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Abstract—Goal: Identifying the circulation state during1

out-of-hospital cardiac arrest (OHCA) is essential to determine2

what life-saving therapies to apply. Currently algorithms3

discriminate circulation (pulsed rhythms, PR) from no circulation4

(pulseless electrical activity, PEA), but PEA can be classified5

into true (TPEA) and pseudo (PPEA) depending on cardiac6

contractility. This study introduces multi-class algorithms to7

automatically determine circulation states during OHCA using8

the signals available in defibrillators. Methods: A cohort of9

60 OHCA cases were used to extract a dataset of 2506 5-s10

segments, labeled as PR (1463), PPEA (364) and TPEA (679)11

using the invasive blood pressure, experimentally recorded12

through a radial/femoral cannulation. A multimodal algorithm13

using features obtained from the electrocardiogram, the thoracic14

impedance and the capnogram was designed. A random forest15

model was trained to discriminate three (TPEA/PPEA/PR) and16

two (PEA/PR) circulation states. The models were evaluated17

using repeated patient-wise 5-fold cross-validation, with the18

unweighted mean of sensitivities (UMS) and F1-score as19

performance metrics. Results: The best model for 3-class had20

a median (interquartile range, IQR) UMS and F1 of 69.0%21

(68.0-70.1) and 61.7% (61.0-62.5), respectively. The best two class22

classifier had median (IQR) UMS and F1 of 83.9% (82.9-84.5)23

and 76.2% (75.0-76.9), outperforming all previous proposals24

in over 3-points in UMS. Conclusions: The first multiclass25

OHCA circulation state classifier was demonstrated. The method26

improved previous algorithms for binary pulse/no-pulse decisions.27

Significance: Automatic multiclass circulation state classification28

during OHCA could contribute to improve cardiac arrest therapy29

and improve survival rates.30

Index Terms—Random Forest, Machine Learning, Cardiac31

arrest, pulsed rhythm (PR), pulseless electrical activity (PEA),32

pseudo pulseless electrical activity.33

I. INTRODUCTION34

OUT of hospital cardiac arrest (OHCA) is a major35

public health problem in the industrialized world,36

with an annual incidence of 41 (range 19-104) cases37

treated per 100 000 persons in Europe [1], and more38
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than 350 000 cases reported annually by the resuscitation 39

outcome consortium in the USA [2]. Despite recent 40

advances in treatment and monitoring, survival rates with 41

good functional status remain around 9% in adults [2]. 42

Cardiac arrest can happen without warning. The patient 43

abruptly loses the respiratory and cardiovascular functions, 44

leading to unconciousness and ultimately death if the 45

patient is not treated within a few minutes. The chain of 46

survival metaphor specifies the key steps to improve OHCA 47

survival rates. Those steps are: early recognition of the 48

arrest, early treatment including cardiopulmonary resuscitation 49

(CPR) and defibrillation, and post-resuscitation care. CPR 50

includes effective chest compressions and ventilations, 51

coordinated with defibrillation therapy provided with either 52

basic automated external defibrillators (AED) or advanced 53

monitor/defibrillators. Specialized interventions may include 54

advanced monitoring, pharmacological treatment, and if 55

spontaneous circulation is restored, transport to a hospital for 56

post-resuscitation care [3], [4]. 57

The objective of resuscitation therapies is to restore 58

spontaneous circulation (ROSC) or pulse, i.e. the cardiac 59

function of the patient. However, during therapy OHCA 60

patients undergo frequent and dynamic rhythm transitions 61

[5]. It is therefore key to recognize and monitor the 62

patient’s response to treatment, particularly the identification 63

of spontaneous pulse. Rapid recognition of ROSC would 64

avoid unnecessary chest compressions that could lead 65

the patient into VF again [6], and would anticipate the 66

benefit of post-resuscitation treatment [7]. More specifically, 67

algorithms or methods are needed to discriminate pulseless 68

electrical activity (PEA) from pulse generating rhythms (PR) 69

[8], [9]. During PEA, patients present a (quasi)-normal 70

electrocardiogram with discernible heartbeat activity (QRS 71

complexes), but no associated mechanical contractions. A state 72

known as electromechanical dissociation. 73

Pulse detection in OHCA patients is challenging. Palpation 74

techniques have a low specificity (55%) and require long 75

interruptions (> 10 s) in therapy [10]–[12]. Automated 76

pulse identification using the electrocardiogram (ECG) is 77

challenging because PEA and PR rhythms show an organized 78

ECG with discernible QRS complexes [13]. Chest conductivity 79

is affected by transport of oxygenated blood, so the thoracic 80

impedance (TI) signal is also of value to identify pulse 81

during OHCA [8]. In the last decade, various algorithms 82

have been proposed for PEA/PR discrimination during OHCA 83

using only the ECG [13], [14], the thoracic impedance [15], 84
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[16] or a combination of both signals [8], [9], [17]. More85

recently, physiological signals affected by cardiac output like86

capnography or photoplethysmography have been incorporated87

to PEA/PR discrimination algorithms [18], [19].88

One key limitation of all these contributions is to define89

a binary circulation state (pulse/no-pulse). PEA can be90

further classified into true-PEA (TPEA) and pseudo-PEA91

(PPEA) [20]. During PPEA echocardiography studies show92

that the electrical activity of the heart produces mechanical93

contractions, although of insufficient strength to maintain94

consciousness and adequate organ perfusion [21]. The two95

states of PEA have very different prognosis and treatment96

[22]–[24], and since PEA is the initial rhythm in up to 60% of97

OHCA cases [25], discriminating PPEA from TPEA is of great98

clinical interest. Echocardiography and invasive blood pressure99

(IBP) are the key technologies to discriminate PEA states, but100

they are rarely available during OHCA. Other methods based101

on ECG variables and end-tidal-CO2 (EtCO2) values have also102

been proposed, but with inconclusive results [24], [26]–[28].103

There is a need for automated circulation state classification104

algorithms that differentiate TPEA, PPEA and PR rhythms.105

This study introduces a new multi-modal solution to classify106

circulation states during OHCA using concurrent information107

derived from the ECG, the TI and the capnogram. The solution108

allows the classification into two classes (PR/PEA) or three109

classes (TPEA/PPEA/PR), with the final aim of monitoring the110

circulation state of the patient and the response to resuscitation111

treatment. The study is based on an unique dataset that112

includes IBP signals measured using arterial lines during113

OHCA to provide an accurate ground truth clinical annotation114

of the circulation state.115

II. DATA COLLECTION AND PREPROCESSING116

A. Dataset117

The source of the data was a randomized OHCA118

clinical trial (No. NCT02479152), that investigated the119

hemodynamics of patients in cardiac arrest treated with120

manual cardiopulmonary resuscitation and mechanical chest121

compression devices. Data were recorded between 2015 and122

2017 by the doctor manned car, part of the Air ambulance123

department of the Oslo Emergency Medical System (EMS)124

under the supervision of the principal investigator of the125

trial (coauthor Dr L. Wik). A total of 210 patients were126

included, from whom four signals were concurrently recorded127

using the Lifepak 15 (Stryker Ltd.) monitor-defibrillator: the128

ECG and the TI (recorded through the defibrillation pads),129

the sidestream capnogram, and the IBP signal acquired via130

onsite radial/femoral cannulation. In 135 cases cerebral oxygen131

saturation was continuously monitored in the right and left132

frontal lobes using the ForeSight Elite monitor (Casmed, Inc).133

All signals were first converted to a common sampling rate134

of fs = 250 Hz, and the capnogram was time-aligned with135

the ECG and the TI. Then signal intervals with the following136

characteristics were extracted: minimum duration 5-s, ECG137

in an organized rhythm (QRS complexes), and free of chest138

compression artefacts.139

The ECG, TI and capnogram were used to develop the140

algorithms. A clinician and two expert biomedical engineers141

used all other sources of information to annotate the circulation 142

state (TPEA, PPEA, PR) for each interval, including: clinical 143

patient charts with annotated ROSC intervals, the IBP 144

waveform, and cerebral oxygen saturation when available. 145

Systolic (Sys), diastolic (Dias) and pulse pressure (PP = 146

Sys − Dias) were computed for each cardiac cycle and 147

averaged to be displayed during annotation. The distinction 148

between the three circulation states was possible using the 149

objective values obtained from the IBP because systolic and 150

pulse pressures are higher for PR than for PEA, and within 151

PEA higher values are observed for PPEA than for TPEA. 152

Fig. 1 shows a 150-s period with the signals recorded by 153

the LifePak monitor, in which two intervals without chest 154

compressions (as seen in the impedance) were extracted: 155

a short 10-s PPEA interval (orange) around 15:39:00 with 156

Sys/Dias/PP values of 54/34/20 mmHg, and a longer 40-s PR 157

interval (green) around 15:40:40 with Sys/Dias/PP values of 158

147/67/80 mmHg. 159

A total of 300 intervals were identified from the 60 patients 160

that had an IBP waveform. A median (interquartile range, IQR) 161

of 5 (3-7) intervals was extracted per patient, with a median 162

(IQR) duration of 27.6 (11.2-76.0) s. They were labeled as 163

TPEA (129, from 37 patients), PPEA (75, from 26 patients) 164

and PR (96, from 31 patients). The median (IQR) blood 165

pressure values for the three circulation states in the extracted 166

intervals are summarized in Table I. When the distributions 167

were compared using a Mann-Whitney U test the systolic 168

pressure and pulse pressure values were significantly higher 169

for PR than for PPEA (p < 0.001), and for PPEA than for 170

TPEA (p < 0.001). 171

TABLE I
SYSTOLIC (SYS), DIASTOLIC (DIAS) AND PULSE PRESSURE (PP) VALUES

FOR THE THREE GROUPS CONSIDERED IN THIS STUDY

TPEA PPEA PR

Sys (mmHg) 32.5 (24.6-41.7) 40.4 (35.0-49.1) 95.5 (68.9-148.7)
Dias (mmHg) 27.2 (19.5-36.4) 28.1 (25.9-33.7) 51.1 (40.0-75.9)
PP (mmHg) 4.1 (0.0-6.8) 11.3 (8.0-16.4) 45.4 (29.4-68.1)

The intervals were further divided into non overlapping 5-s 172

segments. These segments were separated by 1-s in TPEA 173

and PPEA for which the signals and the circulatory state 174

of the patient are very variable. The PR segments were 175

separated by 15-s because once a patient recovers pulse the 176

circulatory state is more stable. As reference, the median 177

duration of the PR and PEA intervals were 129-s and 15-s, 178

respectively. These segments were used to design and validate 179

the three (TPEA/PPEA/PR) and two (PEA/PR) circulation 180

state classifiers. A total of 2506 5-s segments were obtained, 181

for a median (IQR) of 42 (16-62) segments per patient, 182

whereof 679 were TPEA, 364 PPEA and 1463 PR. Fig. 2 183

shows one example for each class. In the PPEA and PR 184

segments there is a visible correlation between the ECG, 185

the IBP and the impedance circulation component (ICC) (see 186

Section III-B). For the TPEA the IBP is nearly flat, and there 187

is no circulation component in the impedance. In addition the 188

EtCO2 values are displayed in the figure; these values were 189
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computed by averaging the EtCO2 values of the ventilations190

in the previous minute [19].191

III. SIGNAL PREPROCESSING 192

The ECG and TI were preprocessed to denoise the signals 193

and extract components of interest. Multiresolution analysis 194
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Fig. 1. A period of 150 s from a patient in OHCA is shown, where the ECG, the thoracic impedance (TI), and the capnogram can be observed together
with IBP waveform, i.e. the signal used to annotate the pulse states. Two intervals are marked, a PPEA (in red) around 15:39:00 and a PR (in green) around
15:40:40. In the capnogram the EtCO2 values computed for each ventilation are marked as dots (in red).
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(sicc) are used by the algorithm together with the average EtCO2 associated to each segment. The invasive blood pressure (IBP) permitted the labeling of
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based on stationary wavelet transform (SWT) was used to195

obtain the sub-band components or detail coefficients, and to196

denoise the signals using soft thresholding [29]. A Daubechies197

4 mother wavelet was adopted [30].198

A. The ECG199

The ECG was decomposed in 8 levels of detail coefficients200

(d1,ecg-d8,ecg) and the threshold was estimated using d2,ecg to201

denoise d3,ecg-d8,ecg. A denoised ECG (secg) was reconstructed202

using the denoised d3,ecg to d8,ecg, which is equivalent to using203

the 0.5 – 31.25 Hz bandwidth, adequate for the detection of204

pulse [13]. Fig. 3 shows the raw ECG, the denoised detail205

components d3,ecg-d7,ecg and secg for a PR case.206

B. TI denoising and ICC extraction207

The TI signal was first band-pass filtered in the 0.8-10 Hz208

band to remove baseline fluctuations and high frequency noise209

[8], [9], and then the ICC was obtained. The ICC shows210

the changes in TI produced by blood flow, and is associated211

to mechanical ventricular contractions [31]. The ICC can be212

modeled as a Fourier series, with a time changing fundamental213

frequency equal to the instantaneous heart rate [9], [32]. For214

a sampling period Ts and the discretized time axis tj = j ·Ts,215

the ICC component at time tj is expressed as [9]:216

sicc(tj) =

K∑
k=1

ak(tj) cos(2πkf(tj)·tj)+bk(tj) sin(2πkf(tj)·tj)

(1)

where f(tj) is the beat-to-beat heart rate in Hz, and ak(tj)
and bk(tj) are time-varying Fourier coefficients that will be
estimated using Kalman filtering and smoothing, and the
model uses K harmonics. The Kalman state vector xj and
the observation vector Hj are then:

xj = [a1(tj), . . . , aK(tj), b1(tj), . . . , bK(tj)]
T (2)

Hj = [cos(2πf(tj)tj), . . . , cos(2πf(tj)Ktj),

sin(2πf(tj)tj), . . . , sin(2πf(tj)Ktj)] (3)

In this work we assume ak and bk are gaussian processes
[33], that can be updated as:

ak(tj) = ψjak(tj−1) + wj (4)
bk(tj) = ψjbk(tj−1) + wj (5)

where wj is a gaussian process with zero mean and standard 217

deviation σ, and ψj = exp(−λ(tj − tj−1)). The dynamic 218

model can be expressed as: 219

xj = Ψjxj−1 + Qj (6)

where Ψj = ψj · I2K , Qj = σ · I2K and I2K is the identity 220

matrix of order 2K × 2K. 221

The ak and bk coefficients were estimated using 222

Rauch-Tung-Striebel smoother, as described in [33], [34], and 223

K = 5 harmonics, λ = 0.05 and σ = 0.01 were used. The 224

instantaneous heart rate, f(tj), was measured by detecting 225

the R peaks in the ECG signal using the Hamilton-Tompkins 226

algorithm [35]. 227

The circulation component was reconstructed using d5,icc − 228

d7,icc (≈ 1−8 Hz). Fig. 3 shows the sicc and detail coefficients 229
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Fig. 3. Decomposition of the ECG and the TI signal into detail components using the stationary wavelet transform. The denoised ECG (secg) and TI (sTI)
and the impedance circulation component (sicc) are also shown.
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for a PR case. As shown in the figure, the Kalman smoother230

is capable of obtaining the circulation component even in the231

presence of low frequency TI variations caused by ventilation,232

as observed in the band-passed impedance signal, sTI.233

C. The capnogram234

EtCO2 values were automatically computed in the235

capnogram using the algorithm described in Aramendi et al.236

[36]. For each ventilation the EtCO2 value was marked as the237

maximum value of the capnogram in the expiration plateau,238

as shown by red dots in Fig. 1.239

IV. FEATURE ENGINEERING AND CLASSIFICATION240

A pletora of features, both described in the literature for241

PEA/PR discrimination, and new features proposed in this242

study for the same task were implemented.243

A. State of the art features244

A set of 37 features described in [8], [9], [13], [15],245

[17], [19], [32] were computed using the ECG, TI, ICC and246

capnography signals:247

• ECG: Mean RR interval (MeanRR), variance of RR248

intervals (VarRR), mean and standard deviation of QRS249

peak-to-peak amplitudes (MeanPP and StdPP), median250

signal length (MedianSL), mean and variance of QRS251

width, QRS amplitude to duration ratio (SlopeQRS),252

median and variance of the signal after normalizing253

between 0 and 1 (MSnorm and StdSnorm), mean value254

of the signal, mean and standard deviation of the absolute255

value of the first difference of the signal (MeanAbs1256

and StdAbs1), the kurtosis of the averaged slope257

(KurtSlp2), amplitude spectrum area (AMSA), energy258

above 17.5 Hz (HfP) and Fuzzy entropy (FuzzEn).259

• TI: Variance and cross-power (XPwr) as described in260

[17], peak of the power spectrum of the first difference261

of the signal in 1.5 Hz < f < 4.5 Hz range (PkF), and 10262

features from the ensemble averaged signal as described263

in [8].264

• ICC: Area per sample and mean area of sicc and its first265

difference, ∆sicc. Mean and standard deviation of the266

peak-to-peak fluctuations of every beat in sicc (MeanPP267

and StdPP), and the mean of ∆sicc (MeanPP1) [9],268

[32].269

• Capnogram: The median value of the EtCO2 measured270

in the previous minute, MEtCO2, as described in [19].271

B. Novel features272

Pulsatility is associated to ECGs with narrower QRS273

complexes of larger amplitudes, and to waveforms in the274

ICC correlated to the heartbeats (QRS complexes). These275

differences should produce different characteristic waveforms276

in the detail coefficients for TPEA, PPEA and PR. The277

following features were extracted from secg, d3,ecg − d7,ecg,278

sicc and d5,icc − d7,icc [37]–[39].279

• Interquartile range (IQR).280

• Sample entropy (SampEn) with an embedding dimension 281

of 2 and tolerance of 0.2. 282

• Mean and standard deviation of the absolute value 283

after normalizing to unit variance (NMeanAbs and 284

NMeanSd). 285

• Mean and standard deviation of the absolute value of 286

the first difference after normalizing to unit variance 287

(NMeanAbs1 and NMeanSd1). 288

• Skewness (Skew) and kurtosis (Kurt). 289

• Hjorth mobility (Hmb) and complextity (Hcmp). 290

• Phase-space representation was computed using Taken’s 291

time-delay embedding method with τ = 2 and the 292

skewness of pairwise distances was calculated (SkewPS). 293

Two extra features were computed for secg and sicc: 294

• The error of estimating the spectral power of the signal 295

with a 4th order autorregresive Burg model (ARErr), 296

best fit to signals with spectra concentrated around a 297

fundamental frequency and its harmonics. 298

• The smoothed nonlinear energy operator (SNEO) as 299

described in [40], which shows higher values for signals 300

with higher amplitudes. 301

C. Feature selection and classification 302

The Random Forest (RF) classifier was adopted for both 303

feature selection and classification. A RF is an ensemble of B 304

decision trees that produce uncorrelated predictions, and uses 305

a majority vote of the trees to produce the final label. Each tree 306

was trained using the bootstrapping method with replacement 307

and 50% of the data. The minority classes were over-sampled 308

to have equal number of observations per class when training 309

each tree and address class imbalance. 310

Data were partitioned patient-wise in a quasi stratified way 311

into 5-fold cross validation partitions, and the procedure was 312

repeated 100 times to statistically characterize the performance 313

of the classifiers. In the training phase two RF classifiers 314

were trained. The first RF classifier was trained using only 315

the ECG and TI features, and was used for feature selection 316

using permutation feature importance. At this stage minority 317

classes were not over-sampled. The second RF classifier (final 318

model) was trained using the most important Nf features and 319

MEtCO2, and now the minority classes were over-sampled. 320

Note that the total number of features in the final model was 321

Nf + 1 when the MEtCO2 was considered. 322

D. Model evaluation 323

The models were evaluated using the per class sensitivity 324

(Se) and F1-score. The unweighted mean of sensitivities 325

(UMS) and the mean of the per class F1-scores (F1m) were 326

used as global performance metrics. For the 2-class problem 327

the area under the receiver operating characteristic curve 328

(AUC) was also computed. The number of segments varied 329

across patients, so all metrics were computed weighting each 330

patient equally. 331

A multimodal model was evaluated integrating the three 332

signals, ECG, TI and capnogram. Simple defibrillators and 333

AEDs do not include a capnography module, so models based 334
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on the ECG and TI only were also developed. Finally, some335

lower cost AEDs do not record the TI with sufficient amplitude336

resolution to obtain the ICC [9], [13], so models using only337

the ECG were also developed.338

V. RESULTS339

A. Detailed classification of circulation states340

The performance metrics for the detailed circulation state341

classifier are shown in Fig. 4 for models with an increasing342

number of features. The results in terms of UMS improved343

by less than 0.3-percent points for the models with more than344

Nf = 30 features, which had a median (IQR) F1m and UMS345

of 61.5% (60.8-62.4) and 68.8% (67.7-69.8), respectively. The346

confusion matrix in Fig. 5 shows the detailed classification per347

group for the model with Nf = 30 features. The intermediate348

circulation state (PPEA) was the hardest to classify, since it349

may present PR or TPEA like characteristics depending on the350

degree of cardiac contraction.351

The novel ICC feature extraction provided relevant352

information to classify circulation states. Fig. 6 shows the353

average feature ranking for all training partitions for a model354

with Nf = 30 features. The ranking was obtained as the355

probability of being included in the model after feature356

selection. As shown in the figure, our model for 30 features357

included 7 ICC features, but 3 of those were the ones with358

the highest probability to be included in the model. Some of359

the features were already proposed in the state of the art for360

PEA/PR classification, but other important features were first361

used in this study for circulation state classification. Note that362
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Fig. 6. Probability of selection for each feature when Nf = 30 and three
classes were considered (TPEA/PPEA/PR)

MEtCO2 was not included in the feature selection process and 363

was added manually, so it is not present in Fig. 6. 364

The detailed (three-class) classification results depending 365

on the available information (source signals) is shown in 366

Table II. The TPEA and PPEA classes were most affected 367

by constrained signal models, removing MEtCO2 information 368

decreased the F1-score for TPEA by 3 points and for PPEA 369

by 2 points. Further removing the TI produced a decrease 370

in F1-score of over 12 points for TPEA and 8 points for 371
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TABLE II
PERFORMANCE METRICS REPRESENTED AS MEDIAN (IQR) FOR THE THREE-CLASS CLASSIFICATION PROBLEM

Signals Nf SeTPEA SePPEA SePR UMS F1,TPEA F1,PPEA F1,PR F1m

ECG, TI, CO2 10* 70.3 (4.8) 50.4 (5.5) 78.4 (2.9) 66.2 (2.8) 67.9 (4.0) 41.1 (4.4) 69.0 (2.7) 59.2 (2.4)
ECG, TI, CO2 20* 73.1 (3.7) 50.9 (4.6) 81.2 (2.4) 68.6 (2.4) 69.3 (2.4) 43.3 (3.3) 70.7 (2.5) 61.2 (1.8)
ECG, TI, CO2 30* 74.4 (3.6) 50.2 (4.2) 82.3 (1.9) 68.8 (2.1) 69.3 (2.9) 44.3 (2.9) 71.1 (2.0) 61.5 (1.6)
ECG, TI, CO2 40* 74.9 (3.7) 49.6 (3.7) 83.2 (1.5) 69.0 (2.1) 69.7 (2.8) 45.1 (3.0) 70.7 (1.7) 61.7 (1.5)
ECG 30 57.5 (4.5) 37.2 (5.5) 80.9 (2.7) 58.6 (2.6) 57.1 (2.8) 35.7 (4.4) 68.9 (1.9) 53.8 (2.2)
ECG, TI 30 71.8 (3.4) 47.7 (5.6) 81.5 (2.1) 66.9 (2.6) 65.8 (2.5) 42.9 (4.1) 70.8 (2.3) 59.8 (2.1)
* The final model included Nf + 1 features (MEtCO2)

PPEA. The ECG only and ECG+TI models presented a UMS372

of 58.6% and 66.9%, 25 and 33 points above that of a random373

guess.374

Another key variable when identifying the circulation state375

is the duration of the signal segment. Chest compression376

therapy must be interrupted for the analysis to avoid artefacts377

in the ECG and TI. But these interruptions compromise blood378

flow in deteriorated circulation states and may negatively affect379

patient survival [41]. Consequently, the shorter the analysis380

segment the better. Fig. 7 shows the median (IQR) of per381

class F1 scores of a Nf = 30 feature model as the duration of382

the analysis segment is shortened. From 1-s to 5-s windows F1383

increased only one point for PR, but almost 5 points for TPEA384

and PPEA. Increasing the analysis window was beneficial to385

discriminate the most challenging class, PPEA.386

1 2 3 4 5
Duration of the analysis segment (s)

35

40

45

50

55

60

65

70

75

F1,TPEA

F1,PPEA

F1,PR

F1m

Fig. 7. Median (IQR) of per class F1 in terms of the duration of the analysis
segment.

B. Binary classification of circulation states387

Binary classification of circulation states (PEA/PR or388

pulse/no-pulse classification) is a well known field of study389

in biosignal analysis applied to cardiac arrest [8], [9], [14].390

Our model for this problem was constructed joining the TPEA391

10 20 30 40 50
Nf

76

78

80

82

84

86

88

66

68

70

72

74

76

78

80

82

SePEA

SePR

UMS

F1,PEA

F1,PR

F1m

Fig. 8. Performance (%) of the prediction model in terms of the number of
features included (Nf ) for the two-class classification problem

and PPEA classes. The performance metrics as a function 392

of the number of features in the RF model are shown in 393

Fig. 8. The accuracy of the model increased substantially 394

when going from a 5-feature to a 50-feature model, with an 395

increase of 5 points in UMS. As reference, the performance 396

of our model was compared in our dataset to those of the 397

reference studies in binary circulation state classification [8], 398

[9], [13], [19]. The results are shown in Table III. Moreover, 399

since these methods ranged from ECG only to multimodal 400

methods including ECG, TI and CO2 the analysis was further 401

stratified to include models with features from the different 402

signals. Our model outperformed the state of the art PEA/PR 403

classification models. The UMS/F1m of our models were 5/6 404

and 4/3 points larger than the next best methods based on 405

ECG+TI and ECG+TI+CO2, respectively. In all cases the AUC 406

of our models was 1 to 4 points larger. 407

Fig. 9 shows the average feature ranking for all training 408

partitions for a model with 30 features. It can be observed 409
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TABLE III
PERFORMANCE METRICS REPRESENTED AS MEDIAN (INTERQUARTILE RANGE) FOR THE TWO-CLASS CLASSIFICATION PROBLEM

Signals Nf SePEA SePR UMS F1,PEA F1,PR F1m AUC

Risdal et al. [8] ECG, TI 17 78.8 (2.7) 78.0 (3.1) 78.3 (2.2) 74.0 (1.8) 64.9 (2.0) 69.4 (1.7) 0.84 (0.02)
Risdal et al. [8] ECG, TI 12 80.1 (3.2) 77.6 (2.2) 78.6 (2.2) 74.6 (2.3) 65.1 (2.0) 69.7 (1.8) 0.84 (0.02)
Alonso et al. [9] ECG, TI 6 68.8 (1.7) 77.3 (1.4) 73.1 (1.4) 67.7 (1.3) 65.7 (1.9) 66.7 (1.4) 0.84 (0.02)
Elola et al. [13] ECG 9 77.9 (2.2) 80.2 (2.6) 78.9 (1.6) 74.6 (1.2) 67.9 (1.8) 71.2 (1.5) 0.84 (0.01)
Elola et al. [19] ECG, TI, CO2 10 79.9 (2.2) 81.1 (2.2) 80.4 (1.9) 77.0 (2.0) 79.4 (2.0) 73.0 (1.7) 0.87 (0.01)
This study ECG, TI, CO2 10* 83.1 (3.0) 79.8 (2.8) 81.5 (1.8) 78.8 (2.5) 70.0 (2.9) 74.5 (1.9) 0.87 (0.02)
This study ECG, TI, CO2 20* 84.5 (2.5) 80.3 (2.3) 82.4 (1.7) 80.1 (1.7) 70.3 (2.5) 75.3 (1.5) 0.88 (0.01)
This study ECG, TI, CO2 30* 85.6 (2.4) 81.3 (2.0) 83.2 (1.9) 80.6 (1.7) 70.4 (2.5) 75.6 (1.8) 0.89 (0.01)
This study ECG, TI, CO2 40* 86.0 (2.1) 81.8 (2.1) 83.9 (1.7) 81.2 (1.7) 71.0 (2.6) 76.2 (1.8) 0.89 (0.01)
This study ECG 30 76.4 (2.6) 80.4 (4.0) 78.4 (2.2) 74.4 (1.8) 68.5 (2.1) 71.4 (1.6) 0.85 (0.01)
This study ECG, TI 30 85.9 (2.2) 80.5 (2.3) 83.1 (1.8) 80.6 (1.5) 70.3 (2.7) 75.5 (1.8) 0.88 (0.01)
* The final model included Nf + 1 features (MEtCO2)

that the model includes 7 ICC features, 3 of which have the410

highest probability. Some of the most important features were411

first proposed in this study for PEA/PR classification.412
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Fig. 9. Probability of selection for each feature when Nf = 30 and two
classes were considered (PEA/PR)

VI. DISCUSSION413

This study is, to the best of our knowledge, the first414

to address detailed circulation state classification models415

during OHCA. One of the key difficulties when assessing the416

circulation state during OHCA is the lack of a reliable source417

of information for the ground truth annotations. We were able418

to circumvent this difficulty by using a rich experimental419

biomedical signal dataset of 210 OHCA cases, in which420

patients were cannulated and the IBP signal was recorded421

in a prehospital setting. Then, the models to determine422

the circulation state were developed using signals routinely423

acquired during OHCA treatment like the ECG, TI or the424

capnogram. Moreover, different models were designed for425

ECG only, ECG+TI and ECG+TI+CO2 situations, to address 426

the differences in availability of biomedical signals in current 427

defibrillator models used to treat OHCA. 428

Our best model to classify circulation states had a 429

median F1m and UMS of 61.5% and 68.8%, i.e. 35-points 430

above a random guess for a 3-class problem. The model 431

used ECG, TI and CO2 features, in fact MEtCO2 was 432

important to differentiate TPEA and PPEA. For a 30 feature 433

model removing the MEtCO2 lowered the TPEA and PPEA 434

sensitivities from 74.4% to 71.8%, and from 50.2% to 435

47.7%, respectively. The MEtCO2 values were significantly 436

larger in PPEA than in TPEA, with median values of 32.1 437

(25.2-42.8) mmHg and 9.2 (5.0-24.1) mmHg, respectively. 438

These conclusions are coherent with those observed in 439

previous studies [19], [24]. In fact, EtCO2 showed positive 440

correlations with blood pressure measurements [42], which 441

may explain its value to differentiate circulation states during 442

PEA. 443

In this study we introduced a novel feature extraction 444

method from the ECG and TI combining multiresolution 445

waveform analysis based on the SWT and a Kalman smoother 446

to obtain the ICC. When our methods were compared to 447

those proposed in the literature for the binary classification 448

of circulation states (PEA/PR) [8], [9], [13], [19], our models 449

outperformed all previous models (see Table III). This proves 450

the value of the feature extraction methods introduced in this 451

study, in particular the value of the Kalman smoother to obtain 452

the ICC. When compared to a previous approach to obtain the 453

ICC based on the RLS method [9] and following the same 454

procedure, our Kalman smoother improved the median UMS 455

by 4.5 and 2 points for the detailed and the binary classification 456

of circulation states, respectively. 457

The detailed automatic classification of circulation states 458

of OHCA patients may contribute to improve treatment, 459

particularly, in guiding the administration of vasoconstrictors 460

like epinephrine. Currently, the European Resuscitation 461

Council and the American Heart Association recommend 462

different treatments for pseudo and true PEA [4], [43]. The 463

distinction between PEA states, and the identification of 464

spontaneous circulation, are currently done by expert clinicians 465

in stressful treatment conditions, it is not very accurate, and 466

involves long interruptions in therapy [44]–[46]. Integrating 467
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the algorithms introduced in this study in current monitor468

defibrillators would contribute to a better identification of469

circulation states, and could serve experts as a clinical decision470

support tool during OHCA treatment.471

The proposed algorithms provided Se values of 86%472

and 81.8% for PEA and PR, respectively. However,473

for clinical practice minimum accuracy figures would be474

required. For instance, the American Heart Association475

recommends sensitivities above 90% and 95% for the476

automatic shock/no-shock decision algorithms before being477

used in automated external defibrillators [47]. No such478

recommendations exist for pulse detection algorithms, but479

our algorithms, despite outperforming state of the art480

solutions, are still far from the accuracies needed in clinical481

practice. However, if the algorithms were to be used as a482

diagnosis support tool by the rescuer in combination with483

other information provided by the defibrillator, the accuracy484

requirements could be relaxed and the solution integrated in485

every day practice.486

The precision of the classification algorithms could benefit487

from further research. Including a larger dataset to develop the488

models, or using advanced machine learning techniques could489

enhance the performance of the classifiers. Obtaining a larger490

patient cohort is a difficult task, as IBP is rarely acquired in491

OHCA. However, unlabeled data could be used to augment the492

datasets using techniques like semi-supervised learning [48],493

as the ECG, TI and the capnogram are routinely acquired494

signals. Deep learning algorithms have already been proven495

to outperform binary classifiers of circulation states [14], and496

other signals such as the PPG have shown promising results497

[18]. Future solutions might benefit from additional signals498

in the classification model and more sophisticated machine499

learning architectures.500

VII. CONCLUSIONS501

This study introduces multimodal biosignal processing502

and machine learning algorithms for the classification of503

circulation states during OHCA, and it is the first time that the504

automatic detection of detailed circulation states is addressed.505

These algorithms could serve as an important clinical506

decision tool for clinicians for the adequate administration of507

medication during OHCA treatment, and in decisions such as508

transport to hospital for post-resuscitation care.509
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