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ON THE MIT BAG MODEL IN THE NON-RELATIVISTIC LIMIT

N. ARRIZABALAGA, L. LE TREUST, AND N. RAYMOND

Abstract. This paper is devoted to the spectral investigation of the MIT bag
model, that is, the Dirac operator on a smooth and bounded domain of R3 with
certain boundary conditions. When the mass m goes to ˘8, we provide spectral
asymptotic results.
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1. Introduction

1.1. The physical context. In elementary particle physics [12], the strong force
is one of the four known fundamental interaction forces along with the electromag-
netism, the weak interaction and the gravitation. It is responsible for the con-
finement of the quarks inside composite particles called hadrons, such as protons,
neutrons or mesons. Its force-carrying (gauge bosons) particles are called the glu-
ons (the force-carrying particles of the electromagnetism are the photons) and they
carry together with the quarks, a type of charges called the color charges. Their
interactions are detailed in the theory of quantum chromodynamics (the theory of
electromagnetism is called quantum electrodynamics).

1.1.1. The standard model. Following the work of Gell-Mann and Zweig and the deep
inelastic scattering experiments held at the Stanford Linear Accelerator Center in
the 601s, some physicists introduced in the mid-701s the standard model [17] in an
attempt to give an unified framework for the elementary particle physics. It turned
out that this model has been very fruitful since it allows to predict the existence of
many particles. Despite of its success, the confinement of the quarks remains badly
understood because of the complexity of the associated equations.

1.1.2. An attempt to understand better the confinement of quarks. In parallel to the
introduction of the standard model and relying on the work of Bogoliubov [5, Section
IV], Chodos, Ja↵e, Johnson, Thorn, and Weisskopf [9, 8, 7, 19, 17], physicists at the
MIT, developped a simplified phenomenological model to get a better understanding
of the phenomenons involved in the quark-gluon confinement. Following the results
of the experiments held at that time, they chose to include several qualitative prop-
erties of the quarks:

- the perfect confinement of the quarks inside the hadrons1,
- the relativistic nature of the quarks2.

The region of space ⌦ where the quarks live is called the bag and the model is called
the MIT bag model. Let us remark that the MIT bag model can also be viewed as
a model for a relativistic particle confined in a box. In the non-relativistic setting,
the Dirac operator is replaced by the Dirichlet Laplacian and the associated model
appears in many courses of introduction to quantum physics [24].
This model has been successfully used to predict many properties of hadrons (see
for instance [10]).
Let us also mention that the equivalent of the MIT bag model in dimenssion two
appears in the study of the graphene and it is referred to it as the infinite mass
boundary condition (see [4, 30] and the references therein).

1.2. The MIT bag Dirac operator. In the whole paper, ⌦ denotes a fixed
bounded domain of R3 with regular boundary and m is a real number. The Planck’s
constant and the velocity of light are assumed to be equal to 1.

Let us recall the definition of the Dirac operator associated with the energy of a
relativistic particle of mass m and spin 1

2 (see [31]). The Dirac operator is a first

1No isolated quark has been observed yet.
2For light quarks, the non-relativistic approximation E “ mc2 is not valid and the Schrödinger

operator ´� has to be replaced by the Dirac one to describe the kinetic energy.
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order di↵erential operator, acting on L
2p⌦,C4q in the sense of distributions, defined

by

(1.1) H “ ↵ ¨ D ` m� , D “ ´ir ,

where ↵ “ p↵1,↵2,↵3q, � and �5 are the 4ˆ 4 Hermitian and unitary matrices given
by

� “
ˆ

12 0
0 ´12

˙
, �5 “

ˆ
0 12
12 0

˙
, ↵k “

ˆ
0 �k

�k 0

˙
for k “ 1, 2, 3 .

Here, the Pauli matrices �1, �2 and �3 are defined by

�1 “
ˆ

0 1
1 0

˙
, �2 “

ˆ
0 ´i

i 0

˙
, �3 “

ˆ
1 0
0 ´1

˙
,

and ↵ ¨ X denotes
∞3

j“1 ↵jXj for any X “ pX1, X2, X3q. Let us now impose the
boundary conditions under consideration in this paper and define the associated
unbounded operator.

Notation 1.1. In the following, � :“ B⌦ and for all x P �, npxq is the outward-
pointing unit normal vector to the boundary.

Definition 1.2. The MIT bag Dirac operator pH⌦
m
,DpH⌦

m
qq is defined on the domain

DompH⌦
m

q “ t P H
1p⌦,C4q : B “  on �u , with B “ ´i�p↵ ¨ nq ,

by H
⌦
m
 “ H for all  P DompH⌦

m
q. Observe that the trace is well-defined by a

classical trace theorem.

Notation 1.3. We will denote H “ H
⌦
m

when there is no risk of confusion. We
denote x¨, ¨y the C4 scalar product (antilinear w.r.t. the left argument) and x¨, ¨y

U

the L
2 scalar product on the set U .

Remark 1.4. The operator B defined for all x P � is an Hermitian matrix which
satisfies B2 “ 14, so that, its spectrum is t˘1u. Both eigenvalues have multiplicity
two. Thus, the MIT bag boundary condition imposes to the wavefunction  to be
an eigenvector of B associated with the eigenvalue `1. This boundary condition is
chosen by the physicists, [19], in order to get a vanishing normal flow at the bag
surface, ´in ¨ j “ 0 at the boundary �, where the current density j is defined by

j “ x ,↵ y .
The opposite boundary condition  P kerp14 ` Bq is discussed in Section 1.3.2.

The following theorem gathers some fundamental properties of the MIT bag Dirac
operator that are related to its self-adjointness.

Theorem 1.5. Let ⌦ be a nonempty, bounded and regular open set in R3 and m P R.
The following properties hold true.

i. The operator pH,DompHqq is a self-adjoint operator with compact resolvent.
ii. Let us denote by pµnpmqqn•1 Ä R˚

` the non-decreasing sequence of eigenval-
ues of |H| counted with multiplicity. The spectrum of H, denoted by sppHq, is
symmetric with respect to 0 (with multiplicity) and

sppHq “ t˘µnpmq, n • 1u .
iii. Each eigenvalue of H has even multiplicity.
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iv. For each  P DompHq, we have

(1.2) }H }2
L2p⌦q “ }↵ ¨ r }2

L2p⌦q ` m} }2
L2pB⌦q ` m

2} }2
L2p⌦q

and

(1.3) }↵ ¨ r }2
L2p⌦q “ }r }2

L2p⌦q ` 1

2

ª

B⌦
| |2 ds

where  is the trace of the Weingarten map:

dns : TsB⌦ ›Ñ R3

v fi›Ñ Bvnpsq .
Remark 1.6. This theorem is a special case of results in spin geometry (see for
instance the survey [2]). Let us comment the di↵erent points.

i. The proof of the self-adjointness can be found in [3, Theorem 4.11]. Note that
self-adjointness results have also been obtained in the case of C8-boundaries
in [6] through Calderón projections (see [25] where these projections are used
in relation with the MIT bag) and sophisticated pseudo-di↵erential techniques,
and in two dimensions, with C2-boundaries by using Cauchy kernels and the
Riemann mapping theorem, [4] (see also [30]). Let us also mention that more
general local boundary conditions are considered in [4, 6]. The compactness of
the resolvent follows from a classical embedding theorem (see also [3, Corollary
5.6]).

ii. The results about the symmetry of the spectrum and the multiplicity follows
from the symmetries of the operator.

iii. The formula for the square of H is a particular case of a more general formula
in [16, p.379]. Basic properties about the Weingarten map may be found in [29].

We refer to Appendix A where, for the convenience of the reader, we recall the proofs
of some points.

1.3. Results. Let us now describe our results which are of asymptotic nature. They
describe the limiting behavior of the eigenvalues of the MIT bag Dirac operator as
m tends to ˘8.

1.3.1. The MIT bag model with positive mass. As we can guess from the expressions
(1.2) and (1.3), when m Ñ `8 the operator H2 ´m

2 tends, in some sense, towards
the Dirichlet Laplacian on ⌦. From the physical point of view, this limit is called
the non-relativistic limit since it relates the MIT bag model (relativistic particles in
a box) to the model for non-relativistic particles in a box.

From the spectral point of view, we have the following asymptotic result.

Theorem 1.7. Let ´�Dir be the Laplacian with domain H
2p⌦,C4q X H

1
0 p⌦,C4q,

and let pµDir
n

qn•1 be the non-decreasing sequence of its eigenvalues. For all n • 1,
we have

µnpmq ´
ˆ
m ` 1

2m
µ
Dir
n

˙
“

mÑ`8
o

ˆ
1

m

˙
.

It is actually possible to describe the next term in the expansion of the first
positive eigenvalue.
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Theorem 1.8. Let u1 P H
1
0 p⌦,Cq be a L

2-normalized eigenfunction of the Dirichlet
Laplacian associated with its lowest eigenvalue µ

Dir
1 . We have

µ1pmq ´
ˆ
m ` 1

2m
µ
Dir
1 ´ 1

2m2

ª

�

|Bnu1|2 d�
˙

“
mÑ`8

o

ˆ
1

m2

˙
.

Remark 1.9. This asymptotic expansion of µ1pmq coincides with the one of the first
eigenvalue of the operator

a
m2 ´ �Rob

2m where ´�Rob
2m is the Robin Laplacian of mass

2m, i.e., the operator of L2p⌦,Cq whose quadratic form is defined for u P H
1p⌦,Cq

by

u fi›Ñ
ª

⌦

|ru|2 dx ` 2m

ª

�

|u|2 d�.

1.3.2. The MIT bag model with negative mass. Let us now describe our result re-
lated to the MIT bag model with “negative mass”. This “negative mass” may be
understood in two equivalent ways.

i. When we investigate the case ⌦ “ R3, the Dirac operators ↵ ¨ D ` m� and
↵ ¨ D ´ m� are unitarily equivalent. Thus, in the case of a general ⌦, one may
be tempted to consider ↵ ¨ D ´ m� with the MIT bag condition B.

ii. Since we have

�5 p↵ ¨ D ` m�q �5 “ ↵ ¨ D ´ m� , �5B�5 “ ´B ,

we notice that ↵ ¨ D ´ m� with boundary condition B is unitarily equivalent
to ↵ ¨ D ` m� with boundary condition ´B. In this case, the flux ´in ¨ j also
vanishes at the boundary and the justification given by the physicists [19] of the
MIT bag boundary condition can also be applied here (see Remark 1.4).

Of course, these changes of signs have no e↵ect on the self-adjointness.

Remark 1.10. From the physical point of view, the fact that H⌦
0 does not commutes

with the chirality matrix �5 (see [31]) is called the chiral symmetry violation [32, 17].
The chiral symmetry is supposed to be a property approximately satisfied by light
quarks and exactly satisfied for quarks of mass 0.

In this paper, we will show that the limit m Ñ ´8 for the operator H
⌦
m

turns
out to be a semiclassical limit and not of perturbative nature as when m Ñ `8. It
will be shown that the boundary is attractive for the eigenfunctions with eigenvalues
lying essentially in the Dirac gap r´|m|, |m|s and that their distribution is governed
by the operator

(1.4) L� ´ 
2

4
` K ,

where  and K are the trace and the determinant of the Weingarten map, respec-
tively, and where L� is defined as follows.

Definition 1.11. The operator pL�
,DpL�qq is the self-adjoint operator associated

with the quadratic form

Q�p q “
ª

�

|rs |2 d� , @ P H
1p�,Cq4 X kerpB ´ 14q .

As a consequence of our investigation, we will get the following lower bound of
the quadratic form Q�.
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Proposition 1.12. We have

@ P H
1p�,Cq4 X kerpB ´ 14q , Q�p q •

ª

�

ˆ

2

4
´ K

˙
| |2 d� .

Taking advantage of semiclassical technics, we will establish the following uniform
eigenvalues estimate.

Theorem 1.13. Let "0 P p0, 1q and

N"0,m :“ tn P N˚ : µnp´mq § m
?
1 ´ "0u .

There exist positive constants C´, C`, m0 such that, for all m • m0 and n P N"0,m,

µ
´
n

pmq § µnp´mq § µ
`
n

pmq ,
with µ

˘
n

pmqbeing the n-th eigenvalue of the operators L�,˘
m

of L2p�,Cq4 defined by

L�,´
m

“
ˆ

r1 ´ C´m
´ 1

2 sL� ´ 
2

4
` K ´ C´m

´1

˙ 1
2

`
,

L�,`
m

“
ˆ

r1 ` C`m
´ 1

2 sL� ´ 
2

4
` K ` C`m

´1

˙ 1
2

.

Remark 1.14. By Proposition 1.12,

r1 ` C`m
´ 1

2 sL� ´ 
2

4
` K ` C`m

´1 • 0 ,

so that the square root is well-defined. In the expression of L�,´
m

, we are obliged to
take the non-negative part.

Rewriting the previous theorem in term of asymptotic expansions of the eigenval-
ues, we get the following result (see for instance [20, Corollary 3.2]).

Corollary 1.15. For all n P N˚, we have that

µnp´mq “
mÑ`8

rµ
1
2
n ` Opm´ 1

2 q,

where prµnqnPN˚ is the non-decreasing sequence of the eigenvalues of the following
non-negative operator on L

2p�,Cq4 X kerp14 ´ Bq:

L� ´ 
2

4
` K .

Let us describe the spectrum of the e↵ective operator on the boundary in the case
when ⌦ is a ball (see [31, Section 4.6]).The proof of the following proposition just
follows from straightforward computations.

Proposition 1.16. Assume that ⌦ “ Bp0, Rq with R ° 0. Let A “ �p1` 2S ¨Lq be
the ”spin-orbit” operator where S “ 1

2�5p↵1,↵2,↵3q and L “ x ˆ D. We have

AB “ BA ,

L� ´ 
2

4
` K “ R

´2
A

2
,

and its spectrum is tn2{R2
, n P N˚u.

1.4. Remarks. Let us conclude this introduction with some comments related to
Robin Laplacians, �-interactions and shell-interactions.
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1.4.1. Comparison to Robin Laplacians. Theorem 1.13 shares common features with
the known results about the Robin Laplacian in the strong coupling limit (see [26]
for the asymptotic of individual eigenvalues and [20] in relation with the spectral
uniformity and the semiclassical point of view). But two major di↵erences have
to be emphasized. Firstly, the e↵ective operator is not semiclassical in our case
(it looks like the e↵ective operator in the case of a Schrödinger operator with a
strong attractive �-interaction on �, see [11]). Secondly, the e↵ective operator in
our case is a quadratic function of the principal curvatures (and not a linear one as
in the Robin case). These di↵erences are crucially related to the vectorial nature
of the Dirac operator with the MIT conditions: they lead to a kind of semiclassical
degeneracy. It is also rather surprising that the order of this degeneracy is still
less than the order of the famous Born-Oppenheimer correction. Here, by the Born-
Oppenheimer method, we mean a semiclassical method of reduction to the boundary
explained in Sections 3 and 4 (see also [22], [18], [27, Chapter 13], and the references
therein).

1.4.2. Shell interactions. There is a close relation between the MIT bag model that
we study in this work and the shell interactions for Dirac operators studied in [1]. In
[1, Theorem 5.5], the authors prove that H `Ves generates confinement with respect
to � for �2

e
´ �

2
s

“ ´4, where

Ves “ 1

2
p�e ` �s�qp ` `  ´q d� ,

�e,�s P R,  ˘ are the non-tangential boundary values of  on � and d� is the
surface measure on �. By using [1, Proposition 3.1], it is possible to see that the
existence of eigenvalues for H ` Ves is equivalent to a spectral property of some
bounded operators on �. More precisely,

(1.5) kerpH ` Ves ´ µq ‰ 0 ñ kerp�s� ´ �e ` 4C�,µq ‰ 0 ,

where C�,µ is a Cauchy-type operator defined on � in the principal value sense.
In the regime �2

e
´ �

2
s

“ ´4, the right hand side of p1.5q is also equivalent to the
existence of a solution  P H

1p⌦,C4q of the boundary value problem pH ´ µq “ 0
in ⌦ and  “ i

2 p�e ´ �s�qp↵ ¨ nq on �. Observe that when �e “ 0 and �s “ 2 we
recover the MIT bag model given in Definition 1.2. It is worth pointing out that the
right hand side of p1.5q does not hold for �s ° 0 if µ P r´m,ms. So the eigenvalues
must belong to Rzr´m,ms for �s ° 0, as we already know from [23, Section 5] in
the case �e “ 0 and �s “ 2.

1.5. Organization of the paper. Section 2 is devoted to the proofs of Theorems
1.7 and 1.8. The remaining sections are concerned with the case of the large negative
mass. In Section 3, we explain the main steps towards the proof of Theorem 1.13.
In Section 4, we prove the propositions and theorems stated in Section 3.

2. Large positive mass

This section is devoted to the proofs of Theorems 1.7 and 1.8. For that purpose,
one will work with the square of the Dirac operator H2 appearing in Theorem 1.5
and determine the asymptotic expansion of its lowest eigenvalues.
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For m ° 0 and  P D “ t P H
1p⌦,C4q,  P ker pB ´ 14q on �u, we let

Qmp q “ }r }2 `
ª

�

´
m ` 

2

¯
| |2 d� .

In addition, we also define, for  P H
1
0 p⌦,C4q,

Q8p q “ }r }2 .
Let us denote by p�jpQmqqj•1 and p�jpQ8qqj•1, the ordered sequence of eigenvalues
related to the operators associated with the quadratic forms Qm and Q8. Their
respective L

2-normalized eigenfunctions are denoted by  j,m and  j,8.

2.1. First non-trivial term in the asymptotic expansion. Theorem 1.7 is a
consequence of the following proposition and of Theorem 1.5.

Proposition 2.1. For all j • 1, we have

lim
mÑ`8

�jpQmq “ �jpQ8q .

Proof. Since H
1
0 p⌦,C4q Ä D, we have, for all n • 1,

�n pQmq § �n pQ8q .

Let us fix N • 1 and consider an orthonormal family p j,mq1§j§N such that  j,m is an
eigenfunction of the operator related to Qm and associated with its j-th eigenvalue.
We set

ENpmq “ span p j,mq1§j§N .

We easily get that, for all  P ENpmq,
Qmp q § �NpQmq} }2 § �NpQ8q} }2 .

Let us first prove that �1pQmq converges towards �1pQ8q. For that purpose, let us
establish that the only accumulation point of p�1pQmqqm•0 is �1pQ8q. Since p 1,mq
is bounded in H

1p⌦q, we may assume, up to a subsequence extraction, that  1,m

converges weakly to  1,8 P H
1p⌦q. But, we have
ª

�

| 1,m|2 d� “ Opm´1q ,

and by the Fatou lemma,  1,8 “ 0 on � so that  1,8 P H
1
0 p⌦q. Then, we get

�1pQ8q • lim
mÑ`8

�1pQmq • lim inf
mÑ`8

}r 1,m}2 • }r 1,8}2 • �1pQ8q .

We deduce that  1,8 is an eigenfunction of the Dirichlet Laplacian associated with
�1pQ8q. Therefore, we obtain the convergence result for the first eigenvalue. We
also get that p 1,mq converges strongly in H

1p⌦q to  1,8.
Let us now proceed by induction. Let N • 1. Assume that, for all j P t1, . . . , Nu,

p�jpQmqq converges to �jpQ8q. Assume also that, up to a subsequence extraction,
p j,mq converges to an eigenfunction associated with �jpQ8q,  j,8. As above, we
may assume that p N`1,mq converges weakly to some  N`1,8 P H

1p⌦q and that its
trace on � is zero. We also get, by convergence in L

2p⌦q, that

 N`1,8 P
ˆ

span
1§j§N

 j,8

˙K
.
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By the min-max principle, it follows that

�N`1pQ8q • lim
mÑ`8

�N`1pQmq • lim inf
mÑ`8

}r N`1,m}2 • }r N`1,8}2 • �N`1pQ8q .

From these last inequalities, we infer that  N`1,8 is an eigenfunction of the Dirichlet
Laplacian associated with �N`1pQ8q, that p�N`1pQmqq converges to �N`1pQ8q and
p N`1,mq converges strongly in H

1p⌦q to  N`1,8. ⇤
2.2. Asymptotic expansion of the first eigenvalue. The following lemma will
be used in the proof of Theorem 1.5.

Lemma 2.2. Let u P H
1
0 p⌦,Cq be an L

2-normalized eigenfunction of the Dirichlet
Laplacian on ⌦. Then ª

�

|Bnu|2n d� “ 0 .

Proof. We have ru “ pBnuqn so that by integration by parts, we get
ª

�

|Bnu|2n d� “
ª

�

|ru|2n d� “
ª

⌦

r|ru|2 dx “
ˆª

⌦

2ru ¨ rBku dx
˙

k“1,2,3

“ 2

ˆª

⌦

p´�uqBku dx `
ª

�

BnuBku d�
˙

k“1,2,3

“ 2

ˆ
�jpQ8q{2

ª

⌦

Bk|u|2 dx `
ª

�

BnuBku d�
˙

k“1,2,3

“ 2

ª

�

Bnuru d� “ 2

ª

�

|Bnu|2n d� ,

and the conclusion follows. ⇤
Theorem 1.8 is a consequence of the following proposition and of Theorem 1.5.

Proposition 2.3. Let u1 P H
1
0 p⌦q be an L

2-normalized eigenfunction of the Dirichlet
Laplacian associated with its lowest eigenvalue �1pQ8q. We have that

�1pQmq “ �1pQ8q ´ 1

2m

ª

�

|Bnu1|2 d� ` Opm´2q .

Remark 2.4. In the case of the Robin Laplacian, we obtain

�
Rob
1 pQmq “ �1pQ8q ´ 1

m

ª

�

|Bnu1|2 d� ` Opm´2q,

and we recover asymptotically the fact that �Rob1 pQmq § �1pQmq.
Proof. The proof of this result is divided into three steps:

(a) we perform a formal study of the asymptotic expansion of �1pQmq,
(b) we build rigorously a test function based on Step (a) to get the upper bound,
(c) we study the lower bound.

Step (a). We look for quasi-eigenvalues and quasi-eigenfunctions in the form

�
app
1 pQmq “ �1pQ8q ` �

m
` Opm´2q ,

 
app
1,m “  1,8 ` m

´1
' ` Opm´2q ,

where � and ' are unknown.
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We recall that  1,m and  1,8 satisfy

´ � 1,m “ �1pQmq 1,m, on ⌦ ,

 1,m P kerpB ´ 14q, on � ,

pBn ` {2 ` mq 1,m P kerpB ` 14q , on � .

and

´ � 1,8 “ �1pQ8q 1,8 , on ⌦,

 1,8 “ 0 , on � .

Then, we want that

p´� ´ �1pQ8qq' “ � 1,8, on ⌦ ,

' P kerpB ´ 14q, on � ,

Bn 1,8 ` ' P kerpB ` 14q, on � .

(2.1)

Denoting for all s P �, P`psq “ 1´Bpsq
2 , the orthogonal projection on kerpB ´ 14q, we

get that

0 “ P` pBn 1,8 ` 'q “ P`Bn 1,8 ` ' .

Taking the scalar product of equation (2.1) with  1,8 and integrating by parts twice,
we obtain that

� “ ´}P`Bn 1,8}2
L2p�q

and

p´� ´ �1pQ8qq' “ � 1,8, on ⌦ ,

' “ ´P`Bn 1,8, on � .
(2.2)

Let us now consider �. Note that for the eigenfunction  1,8 of the Dirichlet Laplacian
in L

2p⌦,C4q associated with its lowest eigenvalue �1pQ8q, there exists a P C4 such
that |a| “ 1 and  1,8 “ au1. Then, we have

� “ ´1

2

ª

�

|Bnu1|2 p1 ` xa,Bayq d�

“ ´1

2

ª

�

|Bnu1|2 d� ´ 1

2
xa,´i�↵ ¨

ˆª

�

|Bnu1|2n d�

˙
ay .

Finally, using Lemma 2.2, we obtain that

� “ ´1

2

ª

�

|Bnu1|2 d�.

Step (b). Let  1,8 “ au1 be an eigenfunction of the Dirichlet Laplacian associated
with �1pQ8q and w P H

2p⌦q be such that w “ ´P`Bn 1,8. Let us study the
existence of a solution '1 of equation (2.2). We denote by p´�q´1 the inverse of the
Dirichlet Laplacian and v “ '1 ´ w so that

`
Id ´ �1pQ8qp´�q´1

˘
v “ p´�q´1

� 1,8 ´ p´�q´1 p´� ´ �1pQ8qqw .

By the Fredholm alternative, there exists such a function v if and only if

p´�q´1 p� 1,8 ´ p´� ´ �1pQ8qqwq P ker
`
Id ´ �1pQ8qp´�q´1

˘K
.
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Let  P ker pId ´ �1pQ8qp´�q´1qK. We have by integrations by parts that

x , p´�q´1 p� 1,8 ´ p´� ´ �1pQ8qqwqy⌦
“ �1pQ8q´1 `

x ,�1 1,8y⌦ ´ xp´� ´ �1pQ8qq , wy⌦ ´ xBn , wy�
˘

“ �1pQ8q´1
`
x ,�1 1,8y⌦ ` xBn , P`Bn 1,8y�

˘
.

Hence, we get

0 “ x 1,8, p´�q´1 p� 1,8 ´ p´� ´ �1,8qwqy⌦
provided that

(2.3) � “ ´
ª

�

|P` pBn 1,8q |2 d� .

Let a, b P C4 be such that xa, by “ 0, |a| “ |b| “ 1,  1,8 “ au1 and  “ bu1. We
have

0 “ x , p´�q´1 p�1 1,8 ´ p´� ´ �1pQ8qqwqy⌦
since

0 “ xBn , P`Bn 1,8y� “ 1

2
xb,´i�↵ ¨

ˆª

�

|Bnu0|2n d�

˙
ay .

Hence, assuming that (2.3) is true, we get that system (2.2) has a solution '1.
 1,8 ` m

´1
'1 can be used as a test function and we have

Qmp 1,8 ` m
´1
'1q “ �1pQ8q ` m

´1

ˆ
2Re xr 1,8,r'1y⌦ `

ª

�

|'1|2 d�
˙

` Opm´2q

“ �1pQ8q} 1,m}2
L2 ´ m

´1

ª

�

|P` pBn 1,8q |2 d� ` Opm´2q,

so that

(2.4) �1pQmq § �1pQ8q ´ m
´1

ª

�

|P` pBn 1,8q |2 d� ` Opm´2q .

Step (c). Let us now study the lower bound. The sequence p 1,mq is uniformly
bounded in H

1p⌦q. We extract a subsequence pmkqkPN such that

lim inf
mÑ`8

m p�1,m ´ �1,8q “ lim
kÑ`8

mk p�1,mk
´ �1,8q

and p 1,mk
qkPN converges strongly in H

1p⌦q to  1,8 P H
1
0 p⌦q and pBn 1,mk

q converges
to pBn 1,8q in H

´1{2p�q. Integrating by parts yields

p�1,mk
´ �1,8q x 1,mk

, 1,8y⌦ “ ´mk
´1 xp{2mk ` 1q´1Bn mk,8, P`Bn 1,8y� ,(2.5)

thus, by Step (a),

lim inf
mÑ`8

m p�1,m ´ �1,8q “ ´}P`Bn 1,8}2
L2p�q • ´1

2

ª

�

|Bnu1|2 d�

and the result follows. ⇤
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3. Large negative mass: main steps in the proof of Theorem 1.13

In this section, we study the non-relativistic limit m Ñ `8 of the nonnegative
eigenvalues of the MIT bag Dirac operator H

⌦
´m

. For the sake of readability, we
present the main ingredients used in the proof of Theorem 1.13. Part of the ideas
are related to recent results about the semiclassical Robin Laplacian (see [15, Section
7], [14] and [20]). The detailed proofs will be given in Section 4.

3.1. Semiclassical reformulation and boundary localization. The main ob-
jective of this section is to get boundary localization results of Agmon type. For that
purpose, we will rather consider

`
H

⌦
´m

˘2
and introduce the semiclassical parameter

h “ m
´2 Ñ 0 .

3.1.1. The semiclassical operator. In order to lighten the presentation, it will also
be more convenient to work with the following operator

(3.1) Lh “ h
2ppH⌦

´m
q2 ´ m

214q ,
whose domain is given by

DompLhq “ DomppH⌦
´m

q2q
“

!
 P H

2p⌦q :  P kerpB ´ 14q,
´

Bn ` 

2
´ h

´ 1
2

¯
 P kerpB ` 14q, on �

)
.

The associated quadratic Qh form is defined by

(3.2) @ P DompQhq , Qhp q “ h
2}r }2

L2p⌦q `
ª

�

´


2
h
2 ´ h

3
2

¯
| |2 d� ,

where

DompQhq “ DompH⌦
´m

q “
 
 P H

1p⌦q :  P kerpB ´ 14q on �
(
.

In other words, the operator Lh is the semiclassical Laplacian with combined MIT
bag and Robin conditions on the boundary.

3.1.2. Relations between the eigenvalues of Lh and H
⌦
´m

. Let us describe the rela-
tions between the spectra of our operators. Let us recall that the spectrum of H⌦

´m

is discrete, symmetric with respect to 0 and with pair multiplicity. The spectrum of
H

⌦
´m

lying in r´m,ms is given by
!

˘
a
h´2�nphq ` h´1 : n P Nzt0u ,´h § �nphq § 0

)
,

where �nphq denotes the n-th eigenvalue of Lh. Therefore, we shall focus on the
study of the negative eigenvalues of Lh.

3.1.3. Agmon type localization estimates. The estimates given in Proposition 3.1 are
a consequence of the fact that the Laplacian is a non-negative operator.

Proposition 3.1. Let ✏0 P p0, 1q and � P p0,?
"0q. There exists C ° 0 such that

for any h P p0, 1s, any eigenvalue � § ´"0h of Lh and any eigenfunction  h of Lh

associated with �, we have
›››› h exp

ˆ
�dp¨,�q
h1{2

˙››››
2

L2p⌦q
` h

´1

ˇ̌
ˇ̌Qh

ˆ
 h exp

ˆ
�dp¨,�q
h1{2

˙˙ˇ̌
ˇ̌ § C} h}2

L2p⌦q.
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3.2. The operator near the boundary. Relying on Proposition 3.1, we introduce
the operator near the boundary. Given � P p0, �0q (with �0 ° 0 small enough), we
introduce the �-neighborhood of the boundary

(3.3) V� “ tx P ⌦ : distpx,�q † �u ,
and the quadratic form, defined on the variational space

V� “
!
u P H

1pV�q : upxq “ 0 for all x P ⌦ such that distpx,�q “ �

and Bu “ u on �
)
,

by the formula

@u P V� , Qt�u
h

puq “
ª

V�

|hru|2 dx `
ª

�

´


2
h
2 ´ h

3
2

¯
|u|2 d� .

We denote by L t�u
h

the corresponding operator.

3.2.1. The operator near the boundary in tubular coordinates. Let ◆ be the canonical
embedding of � in R3 and g the induced metric on �. p�, gq is a C3 Riemannian
manifold, which we orientate according to the ambient space. Let us introduce the
map � : � ˆ p0, �q Ñ V� defined by the formula

�ps, tq “ ◆psq ´ tnpsq .
The transformation � is a C3 di↵eomorphism for any � P p0, �0q provided that �0 is
su�ciently small. The induced metric on � ˆ p0, �q is given by

G “ g ˝ pId ´ tLpsqq2 ` dt2 ,

where Lpsq “ dns is the second fundamental form of the boundary at s. Let us now
describe how our MIT bag - Robin Laplacian is transformed under the change of
coordinates. For all u P L

2pV�q, we define the pull-back function

(3.4) rups, tq :“ up�ps, tqq.
For all u P H

1pV�q, we have

(3.5)

ª

V�

|u|2 dx “
ª

�ˆp0,�q
|rups, tq|2 ã d� dt ,

(3.6)

ª

V�

|ru|2 dx “
ª

�ˆp0,�q

”
xrsru, g̃´1rsruy ` |Btru|2

ı
ã d� dt .

where
g̃ “

`
Id ´ tLpsq

˘2
,

and ãps, tq “ |g̃ps, tq| 12 . Here x¨, ¨y is the Euclidean scalar product and rs is the
di↵erential on � seen through the metric g. Since Lpsq P C2ˆ2, we have the exact
formula

(3.7) ãps, tq “ 1 ´ tpsq ` t
2
Kpsq

where
psq “ TrLpsq and Kpsq “ det Lpsq.
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The operator L t�u
h

is expressed in ps, tq coordinates as

ÄL t�u
h

“ ´h
2
ã

´1rspãg̃´1rsq ´ h
2
ã

´1BtpãBtq .
In these coordinates, the Robin condition becomes

h
2Btu “

´


2
h
2 ´ h

3
2

¯
u on t “ 0 .

We introduce, for � P p0, �0q,
(3.8)

rV� “ tps, tq : s P � and 0 † t † �u ,
rV� “ tu P H

1p rV�q, up¨, 0q P ker pB ´ 14q , up¨, �q “ 0u ,
rD� “ tu P H

2p rV�q X rV� : Btup¨, 0q ´
´


2
´ h

´ 1
2

¯
up¨, 0q P kerpB ` 14qu ,

rQt�u
h

puq “
ª

ÄV�

´
h
2xrsu, g̃

´1rsuy ` |hBtu|2
¯
ã d� dt `

ª

�

´


2
h
2 ´ h

3
2

¯
|ups, 0q|2 d� .

The operator ÄL t�u
h

acts on L
2prV�, ã dt d�q.

Let us denote by �t�u
n phq the n-th eigenvalue of the corresponding operator ÄL t�u

h
.

Using smooth cut-o↵ functions, the min-max principle and the Agmon estimates of
Proposition 3.1, it is standard to deduce the following proposition (see [13]).

Proposition 3.2. Let ✏0 P p0, 1q and � P p0,?
✏0q. There exist constants C ° 0,

h0 P p0, 1q such that, for all h P p0, h0q, � P p0, �0q, n • 1 such that �nphq § ´✏0h,

(3.9) �nphq § �
t�u
n

phq § �nphq ` C exp
´

´��h´ 1
2

¯
.

In the following, it is su�cient to choose

(3.10) � “ h
1
4 .

3.3. The rescaled MIT bag operator in boundary coordinates. Looking at
the rate of convergence obtained in Proposition 3.1, we perform a change of scale in
the normal direction that allows us to see something at the limit. We introduce the
rescaling

ps, ⌧q “ ps, h´ 1
2 tq ,

the new semiclassical parameter ~ “ h
1
4 and the new weights

(3.11) pa~ps, ⌧q “ ãps, h 1
2 ⌧q , pg~ps, ⌧q “ g̃ps, h 1

2 ⌧q .
We also introduce the parameter

(3.12) T~ “ �h
´ 1

2 “ h
´ 1

4 “ ~´1

(see (3.10)). We consider rather the operator

(3.13) xL~ “ h
´1 ÄLh ,

acting on L
2ppV~,pa~ d� d⌧q and expressed in the rescaled coordinates ps, ⌧q.



ON THE MIT BAG MODEL 15

As in (3.8), we let
(3.14)

pV~ “ tps, ⌧q : s P � and 0 † ⌧ † ~´1u ,
pV~ “ tu P H

1ppV~;pa~ d� d⌧q, up¨, 0q P ker pB ´ 14q , up¨, ~´1q “ 0u ,
pD~ “ tu P H

2ppV~;pa~ d� d⌧q X pV~ : B⌧up¨, 0q ´
´


2
~2 ´ 1

¯
up¨, 0q P kerpB ` 14qu ,

pQ~puq “
ª

pV~

´
~4xrsu, pg´1

~ rsuy ` |B⌧u|2
¯

pa~ d� d⌧ `
ª

�

´


2
~2 ´ 1

¯
|ups, 0q|2 d� ,

xL~ “ ´~4pa´1
~ rsppa~pg´1

~ rsq ´ pa´1
~ B⌧pa~B⌧ .

3.4. Contribution of the normal variable. Notice that the first order terms in
(3.14) are related to the normal variable. Hence, we are naturally led to introduce
the following quadratic form gathering all the terms acting in the normal direction:

(3.15)

pV 1
~ “ tu P L

2ppV~;pa~ d� d⌧q, B⌧u P L
2ppV~;pa~ d� d⌧q,

up¨, 0q P ker pB ´ 14q , up¨, ~´1q “ 0u ,

xQ1
~puq “

ª

�

´ ª ~´1

0

|B⌧u|2pa~ d⌧ `
´


2
~2 ´ 1

¯
|ups, 0q|2

¯
d� .

The goal of this section is to study the lowest part of the spectrum of the operator
xL 1
~ associated with the quadratic form xQ1

~.

3.4.1. Diagonalization of the boundary condition. Without the gradient term in the
s-direction appearing in pQ~puq, the MIT bag boundary condition can be diagonalized
for every s P �. Let us introduce for all s P �, the unitary 4 ˆ 4 matrix

Pn :“ 1?
2

ˆ
12 i� ¨ n

i� ¨ n 12

˙
.

We have

P
´1
n BPn “ � ,

thus, for all  P pV 1
~ ,

' “ P
˚
n P tu P L

2ppV~;pa~ d� d⌧q, B⌧u P L
2ppV~;pa~ d� d⌧q,

xup¨, 0q, e3y “ xup¨, 0q, e4y “ 0, up¨, ~´1q “ 0u ,

where xu, eky is the k-th component of the vector u P C4. Since Pn is unitary and
does not depend on the variable ⌧ , we get that

pQ1
~puq “ pQ1

~pP ˚
nuq .

Up to this change of variable, the first two components satisfy the following Robin
boundary condition ˆ

B⌧ ` 1 ´ ~2
2

˙
up¨, 0q “ 0 ,

whereas the last two satisfy the Dirichlet boundary condition.
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3.4.2. The Robin Laplacian on the half-line. Let C0 ° 0, , K P p´C0, C0q and
~0 ° 0 such that for all ~ P p0, ~0q,

a~,,Kp⌧q “ 1 ´ ~2⌧ ` ~4K⌧ 2 P p´1{2, 1{2q .
We introduce the following operator in one dimension (and valued in C), defined on
the Hilbert space L

2pp0, ~´1q; a~,,K d⌧q by

(3.16) HRob
~,,K “ ´a

´1
~,,Kp⌧qB⌧ pa~,,Kp⌧qB⌧ q “ ´B2

⌧
` ~2 ´ 2~4K⌧

a~,,Kp⌧q B⌧ ,

with domain

DompHRob
~,,Kq “ t P H

2pp0, ~´1q,Cq :  p~´1q “
ˆ

B⌧ ` 1 ´ ~2
2

˙
 p0q “ 0u .

For the associated quadratic form QRob
~,,K , we have,

DompQRob
~,,Kq “ t P H

1pp0, ~´1q,Cq , p~´1q “ 0u ,

QRob
~,,Kp q “

ª ~´1

0

|B⌧ |2a~,,K d⌧ `
ˆ

´1 ` ~2
2

˙
| p0q|2 .

Let us notice that our Robin Laplacian HRob
~,,K on a weighted space looks like the one

introduced by Hel↵er and Kachmar in [14]. But, here, we have an additional term
~2
2 in the boundary condition which will have an important impact on the spectrum
in the limit ~ Ñ 0. We can also observe that

`
HRob

~,,K
˘
,K

is an analytic family of

type (B) in the sense of Kato (see [21]).

Notation 3.3. The function u~,,K denotes the first positive eigenfunction of HRob
~,,K

normalized in L
2pp0, ~´1q, a~,,K d⌧q.

Let us now describe the bottom of the spectrum of HRob
~,,K when ~ goes to 0.

Proposition 3.4. The lowest eigenpair p�1
`
HRob

~,,K
˘
, u~,,Kq of HRob

~,,K satisfies the
following. Let "0 P p0, 1q. There exist ~0, C ° 0 such that for all ~ P p0, ~q, there
holds ˇ̌

ˇ̌�1
`
HRob

~,,K
˘

´
ˆ

´1 ` ~4
ˆ
K ´ 

2

4

˙˙ˇ̌
ˇ̌ § C~6 , �2

`
HRob

~,,K
˘

• ´"0{2 ,

and
}u~,,K ´  0}H1pp0,~´1q;a~,,K d⌧q § C~2 , where  0p⌧q “

?
2e´⌧

.

The constants ~0, C ° 0 do not depend on , K but depend on C0.

Notation 3.5. In the following, we use  “ psq and K “ Kpsq and we let

u~,psq,Kpsqp⌧q “ v~ps, ⌧q , �j

`
HRob

~,psq,Kpsq
˘

“ �
R
j
ps, ~q .

The asymptotic expansion of the eigenfunction in Proposition 3.4 leads to the
following remark (v~ps, ⌧q does not depend very much on s in the semiclassical
limit).

Remark 3.6. We introduce the “Born-Oppenheimer correction”:

R~psq “ }rsv~}2
L2pp0,~´1q;pa~ d⌧q .

It can be shown that

(3.17) }R~}L8p�q “ Op~4q ,
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by using straightforward adaptations of [15, Lemma 7.3]. By using (3.17) and an
induction procedure, it is also possible to show the same estimate for the second
order derivatives:

sup
sP�

}r2
s
v~}L2pp0,~´1q;pa~ d⌧q “ Op~2q .

3.4.3. Spectrum of xL 1
~ . Since the spectrum of the Dirichlet Laplacian is non-negative,

Proposition 3.4 gives us immediately the following result.

Proposition 3.7. Let "0 P p0, 1q. There exist C, ~0 ° 0 such that for any ~ P p0, ~0q,
we have

spp xL 1
~ q Ä p´1 ´ C~4,´1 ` C~4q Y r´"0,`8q.

The L
2ppV~;pa~ d� d⌧q4- spectral projection ⇧~ :“ �p´1´C~4,´1`C~4qp xL 1

~ q satisfies

Ran⇧~ “ tps, ⌧q P pV~ fiÑ fpsqv~ps, ⌧q, f P L
2p�; d�q4 X kerp14 ´ Bqu .

Remark 3.8. Since, s fiÑ v~ps, ¨q is regular, we also have

⇧~ P H
1ppV~;pa~ d� d⌧q4

for any  P pV~. Actually, we can give an explicit expression of ⇧~ by using the
diagonalization of the MIT condition of Section 3.4.1:

(3.18) ⇧~ “ v~Pn

ˆ
12 0
0 0

˙
P

˚
n x , v~yL2pp0,~´1q,pa~ d⌧q ,

where x , v~yL2pp0,~´1q,pa~ d⌧q “ px j, v~yL2pp0,~´1q,pa~ d⌧qqjPt1,...,4u. By taking the derivative
of (3.18) with respect to s, by using the Leibniz formula and (3.17), we get the
commutator estimate, for  P pV~,

}rrs,⇧~s }
L2ppV~,pa d⌧ d�q § C} }

L2ppV~,pa d⌧ d�q .

3.5. E↵ective operator on Ran⇧~. In this section, we compare the lower part
of the spectrum of the operator xL~ with the one of the operator xL e↵

~ acting on
Ran⇧~ , whose quadratic form gathers all the terms of orders lower or equal than 4
and which is defined by
(3.19)

pV e↵
~ “ tu P H

1ppV~;pa~ d� d⌧q4, up¨, 0q P ker pB ´ 14q , up¨, ~´1q “ 0u X Ran⇧~ ,

yQe↵
~ puq “ pQ1

~puq ` ~4
ª

pV~

|rsu|2pa~ d� d⌧ .

We get the following result.

Theorem 3.9. For "0 P p0, 1q, ~ ° 0, we let

pN✏0,~ “ tn P N˚ : p�np~q § ´"0u .
There exist positive constants ~0, C, such that, for all ~ P p0, ~0q and n P pN"0,~,

(3.20) p�´
n

p~q § p�np~q § p�`
n

p~q ,
where p�˘

n
p~q is the n-th eigenvalue of xL e↵,˘

~ whose quadratic form is defined for all

u P pV e↵,˘
~ “ pV e↵

~ by

pQe↵,˘
~ puq “ pQ1

~puq ` ~4
ª

pV~

p1 ˘ C~q|rsu|2pa~ d� d⌧ ˘ C~6
ª

pV~

|u|2pa~ d� d⌧ .



18 N. ARRIZABALAGA, L. LE TREUST, AND N. RAYMOND

3.6. E↵ective operator on the boundary. The aim of this section is to exhibit
an e↵ective operator on the boundary �. To do so, we will have to study the Born-
Oppenheimer correction terms. The e↵ective operator up to the order 4 on the
boundary has the following quadratic form:

(3.21)

pV �,e↵ “ H
1p�q X kerp14 ´ Bq ,

pQ�,e↵
~ pfq “ ´}f}2

L2p�q ` ~4
ª

�

´
|rsf |2 `

´
´ psq2

4
` Kpsq

¯
|f |2

¯
d� .

More precisely, we obtain the following result.

Theorem 3.10. For "0 P p0, 1q, ~ ° 0, we let

pN✏0,~ “ tn P N˚ : p�np~q § ´"0u .
There exist positive constants ~0, C such that, for all ~ P p0, ~0q and n P pN"0,~,

(3.22) p��,´
n

p~q § p�np~q § p��,`
n

p~q ,
where p��,˘

n
p~q is the n-th eigenvalue of xL �,e↵,˘

~ whose quadratic form is defined by:

pV �,e↵,˘ “ pV �,e↵
,

pQ�,e↵,˘
~ pfq “ ´}f}2

L2p�q ` ~4
ª

�

´
p1 ˘ C~q|rsf |2 `

´
´ psq2

4
` Kpsq ˘ C~

¯
|f |2

¯
d� .

Theorem 1.13 is a consequence of the semiclassical reformulation in Section 3.1,
Proposition 3.2, the rescaling of Section 3.3 and Theorem 3.10.

4. Proof of the results stated in Section 3

4.1. Proof of the Agmon estimates of Proposition 3.1. Before stating the
proof, let us recall the following lemma.

Lemma 4.1. Let � and  be Lipschitzian functions on ⌦, we have

Re xr ,rp�2
 qy “ }rp� q}2 ´ } r�}2.

Let us now give the proof of Proposition 3.1.

Proof. First, we notice that by (3.2),

(4.1) Lh • ´h.

Let us denote by ahp¨, ¨q the sesquilinear form associated with Qh defined in (3.2).
Let us define the following Lipschitzian functions

x P ⌦ fiÑ �pxq “ �distpx, B⌦q P R
and

x P ⌦ fiÑ �hpxq “ e
�pxqh´1{2 P R .

Since �h is real-valued and Lipschitzian, we get that �2
h
 h belongs to DpQhq. We

have that

ahp h,�
2
h
 hq “ Re xLh h,�

2
h
 hy⌦

“ Re

"
h
2 xr h,rp�2

h
 hqy⌦ `

ª

�

´


2
h
2 ´ h

3
2

¯
|�h h|2 d�

*
.
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By Lemma 4.1, we get that

ahp h,�
2
h
 hq “ Qhp�h hq ´ h

2} hr�h}2
L2p⌦q .

Recall that  h is an eigenfunction of Lh associated with the eigenvalue �, so that

(4.2) Qhp�h hq ´ h
2} hr�h}2

L2p⌦q “ �}�h h}2
L2p⌦q .

Let R • 1 and c̃ ° 1. We introduce a quadratic partition of unity of ⌦,

�
2
1,h,R ` �

2
2,h,R “ 1 ,

in order to study the asymptotic behavior of  h in the interior and near the boundary
� separately. We assume that �1,h,R satisfies

�1,h,Rpxq “
#
1 if distpx,�q • h

1{2
R

0 if distpx,�q § h
1{2

R{2,
and that,

maxp|r�1,h,Rpxq|, |r�2,h,Rpxq|q § 2c̃h´1{2{R ,

for all x P ⌦. Using again Lemma 4.1, we get

Qhp�h hq “
ÿ

k“1,2

Qhp�k,h,R�h hq ´ h
2}�h hr�k,h,R}2

L2p⌦q .

We have Qhp�1,h,R�h hq • 0 because of a support consideration. Let us also remark
that

h
2}�h hr�k,h,R}2

L2p⌦q § h4c̃2{R2}�h h}2
L2p⌦q

and
h
2} hr�h}2

L2p⌦q § h�
2}�h h}2

L2p⌦q .

We deduce from (4.2) that

�}�h h}2
L2p⌦q • Qhp�2,h,R�h hq ´ h} h�h}2

L2p⌦q
`
�
2 ` 8rc2R´2

˘
,

thus,

(4.3) hp"0 ´ �
2 ´ 8rc2R´2q}�h h}2

L2p⌦q § ´Qhp�2,h,R�h hq .
By Lemma 4.1, we get that

Qhp�2,h,R�h hq “ ahp h, p�2,h,R�hq2 hq ` h
2} hrp�2,h,R�hq}2

L2p⌦q
“ �}�2,h,R�h h}2

L2p⌦q ` h
2} h�hr�2,h,R}2

L2p⌦q ` h} h�2,h,R�hr�}2
L2p⌦q

` h
3{22Re x he

2�h
´1{2r�2,h,R, h�2,h,Rr�y

L2p⌦q
• �}�2,h,R�h h}2

L2p⌦q ´ h4c̃{R�}�h h}2
L2p⌦q .

Hence, we obtain by (4.3) and (4.1) that
`
"0 ´ �

2 ´ 8rc2R´2 ´ 4c̃R´1
�

˘
}�h h}2

L2p⌦q § }�2,h,R�h h}2
L2p⌦q

§ } h}2
L2p⌦qe

2R�
.

Let us fix R ° 0 so that
`
"0 ´ �

2 ´ 8rc2R´2 ´ 4c̃R´1
�

˘
• p"0 ´ �

2q{2 ° 0 .

We get that
}�h h}L2p⌦q § C} h}L2p⌦q ,

and the conclusion follows by (4.2). ⇤
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4.2. Proof of Proposition 3.4.

Proof. The proof follows from the method used in [14] by Hel↵er and Kachmar. Let
us recall the strategy. The operator is

HRob
~,,K “ ´a

´1
~,,Kp⌧qB⌧ pa~,,Kp⌧qB⌧ q “ ´B2

⌧
` ~2 ´ 2~4K⌧

a~,,Kp⌧q B⌧ ,

ˆ
B⌧ ` 1 ´ ~2

2

˙
up¨, 0q “ 0 .

We look for quasi-eigenvalues and quasi-eigenfunctions expressed as formal series:

� “ �0 ` ~2�1 ` ~4�2 ,  “  0 ` ~2 1 ` ~4 2 .

By writing the formal eigenvalue equation, expanding the operator and the boundary
condition in powers of ~2, we get the following equations. In the following, the
integration interval is p0,`8q. The first equation is

´B2
⌧
 0 “ �0 0 , pB⌧ ` 1q 0p0q “ 0 .

We get that the solution is �0 “ ´1 and  0p⌧q “
?
2e´⌧ . Then, the second one is

`
´B2

⌧
` 1

˘
 1 “ p�1 ´ B⌧ q 0 , pB⌧ ` 1q 1p0q ´ 

2
 0p0q “ 0 .

By taking the scalar product with  0, we find (by the Fredholm alternative) that
there is a solution if and only if

x
`
´B2

⌧
` 1

˘
 1, 0yL2p0,`8q “ xp�1 ´ B⌧ q 0, 0yL2p0,`8q

holds. Note that xB⌧ 0, 0yL2p0,`8q “ ´1 and that, by integration by parts,

x
`
´B2

⌧
` 1

˘
 1, 0yL2p0,`8q “ xpB⌧ ` 1q 1p0q, 0p0qy ` x 1,

`
´B2

⌧
` 1

˘
 0yL2p0,`8q

“ 

2
| 0p0q|2 “  ,

so that �1 “ 0. We may actually give an explicit expression for a function  1

satisfying
`
´B2

⌧
` 1

˘
 1 “  0 , pB⌧ ` 1q 1p0q ´ 

2
 0p0q “ 0 .

The functions 
´

⌧?
2

` c

¯
e

´⌧ are a solution for all c P R. We choose c “ 0, so that

 1p⌧q “ ⌧?
2
e

´⌧ . We can now consider the crucial step. We write

`
´B2

⌧
` 1

˘
 2 “ �2 0 ´ B⌧ 1 ´ ⌧p´2K ` 

2qB⌧ 0 , pB⌧ ` 1q 2p0q ´ 

2
 1p0q “ 0 .

As in the previous case, it is su�cient to find �2 such that

x
`
´B2

⌧
` 1

˘
 2, 0yL2p0,`8q “ x�2 0 ´ B⌧ 1 ´ ⌧p´2K ` 

2qB⌧ 0, 0yL2p0,`8q .

holds. We have

x
`
´B2

⌧
` 1

˘
 2, 0yL2p0,`8q “ xpB⌧ ` 1q 2p0q, 0p0qy “ 

2
x 1p0q, 0p0qy “ 0 ,
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and

x´B⌧ 1, 0yL2p0,`8q “  x 1, B⌧ 0yL2p0,`8q `  x 1p0q, 0p0qy “ ´ x 1, 0yL2p0,`8q ,

“ ´2
ª `8

0

⌧e
´2⌧ d⌧ “ ´

2

4
,

x´⌧p´2K ` 
2qB⌧ 0, 0y

L2p0,`8q “ 2p´2K ` 
2q
ª `8

0

⌧e
´2⌧ d⌧ “ ´K ` 

2

2
.

Hence, it follows that

�2 “ K ´ 
2

4
.

By using convenient cuto↵ functions (to satisfy the Dirichlet condition near ~´1)
and the spectral theorem, we easily get that

dist

ˆ
´1 ` ~4

ˆ
K ´ 

2

4

˙
, sp

`
HRob

~,,K
˘˙

§ C~6 .

Then, by using straightforward adaptations of the results in [20, Appendix] (we deal
with the additional term in the boundary condition as a perturbation), we get the
lower bound for �2

`
HRob

~,,K
˘
.

Therefore, the only eigenvalue in the spectrum of HRob
~,,K that is close to ´1 `

~4
´
K ´ 

2

4

¯
is the first one. The approximation of u~,,K follows from elementary

arguments and the Agmon estimates (to deal with the cuto↵ functions). ⇤

4.3. Proof of Theorem 3.9. Let us denote

⇧K
~ “ Id ´ ⇧~ .

4.3.1. Main Lemma. The proof of the theorem relies on the following lemma (see
also [20]).

Lemma 4.2. There exist C, ~0 ° 0 such that the following holds for all ~ P p0, ~0q
and all u P pV~,

xQ~p⇧~uq § pQ1
~p⇧~uq ` ~4p1 ` C~q

ª

pV~

|rs⇧~u|2pa~ d� d⌧

and

xQ~puq • pQ1
~p⇧~uq ` ~4p1 ´ C~q

ª

pV~

|rs⇧~u|2pa~ d� d⌧ ´ C~6}⇧~u}2
L2ppV~;pa~ d� d⌧q

` pQ1
~p⇧K

~ uq ` ~4p1 ´ C~q
ª

pV~

|rs⇧
K
~ u|2pa~ d� d⌧ ´ C~2}⇧K

~ u}2
L2ppV~;pa~ d� d⌧q ,

Proof. Let us remark first that there exist C, ~0 ° 0 such that for all ~ P p0, ~0q,
ˇ̌
ˇ
ª

pV~

´
|rsu|2pa~ ´ xrsu,pa~pg´1

~ rsuy
¯
d� d⌧

ˇ̌
ˇ § C~

ª

pV~

|rsu|2pa~ d� d⌧ ,

since 0 † ⌧ † ~´1. Then, the upper bound follows. Let us now focus on the lower
bound. Since ⇧h is a spectral projection of xL 1

~ , we get that for all u P pV~,

xQ1
~puq “ xQ1

~p⇧~uq ` xQ1
~p⇧K

~ uq .
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We also haveª

pV~

|rsu|2pa~ d� d⌧ “
ª

pV~

|rs

`
⇧~u ` ⇧K

~ u
˘

|2pa~ d� d⌧ “
ª

pV~

|rsp⇧~uq|2pa~ d� d⌧

`
ª

pV~

|rsp⇧K
~ uq|2pa~ d� d⌧ ` 2Re

ª

pV~

xrsp⇧~uq,rsp⇧K
~ uqy pa~ d� d⌧ .

Let us analyze the double product. We have
ª

pV~

xrsp⇧~uq,rsp⇧K
~ uqy pa~ d� d⌧ “

ª

pV~

xrspp⇧~q2 uq,rsp
`
⇧K

~
˘2

uqy pa~ d� d⌧

“
ª

pV~

x⇧~rsp⇧~uq,⇧K
~rsp⇧K

~ uqy pa~ d� d⌧ `
ª

pV~

x⇧~rsp⇧~uq,
“
rs,⇧

K
~

‰
⇧K

~ uy pa~ d� d⌧

`
ª

pV~

xrrs,⇧~s⇧~u,⇧
K
~rsp⇧K

~ uqy pa~ d� d⌧ `
ª

pV~

xrrs,⇧~s⇧~u,
“
rs,⇧

K
~

‰
⇧K

~ uy pa~ d� d⌧ .

Since ⇧~ is an orthogonal projection of L2ppV~,pa~ d� d⌧q, we get that

Re

ª

pV~

x⇧~rsp⇧~uq,⇧K
~rsp⇧K

~ uqy pa~ d� d⌧ “ 0 .

Moreover, by commuting ⇧K
~ and rs, by using an integration by parts and Remark

3.6 (see also Remark 3.8), we have
ˇ̌
ˇ
ª

pV~

xrrs,⇧~s⇧~u,⇧
K
~rsp⇧K

~ uqy pa~ d� d⌧
ˇ̌
ˇ

§ C

´
}⇧~u}2

L2ppV~;pa~ d� d⌧q ` }rs⇧~u}2
L2ppV~;pa~ d� d⌧q

¯1{2
}⇧K

~ u}
L2ppV~;pa~ d� d⌧q .

Using the inequality |2ab| § ~2a2 ` ~´2
b
2, we obtain that

ª

pV~

|rsu|2pa~ d� d⌧

•
ª

pV~

|rsp⇧~uq|2pa~ d� d⌧ `
ª

pV~

|rsp⇧K
~ uq|2pa~ d� d⌧

´ C

´
}⇧~u}2

L2ppV~;pa~ d� d⌧q ` }rs⇧~u}2
L2ppV~;pa~ d� d⌧q

¯1{2
}⇧K

~ u}
L2ppV~;pa~ d� d⌧q

• p1 ´ C~2q
ª

pV~

|rsp⇧~uq|2pa~ d� d⌧ ´ C~2}⇧~u}2
L2ppV~;pa~ d� d⌧q

`
ª

pV~

|rsp⇧K
~ uq|2pa~ d� d⌧ ´ C~´2}⇧K

~ u}2
L2ppV~;pa~ d� d⌧q

and the result follows. ⇤

4.3.2. Proof of Theorem 3.9. The upper bound of Theorem 3.9 follows immediately
from the min-max principle. Let us focus on the lower bound. By Proposition 3.4,
we have that there exist ~0, C ° 0, such that, for all ~ P p0, ~0q and all u P pV~,

pQ1
~p⇧K

~ uq ` ~4p1 ´ C~q
ª

pV~

|rs⇧
K
~ u|2pa~ d� d⌧ ´ C~2}⇧K

~ u}2
L2ppV~;pa~ d� d⌧q

• ´3

4
"0}⇧K

~ u}2
L2ppV~;pa~ d� d⌧q
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Hence, Lemma 4.2 ensures that

xQ~puq • pQe↵,´
~ p⇧~uq ´ 3

4
"0}⇧K

~ u}2
L2ppV~;pa~ d� d⌧q .

Since ⇧~ is an orthogonal projection of L2ppV~;pa~ d� d⌧q, we get that the spectrum

of xL~ lying below ´"0 is discrete and coincides with the one of xL e↵,´
~ .

4.4. Proof of Theorem 3.10.

Proof. We first notice that, by definition of v~ (see Propositions 3.4 and 3.7),

pQ1
~pfv~q “

ª

�

�
R
1 ps, ~q|fp�q|2 d� .

Then, we have
ª

pV~

|rspfv~q|2pa~ d� d⌧ “
ª

pV~

|rsf |2|v~|2pa~ d� d⌧ `
ª

pV~

|rsv~|2|f |2pa~ d� d⌧

` 2Re

ª

pV~

xv~rsf, frsv~y pa~ d� d⌧ .

By Proposition 3.4, we get that }v~ps, ¨q}2
L2pp0,~´1q,pa~psq d⌧q “ 1, for all s P �. Hence,

ª

pV~

|rsf |2|v~|2pa~ d� d⌧ “
ª

�

|rsf |2 d� ,

ª

pV~

|rsv~|2|f |2pa~ d� d⌧ “
ª

�

R~|f |2 d� ,

and
ˇ̌
ˇ2Re

ª

pV~

xv~rsf, frsv~y pa~ d� d⌧
ˇ̌
ˇ § 2

ˆª

�

R~|f |2 d�
˙1{2 ˆª

�

|rsf |2 d�
˙1{2

§ ~´2

ª

�

R~|f |2 d� ` ~2
ª

�

|rsf |2 d� ,

where R~ is defined in Remark 3.6. The result follows. ⇤

Appendix A. About Theorem 1.5

In this appendix we discuss some aspects mentioned in Theorem 1.5. Since the
formula for the square of the MIT bag operator plays an important role in this paper,
we recall its proof.

A.1. Elementary properties. Let us recall the following elementary algebraic
properties.

Lemma A.1. For all x,y P R3, we have

p↵ ¨ xqp↵ ¨ yq “ px ¨ yq14 ` i�5↵ ¨ px ˆ yq ,
�p↵ ¨ xq “ ´p↵ ¨ xq� , ��5 “ ´�5� ,
�5p↵ ¨ xq “ p↵ ¨ xq�5 .

Proof. We refer to [31, Appendix 1.B]. ⇤
Points ii and iii of Theorem 1.5 are immediate consequences of the following lemma

(see [31, Section 1.4.6] and [28, Section 10.4.5]).
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Lemma A.2 (Discrete symmetries). Let us introduce three operators defined for
 P C4 by

C “ i�↵2 , Charge conjugation operator,

T “ ´i�5↵2 , Time reversal-symmetry operator,

CT “ ��5 , CT-symmetry operator.

The operators C and T , resp. CT are anti-unitary, resp. unitary transformations
that leave DompHq invariant and satisfy C

2 “ ´T
2 “ 14, CT “ TC,

HC “ ´CH, HT “ TH and H pCT q “ ´ pCT qH .

Moreover, for any  P C4, we have that x , T y “ 0.

We can relate the mean curvature to the commutator between the boundary
condition and a Dirac derivative parallel to the boundary.

Lemma A.3 (Mean curvature as commutator). We have

r↵ ¨ pn ˆ Dq,Bs “ ´�5B .

Proof. Let s P B⌦. By anticommutation between ↵ and �, we have

↵ ¨ pn ˆ DqB “ � ↵ ¨ pn ˆ rqp↵ ¨ n q .
Let n1 and n2 be two eigenvectors of the Weingarten map dns, whose respective
eigenvalues are denoted by p�1

,�
2q and, such that, pn,n1

,n2q is an orthonormal
basis of R3. We have

↵ ¨ pn ˆ rq “ ↵ ¨ n2Bn1 ´ ↵ ¨ n1Bn2 .

Then, by the Leibniz formula and Lemma A.1, it follows that

p↵ ¨ n ˆ rqp↵ ¨ n q “ ´↵ ¨ n p↵ ¨ n2Bn1 ´ ↵ ¨ n1Bn2q 
` pp↵ ¨ n2qp↵ ¨ Bn1nq ´ p↵ ¨ n1qp↵ ¨ Bn2nqq ,

and thus, again by Lemma A.1,

p↵ ¨ n ˆ rqp↵ ¨ n q “ ´↵ ¨ n p↵ ¨ n2Bn1 ´ ↵ ¨ n1Bn2q ´ ip�1 ` �
2q�5↵ ¨ n .

We deduce that

↵ ¨ pn ˆ DqB “ Bp↵ ¨ n ˆ Dq ´ ip�1 ` �
2q��5↵ ¨ n ,

and the conclusion follows. ⇤

A.2. Formula for the square. Let us finally consider Point iv in Theorem 1.5.
In the following lines, we assume that  P DompHq. First, we expand the square

to get

}H }2
L2p⌦q “ x↵ ¨ D ,↵ ¨ D y⌦ ` m

2 x� , � y⌦ ` 2mRe x� ,↵ ¨ D y⌦ .

Since the ↵-matrices are Hermitian and thanks to the Green-Riemann formula we
have:

(A.1) @', P H
1p⌦,C4q , x↵ ¨ D', y⌦ “ x',↵ ¨ D y⌦ ` xp´i↵ ¨ nq', yB⌦ .

Then, we use (A.1) with ' “ � , and by using that ↵ anticommutes with �, we find

2Re x� ,↵ ¨ D y⌦ “ xi↵ ¨ n� , ,yB⌦ “ x´i�↵ ¨ n , yB⌦ “ } }2
L2pB⌦q .



ON THE MIT BAG MODEL 25

It remains to use that � is unitary to deduce

(A.2) }H }2
L2p⌦q “ }↵ ¨ D }2

L2p⌦q ` m
2} }2

L2p⌦q ` m} }2
L2pB⌦q .

Moreover, assume that  P H
2p⌦q. Then, we use again the Green-Riemann formula

(A.1) and we get

x↵ ¨ D ,↵ ¨ D y⌦ “ x , p↵ ¨ Dq2 y⌦ ` xp´i↵ ¨ nq ,↵ ¨ D yB⌦ .

By noticing that p↵ ¨ Dq2 “ 14D2 and by using integration by parts again, we find

x↵ ¨ D ,↵ ¨ D y⌦ “ xD , D y⌦ ` i x , pp↵ ¨ nqp↵ ¨ Dq ´ pn ¨ Dqq yB⌦ .

Since H2p⌦q is dense in H
1p⌦q, we get that this formula holds for any u P DompHq.

We shall now investigate the boundary term by using the first algebraic relation in
Lemma A.1:

i x , pp↵ ¨ nqp↵ ¨ Dq ´ pn ¨ Dqq yB⌦ “ ´ x , �5↵ ¨ pn ˆ Dq yB⌦
“ ´ x�5 ,↵ ¨ pn ˆ Dq yB⌦ .

It remains to study the term x�5 ,↵ ¨ pn ˆ Dq yB⌦. Since  belongs to DompHq, we
have

x�5 ,↵ ¨ pn ˆ Dq yB⌦ “ x�5 , r↵ ¨ pn ˆ Dq,Bs yB⌦ ` x�5 ,B↵ ¨ pn ˆ Dq yB⌦ ,

and, since B is a symmetric operator, we get

x�5 ,B↵ ¨ pn ˆ Dq yB⌦ “ xB�5 ,↵ ¨ pn ˆ Dq yB⌦ “ ´ x�5B ,↵ ¨ pn ˆ Dq yB⌦ .

Hence, we deduce that

x�5 ,↵ ¨ pn ˆ Dq yB⌦ “ 1

2
x�5 , r↵ ¨ pn ˆ Dq,Bs yB⌦ .

Finally, by using Lemma A.3, we get

i x , pp↵ ¨ nqp↵ ¨ Dq ´ pn ¨ Dqq yB⌦ “ ´1

2
x�5 ,´�5 yB⌦ ,

and the conclusion follows.
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