmacological inhibition of STEP contributes to thermal hyperalgesia and mechanical 

allodynia 

In order to discard the contribution of any developmental or compensatory mechanisms to the 

hyperalgesia and allodynia observed in STEP deficient mice, we tested the effect of 

pharmacological inhibition of STEP on thermal and mechanical nociception. To this end, we 

injected 3-month-old male mice with TC-2153 (10 mg/kg, i.p.), a pharmacological inhibitor 

of STEP [49], and explored thermal and mechanical nociception after 1 h (Fig. 2A). 

Pharmacological inhibition of STEP produced a significant decrease in both paw withdrawal 

latency (Fig. 2B) and mechanical threshold (Fig. 2C). These phenotypes were accompanied 

by increased pGluN2BTyr1472 (Fig. 2D) and pERK1/2Thr202/Tyr204 (Fig. 2E) levels in the lumbar 

spinal cord of TC-2153-treated animals. 

 

Inhibition of STEP increases C fiber-evoked spinal potentials 

To further characterize the effect of STEP inhibition, we treated male Sprague Dawley rats 

with TC-2153 (10 mg/kg, i.p.) and subjected them to the Hargreaves test. As in mice, 

inhibition of STEP produced lower paw withdrawal latency compared to vehicle-treated rats 

(Fig. 3A). This lower latency was accompanied by increased levels of pGluN2BTyr1472 (Fig. 

3B) and pERK1/2Thr202/Tyr204 (Fig. 3C) in the lumbar spinal cord of rats treated with TC-2153. 

Next, we performed electrophysiological studies to determine how STEP inhibition affects 

neuronal functioning. Spinal superfusion with TC-2153 at 10 µM significantly increased C 

fiber-evoked spinal potentials by 18.5 ± 0.5% (16.37 ± 0.42 V ms area from a 13.81 ± 0.48 V 

ms control baseline area during superfusion with aCSF), and reached 42.28 ± 1.02% of 

control during administration of 1 mM TC-2153 (19.65 ± 0.55 V ms from a 13.81 ± 0.48 V 

ms baseline; Fig. 3D). 
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Spinal STEP61 levels are reduced with age and correlate with thermal hyperalgesia 

Several studies have shown age-related alterations in nociception [52] and STEP61 levels are 

reported to change with age [4; 53]. As our results indicated that reduced STEP61 

levels/activity promoted thermal hyperalgesia, we next characterized thermal nociception and 

STEP61 levels in the lumbar spinal cord of male and female mice from 3 to 15 months of age. 

The Hargreaves test showed that paw withdrawal latency was reduced with age in males (one-

way ANOVA, F(3, 56) = 15.39; p < 0.001; Fig. 4A). Interestingly, spinal STEP61 levels were 

reduced with age (one-way ANOVA, F(3, 20) = 12.2; p < 0.001; Fig. 4B), and there was 

correlation between paw latency withdrawal and STEP61 levels (r2 = 0.48; p < 0.001; Fig. 4C). 

Female mice showed the same pattern, including reduced withdrawal latency (one-way 

ANOVA, F(3, 56) = 4.39; p < 0.01; Fig. 4D) and decreased STEP61 levels with age (one-way 

ANOVA, F(3, 20) = 8.46; p < 0.001; Fig. 4E), as well as a correlation between both parameters 

(r2 = 0.42; p < 0.001; Fig. 4F). 

 

Gender differences in thermal nociception and STEP61 levels 

Data from animal studies show that female rodents have a lower thermal-pain threshold [19]. 

When analyzing the paw withdrawal latency in the Hargreaves test at different ages we 

detected significant differences between male and female mice (two-way ANOVA, sex effect; 

F(1, 75) = 10.51; p < 0.01). Analysis of the data by age showed that 3- and 6-months-old female 

animals presented a lower paw withdrawal latency compared with males, a difference that 

was lost in older mice (Fig. 5A). As we found a correlation between thermal hyperalgesia and 

changes in STEP61 levels in the spinal cord with age (Fig. 4C and F), we next investigated 

potential differences in spinal STEP61 levels between male and female mice. Consistent with 

the results from the Hargreaves test, Western blot analysis revealed that 3-month-old female 

mice had significantly less STEP61 in the spinal cord compared to age-matched males (Fig. 
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5B), whereas no significant differences in STEP61 expression were detected between 15-

month-old male and female mice (Fig. 5C). To further characterize the implication of STEP61 

levels in the differences in thermal nociception between male and female mice, we performed 

the Hargreaves test in male and female STEP−/− mice at different ages. When comparing the 

latency in STEP KO mice we did not observe any significant difference between 3-, 6- and 

12-month-old mice in either gender. Conversely, for age-matched STEP−/− mice, there was a 

gender effect (two-way ANOVA, gender effect; F(1, 75) = 17.09; p < 0.001; Fig. 5D).  

 

STEP61 activity is decreased during inflammatory pain  

Next, we sought to analyze whether STEP was also involved in the regulation of 

inflammatory pain. To this end, we performed the Hargreaves test pre- and 24 h post-injection 

of saline or 10 µl of CFA into the plantar surfaces of both hind paws in 3 month-old wild-type 

and STEP KO mice. No differences were detected in the paw withdrawal latency in saline-

injected mice of either genotype (Fig. 6A). However, both wild-type and STEP KO mice 

injected with CFA displayed thermal hyperalgesia, without differences between genotypes 

(Fig. 6A). We further analyzed molecular changes associated with CFA-induced hyperalgesia 

in the lumbar spinal cord of wild-type animals. Western blot analysis showed that 24 h after 

CFA-induced inflammation there were no differences in total STEP61 levels (saline: 100.08 ± 

9.15% and CFA: 94.16 ± 8.75%, n = 5-6, p = 0.66, Student’s t-test). Phosphorylation of 

STEP61 at Ser221 by PKA blocks its activity [33]. Thus, we analyzed whether pSTEP61
Ser221 

levels in the lumbar spinal cord were altered by CFA injection. We found that there were 

increased levels of pSTEP61
Ser221 in CFA-injected mice compared to saline-injected animals 

(Fig. 6B). Importantly, phosphorylation-mediated STEP61 inactivation was accompanied by 

increased pGluN2BTyr1472 (Fig. 6C) and pERK1/2Thr202/Tyr204 (Fig. 6D) levels in the lumbar 

spinal cord of CFA-treated animals. 
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DISCUSSION  

Phosphorylation and dephosphorylation of specific proteins in dorsal horn neurons is critical 

to nociception [47]. The role of several protein kinases in pain modulation has been 

extensively studied [6; 27]. However, less is known about the role of protein phosphatases in 

this process. Here, we provide functional evidence that STEP61 levels and activity modulate 

nociception both under physiological and pathological conditions, and that GluN2B and 

ERK1/2 are important downstream players. 

Our results show that adult STEP+/− and STEP−/− male mice present thermal hyperalgesia. 

Interestingly, the lack of one allele of STEP produced the same effect as the total deletion, 

indicating that it is not necessary to completely block STEP to modulate the response to a 

thermal stimulus. This is in accordance with the results obtained after pharmacological 

inhibition of STEP, which also induced thermal hyperalgesia, not only in mice, but also in 

rats. Moreover, both genetic deletion and pharmacological inhibition of STEP promoted 

mechanical allodynia. Remarkably, although there is controversy on the effect of age on pain 

sensitivity, with some studies reporting either increased, decreased or no changes in the 

sensitivity with advancing age [52], here we show that age-dependent thermal hyperalgesia 

correlated with reduced STEP61 levels in the lumbar spinal cord both in male and female 

mice. Nevertheless, cortical and hippocampal STEP61 levels increase with age [4; 53], 

suggesting that tissue-specific transcriptional and/or post-translational modifications regulate 

STEP61 levels with age. Further supporting an important role of STEP in this process, we 

observed that this age-effect on thermal hyperalgesia was lost in STEP KO mice. Also in 

agreement with our proposal that STEP plays a role in nociception, we found that 3-month-

old female mice presented lower spinal STEP61 levels and paw withdrawal latency in the 

Hargreaves test than age-matched male mice, whereas, at 15 months of age, STEP61 levels 

and thermal threshold were similar between genders. Our results are in accordance with 
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previous reports showing sex differences in response to thermal noxious stimuli both in 

humans and in laboratory animals [19; 39]. However, a gender-related difference in latency 

was still observed in STEP−/− mice indicating that, in addition to STEP, other mechanisms, 

such as sexual hormones [13], contribute to sex-dependent response to a thermal stimulus. 

The mechanism underlying thermal hyperalgesia and mechanical allodynia after STEP 

inhibition is likely related to activation of GluN2B and ERK1/2 in the spinal cord, similar to 

what occurs in different brain areas from STEP KO mice [42; 43] and in cortical neurons 

treated with TC-2153 in vitro and in vivo [49]. Higher levels of pGluN2BTyr1472 [16], and 

pERK1/2 [8; 12] have been found in conditions associated with nociception and pain 

hypersensitivity. In fact, a recent study shows that intrathecal administration of a recombinant 

adenovirus encoding STEP61 blocks GluN2B phosphorylation and pain sensitivity upon 

GABAergic inhibition [28]. Moreover, spinal expression of a STEP61 mutant that cannot be 

phosphorylated and inactivated reduces ERK1/2 phosphorylation and inflammatory pain [52]. 

Therefore, these reports provide a direct link between STEP, the regulation of GluN2B and 

ERK1/2 phosphorylation in neurons from dorsal spinal cord and pain sensitization. Central 

sensitization produced by the phosphorylation of these proteins results from an activity-

dependent increase in the excitability of dorsal horn neurons [21; 46] and altered gene 

transcription in the spinal cord [23]. Remarkably, it was recently found that the transcriptional 

signature of STEP KO mice is consistent with enhanced ERK signaling and NMDAR activity 

[35]. Moreover, a number of activity-dependent genes, including c-fos, are up-regulated in 

STEP KO mice and in STEP shRNA-transduced neurons [35]. Our data are in line with 

recently reported findings suggesting that a tonic level of STEP activity suppresses ERK1/2 

and Fyn signaling pathways, thereby increasing synaptic availability of GluN2B and 

promoting central sensitization [28]. In addition, we show that selective inhibition of STEP 

results in significantly increased field potentials evoked in the spinal dorsal horn by C fibers 
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input, supporting that STEP may tonically repress nociceptive neurotransmission at the spinal 

level. The hypersensitivity resulting from STEP inhibition is consistent with the view that 

distinct protein phosphatases may modulate acute nociception probably by repressing 

NMDAR-mediated excitatory neurotransmission in the spinal dorsal horn [10; 36]. Indeed, 

NMDAR-mediated single-channel currents recorded in dorsal horn neurons are depressed by 

recombinant STEP [34]. Thus, our findings support the view that STEP opposes synaptic 

strengthening in the spinal cord, and that genetic deletion or pharmacological inhibition 

facilitates central sensitization and nociceptive responses. 

Finally, we explored the role of STEP61 in a model of inflammatory pain. Even though 

STEP61 levels were unchanged in CFA-injected wild-type mice, which is in agreement with 

previous reports [28; 51], we found that CFA-induced hyperalgesia was accompanied by 

decreased STEP61 activity, as evidenced by higher levels of its phosphorylated form and 

increased phosphorylation of GluN2B and ERK1/2 in the lumbar spinal cord. Accordingly, 

CFA-induced phosphorylation of GluN2B [17] and ERK1/2 [28] was previously reported in 

rodents. Interestingly, increased pGluN2BTyr1472 levels upon CFA-induced inflammation were 

attributed to reduced STEP61/Fyn interaction [51]. Our results showing phosphorylation-

induced STEP61 inactivation could explain its reduced interaction with Fyn, and the increased 

pGluN2BTyr1472 levels. Nevertheless, we observed that thermal hyperalgesia upon CFA 

injection was similar in wild-type and STEP KO mice and thus, in addition to STEP 

inactivation, other mechanisms contribute to inflammatory pain. 

Here, we demonstrate that STEP participates in the regulation of nociception. Therefore, 

it would be interesting to explore whether changes in STEP levels and activity after stroke and 

ischemia [3] contribute to post-stroke pain [24], and if the inactivation of STEP produced by 

drug abuse [41] participates in the increased pain prevalence observed in drug users [31]. 

Inhibition of STEP has been proposed as a promising therapeutic approach to fight synaptic 
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deficits and cognitive impairment in pathological conditions [49; 54]. However, our results 

highlight that caution needs to be taken since inhibiting STEP could lead to thermal 

hyperalgesia and mechanical allodynia and aggravate existing pain symptoms in affected 

individuals. Interestingly, as STEP modulates the activity of both NMDAR and ERK, 

targeting STEP to manage pain may have additional benefits over other proposed 

phosphatases such as protein phosphatase 2A, which regulates the function of glutamate 

receptors [45] or MAPK phosphatase-3, which dephosphorylates ERK [26; 38]. 

In summary, our behavioral, molecular and electrophysiological data indicate that spinal 

STEP61 plays a regulatory role in nociception, both under physiological and pathological 

conditions, likely through the dephosphorylation of GluN2B and ERK1/2. Thus, STEP might 

constitute a valuable therapeutic target for pain management. 
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FIGURE LEGENDS 

Fig. 1. Lack or reduction of STEP levels decreases paw withdrawal latency and mechanical 

threshold, and increases the phosphorylation level of GluN2B and ERK1/2. (A) Paw 

withdrawal latency in the Hargreaves test in STEP+/+, STEP+/− and STEP−/− mice (n = 15 per 

genotype). (B) Mechanical threshold in Von Frey test (n = 10-12 per group). (C) STEP61, (D) 

pGluN2BTyr1472 and (E) pERK1/2Thr202/Tyr204 levels were analyzed by Western blot of protein 

extracts obtained from the lumbar spinal cord of STEP+/+, STEP+/− and STEP−/− mice (n = 5 

per genotype). Representative immunoblots are shown. Values obtained by densitometric 

analysis of Western blot data are expressed as percentage of STEP+/+ (wild-type) mice and 

shown as mean  S.E.M. Data were analyzed by one-way ANOVA with Bonferroni’s test as a 

post-hoc. *p < 0.05, **p < 0.01 and ***p < 0.001.  

Fig. 2. Pharmacological inhibition of STEP causes thermal hyperalgesia in mice. (A) 

Schematic representation of the experimental design. (B) Paw withdrawal latency in the 

Hargreaves test and (C) mechanical threshold in Von Frey Test in vehicle- and TC-2153-

treated mice (n = 10-12 per group). (D) pGluN2BTyr1472 and (E) pERK1/2Tyr202/Tyr204 levels 

were analyzed by Western blot of protein extracts obtained from the lumbar spinal cord of 

vehicle- and TC-2153-treated 3-month-old male mice (n = 4 per group). Representative 

immunoblots are shown. Values obtained by densitometric analysis of Western blot data are 

expressed as percentage of vehicle-treated mice and shown as mean  S.E.M. Data were 

analyzed by Student’s t-test. *p < 0.05 and ***p < 0.001 as compared with vehicle-treated 

mice.  

Fig. 3. Pharmacological inhibition of STEP causes thermal hyperalgesia and increases C 

fiber-evoked spinal field potentials in rats. (A) Paw withdrawal latency in the Hargreaves test 

in vehicle- and TC-2153-treated Sprague Dawley male rats (n = 10-11). (B) pGluN2BTyr1472 

and (C) pERK1/2Thr202/Tyr204 levels were analyzed by Western blot of protein extracts obtained 
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from the lumbar spinal cord of vehicle- and TC-2153-treated rats (n = 5 per group). 

Representative immunoblots are shown. Values obtained by densitometric analysis of 

Western blot data are expressed as percentage of vehicle-treated rats, and data were analyzed 

by Student’s t test. (D) Diagram showing mean field potential areas evoked by unmyelinated 

afferents during spinal superfusion with either aCSF (baseline control) or increasing, 

cumulative concentrations of the STEP inhibitor TC-2153 (n = 6). Each circle represents the 

mean area of ten spinal field potentials, and data were analyzed by one-way ANOVA 

followed by Bonferroni post hoc test. In all graphs data are expressed as mean  S.E.M. *p < 

0.05, **p < 0.01 and ***p < 0.001.  

Fig. 4. Thermal nociception and STEP61 levels are altered during aging. (A) Paw withdrawal 

latency in the Hargreaves test in male mice at different ages (m, months; n = 9-15). (B) 

STEP61 levels were analyzed by Western blot of protein extracts obtained from the lumbar 

spinal cord of STEP+/+ male mice of different ages (n = 6 per age). Representative 

immunoblots are shown. Values obtained by densitometric analysis of Western blot data are 

expressed as percentage of 3-month-old male mice. (C) Correlation between paw withdrawal 

latency and STEP61 levels in males (n = 6 per group). (D) Paw withdrawal latency in the 

Hargreaves test in female mice at different ages (n = 15 per group). (E) STEP61 levels were 

analyzed by Western blot of protein extracts obtained from the lumbar spinal cord of STEP+/+ 

female mice at different ages (n = 6 per age). Representative immunoblots are shown. Values 

obtained by densitometric analysis of Western blot data are expressed as percentage of 3-

month-old female mice. (F) Correlation between paw withdrawal latency and STEP61 levels in 

female mice (n = 6 per group) as determined by simple linear regression. A, B, D and E 

graphs data are shown as mean  S.E.M. and data were analyzed by one-way ANOVA with 

Bonferroni’s test as post-hoc. C and F graphs were determined by simple linear regression. *p 

< 0.05, **p < 0.01 and ***p < 0.001. 
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Fig. 5. Gender differences in thermal nociception and STEP61 levels. (A) Paw withdrawal 

latency in the Hargreaves test in male and female C57BL6/J mice at different ages (m, 

months; n = 9-15). Graphs showing the comparison between (B) STEP61 levels in male and 

female STEP+/+ mice at 3 months of age and at (C) 15 months of age (n = 5-6 per group). 

Representative immunoblots are shown. Values obtained by densitometric analysis of 

Western blot data are expressed as percentage of 3- and 15-month-old males, respectively. (D) 

Paw withdrawal latency in the Hargreaves test in STEP−/− male versus female mice at 

different ages. In all graphs, data are shown as mean  S.E.M. Data were analyzed by two-

way ANOVA with Bonferroni’s test as post-hoc in A and D and by Student’s t-test in B and 

C. # p = 0.06, *p < 0.05 and ***p < 0.001 as compared with male mice. 

Fig. 6. CFA-induced inflammatory pain correlates with decreased STEP61 activity. (A) Paw 

withdrawal latency in the Hargreaves test pre- and post-CFA injection in 3-month-old wild-

type and STEP KO male mice (n = 5-6 per group). Data was analyzed by one-way ANOVA 

with Bonferroni’s test as post-hoc. ***p < 0.001 as compared with saline-injected wild-type 

mice and ### p < 0.001 as compared with STEP KO mice. (B) pSTEP61
Ser221 and STEP61, (C) 

pGluN2BTyr1472 and (D) pERK1/2Thr202/Tyr204 levels were analyzed by Western blot of protein 

extracts obtained from the lumbar spinal cord of saline and CFA-treated mice (n = 5 per 

group). Representative immunoblots are shown. Values obtained by densitometric analysis of 

Western blot data are expressed as percentage of saline-inject mice and represent the mean  

S.E.M. Data was analyzed by Student’s t-test. *p < 0.05, **p < 0.01 as compared with saline-

injected mice.  
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Summary 

In this work, we demonstrate by using genetic (STEP KO mice) and pharmacological 

(administration of the STEP inhibitor, TC-2153) approaches that STEP61 levels/activity 

modulates nociception (mechanical allodynia, thermal algesia and inflammatory-induced pain) 

likely through the regulation of pGluN2BTyr1472 and pERK1/2Thr202/Tyr204 levels in the 

spinal cord. We also found that STEP61 protein levels in the lumbar spinal cord inversely 

correlate with the increased thermal hyperalgesia associated with age and female gender in 

mice. In addition, we provide electrophysiological evidence that pharmacological inhibition of 

STEP increases C fiber-evoked spinal field potentials in rats. Therefore, taken together our 

results suggest an important role of STEP61 levels/activity in the modulation of nociception 

both under physiological and pathological conditions. 
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