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New Distance-Based approach for
Genome-Wide Association Studies

Itziar Irigoien , Bru Cormand , Marı́a Soler-Artigas , Cristina Sánchez-Mora , Josep-Antoni
Ramos-Quiroga and Concepción Arenas

Abstract—With the rise of genome-wide association studies (GWAS), the analysis of typical GWAS data sets with thousands of single
nucleotide-polymorphisms (SNPs) has become crucial in biomedicine research. Here, we propose a new method to identify SNPs
related to disease in case-control studies. The method, based on genetic distances between individuals, takes into account the
possible population substructure, and avoids the issues of multiple testing. The method provides two ordered lists of SNPs; one with
SNPs which minor alleles can be considered risk alleles for the disease, and another one with SNPs which minor alleles can be
considered as protective. These two lists provide a useful tool to help the researcher to decide where to focus attention in a first stage.

Index Terms—Distances; NN-nearest neighbours; DB-discriminant; Genome-wide association studies; ADHD
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1 INTRODUCTION

Genome-wide association studies (GWAS) have been in-
creasingly used thanks to the advances in high-throughput
genotyping methods. A typical GWAS data set contains
thousands of single nucleotide-polymorphisms (SNPs) and
the aim is to identify genes involved in human disease,
seeking SNP alleles that occur more frequently in subjects
with a particular disease than in individuals without the
disease. In case-control association studies, the frequency of
SNP alleles among individuals diagnosed with the disease
under study is compared with those in the control group.
Association analysis typically involves regressing each SNP
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separately on a given trait, adjusted for patient-level clinical,
demographic, and even environmental factors. The assumed
underlying genetic model of association for each SNP (e.g.,
dominant, recessive, or additive) will impact the resulting
findings; however, because of the large number of SNPs and
the generally uncharacterized relationships to the outcome,
a single additive model is typically used. In this case,
each SNP is represented as the corresponding number of
minor alleles (0, 1, or 2). Genome-wide association analysis
typically includes data pre-processing with sample-level
and SNP-level filtering to remove SNPs and samples that
will not be included in the analysis [1]. Samples are gener-
ally filtered in relation to missing data, sample contamina-
tion, relatedness (for population-based investigations), and
racial, ethnic, or gender ambiguity or discordance. SNPs are
usually removed in relation to missing data, low variability,
possible genotyping errors, or violations of Hardy-Weinberg
equilibrium (HWE). In case-control association studies, this
filtering is only considered for controls, as a violation in
cases may be an indication of association. Furthermore, in
the context of association studies the presence of popula-
tion substructure can result in spurious associations. One
approach is to stratify the analysis by ethnic groups; an-
other approach is to account for the population substructure
in the analysis of association. Usually, the first Principal
Components (PC) are considered as covariate variables, as
these PCs are intended to capture information of latent
population substructure that is typically not available in
self-reported variables [2], [3]. Once the data has been
filtered, statistical analysis is performed to test for associa-
tions. Many methodologies for the identification of disease-
related SNPs use univariate tests that individually measure
the dependency between each SNP and the trait of interest
[4], [5], [6], [7]. With univariate testing, single association
analysis involves regressing each SNP separately on a given
trait, adjusted for possible covariate variables and assessing
the significance after correction for multiple comparisons
using methods such as Bonferroni, Benjamini-Hochberg or
false discovery rate (FDR) [8], [9], [10]. However, all the p-
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value adjustment methods lead to a loss of sensitivity, which
reduces the chance of detecting true positives. Furthermore,
as analysing SNPs one at a time can neglect information
about the joint distribution, multi-association analysis may
be more suitable [11]. One possibility is to group the SNPs
over a moving window and look for associations of groups
with the diseases, but the selection of the window is very
subjective [12], [13]. Another approach, in this direction, is
to consider stochastic search algorithms [14].
This article outlines a new method to identify interesting
SNPs in case-control studies. The method provides two
ordered lists of SNPs; one list with SNPs which minor alleles
can be considered risk alleles favouring the presence of the
disease in individuals, and another list with SNPs which
minor alleles would be protective. These two lists provide a
useful tool to help the researcher decide where to focus their
attention first.
The rest of the article is organized as follows. In the next
section, we describe the proposed procedure. Then, we
present the behaviour of the procedure using two published
simulated data sets. Finally, we apply our method to an
empirical data set of single nucleotide polymorphisms re-
lated to attention deficit hyperactivity disorder (ADHD), a
prevalent and highly heritable neurodevelopmental disor-
der that affects children and adults. We conclude with a
brief discussion.

2 METHOD

We focus our attention on case-control studies. Let Y
be a categorical variable indicating the presence (coded
by 1 in cases) or absence (coded by 0 in controls) of the
disease of interest (e.g. ADHD). Let X = (xyij) be an n×m
data matrix containing the genotypes for the jth SNP
(j = 1, . . . ,m) on the ith (i = 1, . . . , n) individual, with
n = n1 + n2 (n1 cases and n2 controls). We consider the
single additive model as the underlying genetic model of
association. In this case, each SNP with alleles A and a
tested in the case-control study generates three genotypes
(AA, Aa, aa) that are represented as the corresponding
number of minor alleles (0, 1, or 2). The model assumes
that a SNP will be related with the disease if the number
of values equal to 1 or 2 is substantially different in the
case group than in the control group; that is, having one
or two copies of the a allele will increase the probability
of presenting the disease. Let D = (dil) be the Manhattan
n × n distance matrix between all the individuals, defined
by dil = d(xy

i ,x
y
l ) =

∑
j |x

y
ij − x

y
lj |. Note that this distance

differentiates between alleles with values 1 or 2. For each
individual xy

i = (xyi1, . . . , x
y
im)′ in the case or control group

(i = 1, . . . , n), we consider its K-nearest neighbours among
the n1 cases, NN1(x

y
i ) = {x1

i1
, . . . ,x1

iK
}, or among the

n2 controls, NN0(x
y
i ) = {x0

i1
, . . . ,x0

iK
}, based on the D

distance matrix.

The method associates each SNP j with a value ij1
obtained from variable Ij1 where

Ij1 = Aj
1,0 −A

j
0,0

=
1

Kn1

n1∑
i=1

K∑
k=1

B(pjik)−
1

Kn2

n2∑
i=1

K∑
k=1

B(qjik),

with B(pjik) a Bernoulli distribution taking value 1 with
probability pjik if case i takes values 1 or 2 and its k control
neighbour takes value 0 on the jth SNP; otherwise, it
takes the value 0 with probability 1 − pjik. B(qjik) follows a
Bernoulli distribution taking value 1 with probability qjik if
the i control takes values 1 or 2, and its k neighbour control
takes value 0 on the jth SNP; otherwise, it takes the value 0
with probability 1− qjik. In other words, Aj

1,0 sums for each
case i with values 1 or 2 in the fixed jth SNP, the number
of times that the fixed jth SNP takes the value 0 among the
control neighbours NN0(x

1
i ). In a similar way, Aj

0,0 sums
for each control i with values 1 or 2 in the considered jth
SNP, the number of times that the fixed jth SNP takes the
value 0 among the control neighbours NN0(x

0
i ).

Proposition :

Consider case i and its NN0(x
1
i ) control neighbours. Let

pi be the probability of observing values 1 or 2 in SNP j for
case i given that the jth SNP is related with the disease, and
let wj the probability that the jth SNP is related with the
disease. Then,

pjik = wjpi(1− p) + (1− wj)Q
j

and
qjik = wjp(1− p) + (1− wj)Q

j

with p the probability of observing values 1 or 2 by chance,
and Qj the probability that individual i (case or control)
takes values 1 or 2 and its k control neighbour takes value
0, given that SNP j is not related with the disease.

Proof :

Let X1
i j be the random variable representing SNP j for

case i and X0
ik j the corresponding variable for its k control

neighbour. Notice that the superscript 1 or 0 stands for case
or control individual and they are included to remember
which is the class of the individual at hand, case or control.

The probability pjik is a sum of the probabilities of the
events:

E1 =
{
(X1

i j = {1 or 2}) ∩ (X0
ik j = 0) ∩Rj

}
and

E2 =
{
(X1

i j = {1 or 2}) ∩ (X0
ik j = 0) ∩Rc

j

}
with Rj = { SNP j is related with the disease} and
Rc

j = { SNP j is not related with the disease}

Thus,

P (E1) = wj pi P{X0
ik j = 0 | (Xi j = {1 or 2}) ∩Rj}

and

P (E2) = (1− wj)P{(X1
i j = {1 or 2}) ∩ (X0

ik j = 0) |Rc
j}
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Given that the SNP is related with the disease, it is
expected that the control neighbours have value 0, and
therefore the probability p of observing values 1 or 2 can
be assumed to be due to chance and equal for all of them.
If the jth SNP is not related with the disease, we expect a
similar behaviour between cases and controls, so the value
of the probability
P{ case i takes values 1 or 2 and its k neighbour control
takes value 0 | j SNP is not related with the disease}, is
expected to be equal for both, a fixed case or control, and
equal to Qj .
For this reason,

pjik = wjpi(1− p) + (1− wj)Q
j .

In a similar way, we obtain the value

qjik = wjp(1− p) + (1− wj)Q
j .

Proposition :

SNPs that favour the presence of the disease have
positive and large Ij1 values.

Proof :

As 1
Kn1

∑n1

i=1

∑K
k=1B(pjik) or 1

Kn2

∑n2

i=1

∑K
k=1B(qjik)

are sums of Bernoulli distributions with different param-
eters, supposing independence, these sums follow a Pois-
son Binomial distribution with mean

∑n1

i=1

∑K
k=1 p

j
ik and∑n2

i=1

∑K
k=1 q

j
ik, respectively. Therefore, E(Ij1) is equal to,

1

n1

n1∑
i=1

(wjpi(1− p) + (1− wj)Q
j)−

1

n2

n2∑
i=1

(wjp(1− p) + (1− wj)Q
j)

and then,

E(Ij1) =
wj(1− p)

n1

n1∑
i=1

(pi − p)

Thus, SNPs with Ij1 value positive and large are the ones
that, broadly, show a lower probability of observing values
1 or 2 for the control neighbours than for case individuals
along with large wj value and hence, they are the interesting
SNPs to be identified to study further as SNPs that favour
the presence of the disease.

For all the explained above, the decreasing ordered list
with the ij1 values provides a tool to focus the attention for
a genetic study on those SNPs that favour the presence of
the disease.

In a similar way, the method associates each SNP j with
a value ij2 obtained from variable Ij2 where

Ij2 = Bj
0,1 −B

j
1,1

=
1

Kn2

n2∑
i=1

K∑
k=1

B(pjik)−
1

Kn1

n1∑
i=1

K∑
k=1

B(qjik),

with B(pjik) a Bernoulli distribution taking value 1 with
probability pjik if control i takes values 1 or 2 and its k
case neighbour takes value 0 on the jth SNP; otherwise, it
takes the value 0 with probability 1 − pjik. B(qjik) follows a
Bernoulli distribution taking value 1 with probability qjik if
the i case takes values 1 or 2, and its k neighbour case takes
value 0 on the jth SNP; otherwise, it takes the value 0 with
probability 1−qjik. That is, Bj

0,1 sums for each control i with
values 1 or 2 in the fixed jth SNP, the number of times that
the fixed jth SNP has value 0 among the case neighbours
NN1(x

0
i ). And Bj

1,1 sums for each case i with values 1 or 2
in the fixed jth SNP, the number of times that the fixed jth
SNP has value 0 among the case neighbours NN1(x

1
i ).

The next results can be proved in a similar way.

Proposition :

SNPs that protect against the disease have positive and
large Ij2 values.

Therefore, the decreasing ordered list with the ij2 values
provides a tool to focus the attention for a genetic study on
those SNPs that protect individuals against the disease.

2.1 Comments
1) As functions for a thorough quality control (QC) of

the data, such as Hardy-Weinberg equilibrium test
and missingness have been well implemented in
PLINK or GenABEL [15] we assume that the data
have been cleaned by a standard QC process before
applying our procedure.

2) It is obvious the importance of distinguishing
between value 0 and values 1 or 2 in the coded
SNPs. Besides, when it is also important to
distinguish between 1 and 2 values of the SNPs we
propose the use of the Manhattan distance. If it is
not the case, the use of the Hamming distance is a
good option.

3) In general, the distribution of I1 is unknown
and in order to determine a threshold for the
SNPs selection, it is necessary to obtain the null
distribution by permutation resampling. However,
under some conditions as in the case that n1 and
n2 are large (>2,000), pjik and qjik are small, and
all the SNPs have the same probability wj = w,
Qj = Q, then the Normal distribution is a good
approximation [16] of the I1 distribution. The same
is true for the I2 distribution.
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Fig. 1. Multidimensional Scaling plot, using Manhattan distance, for a
toy simulated example. Cases in red and controls in black.

4) An important point is the possible influence of
the number of neighbours, K , on the results. It
is clear that the value of K must be moderate,
since otherwise the method could not retain, if it
exists, information on the possible population sub-
structure or the possible dependence between the
SNPs. However, very low values, K < 5, may not
be convenient especially if there is large variabil-
ity between individuals. Among moderate values
the method is stable. Consider, for instance, a toy
simulated example with 30 cases, 69 controls and 9
SNPs. We have generated SNPs number 6, 7, 8 and
9 related to the case−control situation and the other
SNPs without association with the case−control
situation. Moreover, SNP.6 was highly correlated
with SNP.7, and SNP.8 with SNP.9 (Figure 1). As
shown in Table 1 with B = 500 resamples, only
small values of K correctly identified as significant
at α = 0.05 SNP6−SNP.9; the I2 was not significant
for any of the SNPs. Furthermore, the Fisher‘s exact
test, a standard test of association without popu-
lation structure control, did not identify SNP.6 as
significant. On the other hand, the gold standard
method with population structure control based on
regressing each SNP using the first Principal Com-
ponents (PC) as covariates [17], [18] did not identify
SNP.6, SNP.8 and SNP.9 as significant, which were
generated with an odds ratio equal to 1.52, 5.86 and

6.16, respectively.

TABLE 1
For the toy simulated example, I1 values for different number K of
neighbours. The SNPs are showed ordered by I1 and in bold the

significant ones at α = 0.05.

SNP K = 5 SNP K = 10 SNP K = 15
8 0.092 9 0.093 9 0.102
6 0.087 8 0.091 8 0.098
7 0.087 6 0.080 6 0.093
9 0.083 7 0.080 7 0.093
2 0.028 2 0.023 2 0.011
1 0.012 1 0.007 1 -0.001
4 -0.015 5 -0.013 5 -0.011
5 -0.023 4 -0.014 4 -0.017
3 -0.029 3 -0.036 3 -0.033

SNP K = 20 SNP K = 25 SNP K = 30
9 0.111 9 0.125 9 0.132
6 0.087 8 0.093 8 0.131
7 0.087 6 0.055 6 0.050
8 0.087 7 0.055 7 0.050
2 0.014 2 0.006 5 -0.008
1 0.004 1 -0.003 2 -0.008
5 -0.009 5 -0.003 1 -0.015
4 -0.018 4 -0.016 4 -0.016
3 -0.025 3 -0.021 3 -0.017

TABLE 2
For the toy simulated example, adjusted p−values using Fisher exact

test (top) and the PCA method (bottom). In bold the significant SNPs at
α = 0.05

SNP nominal Bonferroni BH
p−value p−value p−value

SNP.1 0.8966 1.0000 1.0000
SNP.2 1.0000 1.0000 1.0000
SNP.3 0.7701 1.0000 1.0000
SNP.4 1.0000 1.0000 1.0000
SNP.5 1.0000 1.0000 1.0000
SNP.6 0.3640 1.0000 0.8190
SNP.7 0.0000 0.0000 0.0000
SNP.8 0.0000 0.0000 0.0000
SNP.9 0.0002 0.0014 0.0005

SNP nominal Bonferroni BH
p−value p−value p−value

SNP.1 0.0010 0.0093 0.0031
SNP.2 0.0017 0.0153 0.0038
SNP.3 0.0002 0.0022 0.0011
SNP.4 0.3358 1.0000 0.4318
SNP.5 0.1006 0.9052 0.1509
SNP.6 0.7612 1.0000 0.7612
SNP.7 0.0002 0.0020 0.0011
SNP.8 0.0288 0.2595 0.0519
SNP.9 0.4361 1.0000 0.4906

3 PUBLISHED SIMULATED DATA SETS

In this section, we describe the performance of our
procedure on previous published simulated data sets. We
also compare it with the two alternative methods for single
variant analysis, Fisher‘s exact test and PCA. In all cases
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Fig. 2. For simulated example 1, plot of the ranked I1 values. In red the
two disease predisposing SNPs, rs4491689 and rs6869003.

α = 0.0001 was the significant level and the number of
neighbours was K = 10.

3.1 Simulated data set 1
Consider the simulated case-control data set simuCC
included in the genMOSS R package [19]. It contains
the genotype information for 6000 SNPs and the disease
status for 2000 individuals, 1000 cases and 1000 controls.
Two SNPs, rs4491689 and rs6869003, and a random
environmental factor were associated with the presence of
the disease.

Both, Fisher exact test and the PCA approach with
Bonferroni or BH correction, identified 4 SNPs as significant
(see Table 3 top and middle, respectively), the two associate
with the disease (rs6869003 and rs4491689) and two
(rs6722027, rs6730761) located in the genetic regions around
rs4491689 and rs6869003.

Our method, using the permutation distribution of I1
with B = 500 resamples, identified these two SNPs as
the first and second SNPs in the ranked list of significant
SNPs that favour the disease (see Table 3 bottom and
Figure 2). The method identified 8 SNPs as significant, the
four identified by the Fisher and PCA methods and four
with a value of I1 almost equal to the threshold value
(threshold value = 0.051). These four SNPs with a very

TABLE 3
For the simulated example 1, p-value nominal and adjusted by

Bonferroni and BH , obtained using the Fisher exact test (top) and the
logistic regression with the first 10 PCAs as covariates (middle). In the

bottom, significant SNPs and the I1 value according to the new
procedure. The SNPs are showed ordered by the I1value. OR1: odd

ratio for minor allele 1; OR2: odd ratio for minor allele 2; OR1: odd ratio
for minor allele 1 and 2.

SNP nominal Bonferroni BH
p−value p−value p−value

rs6869003 3.06E-13 1.84E-09 1.84E-09
rs4491689 2.18E-12 1.31E-08 6.55E-09
rs6730761 4.90E-10 2.94E-06 7.35E-07
rs6722027 2.06E-10 1.24E-06 4.12E-07
rs12623642 4.19E-07 0.0025 0.0004
rs6876749 4.49E-05 0.2691 0.0267
rs1109465 4.78E-06 0.0286 0.0032
rs4665852 0.0006 1 0.2004

SNP nominal Bonferroni BH
p−value p−value p−value

rs6869003 2.92E-13 1.75E-09 1.75E-09
rs4491689 1.23E-11 7.38E-08 3.69E-08
rs6730761 1.19E-09 7.13E-06 2.38E-06
rs6722027 1.90E-09 1.14E-05 2.85E-06
rs12623642 9.71E-07 0.0056 0.0008
rs6876749 1.85E-05 0.11101 0.0111
rs1109465 1.04E-05 0.0622 0.0069
rs4665852 0.0002 1 0.0857

SNP I1 OR1 OR2 OR
rs6869003 0.0948 1.94 2.71 1.99
rs4491689 0.0897 2.62 9.01 2.71
rs6730761 0.0823 1.77 5.58 1.90
rs6722027 0.0700 1.49 3.94 1.66
rs12623642 0.0588 2.44 4.28 2.48
rs6876749 0.0540 1.51 2.91 1.57
rs1109465 0.0527 2.19 2.13 2.19
rs4665852 0.0511 1.59 2.41 1.62

low nominal p-value for Fisher or PCA approaches, were
lost after adjustment corrections by both, Bonferroni or BH
methods (see Table 3). Furthermore, using the permutation
distribution of I2 with B = 500 resamples, no protective
SNPs were found as expected.

3.2 Simulated data set 2

The simulated data set simGWAS in the simGWAS package
[20] contains 250 controls and 250 cases, with a 1000 SNPs.
The variables SNP.1 till SNP.990 were simulated to have
no association with the response and the variables SNP.991
till SNP.1000 have a population odds ratio showed in
Table 4. The variables age and sex were two additional
control variables without association with the response.
Results of the two standard considered procedures are
shown in Table 5. Both Fisher exact test or PCA procedure
did not identified significant SNPs with Bonferroni or BH
correction.

Our method, using the permutation distribution of
I1 and I2 with B = 500 resamples, detected 6 SNPs as
associated with the disoder, with α = 0.0001: SNP.1000,
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Fig. 3. For simulated example 2, plot of the ranked I1 values. Top, in red
the four disease-predisposing SNPs selected by our procedure. Bottom,
in red the two disease-protecting SNPs selected by our procedure.

TABLE 4
For simulated example 2 and for SNPs 991−1000 values of OR1: odd
ratio for minor allele 1; OR2: odd ratio for minor allele 2; OR1: odd ratio

for minor allele 1 and 2.

SNP OR1 OR2 OR
SNP.991 2.49 3.87 2.61
SNP.992 2.04 7.24 2.41
SNP.993 2.51 4.02 2.80
SNP.994 0.38 0.38 0.38
SNP.995 0.24 − 0.24
SNP.996 0.55 − 0.55
SNP.997 1.91 3.65 2.37
SNP.998 0.52 0.10 0.44
SNP.999 0.72 0.21 0.61
SNP.1000 2.94 − 2.94

SNP.991, SNP.992 and SNP.993 as SNPs favouring
the presence of the disease (see Figure 3); and SNP.994
and SNP.998 as SNPs protecting from the disease (see
Figure 4).
The logistic regression performed using the 10 SNPs
(SNP.991 − SNP.1000) confirmed that the role of the
detected SNPs by the proposed procedure is correct.
The corresponding coefficients in the logistic model for
SNP.1000, SNP.991, SNP.992 and SNP.993 were
positive, and for SNP.994 and SNP.998 coefficients were
negative. Furthermore, our 6 selected SNPs (see Figure 3)

False positive rate
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Model 6 selected SNPS with AUC=0.8

Fig. 4. With the simulated example 2 data set, for model using SNP.991-
SNP.1000 the ROC curve in black, and for model using the 6 SNPs
selected by the proposed procedure the ROC curve in red.

indicated that our procedure detected only the most
important SNPs, as the contribution of the 4 SNPs that
were not detected is very small. The logistic regressions and
AUC values using the 10 SNPs and our 6 selected SNPs are
shown in Table 6, and Figure 4 shows the corresponding
ROC curves.
When the gender of the individuals is known, we
should separate the first term in I1,

∑n1

i=1

∑10
k=1B(pjik),

in two terms indicating the contribution for men and
women, separately, and assess whether, on average, their
contribution is equal or not. As expected, no differences
were found between the average contributions made by
men or women, indicating that the behaviour of the SNPs
was not related to gender.

4 REAL DATA SET

Consider the following data set previously used in different
case-control attention-deficit/hyperactivity disorder
(ADHD) studies [21]. The sample consisted of Spanish
subjects including 418 cases with 288 men and 130 women
(68.9% and 31.1%, respectively) and 428 controls with 326
men and 102 women (76.2% and 23.8%, respectively). Cases
and controls were genotyped using the same platform
(HumanOmni1-Quad BeadChip, Illumina Inc., San Diego,
USA) and only those who reported Caucasian origin were
recruited, as described in [21]. In addition, we assessed
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TABLE 5
For the simulated example 2, p−values and BH-adjusted p−values
obtained using the Fisher exact test (top) and the logistic regression

with the first 10 PCAs as covariates (bottom).

SNP p−value adjusted p−value
SNP.993 1.03e-07 0.0001
SNP.992 4.34e-07 0.0002
SNP.991 1.19e-06 0.0003
SNP.1000 1.71e-06 0.0003
SNP.994 1.71e-06 0.0003
SNP.997 2.66e-06 0.0004
SNP.998 1.86e-05 0.0270
SNP.999 0.0004 0.0491
SNP.995 0.0017 0.1910
. . . . . . . . .
SNP.996 0.0603 0.9025

SNP p−value adjusted p−value
SNP.992 3.23e-07 0.0003
SNP.993 9.09e-07 0.0005
SNP.997 2.06e-06 0.0007
SNP.991 3.09e-06 0.0007
SNP.994 3.35e-06 0.0007
SNP.1000 4.30e-06 0,0007
SNP.998 3.57e-05 0.0051
SNP.999 0.0004 0.0446
. . . . . . . . .
SNP.995 0.0076 0.4442
SNP.996 0.0628 0.7979

TABLE 6
For the simulated example 2, logistic regression coefficients and

p−value and AUC value for: model using SNP.991-SNP.1000 (second
and third column) and for model using the 6 SNPs selected by our

procedure (fourth and fifth column).

SNP Coeff. p−value Coeff. p−value
SNP.991 0.994 4.88e-07 0.879 2.80e-06
SNP.992 0.770 6.59e-05 0.904 1.79e-06
SNP.993 0.899 5.40e-08 0.936 4.64e-09
SNP.994 -0.806 6.22e-05 -0.868 1.04e-05
SNP.995 -1.115 0.03027
SNP.996 -0.611 0.08386
SNP.997 0.595 0.00015
SNP.998 -0.716 0.00075 -0.754 0.0003
SNP.999 -0.545 0.00263
SNP.1000 1.216 7.72e-06 1.200 5.09e-06
gender 0.300 0.17307 0.230 0.2743
age -0.004 0.60898 -0.004 0.556396
AUC 0.83 0.80

ancestry using genome-wide data, by estimating principal
components (PC) of a dataset including individuals of
the study population (cases and controls) and a reference
panel of individuals with known ancestries (1000G phase
1, www.internationalgenome.org), and excluding those
individuals with PC1 or PC2 values greater than three
standard deviations from the mean obtained for European
individuals. A total of 155,802 SNPs covering the whole
genome were considered for the analysis. They were
obtained after clumping an initial set of around 4 million
SNPs from GWAS data produced in [21] to minimize

genetic redundancy; for each clump of correlated SNPs (r2
> 0.2) within in 500 kb windows only the SNP with the
most significant p-value of association with case control
status was kept. Considering two alleles for a SNP, A and a,
we assume that having one or more copies of the A allele
increases risk compared to a (i.e. Aa or AA genotypes coded
by 1 and 2, respectively, have higher risk than aa coded by
0).
Using the 155,802 SNPs, a Multidimensional Scaling using
the Manhattan distance showed a perfect separation
between cases and controls (see Figure 5). The question is
whether a smaller number of SNPs is enough to obtain a
perfect discrimination between cases and controls.

TABLE 7
For the ADHD and using the 200 SNPs selected by our procedure,
sensitivity, specificity and predictive values in controls and cases

obtained using the leave-one-out DB-discriminant procedure with the
whole data set (846 individuals and 155,802 SNPs).

Cases Controls
Sensitivity 95.56 86.60
Specificity 86.60 95.56
Predictive value 87.96 95.01

First, and aiming at identifying SNPs with minor alleles
that favour the presence of ADHD, we applied the pro-
posed method to the whole data set (846 individuals and
155,802 SNPs). Once the SNPs have been selected, we will
apply the DB-discriminant analysis, a discriminat analysis
method based on distances [22], [23]. Figure 6 shows that
although the distribution of I1 does not exactly follow a
normal distribution, we can approximate the right tail of
the distribution with a normal distribution with mean and
standard deviation equal to 0.0002 and 0.025, respectively.
We selected the 200 SNPs with higher I1 values, corre-
sponding to α = 0.0012 with a threshold value 0.07503
(P [I1 > 0.07503] = 0.0012), and the DB-discriminant
method obtained a 91.13% leave-one-out total correct clas-
sification, with high sensitivity, specificity and predictive
values in both controls and cases (see Table 7). Figure 7
shows the Manhattan plot scattering the positive I1 values
in the vertical axis and the physical position of SNPs along
chromosomes.
To assess the possible influence of the sample size on the
results, we split the sample 20 times at random into train
(90%) and test (10%) data. Taking SNPs with minor alleles
favouring the presence of ADHD allows a highly reliable
assignation of cases and controls, reaching correct classifica-
tion percentages over 90% with, again, only 200 SNPs (see
Table 8 and Table 9).
Looking with more detail the 200 SNPs selected from the
whole sample, we observed that the top finding is SNP
rs739465 in the VAV2 gene, encoding an angiogenic protein
and previously associated with multiple sclerosis. Other
findings point at the NF1 gene, encoding neurofibromin
1 and causal for a mendelian disorder, neurofibromatosis,
but also associated with risk-taking behaviour, alcohol con-
sumption or anxiety.
Furthermore, we browsed the National Center for Biotechnol-
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Fig. 5. For the ADHD data set, Multidimensional Scaling representation
using the Manhattan distance. Cases in red and controls in black. Top,
using all the individuals; bottom excluding women controls identified by
labels 334, 335 and 338.

ogy Information (NCBI) website [24] to find information on
the identified SNPs. For instance, for NCBI data on SNP
rs6797465. This SNP is located in an intronic region of the
FHIT gene, so we subsequently used the GeneCards: The
Human Gene Database website [25] to explore possible con-
nections of this gene with ADHD in the section Phenotypes
from the GWAS Catalog or in the section Disorders. As a
result, we obtained several literature items associating FHIT
with attention-deficit/hyperactivity disorder. In this way,
we found that nine SNPs identified by us are allocated in
genes previously reported as related to ADHD (Table 10).
For instance, RBFOX1, encoding a splicing factor, was found
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Fig. 6. For the ADHD data set, histogram, empirical density and fitted
normal density for I1 values.

Fig. 7. For the ADHD data set, Manhattan plot of positive I1 values.
The line represents the threshold (0.07503) that limited the 200 selected
SNPs.
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associated with depression and it was also highlighted in
a recent GWAS meta-analysis of 8 psychiatric disorders,
including ADHD [26]. Also, CDH13, encoding a protein
with cell adhesion properties and high expression in brain,
has been associated with ADHD and several comorbid
psychiatric disorders [27].

TABLE 8
For the ADHD data, 20 times hold-out approach (train 90%, test 10%)
selecting different number of SNPs, mean and standard deviation (in

brackets) for the percentage of correct classification.

Number SNPs Correct classification (%)
100 85.51 (0.97)
150 89.31 (0.88)
200 91.79 (0.81)
250 93.37 (0.77)
300 94.85 (0.30)
350 95.78 (0.65)
400 96.55 (0.66)
450 97.14 (0.98)
500 97.38 (0.55)
550 97.34 (0.43)
600 98.09 (0.45)
650 98.37 (0.42)
700 98.54 (0.40)
750 98.62 (0.29)
800 98.35 (0.30)
850 98.93 (0.27)
900 99.03 (0.24)
950 99.11 (0.32)
1000 99.19 (0.30)

TABLE 9
For the ADHD data, 20 times hold-out approach (train 90%, test 10%)
using different values of α, mean and standard deviation (in brackets)

for the number of selected SNPs, AUC and percentage of correct
classification.

α Number AUC Correct
SNPs classification (%)

0.0001 22 (3.21) 0.78 (0.02) 71.87 (1.91)
0.0005 100.63 (7.91) 0.89 (0.01) 85.53 (1.47)
0.001 192.37 (11.16) 0.94 (0.01) 91.33 (0.91)
0.0025 457.65 (14.65) 0.98 (0.01) 97.10 (0.48)
0.005 894.26 (19.12) 0.98 (0.01) 99.02 (0.26)
0.01 1740.21 (21.15) 0.99 (0.003) 99.78 (0.15)
0.025 4220.26 (43.70) 0.99 (0.001) 99.92 (0.07)

Finally, as we know the gender of the individuals, we
studied the contribution of men and women in the first term
of I1. We observed that only for two of the 200 selected
SNPs, the mean contribution is larger for women than for
men. For this reason, we considered interesting to analyse
the two genders independently. Thus, we calculated the I1
values for men I1M and woman I1W , respectively. Consider-
ing the analysis for men, the DB discriminant analysis using
the 200 top I1M SNPs obtained a correct classification rate
equal to 92.67%. This list of SNPs selected according to the
I1M values contains six genotyped SNPs that are located in
genes previously reported as related to ADHD (see Table 10)
and it has 74 SNPs in common with the 200 SNPs selected
when using all the sample. On the other hand, considering
the analysis for women, the DB discriminant analysis using

TABLE 10
For the ADHD data set of top 200 genotyped SNPs, selection of SNPs

that favour the presence of ADHD which were located in genes
previously reported as related to ADHD.

SNP Chr Gene*
All

rs6797465 3 FHIT
rs1459217 5 MAP1B
rs12346216 9 PTPRD
rs10959092 9 PTPRD
rs17422851 9 VLDLR-AS1
rs12862991 13 RNF219-AS1
rs10500339 16 RBFOX1
rs247403 16 CDH13

rs1492956 21 MIR99AHG
Only men

rs77350815 1 DPYD
rs6797465 3 FHIT
rs869786 3 THRB

rs8049793 16 RBFOX1
rs10500339 16 RBFOX1
rs116822376 22 SYN3

Only women rs7564039 2 LINC01320
rs13076017 3 FOXP1
rs1387821 3 ZNF385D
rs7699542 4 SLC39A8
rs59348947 8 CSMD1
rs2054024 11 DLG2
rs56129477 12 ANKS1B
rs12862991 13 RNF219-AS1
rs9302318 15 MEIS2
rs7167446 15 MEIS2
rs4077621 16 CDH13

*SNP within the gene

the 200 top I1W SNPs obtained a good classification rate
equal to 97.84%. In this list of SNPs selected according to
the I1W values, eleven genotyped SNPs are located in genes
previously reported as related to ADHD (see Table 10) and
there are only 8 SNPs in common with the 200 SNPs selected
when using all the sample. On the other hand, the I1W
and I1M lists did not present any SNP in common. Of
course, these limited coincidence between the lists of 200
top selected SNPs was surprising. In order to shed light into
this subject, we performed a MDS analysis, including the
representation of these three lists of selected SNPs. Figures 8
and 9 show that the SNPs are highly correlated, and this is
the reason why although the coincidence in the SNP lists is
low, a high rate of correct classification is always achieved.
When the Fisher exact test was performed, SNPs were found
not significant (smaller nominal p−value=4.25e-07, 1.89e-
08 and 3.14e-07 for all subjects, men and women samples,
respectively). If we consider the usual Bonferroni-corrected
significance threshold of 5e-8, only SNP rs9768620 for the
men sample was significant. However, this SNP was not
selected by our procedure. Using all individuals, men or
women samples with PCA, the parameter estimates of the
logistic regression using the method of maximum likelihood
do not converge as the first PC produces a complete separa-
tion of individuals [28], [29]. Despite this fact, generally in
statistical packages the results obtained are based on the last
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Fig. 8. For the ADHD data set, Multidimensional Scaling representation
using the Manhattan distance. Top, points indicate the individuals and
arrows indicate the SNPs. Bottom, zoom for the SNPs representation.

maximum likelihood iteration and the validity of the model
fit is questionable.
We end by pointing out that, analogously, the method iden-
tified significant associations with protective SNP alleles.
Several SNPs, such as rs11644983 or rs1962749, pointed
as significant by our procedure were also identified as
nominally associated with ADHD in a previous study [21].
To analyse in depth these lists of selected SNPs (with or
without previously reported ADHD candidate genes) it is
necessary to perform other analyses. For instance, identify-
ing in which functional groups the identified genes fall or
conducting enrichment studies. Another interesting issue is
the possible connection between our findings and the ones
from other psychiatric disorders, as there is an extensive
genetic overlap between some of these diseases. However,
all these questions are outside the aim of this work.

5 CONCLUSIONS AND FUTURE WORK

Within case-control genome-wide association studies,
which interrogate hundreds of thousands of single
nucleotide polymorphisms (SNPs) this work proposes a
new methodology to detect true signals of association with a
phenotypic trait of interest. To accomplish this, we propose
a method based on genetic distances between individuals
that uses all the SNPs included in the data set. Thus, these
distances contain all the information that it is possible to

Fig. 9. For the ADHD data set, zoom in the Multidimensional Scaling
representation using the Manhattan distance. Black arrows indicate the
top 200 selected SNPs obtained using all individuals; green arrows
indicate the top 200 selected SNPs obtained using only men; orange
arrows indicate the top 200 selected SNPs obtained using only women.

obtain from the observed genotype data as, for instance, the
population substructure. This is particularly attractive and
represents an advantage in front of other methodologies.
Another advantage of the proposed procedure is that it
does not requires paying attention to multiple testing
issues, and the usual Bonferroni-corrected significance
threshold of 5e-8 is not needed. Furthermore, linkage
equilibrium is not required and the proposed procedure
can handle missing data, so no imputations of missing
values are required; however, it is advisable to retain only
SNPs and individuals with less than 5% missing values,
as usual. The method obtains two lists of SNPs which
are deemed to be in statistically significant association
with the categorical variable that indicates presence or
absence of the disease. These lists rank the selected SNPs
from most to less significant SNPs. These selected SNPs
are candidates for a true disease association pending
confirmation in the laboratory. One challenge is to analyse
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how to include, in the proposed methodology, covariates
as age or other clinical information. One possibility is the
use of a convenient distance capable of synthesizing all the
information, like the Gower distance [30] or the weighted
related scaling metric distance [31], although more research
is needed in this direction. We hope that the proposed
methodology will be helpful for GWAS researchers to get
a better understanding of the genetic basis of complex
diseases.
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