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Abstract The stability of integrators dealing with

high order Differential Algebraic Equations (DAEs) is

a major issue. The usual procedures give rise to

instabilities that are not predicted by the usual linear

analysis, rendering the common checks (developed for

ODEs) unusable. The appearance of these difficult-to-

explain and unexpected problems leads to methods

that arise heavy numerical damping for avoiding them.

This has the undesired consequences of lack of

convergence of the methods, along with a need of

smaller stepsizes. In this paper a new approach is

presented. The algorithm presented here allows us to

avoid the interference of the constraints in the

integration, thus allowing the linear criteria to be

applied. In order to do so, the integrator is applied to a

set of instantaneous minimal coordinates that are

obtained through the application of the null space. The

new approach can be utilized along with any integra-

tion method. Some experiments using the Newmark

method have been carried out, which validate the

methodology and also show that the method behaves

in a predictable way if one considers linear stability

criteria.

Keywords Stability � DAEs integration � Null
space � ODE integration

1 Introduction

1.1 Background

Ordinary Differential Equation systems (ODEs) rep-

resent a great number of physical phenomena includ-

ing structural analysis, multibody dynamics, thermal

conduction or electrical systems. This has led to

intensive investigation about them [1–6]. One of the

key issues in ODEs is the stability. If the system to

integrate is stiff, the integrator might fail due to

instability. A-Stable integrator are stable regardless of

the stepsize, which is quite interesting. Explicit

methods, which can deliver great performance in

terms of convergence, cannot be A-Stable. Also, quite

good performing implicit methods are not A-Stable.
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This leads to the concept of A(a) stability, which

introduces a conditional stability. This means that

there is a limit in the timestep that can be used in the

integration.

Often, these problems, depending on the modeling

of the system, require the incorporation of some

constraints. Therefore, a nonlinear Differential Alge-

braic Equations system (DAEs) must be solved to

predict the behavior of many of these physical

phenomena [7–10]. Commonly, tools of optimization

have been taken into account to solve the nonlinear

DAEs as it can be seen in Nocedal [11]. In any case, it

seems clear that the high index systems are more

difficult to solve [12] and are associated with a

singular mathematical set up [13, 14] . In this way, one

of the main strategies to face this type of problems is

the index reduction technique which applies a math-

ematical process to reduce the index of a set of DAEs.

A very interesting work in this field was done by

Natsiavas in [15]. In this work, the authors present a

new theoretical approach for deriving an appropriate

set of equations of motion for a class of mechanical

systems subjected to motion constraints. Another

fascinating approach was presented by González

[16] and Bayo [17], who used the penalty factors

present in the augmented Lagrange formulation to

determine the reaction forces in redundant constrained

dynamic systems in order to represent the physical

properties of the system in the model. However, index

reduction through the analytical differentiation of the

constraint equations causes the progressive drift of the

computed solution; therefore, it is necessary to apply

some kind of stabilization. To alleviate this problem

Bayo and Cuadrado [18, 19] propose a post-stabiliza-

tion technique based on coordinates projection. In

addition, apart from the index reduction, there is

another well-known approach: the coordinates reduc-

tion technique. These methods try to divide the

coordinates in two groups: dependent and independent

coordinates. An excellent work was done by Zhang in

[20] using this technique. He uses an implicit Runge–

Kutta method for the solution of index-3 DAEs. The

iteration of the constraint equations is embedded in the

iteration of the non-linear algebraic equations that

originate from the implicit method and, using the

coordinate partitioning technique, the independent

coordinates of the set of coordinates of the system are

chosen. An interesting study of the behavior of these

two main techniques can be found in the work done by

Jalón [21]. He contributed to the resolution and

clarification of the multiplicity of solutions to the

constraint equations, where they focused on three

methods: the Lagrange equations of the first kind, the

null space method (introduced by Schwerin [22]), and

the Maggi equations. In this sense, Arnold et al. [23]

studied the effect of velocity projections on stability,

and Cuadrado et al. [24] performed a comparison

between four methods to simulate multibody dynam-

ics with constraints. These methods were the aug-

mented Lagrange formulation (ALF) index-1 and

index-3 with projections, ALF-1 and ALF-3, respec-

tively, a modified state-space formulation, and a fully

recursive formulation.

1.2 Formulation of the problem of interest for this

investigation

In the case of ODEs, stability criteria are quite well

established. But, unfortunately, these criteria cannot

be directly translated to DAEs when applying ODE

integrators in the usual way. Gear in [25], highlighted

the difficulties associated with the solution of this type

of systems. Higueras et al. in [26] analyze the stability

of index-2 DAEs, remarking the unexpected stepsize

limitations that appear even when an A-stable method

is used. In this paper, the authors conclude that

choosing a suitable formulation of DAEs is a vital task

for a successful and effective numerical integration as

much as the numerical method. Otherwise, stepsize

limitations might appear because implicit methods

behave in the same way as the explicit ones. Even

worse, the method may fail completely. These prob-

lems were already observed by Ascher in [27], where

the implicit Euler method was transformed into an

explicit method when it was applied to solve some

problems. About stability in linear index-2 DAEs,

Hanke [28] presents a study of asymptotic properties

of solutions on infinite intervals. The author states, as

it happens in index-1 DAEs [29], that algebraically

stable implicit integration methods are shown to be

B-stable, provided that the null space of the leading

Jacobian is constant. If this null space rotates, stability

properties may change. Many others have also taken

note in these problems, as it can be seen in the work

done by Liu [30] which studies the stability of the

numerical methods for linear index-3 DAEs.
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As it can be seen, the stability of the integrator

methods is a significant problem, especially in

constrained high order differential equation systems.

The assumptions adopted in linear problems are not

applicable to nonlinear ones and, usually, instabilities

appear. These undesirable problems lead to the

application of an integration method that introduces

a certain numerical damping (L-Stable methods).

Nevertheless, the convergence towards the solution

of the system is broadly affected and, obviously, it

forces to use smaller time steps.

Another quite remarkable family of solutions to this

problem is the use of a reduced set of minimal

coordinates (see [31–33]). In these methods, the

authors select a set of the original coordinates and

the integration is performed in this set. Afterwards, the

restrictions are used to obtain the values of the rest of

the coordinates. Unfortunately, this reduced set cannot

usually be applied to the whole integration interval

and, thus, the set has to be changed from time to time.

This leads to an increase in the computational cost,

which has commonly discouraged the use of these

methods.

An interesting aspect to point out is that explicit

methods, while being A(a)-stable, do not show

unpredictable behavior. This means that the timestep

required for stability can easily be predicted with

classical ODE theory. For example, methods as those

presented in [34] exhibit predictable behavior. The

main problem of these methods is that their stability

limits the timestep required to solve the problem. In

the case of some stiff problems, this leads to the need

of a high computational cost derived just from the

stability requirement.

1.3 Scope and contribution of this study

In this paper a new approach for applying numerical

integration to index 3 DAEs (although easily

portable to DAEs of other indexes) is presented. The

main idea of the algorithm is to integrate in the tangent

space to the manifold. The new approach presents a

predictable stability behavior and can be applied along

with any kind of integration method such as Newmark,

HHT and others. The method also allows one to force

the simultaneous verification of constraints in terms of

the function itself and all the relevant derivatives.

Although similar in concept to the methods based in a

reduced set of coordinates, this method is quite

different in the sense that the coordinates are different

in each step and represent a movement in the tangent

space. In order to do this without hampering compu-

tational cost, most of the needed information is

obtained from the algorithm employed to solve the

equations. Some numerical examples are presented

which show the behavior of the algorithm in stiff

problems. Also, a quite simple explanation of the

phenomenon of unpredictable stability in DAEs in the

so-called structural integrators is presented.

1.4 Organization of the paper

The paper is organized as follows. First, the usual

approach for applying integration schemes to index 3

DAEs is presented. Second, a quite graphical example

of the problems that might arise in stiff problems due

to stability issues is introduced. Afterwards, an

explanation of the usual problems that appear in the

commonly used approach employed for index 3 DAEs

integrators is given. The next point addresses the new

approach for applying the integrators. Some numerical

experiments are presented to demonstrate the new

approach behavior and, finally, some conclusions are

drawn.

2 Common approaches for the integration

of constrained systems with structural

integrators

We consider high index DAEs in the form expressed

by the following equations:

F _x; x; tð Þ ¼ 0 ð1Þ

q t; xð Þ ¼ 0 ð2Þ

where (1) is the differential equation to be solved, and

(2) are the boundary conditions. In the case of index-3

DAEs, which are typical of Multibody Dynamics,

Structural Nonlinear Mechanics and other engineering

problems, one can write Eq. (1) as:

M xð Þ€x ¼ f x; _x; tð Þ þ GT xð Þk ð3Þ

where M xð Þ is the mass matrix, which is invertible in

the integration interval, f x; _x; tð Þ are the applied,

Coriolis and velocity-dependent forces, and GT xð Þk
are the constraint forces. Two main approaches are
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considered to apply an ODE integrator to this problem.

The traditional approach reformulates the problem,

resulting in a system in the form expressed in the

following equations and Eq. (2).

_x ¼ u ð4Þ

M xð Þ _u ¼ f x; u; tð Þ þ GT xð Þk ð5Þ

With this procedure, one can apply a first order

method, which can be implicit (usually single step) or

explicit (usually multi step).

A more recent approach takes advantage of the so

called structural integrators ([34–37]). These methods

are directly applied to the system expressed by eqns.

(3) and (2). The main advantage of these methods is

that they do not duplicate the number of functions to

integrate. In any case, one can also find implicit (for

example: Newmark, HHT) and explicit (for example

Central Differences) methods. Again, usually implicit

methods are formulated in a single step approach and

explicit methods are usually multi stepped.

In any case, usually one applies the integrator to

Eq. (3) (in the structural integrator approach) or to

eqns. (4) and (5) (in the first order approach) and,

afterwards, the constraints presented in Eq. (2) are

introduced. We will further develop the algorithm for

the structural approach, although a similar develop-

ment can be done for the first order approach.

The first step is to obtain a linearization of Eq. (3).

For example, with an implicit method, the lineariza-

tion would be usually performed in t þ Dtð Þ, and thus

one would reach:

ML€x t þ Dtð Þ þ CL _x t þ Dtð Þ þ KLx t þ Dtð Þ
¼ f L þ GT

Lk ð6Þ

Usually the terms ML, CL, KL, GL and f L are

obtained in a numerical way. These terms differ from

their counterparts M, C, K, G and f and are the result

of applying a linearization such as Taylor series to an

otherwise non-linear Eq. (3). Terms ML, CL, KL, GL

and f L therefore relate not only to M, C, K, G and f

respectively; as a result of the applied linearization

(and their dependencies on the system’s coordinates)

different derivatives of the same term with respect to

different coordinates arise, forming several terms that

are each a function of x, _x, €x or k. All these

dependencies related to each one of the system’s

variables are summed together separately; this means

that, for example for x, all the dependencies related to

x form KL as the matrix that includes all the linearized

dependencies related to x and is multiplied by the

corresponding system’s variable in the equilibrium

equation, as seen in (6). The same happens with CL

related to velocities, to fL related to independent

terms, and to the remaining variables obtained as a

result of the linearization that form Eq. (6). The

equation obtained with this linearization process

requires an iterative scheme to obtain the correct

solution.

One can use the function to be integrated to solve

the problem or reduce the index. Thus, if the

integration is based on the function itself, the proce-

dure is referred as Index 3 Formulation. In this case,

after applying the integrator equations to Eq. (1), one

reaches an equation (expressed for implicit methods)

in the form of:

A1x t þ Dtð Þ ¼ g1 þ GT
L1k ð7Þ

If, instead, one uses the first derivative (Index 2

Formulation), one reaches:

A2 _x t þ Dtð Þ ¼ g2 þ GT
L2k ð8Þ

Finally, using the second derivative (Index 1

Formulation), one would reach:

A3€x t þ Dtð Þ ¼ g3 þ GT
L3k ð9Þ

Being A1;A2;A3;GL1;GL2;GL3; g1; g2; g3 matrices

and vectors that depend on the current estimation of

x t þ Dtð Þ; _x t þ Dtð Þ or €x t þ Dtð Þ.
The linearization of Eq. (2) will lead to a system of

equations that would allow one to solve eqs. (7), (8), or

(9). Obviously, the linearization would be different if,

instead of the function, one of its derivatives is

employed. For example, using an Index 3 formulation,

one would obtain from Eq. (2) an expression in the

following form:

HLx t þ Dtð Þ ¼ bL ð10Þ

where HL is the matrix that includes the linearized

expressions of the applied constraints that are multi-

plied by the solution vector expressed in the system’s

coordinates, and bL is the independent term vector

obtained after the same linearization that providedHL.

This linearization will be explained in Sect. 4. Sim-

ilarly, matrix GL used previously in this document is

the matrix that includes the linearized expressions of
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the applied constraints expressed in the coordinates in

which the forces are defined, which can differ from the

ones employed to form HL as Urkullu explains [34].

For instance, GL requires rotations for the angular

coordinates, and HL can be formed using any other

angular coordinates that can be considered more

convenient, such as quaternions. Both matrices have

been named differently to avoid confusion related to

this matter despite the fact that both define the

Jacobian of the system.

Thus, the system to be solved is composed of

eqs. (7) and (10), which are modified in an iterative

approach. With this in mind, the algorithm is quite

simple. Figure 1 presents the mentioned algorithm

when formulated in terms of the function expressed

before.

If one uses Index 2 or Index 1 formulations, a drift-

off may appear and this leads to the need of the so

called stabilization methods, such as Baumgarte or

Projection. ([38]).

One could consider a DAE as differential equations

on a manifold (see [39]). In this sense, this way of

integrating the DAE could be explained as follows:

integrating the function while forcing the solution to

belong to the manifold.

There are some criticisms that can be applied to this

approach. For instance, one of them is the fact that one

cannot impose that the function to be integrated and its

derivatives satisfy the constraints in the considered

integration step. This is easy to demonstrate. Let us

consider the particular case of a system with N-

functions to integrate, N differential equations and NR

constraints, being integrated using Newmark. This is a

common case in multibody dynamics. The constraints

bring about NR Lagrange multipliers. Thus, for each

integration step there are 3N þ NR unknowns to solve.

Fig. 1 Typical integration algorithm
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For this, one has 2 N Newmark equations, the

equilibrium in t þ Dt leads to another set of N

equations and, finally, one gets 3NR equations from

the constraints formulated for the functions and their

two derivatives. Thus, one has 3N þ 3NR equations

for 3N þ NR unknowns. Therefore, one must take the

choice of applying constraints solely to the function

ignoring the derivatives, applying the constraints

solely to one of the derivatives ignoring the function

and other derivatives (leading to the already com-

mented drift problem) or applying a compromise

solution. Another issue is the erratic behavior regard-

ing stability.

The stability of ODEs is a quite thoroughly studied

subject for first order methods. A-Stability is of most

importance in stiff problems, because it will assure a

solution (although not necessarily accurate). Explicit

methods can be quite efficient, but cannot be A-Stable.

In these cases one speaks of A að Þ-Stability, which
means that the method is stable depending on some

conditions. In the case of structural integrators, usually

one speaks about conditional and unconditional

stability. Conditional stability is similar to A að Þ—
Stability, while unconditional stability is equivalent to

A-Stability.

Some methods exhibit a configurable stability

behavior. An example is the Newmark method, which

depends on two parameters which are selectable, a and
b. The Newmark method requires the following

equation to be verified for an integration to be

stable [40]:

Dt� 1

xmax

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
1
2
a� b

s

ð11Þ

Being xmax the highest natural frequency of the

system to integrate. If a[ 0:5 and b[ 0:5a, the

method is unconditionally stable (A-Stable), while if

a[ 0:5 and b\0:5a, the method is conditionally

stable. But unfortunately, when one applies ODE

integrator to DAEs, the ODE stability analysis cannot

be used. This is quite an issue, because it can

considerably limit the step sizes that can be used

and, consequently, the efficiency. Furthermore, behav-

ior can be quite unpredictable. A common solution to

this problem is the use of L-Stable methods. These

methods introduce heavy damping in the high fre-

quencies, thus stabilizing the problem. An example is

the HHT method, which is currently one of the most

used ([36, 37, 41]). But they also introduce damping in

the lower frequencies, which sometimes can be an

issue.

Another approach that can be used is to integrate

the restricted system in a set of minimal coordinates

obtained using Null-Space algorithms or other

approaches [32, 33, 42]. These methods use the same

set of coordinates along part of the integration time

and, whenever is needed, they are changed. These

methods usually are slow and lead to lack of

convergence.

3 A simple example of the problem. a stiff

pendulum

In order to expose the problems of the usual approach,

a simple example has been designed. It consists of a

simple pendulum affected by gravity (see Fig. 2). A

harmonic torque with a quite low frequency is applied

to it as shown in Eq. (12). This should allow one to use

a considerably large stepsize, but depending on the

integration method employed it can lead to instability.

T ¼ T0sin xtð Þ ð12Þ

The system of reference is on the fixed node and

gravity is considered as g ¼ 9:8m=s2. The concen-

trated mass of the pendulum isM ¼ 1kg. The length of

the truss is L ¼ 1m. The truss weight is considered to

be 0. The parameters defining the torque are T0 ¼
0:1Nm and x ¼ 0:1rad=s. The initial conditions are

h 0ð Þ ¼ 0, _h 0ð Þ ¼ 0. We must point out that, in this

problem, the mass matrix should be underdetermined,

but this issue can be easily solved applying constraints

to the system, or using minimal least squares solutions.

Fig. 2 A simple pendulum
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If one expresses the problem using h as a parameter,

the equilibrium equation can be expressed as shown in

the following eqn.

mL2€h tð Þ þ mgLsin h tð Þð Þ � T tð Þ ¼ 0 ð13Þ

A linearization of the system of equations can be

obtained in an analytical way:

mL2€h tð ÞþmgLsin h0ð ÞþmgLcos h0ð Þ h tð Þ�h0
� �

�T tð Þ¼0

ð14Þ

mL2€h tð Þ þ mgLcos h0ð Þh tð Þ
¼ T tð Þ � mgLsin h0ð Þ þ mgLcos h0ð Þh0 ð15Þ

Thus, for this system, one has ML ¼ mL2 and

KL ¼ mgLcos h0ð Þ. This means that the natural fre-

quency of this system can be obtained from:

x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

mgLcos h0ð Þ
L2

r

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

gcos h0ð Þ
L

r

ð16Þ

The maximum value happens in 0:

xmax ¼
ffiffiffi

g

L

r

ð17Þ

which, for the presented configuration, yields:

xmax ¼ 3:1304951rad=s. This is the parameter that

would define the stability limits if one accepts the

values obtained for linear systems. For example, for a

central difference method [34], one would reach:

Dtmaxs ¼
2

xmax
¼ 0:6388765s ð18Þ

Let us consider now the step size required to

correctly represent the problem, regardless of stability.

If the effect of the torque is considered, providing for

the need of about ten points to represent a cycle of the

torque, one would use:

Dtmaxt ¼
2 � p
10x

’ 6:28s ð19Þ

Furthermore, if one wants to represent correctly the

oscillations produced by gravity, one would require (in

a conservative estimation) the value obtained in:

Dtmaxg ¼
2 � p

10xmax
’ 0:2s ð20Þ

The dynamic effects of gravity are of such low

amplitude that they can be disregarded. Thus, a correct

step size would be about 6. But this would violate (at

least in the case of the central differences method) the

constraint imposed by stability criteria. Therefore, this

is a good yet simple benchmark to study the stability

issues. We aim to verify whether the usual way of

applying constraints is to blame or not for the

instability of the problem, for which we will first

solve the problem without the need of employing

constraint equations. In order to do so, an unrestricted

minimal set of coordinates will be used. Note that this

is a particular case in the sense that one can integrate

the whole problem in an unrestricted system of

coordinates. This is not so common. Now this equation

shall be integrated using different schemes. A central

difference approach and two different configurations

of Newmark: the Fox-Goodwin approach and the

Trapezoidal rule.

Applying a central difference scheme, one reaches

the following equations for the general case and for the

first instant:

h t þ Dtð Þ ¼ 2h tð Þ � h t � Dtð Þ

þ Dt2

mL2
T tð Þ � mgLsinh tð Þð Þ ð21Þ

h 0þ Dtð Þ ¼ h 0ð Þ þ Dt _h 0ð Þ

þ Dt2

2mL2
T 0ð Þ � mgLsinh 0ð Þð Þ ð22Þ

In Fig. 3 the obtained results are presented for step

sizes of 0.01 s, 0.1 s, 0.6 s and 0.7 s.

A brief explanation regarding nomenclature can be

added here. Due to linearization the term h0 found in

Eqs. (14), (15) and beyond is the value the variable h
has in the time step that is being processed, but in the

previous iteration. Consequently, h0 is updated with

every iteration. This term is not to be confused with the

value this same variable has on the initial conditions,

which is noted as h 0ð Þ.
The results in minimal coordinates behave as

predicted by linear estimations. With step sizes lower

than the theoretical stability limit, Dtmaxs, the method

is stable and delivers reasonable results. It is also

interesting to observe how the step size of 0.6 fails to

deliver a good representation of the small oscillation (a

step size of 0.2 was estimated as a good choice). As

predicted by Eq. (18), a step size of 0.7 leads to

instability.

Let us now consider the solution keeping a minimal

coordinates approach, but now using a Newmark

approach with a conditionally stable configuration. A
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4th order Fox-Goodwin approach has been used

a ¼ 1=2; b ¼ 1=12ð Þ. This is a conditionally stable ap-
proach, and the linear stability condition can be

expressed as Eq. (10). Thus, in this

case:Dtmaxs � 0:78246s. The results with stepsizes of

0.01 s, 0.1 s, 0.6 s, 0.7 s, 0.78 s and 0.79 s are

presented in Fig. 4.

Again, results are quite predictable. Step sizes of

0.7 s and below lead to good results. However, a

stepsize of 0.78 s represents correctly the effect of the

force, but it is too large to correctly solve a force in the

frequency of the movement derived from the gravity

effects. This is the reason behind the considerable

oscillation of the solution. Nevertheless, it is important

to point out that the system is stable. Finally, the

stepsize of 0.79 s leads to unstable integration, as

predicted by Eq. (11).

Let us consider now an unconditionally stable New-

mark scheme, by taking a ¼ 0:5 and b ¼ 0:25. This

approach is commonly known as trapezoidal rule. The

chosen stepsizes are: 0.1 s, 0.7 s, 0.79 s and 6 s.

Results are presented in Fig. 5.

Again, results are as predicted by the linear theory.

The unconditional stability of trapezoidal rule allows

this scheme to report reasonable results even with a

stepsize of 6 s.

Now we consider the use of a constrained system

approach, for which the differential equation that

provides the equilibrium equation is:

NT
GML€x t þ Dtð Þ þ NT

GCL _x t þ Dtð Þ þ NT
GKLx t þ Dtð Þ

¼ NT
GfL

ð23Þ

This equation is the result of premultiplying (6) by

the null space of GL; then the constraints are

introduced. The term ‘‘constrained system’’ is used

to name those systems where more variables than the

bare minimum are used to define the state of the

problem (in the case of multibody dynamics the

position of the elements) and thus, one needs to

introduce constraints in the system of equations to

solve the problem. This happens not only in all general

approaches but also in some particular situations

where one tries to use minimal coordinates, but part of

the problem is difficult to introduce without con-

straints. One could name these approaches as

‘‘mixed’’. In this case, general coordinates x; y; hð Þ
will be used to define the situation of the center of

gravity of the pendulum. The location of the revolute

joint is fixed (2 constraints). The total number of

Fig. 3 Central difference, minimal coordinates solution for step sizes a 0.01 s, b 0.1 s, c 0.6 s and d 0.7 s
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variables is 3 and the number of constraints is 2, as

shown in the following equation:

qR ¼ rG þ R � rLGR � rC ¼ 0 ð24Þ

where qR is the expression of the constraint, rG is the

position of the constrained solid’s center of gravity, R

is its rotation matrix, rLGR is the distance from the

solid’s center of gravity to the point where the

constraint is applied expressed in local coordinates,

and rC is the position of the rotation constraint in a

fixed position, expressed in global coordinates. In

order to solve the problem we have used a structural

integrator approach, similar to those presented by

Cuadrado et al. [24]. In the trapezoidal rule

configuration, the method seems to work in a correct

way, as can be seen in the results shown in Fig. 6.

The method seems to work well using a trapezoidal

rule, but this is not as usual as one might think. There

are plenty of reports of trapezoidal rule instabilities

(see, for example, [41]).

In the case of Fox-Goodwin, the algorithm fails

regardless of the stepsize, as can be seen in Fig. 7.

This brings about an obvious conclusion: the

stability issues are not caused by the non linearity of

the problem itself, but by the introduction of con-

straints. Let us see now what happens when increasing

the amplitude of the torque in the stiff pendulum

problem. When doing so, the maximum angle of

rotation grows and so does the rotation of the null

Fig. 4 Fox-Goodwin, minimal coordinates solution for step sizes a 0.01 s, b 0.1 s, c 0.6 s, d 0.7 s, e 0.78 s and f 0.79 s
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space of the Jacobian of the constraints (see Hanke

[28]). The stepsize is 0.1 s. The obtained angle for

amplitudes T0 of 5, 6, 8 and 9 (in Newton meter) are

represented in Fig. 8:

Fig. 5 Trapezoidal rule, minimal coordinates solution for step sizes a 0.1 s, b 0.7 s, c 0.79 s and d 6 s

Fig. 6 Trapezoidal rule, using constraints for step sizes a 0.1 s, b 0.7 s, c 0.79 s and d 6 s
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Fig. 7 Fox-Goodwin, using constraints for step sizes a 0.1 s, b 0.6 s, c 0.78 s and d 0.79 s

Fig. 8 Newmark (trapezoidal rule) constrained system results for amplitudes of a 5Nm, b 6Nm, c 7Nm and d 9Nm
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The same analysis has been carried out employing

the minimal coordinate approach, the same time

increment (0.1 s) and Newmark parameters (Trape-

zoidal Rule), which yields the following results

(Fig. 9):

The algorithm using constraints fails at amplitude

of 9Nm. However, it does not seem to be related to

instability (it rather seems to be a convergence

failure). It is in fact in the reaction forces due to

constraints where one can verify the instability. These

forces are represented (the X component, Y is similar)

in Fig. 10. In [26] the authors relate these kinds of

failures of the scheme to a bad conditioning of the

leading term. This issue is also approached by Hanke

[28], where this leading term is defined as the null

space of the Jacobian. It is also stated that its rotation

compromises the stability of the scheme. Although

both papers are related to index-2 DAEs, these results

allow one to consider that, as the amplitude of the

torque increases, so does the rotation of the pendulum

and, in consequence and in the words of Hanke [28],

the rotation of the nullspace of the Jacobian, being this

the reason behind the failure. It is not the non linearity

of the problem the reason behind the stability issues,

but the introduction of constraints. In the words of

Higueras, the use of minimal coordinates leads to a

constant null space of the leading term, which renders

the system qualified (see [26, 43]), allowing the use of

a linear stability analysis to be applied. It is the

introduction of constraints what makes the null space

of the leading term (or, shall we say, Jacobian) to vary

(or rotate) over time causing the showcased instability.

When the torque amplitude is low, the rotation is quite

small and thus, the problem is nearly linear. This is the

reason behind the apparently correct behavior of

Newmark. This looks awkward, because one could

guess that, integrating in a broader space of the

manifold, the average natural frequency of the system

is lower and this should help stability, but the effect of

the constraints prevails.

4 Stability considerations

For linear systems, there are several ways to study

stability. Probably the most straightforward approach

studies the amplification introduced by the matrix that

delivers the variables in t þ Dt from those evaluated in

Fig. 9 Newmark (Trapezoidal Rule) minimal coordinate results for amplitudes of a 5Nm, b 6Nm, c 7Nm and d 9Nm
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the previous step (t). In this way, in the case of

Newmark, one reaches, for the single degree of

freedom problem:

Dt2 €x t þ Dtð Þ
Dt _x t þ Dtð Þ
x t þ Dtð Þ

8

>

<

>

:

9

>

=

>

;

¼ 1

2þ 4anxDt þ 2bx2Dt2ð Þ

4 a� 1ð ÞnxDt þ x2 2b� 1ð ÞDt2ð Þ
2 1� að Þ þ 2 b� að Þx2Dt2ð Þ
1� 2bð Þ þ a� 2bð Þ2nxDtð Þ

2

6

4

�2x2Dt2 � 4nxDtð Þ �2x2Dt2ð Þ
2 b� að Þx2Dt2 þ 2ð Þ �2ax2Dt2

2þ a� bð Þ4nxDtð Þ 2þ 4anxð Þ

3

5

Dt2 €x tð Þ
Dt _x tð Þ
x tð Þ

8

<

:

9

=

;

¼ A½ �
Dt2 €x tð Þ
Dt _x tð Þ
x tð Þ

8

<

:

9

=

;

ð25Þ

The absolute values of the eigenvalues of matrix A½ �
cannot be larger than 1. With this in mind, one can

reach the condition expressed in the following

equation:

Dt� 1

x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
1
2
a� b

s

ð26Þ

This can easily be generalized to multiple degrees

of freedom by decoupling the equations. This leads to

Eq. (11). In a linear ODE, this equation represents the

phenomena in a perfect way, because the natural

frequencies of the system to integrate are constant. In

nonlinear conditions, however, if one uses minimal

coordinates, a violation of the equation in a single step

would lead to an unstable increment of the error that

might not be of importance if it does not happen

repeatedly over the integration process. In any case, if

this violation does not happen in any step, the system

will be stable. This is also confirmed in the stiff

pendulum example. This allows one to develop

unconditionally stable integrators in nonlinear condi-

tions provided that no constraints appear in the

problem.

Let us now consider a constrained problem. As

stated before, one can formulate constraints based on

the functions to be integrated (Index 3 formulation),

their first derivative (Index 2) or their second deriva-

tive (Index 1). Let us choose the most straightforward

method, which is using an index 3 formulation. When

Fig. 10 Newmark (trapezoidal rule) reaction force (X component) for amplitudes of a 5Nm, b 6Nm, c 7Nm and d 9Nm
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trying to analyze the stability of the problem, the

linearized constraints in Eq. (10) should be studied,

where:

HL ¼ oq xð Þ
ox

ð27Þ

This leads to a system that can be expressed in the

following form:

ML

0

� �

€x t þ Dtð Þ þ
CL

0

� �

_x t þ Dtð Þ

þ
KL

HL

� �

x t þ Dtð Þ ¼ f L þ GT
Lk

bL

( ) ð28Þ

Now k can be considered as a function to be solved.

Equation (28) could be written as:

ML 0

0 0

� �

€x t þ Dtð Þ
€k t þ Dtð Þ

� �

þ
CL 0

0 0

� �

_x t þ Dtð Þ
_k t þ Dtð Þ

� �

þ KL �GT
L

HL 0

" #

x t þ Dtð Þ
k t þ Dtð Þ

� �

¼
f L

bL

� �

ð29Þ

It does not matter how small the values in HL are.

The system has great probabilities of instability. If one

considers Eq. (11), xmax ¼ 1, and, thus, one reaches:

Dt� 1

1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
1
2
a� b

s

ð30Þ

Thus, the only way for the system to verify the

stability condition is that 1
2
a� b� 0. This is the reason

behind the failure of the Fox-Goodwin approach in the

pendulum example regardless of the stepsize. In the

case of the classical Newmark approach (a[ 0:5 and

b[ 0:5a), the stepsize limit is not determined and that

allows the integrator to successfully solve the problem

under certain conditions.

It is known that the use of formulations which

introduce the constraints in a second order derivative

frame tends to be more stable. This comes straight-

forward from the fact that, in this case, one would

reach an equation in the form:

ML 0

HL 0

� �

€x t þ Dtð Þ
€k t þ Dtð Þ

� �

þ
CL 0

0 0

� �

_x t þ Dtð Þ
_k t þ Dtð Þ

� �

þ KL �GT

0 0

" #

x t þ Dtð Þ
k t þ Dtð Þ

� �

¼
f L

cL

� �

ð31Þ

This introduces nonzeroes in the mass matrix instead

of introducing them in the stiffness matrix. The problem

here lies in the drift-off of the function to be integrated,

which must be somehow corrected. One can introduce

Baumgarte stabilization, or projection, or any method to

avoid the drift but, anyway, these methods introduce a

relation among the functions in t þ Dt and those in t,

which, in any case will numerically behave as a

stiffness, rendering again the stability analysis useless.

This is a major concern, because in these cases one

cannot predict stability in a proper way. In addition,

another problem of these stabilization methods is that

they introduce more equations than variables in each

integration step, which drives to the need of finding a

solution of compromise.

Note that thementioned impossibility of performing a

proper stability analysis and the associated issues appear,

as Eq. (31) shows, in implicit methods; explicit methods,

on the other hand, do not present this problem but,

unfortunately, there is no unconditionally stable explicit

method. For example, in the central differences method

the constraints do not appear as a stiffness and, thus, an

integrator based on central differences has pre-

dictable conditional stability.

One could also argue that Eqs. (29) and (31) could

face numerical issues. In the usual approaches that are

used to solve them, these are avoided, as mentioned by

Nocedal [11].

5 A new approach for solving the problem

The unexpected stability issues seem to arise not due

to the nonlinearity of the problem, but because of the

introduction of nonlinear constraints. Problems solved

using minimal coordinates do not exhibit unpre-

dictable behavior, while those solved with non-linear

constraints do. A quite interesting study in the subject

can be found in [26]. In that paper, the use of minimal

coordinates would be considered to lead to a qualified

DAE [26, 43]. One could also state that, in minimal

coordinates, no constraints are to be dealt with, and
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thus, the problem is an ODE. However, one cannot

always rely on minimal coordinates, because this

usually involves formulations that are not general. The

question arisen is: is there a way to integrate a DAE

avoiding this problem? It is obvious that not in the

usual form. Instead of integrating the variables in

which the DAE is formulated, an alternative is to

integrate in the manifold (which is, in fact, what

minimal coordinates do). To accomplish this proce-

dure in a DAE, one can integrate in a linealization of

the manifold performed in the step to integrate. These

ideas can be applied to most implicit integrators, but,

for the sake of clarity, we will use a Newmark

approach, using analytical derivatives. A similar

approach was presented in [34], but applied to an

explicit method. Due to the fact that explicit methods

do not exhibit the stability behavior that implicit

methods do, the approach in [34] cannot be used here.

Let us consider the DAE formulated with eqns. (3)

and (2). Here the full restriction treatment will be

presented. A Taylor series linearization of (2) leads to:

q xð Þ � q x0ð Þ þ oq xð Þ
ox

	

	

	

	

	

	

	

	

x0

x� x0ð Þ ¼ 0 ð32Þ

Taking into account (27), one can write:

HL x0ð Þx ¼ HL x0ð Þx0 � q x0ð Þ ¼ bL ð33Þ

If one considers this equation for obtaining

x t þ Dtð Þ, x0 will be the current estimation of

x t þ Dtð Þ. With this in mind, one can write:

x t þ Dtð Þ ¼ xp þ NHa tþ Dtð Þ ð34Þ

whereNH is the null space ofHL, and xp is a particular

solution of Eq. (10). Any expression of NH and xp
would theoretically lead to the correct solution. An

obvious choice for xp is the minimal least squares

solution. This choice will always provide lead to good

numerical conditioning. One could argue that the use

of a sparse solution for xp could be of use, but being xp
a vector, little advantage can be obtained from this.

The use of different expressions for xp should generate

proper results, provided that the elements of xp are

kept small. For NH the use of a fundamental base will

bring about a sparse expression, which will reduce

computational cost, as mentioned by Coleman [44].

The important fact is for a tþ Dtð Þ to be a set of

minimal coordinates which are only valid for the step

currently being integrated. The hereby presented

method is based on integrating on these coordinates,

which change from step to step. In the case of both

scleronomic and holonomic constraints, one can write:

_q x; _xð Þ ’ _q x0; _x0ð Þ þ o _q

ox

	

	

	

	

	

	

	

	

x0; _x0

x� x0ð Þ

þ oq

ox

	

	

	

	

	

	

	

	

x0

_x� _x0ð Þ ¼ 0

ð35Þ

This can be written in the form:

H x0ð Þ _x ¼ � _q x0; _x0ð Þ þH x0ð Þ _x0 þ _H x0; _x0ð Þx0
� _H x0; _x0ð Þx

ð36Þ

Now one introduces (34), reaching:

H x0ð Þ _x ¼ � _q x0; _x0ð Þ þH x0ð Þ _x0 þ _H x0; _x0ð Þx0
� _H x0; _x0ð Þxp � _H x0; _x0ð ÞNHa

ð37Þ

The system (37) can be solved leading to:

_x ¼ _xP þ NH _aþ _XPa ð38Þ

Being _xp a solution to:

H x0ð Þ _x ¼ � _qp x0; _x0ð Þ þH x0ð Þ _x0 þ _H x0; _x0ð Þx0
� _H x0; _x0ð Þxp

¼ � _qp x0; _x0ð Þ þH x0ð Þ _x0
þ _H x0; _x0ð Þ x0 � xp

� �

ð39Þ

And _XP a solution to:

H x0ð Þ _X ¼ � _H x0; _x0ð ÞNH ð40Þ

Here it must be pointed out that neither _xp nor _XP

are obtained as derivatives of any function, but as

solutions of linear systems. The use of the dot has been

decided in order to keep unit coherence. Now one

needs to tackle accelerations. By taking again a

derivative:

€q x; _x; €xð Þ ’ €q x0; _x0; €x0ð Þ þ o€q

ox

	

	

	

	

	

	

	

	

x0; _x0;€x0

x� x0ð Þ

þ 2
o _q

ox

	

	

	

	

	

	

	

	

x0; _x0

_x� _x0ð Þ þ oq

ox

	

	

	

	

	

	

	

	

x0

€x� €x0ð Þ

¼ 0

ð41Þ

This can be rewritten as:
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€q x0; _x0; €x0ð Þ þ €H x0; _x0; €x0ð Þ x� x0ð Þ
þ 2 _H x0; _x0ð Þ _x� _x0ð Þ þH x0ð Þ €x� €x0ð Þ
¼ 0 ð42Þ

Reordering:

H x0ð Þ€x ¼ �€q x0; _x0; €x0ð Þ þ €H x0; _x0; €x0ð Þx0
þ 2 _H x0; _x0ð Þ _x0 þH x0ð Þ€x0
� €H x0; _x0; €x0ð Þx� 2 _H x0; _x0ð Þ _x ð43Þ

Now one can substitute eqns. (34) and (38):

H x0ð Þ€x ¼ �€q x0; _x0; €x0ð Þ þ €Hx0 þ 2 _H _x0 þH€x0
� €Hxp � 2 _H _xp � 2 _HNH _a

þ �2 _H _Xp � €HNH

� �

a

ð44Þ

So one can solve:

€x ¼ €xp þ €Xp1aþ _Xp2_aþ NH€a ð45Þ

Being €xp a particular solution to:

H x0ð Þ€x ¼ �€q x0; _x0; €x0ð Þ þ €H x0; _x0; €x0ð Þ x0 � xp
� �

þ 2 _H x0; _x0ð Þ _x0 � _xp
� �

þH x0ð Þ€x0
ð46Þ

In turn, €Xp1 is a solution to:

H x0ð Þ €X ¼ �2 _H x0; _x0ð Þ _Xp � €H x0; _x0; €x0ð ÞNH ð47Þ

And _Xp2 is a solution to:

H x0ð Þ €X ¼ �2 _H x0; _x0ð ÞNH ð48Þ

One can notice:

_XP2 ¼ 2 _XP ð49Þ

Regarding xp, _XP, _xp, €Xp1 and €xp, it is important to

state that, although any solution will suffice, it is

numerically important not to let these solutions take

any value (it could be too large and cause numerical

issues), thus, it is recommended to use minimal norm

values. In the event of redundant constraints, it is

recommended to use minimal least squares values,

even considering that they should be compatible.

Now one must formulate the equilibrium equation

in terms of a. From Eq. (6), and introducing eqs. (34),

(38) and (42), one can write:

ML €xp þ €Xp1aþ _Xp2_aþ NH€a
� �

þ CL _xp þ NH _aþ _Xpa
� �

þ KL xp þ NHa
� �

¼ f L þ GT
Lk ð50Þ

Reordering:

MLNH€aþ CLNH þ 2ML
_Xp

� �

_a

þ KLNH þ CL
_Xp þML

€Xp1

� �

a

¼ f L�KLxp � CL_xp �ML€xp þ GT
Lk ð51Þ

This is the system to be actually integrated. This

system is not constrained, because any value given to

a tþ Dtð Þ, _a t þ Dtð Þ and €a t þ Dtð Þ will lead to values

of x t þ Dtð Þ, _x t þ Dtð Þ and €x t þ Dtð Þ satisfying the

linearized constraints. Thus, in an iterative approach

they will converge to satisfying the original (not

linearized) constraints. It is important to remark that

the approach will not only converge to the verification

of either the constraints expressed in terms of the

function, its first derivative or its second derivative,

but also all of them together. Once computed

a tþ Dtð Þ, _a t þ Dtð Þ and €a t þ Dtð Þ, one can use

eqs. (34), (38) and (42) to obtain x t þ Dtð Þ, _x t þ Dtð Þ
and €x t þ Dtð Þ. The process will be restarted with these
initial values until convergence is achieved, leading to

the next timestep. To avoid ill-conditioned systems,

one can use the null space of G to reduce the system:

NT
GMLNH€aþ NT

GCLNH þ 2NT
GML

_Xp

� �

_a

þ NT
GKLNH þ NT

GCL
_Xp þ NT

GML
€Xp1

� �

a

¼ NT
GfL�NT

GKLxp � NT
GCL

_xp � NT
GML

€xp

þ NT
GG

T

Lk ð52Þ

A commentary is due here. The novelty of the

hereby presented method is not the use of the null

space of GL to reduce the system, but on the fact that a

and its derivatives are what is being integrated instead

of x and its derivatives, as can be seen in Eq. (52). This

differs from the usual way, in which first the integra-

tion is applied to an equation in the form of (23)

effectively integrating x, and then constraints of either

position, velocity or acceleration are applied. There-

fore, in the usual way only one kind of constraints is

applied and fulfilled.

Another important issue is that the frequencies to be

taken into account for stability analysis are those of the

system to be actually integrated, and, thus, those

should be obtained from the reduced mass matrix

MR ¼ NT
GMLNH and the reduced stiffness matrix

KR ¼ NT
GKLNH þ NT

GCL
_Xp þ NT

GML
€Xp1.

The computational cost can be increased because

one needs to obtain NT
GKLNH þ NT

GCL
_Xp þ

NT
GML

€Xp1 and NT
GCLNH þ 2NT

GML
_Xp. But
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NT
GKLNH, N

T
GCLNH, N

T
GML and NT

GCL have to be

obtained anyway, one only needs to compute three

products of reduced matrices. The cost of obtaining
€Xp1 and _Xp is also noticeable, but one must take into

account that the factorization of NH is also needed

regardless of the method, so it introduces no additional

cost. Thus, the method does not change the order of the

computational cost.

Lastly, the term NT
GG

T

Lk can be fully eliminated in

explicit methods due to the orthogonality property.

Implicit methods, however, require a previous lin-

earization of the term GT
Lk, and only part of this term

will be eliminated due to the mentioned orthogonality

property. The remaining terms of the linearization will

be included as part of the stiffness matrix KL and fL.

One of the key points of the approach presented

here is to notice that, if a is a variable to be

integrated, a tð Þ, _a tð Þ and €a tð Þ are also needed. It could
be tempting to use the values obtained in the previous

step, but this cannot be done, because the linearization

is not the same from step to step. Furthermore, that

would not be integrating in the linearization. In order

to obtain a tð Þ, _a tð Þ and €a tð Þ one generalizes the

eqs. (34), (38) and (42), which were formulated in

t þ Dt to the following eqns.:

Fig. 11 Flowchart of the proposed algorithm
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Fig. 12 Fox-Goodwin, new formulation, for stepsizes a 0.1 s, b 0.6 s, c 0.78 s and d 0.79 s

Fig. 13 Trapezoidal rule, using constraints for stepsizes a 0.1 s, b 0.7 s, c 0.79 s and d 6 s
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x tð Þ ¼ xp þ NHa tð Þ ð53Þ

_x tð Þ ¼ _xP þ NH _a tð Þ þ _Xpa tð Þ ð54Þ

€x tð Þ ¼ €xp þ €Xp1a tð Þ þ _Xp2_a tð Þ þ NH€a tð Þ ð55Þ

As the unknowns are a tð Þ, _a tð Þ and €a tð Þ, it can be

written as follows:

NHa tð Þ ¼ x tð Þ � xp ð56Þ

NH _a tð Þ ¼ _x tð Þ � _xP � _Xpa tð Þ ð57Þ

NH€a tð Þ ¼ €x tð Þ � €xP � €Xp1a tð Þ � _Xp2_a tð Þ ð58Þ

The eqs. (56), (57) and (58) are overdetermined and

usually incompatible, because the linearization in t þ
Dt will not usually satisfy the nonlinear constraints in

t. Thus, the least squares solutions for these equations

can be computed, which is equivalent to project the

coordinates in t to the linearization in t þ Dt. Obvi-
ously, if the function to integrate is continuous, the

smaller Dt is, the better the projection fits to the

original function. As a consequence, convergence of

this operation seems unquestionable. With all this in

mind, the flowchart of the algorithm is represented in

Fig. 11.

Fig. 14 Double pendulum

Fig. 15 Results of Newmark integration based on displacements (angle of the 1st truss)

Fig. 16 Value of the constraint forces in the fixed joint. Left: in the X axis. Right: in the Y axis
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With this approach, a is a set of minimal coordi-

nates to be integrated. Its physical interpretation is

linked to the null space of H, that is, NH. The product

NHa (and also NH _a and NH€a) represents the direction
which is tangent to the displacement (or velocity or

acceleration fields, correspondingly) of the system in

that instant.

6 Numerical experiments

For these numerical experiments, the Octave environ-

ment has been used. This will not lead to a proper

measure of the efficiency of the method, provided that

Octave does not use even a JIT compiler to improve

the iterative processes. The use of Matlab would

considerably improve on this, but would still not lead

to a proper assessment of the efficiency.

The first example is obviously the simple stiff

pendulum discussed before. The results achieved,

using Fox-Goodwin parameters, for stepsizes of 0.1 s,

0.6 s, 0.78 s, 0.79 s are presented in Fig. 12:

If one compares these results to those presented in

Fig. 4 and 7, one can see that the new method, being

general coordinate based, behaves like a minimal

coordinate approach in terms of stability. It is impor-

tant to remark that the classical approach presented

fails even in the smallest stepsize, as shown in Fig. 7.

The trapezoidal rule also behaves in a correct way,

as expected (Fig. 13).

The second example in this document is the double

pendulum analyzed by Negrut [35]. In the paper the

authors had to use quite conservative values of the

parameters: a ¼ 0:75 and b ¼ 0:390625, which deliv-

ers a first order algorithm. Even under these condi-

tions, the authors found the method quite competitive

against BDF integrators. The used stepsize is 1e� 3s.

Although the authors do not explicitly state it, the

reason of such a conservative set of parameters seems

related to stability. The system is depicted in Fig. 14.

Both joints include torsional spring-dampers. The

system is subjected to gravity in the negative y axis.

The considered acceleration is g ¼ 9:81m=s2. Total

integration time is 10 s.

First, the classical approach along with a displace-

ment-based formulation is tested. The values used are

a ¼ 0:5000005 and b ¼ 0:2500006, which are clearly

in the unconditionally stable region. The obtained

results are presented in Fig. 15:

What is interesting from this example are the values

of the constraint forces in the fixed joint (see Fig. 16).

They show clearly the effect of instability and seem to

agree with the hypothesis presented before. That is, the

constraints are the reason inducing the instability, not

the nonlinearity of the equilibrium equation.

The values of a and b used in this example are

greater than the bare minimum required for Newmark

to be unconditionally stable just to avoid any doubt

about issues related to discrete mathematics. The use

of a ¼ 0:5 and b ¼ 0:25 also brings to failure.

Fig. 17 Results using the new approach: FG with 5e� 4s stepsize
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Depending on the particular implementation of the

algorithm (based in acceleration with stabilization or

so) the results might vary but, in any case, with the

classical approach there is no way of predicting a

priori the stability of the method. Using constraints

formulated in terms of the positions (the function to be

integrated) along with a choice of a ¼ 0; 5001 and

b ¼ 0; 2507, and a stepsize of 1e� 3s, the problem is

successfully solved. But it is not quite comfortable to

rely on a try-error scheme to determine a working set

of parameters.

However, using the new approach the results

change dramatically. One can even use a Fox-Good-

win (FG) approach. Using a ¼ 0:5 and b ¼ 1=12, with

a stepsize of 5e� 4s, one reaches the result shown in

Fig. 17.

An additional advantage of the method is the fact

that constraints are numerically fulfilled for position,

velocity and acceleration (see Fig. 18, 19 and 20). The

euclidean norm of the constraint errors are always

below 3e� 14 for position and velocity constraints,

whereas for acceleration it is under 1e� 10. This high

Fig. 18 Evolution of the norm of the position constraint error

Fig. 19 Evolution of the norm of the velocity constraint error
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value happens only at the beginning of the simulation,

and seems related to the high accelerations produced

due to initial conditions.

If one computes the maximum natural frequencies

of the system the graph in Fig. 21 is obtained.

The high value of the natural frequencies at the

beginning is due to the initial values. In any case, one

can compute from the linear stability analysis that a

5e� 3s stepsize can be used along with FG. This is

five times the timestep used in [35]. The results with

this configuration are presented in Fig. 22.

Clearly, the result is not numerically good, mainly

due to the fact that at the beginning of the simulation,

there is a large variation in the accelerations which

require a considerably smaller timestep. The interest-

ing point here is that, yet, the method is stable in these

conditions.

The last example to be presented is the Andrews

Squeezer mechanism, which can be found in [45] and

a good description with results can be spotted in the

IFTOMM Multibody Benchmark.

Coordinates for the fixed joints A, B, C and O are

shown in Table 1.

Fig. 20 Evolution of the norm of the acceleration constraint error

Fig. 21 Evolution of the maximum natural frequencies of the double pendulum

123

392 Meccanica (2022) 57:371–399



Trusses have the following mechanical properties:

The coordinates for the centers of gravity of the

trusses are indicated in local coordinates along the line

(Table 2).

The solid BDE has a mass of 0.02373 kg and

5.255e-6 kg�m2 of inertia. BE is 0.035 m length.

Spring stiffness is k ¼ 4530N=m, and its undeformed

length is l0 ¼ 0:07785m. OF truss has a constant

torque applied s ¼ 0:033Nm. Initial position is

obtained from b0 ¼ �0:062rad. Gravity is not con-

sidered. Using a classical position-based Newmark

approach, the system fails with a ¼ 0:5 and b ¼ 0:25.

It has only been possible to obtain a solution with

a ¼ 0:5001 and b ¼ 0:2507. However, with the new

approach, using a ¼ 0; 5 and b ¼ 1=12 (Fox

Goodwin), with a time increment of 2e� 6s one

reaches a good result, as presented in Fig. 24.

Although the aim of this paper is focused on

stability rather than on precision, which obviously

depends on the integrator used, it must be pointed out

that the error obtained with Fox-Goodwin, with aDt ¼
2e� 6s is under 2:28e� 6. The use of a quite good

trapezoidal rule integrator (MBSLab), with a timestep

of 1e� 6s yields an error under 8:2e� 6. The use of

Runge Kutta Fehlberg (an explicit method considered

to be around 4th–5th order, implemented in OpenSim),

with a variable stepsize from 1e� 5s to 1e� 4s yields

an error of 3:75e� 7. This seems to be reasonable

taking into account that Fox-Goodwin is considered as

a 4th order method and the trapezoidal rule is

considered as 2nd order.

If one plots the maximum natural frequency of the

system along the integration, Fig. 25 is obtained:

With this in mind, one could obtain a value for the

stepsize that should not lead to instability. If one

considers xmax ¼ 4503:477, one can obtain from

Fig. 23 Andrews Squeezer Mechanism

Fig. 22 Results using the new approach: FG with 5e� 3s stepsize

Table 1 Coordinates for the fixed joints

Joint X Y

A - 0.06934 - 0.00227

B - 0.03635 0.03273

C 0.014 0.072

O 0 0
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Table 2 Mechanical

properties of trusses
Truss Mass (kg) Length (m) Iz (kg�m2) XG YG

OF 0.004325 0.007 2.194�10–6 0.00092 0

EF 0.00365 0.028 4.41�10–7 0.0165 0

HE 0.00706 0.02 5.667�10–7 0.00579 0

GE 0.00706 0.02 5.667�10–7 0.00579 0

AG 0.05498 0.04 1.169�10–5 0.02308 0.00916

AH 0.02373 0.04 1.912�10–5 0.01228 - 0.00449

Fig. 24 Andrews Squeezer Mechanism Results using FG. Coordinates of Joint F

Fig. 25 Andrews Squeezer Mechanism. Evolution of maximum natural frequency
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Eq. (26) that using Dt � 5:44e� 4s verifies the linear

condition for stability along all the integration time.

The results obtained with Dt ¼ 5e� 4s are depicted in

Fig. 26.

Evidently the error increases, but the system keeps

being stable. A result that might surprise is that using

Dt ¼ 6e� 4s (larger than the computed stability limit)

the integration is also stable (see Fig. 27).

This is not actually completely unexpected. One

must consider the fact that in nonlinear conditions

natural frequencies vary over time and the computed

stability limit is a worst-case scenario. The error might

grow in a single iteration and in the following return to

stability. It can even happen for some iterations and

provoke no major stability issues. In fact, the system

shows stability even with values of the stepsize around

1e� 3s. In any case, it is obviously not a good practice

to use a stepsize larger than the one that can be

obtained from a stability analysis for the current

integration step.

7 Some preliminary results regarding efficiency

In order to give an idea about the methods efficiency, a

quite preliminary implementation in C has been

Fig. 26 Andrews Squeezer Mechanism Results using FG. Coordinates of Joint F. Stepsize: 5e� 4s

Fig. 27 Andrews Squeezer Mechanism Results using FG. Coordinates of Joint F. Stepsize: 6e� 4s
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carried out, which currently supports R and P joints.

Although the implementation is quite preliminary, it

has been developed taking into account performance

and, thus, results should give an initial idea of the

performance that one can expect from the method. The

implementation is currently based in dense matrices.

A common problem to compare efficiency is to find

benchmark results. Thanks to the IFTOMMMultibody

Benchmark, some results are publicly available.

Unfortunately no stiff problem is included there. Here

we consider the term stiff in the sense of numerical

integration and, therefore, related to the stability issues

that the problemmight lead to. This does not mean that

the problem has no elastic elements. It means that the

timestep required to correctly solve those problems is

not large enough to lead to stability issues. Even the

stiff flyball example is not stiff in the sense of

numerical integration and can easily be solved by an

explicit method. Taking into account that the stability

does not affect efficiency, the performance can be

measured with non-stiff problems. The studied exam-

ples are the double four bar and the rectangular Bricard

mechanism. In both of them the benchmark limits the

mechanical energy drift.

The first example is the double four bar mechanism.

The maximum mechanical energy drift is 0.1 J. The

published results are shown below (Table 3):

From the table above, one could state that a good

result is of about 1 cent of a second, but one has to take

those results carefully. Most of the results presented

are provided using minimal, and relative coordinates,

which heavily reduce the computational cost, but these

methods are not general, and, thus, should not be

compared with general methods as the one here

presented. Also there are some 2D implementations

that see their efficiency increased due to the reduction

in the amount of variables. Thus, the results to be

considered should be those presented by Tagliapietra

(using OpenSim), Masarati (MBDyn), Urkullu

(DIMCD, [46]) and Gonzalez (MBSLab). The

reported times are, respectively, 0.456, 0.325, 0.0325

and 0.145. It is important to mention that Tagliapietra

gets quite a good result in terms of precision, which

hinders the real performance of the algorithm, which

should be better. The method explained in this

document takes 0.4 s (average of 10 simulations) on

a computer with an Intel i7 7700HQ processor fixed at

2.8 GHz. Taking into account that this is an implicit,

unconditionally stable method, it is a quite good result.

The second example to which this method has been

applied is the Bricard mechanism. This system has

redundant constraints. With this mechanism the aim is

to keep the mechanical energy drift below 0.001 J.

The results are shown below (Table 4):

Again, the results presented by Tagliapietra (using

OpenSim) are misleading because of the use of a

higher precision, which increases the cost. In any case,

the times are 0.258 and 0.125. The here presented

method takes 0.357 s in the same conditions exposed

in the previous example. Again, a reasonable result.

Table 3 Results of the double four bar mechanism

Method Author Coord Step (s) e (J) CPU (s) Processor GeekBench score

Index-3 ALF J. Cuadrado Natural 1e-2 0.0917 0.6 C2duo E6550 1400

Index-3 ALF A. Luaces Relatives 1e-2 0.0137 1.7 C2duo E6550 1400

MbsLab F. González Natural 3D 1e-2 0.0917 0.145 C2duo E8400 1900

OpenMBS R. Pastorino Natural 2D 1e-2 0.0877 0.1278 BeagleBoneB NA

Index-3 ALF R. Pastorino Natural 2D 1e-2 0.0877 0.0045 I7 3740QM 3800

Non-recursive NEF M. Burkhardt Mı́nimal Variable 0.0015 0.0568 I7 3770 4000

MBDyn P. Masarati 3D 8e-3 0.09 0.325 I7 2620 M 3000

Non-recursive NEF M. Burkhardt Mı́nimal 1e-2 0.0002 0.0191 SnapDrag S800 NA

Non-recursive NEF M. Burkhardt Mı́nimas 1e-2 0.0002 0.0023 I7 960 2700

SolidWorks C. Chaojie Natural 2D 1e-2 0.0001 48.77 C2Duo E8400 1900

OpenSim L. Tagliapietra Natural 1e-3 < > 1e-2 3.2e-7 0.455 I5 4570 4000

Biolim F. Mouzo Relatives 3D 1e-2 0.029 0.0226 i7 6700 K 5400

DIMCD G. Urkullu Cartesian 3D 1e-2 0.0885 0.0325 Ryzen 5 2600 4700
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8 Conclusions and future work

The integration of DAEs along with nonlinear con-

straints leads usually to unqualified DAEs. This

translates into unpredictable stability behavior of the

algorithms. This can be usually avoided by switching

to minimal coordinates, but this arises the need of a

particular mathematical development for each case,

which can be an obstacle for general problems. The

usual approach to solve this issue in general algo-

rithms related to implicit methods is the use of heavily

damped integrators such as Newmark with high values

of the parameters or HHT, but this heavily impacts the

convergence of the methods introducing a consider-

able amount of numerical damping. Here an alterna-

tive approach has been presented to perform the

integration. In this approach, one integrates the DAE

in a set of coordinates representing the tangent space

of the manifold. To do this, a Taylor expansion of the

constraints is iteratively performed in the current

timestep which translates the function to a minimal

coordinate set. This allows one to integrate in the

tangent space. To obtain the initial values of the

function in these minimal coordinates, these are

projected in the tangent space. One advantage of this

approach is that constraints are applied for each step

simultaneously to the function to integrate and all the

required derivatives. Furthermore, the new approach

has not the unpredictable stability behavior of the

classical approach, thus allowing one to use high order

implicit methods such as Fox-Goodwin, or linear

acceleration with predictable stability. Several tests

have been performed with this algorithm, applying a

Newmark approach, with Fox-Goodwin, linear accel-

eration and classical Newmark configurations. These

confirm the predictable stability behavior and also

yield to proper results. Currently no efficiency exper-

imental tests have been performed. Due to the fact

that, compared to the classical approach the new

algorithm only includes operations of, at most, the

same order (N3) than the other methods, one can

estimate that the new approach should not consider-

ably increase computational cost, although it might

not allow one to use certain sparse methods without

modification. Additionally, a simple study for the case

of structural integrators has been presented which

explains the behavior of stability in DAEs when

compared to unconstrained ODEs.

Future studies should be focused in performance.

With this in mind a general Newmark approach should

be developed in a high-performance compiled lan-

guage. Additionally a deeper mathematical analysis of

the method would be necessary. A proper analysis on

the possible impact of the projection made for the

values in the previous step in the convergence should

also be performed.
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23. Arnold M, Cardona A, Brüls O (2015) Order reduction in

time integration caused by velocity projection. J Mech Sci

Technol 29:2579–2585. https://doi.org/10.1007/s12206-

015-0501-7

24. Cuadrado J, Cardenal J, Bayo E (1997) Modeling and

solution methods for efficient real-time simulation of

multibody dynamics. Multibody Syst Dyn 1:259–280

25. Gear C (1971) Simultaneous numerical solution of differ-

ential-algebraic equations. IEEE Trans Circuit Theory

18:89–95

26. Higueras I, März R, Tischendorf C (2003) Stability pre-

serving integration of index-2 DAEs. Appl Numer Math

45:201–229

27. Ascher UM, Petzold LR (1993) Stability of computational

methods for constrained dynamics systems. SIAM J Sci

Comput 14:95–120

28. Hanke M, Macana EI, März R (1998) On asymptotics in

case of linear index-2 differential-algebraic equations.

SIAM J Numer Anal 35:1326–1346

29. Griepentrog E, März R (1986) Differential-algebraic equa-

tions and their numerical treatment, BSB Teubner

30. Liu H, Song Y (2003) Stability of numerical methods for

solving linear index-3 DAEs. Appl Math Comput

134:35–50

31. Garcı́a de Jalón J, Unda J, Avello A, Jiménez JM (1987)
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