
1

Title— Integrating Formative Feedback in Introductory

Programming Modules.

Abstract— Introductory programming modules are
challenging for both lecturers and students. In previous works,
the authors have carried out educational innovations to mitigate
these challenges and facilitate learning. This paper presents a
further step in this improvement, proposing a learning process
enriched with formative feedback. To this end, visual
programming environments and educational robots are
combined and complemented with automatic source code
verification and validation feedback. The feedback integration
proposal is presented along with the lessons learned from the
previous experiments carried out that establish the basis of this
work. The proposal has been implemented and tested in the
Object Oriented Programming module in the Bachelor in
Computer Management and Information Systems Engineering at
the Faculty of Engineering of Vitoria-Gasteiz at the UPV/EHU
University. The results of the evaluation have been positive and
are also presented here.

Index Terms—Computer science education, Programming
environments, Educational robots

I. INTRODUCTION

ROGRAMMING modules present many challenges for both
teachers and students. On the one hand, these modules

pose great difficulty for students and have low success rates,
what involves a large number of retakers in these modules. In
addition, some primary and secondary schools nowadays have
begun to work on computational reasoning with various
applications and robotic kits [1]. For this reason, part of
novice students enters university studies with prior knowledge
in certain aspects of programming. This produces a high
degree of heterogeneity among students regarding their
previous level in the competences addressed in those modules

F. I. Anfurrutia, Universidad del País Vasco/Euskal Herriko Unibertsitatea
UPV/EHU, felipe.anfurrutia@ehu.eus

A. Álvarez, Universidad del País Vasco/Euskal Herriko Unibertsitatea
UPV/EHU, ainhoa.alvarez@ehu.eus

M. Larrañaga, Universidad del País Vasco/Euskal Herriko Unibertsitatea
UPV/EHU, mikel.larranaga@ehu.eus

J-M. López-Gil, Universidad del País Vasco/Euskal Herriko Unibertsitatea
UPV/EHU, juanmiguel.lopez@ehu.eus

DOI (Digital Object Identifier) Pendiente

what is one of the main problems in teaching these modules
[2]. This fact makes it difficult for teachers to design adequate
learning methods for all students [3]. Additionally,
programming modules are usually taught using general
purpose programming languages, which may be very complex
for novice students without prior knowledge of the module
topics [2], [4]. Some programming languages have high
learning curves. Others, even for the simplest programs,
require a lot of code that is complicated to understand and
address for novice students. In general, students have to cope
at the same time with the design of the algorithms and the
syntactic rules of used programming languages.

Literature presents two main ways to mitigate the problems
that novice students find in introductory programming
modules [5]. On the one hand, visual environments have been
used to learn programming. This type of environments isolates
students from the complexities of the underlying programming
languages, allowing students to focus on the understanding of
fundamental concepts before beginning to program [5]. On the
other hand, the use of physical devices have also been
suggested as an approach that allows students to interact with
their programs in the real world [6].

The authors of this work have explored several proposals
for improving teaching in order to mitigate the problems that
students have in these modules. During the last five years,
they have applied a pedagogical framework, based on Kolb’s
learning cycle [7] that integrates the use of educational robots
and visual programming environments.

Although visual programming tools used so far have proved
theworthier value for learning, they present limitations in the
provided feedback, as this is mainly focused on the made
mistakes. This feedback can help students correcting the
errors identified in their programs, but does not provide a
guide in the search for a solution. Therefore, providing
assistanceto f guide the students in the search for a solution
relies on the teaching staff. Given the importance of feedback
in learning processes for the acquisition of new knowledge
and skills [8], this article presents a proposal for the
integration of enriched formative feedback. This proposal will
integrate new types of feedback in order to provide a more
enriching experience for students. This type of feedback or
formative evaluation can contribute significantly in the
students' learning process [9].

The rest of the work is structured as follows. First, aspects

Integrating Formative Feedback in Introductory
Programming Modules

Felipe I. Anfurrutia, IEEE Member, Ainhoa Álvarez, Mikel Larrañaga, IEEE Member,
Juan-Miguel López-Gil

P

F. I. Anfurrutia, A. Álvarez, M. Larrañaga and J. -M. López-Gil, "Integrating Formative Feedback in Introductory
Programming Modules," in IEEE Revista Iberoamericana de Tecnologias del Aprendizaje, vol. 13, no. 1, pp.
3-10, Feb. 2018, doi: 10.1109/RITA.2018.2801898 © 2018 IEEE. Personal use of this material is permitted.
Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or
redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

2

related to formative feedback are introduced. Section III
summarizes previous experiences in introductory
programming modules implemented by the authors during the
last five years, which are explained in more detail in [10],
together with the lessons learned from them. These lessons
learned are the starting point for the formative feedback
integration proposal in introductory programming modules
presented in this work. Next, section V describes the
experience in which the presented framework has been used.
Finally, conclusions of the work are detailed.

II. FORMATIVE FEEDBACK

The formative feedback includes any information that is
communicated to a student with the aim of modifying the
student's thinking or behavior and improving the learning [8],
[11]. On the one hand, students can rely on provided feedback
to take corrective measures and improve their learning. On the
other hand, teachers can rely on feedback to take measures to
improve their teaching.

In the case of programming, students often face a trial-error
process, which could be significantly improved with adequate
feedback that would allow students to reflect on their learning
process [12].

In general, provided feedback can fulfill two functions:
directive or facilitative [13]. Directive feedback indicates
students what should be reviewed or modified; whereas
facilitative feedback provides comments or suggestions to
guide students in their own review and conceptualization.

Effective feedback should provide students two types of
information [8]: verification and elaboration Verification
information indicates whether a program is correct or not,
while elaboration information includes aspects that can guide
students, providing clues that guide them towards the correct
answer.

Verification information can be provided explicitly or
implicitly. Information provided explicitly is expressed by
symbols indicating the correctness or incorrectness of a
solution. Implicitly provided information includes aspects
such as simulations that demonstrate the outcome of the
solution proposed by a student. Feedback can also be
generated, including verification aspects enriched with
prepared explanations. These explanations can address the
errors, the concept that was being tackled or could be
developed examples.

This article proposes improving the learning framework
based on the Kolb cycle [7], used by the authors in the
introductory programming modules, through the integration of
feedback. On the one hand, the proposal incorporates implicit
verification information through simulations and executions in
physical environments. On the other hand, it includes prepared
feedback that allows guiding students towards the solution of
a problem. Many of the errors that students make in their
programs are similar and their detection and solving can be
automated to a great extent. Therefore, the proposal
incorporates an automated process of error detection and

associated feedback based on the use of unit tests. The
following describes the previous experiences and lessons
learned from them, which have been fundamental to the
design of the proposal presented in this article.

III. PREVIOUS EXPERIENCES IN PROGRAMMING

This section introduces the framework proposed in [10] for
implementing the Kolb’s learning cycle in programming, an
approach that incorporates the combined use of educational
robots and visual environments

This framework has been used during 5 academic years in
the two introductory programming modules taught in the first
year of the Bachelor in Computer Management and
Information Systems Engineering at the Faculty of
Engineering of Vitoria-Gasteiz at the UPV/EHU University:
Introduction to Programming during the first semester, and
Modular & Object Oriented Programming (MOOP) in the
second [10], [14].

A. Kolb’s cycle in Programming

Simultaneous learning of the conceptual aspects of
programming and the syntactic rules of programming
languages is an added difficulty for novicestudents [2]. In this
sense, some authors have suggested to deal with the
conceptual aspects of programming in the first place to later
work on the notational aspects associated with a specific
programming language [15]. In addition, in the case of
programming, several authors have pointed out that practical
situations, in which students actively build knowledge, are the
most appropriate [16], [17].

Taking these recommendations into account, the authors
decided to tackle the contents from two different perspectives:
first from a conceptual perspective and, later, from a
notational one. The goal of the conceptual perspective is that
the students understand and be able to apply the contents
addressed in problem solving, while the notational perspective
considers the syntactic and semantic aspects of a specific
programming language or formalism such as flow charts. The
authors determined to apply Kolb’s learning cycle [7] in each
of the perspectives, which has proven to be very useful for
learning programming [18]. Kolb proposes that for learning to
be effective, students should perform a cycle of the four stages
shown in Fig. 1. First, students must perform a specific
activity. Afterwards, they must reflect on the experience, in
order to be able to conceptualize the theory that allows
explaining performed observations. Finally, they must apply
the theory in new situations.

Experiencia concreta
HACER/EXPERIMENTAR

Experiencia reflexiva
OBSERVAR/REFLEXIONAR

Conceptualización abstracta
PENSAR/CONCEPTUALIZAR

Experimentación activa
PROBAR/APLICAR

Fig. 1 Kolb’s learning cycle

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

3

Examples of activities carried out in the implementation of the
cycle are presented next. These activities are described in
more detail in [19].

1) Concrete experience: The main objective of this stage is
to actively involve students in specific activities related to the
topics addressed. For example, to work on the concepts of
classes, attributes and methods, students were given a project
in which they could create instances of geometric figures and
interact with objects generated by invoking their methods.

2) Reflective experience: Once a concrete experience has
been performed it is necessary for students to reflect on this
experience. With this aim, the activities designed for the
concrete experience stage have been complemented with a
series of questions that induce the students to reflect on the
concepts addressed. For the example in the previous step,
students had to fill in a table reflecting both the message
passing and the status of the objects after executing the
methods. Likewise, the teachers encouraged group discussion
on what was observed in the previous stage.

3) Abstract conceptualization: At this stage, the contents
addressed are treated in a formal way under the supervision of
the teaching staff. To this end, the teaching staff provided
examples related to the topics covered in the experiences
carried out in the previous two stages. These examples
allowed the students to assimilate the topics covered.

4) Active experimentation: In the last stage, students should
put into practice and consolidate the topics discussed in the
previous stages. To this end, they were asked to make
drawings by combining the geometric figures of the previous
steps.

This learning cycle has been applied for each of the topics

in the selected modules for the experiences carried out so far
by the authors [10].

B. Supporting Tools Used

In the experiments carried out so far, educational robots and
visual programming environments have been used. In order to
properly select the tools, a study of the existing tools was
carried out to determine the ones that best fit the
characteristics of each module, facilitate the learning of the
students and minimize the problems identified in the
bibliography.

These tools were selected considering both published
comparisons [4], [20] and the support they provided for
conceptual and notational perspectives. It was also considered
the programming language to which they were oriented, since
in the definition of the Bachelor it was determined that the
programming language to be used in the different
programming modules would be Java.

In the case of educational robots, it was decided to use
Lego Mindstorms robots. The main reasons for this selection
were that they allowed the use of different programming
environments and the familiarity that many students have with
Lego products, with which many of them have played in their
childhood.

In the case of visual programming environments, different
tools were selected in each module. In Introduction to
Programming, the objective was to learn the main aspects of
the design and implementation of simple programs, so
Scratch (https://scratch.mit.edu/) was chosen. This tool was
designed to inculcate programming notions to a younger
audience, but has also been successfully used in higher
educational institutions [21]. On the other hand, in Modular
and Object Oriented Programming module, the objective was
to work with the main Object Orientation concepts. In this
case, BlueJ was chosen for the first half of the module and
Greenfoot for the second half. These two tools have proved
their worth for teaching in this area [20]. In addition, they
support the notational perspective, since they have been
developed for the learning of Object Oriented Programming in
Java.

C. Lessons Learned in Previous Experiences

Previously carried out experiences have allowed identifying
a set of aspects to consider when introducing similar
experiences in programming modules:

1) Characteristics of the students: Although obtained
results have been generally positive, it has been detected that
there are differences in the results, attending to gender and
students’ previous programming knowledge.

Differences in the results according to the gender of the
students present the need to continue analyzing the results to
check, for instance, whether the problem is in selected
development environments or in the subjects of carried out
exercises. Extending this part of the study would allow to
adequately adapt the positive results obtained in the presented
experiences.

Another latent problem that must be properly dealt with is
the previous knowledge difference that students have. In the
responses to the surveys, there have been marked differences
regarding the motivation and the acceptance of used tools
attending to the previous knowledge of the students.

One possibility to address this problem may be the use of
different programming environments for different categories
of students. In addition, the programming environment can be
changed as the students’ progress, since there is no adequate
environment for every situation [4].

2) Support Tool Selection: Certain difficulties inherent to
the use of physical devices have been detected. However, they
should not be automatically discarded because a greater
motivation has been observed with this than with non-physical
environments. This raises the need for exercises to be
designed with such contextual factors in mind [22].

In addition, visual environments allow easily abstracting
from specific details and focusing on the implementation of
the application logic. Moreover, since there is no environment
good for every situation, combinations of different tools
should be analyzed.

3) Integration in the Module: To achieve greater acceptance
by students, it is important to properly integrate the
environments into the module development. Therefore,

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

4

teachers should consider the activities carried out using these
environments in the assessment process. In addition, teachers
should relate selected environments to other modules of the
programming branch, as well as to the professional activity, so
that students have a global perspective and appreciate the
utility of used tools.

4) Methodological Aspects: Despite not having achieved a
statistically significant improvement in qualifications, the
positive effect of the established pedagogical framework is
obvious in aspects such as the increase in the attendance rate.
In order to work with a pedagogical framework such as the
one presented in this article and to correctly apply Kolb’s
cycle, it is fundamental to ask questions after doing the
exercises, so that students can observe, reflect and find
answers to the problems raised. Visual development
environments facilitate the accomplishment of these tasks and
give adequate support to methodological aspects.

IV. FORMATIVE FEEDBACK IN INTRODUCTORY PROGRAMMING

MODULES

In the lessons learned, positive and negative aspects have
been identified both with educational robots and with visual
educational environments. Physical robots have had a greater
positive influence on motivation, but there were problems
related to the physical environment in which they were used
and limitations for their use outside of the classroom. Visual
environments have not had such a positive influence on
student motivation, but they do not suffer from the other
problems detected in the experience with physical robots.
With these aspects in mind, it seems that the integration of
both types of tools can be useful in introductory programming
modules. In order to confirm this hypothesis, the authors
performed a pilot study proposing a scenario based on virtual
worlds that had a good acceptance by the students [14].
Taking these preliminary results and the lessons learned from
previous experiences into account, this paper presents an
integrated solution that combines the advantages of visual
environments and educational robots enriched with formative
feedback and explicit verification. To this end, validations
have also been incorporated by unit tests.

Combining automatic validation with simulations and
executions in real environments of educational robots allows
providing a rich and different feedback to students. In
addition, the use of virtual environments that show
simulations alleviates the need to use physical robots,
allowing the students to perform tasks in this environment
outside the school hours in more motivating scenarios.

The feedback integration model (see Fig. 2) involves 5
phases, which are described next.

1. Desarrollo
del Programa

2. Ejecución
en Entorno
Simulado

4. Ejecución
en Entorno

Real

3. Verificación
Automática

5. Validación

Editor Observación Feedback OK KO

Fig. 2 Feedback integration model

A. Development

It is envisaged that students use a development environment
(e.g., programming environments by blocks of instructions).
This environment should support the previously identified two
cycles (conceptual and notational).

The tools or combinations of tools used in this phase must
support both block-based editing and direct editing using a
particular programming language. This would allow those
students with prior knowledge to tackle only the notational
perspective.

Again, as it has been done in previous experiences, the
tools will be used first from a conceptual perspective and then
from a notational one.

For the application to be satisfactory, it is vital to
adequately define the types of exercises proposed to students.
In this aspect, generating a list of exercises adaptable to the
subject preferences of students is proposed. Thiswill allow
responding, among other aspects, to the differences detected
on a gender basis.

B. Execution in Simulated Environment

The integrated environment will show on the screen a
simulation of the behavior of robots running the program
developed in the first phase. The tool used should allow for
pauses, as well as for observing and analyzing the state of the
stage and of the robots within it.

Simulation provides feedback with implicit verification
information that allows early identification of errors and
incorrect solutions, allowing for more efficient use of time. In
addition, it makes the observation and reflection of what has
happened easier, supporting the corresponding phases of
Kolb’s learning cycle.

C. Automatic Verification

This phase is mainly focused on the verification of the
correction of the developed program by means of unit tests.
These unit tests make it possible to bound errors (e.g. by class
or method) and to carry out a more in-depth study of the
program, in which situations that students have not taken into
account can also be detected. In the previous phase students
already obtained verification information, whereas in this
phase students will obtain feedback with elaboration
infomation. That is, the result of the verification will not be
limited to a simple "accepted/rejected" message, but it will be

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

5

enriched with explanations about possible errors or
malfunction causes. This will guide the students towards
solving the problem.

Both functional checks are carried out in this phase, those
which focus on the correctness of the programs, and those
focusing on the conceptual ones (it is verified that aspects
seen in the module are correctly applied).

For example, in the case of MOOP, feedback related to
conceptual verifications could indicate whether the declaration
of classes or the initializations of attributes are correct in the
constructor. Examples of feedback offered in these cases
could be: "class X should inherit from Y. Possible cause: the
correct keyword is not used.", and "attribute A has not been
initialized in the constructor of class C. Possible cause:
definition of a local variable with the same name as the
attribute".

Regarding functional verifications, they might suggest that
the robot should go backwards when it detects that there is an
obstacle in front of it. The feedback provided in this case
could be: "The robot does not go back in front of an obstacle.
Possible Cause: The program does not check that the contact
sensor has been pressed or has not moved far enough back. "

When errors are detected in the automatic verification
phase, students will receive a report that will allow them not
only to correct the mistakes made, but also to help them
interpret the events that have occurred and to contrast what
has been done with what has been learned. The reports
generated in this phase will provide information for the Kolb’s
cycle conceptualization stage.

Providing feedback as a result of verification will allow
carrying out a formative assessment [12] and facilitates the
work of the teachers. Likewise, obtaining a score in the
validation phase will allow a greater integration of the
environment in the evaluation of the module.

D. Execution in Real Environment

In case the automatic verification is satisfactory, the
execution will be performed in a real environment by bringing
the program code in the robot and executing it in a real
physical environment. This phase, similar to what happens in
the execution in a simulated environment, will allow students
to observe and analyze the behavior of robots, in a real
environment. This will, again, support the observation and
reflection phases. In this case, this execution will allow
students to analyze problems that occur in real environments,
such as lighting conditions or surface friction.

The possibility of testing developed programs in a physical
robot can also be an aspect that increases student motivation.

E. Validation

Once the previous aspects are completed, in this last phase
the validation of both functional compliance and conceptual or
design aspects of the program is performed.

For the functional compliance aspect, user acceptance tests
will be performed, which consist of validating that the
program executed in the robot satisfies client's requirements

[23]. During this phase, the interested audience executes the
program in a robot in real scenarios. This phase allows
detecting those errors that could not be detected in the
automatic verification. Provided formative feedback will be
complementary to the one received in the automatic
verification: e.g. the radius of the rotated is too large, the
configuration of the ports is not adequate or the location of
the sensor should be adjusted.

For the conceptual compliance aspects, the teaching staff
will review, in the delivered program, the aspects of design or
principles worked on the module (such as modularization,
reuse and programming styles), in order to enrich the provided
feedback even more.

V. PROPOSAL IMPLEMENTATION AND EVALUATION

This section describes the tools used together with
methodological aspects of the implementation of the proposal
for the incorporation of formative feedback in introductory
programming modules presented in the previous sections. The
results of this experience are also described. In this case, 42
students of the MOOP module at the Faculty of Engineering
of Vitoria-Gasteiz at the UPV/EHU University participated in
the study.

The students of this module show heterogeneity regarding
previous knowledge about Object Oriented Programming. A
percentage of the students already access the Bachelor degree
with some knowledge about this programming paradigm,
while another large percentage lack knowledge of the
fundamentals of programming. The previous programming
modules do not cover the MOOP paradigm, so they cannot
perform a homogenizing work regarding students’ previous
knowledge on this topic.

A. Tools Used

One of the main aspects related to the implementation of
the proposal is a suitable tool selection to adequately develop
all phases of the proposal.

From the results obtained in previous experiences, it was
determined to continue working with Lego Mindstorms
robots, as they had previously obtained very positive results.
On the other hand, given the results of a previous pilot test
[14], it was determined to look for a simulation environment
that would allow Lego Mindstorms robots to be simulated in a
way closer to the physical robot.

After analyzing different options available, it was decided
to use the RobotSim simulation package
(http://www.aplu.ch/home/apluhomex.jsp?site=75). This tool
allows observing the simulated executions of the programs
that will be executed in the physical Lego robots. It also
provides a library of Java classes that allow manipulating the
different components of Lego robots as well as defining
different scenarios. This library can be used in various
development environments such as Eclipse or BlueJ. In this
way, students are allowed to select the tool to use based on
their previous knowledge and preferences, thus responding to
the need to adapt the proposal to the characteristics of the

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

6

students.
On the other hand, to perform the automatic verification

stage, Web-CAT was chosen. This tool can be easily
integrated with the development environments selected for the
previous stages and provide elaborated feedback. This type of
feedback was implemented by defining unit tests using the
JUnit library.

Fig. 3 summarizes the model of feedback integration
together with the tools that have been used for the experience
presented in this article.

B. Methodological Aspects

Next, the way in which the proposed model has been
applied is described. The teaching staff provided students with
a simple program as an example of using the different
components of the Lego robot, to later be used in the project
they had to develop. Following a pre-defined script, the
students made small modifications in the program in the
development phase. In the simulation phase, students
observed the effects of the modifications made. These
observations, which were complemented by the feedback
provided by the validation, can be useful for the
conceptualization phase of the Kolb’s learning cycle.

Then, students transferred their program to the robot and
executed it in the physical environment, while observing how
the robot behaved in the physical environment. Later, students
experienced the functionality offered by the Robotsim library
by developing new programs and taking advantage of the
execution in both the simulated environment and the real
environment to observe and understand the behavior of the
robots and their components.

C. Data Gathering and Analysis of Results

The main objective of this study was to analyze student
satisfaction with the implemented proposal. For this, a survey
was conducted before the final exam and the publishing of

module’s grades.
The survey included questions about data contextualization

and a set of four-point Likert items with categories “totally
disagree”, “disagree”, “agree” and “totally agree”, mainly
related to the feedback provided by Web-CAT and the
simulations (see Table I).

A total of 42 students completed this survey, the results of
which are detailed next. 17% of the members of this group
were women and 24% were retakers.

Regarding the feedback provided by Web-CAT, 85% of the
students indicated that it motivated them to finish the
proposed exercises (question Q1). In addition, 80% of
students indicated that this feedback helped them identifying
and correcting the errors of their programs (Q2).

TABLE I: EXTRACT SURVEY

 Question

Q1 Obtaining feedback with Web-CAT motivates me to finish
proposed exercises

Q2 The feedback provided by Web-CAT has helped me to
correct the errors in my program

Q3 The simulation has helped me to understand the effect of
each instruction

Q4 The simulation has helped me to detect errors in my
program

Q5 The simulation has helped me to correct errors in my
program

Q6 The simulation has increased my motivation in performing
exercises

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

7

Fig. 3 Tools used for implementing the proposal

In relation to the simulations, 88% of the students indicated

that simulations have helped them understanding the effect of
each programmed instruction (Q3). In addition, 90% of
students indicated that using the simulations has helped them
detecting errors in their programs (Q4) and 88% think that it
has also helped them correcting them (Q5). Finally, 88% of
students indicate that their motivation has increased with the
use of simulations (Q6).

The results of the previous experiences carried out by the
authors showed notable differences attending to the gender,
obtaining more negative responses by the women [19]. This
study has also considered the gender perspective, given that
the small number of women who choose to study computer
science is one of the main concerns in the community [24],
[25]. The results obtained in this experience have been more
positive than those collected in the previous experiences. It
should also be noted that in this experience the answers to the
questions related to the simulations by the women have been
more positive than those of the men. In this case, 100% of
women have indicated that their motivation has increased. The
same applies to error detection and correction, for which
100% of women indicated that the simulations helped them.

The results have also been analyzed considering whether
the students were retakers or not. In this case, the results have
been very similar between retakers and non-retakers, except in
the aspects related to feedback. Only 60% of the retakers
indicated that the feedback provided by Web-CAT (P2)
helped them identifying errors in their programs compared to
87% in the case of non-retakers. Regarding the feedback
provided by the simulations, 80% of the retakers indicated that
it helped them detecting errors, while the percentage rises to
94% among the non-repeaters. These differences may be due
to the retaker students having more experience compared to
non-retakers, which makes it easier to detect and correct
habitual errors.

Although responses have been generally positive, those
related to the simulations are slightly higher than those related
to Web-CAT. This can be motivated by the type of scenarios
used, which made it difficult for all developed unit tests to
provide effective or adequate feedback for students.

In addition, the results have been analyzed to check whether
the innovation presented in this work had a positive effect on
learning or not. Kolling stated that using different
methodologies with two groups of students when one
produces better results than the other is not appropriate [26].
Therefore, in this case, a between-subjects study has been
conducted in which students are not divided into two different
groups, but rather the students' results are compared across
different academic years. The results of the last academic year
in which the new methodology was applied has been
compared to the results of the two academic years prior to this
study. The results of the last year have greatly improved in all
aspects the results of previous years. On the one hand, the

percentage of student passing this last academic year has
increased considerably, standing at 58.82% compared to a
range between 21% and 48% in previous ones. On the other
hand, the number of first-time attendees has risen to a 65.88%,
compared to the 38% and 62% in previous academic years.
The success rate of the module, measured by means of the
percentage of students that pass the module in relation to
presented ones, has been increased from a percentages
between 35% and 70% up to a 80%. The yield rate, defined as
the percentage of passing students in relation to enrolled ones,
has reached the 53%, compared to values in the range of 14%
to 47%. These data show that results achieved in this module
have been the best since the module began to be taught in the
new curriculum 7 years ago.

VI. CONCLUSIONS AND FUTURE WORK

Adequate formative feedback is vital for students to
improve their learning. This becomes even more relevant in
subjects such as those related to introductory programming
that present different teaching problems.

In this paper, a proposal for incorporating formative
feedback in introductory programming modules has been
presented. To this end, Kolb’s learning cycle (successfully
used in previous experiences), simulation environments,
physical robots and unit tests have been combined.

The analysis of the results of previous experiences
suggested that an adequate combination of the use of visual
environments together with physical robots could improve
students' motivation in MOOP [14]. However, the high degree
of heterogeneity in the prior knowledge of first-year students
affects the application of improvements. Therefore, the use of
this type of tools requires adjusting the type of learning
environments used to the previous knowledge of the students,
as well as adequately managing the amount of environments
to be used in a subject or semester, especially if they are new
to students.

A first evaluation of the proposal has been made using
BlueJ, the Eclipse development environment, the RobotSim
package for simulations, WEB-CAT for unit testing and Lego
Mindstorms robot for executions on physical environment.

To evaluate performed implementation, the responses to a
survey and the academic results of the students were analyzed.
The results of the evaluation have been very positive, so the
implementation of the proposal is promising. In addition, it
should be noted that the responses given by women have been
more positive than those of men. This factor is important to
keep the interest of women entering computer science
bachelors [24].

Given the positive results of the experience, we are
currently implementing it in the Introduction to Programming
module. In addition, it will continue to be used in MOOP in
order to analyze the effects on motivation and satisfaction, as
well as in the academic results. The integration of new tools to
enrich the feedback provided in the activities [27] will also

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

8

continue to be analyzed, with the aim of making it easier to be
implemented and evaluated by the teaching staff [9].

ACKNOWLEDGEMENTS

This work has been partially funded by the Basque Country
Government (IT980-16) and the University of the Basque
Country (GIU16/15 and EHUA16/22).

REFERENCES
[1] F. J. García-Peñalvo, A. M. Rees, J. Hughes, I. Jormanainen, T.

Toivonen, and J. Vermeersch, «A survey of resources for introducing
coding into schools», 2016, pp. 19-26.

[2] A. Gomes and A. J. Mendes, «Learning to program-difficulties and
solutions», en International Conference on Engineering Education–
ICEE, Coimbra, Portugal, 2007, vol. 2007.

[3] D. C. Leonard, Learning theories, A to Z. Westport, Conn.: Oryx
Press, 2002.

[4] A. J. Hirst, J. Johnson, M. Petre, B. A. Price, and M. Richards, «What
is the best programming environment/language for teaching robotics
using Lego Mindstorms?», Artif. Life Robot., vol. 7, n.o 3, pp. 124-
131, sep. 2003.

[5] A. Wilson and D. C. Moffat, «Evaluating Scratch to introduce younger
schoolchildren to programming», Proc. 22nd Annu. Psychol.
Program. Interest Group Univ. Carlos III Madr. Leganés Spain, 2010.

[6] D. O’Sullivan and T. Igoe, Physical Computing: Sensing and
Controlling the Physical World with Computers. Boston: Thomson,
2004.

[7] D. A. Kolb, Experiential learning: experience as the source of
learning and development. Prentice-Hall, 1984.

[8] V. J. Shute, «Focus on Formative Feedback», Rev. Educ. Res., vol. 78,
n.o 1, pp. 153-189, mar. 2008.

[9] R. Rashkovits and I. Lavy, «FACT: A Formative Assessment Criteria
Tool for the Assessment of Students’ Programming Tasks», Lect.
Notes Eng. Comput. Sci., vol. 2204, n.o 1, pp. 384-389, jul. 2013.

[10] F. I. Anfurrutia, A. Álvarez, M. Larrañaga, and J. M. López-Gil,
«Incorporating educational robots and visual programming
environments in introductory programming modules», en Int.
Symposium on Computers in Education (SIIE), 2016, pp. 1-4.

[11] M. Taras, «Assessment – Summative And Formative – Some
Theoretical Reflections», Br. J. Educ. Stud., vol. 53, n.o 4, pp. 466-
478, dic. 2005.

[12] S. H. Edwards, «Using software testing to move students from trial-
and-error to reflection-in-action», ACM SIGCSE Bull., vol. 36, n.o 1,
pp. 26–30, 2004.

[13] P. Black and D. Wiliam, «Assessment and Classroom Learning»,
Assess. Educ. Princ. Policy Pract., vol. 5, n.o 1, pp. 7-74, mar. 1998.

[14] F. I. Anfurrutia, A. Álvarez, M. Larrañaga, and J.-M. López-Gil,
«Lecciones aprendidas de experiencias con robots educativos and
entornos de programación visuales en asignaturas de programación»,
IE Comun., vol 25, pp. 9-22, 2017.

[15] H. Zhu and M. Zhou, «Methodology First and Language Second: A
Way to Teach Object-oriented Programming», en Companion of the
18th Annual ACM SIGPLAN Conference on Object-oriented
Programming, Systems, Languages, and Applications, New York, NY,
USA, 2003, pp. 140–147.

[16] E. Lahtinen, K. Ala-Mutka, and H.-M. Järvinen, «A study of the
difficulties of novice programmers», ACM SIGCSE Bull., vol. 37, n.o
3, pp. 14–18, 2005.

[17] C. Wang, L. Dong, C. Li, W. Zhang, and J. He, «The Reform of
Programming Teaching Based on Constructivism», en Advances in
Electric and Electronics, W. Hu, Ed. Springer Berlin Heidelberg,
2012, pp. 425-431.

[18] L. Yan, «Teaching Object-Oriented Programming with Games», en
Sixth International Conference on Information Technology: New
Generations, 2009. ITNG ’09, 2009, pp. 969-974.

[19] F. I. Anfurrutia, A. Álvarez, M. Larrañaga, and J.-M. López-Gil,
«Entornos de Programación Visual para Programación Orientada a
Objetos: Aceptación and Efectos en la Motivación de los

Estudiantes», Rev. Iberoam. Tecnol. Aprendiz., vol. 5, pp. 11-18,
2016.

[20] S. Georgantaki and S. Retalis, «Using educational tools for teaching
object oriented design and programming», J. Inf. Technol. Impact, vol.
7, n.o 2, pp. 111–130, 2007.

[21] J. Maloney, M. Resnick, N. Rusk, B. Silverman, and E. Eastmond,
«The Scratch Programming Language and Environment», ACM Trans.
Comput. Educ., vol. 10, n.o 4, pp. 1-15, nov. 2010.

[22] A. Álvarez and M. Larrañaga, «Experiences Incorporating Lego
Mindstorms Robots in the Basic Programming Syllabus: Lessons
Learned», J. Intell. Robot. Syst., vol. 81, n.o 1, pp. 117-129. 2016.

[23] R. Rice, «What is User Acceptance Testing?» [En línea]. Disponible
en: http://www.riceconsulting.com/articles/what-is-UAT.htm.
[Accedido: 24-abr-2017].

[24] M. A. Rubio, R. Romero-Zaliz, C. Mañoso, and A. P. de Madrid,
«Closing the gender gap in an introductory programming module»,
Comput. Educ., vol. 82, pp. 409-420, mar. 2015.

[25] J. Robertson, «The influence of a game-making project on male and
female learners’ attitudes to computing», Comput. Sci. Educ., vol. 23,
n.o 1, pp. 58-83, mar. 2013.

[26] M. Kölling, «Using BlueJ to introduce programming», en Reflections
on the Teaching of Programming, Springer, 2008, pp. 98–115.

[27] O. Shaikh, «Real-time feedback for students using continuous
integration tools ꞏ GitHub». [En línea]. Disponible en:
https://github.com/blog/2324-real-time-feedback-for-students-using-
continuous-integration-tools. [Accedido: 28-jun-2017].

