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EIGENVALUE CURVES FOR GENERALIZED MIT BAG MODELS

NAIARA ARRIZABALAGA, ALBERT MAS, TOMÁS SANZ-PERELA, AND LUIS VEGA

Abstract. We study spectral properties of Dirac operators on bounded domains ⌦ ⇢ R3 with
boundary conditions of electrostatic and Lorentz scalar type and which depend on a parameter
⌧ 2 R; the case ⌧ = 0 corresponds to the MIT bag model. We show that the eigenvalues are
parametrized as increasing functions of ⌧ , and we exploit this monotonicity to study the limits
as ⌧ ! ±1. We prove that if ⌦ is not a ball then the first positive eigenvalue is greater than
the one of a ball with the same volume for all ⌧ large enough. Moreover, we show that the first
positive eigenvalue converges to the mass of the particle as ⌧ # �1, and we also analyze its
first order asymptotics.
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Departamento de Matemáticas, Universidad del Páıs Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), Aptdo.
644, 48080 Bilbao, Spain.

Albert Mas1,2 (albert.mas.blesa@upc.edu, ORCID: 0000-0002-8322-1663)
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1. Introduction

Dirac operators acting on domains ⌦ ⇢ Rd are used in relativistic quantum mechanics to
describe particles that are confined in a box. The so-called MIT bag model is a very remarkable
example in dimension d = 3. It was introduced in the 1970s as a simplified model to study
confinement of quarks in hadrons [29, 37, 38, 51]. The mathematical study of this and related
three-dimensional models has gained attention in the recent years [6, 7, 8, 21, 25, 49, 64, 67].
In dimension d = 2, Dirac operators with special boundary conditions similar to the ones in
the MIT bag model are used in the description of graphene [3, 28, 34, 43, 60, 66]. They have
been also investigated in the past few years from the mathematical point of view [14, 15, 23,
32, 42, 55, 65, 70]. The present work focuses on the spectral study of a family {H⌧}⌧2R of
Dirac operators acting on bounded domains ⌦ ⇢ R3 with electrostatic plus Lorentz scalar type
boundary conditions which depend on a parameter ⌧ 2 R; the particular case ⌧ = 0 corresponds
to the MIT bag model.

Throughout this article we assume that ⌦ ⇢ R3 is a bounded domain with C2 boundary.
The unit normal vector field at @⌦ which points outwards of ⌦ is denoted by ⌫, and the surface
measure on @⌦, by �. Given ⌧ 2 R, let H⌧ be the Dirac operator on ⌦ defined by

Dom(H⌧ ) :=
�
' 2 H1(⌦)⌦ C4 : ' = i(sinh ⌧ � cosh ⌧ �)(↵ · ⌫)' on @⌦

 
,

H⌧' := (�i↵ ·r+m�)' for all ' 2 Dom(H⌧ ),

where �i↵ ·r+m� =: H denotes the di↵erential expression which gives the action of the free
Dirac operator on R3. More precisely, m � 0 denotes the mass of the particle, ↵ := (↵1,↵2,↵3),

↵j :=

✓
0 �j
�j 0

◆
for j = 1, 2, 3, and � :=

✓
I2 0
0 �I2

◆

are the C4⇥4-valued Dirac matrices, Id denotes the identity matrix in Cd⇥d (it will also be
denoted by 1 when no confusion arises), and

�1 :=

✓
0 1
1 0

◆
, �2 :=

✓
0 �i
i 0

◆
, �3 :=

✓
1 0
0 �1

◆

are the Pauli matrices. As customary, we use the notation ↵ · X := ↵1X1 + ↵2X2 + ↵3X3 for
X = (X1, X2, X3), and analogously for � ·X with � := (�1, �2, �3).

The family {H⌧}⌧2R naturally arises in the context of confining �-shell interactions. In
the last decade, Dirac operators coupled with �-shell potentials have been investigated from a
mathematical perspective: their self-adjointness and spectral properties [9, 10, 16, 17, 19, 20, 22,
39, 57, 68], the case of rough domains [27, 26], and their approximations and other asymptotic
regimes [33, 50, 59, 58, 61]; we refer to the survey [63] for further details on the state of the art of
shell interactions for Dirac operators. Several of these works addressed singular perturbations
of the form

� i↵ ·r+m� + (�eI4 + �s�)�@⌦, (1.1)

which correspond to the free Dirac operator on R3 coupled with electrostatic and Lorentz scalar
�-shell potentials with strengths �e and �s, respectively. Here, the �-shell distribution acts as
�@⌦(') = 1

2('+ + '�), where '± denotes the boundary values of ' : R3
! C4 when one
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approaches @⌦ from inside/outside ⌦. It is well known that the operator associated to (1.1)
decouples as the orthogonal sum of two operators, one acting in L2(⌦) ⌦ C4 and the other in
L2(R3

\ ⌦) ⌦ C4, if and only if �2
e
� �2

s
= �4. This has important consequences in the time-

dependent scenario: the Hamiltonian (1.1) generates confinement if and only if �2
e
� �2

s
= �4,

meaning that a particle which is initially located inside/outside ⌦ will remain inside/outside
⌦ for all time. Under the confining relation �2

e
� �2

s
= �4, the boundary condition for the

operator acting in L2(⌦)⌦ C4 is

' =
i

2
(�e � �s�)(↵ · ⌫)' on @⌦; (1.2)

recall that the MIT bag boundary condition corresponds to (1.2) with �e = 0 and �s = 2.
Hence, if we set

⌧ 7! �e(⌧) := 2 sinh ⌧ and ⌧ 7! �s(⌧) := 2 cosh ⌧ for ⌧ 2 R, (1.3)

we obtain a parametrization of the whole branch of the hyperbola �2
e
��2

s
= �4 that contains the

MIT bag boundary condition, which is attained through the parametrization at ⌧ = 0. Observe
that the boundary condition used in the definition of Dom(H⌧ ) is simply the combination of
(1.2) and (1.3). That is, from the singular perturbations point of view, {H⌧}⌧2R is the restriction
to ⌦ of the branch of confining electrostatic plus Lorentz scalar �-shell interactions (of constant
strength in @⌦) that contains the MIT bag model.
In two dimensions, a parametrization similar to ⌧ 7! H⌧ was used in [23] to describe graphene

quantum dots. In there, the boundary conditions are given by �-shell potentials of Lorentz scalar
plus magnetic type. In our three-dimensional framework, the situation analogous to [23] would
be to couple the free Dirac operator with potentials of the form (�s� + �ai(↵ · ⌫)�)�@⌦ with
�2
s
+ �2

a
= 4, instead of the ones given by (1.1). Of course, both shell interactions agree for

�s = 2 (hence �e = �a = 0), and they lead to the MIT bag operator. We refer to [33, Sections
2.3 and 9] for more details.

The operator H⌧ is self-adjoint. Its spectrum �(H⌧ ) is purely discrete and is contained in
R \ [�m,m]. That is, for every ⌧ 2 R, �(H⌧ ) is a sequence {�±

k
(⌧)}k�1 ⇢ R such that

. . .  ��2 (⌧)  ��1 (⌧) < �m  m < �+1 (⌧)  �+2 (⌧)  . . .

In addition, it holds that � is an eigenvalue of H⌧ if and only if �� is an eigenvalue of H�⌧ —in
particular �(H0) is symmetric. All these properties are gathered in Lemma 1.2 below. Our
main goal in this work is to describe the eigenvalue curves of the family {H⌧}⌧2R, that is, the
mappings ⌧ 7! �±

k
(⌧), k � 1, as ⌧ ranges over all R. We pay special attention to the study of

the first eigenvalues, and by this we mean the ones whose absolute value is closest to m, i.e.,
��1 (⌧) and �

+
1 (⌧). By the odd symmetry with respect to the parameter ⌧ mentioned above, it

is enough to study �+1 (⌧), which will be called in the sequel the first positive eigenvalue of H⌧ .
In Section 1.1 we investigate how the eigenvalue curves look like when ⌦ is a ball, a case

where explicit formulas involving Bessel functions are available. This is our starting point for
the spectral analysis in the general case: the evidences observed on the ball provide us with
clues of what could be expected to hold on any domain. Our main results for general domains
are described in Section 1.2.

Before getting into more details, a few words on our motivation for the results presented
in this work are in order. From a general perspective, there is a large body of literature on
the spectral analysis of di↵erential operators on domains with parameter-dependent boundary
conditions. The Robin Laplacian is a very remarkable example; the interested reader may look
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at [31] and the references therein. However, as far as we know, the type of perturbative analysis
carried out in the present work has not been considered so far in the context of shell interactions
for Dirac operators, except for [11]. In there, the monotonicity of the eigenvalues with respect to
the parameter that defines the electrostatic �-shell interaction is used to optimize the threshold
of admissible strengths that yield nontrivial point spectrum, and to characterize the optimal
domains. Roughly speaking, a property of the parameter-dependent family of operators (the
monotonicity) is successfully used to solve a shape optimization problem for a certain quantity
of spectral nature (the threshold of strengths).
One may consider the Dirac operators on domains as the relativistic counterpart of Laplacians

with boundary conditions, as for example of Robin type. In this way, the study carried out in
the present work has its own interest from the point of view of perturbation theory. However,
the main motivation that originated this article was to address the shape optimization problem
for the spectral gap of the MIT bag operator, which consists of minimizing the first squared
eigenvalue ofH0 among all domains with prescribed volume. The analogous question in the two-
dimensional framework —the optimization of the spectral gap for Dirac operators with infinite
mass boundary conditions— is considered a hot open problem in spectral geometry [54]. More
generally, the quest of geometrical upper and lower bounds for the spectral gap is a trending
topic of research [5, 24, 30, 56]. This quest is also addressed in the di↵erential geometry
literature for Dirac operators on spin manifolds, where sharp inequalities for spectral gaps in
terms of geometric quantities are shown [2, 4, 12, 13, 35, 45, 46, 47, 53]. Despite the amount of
works available on this topic, for the case of bounded domains in euclidean spaces the problem
of minimizing the spectral gap under a volume constraint (and with no further restrictions on
the geometry of the boundary) remains open.
Following the line of our comments about [11], in order to address the shape optimization

problem for the MIT bag operator it could be useful to take benefit from the inclusion of H0

in the family {H⌧}⌧2R, and to exploit the connection of H⌧ with the Dirichlet Laplacian as
⌧ ! ±1; see Theorem 1.4 below. In this regard, Corollary 1.6 shows the optimality of the
ball in the asymptotic regime ⌧ " +1. In addition, Theorem 1.7 draws a path to address
the optimality of the ball in the asymptotic regime ⌧ # �1. As we said, we expect that this
information for |⌧ | large enough will be useful to deal with the optimality of the ball in the
general case of ⌧ 2 R and, in particular, for ⌧ = 0.

We close this introductory section clarifying some conventions that we are going to use in
the sequel. Besides an amount of standard notation, as well as further shorthand that will be
introduced in due time, we use the following notation throughout the paper:
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Ed tensor product E ⌦ Cd of a vector space E with Cd

A| transpose of a matrix A
' = (u, v)| decomposition of ' 2 C4 in upper and lower components, that is,

u = ('1,'2)| and v = ('3,'4)| for ' = ('1,'2,'3,'4)|

h·, ·iL2(⌦)d scalar product in L2(⌦)d given by hu, viL2(⌦)d := ⌦ u · v dx
h·, ·iL2(@⌦)d scalar product in L2(@⌦)d given by hu, viL2(@⌦)d := @⌦ u · v d�
H1(⌦) Sobolev space of functions in L2(⌦) with first weak partial

derivatives in L2(⌦)
� 3-tuple (�1, �2, �3) of Pauli matrices
�(T ) spectrum of the operator T
{T1, T2} anticommutator T1T2 + T2T1 of operators T1 and T2

1.1. Eigenvalue curves for a ball. We present here a brief summary of the spectral study
of H⌧ in the case ⌦ = BR ⇢ R3, the ball of radius R > 0 centered at the origin. In this radially
symmetric domain we can use separation of variables (r 2 [0, R) and ✓ 2 S2) and, thanks to the
spherical harmonic spinors, obtain explicit equations for the eigenvalues and eigenfunctions of
H⌧ . The analysis done for the ball provides some intuition on which kind of situations one can
expect when studying the operator in a general domain ⌦ ⇢ R3, for which no explicit formulas
are available. A more detailed analysis including the proofs of the facts stated in this section
can be found in the Appendix B.
To deal with the problem in the ball, it is suitable to use the decomposition

L2(R3)4 =
+1M

j=1/2

jM

µj=�j

L+
j,µj

� L�

j,µj
,

where L±

j,µj
for j = 1/2, 3/2, . . . , and µj = �j, �j+1, . . . , j�1, j, are invariant spaces under

the action of H, and are defined in terms of the spherical harmonic spinors; see Appendix B for
the explicit expressions. Thanks to the above decomposition, the eigenvalue problem for H⌧

can be reduced to a system of two Bessel-type ODE. After imposing the boundary conditions,
for each invariant space L±

j,µj
we obtain the eigenvalue equation

0 = e⌧J`+1/2(
p

�2 �m2R)±

p
�2 �m2

�+m
J`0+1/2(

p

�2 �m2R), (1.4)

where Jk is the k-th Bessel function of the first kind, ` = j±1/2, and `0 = j⌥1/2. This equation
already appears in [39, formula (6.3)]. Note that the index µj does not appear in (1.4), meaning
that for a given half-integer j there are 2j + 1 linearly independent eigenfunctions associated
to the same eigenvalue. Therefore, all the eigenvalues have even multiplicity.

If we solve numerically (1.4) for some choice of indexes, we obtain the plot shown in Figure 1.

As we see, the eigenvalues can be parametrized in terms of ⌧ , obtaining a family of increasing
functions. To show rigorously that this parametrization can be done, it su�ces to write the
eigenvalue equation (1.4) as

e⌧ = ⌥

p
�2 �m2

�+m

J`0+1/2(
p
�2 �m2R)

J`+1/2(
p
�2 �m2R)

=: h(�) (1.5)
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Figure 1. Some eigenvalue curves ⌧ 7! �(⌧) of H⌧ on BR for R = 3 and m = 1.

and invert the function h in suitable intervals I. This provides, for each of these intervals,
a parametrization of an eigenvalue given by ⌧ 7! �(⌧) = h�1(e⌧ ) 2 I. By the distribution
of the zeroes and singularities of h, it can be seen that h is only invertible in intervals I in
which the above quotient of Bessel functions does not change sign. These maximal intervals
have the form (�z`0 ,�z`), (�z`0 ,�m), (m, z`), or (z`0 , z`), where zk denotes a positive zero
of the function Jk+1/2(

p
(·)2 �m2R). In each of these intervals, h : I ! (0,+1) is strictly

increasing and surjective, and thus it can be inverted. From this it follows that �(⌧) is also
strictly increasing. Proposition B.2 gathers all these considerations.
In addition, the limit of |�(⌧)| as ⌧ ! ±1 must be at the boundary of the interval I, and

thus be either m or a positive zero of Jk+1/2(
p
(·)2 �m2R) for some k = 0, 1, 2, . . .; note that

each of these zeroes corresponds to the square root of a Dirichlet eigenvalue of �� + m2 in
BR. Since the same Bessel function may appear in the denominator of the expression of h in
(1.5) for di↵erent choices of the index j , more than one eigenvalue curve may converge to the
same value as ⌧ " +1, and analogously as ⌧ # �1. This is illustrated in Figure 1 and, more
explicitly, in Figures 4 and 5.

Remark 1.1. Note that (1.5) can be rewritten as

e⌧ = ⌥ sign(�+m)

r
��m

�+m

J`0+1/2(
p
�2 �m2R)

J`+1/2(
p
�2 �m2R)

=: h(�).

From this, it follows that �(⌧) is an eigenvalue curve corresponding to the subspace L±

j,µj
if and

only if ��(�⌧) is an eigenvalue curve associated to L⌥

j,µj
. This fact is illustrated in Figures 2

and 3. As we will see, the odd symmetry of the eigenvalue curves with respect to ⌧ holds as
well for a general domain ⌦; see Lemma 1.2 (iii). Therefore, it will be enough to study the
positive spectrum of H⌧ .
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Figure 2. Eigenvalue curves for
L�

1/2,µ1/2
.

Figure 3. Eigenvalue curves for
L�

1/2,µ1/2
and L+

1/2,µ1/2
.

Figure 4. Eigenvalue curves for
j = 1/2, 3/2.

Figure 5. Eigenvalue curves for
j = 1/2, 3/2, 5/2, 7/2.

To summarize, all the eigenvalues of H⌧ in BR can be represented as a set of monotone
increasing curves parametrized by ⌧ 2 R, which may cross among them; see Figure 5. For
a given curve ⌧ 7! �(⌧) 2 �(H⌧ ) \ (m,+1), we know which are the possible limits of �(⌧)
as ⌧ ! ±1: with the only exception of some eigenvalues that, as ⌧ # �1, converge to m,
the limiting values of �(⌧) are of the form

p
⇤+m2, where ⇤ is an eigenvalue of the Dirichlet

Laplacian in BR. In the next sections we will show that all these properties hold for every
bounded domain ⌦ ⇢ R3 with C2 boundary; see Theorems 1.3 and 1.4. In addition, we will
use the explicit information available for the ball to study a shape optimization problem for
the first positive eigenvalue of H⌧ when |⌧ | is large enough.

1.2. Main results. Let ⌦ ⇢ R3 be a bounded domain with C2 boundary. In this section
we state our main results on the spectral study of the operator H⌧ in terms of the parameter
⌧ 2 R. The study is carried out taking into account the di↵erent phenomena observed in
Figure 1, where the case of a ball is illustrated.
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Recall that

Dom(H⌧ ) :=
�
' 2 H1(⌦)4 : ' = i(sinh ⌧ � cosh ⌧ �)(↵ · ⌫)' on @⌦

 
,

H⌧' := H' for all ' 2 Dom(H⌧ ),

and H := �i↵ ·r+m�. The fact that H⌧ is self-adjoint follows by [21, Proposition 5.15]. Let
us begin by recalling several known properties of the spectrum of H⌧ . We gather them in the
following lemma, whose proof is given in Appendix A for the sake of completeness.

Lemma 1.2. For every ⌧ 2 R, the following holds:

(i) The spectrum �(H⌧ ) is a sequence of real eigenvalues that only accumulate at ±1.
(ii) �(H⌧ ) ⇢ (�1,�m) [ (m,+1).
(iii) � 2 �(H⌧ ) if and only if �� 2 �(H�⌧ ). In particular, �(H0) is symmetric.
(iv) Every � 2 �(H⌧ ) has finite and even multiplicity.

As we see from Lemma 1.2 (i), for every ⌧ 2 R the spectrum �(H⌧ ) only contains real
eigenvalues with no accumulation points. It is then natural to investigate how the eigenvalues
depend on the parameter ⌧ . Our first result in this direction is that they can be parametrized
by means of strictly increasing real analytic functions of ⌧ whose graphs may cross at locally
finitely many exceptional values of ⌧ . Note that these crossings indeed occur in the case of the
ball, as shown in Figures 1 and 5. The following proposition gives the precise statement about
the existence of the mentioned parametrization; see Section 3 for a proof.

Theorem 1.3. Given ⌧0 2 R, let {�k(⌧0)}k2Z\{0} be an enumeration of the eigenvalues of H⌧0

(each repeated according to its finite algebraic multiplicity). Let 'k(⌧0) be an eigenfunction
associated to �k(⌧0), that is, 'k(⌧0) 2 Dom(H⌧0) \ {0} and H⌧0'k(⌧0) = �k(⌧0)'k(⌧0).
Then, each �k(⌧0) can be extended to a real analytic function ⌧ 7! �k(⌧) in such a way that

�(H⌧ ) =
S

k2Z\{0}{�k(⌧)} for all ⌧ 2 R.

Similarly, each eigenfunction 'k(⌧0) can be extended to a real analytic function ⌧ 7! 'k(⌧) such
that, for every ⌧ 2 R, 'k(⌧) is an eigenfunction associated to the eigenvalue �k(⌧).
All the functions �k(⌧) are strictly increasing in R and, up to repetition (due to the even

multiplicity), for each eigenvalue curve �k(⌧) there are only finitely many eigenvalue curves
meeting at locally finitely many crossing points with �k(⌧).

In the last statement of this theorem we mean that, modulo eigenvalue curves which are
exactly the same for all ⌧ 2 R, in every compact set each eigenvalue curve can cross other
curves only a finite number of times, and in each crossing it will coincide only with a finite
number of eigenvalue curves. It is also worth pointing out that since the eigenvalue curves are
continuous, �(H0) is symmetric, and �(H⌧ ) ⇢ (�1,�m) [ (m,+1) for all ⌧ , then it holds
that �(H⌧ ) \ (m,+1) 6= ; and �(H⌧ ) \ (�1,�m) 6= ; for all ⌧ 2 R.
The next step in our analysis is to address the asymptotic behavior of the eigenvalue curves

as ⌧ ! ±1. Thanks to the odd symmetry of the eigenvalues with respect to the parameter ⌧
shown in Lemma 1.2 (iii), it is enough to consider only positive eigenvalues, i.e., the elements
of �(H⌧ ) \ (m,+1). In the following result we describe their asymptotic behavior in terms of
�(��D), the spectrum of the Dirichlet Laplacian ��D. The proof is given in Section 4.

Theorem 1.4. Let ⌧ 7! �(⌧) 2 �(H⌧ ) \ (m,+1) be a continuous function defined on an
interval I ⇢ R. The following holds:
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(i) If I = (�1, ⌧0) for some ⌧0 2 R, then �(�1) := lim⌧#�1 �(⌧) exists and belongs to
[m,+1). In addition, �(�1) = m if �(⌧)2 �m2

 min �(��D) for some ⌧ 2 I, and
�(�1)2 �m2

2 �(��D) otherwise.
(ii) If I = (⌧0,+1) for some ⌧0 2 R, then �(+1) := lim⌧"+1 �(⌧) exists as an element of

the set (m,+1]. In addition, if �(+1) < +1 then �(+1)2 �m2
2 �(��D).

The function �+1 : R ! (m,+1) defined by

⌧ 7! �+1 (⌧) := min(�(H⌧ ) \ (m,+1)) (1.6)

assigns to every ⌧ 2 R the first (smallest) positive eigenvalue of H⌧ , as Lemma 1.2 (ii) shows.
Combining Theorems 1.3 and 1.4, we deduce several properties of the function �+1 which are
gathered in the following result; see Section 4.1 for a proof. Analogous conclusions hold for
the mapping ⌧ 7! ��1 (⌧) := max(�(H⌧ ) \ (�1,�m)), which assigns to every ⌧ 2 R the first
(largest) negative eigenvalue of H⌧ . This is because �

�

1 (⌧) = ��+1 (�⌧) by Lemma 1.2 (iii).

Theorem 1.5. The function �+1 defined by (1.6) is continuous and strictly increasing in R,
and satisfies

lim
⌧#�1

�+1 (⌧) = m and lim
⌧"+1

�+1 (⌧)
2
�m2

2 �(��D) [ {+1}. (1.7)

In addition, �+1 is real analytic in R \ E, where E ⇢ R is some set such that E \ [�R,R] is
finite for all R > 0.

In Remark 4.4 we make a comment on the possibility of having lim⌧"+1 �+1 (⌧) = +1. See
also Remark 4.5 for a comment on the set E.
Theorem 1.5 has some consequences on a shape optimization problem for the first positive

eigenvalue of H⌧ when ⌧ is large enough. In order to highlight the dependence of H⌧ on the
domain ⌦ ⇢ R3 —which we assume through the paper that has a C2 boundary—, let us now
denote the first positive eigenvalue of H⌧ by �⌦(⌧) (that is, we set �⌦ := �+1 ). Then, using (1.7)
and Faber-Krahn inequality, we get the following result, whose proof is given in Section 4.1.

Corollary 1.6. Let ⌦ ⇢ R3 be a bounded domain with C2 boundary, and let B ⇢ R3 be a
ball such that |⌦| = |B|. If ⌦ is not a ball, then there exists ⌧0 2 R depending on ⌦ such that
�B(⌧) < �⌦(⌧) for all ⌧ � ⌧0.

This means that, if ⌦ is not a ball, for large values of ⌧ the first positive eigenvalue of H⌧ on
⌦ is strictly larger than the one on a ball with the same volume as ⌦. Then, a natural question
is whether the analogous result for ⌧ tending to �1 holds or not. Recall that the first positive
eigenvalue of H⌧ tends to m as ⌧ # �1 independently of the shape of ⌦, by (1.7). Hence, in
order to find the optimal shape of ⌦ for ⌧ negative and far from the origin, one is forced to
study the asymptotic expansion of �⌦(⌧)�m as ⌧ # �1. Our next result goes in this direction,
but requires some preliminaries to state it properly.
Let L⌦ : R ! (0,+1) be defined by

⌧ 7! L⌦(⌧) := (�⌦(⌧)�m)e�⌧ , (1.8)

thus �⌦(⌧) = m + e⌧L⌦(⌧). In Lemma 4.9 we will prove that L⌦ is strictly decreasing in R.
Therefore, the limit

L?

⌦ := lim
⌧#�1

L⌦(⌧)
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exists as an element of the set (0,+1]. Moreover, in Proposition B.3 we will also show that
L?

B
< +1 for every ball B ⇢ R3. This in particular suggests that L?

⌦ is the natural quantity
to look at when addressing the asymptotic expansion of �⌦(⌧)�m as ⌧ # �1.
Assume now for a while that ⌦ ⇢ R3 is a domain such that L?

⌦ = +1, and let B ⇢ R3 be
a ball, not necessarily with the same volume as ⌦. Since L?

B
< +1, there exists ⌧0 2 R such

that L⌦(⌧) > L?

B
� LB(⌧) for all ⌧  ⌧0. Therefore,

�⌦(⌧) = m+ e⌧L⌦(⌧) > m+ e⌧LB(⌧) = �B(⌧) (1.9)

for all ⌧  ⌧0. That is, if L?

⌦ = +1, then the first positive eigenvalue of H⌧ on ⌦ is strictly
greater than the one on any ball B whenever �⌧ is large enough depending on ⌦ and B. As
a consequence, in order to look for the optimal shape of ⌦ (under a volume constraint) for ⌧
negative and far from the origin, we can assume without loss of generality that L?

⌦ < +1.
Our last result in this work provides a lower bound for L?

⌦ in terms of the optimization,
among functions in a boundary Hardy space, of a Rayleigh quotient which involves the single
layer potential for the Laplacian. We expect that this lower bound, which is attained if ⌦ is
a ball, will be useful to solve the above-mentioned optimization problem for ⌧ negative and
far from the origin. On the one hand, the single layer potential appears in trace form as the
operator K : L2(@⌦)2 ! L2(@⌦)2 defined by

Ku(x) :=
1

4⇡ @⌦

u(y)

|x� y|
d�(y) for �-a.e. x 2 @⌦.

It is well known that K is a bounded, self-adjoint, compact, positive, and injective operator in
L2(@⌦)2. In particular, K diagonalizes in an L2(@⌦)2-orthonormal basis of eigenfunctions and
all its eigenvalues are strictly positive real numbers. On the other hand, the boundary Hardy
space referred above is the subspace P (L2(@⌦)2) of L2(@⌦)2, where P : L2(@⌦)2 ! L2(@⌦)2 is
defined by P := 1

2 + iW (� · ⌫), and

Wu(x) := lim
✏#0

i

4⇡ {y2@⌦: |x�y|>✏}

⇣
� ·

x� y

|x� y|3

⌘
u(y) d�(y) for �-a.e. x 2 @⌦.

It is well known that W is a bounded operator in L2(@⌦)2, and that P is a projection. The
subspace P (L2(@⌦)2) arises as the trace space on @⌦ of null-solutions of �·r in ⌦; see Section 4.2
for more details (by a matter of notation, in Sections 4.2 and 4.3 the operators K and W are
denoted by Km and Wm, respectively, and P by P+).
Before stating our result regarding the lower bound for L?

⌦, let us briefly explain the heuristics
behind it. Recall that L?

⌦ arises when considering the behavior of �⌦(⌧) as ⌧ # �1. If one looks
at the associated eigenfunction for �⌦(⌧), in the limit ⌧ # �1 one is led to an eigenvalue-type
problem of the form

P ⇤u = L?

⌦(� · ⌫)K(� · ⌫)u for some u 2 P (L2(@⌦)2) \ {0}, (1.10)

where P ⇤ denotes the adjoint of P . Hence, in order to estimate L?

⌦ it is natural to investigate
the set

L⌦ :=
n
L 2 C : there exists u 2 P (L2(@⌦)2) \ {0} with P ⇤u = L(� · ⌫)K(� · ⌫)u

o
. (1.11)

By definition, we have L?

⌦ 2 L⌦. Despite that we initially think of L⌦ as a subset of C, it turns
out that L⌦ only contains positive real numbers. Actually, given L 2 L⌦ and an associated
function u as in (1.11), it is not hard to show (see the proof of Lemma 4.11) that

kuk2
L2(@⌦)2 = Lh(� · ⌫)K(� · ⌫)u, uiL2(@⌦)2 . (1.12)
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This suggests considering the functional

R(u) :=
h(� · ⌫)K(� · ⌫)u, uiL2(@⌦)2

kuk2
L2(@⌦)2

for u 2 L2(@⌦)2 \ {0}, (1.13)

so that for L and u as in (1.12) we get L = 1/R(u). Since K is bounded in L2(@⌦)2 and is
strictly positive, we have 0 < R(u)  kKkL2(@⌦)2!L2(@⌦)2 for all u 2 L2(@⌦)2 \ {0}, and this
yields

L⌦ ⇢
⇥
1/kKkL2(@⌦)2!L2(@⌦)2 ,+1

�
⇢ R

by (1.12). Therefore, it is reasonable to use inf L⌦ to bound L?

⌦ from below. Finally, recalling
the relation L = 1/R(u) given by (1.12), and defining

R⌦ := sup
u2P (L2(@⌦)2)\{0}

R(u), (1.14)

we end up with
L?

⌦ � inf L⌦ � 1/R⌦.

This is the lower bound for L?

⌦ in terms of the optimization of a Rayleigh quotient that we
were referring to as our last main result in this work. At this point the reader might think
that substantial information may have been lost during all these steps, and that in the end we
have L?

⌦ > 1/R⌦ for all ⌦. However, we will show that the equality holds if ⌦ is a ball, hence
the lower bound that we found is sharp. Furthermore, we will prove that 1/R⌦ = minL⌦ for
every ⌦, which means that 1/R⌦ is actually the smallest admissible value in the eigenvalue-type
problem (1.10). It would be very interesting to know whether the equality 1/R⌦ = L?

⌦ holds
in general or not.

We gather all these considerations in the following theorem, which is our last main result of
this work. It will be proven in Section 4.3.

Theorem 1.7. Let ⌦ ⇢ R3 be a bounded domain with C2 boundary. The following holds:

(i) If L?

⌦ < +1 then L?

⌦ 2 L⌦.
(ii) L⌦ ⇢ R, and 1/R⌦  L for all L 2 L⌦.
(iii) The supremum in (1.14) is attained. Moreover, if u 2 P (L2(@⌦)2) \ {0} is such that

R(u) = R⌦, then P ⇤u = 1
R⌦

(� · ⌫)K(� · ⌫)u. In particular, 1/R⌦ 2 L⌦.

As a consequence of (i), (ii), and (iii), it holds that 1/R⌦ = minL⌦  L?

⌦ for every bounded
domain ⌦ ⇢ R3 with C2 boundary. Furthermore, 1/RB = L?

B
for every ball B ⇢ R3.

In view of Theorem 1.7, the question that we would like to answer at this point is whether
the ball is the unique maximizer of R⌦ among all bounded and smooth domains ⌦ of the same
volume. The fact that Hardy spaces come into play in (1.14) makes this question di�cult and
challenging, and it requires further study to be answered. By the same argument as in (1.9),
but using also Theorem 1.7, an a�rmative answer would yield that if ⌦ is not a ball then for
�⌧ large enough the first positive eigenvalue of H⌧ on ⌦ is strictly greater than the one on a
ball with the same volume as ⌦. That is, we would get the analogue of Corollary 1.6 in the
regime ⌧ # �1.

Having in mind the results presented above (and with a bit of positive thinking), we would
like to finish this introduction by posing the following

Conjecture 1.8. Let ⌦ ⇢ R3 be a bounded domain with C2 boundary, and let B ⇢ R3 be a ball
such that |⌦| = |B|. If ⌦ is not a ball, then �B(⌧) < �⌦(⌧) for all ⌧ 2 R.
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A positive answer to this conjecture for ⌧ = 0 would give the solution to the shape optimiza-
tion problem for the spectral gap of the MIT bag operator on smooth domains.

Remark 1.9. Conjecture 1.8 also makes sense in the two-dimensional framework, that is, for a
bounded domain ⌦ ⇢ R2. The corresponding Dirac operator would be �i(�1@1 + �2@2) +m�3
acting on functions ' 2 H1(⌦)2 such that

' = i(sinh ⌧ � cosh ⌧ �3)(�1⌫1 + �2⌫2)' on @⌦.

When ⌧ = 0, this is the so-called Dirac operator with infinite mass boundary conditions.
The techniques used in this work are not specific of the three-dimensional framework. They

mainly depend on the algebraic structure of the operator and its boundary conditions. There-
fore, they would also apply in the two-dimensional framework, taking into account the obvious
modifications which arise when replacing ↵ by (�1, �2) and � by �3. In this regard, we expect
that the main results presented in Section 1.2 also hold true for the two-dimensional Dirac
operator.

Organization of the paper. In Section 2 we present some preliminary results and introduce
the boundary integral operators associated to H, proving some regularity estimates. With these
tools at hand, in Section 3 we establish Theorem 1.3, proving that the eigenvalues of H⌧ can
be parametrized as increasing functions of ⌧ 2 R. Then, in Section 4 we study the asymptotic
behavior of the eigenvalue curves. First, in Section 4.1 we prove Theorem 1.4 regarding the
limits of the eigenvalue curves, Theorem 1.5, on the first positive eigenvalue, and Corollary 1.6,
the shape optimization result. Next, in Section 4.2 we introduce skew projections onto Hardy
spaces, which are used in Section 4.3 to establish Theorem 1.7.
This article contains two appendixes. In Appendix A we establish the main properties of the

spectrum of H⌧ , gathered in Lemma 1.2. In there the reader can also find a formula relating
H⌧ with the mean curvature of @⌦. Finally, Appendix B is devoted to the spectral analysis
when the underlying domain is a ball, and we provide an extensive and explicit description of
the eigenvalue curves.

2. Regularity estimates

In this section, after presenting some preliminary results, we will introduce boundary integral
operators associated to H. We will use them to rewrite the eigenvalue equation for H⌧ as an
integral equation on @⌦; see Proposition 2.9 below. Then, we will establish regularity estimates
for solutions to this boundary eigenvalue equation (stated in Lemma 2.10) which will be crucial
in the following sections when using compactness arguments.

2.1. Preliminaries. The contents of this section are known results from the literature and
simple computations that will be used in the sequel. Let us begin by recalling a result from [64]
which explores the relation between a function in ⌦ an its trace on @⌦. Given u 2 L2(⌦)2

such that � · ru 2 L2(⌦)2, in general one cannot assure that u 2 H1(⌦)2. Nevertheless, as
the following lemma shows, if the trace of u belongs to H1/2(@⌦)2, then u 2 H1(⌦)2. Here,
Hs(@⌦)d with s 2 (0, 1) and d > 0 integer denotes the fractional Sobolev space of functions
f 2 L2(@⌦)d such that

kfkHs(@⌦)d :=

✓

@⌦

|f |2 d�+
@⌦ @⌦

|f(x)� f(y)|2

|x� y|2+2s
d�(y) d�(x)

◆1/2

< +1.
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We will also use the symbol H�s(@⌦)d to denote the continuous dual of Hs(@⌦)d. Recall that

k · kH�s(@⌦)d  k · kL2(@⌦)d  k · kHs(@⌦)d for all s 2 (0, 1).

Lemma 2.1. Let u 2 L2(⌦)2 be such that � ·ru 2 L2(⌦)2. Then,

(i) the trace of u belongs to H�1/2(@⌦)2, and satisfies

kuk
H�1/2(@⌦)2  C

�
kukL2(⌦)2 + k� ·rukL2(⌦)2

�

for some C > 0 depending only on ⌦.
(ii) Assume in adittion that u 2 H1/2(@⌦)2. Then, u 2 H1(⌦)2 and

kukH1(⌦)2  C
�
kukL2(⌦)2 + k� ·rukL2(⌦)2 + kukH1/2(@⌦)2

�

for some C > 0 depending only on ⌦.

Proof. The proof of these results follows similar arguments as the ones in [64, Section 2], and
therefore some details may be omitted. Throughout the proof, we shall denote

H(�,⌦) :=
�
u 2 L2(⌦)2 : � ·ru 2 L2(⌦)2

 
,

which is a Hilbert space equipped with the scalar product

hu, viH(�,⌦) := hu, viL2(⌦)2 + h� ·ru, � ·rviL2(⌦)2

and the associated norm kuk
H(�,⌦) :=

�
kuk2

L2(⌦)2 + k� ·ruk2
L2(⌦)2

�1/2
.

Statement (i) simply means that the trace operator is bounded fromH(�,⌦) intoH�1/2(@⌦)2,
and it is proved exactly as [64, Proposition 2.1]. Hence, we will only address the proof of (ii).
Given u 2 H(�,⌦) such that u 2 H1/2(@⌦)2, set

ũ := u� E(u),

where E : H1/2(@⌦)2 ! H1(⌦)2 is a bounded extension operator, i.e.,

kE(u)k
H1(⌦)2  C kuk

H1/2(@⌦)2 (2.1)

for some C > 0 depending only on ⌦. Note that the new function ũ has zero trace on @⌦ and,
therefore, denoting by u0 its extension by 0 in R3

\ ⌦, we have that

� ·ru0 = (� ·rũ)�⌦ in R3, (2.2)

where �⌦ denotes the characteristic function of the set ⌦; for a rigorous proof of (2.2) see for
instance the proof of [64, Proposition 2.16].
We claim that

kũk
H1(⌦)2 = kũk

H(�,⌦) . (2.3)

Note first that kũk
H1(⌦)2 = ku0kH1(R3)2 . Using the fact that H1(R3)2 = H(�,R3), which can be

shown using integration by parts, we obtain kũk
H1(⌦)2 = ku0kH(�,R3). Thus, the claim follows

from (2.2).
Finally, noting that

kũk
H(�,⌦)  kuk

H(�,⌦) + kE(u)k
H(�,⌦)  kuk

H(�,⌦) + kE(u)k
H1(⌦)2

and that
kũk

H1(⌦)2 � kuk
H1(⌦)2 � kE(u)k

H1(⌦)2 ,

from (2.3) we get
kuk

H1(⌦)2  kuk
H(�,⌦) + 2 kE(u)k

H1(⌦)2 ,

and using (2.1) we conclude the proof of (ii). ⇤
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Using Lemma 2.1 we can easily get estimates for the trace of the eigenfunctions of H⌧ , once
they are written component-wise. Given ⌧,� 2 R, by definition we have that ' 2 Dom(H⌧ )
satisfies H⌧' = �' if and only if ' 2 H1(⌦)4 and

⇢
H' = �' in ⌦,
' = i(sinh ⌧ � cosh ⌧ �)(↵ · ⌫)' on @⌦.

(2.4)

If we write ' = (u, v)| with u, v 2 H1(⌦)2, and we recall that H = �i↵ ·r+m�, then (2.4) is
equivalent to 8

<

:

�i� ·rv = (��m)u in ⌦,
�i� ·ru = (�+m)v in ⌦,

v = ie⌧ (� · ⌫)u on @⌦.
(2.5)

In particular, since (�i� ·r)2 = ��, from the first two equations in (2.5) we deduce that

��u = (�2 �m2)u and ��v = (�2 �m2)v in ⌦. (2.6)

In addition, combining (2.5) with Lemma 2.1 (i) we obtain the following result.

Lemma 2.2. Let u, v 2 H1(⌦)2 be such that ' = (u, v)| 2 H1(⌦)4 solves (2.4). Then,

kuk
H�1/2(@⌦)2  C

�
kukL2(⌦)2 + |�+m|kvkL2(⌦)2

�
,

kvkH�1/2(@⌦)2  C
�
|��m|kukL2(⌦)2 + kvkL2(⌦)2

�

for some C > 0 depending only on ⌦.

Proof. Using Lemma 2.1 (i) we get kuk
H�1/2(@⌦)2  C(kukL2(⌦)2 + k� ·rukL2(⌦)2). The equality

�i� ·ru = (�+m)v from (2.5) yields the first estimate. The second one is analogous. ⇤
We finish this section by giving the relation between the L2-norm of u on @⌦ and the L2-

norms of u and v on ⌦. An analogous formula for the L2-norm of v on @⌦ can be obtained
using the last equality in (2.5).

Lemma 2.3. Let u, v 2 H1(⌦)2 such that ' = (u, v)| 2 H1(⌦)4 solves (2.4). Then,

e⌧kuk2
L2(@⌦)2 = e�⌧

kvk2
L2(@⌦)2 = (��m)kuk2

L2(⌦)2 � (�+m)kvk2
L2(⌦)2 .

Proof. Note that e⌧kuk2
L2(@⌦)2 = e�⌧

kvk2
L2(@⌦)2 because v = ie⌧ (� · ⌫)u by (2.5). Now, if we

multiply the first equation in (2.5) by u, we integrate by parts in ⌦, and we use the other two
equations in (2.5), we get

(��m)
⌦

|u|2 =
⌦

(�i� ·rv) · u =
⌦

v · (�i� ·ru)� i
@⌦

(� · ⌫)v · u d�

= (�+m)
⌦

|v|2 + e⌧
@⌦

|u|2 d�.

⇤

2.2. Boundary integral operators. In this section we introduce boundary integral operators
associated to H. We will use them to rewrite the eigenvalue problem as an integral equation on
@⌦ (see Proposition 2.9 below), and to prove regularity estimates for the eigenfunctions of H⌧

that will be used in the following sections. The spectral analysis using boundary integral oper-
ators is an approach already used in [9, 10, 11]. It represents the Birman-Schwinger principle
on our setting.
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A fundamental solution of H� � for � 2 R is given by

��(x) :=
e�i

p
�2�m2|x|

4⇡|x|


�+m� +

⇣
1 + i

p

�2 �m2|x|
⌘
i↵ ·

x

|x|2

�
for all x 2 R3

\ {0}

if � 2 (�1,�m) [ (m,+1), and by

��(x) :=
e�

p
m2��2|x|

4⇡|x|


�+m� +

⇣
1 +

p

m2 � �2|x|
⌘
i↵ ·

x

|x|2

�
for all x 2 R3

\ {0} (2.7)

if � 2 [�m,m]. This means that (H��)�� = �0I4 in the sense of distributions, where �0 denotes
the Dirac delta measure centered at the origin of coordinates. Therefore, given g 2 L2(@⌦)4, if
we set

��g(x) :=
@⌦

��(x� y)g(y) d�(y) for all x 2 ⌦, (2.8)

then (H � �)��g = 0 in ⌦. Reciprocally, null solutions of H � � in ⌦ can be expressed by
means of ��, as the following result shows.

Lemma 2.4 (Reproducing formula). Let � 2 R and ' 2 H1(⌦)4 be such that (H� �)' = 0 in
⌦. Then, ' = ��(i(↵ · ⌫)') in ⌦. That is,

'(x) =
@⌦

��(x� y)i(↵ · ⌫(y))'(y) d�(y) for all x 2 ⌦. (2.9)

Proof. Note that if H' = �' in ⌦ then ��' = (�2�m2)' in ⌦. By standard regularity theory,
' is infinitely di↵erentiable in ⌦. In particular, it makes sense to write “for all x 2 ⌦” in (2.9).
The proof of the lemma follows the same lines as in [9, Lemma 3.3]: given x 2 ⌦, one

combines that �� is a fundamental solution of H � � with an integration by parts in ⌦ \ {y 2

R3 : |x� y| < ✏}, and then one lets ✏ # 0 to obtain (2.9). We omit the details. ⇤
In the following lemma, the boundary trace of the function ��g given in (2.8) is described in

terms of a singular integral operator, and a trace identity for null solutions of H�� is deduced
thanks to Lemma 2.4. This operator is defined, for every g 2 L2(@⌦)4, by

C�g(x) := lim
✏#0

{y2@⌦: |x�y|>✏}

��(x� y)g(y) d�(y) for �-a.e. x 2 @⌦.

The same arguments as in [9, Lemma 3.3] show that C� is bounded in L2(@⌦)4. In addition,
since C� is defined by means of the kernel (2.7) for � 2 [�m,m], C� is self-adjoint in L2(@⌦)4

for � 2 [�m,m].

Lemma 2.5 (Plemelj-Sokhotski jump formula). Let � 2 R. Then, for every g 2 L2(@⌦)4,

lim
z2⌦, z!x

��g(z) = �
i

2
(↵ · ⌫(x))g(x) + C�g(x) for �-a.e. x 2 @⌦, (2.10)

where the limit on the left-hand side of (2.10) is taken nontangentially. As a consequence, if
' 2 H1(⌦)4 is such that H' = �' in ⌦, then ' = 2iC�(↵ · ⌫)' �-almost everywhere on @⌦.

Proof. The identity (2.10) is proved exactly as in [9, Lemma 3.3]. Now, let ' 2 H1(⌦)4 be
such that H' = �' in ⌦. From Lemma 2.4 it follows that ' = ��(i(↵ · ⌫)') in ⌦. Taking the
nontangential limit towards @⌦, and using (2.10) and that (↵ · ⌫)2 = 1, we have

' = �
i

2
(↵ · ⌫)(i(↵ · ⌫)') + iC�(↵ · ⌫)' =

1

2
'+ iC�(↵ · ⌫)' �-a.e. on @⌦.

⇤
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Remark 2.6. Note that the left-hand side of (2.10) concerns a pointwise nontangential limit. If
��g 2 H1(⌦), this limit coincides �-a.e. on @⌦ with the standard trace of functions in Sobolev
spaces defined through a trace operator; see [18, Lemma 3.1] for example.

In Proposition 2.9 below we will use Lemma 2.5 to rewrite the eigenvalue problem H⌧' = �'
as an integral equation for ' on @⌦. To do so, it is convenient to express the operator C� in
terms of its action on the components of ' 2 L2(@⌦)4, namely,

C�' =

✓
(�+m)K� W�

W� (��m)K�

◆✓
u
v

◆
, where ' =

✓
u
v

◆
and u, v 2 L2(@⌦)2. (2.11)

The operators K� and W� are defined, for every u 2 L2(@⌦)2 and �-a.e. x 2 @⌦, by

K�u(x) :=
1

4⇡ @⌦

k�(x� y)u(y) d�(y),

W�u(x) := lim
✏#0

1

4⇡ {y2@⌦: |x�y|>✏}

w�(x� y)u(y) d�(y),
(2.12)

where the kernels k� and w� are given, for x 2 R3
\ {0}, by

k�(x) :=
e�i

p
�2�m2|x|

|x|
, w�(x) := e�i

p
�2�m2|x|

⇣
1 + i

p

�2 �m2|x|
⌘
i� ·

x

|x|3
(2.13)

if � 2 (�1,�m) [ (m,+1), and by (2.13) replacing i
p
�2 �m2 by

p
m2 � �2 if � 2 [�m,m].

The fact that C� is bounded in L2(@⌦)4 yields the boundedness of K� and W� in L2(@⌦)2. In
addition, since C� is self-adjoint in L2(@⌦)4 for � 2 [�m,m], we deduce that K� and W� are
self-adjoint in L2(@⌦)2 for � 2 [�m,m].
The combination of Lemmas 2.4 and 2.5 leads to the important identity (C�(↵ · ⌫))2 = �1/4

as operators in L2(@⌦)4. This, apart from showing that (C�)�1 = �4(↵ · ⌫)C�(↵ · ⌫), has some
consequences on K� and W� that will be used in the proof of Lemma 4.13. We gather them in
the following result.

Lemma 2.7. For every � 2 R, the following holds:

(i) (C�(↵ · ⌫))2 = �1/4 as operators in L2(@⌦)4.
(ii) (W�(� · ⌫))2 + (�2 �m2)(K�(� · ⌫))2 = �1/4 as operators in L2(@⌦)2.
(iii) {K�(� · ⌫),W�(� · ⌫)} = 0 as operators in L2(@⌦)2.

Proof. Let us show (i). Given g 2 C1(@⌦)4, set ' = ��g. Then, ' 2 H1(⌦) and (H ��)' = 0
in ⌦. Thus, by Lemma 2.4 and (2.10) we get that

��g = ' = ��(i(↵ · ⌫)') = ��

⇣
i(↵ · ⌫)

�
�

i

2(↵ · ⌫)g + C�g
�⌘

= ��

⇣�
1
2 + i(↵ · ⌫)C�

�
g
⌘

in ⌦. Taking traces on @⌦ and using once again (2.10), we deduce that
�
�

i

2(↵ · ⌫) + C�

�
g =

�
�

i

2(↵ · ⌫) + C�

��
1
2 + i(↵ · ⌫)C�

�
g

=
�
�

i

4(↵ · ⌫) + C� + iC�(↵ · ⌫)C�

�
g.

From here, and by the density of C1(@⌦)4 in L2(@⌦)4, we get �1
4(↵ · ⌫) = C�(↵ · ⌫)C�, which

proves (i). Then, (ii) and (iii) follow by (i) writing C� as in (2.11), in terms of K� and W�. ⇤
Let us now establish a regularity result that will be a key tool in the compactness arguments

carried out in Section 4.1. It concerns regularity estimates for the operators K� and {W�, � ·⌫}.
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Lemma 2.8. For every � 2 R there exists C� > 0 depending only on ⌦ and �2 �m2 such that

kK�ukH1/2(@⌦)2  C� kukH�1/2(@⌦)2

and
k{W�, � · ⌫}uk

H1/2(@⌦)2  C� kukH�1/2(@⌦)2

for all u 2 H�1/2(@⌦)2. The constant C� can be chosen in such a way that for every C� > 0 there
exists C 0 > 0 depending only on ⌦ and C� such that C� < C 0 for all � 2 R with |�2�m2

| < C�.

Proof. The result essentially follows from the fact that both operators K� and {W�, � · ⌫}
are integral operators given by kernels whose singularity is comparable to 1/|x|, and which are
regular enough far from the singularity. The proof is similar to that of [64, Proposition 2.8], and
thus we will omit some details. In particular, we will only address the proof of the proposition
for |�| � m; the proof for |�| < m follows by similar arguments. Through the proof we will
make use of the Sobolev space H1(@⌦)2 as well as its (continuous) dual H�1(@⌦)2, which are
defined in the standard way thanks to the fact that ⌦ has a C2 boundary.
Given b 2 R, consider the bounded operators in L2(@⌦)2 defined, for u 2 L2(@⌦)2, by

Tbu(x) :=
@⌦

Tb(x� y)u(y) d�(y) with Tb(x) :=
e�ib|x|

|x|
,

and

Sbu(x) := lim
✏#0

{y2@⌦: |x�y|>✏}

Sb(x� y)u(y) d�(y) with Sb(x) := e�ib|x|(1 + ib|x|)i� ·
x

|x|3
.

It is easy to check that Tb(�x) = (T�b(x))| and Sb(�x) = (S�b(x))|. Thus,

(Tb)
⇤ = T�b and (Sb)

⇤ = S�b. (2.14)

Let us also define Ab := {Sb, � · ⌫}. By (2.14), we have

(Ab)
⇤ = A�b. (2.15)

In addition, Ab can be written as the integral operator

Abu(x) =
@⌦

Ab(x, y)u(y) d�(y)

with kernel

Ab(x, y) := e�ib|x�y|(1 + ib|x� y|)i
h
(� · ⌫(x))

⇣
� ·

x� y

|x� y|3

⌘
+
⇣
� ·

x� y

|x� y|3

⌘
(� · ⌫(y))

i
.

As we will see from (2.16) below, the singularity of the kernel Ab does not require to write the
integral operator Ab as an integral in the principal value sense.
Note that the operators Tb and Ab coincide, respectively, with K� and {W�, � · ⌫} (up to a

multiplicative constant) for b =
p
�2 �m2. We will establish the regularity estimates for Tb

and Ab, since the notation is slightly more convenient thanks to (2.14) and (2.15).
First, let us prove that Tb and Ab are bounded operators from L2(@⌦)2 into H1(@⌦)2 for

every b 2 R, with a norm uniformly controlled for all b such that |b|2 < C�. To prove it for Tb,
note that its kernel Tb can be written as

Tb(x� y) =
1

|x� y|
+ hb(x� y)
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for some smooth function hb. This entails that the kernel Tb is pseudo-homogeneous of class �1
in the sense of [62, §4.3.3], and thus [62, Theorem 4.3.2] yields that Tb is bounded from L2(@⌦)2

into H1(@⌦)2. Note that the dependence on b in the norm of the operator comes from the
kernel hb, which has been obtained after considering the Taylor expansion of eib|x�y|. Therefore,
it follows readily that it can be uniformly controlled for all b such that |b|2 < C�. The result
for Ab is obtained using the same argument, provided that we show that

eAb(x, y) := (� · ⌫(x))
⇣
� ·

x� y

|x� y|3

⌘
+
⇣
� ·

x� y

|x� y|3

⌘
(� · ⌫(y)) = O(|x� y|�1) as |x� y| ! 0.

(2.16)
To see this, note first that, for every p, q 2 R3,

(� · p)(� · q) = p · q + i� · (p⇥ q) = �q · p� i� · (q ⇥ p) + 2p · q = �(� · q)(� · p) + 2p · q.

Thus
(� · ⌫(x))(� · (x� y)) = �(� · (x� y))(� · ⌫(x)) + 2⌫(x) · (x� y),

which yields

eAb(x, y) =
⇣
� ·

x� y

|x� y|3

⌘�
� · (⌫(y)� ⌫(x))

�
+ 2⌫(x) ·

x� y

|x� y|3
.

Then, (2.16) follows by using that |⌫(x)� ⌫(y)| = O(|x� y|) and |⌫(x) · (x� y)| = O(|x� y|2)
because @⌦ is of class C2; see [62, Example 4.5] or [41, Lemma 3.15].
Finally, since Tb and Ab are linear bounded operators from L2(@⌦)2 into H1(@⌦)2 for every

b 2 R, by (2.14), (2.15), and duality it follows that Tb and Ab are also bounded from H�1(@⌦)2

into L2(@⌦)2, with the same norm. From this, we obtain the desired estimates by using classical
interpolation results; see for instance [69, Propositions 2.1.62 and 2.4.3]. ⇤
We finish this section by showing a reformulation of the eigenvalue equation

H⌧' = �', ' 2 Dom(H⌧ )

in terms of boundary integral equations which involve the components of the trace of ' on
@⌦ and the operators K� and W� introduced in (2.12). Despite that ' belongs to H1(⌦)4 by
assumption, and thus the trace of its components belong to H1/2(@⌦)2, we will see that it is
equivalent to pose the corresponding boundary integral equations in the larger space L2(@⌦)2.
This is because they indeed force the solution to belong to H1/2(@⌦)2 thanks to Lemma 2.8, as
we will see.

Proposition 2.9. Let ⌧,� 2 R, let ' : ⌦ ! C4, and let �� be as in (2.8). Then, the following
are equivalent:

(i) ' 2 Dom(H⌧ ) and H⌧' = �'.
(ii) ' = ��(i(↵ · ⌫)g) in ⌦, where

g =

✓
u

ie⌧ (� · ⌫)u

◆
(2.17)

for some u 2 L2(@⌦)2 such that

u =
�
2iW�(� · ⌫)� 2(�+m)e⌧K�

�
u and

u =
�
2i(� · ⌫)W� + 2(��m)e�⌧ (� · ⌫)K�(� · ⌫)

�
u

(2.18)

in L2(@⌦)2.
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In addition, if ' is as in (ii), then ' = g in L2(@⌦)4.

To prove Proposition 2.9 we will use the following regularity result, which will be also used in
the compactness arguments carried out in Sections 3 and 4.1. It will be specially useful when
studying the asymptotic behavior of the eigenvalue curves as ⌧ ! ±1, since a precise control
over the dependence on ⌧ in the constants involved in the estimates is needed.

Lemma 2.10. Let u 2 L2(@⌦)2 be a solution to (2.18), and set v = ie⌧ (� · ⌫)u. Then,

u =
�
i{W�, � · ⌫}� (�+m)e⌧K� + (��m)e�⌧ (� · ⌫)K�(� · ⌫)

�
u and (2.19)

v =
�
i{W�, � · ⌫}� (�+m)e⌧ (� · ⌫)K�(� · ⌫) + (��m)e�⌧K�

�
v (2.20)

�-a.e. on @⌦. As a consequence, u, v 2 H1/2(@⌦)2, and

kukH1/2(@⌦)2  C(1 + |�+m|e⌧ + |��m|e�⌧ )C� kukH�1/2(@⌦)2 ,

kvk
H1/2(@⌦)2  C(1 + |�+m|e⌧ + |��m|e�⌧ )C� kvkH�1/2(@⌦)2 ,

(2.21)

where C > 0 only depends on ⌦, and C� is as in Lemma 2.8.

Proof. By adding the two equations from (2.18) we directly get (2.19) in the L2(@⌦)2 sense,
and therefore also �-a.e. on @⌦. Then, plugging v = ie⌧ (� · ⌫)u in (2.19) we obtain (2.20).

We now prove that (2.19) yields u 2 H1/2(@⌦)2 and the estimate for kukH1/2(@⌦)2 ; the proof
for v is analogous. Using that ⌫ is of class C1 on @⌦ (which gives that � · ⌫ is a bounded
operator in H±1/2(@⌦)2; see [21, Lemma A.2] for the case H1/2(@⌦)2) and Lemma 2.8, we have

kuk
H1/2(@⌦)2  k{W�, � · ⌫}uk

H1/2(@⌦)2 + |�+m|e⌧kK�ukH1/2(@⌦)2

+ C|��m|e�⌧
kK�(� · ⌫)uk

H1/2(@⌦)2

 C� kukH�1/2(@⌦)2 + |�+m|e⌧C� kukH�1/2(@⌦)2

+ C|��m|e�⌧C� k(� · ⌫)uk
H�1/2(@⌦)2 .

⇤
Using the previous result we can now establish Proposition 2.9.

Proof of Proposition 2.9. We first show that (i) implies (ii). Let ' 2 Dom(H⌧ ) such that
H⌧' = �'. Then ' 2 H1(⌦)4 ⇢ H1/2(@⌦)4 ⇢ L2(@⌦)4, ' = ��(i(↵ · ⌫)') in ⌦ by Lemma 2.4,
and ' = i(sinh ⌧ � cosh ⌧ �)(↵ · ⌫)' on @⌦. Writing this boundary equation in terms of the
components of ', we get

✓
u
v

◆
:= ' = i(sinh ⌧ � cosh ⌧ �)(↵ · ⌫)'

= i

✓
�e�⌧ 0
0 e⌧

◆✓
0 � · ⌫

� · ⌫ 0

◆✓
u
v

◆
= i

✓
�e�⌧ (� · ⌫)v
e⌧ (� · ⌫)u

◆
.

(2.22)

This shows (2.17). Hence, it only remains to prove that u satisfies (2.18). Thanks to Lemma 2.5,
we have ' = 2iC�(↵ · ⌫)' on @⌦. Writing this equation in terms of u and v using (2.11) we get
✓
u
v

◆
= 2i

✓
(�+m)K� W�

W� (��m)K�

◆✓
0 � · ⌫

� · ⌫ 0

◆✓
u
v

◆

= 2i

✓
(�+m)K�(� · ⌫)v +W�(� · ⌫)u
W�(� · ⌫)v + (��m)K�(� · ⌫)u

◆
=

✓
�2(�+m)e⌧K�u+ 2iW�(� · ⌫)u
�2e⌧W�u+ 2i(��m)K�(� · ⌫)u

◆
,

(2.23)
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where in this last equality we used the identity v = ie⌧ (� · ⌫)u proved in (2.22). Therefore, the
first equation in (2.18) is established. To prove the second one we simply have to multiply the
equation

ie⌧ (� · ⌫) u = v = �2e⌧W�u+ 2i(��m)K�(� · ⌫)u

by �ie�⌧ (� · ⌫) from the left.
We now show that (ii) implies (i). Let u 2 L2(@⌦)2 be a solution to (2.18), set v = ie⌧ (� ·⌫)u,

g as in (2.17), and define ' = ��(i(↵ ·⌫)g) in ⌦. We want to prove that ' 2 Dom(H⌧ ) and that
H⌧' = �'. Note that the eigenvalue equation H⌧' = �' is automatically satisfied once we
know that ' 2 Dom(H⌧ ), since we have set ' = ��(i(↵ · ⌫)g) and �� is a fundamental solution
of H � �. Therefore, it is enough to prove that ' 2 Dom(H⌧ ). For this purpose, let us first
show that ' = g on @⌦, which is the last statement of the proposition. Since u solves (2.18)
and we have set v = ie⌧ (� · ⌫)u, (2.23) yields g = 2iC�(↵ · ⌫)g in L2(@⌦)4. Then, if we take
traces on both sides of the identity ' = ��(i(↵ · ⌫)g), Lemma 2.5 gives

' = �
i

2
(↵ · ⌫)i(↵ · ⌫)g + C�i(↵ · ⌫)g =

1

2
g + C�i(↵ · ⌫)g =

1

2
g +

1

2
g = g on @⌦,

as desired. At this point, that ' solves the boundary equation ' = i(sinh ⌧ � cosh ⌧ �)(↵ · ⌫)'
on @⌦ is straightforward arguing as in (2.22).
It only remains to prove that ' 2 H1(⌦)4. We already know that ' = g = (u, v)| on @⌦.

Abusing notation, let us also denote by u and v the components of ' as functions defined
on ⌦. It is known that �� is a bounded operator from L2(@⌦)4 into L2(⌦)4; one can argue
as in the proof of [9, Lemma 2.1] but using that ⌦ is bounded instead of the exponential
decay assumed there. Hence, ' = ��(i(↵ · ⌫)g) 2 L2(⌦)4, which means that u, v 2 L2(⌦)2.
Then, using the equation H' = �' once written component-wise as in (2.5), we deduce that
� ·ru, � ·rv 2 L2(⌦)2. Note also that u, v 2 H1/2(@⌦)2 by Lemma 2.10. Therefore, thanks to
Lemma 2.1 (ii), we conclude that u, v 2 H1(⌦)2, that is, ' 2 H1(⌦)4. ⇤

3. Parametrization and monotonicity

In this section we study the dependence of the eigenvalues of H⌧ , and the associated eigen-
functions, on the parameter ⌧ , establishing Theorem 1.3. Note that even if the dependence on
⌧ in H⌧ is expressed through the smooth functions ⌧ 7! sinh ⌧ and ⌧ 7! cosh ⌧ , the proof of
Theorem 1.3 is not straightforward and requires some ingredients. First, we will prove that the
eigenvalues can be parametrized locally; see Lemma 3.1 below. Once this is done, we will show
that the local parametrization can be extended to a global one. To accomplish this, we obtain
an explicit formula for the derivative of the eigenvalues with respect to ⌧ (see Lemma 3.3).
It will provide a growth estimate for the eigenvalue curves which will be crucial to eventually
establish Theorem 1.3.
Let us first prove that the eigenvalues of the operator H⌧ can be parametrized locally. The

dependence of H⌧ on ⌧ appears in the boundary conditions, and hence, in the domain of
definition of the operator. Therefore, we cannot apply directly the very extensive theory of [52]
devoted to the so-called holomorphic families of operators of type (A) —in which the domain
of the operators is independent of the parameter. The usual strategy in these cases consists of
passing to the weak formulation of the problem, constructing the associated bilinear form in
which one of its terms account for the boundary condition —and thus the domain of definition
may be independent of the parameter. However, this method does not work in our context: the
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theory developed in [52] is devoted to sectorial operators and this is not our case (the spectrum
of H⌧ cannot be included into a sector of the complex plane, since it accumulates at ±1).
Despite these di�culties, we can still use some of the theory developed in [52], since it can

be shown that the resolvent of H⌧ is analytic in ⌧ 2 R (using crucially a Krein-type resolvent
formula from [21]). Once this is proved, it readily follows that the eigenvalues can be locally
parametrized, as stated in the following result.

Lemma 3.1. Let ⌧0 2 R and let �? be an eigenvalue of H⌧0 with multiplicity µ?. Then, �? splits
into one or several eigenvalue curves �k(⌧) (with k = 1, . . . , k? for some k?  µ?) which are real
analytic close to ⌧ = ⌧0, and such that �k(⌧) 2 �(H⌧ ). Each of these eigenvalues has constant
multiplicity µk and the sum of all the multiplicities is equal to µ?. Moreover, for each k there
exist µk linearly independent eigenfunctions 'j

k
(⌧) associated to �k(⌧) which depend analytically

on ⌧ and such that {'j

k
(⌧0) : k = 1, . . . , k?, j = 1, . . . , µk} forms an orthogonal basis of the

eigenspace associated to �?.

Proof. Although in the rest of the article we will consider ⌧ 2 R, in this proof we may assume
that ⌧ 2 C, since the results from perturbation theory that we will use are more naturally
presented in this setting. Then, the result will follow restricting ⌧ to R.
We claim that for ⇣ 2 C\R, the resolvent operator (H⌧ �⇣)�1 is bounded and holomorphic in

⌧ in a neighborhood of ⌧0. To prove this claim, we will use a resolvent formula from [21] which
we recall now. For ⇣ 2 C \R, consider the �-field �(⇣) and the Weyl function M(⇣) associated
to the quasi boundary triple introduced in [21] for H acting on H1(⌦)4. These operators
are defined in terms of �� and C� from Section 2.2 taking � = ⇣ 2 C \ R. Their explicit
expression can be found in [21, Proposition 4.2], but for our purposes it su�ces to use that

�(⇣) : G1/2
⌦ ! H1(⌦)4, M(⇣) : G1/2

⌦ ! G
1/2
⌦ , and �(⇣)⇤ : L2(⌦)4 ! G

1/2
⌦ are bounded operators,

where G
1/2
⌦ :=

�
1 + i�(↵ · ⌫)

� �
H1/2(@⌦)4

�
. From [21, Theorem 5.9 and Proposition 5.15], for

every ⇣ 2 ⇢(H⌧ ) \ ⇢(H0) the following resolvent formula holds:

(H⌧ � ⇣)�1 =
�
H0 � ⇣

��1
+ �(⇣)

�
I4 � !(⌧)M(⇣)

��1
!(⌧)�(⇣)⇤, where !(⌧) := �

sinh ⌧

1 + cosh ⌧
.

Note that ! is holomorphic in ⌧ wherever the denominator does not vanish. From this and using
that

�
H0 � ⇣

��1
, �(⇣), and �(⇣)⇤ are bounded, the holomorphy of (H⌧ � ⇣)�1 will follow if we

prove that (I4 � !(⌧)M(⇣))�1 is a bounded operator holomorphic in ⌧ . From [21, Lemma 4.4]
it follows that, for every !0 2 R such that |!0| 6= 1 and for every ⇣ 2 C \ R, the operator

I4 � !0M(⇣) has a bounded and everywhere defined inverse in G
1/2
⌦ . Therefore, using this last

assertion with !0 := !(⌧0) 2 R (note that |!(⌧0)| < 1 for every ⌧0 2 R) together with the
identity

I4 � !(⌧)M(⇣) =
⇣
I4 �

�
!(⌧)� !(⌧0)

�
M(⇣)

�
I4 � !(⌧0)M(⇣)

��1
⌘�

I4 � !(⌧0)M(⇣)
�
,

and a Neumann series argument, it follows that (I4 � !(⌧)M(⇣))�1 is a bounded operator
holomorphic in ⌧ for ⌧ 2 C close enough to ⌧0 2 R; see the comments in [52, VII-§1.1] for more
details. Hence, the claim is proved.

Once we know that the resolvent of H⌧ is bounded and holomorphic1 in ⌧ , by classical results
in perturbation theory [52, Theorems VII.1.3 and VII.1.8] it follows that every isolated eigen-
value �? of H⌧0 splits into one or several eigenvalues �k(⌧) of H⌧ which depend holomorphically

1From the proof of [52, Theorem VII.1.3], it is enough to have (H⌧ � ⇣)�1 holomorphic in ⌧ for a single
⇣ 2 ⇢(H0) \ ⇢(H⌧ ), thus we can take any ⇣ 2 C \ R.
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on ⌧ (for ⌧ close to ⌧0), and the same is true for the corresponding eigenprojections. As a con-
sequence, if µk is the multiplicity of each eigenvalue �k(⌧), there exist µk linearly independent
associated eigenfunctions 'j

k
(⌧), with j = 1, . . . , µk, which depend holomorphically on ⌧ ; see

[52, II-§4] for more details on this. Note that µk is constant for ⌧ close to ⌧0, and the sum of all
these multiplicities is equal to the multiplicity of �?. Moreover, all the functions 'j

k
(⌧0) form

an orthogonal basis of the eigenspace associated to �?. ⇤
Remark 3.2. If �? is an eigenvalue of H⌧0 with multiplicity µ?, then using Lemma 3.1 we can
define µ? eigenvalue curves (for ⌧ close to ⌧0), each one associated to a single eigenfunction. Some
of these eigenvalue curves may be equal, accounting for the multiplicity of the corresponding
eigenvalue of H⌧ . This setting will be the appropriate one to establish Theorem 1.3 below.

With a local parametrization of the eigenvalue curves at hand, our next result shows their
monotonicity with respect to the parameter ⌧ . In addition, we also provide an explicit expression
for the derivative of the eigenvalues with respect to ⌧ . Note that the monotone behavior was
expected if one looks at the curves plotted in Figure 1 for the case of a ball.

Lemma 3.3. Let ⌧ 7! �(⌧) 2 �(H⌧ ) and ⌧ 7! '⌧ 2 Dom(H⌧ ) \ {0} be di↵erentiable functions
on an interval I ⇢ R, with '⌧ such that H⌧'⌧ = �(⌧)'⌧ for all ⌧ 2 I. Then

�0(⌧) = e⌧
ku⌧k

2
L2(@⌦)2

k'⌧k
2
L2(⌦)4

> 0 for all ⌧ 2 I, (3.1)

where '⌧ = (u⌧ , v⌧ )| with u⌧ , v⌧ 2 H1(⌦)2. In particular, � is strictly increasing on I. More-
over,

�0(⌧) = (�(⌧)�m)
ku⌧k

2
L2(⌦)2

k'⌧k
2
L2(⌦)4

� (�(⌧) +m)
kv⌧k2L2(⌦)2

k'⌧k
2
L2(⌦)4

. (3.2)

Proof. For simplicity of notation, in the following we will write ' and '0 instead of '⌧ and
@⌧'⌧ , respectively, and analogously for u⌧ and v⌧ . Di↵erentiating the equation H' = �' with
respect to ⌧ , we get H'0 = �0'+ �'0. Multiplying this equation by ' and integrating by parts
in ⌦ we obtain

�0
⌦

|'|2 + �
⌦

'0
· ' =

⌦

H'0
· ' =

⌦

'0
· H'� i

@⌦

(↵ · ⌫)'0
· ' d�

= �
⌦

'0
· '+

@⌦

'0
· i(↵ · ⌫)' d�.

(3.3)

Here we used that � is real-valued by Lemma 1.2, and that (↵ · ⌫) is hermitian. Thus, from
(3.3) we deduce that

�0 = k'k�2
L2(⌦)4

@⌦

'0
· i(↵ · ⌫)' d�. (3.4)

Now, using the boundary condition (↵ · ⌫)' = i(sinh ⌧ + cosh ⌧ �)' given by the fact that
' 2 Dom(H⌧ ) (recall that (↵ · ⌫)2 = 1 and that ↵j� = ��↵j for j = 1, 2, 3), we have

@⌦

'0
· i(↵ · ⌫)' d� = �

@⌦

'0
· (sinh ⌧ + cosh ⌧ �) · ' d�

= �e⌧
@⌦

u0
· u d�+ e�⌧

@⌦

v0 · v d�.
(3.5)
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Let us rewrite the last term on the right-hand side in terms of u. Recall that the boundary
condition defining Dom(H⌧ ) is expressed component-wise as v = ie⌧ (� · ⌫)u. If we di↵erentiate
this identity with respect to ⌧ , we get

v0 = ie⌧ (� · ⌫)(u+ u0),

and thus
e�⌧v0 · v = e⌧ (� · ⌫)(u+ u0) · (� · ⌫)u = e⌧ (|u|2 + u0

· u).

Therefore,

e�⌧

@⌦

v0 · v d� = e⌧kuk2
L2(@⌦)2 + e⌧

@⌦

u0
· u d�,

and inserting this into (3.5) we obtain

@⌦

'0
· i(↵ · ⌫)' d� = e⌧kuk2

L2(@⌦)2 .

Plugging this last expression into (3.4) we obtain (3.1). Finally, (3.2) is obtained combining
(3.1) with Lemma 2.3. ⇤
Once we have established the monotonicity of the eigenvalues, we can finally prove Theo-

rem 1.3. To do it, it will be crucial to use the explicit formula (3.2), which provides a growth
estimate for the eigenvalue curves ⌧ 7! �(⌧), preventing them to escape to infinity at finite
values of the parameter ⌧ .

Proof of Theorem 1.3. Let ⌧0 2 R and let �? 2 �(H⌧0) be an eigenvalue with multiplicity µ?.
Note that thanks to Lemma 1.2 (iii) we can assume without loss of generality that �? > m.
Then, by Lemma 3.1 and taking into account Remark 3.2, there exist µ? real analytic functions
�1(⌧), . . . ,�µ?(⌧) defined in a neighborhood of ⌧0, such that �j(⌧) 2 �(H⌧ ) and �j(⌧0) = �? for
j = 1, . . . , µ?. Each of these functions �j(⌧), some of them possibly equal in a neighborhood of
⌧0, is associated to a di↵erent eigenfunction which also depends analytically on ⌧ .
Let �(⌧) be one of these analytic eigenvalue curves and let '⌧ be its associated eigenfunction,

which can be taken to have norm equal to 1 in L2(⌦)4. The curve �(⌧) can be continued
analytically in a maximal interval I in which �(⌧) represents an eigenvalue of H⌧ (this is
true even when the graph of �(⌧) crosses the graph of another such eigenvalue curve, see the
comments in [52, VII-§3.2]). Our goal is to prove that I = R.
By contradiction, let us assume that I 6= R, and let ⌧ ? be a finite end of the maximal

interval I —that is, ⌧ ? 2 @I and |⌧ ?| < +1. Then, we set �? := lim⌧!⌧? �(⌧), which exists
by the monotonicity of �(⌧) shown in Lemma 3.3. We claim that �? is finite. Indeed, by the
formula for �0(⌧) given by (3.2) and using that �(⌧) > m, we get (�(⌧)�m)0  �(⌧)�m, and
therefore m < �(⌧)  C(1 + e⌧ ) for ⌧ 2 I, with some constant C depending on m and ⌧0. As a
consequence, since ⌧ ? < +1, �(⌧) cannot tend to +1 as ⌧ ! ⌧ ?.
We shall prove now that �? is an eigenvalue of H⌧? . To do it, recall that the eigenfunctions

'⌧ = (u⌧ , v⌧ )| are normalized in L2(⌦)4. Our goal is to bound them uniformly in H1(⌦)4. To
accomplish this, note first that by Lemma 2.1 we have

ku⌧kH1(⌦)2  C
�
ku⌧kL2(⌦)2 + k� ·ru⌧kL2(⌦)2 + ku⌧kH1/2(@⌦)2

�
.

Since k'⌧k
2
L2(⌦)4 = 1, using the equation �� ·ru⌧ = (�(⌧)+m)v⌧ and the bounds m < �(⌧) 

�? + 1 for ⌧ close enough to ⌧ ?, it follows that

ku⌧kH1(⌦)2  C
�
1 + ku⌧kH1/2(@⌦)2

�
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for some constant C depending only on ⌦, m, and �?. It remains to estimate ku⌧kH1/2(@⌦)2 . To
do it, we use (2.21) to obtain

ku⌧kH1/2(@⌦)2  Cku⌧kH�1/2(@⌦)2 ,

for some constant C depending only on ⌦, m, and �?, provided that ⌧ 2 I is close to ⌧ ?. Finally,
note that, under the normalization hypothesis, by Lemma 2.2 we have ku⌧kH�1/2(@⌦)2  C for
some constant depending only on ⌦, m, and �?. Therefore, for some other constant C depending
only on the same quantities, we get

ku⌧kH1(⌦)2  C,

provided that ⌧ 2 I is close to ⌧ ?. Using a similar argument for v⌧ , we obtain the uniform
bound k'⌧kH1(⌦)4  C for ⌧ 2 I close to ⌧ ?. Therefore, by the compact embedding of H1(⌦)4

into L2(⌦)4 and of H1/2(@⌦)4 into L2(@⌦)4, and by weak⇤ compactness on H1(⌦)4, we can find
a sequence {⌧k}k2N with limk"+1 ⌧k = ⌧ ? such that '⌧k

converges in L2(⌦)4 and in L2(@⌦)4 to
some function '?

2 H1(⌦)4 as k " +1. Since '⌧k
are normalized in L2(⌦)4, we have '?

6⌘ 0.
Moreover, by the convergence in L2(@⌦)4, it follows readily that '?

2 Dom(H⌧?). Writing the
eigenvalue equation for '⌧k

in weak form and taking the limit k " +1, we obtain that '? solves
weakly an eigenvalue equation with associated eigenvalue �?. Since '?

2 H1(⌦)4 (by the weak⇤

compactness), a standard density argument shows that H'? = �?'? in ⌦.
Finally, once we have proven that �? 2 �(H⌧?), we can apply again Lemma 3.1 to this eigen-

value. By doing this, we extend analytically the curve �(⌧) to a bigger interval, contradicting
the maximality of the interval I. As a consequence, we have shown that any eigenvalue curve
�(⌧) can be defined for all ⌧ 2 R as a real analytic function.
To conclude the proof, we should show that, for the given ⌧0 2 R, the extensions of all the

eigenvalues {�k(⌧0)}k2Z\{0} exhaust the spectrum of H⌧ for every ⌧ 2 R. Indeed, if there were
some ⌧? and an eigenvalue �? 2 �(H⌧?) which did not lie on any of the eigenvalue curves found
before, then �? could itself be extended to an analytic eigenvalue curve on R by the previous
arguments, and in particular we would have an eigenvalue �?(⌧0) not included in {�k(⌧0)}k2Z\{0},
contradicting the assumption that {�k(⌧0)}k2Z\{0} (counting multiplicities) is the totality of the
spectrum of H⌧0 . ⇤

4. Asymptotic behavior

In this section we study the asymptotic behavior of the eigenvalue curves as ⌧ ! ±1. First,
we will establish Theorem 1.4, regarding the possible limits of the eigenvalue curves, and we
will provide a finer description of the curve corresponding to the first positive eigenvalue of H⌧ ,
as stated in Theorem 1.5. Furthermore, we will prove the shape optimization result for large
values of ⌧ stated in Corollary 1.6. After that, we will focus on the first order asymptotics as
⌧ # �1. To do so, we will first need to introduce skew projections onto Hardy spaces, and
then we will address the proof of Theorem 1.7.

4.1. Limits of eigenvalue curves as ⌧ ! ±1. In this section we prove Theorems 1.4 and 1.5
and Corollary 1.6. We begin by showing two compactness results that will be used in the proof
of Theorem 1.4, and also Theorem 1.7. Roughly speaking, Theorem 1.4 is based on the following
argument: every '⌧ = (u⌧ , v⌧ )| 2 Dom(H⌧ ) satisfies the boundary condition v⌧ = ie⌧ (� · ⌫)u⌧

on @⌦. If '⌧ is an eigenfunction, as ⌧ # �1 the boundary condition forces the trace of v⌧ on @⌦
to vanish, and as ⌧ " +1 the boundary condition forces the trace of u⌧ to vanish. Combining
this with uniform estimates on the H1(⌦)2-norm of the components of '⌧ and a compactness
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argument, we end up with an eigenfunction of the Dirichlet Laplacian. From here we can then
find a set of candidates to be the limit of the eigenvalue associated to '⌧ as ⌧ ! ±1. This, in
particular, will lead to the proof of Theorem 1.4.
Let us first address the compactness result for v⌧ as ⌧ # �1. The crucial point is to establish

a uniform bound for the H1(⌦)2-norm of v⌧ , (4.1) below. The proof of this estimate will be a
slight modification of some ideas that were used to prove Theorem 1.3, but since now we do not
have control on e�⌧ as ⌧ # �1, we also need to use some estimates for u⌧ and the boundary
condition.

Proposition 4.1. Let T = {⌧k}k2N ⇢ R be a sequence such that limk"+1 ⌧k = �1. For every
⌧ 2 T , let �(⌧) 2 �(H⌧ ) \ (m,+1) and '⌧ = (u⌧ , v⌧ )| 2 Dom(H⌧ ) such that H⌧'⌧ = �(⌧)'⌧

and k'⌧kL2(⌦)4 = 1. Assume that �(⌧)  C� for some C� > 0 and all ⌧ 2 T . Then,

kv⌧kH1(⌦)2  C for all ⌧ 2 T , (4.1)

where C > 0 depends only on m, C�, max T , and ⌦.
As a consequence, there exists a subsequence {⌧kj}j2N ⇢ T for which the limit

�? := lim
j"+1

�(⌧kj) 2 [m,C�]

exists and such that v⌧kj converges in L2(⌦)2 to a function v? 2 H2(⌦)2 satisfying
⇢

��v? = (�2
?
�m2)v? in ⌦,

v? = 0 on @⌦.

Proof. Throughout the proof we will use the letter C to denote di↵erent constants depending
only on m, C�, max T , and ⌦.
First, note that by Lemma 2.1 (ii) we have

kv⌧kH1(⌦)2  C
⇣
kv⌧kL2(⌦)2 + k� ·rv⌧kL2(⌦)2 + kv⌧kH1/2(@⌦)2

⌘
.

Since ku⌧k
2
L2(⌦)2 + kv⌧k

2
L2(⌦)2 = k'⌧k

2
L2(⌦)4 = 1, using the equation �i� ·rv⌧ = (�(⌧) �m)u⌧

from (2.5) and the upper bound �(⌧)  C�, it follows that

kv⌧kH1(⌦)2  C
⇣
1 + kv⌧kH1/2(@⌦)2

⌘
for all ⌧ 2 T .

Therefore, to prove (4.1) we only need to estimate kv⌧kH1/2(@⌦)2 uniformly in ⌧ 2 T .

From the boundary condition v⌧ = ie⌧ (� ·⌫)u⌧ , and since ⌫ is of class C1 on @⌦ (which yields
that � · ⌫ is a bounded operator in H1/2(@⌦)2), we see that

kv⌧kH1/2(@⌦)2  Ce⌧ ku⌧kH1/2(@⌦)2 . (4.2)

Looking at u⌧ , if we combine Proposition 2.9 with (2.21) we get

ku⌧kH1/2(@⌦)2  C
�
1 + |�(⌧) +m|e⌧ + |�(⌧)�m|e�⌧

�
C�(⌧) ku⌧kH�1/2(@⌦)2 .

Now, using that �(⌧)  C�, it follows that

ku⌧kH1/2(@⌦)2  C(1 + e�⌧ )ku⌧kH�1/2(@⌦)2 for all ⌧ 2 T .

Here we have used once again that ⌫ is of class C1 on @⌦. Applying Lemma 2.2 and using that
k'⌧kL2(⌦)4 = 1, we obtain ku⌧kH1/2(@⌦)2  C(1 + e�⌧ ) for all ⌧ 2 T . Combining this with (4.2)
we deduce that kv⌧kH1/2(@⌦)2  C for all ⌧ 2 T . This concludes the proof of (4.1).
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Let us now address the proof of the statement regarding the function v?. Firstly, since
�(⌧) 2 (m,C�] for all ⌧ 2 T , there exists a subsequence T

0 = {⌧kj}j2N ⇢ T such that the
limit �? := limj"+1 �(⌧kj) exists and satisfies m  �?  C�. Secondly, the normalization
k'⌧kL2(⌦)4 = 1 together with Lemma 2.3 yield e�⌧

kv⌧k2L2(@⌦)2  C for all ⌧ 2 T , which leads to

lim
j"+1

kv⌧kj kL2(@⌦)2 = 0. (4.3)

Now, combining these two ingredients with the uniform estimate (4.1), we can show the exis-
tence of v?. More precisely, by the compact embedding of H1(⌦)2 into L2(⌦)2 and of H1/2(@⌦)2

into L2(@⌦)2, and by weak⇤ compactness on H1(⌦)2, we can find a subsequence of T 0, which
we denote again by {⌧kj}j2N, for which v⌧kj converges in L2(⌦)2 to a function v? 2 H1

0 (⌦)
2 (v?

has zero trace thanks to (4.3)) satisfying

��v? = (�2
?
�m2)v?

in the weak sense in ⌦ —recall that ��v⌧ = (�(⌧)2 �m2)v⌧ in ⌦ by (2.6). Finally, standard
elliptic estimates show that v? 2 H2(⌦)2; see [40, Theorem 4 in §6.3.2] for example. ⇤
We now address the compactness result related to the upper component u⌧ of the eigenfunc-

tion '⌧ as ⌧ " +1. That is, the analogue of Proposition 4.1 for ⌧ " +1.

Proposition 4.2. Let T = {⌧k}k2N ⇢ R be a sequence such that limk"+1 ⌧k = +1. For every
⌧ 2 T , let �(⌧) 2 �(H⌧ ) \ (m,+1) and '⌧ = (u⌧ , v⌧ )| 2 Dom(H⌧ ) such that H⌧'⌧ = �(⌧)'⌧

and k'⌧kL2(⌦)4 = 1. Assume that �(⌧)  C� for some C� > 0 and all ⌧ 2 T . Then,

ku⌧kH1(⌦)2  C for all ⌧ 2 T , (4.4)

where C > 0 depends only on m, C�, min T , and ⌦.
As a consequence, there exists a subsequence {⌧kj}j2N ⇢ T for which the limit

�? := lim
j"+1

�(⌧kj) 2 [m,C�]

exists and such that u⌧kj
converges in L2(⌦)2 to a function u?

2 H2(⌦)2 satisfying
⇢

��u? = ((�?)2 �m2)u? in ⌦,
u? = 0 on @⌦,

Proof. The proof follows the same lines as the one of Proposition 4.1. By Lemma 2.1 (ii),

ku⌧kH1(⌦)2  C
⇣
ku⌧kL2(⌦)2 + k� ·ru⌧kL2(⌦)2 + ku⌧kH1/2(@⌦)2

⌘
.

Since k'⌧kL2(⌦)4 = 1, using the equation �i� ·ru⌧ = (�(⌧) +m)v⌧ from (2.5) and the upper
bound �(⌧)  C�, we have ku⌧kH1(⌦)2  C(1 + ku⌧kH1/2(@⌦)2). Now, v⌧ = ie⌧ (� · ⌫)u⌧ yields

ku⌧kH1/2(@⌦)2  Ce�⌧
kv⌧kH1/2(@⌦)2 . (4.5)

Looking at v⌧ , if we combine Proposition 2.9 with (2.21) we get

kv⌧kH1/2(@⌦)2  C
�
1 + |�(⌧) +m|e⌧ + |�(⌧)�m|e�⌧

�
C�(⌧) kv⌧kH�1/2(@⌦)2 .

Using that �(⌧)  C�, it follows that kv⌧kH1/2(@⌦)2  C(1 + e⌧ )kv⌧kH�1/2(@⌦)2 for all ⌧ 2 T .
Applying Lemma 2.2 and using that k'⌧kL2(⌦)4 = 1, we obtain kv⌧kH1/2(@⌦)2  C(1 + e⌧ ) for
all ⌧ 2 T . Combining this with (4.5), we get ku⌧kH1/2(@⌦)2  C for all ⌧ 2 T , which proves
(4.4). Once we have this uniform bound we proceed as in the proof of Proposition 4.1, using
now that e⌧ku⌧k

2
L2(@⌦)2  C by Lemma 2.3 to get that u? = 0 on @⌦. ⇤
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The following lemma will be used in the proof of Theorem 1.4. It assures that ku⌧kL2(⌦)2 does
not tend to zero as ⌧ " +1. This fact will be used to show that the limit function u? found
in Proposition 4.2 is not identically zero and, therefore, that (�?)2 �m2 is an eigenvalue of the
Dirichlet Laplacian on ⌦. As we will see in the proof of Theorem 1.4, to show an analogous
nondegeneracy for v? we will need a di↵erent argument based on formula (3.2).

Lemma 4.3. Let ⌧ 2 R, � > 0, and ' = (u, v)| 2 Dom(H⌧ ) \ {0} be such that H⌧' = �'.
Then,

kukL2(⌦)2

k'kL2(⌦)4
>

1
p
2
>

kvkL2(⌦)2

k'kL2(⌦)4
.

Proof. Thanks to Theorem 1.3, we can take a smooth parametrization of the eigenvalue � = �(⌧)
and the associated eigenfunction ' = '⌧ = (u⌧ , v⌧ )| in a neighborhood of ⌧ (indeed in the whole
real line). Set

�(⌧) :=
ku⌧k

2
L2(⌦)2

k'⌧k
2
L2(⌦)4

.

Then 1� �(⌧) = kv⌧k2L2(⌦)2/k'⌧k
2
L2(⌦)4 . Hence, it su�ces to prove that �(⌧) > 1/2. From (3.2)

and the fact that �0(⌧) > 0 it follows that (�(⌧)�m)�(⌧) > (�(⌧)+m)(1��(⌧)), which entails
�(⌧)(2�(⌧)� 1) > m � 0. Since �(⌧) > 0, we conclude that �(⌧) > 1/2. ⇤

With the previous results at hand, we can now establish Theorem 1.4.

Proof of Theorem 1.4. In the following, for each ⌧ 2 I let '⌧ = (u⌧ , v⌧ )| 2 Dom(H⌧ ) be such
that H⌧'⌧ = �(⌧)'⌧ and k'⌧kL2(⌦)4 = 1.

Let us first prove (ii), which is shorter than proving (i). Since ⌧ 7! �(⌧) 2 �(H⌧ )\ (m,+1)
is assumed to be continuous, the monotonicity of the eigenvalue curves proved in Theorem 1.3
assures that � is strictly increasing on I, hence the limit �(+1) exists and satisfies m <
�(+1)  +1.

Assume that �(+1) < +1. Then �(⌧)  �(+1) < +1 for all ⌧ 2 (⌧0,+1). By
Proposition 4.2, there exists a sequence {⌧k}k2N ⇢ (⌧0,+1) with limk"+1 ⌧k = +1 for which
u⌧k

converges in L2(⌦)2 to a function u?
2 H2(⌦)2 satisfying

⇢
��u? =

�
�(+1)2 �m2

�
u? in ⌦,

u? = 0 on @⌦.

Now, since k'⌧kL2(⌦)4 = 1 for all ⌧ , Lemma 4.3 gives that ku⌧k
kL2(⌦)2 > 1/2 for all k, thus

ku?
kL2(⌦)2 > 1/2 by the convergence in L2(⌦)2. Therefore, u? is an eigenfunction of the Dirichlet

Laplacian on ⌦, which yields �(+1)2 �m2
2 �(��D), as desired.

Let us now address the proof of (i). We are assuming that ⌧ 7! �(⌧) is a continuous function
on (�1, ⌧0). Then, thanks to Theorem 1.3, � is indeed real analytic everywhere on (�1, ⌧0)
except possibly on countable many exceptional points where the graph of � may change from
one real analytic eigenvalue curve to another one through a crossing point. Theorem 1.3 actually
shows that on every compact set of (�1, ⌧0) there are only a finite number of these exceptional
points. Moreover, by the monotonicity shown in Theorem 1.3, �0 > 0 wherever � is di↵erentiable
(see Lemma 3.3), and thus the limit �(�1) exists and satisfies m  �(�1) < +1. All these
considerations justify the identities

⌧0�1

�1

|�0| =
⌧0�1

�1

�0 = �(⌧0 � 1)� �?.



28 N. ARRIZABALAGA, A. MAS, T. SANZ-PERELA, AND L. VEGA

Since �(⌧0 � 1) � �? < +1, we deduce that �0 is absolutely integrable in (�1, ⌧0 � 1). In
particular, there exists a sequence {⌧k}k2N ⇢ (�1, ⌧0 � 1) such that limk"+1 ⌧k = �1 and

lim
k"+1

�0(⌧k) = 0. (4.6)

Set �(⌧) := ku⌧k
2
L2(⌦)2 . Then, 1� �(⌧) = kv⌧k2L2(⌦)2 by the fact that k'⌧kL2(⌦)4 = 1, and

�(⌧) >
1

2
(4.7)

for all ⌧ 2 I by Lemma 4.3. Combining (4.6) with (3.2) we deduce that

lim
k"+1

⇣�
�(⌧k)�m

�
�(⌧k)�

�
�(⌧k) +m

��
1� �(⌧k)

�⌘
= lim

k"+1

�0(⌧k) = 0. (4.8)

This limit will be the key point in the proof of (ii).
Recall that m  �(�1) < +1. The next step is to show that if m < �(�1) then

�(�1)2 � m2
2 �(��D). Note that if m < �(�1) then the fact that � is increasing and

(4.7) yield that (�(⌧k) � m)�(⌧k) � (�(�1) � m)/2 > 0 for all k 2 N. Then, using (4.8) we
get that (�(⌧k) +m)(1� �(⌧k)) > C for some C > 0 and all k big enough. In particular, since
�(�1) < +1, we deduce that

kv⌧kk
2
L2(⌦)2 = (1� �(⌧k)) > C (4.9)

for some C > 0 and all k big enough. At this point, we simply have to use Proposition 4.1 on
the sequence {⌧k}k�k0 for some k0 big enough to find a function v? 2 H2(⌦)2 \ {0} satisfying

⇢
��v? =

�
�(�1)2 �m2

�
v? in ⌦,

v? = 0 on @⌦.

Note that v? is not identically zero thanks to (4.9) and the convergence in L2(⌦)2 of the
subsequence of {v⌧k}k�k0 given by Proposition 4.1. From here, we conclude that

if �(�1) > m then �(�1)2 �m2
2 �(��D). (4.10)

Finally, assume that �(⌧)2�m2
 min �(��D) for some ⌧ 2 I. Since � is strictly increasing

on I, we deduce that �(�1)2 �m2 < min �(��D), which leads to �(�1)2 �m2
62 �(��D).

This, together with (4.10) and the fact that m  �(�1) < +1, entails �(�1) = m. On the
contrary, if �(⌧)2 � m2 > min �(��D) for all ⌧ 2 I then �(�1)2 � m2

� min �(��D) > 0,
and thus �(�1)2 �m2

2 �(��D) by (4.10). ⇤
We now establish Theorem 1.5, concerning the first positive eigenvalue.

Proof of Theorem 1.5. Let us first show that ⌧ 7! �+1 (⌧) := min(�(H⌧ )\(m,+1)) is continuous
and strictly increasing on R. To do so, we will show that �+1 is continuous and strictly increasing
on [0,+1), the proof for (�1, 0] is analogous.
Let {⌧ 7! �k(⌧)}k2Z\{0} be the family of eigenvalues curves associated to the mapping ⌧ 7! H⌧

given by Theorem 1.3. Note that this family contains pairs of curves whose graphs coincide.
This is due to the fact that in the statement of Theorem 1.3 the eigenvalues were repeated
according to their algebraic multiplicity. In order to avoid this repetition, let us remove from
the family {�k}k2Z\{0} any curve �k whose graph coincides with the graph of �j for some
j < k. In this way we get a new family of curves, still denoted by {�k}k2Z\{0}, such that
�(H⌧ ) =

S
k2Z\{0} �k(⌧) for all ⌧ 2 R, and such that the graphs of �j and �k di↵er whenever

j 6= k. Moreover, thanks to Theorem 1.3 the following holds: if P ⇢ R2 denotes the union of
all the intersection points among the graphs of the curves in {�k}k2Z\{0}, then P \K is finite
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for every compact set K ⇢ R2, and for each p 2 P there are only a finite number of curves
whose graph intersects p.
From the previous considerations, and recalling that �+1 (0) = min(�(H0)\ (m,+1)), we see

that there exist only finitely many curves �k1 , . . . ,�kJ 2 {�k}k2Z\{0} whose graphs intersect the
point p0 = (0,�+1 (0)) 2 R2. Furthermore, in a neighborhood of p0 these curves only intersect
at p0. Hence, there exists k0

2 {k1, . . . , kJ} and ✏ > 0 such that

�k0(⌧) < �kj(⌧) for all j = 1, . . . , J with kj 6= k0, and all ⌧ 2 (0, ✏). (4.11)

Moreover, the curves �kj(⌧) do not intersect any other eigenvalue curve for ⌧ 2 [0, ✏) —since in
that interval all the other eigenvalue curves lie either below �m or above the second positive
eigenvalue of H0 (by monotonicity). This shows that �+1 (⌧) = �k0(⌧) for all ⌧ 2 [0, ✏). Then,
since �k0 is real analytic and strictly increasing by Theorem 1.3, the same holds for �+1 on (0, ✏).
Now, since ⌧ 7! �k0(⌧) is defined for all ⌧ 2 R, we can increase ⌧ starting from ⌧ = 0 in order
to move us to the right along the graph of �k0 . Regarding the family of curves {�k}k2Z\{0}, only
two situations can happen. Either

(i) there exists ⌧1 > 0 such that the graph of �k0 does not intersect any other graph for any
⌧ 2 (0, ⌧1), but it intersects the graphs of (at most) finitely many curves at the point
p1 = (⌧1,�k0(⌧1)) 2 R2, or

(ii) the graph of �k0 does not intersect the graph of any other curve for any ⌧ 2 (0,+1).

We claim that if (ii) holds then �k0 = �+1 on [0,+1). Clearly, �k0 � �+1 on [0,+1) by the
definition of �+1 , the fact that �k0 is continuous, and that �k0(0) = �+1 (0). To prove the claim,
assume by contradiction that �k0(⌧0) > �+1 (⌧0) for some ⌧0 > 0. We know that there exists
� 2 {�k}k2Z\{0} such that �(⌧0) = �+1 (⌧0). Since �(0) � �+1 (0) = �k0(0), by (ii) and continuity
we deduce that �(0) = �k0(0) and that �(⌧) < �k0(⌧) for all ⌧ 2 [0, ⌧0], but this contradicts
(4.11). Therefore, �k0 = �+1 on [0,+1) if (ii) holds.
Assume now that (i) holds. Arguing as in (ii) we see that �k0 = �+1 on [0, ⌧1]. Then,

we can proceed exactly as we did for the point p0 = (0,�+1 (0)) 2 R2 but now for the point
p1 = (⌧1,�

+
1 (⌧1)) 2 R2. We would see that either �+1 coincides with some curve in {�k}k2Z\{0}

on [⌧1,+1) or there exists, as in (i), a new intersection point p2 = (⌧2,�
+
1 (⌧2)) 2 R2 with ⌧2 > ⌧1

associated to the curve in {�k}k2Z\{0} that coincides with �
+
1 on [⌧1, ⌧2]. Iterating this argument,

in the worst case we would get an infinite sequence of intersection points pj = (⌧j,�
+
1 (⌧j)) 2 R2

for j = 1, 2, . . . such that ⌧j < ⌧j+1 for all j. However, recall from the beginning of the proof
that, if P ⇢ R2 denotes the union of all the intersection points among the graphs of the curves
in {�k}k2Z\{0}, then P \ K is finite for every compact set K ⇢ R2. This yields that the
set {⌧j}j \ [0, R] is finite for all R > 0, which in particular means that limj"+1 ⌧j = +1.
Therefore, in this worst case we still get a covering of the graph of �+1 by the graphs of the
curves in {�k}k2Z\{0} in a locally finite way.
In conclusion, from how we described �+1 in terms of the eigenvalue curves {�k}k2Z\{0}, and

since these curves are real analytic and strictly increasing on R, we deduce that �+1 is continuous
and strictly increasing on R, and real analytic on R \ E, where E ⇢ R is some set such that
E \ [�R,R] is finite for all R > 0.
It only remains to prove (1.7). That lim⌧"+1 �+1 (⌧)

2
�m2

2 �(��D)[{+1} follows directly
from Theorem 1.4 (ii), hence we only need to prove that lim⌧#�1 �+1 (⌧) = m. To show this, by
Theorem 1.4 (i) it is enough to check that �+1 (⌧)

2
�m2

 min �(��D) for some ⌧ 2 R. The
idea will be to bound from above the first eigenvalue of the positive operator H2

0 by the one of
��D, and then to use that H0 diagonalizes in a basis of eigenvectors to bring this estimate to
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�+1 (0). The operator H2
0 is defined by

Dom(H2
0) := {' 2 Dom(H0) : H0' 2 Dom(H0)},

H
2
0' := H

2' = (��+m2)' for all ' 2 Dom(H2
0).

From (the proof of) Lemma 1.2, we know that H0 diagonalizes in an L2(⌦)4-orthonormal basis
of eigenfunctions, and that �(H0) is symmetric. This yields that

hH
2
0','iL2(⌦)4 � �+1 (0)

2
k'k2

L2(⌦)4

for all ' 2 Dom(H2
0), and the equality holds if H0' = ±�+1 (0)'. Therefore,

�+1 (0)
2 = min

'2Dom(H2
0)\{0}

hH
2
0','iL2(⌦)4

k'k2
L2(⌦)4

= min
'2Dom(H2

0)\{0}

h(��+m2)','iL2(⌦)4

k'k2
L2(⌦)4

 inf
'2C1

c (⌦)4\{0}

h(��+m2)','iL2(⌦)4

k'k2
L2(⌦)4

 m2 + inf
�2C1

c (⌦)\{0}

kr�k2
L2(⌦)

k�k2
L2(⌦)

= m2 +min �(��D).

where we used that C1

c
(⌦)4 ⇢ Dom(H2

0), and the Rayleigh-Ritz principle in the last equality
above. With this estimate at hand, Theorem 1.4 (i) shows that lim⌧#�1 �+1 (⌧) = m. ⇤
Remark 4.4. Despite that from our arguments we cannot assure that lim⌧"+1 �+1 (⌧) < +1 in
(1.7), we believe that indeed

lim
⌧"+1

�+1 (⌧) =
p
min �(��D) +m2 (4.12)

for every bounded domain ⌦ ⇢ R3, as Proposition B.3 shows in the case of a ball. The
reason for this belief is the following one: in view of the boundary equation v = ie⌧ (� · ⌫)u
in (2.5), we expect that, as ⌧ # �1, H⌧ tends to the Dirac operator Am with zigzag type
boundary conditions studied in [49], whose negative eigenvalue with the smallest modulus is
�

p
min �(��D) +m2. If, for example, the convergence of H⌧ to Am as ⌧ # �1 is in the strong

resolvent sense, an application of Lemma 1.2 (iii) would yield that
p
min �(��D) +m2 =

lim⌧"+1 �(⌧) for some �(⌧) 2 �(H⌧ )\(m,+1). Then, the fact that we must have �(⌧) = �+1 (⌧)
for all ⌧ big enough, which would lead to (4.12), should follow from the monotonicity of the
eigenvalue curves and the fact that �

p
min �(��D) +m2 is the negative eigenvalue of Am with

the smallest modulus.
In order to use this argument to get (4.12), the convergence of H⌧ in a resolvent sense as

⌧ ! ±1 must be studied. This question requires further work, and it will not be addressed
in this article, since Theorem 1.5 su�ces to establish the shape optimization result stated in
Corollary 1.6.

Remark 4.5. As seen from the proof of Theorem 1.5, the existence of the set E in which �+1
is not analytic depends on the possible crossing which an eigenvalue curve ⌧ 7! �(⌧), locally
representing �+1 , may have with other eigenvalue curves. This, in turn, depends on the fact of
�+1 having constant multiplicity for all ⌧ 2 R. Although in the case of ⌦ being a ball we know
from Proposition B.3 that �+1 has always multiplicity 2 (and thus E = ; in this case), these
questions remain open for a general domain ⌦.

We conclude the section by proving our shape optimization result for large values of the
parameter ⌧ .
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Proof of Corollary 1.6. Denote by �D⌦ := min �(��D) the first eigenvalue of the Dirichlet
Laplacian in ⌦. From the Faber-Krahn inequality we know that if ⌦ is not a ball then

�D⌦ > �D
B
, (4.13)

since @⌦ is regular enough; see [44, Remark 3.2.2]. Now, on the one hand, Theorem 1.5 yields

lim
⌧"+1

�⌦(⌧) �
q
�D⌦ +m2 (4.14)

and, on the other hand, Proposition B.3 shows that

lim
⌧"+1

�B(⌧) =
q
�D
B
+m2. (4.15)

Combining (4.13), (4.14), and (4.15) we deduce that lim⌧"+1 �⌦(⌧) > lim⌧"+1 �B(⌧), from
which the corollary follows. ⇤
4.2. Skew projections onto Hardy spaces. In this section we introduce skew projections of
L2(@⌦)2 onto Hardy spaces. They are used in Section 4.3 to prove Theorem 1.7, a result which
addresses the asymptotic expansion of �⌦(⌧) �m as ⌧ # �1. For a more general perspective
on this topic from the point of view of Cli↵ord algebras and the Cauchy-Cli↵ord operator, the
reader may look at [48].
Let P± : L2(@⌦)2 ! L2(@⌦)2 be defined by

P± :=
1

2
± iWm(� · ⌫),

where Wm is defined in (2.12), and let (P±)⇤ : L2(@⌦)2 ! L2(@⌦)2 be the adjoint operators
with respect to h·, ·iL2(@⌦)2 , namely,

(P±)
⇤ :=

1

2
⌥ i(� · ⌫)Wm

(recall that both Wm and � · ⌫ are bounded self-adjoint operators in L2(@⌦)2).

Lemma 4.6. P+ and P� are complementary projections of L2(@⌦)2. More precisely,

(i) P+ + P� = 1,
(ii) P±P⌥ = 0,
(iii) P±P± = P±,

as bounded operators in L2(@⌦)2. The same holds replacing P± by (P±)⇤.

Proof. Statement (i) is obvious. To show (ii), recall that (Wm(�·⌫))2 = �1/4 by Lemma 2.7 (ii),
and thus

P±P⌥ = (12 ± iWm(� · ⌫))(12 ⌥ iWm(� · ⌫)) = 1
4 + (Wm(� · ⌫))2 = 0.

Then, combining (i) and (ii) we see that P±P± = P±(P± + P⌥) = P±, which proves (iii).
Finally, taking adjoints in these identities, we get the same conclusions for (P±)⇤. ⇤
The previous lemma shows that P± are skew projections of L2(@⌦)2 parallel to (with kernel)

P⌥(L2(@⌦)2), and analogously for their adjoints. The subspaces P±(L2(@⌦)2) of L2(@⌦)2 are the
so-called boundary Hardy (or Smirnov) spaces obtained by taking traces on @⌦ of inner/outer
null-solutions of � ·r: setting ⌦+ := ⌦ and ⌦� := R3

\⌦, from the reproducing formula for C2-
valued functions analogous to (2.9) one sees that if u± 2 H1(⌦±)2 are such that (� ·r)u± = 0
in ⌦±, then their traces on @⌦ satisfy P±u± = u± as functions in L2(@⌦)2, which is equivalent
to say that u± 2 P±(L2(@⌦)2) = Ker(P⌥).
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Despite being projections, P+ and P� are not orthogonal projections in general. Indeed, the
fact of being orthogonal characterizes the shape of ⌦, as the following result shows. The reader
should also look at [48] for a deeper treatment of the interplay between the geometry of Hardy
spaces and the geometry of the underlying domain ⌦. In [48] the authors consider the general
framework of domains with locally finite perimeter. For the sake of simplicity, in the following
lemma we only focus on bounded regular domains.

Lemma 4.7. Let ⌦ ⇢ R3 be a bounded domain with C1 boundary. The following are equivalent:

(i) P+ and P� are self-adjoint operators in L2(@⌦)2.
(ii) P+ and P� are orthogonal projections of L2(@⌦)2.
(iii) {Wm, � · ⌫} = 0 as operators in L2(@⌦)2.
(iv) ⌦ is a ball.

Proof. It is obvious that (i) is equivalent to (iii). We first prove that (ii) is equivalent to (iii).
Then we prove that, if ⌦ is bounded, (iii) is equivalent to (iv).

On the one hand, if P+ and P� are orthogonal projections of L2(@⌦)2 then

0 = hP±u, P⌥viL2(@⌦)2 = h(P⌥)
⇤P±u, viL2(@⌦)2

for all u, v 2 L2(@⌦)2. This is equivalent to say that

0 = (P⌥)
⇤P± = (12 ± i(� · ⌫)Wm)(

1
2 ± iWm(� · ⌫))

= 1
4 � (� · ⌫)WmWm(� · ⌫)± i

2{Wm, � · ⌫}.

Subtracting both expressions, we conclude that {Wm, � · ⌫} = 0. On the other hand, if (iii)
holds then (P±)⇤ = P± by (i), thus (P⌥)⇤P± = P⌥P± = 0 by Lemma 4.6. This shows that (ii)
and (iii) are equivalent.

We now prove that (iii) and (iv) are equivalent statements. Recall that

Wmu(x) = lim
✏#0

i

4⇡ @⌦\{|x�y|>✏}

|x� y|�3
�
� · (x� y)

�
u(y) d�(y);

see (2.12). Therefore, {Wm, � · ⌫} = 0 if and only if
�
� · (x� y)

��
� · ⌫(y)

�
= �

�
� · ⌫(x)

��
� · (x� y)

�
for �-a.e. x, y 2 @⌦. (4.16)

Since N is continuous because @⌦ is of class C1, we can replace “for �-a.e. x, y 2 @⌦” by “for all
x, y 2 @⌦” in (4.16). Recall now that (� ·a)(� ·b) = a ·b+ i� · (a⇥b) for all a, b 2 R3. Therefore,
multiplying by � · (x� y) from the left both hand sides of (4.16), we get that {Wm, � · ⌫} = 0
if and only if

|x� y|2
�
� · ⌫(y)

�
= �

�
� · (x� y)

��
� · ⌫(x)

��
� · (x� y)

�
for all x, y 2 @⌦. (4.17)

Observe also that, for every a, b 2 R3,

(� · a)(� · b) = a · b+ i� · (a⇥ b) = �b · a� i� · (b⇥ a) + 2a · b = �(� · b)(� · a) + 2a · b,

which yields

(� · a)(� · b)(� · a) = �(� · b)(� · a)(� · a) + 2(a · b)(� · a)

= �|a|2(� · b) + 2(a · b)(� · a) = � ·
�
�|a|2b+ 2(a · b)a

�
.

Using this formula on the right-hand side of (4.17) taking a = x� y and b = N(x) we get

� ·
�
|x� y|2N(y)

�
= � ·

�
|x� y|2N(x)� 2((x� y) · ⌫(x))(x� y)

�
. (4.18)
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Now, since the Pauli matrices together with the identity matrix form a basis for the real vector
space of 2 ⇥ 2 Hermitian matrices, from (4.17) and (4.18), we see that {Wm, � · ⌫} = 0 if and
only if

N(y) = N(x)�
2(x� y) · ⌫(x)

|x� y|2
(x� y) for all x, y 2 @⌦ with x 6= y. (4.19)

Finally, since ⌦ is bounded and with C1 boundary, the Reflection Lemma (see, for example,
[36, Lemma 5.3 on page 45]) shows that (4.19) holds if and only if ⌦ is a ball. ⇤
Remark 4.8. From the previous proof it follows that the equivalence between (iii) and (iv) in
Lemma 4.7 holds not only for Wm, but for W� with � 2 R —recall that W� is defined in (2.12).

4.3. First order asymptotics as ⌧ # �1. Through this section, in order to highlight the
dependence of H⌧ on the domain ⌦ ⇢ R3, we will denote by �⌦(⌧) the first positive eigenvalue
of H⌧ (that is, we set �⌦ := �+1 ). Recall that lim⌧#�1 �⌦(⌧) = m by Theorem 1.5. The purpose
of this section is to address the asymptotic expansion of �⌦(⌧) � m as ⌧ # �1. To do it, in
(1.8) we introduced the function L⌦ : R ! (0,+1) defined by

⌧ 7! L⌦(⌧) := (�⌦(⌧)�m)e�⌧ .

With this notation, �⌦(⌧) = m+ e⌧L⌦(⌧) for all ⌧ 2 R.

Lemma 4.9. The function L⌦ is strictly decreasing on R.

Proof. Since �⌦ is di↵erentiable everywhere except possibly at countable many points by The-
orem 1.5, L⌦ too. Therefore, the lemma follows if we show that L0

⌦ < 0 at the points of
di↵erentiability.
For every ⌧ 2 R, let '⌧ = (u⌧ , v⌧ )| 2 Dom(H⌧ ) \ {0} such that H⌧'⌧ = �⌦(⌧)'⌧ . We claim

that kv⌧kL2(⌦)2 > 0 for all ⌧ 2 R. To see this, assume that kv⌧kL2(⌦)2 = 0. Then, (2.5) shows
that ��u⌧ = (�i� ·r)2u⌧ = (�i� ·r)(�⌦(⌧)+m)v⌧ = 0 in ⌦, and u⌧ = �ie�⌧ (� · ⌫)v⌧ = 0 on
@⌦. Hence, ku⌧kL2(⌦)2 = kv⌧kL2(⌦)2 = 0. This implies that k'⌧kL2(⌦)4 = 0, which contradicts
the fact that '⌧ 2 Dom(H⌧ ) \ {0}.
Now, set �(⌧) := ku⌧k

2
L2(⌦)2/k'⌧k

2
L2(⌦)4 = 1 � kv⌧k2L2(⌦)2/k'⌧k

2
L2(⌦)4 . We have shown that

�(⌧) < 1 for all ⌧ 2 R. Then, using (3.2) we have

L0

⌦(⌧) = �0⌦(⌧)e
�⌧

� L⌦(⌧)

= (�⌦(⌧)�m)�(⌧)e�⌧
� (�⌦(⌧) +m)(1� �(⌧))e�⌧

� L⌦(⌧)

= L⌦(⌧)�(⌧)� (�⌦(⌧) +m)(1� �(⌧))e�⌧
� L⌦(⌧)

= (�(⌧)� 1)
�
L⌦(⌧) + (�⌦(⌧) +m)e�⌧

�
< 0,

establishing the result. ⇤
Thanks to the monotonicity of L⌦ proved in Lemma 4.9, we get that the limit

L?

⌦ := lim
⌧#�1

L⌦(⌧)

exists as an element of (0,+1]. In particular, in the case that L?

⌦ < +1, we deduce that
�⌦(⌧) behaves like m + L?

⌦e
⌧ as ⌧ # �1. That is, L?

⌦ quantifies the speed of convergence of
�⌦(⌧) towards m as ⌧ # �1. Our purpose now is to prove Theorem 1.7, where we give a
lower bound for L?

⌦ (which is sharp if ⌦ is a ball) in terms of an optimization problem posed
on the boundary Hardy space P+(L2(@⌦)2). For the convenience of the reader, we first recall
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the definitions of L⌦, R⌦, and R given in (1.11), (1.14), and (1.13), respectively. Under the
notation used in Section 4.2, the set L⌦ is defined by

L⌦ :=
n
L 2 C : 9 u 2 L2(@⌦)2 \ {0} with P�u = 0, (P+)

⇤u = L(� · ⌫)Km(� · ⌫)u
o
, (4.20)

the functional R is given by

R(u) :=
h(� · ⌫)Km(� · ⌫)u, uiL2(@⌦)2

kuk2
L2(@⌦)2

for u 2 L2(@⌦)2 \ {0},

and
R⌦ := sup

u2L2(@⌦)2\{0}, P�u=0
R(u).

Below (1.13) we mentioned that 0 < R(u) < kKmkL2(@⌦)2!L2(@⌦)2 for all u 2 L2(@⌦)2 \ {0}.
This combined with the fact that P+(L2(@⌦)2) = Ker(P�) 6= {0} —for instance, the constants
belong to P+(L2(@⌦)2)— yields

0 < R⌦  kKmkL2(@⌦)2!L2(@⌦)2 . (4.21)

The proof of Theorem 1.7 will be divided into several steps. First, in Lemma 4.10 we will
show that L?

⌦ 2 L⌦ whenever L?

⌦ < +1. Then, in Lemma 4.11 we will prove that L⌦ ⇢ R
and that 1/R⌦  L for all L 2 L⌦. The proof of the fact that R⌦ is attained is given in
Lemma 4.12, and in Lemma 4.13 we will see that the maximizers for R⌦ are in the kernel of
(P+)⇤ �

1
R⌦

(� · ⌫)Km(� · ⌫). Finally, the proof of the fact that the equality in 1/R⌦  L?

⌦ is
attained if ⌦ is a ball is given in Proposition B.3.

Lemma 4.10. If L?

⌦ < +1 then L?

⌦ 2 L⌦.

Proof. From Proposition 2.9 we see that the eigenvalue equation H⌧'⌧ = �⌦(⌧)'⌧ is equivalent
the to system of equations

u⌧ =
�
2iW�⌦(⌧)(� · ⌫)� 2(�⌦(⌧) +m)e⌧K�⌦(⌧)

�
u⌧ ,

u⌧ =
�
2i(� · ⌫)W�⌦(⌧) + 2(�⌦(⌧)�m)e�⌧ (� · ⌫)K�⌦(⌧)(� · ⌫)

�
u⌧ ,

(4.22)

where '⌧ = (u⌧ , ie⌧ (� · ⌫)u⌧ )| on @⌦. Proposition 2.9 also shows that '⌧ vanishes identically
on ⌦ if and only if u⌧ vanishes identically on @⌦. Hence, by homogeneity we can assume that
ku⌧kL2(@⌦)2 = 1 for all ⌧ 2 R. Now, using that lim⌧#�1 �⌦(⌧) = m, that L?

⌦ < +1, and (2.21),
we see that there exist ⌧0 2 R and C� > 0 such that

ku⌧kH1/2(@⌦)2  C(1 + |�⌦(⌧) +m|e⌧ + |�⌦(⌧)�m|e�⌧ )C�⌦(⌧) ku⌧kH�1/2(@⌦)2

 C ku⌧kH�1/2(@⌦)2  C� ku⌧kL2(@⌦)2 = C�

for all ⌧ < ⌧0. From this uniform estimate and the compact embedding of H1/2(@⌦)2 into
L2(@⌦)2, we get the existence of a sequence {⌧k}k2N with limk"+1 ⌧k = �1 for which u⌧k

converges in L2(@⌦)2 as k " +1 to some u? 2 L2(@⌦)2 with ku?kL2(@⌦)2 = 1. With this limit
function at hand, we now consider (4.22) for ⌧ = ⌧k. It is an exercise to show that the operators
W� and K�, as bounded operators in L2(@⌦)2, depend continuously on the parameter � 2 R;
recall (2.12) and (2.13). Therefore, taking the limit k " +1 in (4.22) with ⌧ = ⌧k, we get that

u? = 2iWm(� · ⌫)u?, (4.23)

u? = 2i(� · ⌫)Wmu? + 2L?

⌦(� · ⌫)Km(� · ⌫)u? (4.24)

in L2(@⌦)2. Since (4.23) is equivalent to P�u? = 0, and (4.24) can be rewritten as (P+)⇤u? =
L?

⌦(� · ⌫)Km(� · ⌫)u?, we conclude that L?

⌦ 2 L⌦. ⇤
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Lemma 4.11. L⌦ ⇢ R, and 1/R⌦  L for all L 2 L⌦.

Proof. Let L 2 L⌦. By definition of L⌦, there exists u 2 L2(@⌦)2 \ {0} such that P�u = 0 and
(P+)⇤u = L(� · ⌫)Km(� · ⌫)u, that is,

u = 2iWm(� · ⌫)u, (4.25)

u = 2i(� · ⌫)Wmu+ 2L(� · ⌫)Km(� · ⌫)u. (4.26)

Multiplying (4.26) by u, integrating on @⌦, using that (� ·⌫) and Wm are self-adjoint operators
on L2(@⌦)2, and using (4.25) we obtain

kuk2
L2(@⌦)2 = h2i(� · ⌫)Wmu, uiL2(@⌦)2 + 2Lh(� · ⌫)Km(� · ⌫)u, uiL2(@⌦)2

= �hu, 2iWm(� · ⌫)uiL2(@⌦)2 + 2Lh(� · ⌫)Km(� · ⌫)u, uiL2(@⌦)2

= �kuk2
L2(@⌦)2 + 2Lh(� · ⌫)Km(� · ⌫)u, uiL2(@⌦)2 .

From this we deduce that

L =
kuk2

L2(@⌦)2

h(� · ⌫)Km(� · ⌫)u, uiL2(@⌦)2
=

1

R(u)
. (4.27)

On the one hand, using that (� · ⌫)Km(� · ⌫) is self-adjoint we get that L 2 R, which proves
that L⌦ ⇢ R. On the other hand, using that P�u = 0, (4.27) also yields L � 1/R⌦. ⇤
Lemma 4.12. There exists u 2 L2(@⌦)2 \ {0} such that P�u = 0 and R(u) = R⌦.

Proof. We take uj 2 L2(@⌦)2 \ {0} such that P�uj = 0 for all j 2 N and limj"+1 R(uj) = R⌦.
From the fact that R is homogeneous, we can assume that kujkL2(@⌦)2 = 1 for all j. Then,
since Km is a compact operator in L2(@⌦)2, up to a subsequence, there exists

g := lim
j"+1

(� · ⌫)Km(� · ⌫)uj in L2(@⌦)2. (4.28)

Also, since kujkL2(@⌦)2 = 1 for all j, by Banach-Alaoglu theorem there exists

u := lim
j"+1

uj in the weak⇤ topology of (L2(@⌦)2)⇤ ⇠= L2(@⌦)2, (4.29)

up to a subsequence. This means that u 2 L2(@⌦)2 and limj"+1huj, wiL2(@⌦)2 = hu, wiL2(@⌦)2

for all w 2 L2(@⌦)2. In particular, for every w 2 L2(@⌦)2 with kwkL2(@⌦)2 = 1 we have

1 = lim
j"+1

kujkL2(@⌦)2 = lim
j"+1

sup
kvkL2(@⌦)2=1

|huj, viL2(@⌦)2 | � lim
j"+1

|huj, wiL2(@⌦)2 | = |hu, wiL2(@⌦)2 |.

Taking the supremum of |hu, wiL2(@⌦)2 | among all w 2 L2(@⌦)2 with kwkL2(@⌦)2 = 1, we get

kukL2(@⌦)2  1. (4.30)

The next step is to relate u and g. Since Km and � · ⌫ are self-adjoint in L2(@⌦)2, for every
w 2 L2(@⌦)2 we have

hg, wiL2(@⌦)2 = lim
j"+1

h(� · ⌫)Km(� · ⌫)uj, wiL2(@⌦)2 = lim
j"+1

huj, (� · ⌫)Km(� · ⌫)wiL2(@⌦)2

= hu, (� · ⌫)Km(� · ⌫)wiL2(@⌦)2 = h(� · ⌫)Km(� · ⌫)u, wiL2(@⌦)2 ,

which yields

g = (� · ⌫)Km(� · ⌫)u in L2(@⌦)2. (4.31)
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Let us now prove that P�u = 0. Using that P�uj = 0 for all j and (4.29) we see that, for
every w 2 L2(@⌦)2,

0 = lim
j"+1

hP�uj, wiL2(@⌦)2 = lim
j"+1

huj, (P�)
⇤wiL2(@⌦)2 = hu, (P�)

⇤wiL2(@⌦)2 = hP�u, wiL2(@⌦)2 ,

which leads to

P�u = 0 in L2(@⌦)2. (4.32)

We also claim that u is not identically zero. If it was, we would get g = 0 by (4.31) and, thus,
R⌦ = limj"+1 R(uj) would also be zero by (4.28). However, this would contradict (4.21).
Finally, since kujkL2(@⌦)2 = 1 for all j, we have

|h(� · ⌫)Km(� · ⌫)uj � g, ujiL2(@⌦)2 |  k(� · ⌫)Km(� · ⌫)uj � gkL2(@⌦)2 ,

which yields limj"+1h(� · ⌫)Km(� · ⌫)uj � g, ujiL2(@⌦)2 = 0 by (4.28). Combining this with
(4.31), (4.29), (4.30), and (4.32), we conclude that

0 < R⌦ = lim
j"+1

R(uj) = lim
j"+1

h(� · ⌫)Km(� · ⌫)uj, ujiL2(@⌦)2 = lim
j"+1

hg, ujiL2(@⌦)2

= lim
j"+1

h(� · ⌫)Km(� · ⌫)u, ujiL2(@⌦)2 = h(� · ⌫)Km(� · ⌫)u, uiL2(@⌦)2


h(� · ⌫)Km(� · ⌫)u, uiL2(@⌦)2

kuk2
L2(@⌦)2

= R(u)  R⌦,

which leads to R(u) = R⌦. As a byproduct, we also deduce that kukL2(@⌦)2 = 1. ⇤

Lemma 4.13. If u 2 L2(@⌦)2 \ {0} is such that P�u = 0 and R(u) = R⌦, then

(P+)
⇤u =

1

R⌦
(� · ⌫)Km(� · ⌫)u. (4.33)

Proof. Given ✏ 2 R and v 2 L2(@⌦)2, set u✏ = u+ ✏P+v. Then, P�u✏ = P�u+ ✏P�P+v = 0 by
Lemma 4.6 (ii). In addition, ku✏kL2(@⌦)2 > 0 if |✏| is small enough because u 2 L2(@⌦)2 \ {0}
by assumption. Therefore, R(u) = R⌦ � R(u✏) for all |✏| small enough, which entails

d

d✏

���
✏=0

R(u✏) = 0. (4.34)

On the one hand,

ku✏k
2
L2(@⌦)2 = hu+ ✏P+v, u+ ✏P+viL2(@⌦)2

= kuk2
L2(@⌦)2 + 2✏<hu, P+viL2(@⌦)2 + ✏2kP+vk

2
L2(@⌦)2 ,

which yields d

d✏

��
✏=0

(ku✏k
2
L2(@⌦)2) = 2<hu, P+viL2(@⌦)2 . On the other hand, since Km and � · ⌫

are self-adjoint,

h(� · ⌫)Km(� · ⌫)u✏, u✏iL2(@⌦)2 = h(� · ⌫)Km(� · ⌫)(u+ ✏P+v), u+ ✏P+viL2(@⌦)2

= h(� · ⌫)Km(� · ⌫)u, uiL2(@⌦)2

+ 2✏<h(� · ⌫)Km(� · ⌫)u, P+viL2(@⌦)2

+ ✏2h(� · ⌫)Km(� · ⌫)P+v, P+viL2(@⌦)2 ,
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which yields d

d✏

��
✏=0

h(� · ⌫)Km(� · ⌫)u✏, u✏iL2(@⌦)2 = 2<h(� · ⌫)Km(� · ⌫)u, P+viL2(@⌦)2 . Therefore,
plugging this in (4.34) and using that R(u) = R⌦, we deduce that

0 =
1

2
kuk2

L2(@⌦)2
d

d✏

���
✏=0

R(u✏)

= <h(� · ⌫)Km(� · ⌫)u, P+viL2(@⌦)2 � R(u)<hu, P+viL2(@⌦)2

= <h(� · ⌫)Km(� · ⌫)u� R⌦u, P+viL2(@⌦)2

(4.35)

for all v 2 L2(@⌦)2. Replacing v by iv in (4.35), we conclude that

0 = h(� · ⌫)Km(� · ⌫)u� R⌦u, P+viL2(@⌦)2

for all v 2 L2(@⌦)2, which leads to

(P+)
⇤
�
(� · ⌫)Km(� · ⌫)� R⌦

�
u = 0 in L2(@⌦)2. (4.36)

Since (P+)⇤(P+)⇤ = (P+)⇤ by Lemma 4.6 (iii), (4.36) can be rewritten as

(P+)
⇤
�
(� · ⌫)Km(� · ⌫)� R⌦(P+)

⇤
�
u = 0 in L2(@⌦)2. (4.37)

Let us now show that we also have (P�)⇤
�
(� · ⌫)Km(� · ⌫) � R⌦(P+)⇤

�
u = 0. Using that

Wm(� · ⌫)Km = �Km(� · ⌫)Wm by Lemma 2.7 (iii), we have

(P�)
⇤(� · ⌫)Km(� · ⌫) = (12 + i(� · ⌫)Wm)(� · ⌫)Km(� · ⌫)

= (� · ⌫)Km(� · ⌫)(12 � iWm(� · ⌫))

= (� · ⌫)Km(� · ⌫)P�.

(4.38)

Combining (4.38) with the fact that (P�)⇤(P+)⇤ = 0 by Lemma 4.6 (ii), and that P�u = 0, we
deduce that

(P�)
⇤
�
(� · ⌫)Km(� · ⌫)� R⌦(P+)

⇤
�
u = (P�)

⇤(� · ⌫)Km(� · ⌫)u

= (� · ⌫)Km(� · ⌫)P�u = 0 in L2(@⌦)2.
(4.39)

Finally, since (P+)⇤ + (P�)⇤ = 1 by Lemma 4.6 (i), summing (4.37) and (4.39) we arrive to
�
(� · ⌫)Km(� · ⌫)� R⌦(P+)

⇤
�
u = 0 in L2(@⌦)2,

from which (4.33) follows. ⇤
Combining the previous lemmas we establish Theorem 1.7.

Proof of Theorem 1.7. Lemma 4.10 proves (i), and Lemma 4.11 yields (ii). The proof of (iii)
follows from Lemmas 4.12 and 4.13. Proposition B.3 shows the last statement in the theorem
regarding the ball, using Lemmas 4.10 and 4.11. ⇤

Appendix A. Properties of the spectrum

Here we prove the properties of the spectrum of H⌧ collected in Lemma 1.2. For a shorter
notation, we will use

B := �i�(↵ · ⌫),

which defines a self-adjoint operator in L2(@⌦)4 such that B2 = I4. For every ' 2 Dom(H⌧ ) it
holds ' = sinh ⌧B�'+ cosh ⌧B' on @⌦.
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Proof of Lemma 1.2. From [21, Proposition 5.15] we know that H⌧ is self-adjoint in L2(⌦)4.
The proof of (i) follows from this and the compact embedding of H1(⌦)4 into L2(⌦)4.
Let us now show (ii). We first claim that for every ' = (u, v)| 2 Dom(H⌧ ) it holds

kH'k2
L2(⌦)4 = k↵ ·r'k2

L2(⌦)4 +m2
k'k2

L2(⌦)4 +me⌧ kuk2
L2(@⌦)2 +me�⌧

kvk2
L2(@⌦)2 . (A.1)

To prove this formula, note first that expanding the square we have

kH'k2
L2(⌦)4 = h�i↵ ·r',�i↵ ·r'iL2(⌦)4 +m2

h�', �'iL2(⌦)4 + 2m<h�',�i↵ ·r'iL2(⌦)4

= k↵ ·r'k2
L2(⌦)4 +m2

k'k2
L2(⌦)4 + 2m<h�',�i↵ ·r'iL2(⌦)4 .

Integrating by parts we get

h�',�i↵ ·r'iL2(⌦)4 = h�i↵ ·r(�'),'iL2(⌦)4 � h�i(↵ · ⌫)�','iL2(@⌦)4

= �h�(�i↵ ·r)','iL2(⌦)4 + hB','iL2(@⌦)4 ,

and using that � is hermitian, we obtain 2<h�',�i↵ ·r'iL2(⌦)4 = hB','iL2(@⌦)4 . Thus,

kH'k2
L2(⌦)4 = k↵ ·r'k2

L2(⌦)4 +m2
k'k2

L2(⌦)4 +mhB','iL2(@⌦)4 . (A.2)

Now, using that ' 2 Dom(H⌧ ), we see that

hB','iL2(@⌦)4 = hB', sinh ⌧B�'+ cosh ⌧B'iL2(@⌦)4 = h', sinh ⌧B2�'+ cosh ⌧B2'iL2(@⌦)4

= h', sinh ⌧�'+ cosh ⌧'iL2(@⌦)4 ,

where we have used that B is self-adjoint and that B2 = I4. From here, and writing ' = (u, v)|,
we easily see that

hB','iL2(@⌦)4 = e⌧ kuk2
L2(@⌦)2 + e�⌧

kvk2
L2(@⌦)2 .

Plugging this into (A.2) we obtain (A.1), proving the claim. Now, let ' 2 Dom(H⌧ ) \ {0}
be such that H' = �' in ⌦. Note that, by Lemma 2.4, ' cannot vanish identically on @⌦.
Therefore, using (A.1) we obtain

�2 k'k2
L2(⌦)4 = kH'k2

L2(⌦)4 > m2
k'k2

L2(⌦)4 ,

which yields |�| > m.
We finally prove (iii) and (iv). First, by the compact embedding of H1(⌦)4 into L2(⌦)4 we

have that the resolvent of H⌧ is a compact operator, which yields that every eigenvalue has
finite multiplicity. Now, given  2 C4, consider the charge conjugation operator

C := i�↵2 

and the time reversal-symmetry operator

T := �i�5↵2 , where �5 :=

✓
0 I2
I2 0

◆
. (A.3)

Then, simple computations show that HT = TH, HC = �CH, and TC = CT . In addition,
setting

B⌧ := sinh ⌧B� + cosh ⌧B = i(sinh ⌧ � cosh ⌧�)(↵ · ⌫),

it is also easy to check that B⌧T = TB⌧ and B⌧C = CB�⌧ . Note that for every function
' 2 Dom(H⌧ ) it holds ' = B⌧' on @⌦. As a consequence, given an eigenfunction ' of H⌧ with
eigenvalue �, T' is also an eigenfunction of H⌧ with eigenvalue �. Furthermore, C' and TC'
are eigenfunctions of H�⌧ with eigenvalue ��. ⇤
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To conclude this section, we establish a formula which relates the L2(⌦)4-norms of r' and
↵ · r' for functions ' 2 Dom(H⌧ ). Although we do not use this formula in this article, we
think that it has its own interest, and it may be useful to present it here for future reference.
The formula is a generalization of [7, formula (1.3)], in which the case ⌧ = 0 is considered, and
the proof follows the same lines.

Lemma A.1. Let ⌧ 2 R and ' 2 Dom(H⌧ ) \H1(@⌦)4. Then,

k↵ ·r'k2
L2(⌦)4 = kr'k2

L2(⌦)4 +
1

2 @⌦

|'|2d�+ sinh ⌧h�5(↵ · ⌫)',↵ · (⌫ ⇥r)'iL2(@⌦)4 ,

where  denotes the mean curvature of @⌦.

Proof. First, for every ' 2 H2(⌦)4, it holds

k↵ ·r'k2
L2(⌦)4 = kr'k2

L2(⌦)4 � h�5',�i↵ · (⌫ ⇥r)'iL2(@⌦)4 , (A.4)

where �5 is defined in (A.3). This is proved in [7, Appendix A.2]. By density, it also holds for
all ' 2 H1(⌦)4 \H1(@⌦)4.

Let us now investigate the boundary term in the above expression. The crucial point is to
use that the mean curvature of @⌦ arises in our context through the formula

[�i↵ · (⌫ ⇥r),B] = ��5B,

where [·, ·] denotes the commutator of two operators, i.e., [S, T ] := ST�TS; see [7, Lemma A.3].
Using this and the boundary condition for ' 2 Dom(H⌧ ) \H1(@⌦)4 we get

h�5',�i↵ · (⌫ ⇥r)'iL2(@⌦)4

= sinh ⌧h�5',�i↵ · (⌫ ⇥r)B�'iL2(@⌦)4 + cosh ⌧h�5',�i↵ · (⌫ ⇥r)B'iL2(@⌦)4

= sinh ⌧h�5', [�i↵ · (⌫ ⇥r),B]�'iL2(@⌦)4 + sinh ⌧h�5',B(�i↵ · (⌫ ⇥r))�'iL2(@⌦)4

+ cosh ⌧h�5', [�i↵ · (⌫ ⇥r),B]'iL2(@⌦)4 + cosh ⌧h�5',B(�i↵ · (⌫ ⇥r))'iL2(@⌦)4

= � sinh ⌧h�5',�5B�'iL2(@⌦)4 + sinh ⌧hB�5',�i↵ · (⌫ ⇥r)�'iL2(@⌦)4

� cosh ⌧h�5',�5B'iL2(@⌦)4 + cosh ⌧hB�5',�i↵ · (⌫ ⇥r)'iL2(@⌦)4

= �h�5',�5(sinh ⌧B� + cosh ⌧B)'iL2(@⌦)4 + sinh ⌧hB�5',�i↵ · (⌫ ⇥r)�'iL2(@⌦)4

+ cosh ⌧hB�5',�i↵ · (⌫ ⇥r)'iL2(@⌦)4

= �h�5',�5'iL2(@⌦)4 � sinh ⌧h�5B',�i↵ · (⌫ ⇥r)�'iL2(@⌦)4

� cosh ⌧h�5B',�i↵ · (⌫ ⇥r)'iL2(@⌦)4 .

Here we have used that (↵ · x)�5 = �5(↵ · x) for all x 2 R3 (see [7, Lemma A.1]) and that
� anticommutes with �5, thus B�5 = ��5B. Now, using that (↵ · x)� = ��(↵ · x) for every
x 2 R3, and that � anticommutes with B and �5, we have

h�5B',�i↵ · (⌫ ⇥r)�'iL2(@⌦)4 = �h�5B', �(�i↵ · (⌫ ⇥r))'iL2(@⌦)4

= �h��5B',�i↵ · (⌫ ⇥r)'iL2(@⌦)4 = �h�5B�',�i↵ · (⌫ ⇥r)'iL2(@⌦)4 .
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Hence,

h�5',�i↵ · (⌫ ⇥r)'iL2(@⌦)4 = �h�5',�5'iL2(@⌦)4 + sinh ⌧h�5B�',�i↵ · (⌫ ⇥r)'iL2(@⌦)4

� cosh ⌧h�5B',�i↵ · (⌫ ⇥r)'iL2(@⌦)4

= �h','iL2(@⌦)4 + 2 sinh ⌧h�5B�',�i↵ · (⌫ ⇥r)'iL2(@⌦)4

� h�5(sinh ⌧B� + cosh ⌧B)',�i↵ · (⌫ ⇥r)'iL2(@⌦)4

and thus, using the boundary condition, we get

h�5',�i↵ · (⌫ ⇥r)'iL2(@⌦)4 = �
1

2 @⌦

|'|2d�+ sinh ⌧h�5B�',�i↵ · (⌫ ⇥r)'iL2(@⌦)4 ,

which combined with (A.4) gives

k↵ ·r'k2
L2(⌦)4 = kr'k2

L2(⌦)4 +
1

2 @⌦

|'|2d�� sinh ⌧h�5B�',�i↵ · (⌫ ⇥r)'iL2(@⌦)4 .

Finally, using again that (↵ · x)� = ��(↵ · x) for every x 2 R3, we have B� = i↵ · ⌫, and
inserting this into the above identity we conclude the proof. ⇤

Appendix B. The ball

In this appendix we present a more explicit spectral analysis in the case that ⌦ ⇢ R3 is
a ball of radius R > 0 centered at the origin, which will be denoted by BR. To study this
radially symmetric case we introduce spherical coordinates: if x 2 R3 we write x = r✓ with
r = |x| 2 [0,+1) and ✓ = x/|x| 2 S2. Using separation of variables and the spherical harmonic
spinors, we give the explicit equations for the eigenvalues and eigenfunctions of H⌧ .

B.1. Decomposition using spherical harmonic spinors. Let Y `

n
be the usual spherical

harmonics on S2; here n = 0, 1, 2, . . . and ` = �n,�n + 1, . . . , n + 1, n. They satisfy �S2Y `

n
=

�n(n+ 1)Y `

n
, where �S2 denotes the usual spherical Laplacian. Moreover, Y `

n
form a complete

orthonormal set in L2(S2).
Following [71, Section 4.6.4], the spherical harmonic spinors are defined as follows: for j =

1/2, 3/2, . . . and µj = �j,�j + 1, . . . , j � 1, j, set

 
µj

j�1/2 =
1

p
2j

 p
j + µjY

µj�1/2
j�1/2p

j � µjY
µj+1/2
j�1/2

!
and  

µj

j+1/2 =
1

p
2j + 2

 p
j + 1� µjY

µj�1/2
j+1/2

�
p
j + 1 + µjY

µj+1/2
j+1/2

!
.

As shown in [71, Section 4.6.5], one can decompose the space L2(R3)4 —and analogously
L2(BR)4— as

L2(R3)4 =
+1M

j=1/2

jM

µj=�j

L+
j,µj

� L�

j,µj
,

where

L±

j,µj
:=

(
' 2 L2(R3)4 : '(r✓) =

 
if̃(r) 

µj

j±1/2(✓)

g̃(r) 
µj

j⌥1/2(✓)

!
with f̃ , g̃ 2 L2(R+, r

2dr)

)
.

In each subspace define the mapping U±

j,µj
: L±

j,µj
! L2(R+)2 by

(U±

j,µj
')(r) =

✓
rf̃(r)
rg̃(r)

◆
=:

✓
f(r)
g(r)

◆
,
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and also define the di↵erential operator (see [71, equation (4.129)])

bHj,± :=

✓
m �@r + j,±/r

@r + j,±/r �m

◆
, where j,± := ±(j + 1/2).

Then, the di↵erential operator H = �i↵ ·r+m� decomposes into the orthogonal sum of the
operators (U±

j,µj
)�1 bHj,±U

±

j,µj
. In particular, if � = (f, g)| satisfies bHj,±� = �� in (0, R), then

' =

✓
u
v

◆
=

0

B@

if(r)

r
 

µj

j±1/2

g(r)

r
 

µj

j⌥1/2

1

CA (B.1)

satisfies H' = �' in BR \ {0}. As we will see, by further imposing that f(0) is finite, we can
guarantee that H' = �' holds across the origin.

B.2. Eigenvalue equations. Our first goal is to find solutions to bHj,±(f, g)| = �(f, g)|. This
equation rewrites as the system of ODE

⇢
�g0 + 

r
g = (��m)f,

f 0 + 

r
f = (�+m)g,

where  := j,± := ±(j + 1/2). For simplicity, let us assume first that  = j + 1/2. To solve
the system, note that from the second ODE we get

g =
1

�+m

⇣
f 0 +



r
f
⌘

(B.2)

and, thus, inserting this into the first one we get the Bessel-type ODE

f 00 +
⇣
�2 �m2

�
2 + 

r2

⌘
f = 0.

Therefore, f is of the form

f(r) = b1
p
rJ+1/2(

p

�2 �m2r) + b2
p
rY+1/2(

p

�2 �m2r),

where b1, b2 2 C, and J+1/2 and Y+1/2 denote the Bessel functions of the first and second kind
of order + 1/2; see [1, Chapters 9 and 10]. Since the eigenfunctions are not allowed to be
singular at r = 0 (as the corresponding ' given by (B.1) must solve an elliptic equation across
the origin), we deduce that b2 = 0, and thus f is of the form

f(r) = b1
p
rJ+1/2(

p

�2 �m2r).

Now, note that for every real index p, one has the relation

@r[Jp(
p

�2 �m2r)] =
p

�2 �m2Jp�1(
p

�2 �m2r)�
p

r
Jp(

p

�2 �m2r);

see [1, formula (9.1.27)]. Using this and (B.2), we see that

g(r) = b1

p
�2 �m2

�+m

p
rJ�1/2(

p

�2 �m2r).

The case  = �j � 1/2 follows by similar arguments. One isolates f instead of g and uses
that, for a positive integer p, J�(p+1/2) = (�1)p+1Yp+1/2 and Y�(p+1/2) = (�1)pJp+1/2.
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As a conclusion, we obtain that every eigenfunction of bHj,± with eigenvalue � is, up to a
multiplicative constant, of the form

✓
f(r)
g(r)

◆
=

p
r

0

@
J`+1/2(

p
�2 �m2r)

±

p
�2 �m2

�+m
J`0+1/2(

p
�2 �m2r)

1

A ,

where ` = j ± 1/2 and `0 = j ⌥ 1/2.
To obtain the equation (1.4) that relates � and ⌧ by means of Bessel functions, it only

remains to impose the boundary condition v = ie⌧ (� · ⌫)u on @BR for ' = (u, v)| as in (B.1)
and satisfying H' = �' in BR. Since

(� · ⌫) 
µj

j±1/2 =  
µj

j⌥1/2,

by [71, equation (4.121)], it follows from (B.1) that the boundary condition relating f and g is

g(R) = �e⌧f(R).

Therefore, for each j = 1/2, 3/2, . . ., each µj = �j,�j + 1, . . . , j, and each subspace L±

j,µj
, we

obtain the eigenvalue equation

e⌧J`+1/2(
p

�2 �m2R)±

p
�2 �m2

�+m
J`0+1/2(

p

�2 �m2R) = 0, (B.3)

where ` = j ± 1/2 and `0 = j ⌥ 1/2. This corresponds to (1.4). Note that the equation is
independent of the indexes µj, accounting for the multiplicity of the eigenvalues.

B.3. Parametrization of the eigenvalues. Our goal now is to exploit the eigenvalue equa-
tions given by (B.3) to prove that the eigenvalues of H⌧ can be parametrized in terms of ⌧ 2 R,
obtaining a family of increasing curves whose limits as ⌧ ! ±1 are related with the zeroes of
the Bessel functions (and thus with the eigenvalues of the Dirichlet Laplacian). In the following
lemma we collect the results on the Bessel functions that we will use.

Lemma B.1. Let Jp be the Bessel function of the first kind of order p > 0, and denote the k-th
positive zero of this function by zp,k.
Then,

(i) the positive zeroes of Jp are simple and form an infinite increasing sequence,
(ii) the zeroes of two consecutive Bessel functions are interlaced, meaning that

0 < zp,1 < zp+1,1 < zp,2 < zp+1,2 < . . . ,

(iii) the quotient of two consecutive Bessel functions can be expressed as

Jp+1(x)

Jp(x)
=
X

k�1

2x

z2
p,k

� x2
for x 2 R \ {zp,k}k2N. (B.4)

As a consequence, Jp+1/Jp is odd, strictly increasing in each interval contained in R \

{zp,k}k2N, it is positive in the intervals (0, zp,1) and (zp+1,k, zp,k+1) for k � 1, and negative
in the intervals (zp,k, zp+1,k) for k � 1.

Proof. The first two statements are shown in [72, Chapter XV]. Note that for p � �1 the
zeroes of Jp are real, and thus we can order them; see also [1, p. 372]. Last, (B.4) follows from
formula (1) in [72, p. 498]. Note that this yields that Jp+1/Jp is an infinite sum of functions
with singularities at ±zp,k which have strictly positive derivative in their domain of definition.
As a consequence, in each interval of the form (zp,k, zp,k+1) for k 2 N, the function Jp+1/Jp is
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well defined, smooth, and strictly increasing, and therefore has a unique zero which necessarily
is zp+1,k. ⇤
With the help of the previous lemma we can now establish the following result on the

parametrization of the eigenvalues.

Proposition B.2. For each index j = 1/2, 3/2, . . . there exists an infinite number of smooth
and strictly increasing functions {⌧ 7! l±

j,k
(⌧)}k2Z such that, for each ⌧ 2 R, the real number

l±

j,k
(⌧) is an eigenvalue of H⌧ . The functions l±

j,k
are surjectively defined by

l±

j,k
: R ! I±

j,k

⌧ 7! l±

j,k
(⌧),

with

• I�
j,0 =

�
m,
p
(zj,1/R)2 +m2

�
,

• I�
j,k

=
�p

(zj+1,k/R)2 +m2,
p
(zj,k+1/R)2 +m2

�
for k = 1, 2, . . .,

• I�
j,k

=
�
�
p
(zj+1,|k|/R)2 +m2,�

p
(zj,|k|/R)2 +m2

�
for k = �1,�2, . . .,

and

• I+
j,0 =

�
�
p

(zj,1/R)2 +m2,�m
�
,

• I+
j,k

=
�
�
p
(zj,k+1/R)2 +m2,�

p
(zj+1,k/R)2 +m2

�
for k = 1, 2, . . .,

• I+
j,k

=
�p

(zj,|k|/R)2 +m2,
p
(zj+1,|k|/R)2 +m2

�
for k = �1,�2, . . .,

where zp,k denotes the k-th positive zero of Jp, the Bessel function of order p. As a consequence,
for every ⌧ 2 R, the function

'⌧ :=

✓
u⌧

v⌧

◆
=

1
p
r

0

BBB@

iJ`+1/2

⇣q
l±

j,k
(⌧)2 �m2r

⌘
 

µj

j±1/2(✓)

±

q
l±

j,k
(⌧)2 �m2

l±

j,k
(⌧) +m

J`0+1/2

⇣q
l±

j,k
(⌧)2 �m2r

⌘
 

µj

j⌥1/2(✓)

1

CCCA

with j = 1/2, 3/2, . . ., ` = j ± 1/2, `0 = j ⌥ 1/2, µj = �j,�j + 1, . . . , j, and k 2 Z, belongs to
L±

j,µj
and is an eigenfunction of H⌧ with eigenvalue l±

j,k
(⌧).

Note that the superindex in l±

j,k
indicates to which invariant subspace belongs the associated

eigenfunction. It should not be confused with the sign of the eigenvalue (as the superindex in
�±1 denotes, hence the di↵erent typography l vs. �).

Proof of Proposition B.2. From the arguments already presented in Appendix B.1 it only re-
mains to show that from (B.3) we can obtain the aforementioned infinite number of parametriza-
tions of � in terms of ⌧ 2 R. To do it, the idea is to rewrite the eigenvalue equation (B.3)
as

e⌧ = ⌥

p
�2 �m2

�+m

J`0+1/2(
p
�2 �m2R)

J`+1/2(
p
�2 �m2R)

=: h(�).

Then, our goal will be to invert h in suitable intervals to get � = �(⌧) := h�1(e⌧ ).
First, note that we can restrict ourselves to the subspaces L�

j,µj
, thanks to the odd symmetry

mentioned in Remark 1.1. In this case the eigenvalue equation is written as

e⌧ = sign(�+m)

r
��m

�+m

Jj+1(
p
�2 �m2R)

Jj(
p
�2 �m2R)

= h(�).
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Due to the fact that e⌧ > 0 for all ⌧ 2 R, we are forced to work with h only on intervals
I ⇢ R such that h(I) ⇢ (0,+1) and where h is invertible. Since ��m

�+m
is positive and strictly

increasing for � 2 (m,+1) and for � 2 (�1,�m), I must be such that

sign(�+m)
Jj+1(

p
�2 �m2R)

Jj(
p
�2 �m2R)

is positive and strictly increasing for � 2 I.

Then, Lemma B.1 yields that all the possible intervals I are:

• I = (m,
p
(zj,1/R)2 +m2),

• I = (
p
(zj+1,k/R)2 +m2,

p
(zj,k+1/R)2 +m2) for k � 1,

• I = (�
p
(zj+1,k/R)2 +m2,�

p
(zj,k/R)2 +m2) for k � 1.

In each of these intervals I the function h : I ! (0,+1) is of class C1, strictly increasing,
and surjective. Therefore, it can be inverted, obtaining a C1 function ⌧ 7! �(⌧) := h�1(e⌧ )
which maps R into I surjectively and corresponds, for each ⌧ 2 R, to an eigenvalue of H⌧ . In
addition, the monotonicity of � 7! ⌧ = ⌧(�) := log(h(�)) yields that ⌧ 7! �(⌧) is also strictly
increasing. ⇤
The previous result yields that, for any given eigenvalue curve ⌧ 7! �(⌧), lim⌧!±1 |�(⌧)| is

either m or a positive zero of the function Jk+1/2(
p
(·)2 �m2R) for some k = 0, 1, 2, . . .; note

that each of these zeroes corresponds to the square root of a Dirichlet eigenvalue of �� +m2

in BR. The monotonicity and limiting values of ⌧ 7! �(⌧) was observed in the curves plotted
in Figure 1. Furthermore, the alternation (with respect to the zeroes of the Bessel function)
between positive and negative eigenvalue curves, which is given by the intervals I±

j,k
defined in

Proposition B.2, was already shown numerically in Figures 2 and 3.

B.4. The first positive eigenvalue. In this section we focus on the first positive eigenvalue
of H⌧ when ⌦ = BR. We provide a fine description of the associated eigenvalue curve, whose
main properties are summarized in the following proposition. The reader may compare it with
Theorem 1.5, which is the analogous result for general domains; see also Theorem 1.7 regarding
(B.5).

Proposition B.3. The function ⌧ 7! �+1 (⌧) = min(�(H⌧ ) \ (m,+1)) is of class C1 in R,
and satisfies

lim
⌧#�1

�+1 (⌧) = m and lim
⌧"+1

�+1 (⌧) =
p
⇡2/R2 +m2 =

p
min �(��D) +m2,

where min �(��D) denotes the first Dirichlet eigenvalue of �� in BR. In addition, the corre-
sponding eigenspace associated to �+1 (⌧) has always dimension 2.
Furthermore,

L?

BR
:= lim

⌧#�1

(�+1 (⌧)�m)e�⌧ =
3

R
=

1

RBR

, (B.5)

where RBR is defined in (1.14).

Proof. Let � : R !
�
m,
p
⇡2/R2 +m2

�
be the eigenvalue curve corresponding to l�

1/2,0 in the

notation of Proposition B.2. This eigenfunction is associated to the two subspaces L�

1/2,µ1/2
,

with either µ1/2 = 1/2 or µ1/2 = �1/2, and solves the implicit equation

e⌧ =

p
�2 �m2

�+m

J3/2(
p
�2 �m2R)

J1/2(
p
�2 �m2R)

. (B.6)
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We will show that � = �+1 . The upper bound for �(⌧) (and limit as ⌧ ! +1) is given by the
fact that z1/2,1 = ⇡, which follows from the explicit expression of the Bessel functions involved
in the above equation:

J1/2(x) =

r
2

⇡x
sin(x) and J3/2(x) =

r
2

⇡x

✓
sin(x)

x
� cos(x)

◆
.

As a matter of fact, these expressions can be used to show —after a tedious computation and
using that x > sin(x) for all x 2 (0, ⇡)— that the right-hand side of (B.6) is a strictly increasing
function of � for � 2

�
m,
p
⇡2/R2 +m2

�
without making use of Lemma B.1 (as done in the

proof of Proposition B.2).
Since ⇡ = z1/2,1 is the smallest positive zero among all the positive zeroes of the Bessel

functions of half-integer index —as shown by Lemma B.1 (ii)—, it follows that �(⌧) coincides
with �+1 (⌧) at least for big enough values of ⌧ . To show that indeed �(⌧) is the first positive
eigenvalue �+1 (⌧) for all ⌧ 2 R, it su�ces to show that � cannot cross any other eigenvalue
curve. On the one hand, taking into account the possible intervals I+

j,k
given in Proposition B.2,

it follows that any positive eigenvalue curve associated to the spaces L+
j,µj

must lie abovep
⇡2/R2 +m2, and thus it cannot cross �(⌧). On the other hand, if there was a crossing

between �(⌧) and another positive eigenvalue curve associated to L�

j�,µj�
for some half-integer

j� > 1/2, then by (B.6) there would exist a point x� 2 (0, z1/2,1) such that

J3/2(x�)

J1/2(x�)
=

Jj�+1(x�)

Jj�(x�)
. (B.7)

However, since the zeroes of the Bessel functions are ordered (see Lemma B.1), for every half-
integer j � 1/2 it follows that zj,k < zj+1,k for all k � 1, and therefore

2x

z2
j,k

� x2
>

2x

z2
j+1,k � x2

for every x 2 (0, z1/2,1).

Hence, by (B.4) it follows that

Jj+1(x)

Jj(x)
>

Jj+2(x)

Jj+1(x)
for every x 2 (0, z1/2,1) and for every half-integer j � 1/2,

thus there cannot exist such a x� 2 (0, z1/2,1) satisfying (B.7). In conclusion, � does not cross
any other eigenvalue curve. Therefore, �(⌧) is the first positive eigenvalue of H⌧ for all ⌧ 2 R.
As a byproduct, since �(⌧) is associated to L�

1/2,µ1/2
with either µ1/2 = 1/2 or µ1/2 = �1/2, it

follows that the first positive eigenvalue of H⌧ has multiplicity 2 for all ⌧ 2 R.
To conclude the proof, we are only left to show that L⇤

BR
= 3/R = 1/RBR . First, note that

from the rescaling properties of the operators Km and Wm defined in (2.12), it follows readily
that RBR = RRB1 . Moreover, L?

BR
= L?

B1
/R. To show this second equality, one notices that if

u1 and uR denote the boundary values of the upper component of the first eigenfunction in B1

and BR respectively, both associated to the same subspace L�

1/2,µ1/2
, then after a normalization

one can choose them in such a way that uR(·) = u1(·/R). Hence, from (2.19) and taking the
limit ⌧ # �1, using again the scaling of Km, and that {Wm, � ·⌫} = 0 by Lemma 4.7, it follows
that L?

BR
= L?

B1
/R; see the argument to get to (B.9) below for more details. As a consequence

of all this, it is enough to prove the result for R = 1.
Recall that �(⌧) is associated, for all ⌧ 2 R, to the two subspaces L�

1/2,µ1/2
with either

µ1/2 = 1/2 or µ1/2 = �1/2. We will work in one of these two subspaces (the precise choice will
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be completely irrelevant for the rest of the argument), and therefore, after a normalization, we
can take an eigenfunction '⌧ = (u⌧ , v⌧ )| associated to �(⌧) such that u⌧ at the boundary of B1

is given by  
µ1/2

0 for all ⌧ 2 R. By Proposition 2.9, it holds
⇣1
2
� iW�(� · ⌫)

⌘
 

µ1/2

0 = �(�+m)e⌧K� 
µ1/2

0 and
⇣1
2
� i(� · ⌫)W�

⌘
 

µ1/2

0 = (��m)e�⌧ (� · ⌫)K�(� · ⌫) 
µ1/2

0

(B.8)

in L2(S2)2. We will take the limit ⌧ # �1 in (B.8), taking into account that � # m as ⌧ # �1.
Letting ⌧ # �1 in (B.8), and using that then K� ! Km and W� ! Wm as bounded operators
in L2(S2)2 (which follows from the explicit expressions of the operators), we obtain

P�  
µ1/2

0 = 0 and (P+)
⇤  

µ1/2

0 = L?

B1
(� · ⌫)Km(� · ⌫) 

µ1/2

0 in L2(S2)2, (B.9)

where L?

B1
= lim⌧#�1(�(⌧) � m)e�⌧ , and P� = 1

2 � iWm(� · ⌫) and (P+)⇤ = 1
2 � i(� · ⌫)Wm,

as defined in Section 4.2. In particular, (B.9) shows that L?

B1
is finite, since all the involved

operators are bounded and Km is injective. It is worth pointing out that this last argument
leading to L?

B1
< +1 works thanks to the fact that, on @⌦, the eigenfunction u⌧ =  

µ1/2

0 is
indeed independent of ⌧ , something that may not be guaranteed on a general domain ⌦.
We will use (B.9) to establish (B.5) for R = 1. First, let L 2 LB1 —recall that LB1 is defined

in (1.11), see also (4.20). We claim that 1/L is an eigenvalue of Km. This claim can be proven
by adding the two equations from which LB1 is defined and using that {Wm, � · ⌫} = 0 as
operators in L2(S2)2; see Lemma 4.7. As a consequence, and since 1/R⌦ = minL⌦ for every
⌦ ⇢ R3 by Theorem 1.7, RB1 is the maximum of the eigenvalues of Km among eigenfunctions
of the form (� · ⌫)u with u 2 P+(L2(S2)2), where P+ = 1

2 + iWm(� · ⌫).
Let us now compute explicitly the eigenvalues of Km as an operator in L2(S2)2. Using [10,

Lemma 4.3] and [58, Theorem 3.6] on Ka for a > 0 and letting2 a " m, it follows that the
spectrum of Km is given by a sequence {dj±1/2}j=1/2, 3/2,... whose associated eigenfunctions are
 

µj

j±1/2, i.e.,

Km 
µj

j±1/2 = dj±1/2  
µj

j±1/2, (B.10)

and the eigenvalues dj±1/2 are given by the expression

dj±1/2 = lim
t#0

Ij±1/2+1/2(t)Kj±1/2+1/2(t).

Here I and K are the modified Bessel functions of the first and second kind of order ,
respectively. By [1, formulas 9.6.7 and 9.6.9] we have

lim
t#0

I(t)K(t) =
�()

2�(+ 1)
=

1

2
for  > 0.

Hence, for k = 0, 1, . . . , we have

dk =
1

2k + 1
. (B.11)

We claim that (� · ⌫) 
µj

0 =  
µj

1 is orthogonal to P+(L2(S2)2). Once this is proved, it follows
that 1/d0 /2 LB1 and, as a consequence, RB1  d1 = 1/3. To prove the claim, notice that for all
⌧ 2 R, after a normalization,  

µj

1 is the upper component of the eigenfunction of H⌧ associated
to ��(�⌧), i.e., the first (larger) negative eigenvalue of H⌧ . Indeed, this can be shown with

2Note that the kernel km of Km does not depend on m. Hence, we can assume here that m > 0 to cover as
well the case m = 0.
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exactly the same arguments as we did at the beginning of the proof of the proposition for the
first positive eigenvalue, considering in this case the subspace L+

1/2,µ1/2
; see also Remark 1.1.

Therefore, since such eigenvalue converges to �m as ⌧ " +1, using the second equation in
(2.18) with u =  

µj

1 and taking the limit ⌧ " +1 —analogously as how we proceeded before
to show (B.9)—, it follows that (P+)⇤ 

µj

1 = 0, establishing our claim and, as a byproduct, the
inequality RB1  d1 = 1/3.
We shall now prove that L?

B1
= 1/d1 = 3, which will finish the proof of (B.5) since 1/RB1 

L⇤

B1
by Lemmas 4.10 and 4.11. By adding the two equations in (B.9) and using again that

{Wm, � · ⌫} = 0 (or equivalently, that (P+)⇤ = P+ by Lemma 4.7 since the underlying domain
is a ball), we obtain

 
µ1/2

0 = L?

B1
(� · ⌫)Km(� · ⌫) 

µ1/2

0 in L2(S2)2.

Finally, using that (� · ⌫) 
µ1/2

j±1/2 =  
µ1/2

j⌥1/2 for all half-integers j (see [71, equation (4.121)]), and

that  
µ1/2

1 is an eigenfunction of Km with eigenvalue d1 by (B.10), we get

 
µ1/2

0 = L?

B1
d1 

µ1/2

0 in L2(S2)2.

Therefore, we have L?

B1
= 1/d1 = 3 by (B.11). This concludes the proof. ⇤
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limit, J. Éc. polytech. Math., 6 (2019), pp. 329–365.

[7] N. Arrizabalaga, L. Le Treust, and N. Raymond, On the MIT bag model in the non-relativistic
limit, Comm. Math. Phys., 354 (2017), pp. 641–669.

[8] , Extension operator for the MIT bag model, Ann. Fac. Sci. Toulouse Math. (6), 29 (2020), pp. 135–147.
[9] N. Arrizabalaga, A. Mas, and L. Vega, Shell interactions for Dirac operators, J. Math. Pures Appl.

(9), 102 (2014), pp. 617–639.
[10] , Shell interactions for Dirac operators: on the point spectrum and the confinement, SIAM J. Math.

Anal., 47 (2015), pp. 1044–1069.
[11] , An isoperimetric-type inequality for electrostatic shell interactions for Dirac operators, Comm. Math.

Phys., 344 (2016), pp. 483–505.
[12] C. Bär, Lower eigenvalue estimates for Dirac operators, Math. Ann., 293 (1992), pp. 39–46.
[13] , Extrinsic bounds for eigenvalues of the Dirac operator, Ann. Global Anal. Geom., 16 (1998), pp. 573–

596.
[14] J.-M. Barbaroux, H. Cornean, L. Le Treust, and E. Stockmeyer, Resolvent convergence to Dirac

operators on planar domains, Ann. Henri Poincaré, 20 (2019), pp. 1877–1891.
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