
Kernel Density Estimation in Accelerators

Implementation and Performance Evaluation

Unai Lopez-Novoa · Alexander
Mendiburu · Jose Miguel-Alonso

Received: date / Accepted: date

Abstract Kernel Density Estimation (KDE) is a popular technique used to
estimate the probability density function of a random variable. KDE is con-
sidered a fundamental data smoothing algorithm, and it is a common building
block in many scientific applications. In a previous work we presented S-KDE,
an efficient algorithmic approach to compute KDE that outperformed other
state-of-the-art implementations, providing accurate results in much reduced
execution times. Its parallel implementation targeted multi and many-core
processors. In this work we present an OpenCL implementation of S-KDE,
targeting modern accelerators in a portable way. We also analyze the perfor-
mance of this implementation on three accelerators from different manufac-
turers, to find out to what extent our code exploits the performance offered
by those devices.

Keywords Kernel Density Estimation · Performance Analysis · OpenCL ·
Many-core Processors · GPGPU

1 Introduction

Kernel Density Estimation (KDE) is a popular statistical technique to es-
timate the probability density function of a random variable with unknown
characteristics [23]. It is considered a fundamental data smoothing problem

This work has been partially supported by the Saiotek and Research Groups 2013-2018 (IT-
609-13) programs (Basque Government), TIN2013-41272P (Ministry of Science and Tech-
nology), COMBIOMED-RD07/0067/0003 network in computational biomedicine (Carlos III
Health Institute) and by the NICaiA Project PIRSES-GA-2009-247619 (European Commis-
sion).

U. Lopez-Novoa, A. Mendiburu, J. Miguel-Alonso
Intelligent Systems Group, Department of Computer Architecture and Technology, Univer-
sity of the Basque Country UPV/EHU
P. Manuel Lardizabal 1, 20018 San Sebastian, Gipuzkoa, Spain
E-mail: {unai.lopez,alexander.mendiburu,j.miguel}@ehu.es

This version of the article has been accepted for publication, after peer review (when applicable) and is subject to Springer
Nature’s AM terms of use, but is not the Version of Record and does not reflect post-acceptance improvements, or any
corrections. The Version of Record is available online at: https://doi.org/10.1007/s11227-015-1577-7 [J Supercomput 72,
545–566 (2016)]

https://doi.org/10.1007/s11227-015-1577-7

2 Unai Lopez-Novoa et al.

in statistics and an alternative to other density estimation techniques such as
the histogram, that relies on a simple binning. KDE is used in a wide vari-
ety of research areas, such as climatology for environmental model evaluation
[16], computer vision for image segmentation and tracking [5] or biometry to
estimate the effectiveness of a medical treatment[26].

Some of the problems that use KDE codes as building block usually require
processing large datasets, which translates into long execution times. The liter-
ature shows different approaches to computing KDE. Given the complexity of
the algorithm, a trade-off must be found between accuracy and execution time
[22]. In a previous work, we introduced a novel algorithm to compute KDE
whose complexity is lower than that of state-of-the-art KDE implementations,
providing accurate results with shorter execution times. We called this algo-
rithm S-KDE [15]. As modern scientific codes run in multi-core processors, we
implemented and tested an OpenMP implementation of S-KDE that exploited
the parallel capabilities of current CPUs, and many-core co-processors such as
the Intel Xeon Phi [7]. The combined effect of the novel algorithmic approach
and the exploitation of parallel processing resulted in impressive reductions in
execution times.

We cannot ignore, though, that many of the computing platforms used
nowadays, and those expected to be used in a near future, will integrate other
classes of accelerator devices, not only the Xeon Phi [18]. The spectrum of
devices is wide and includes platforms such as Graphics Processing Units
(GPUs), FPGAs and other classes of many-cores. In order to make S-KDE
available to a larger community, we decided to produce a new version of the
code targeting the wider possible set of accelerators, being OpenCL the most
logical choice of programming environment.

Two are the main contributions of this paper. First, the description of
the porting of S-KDE to OpenCL. Redesigning a code for accelerators usually
requires major changes due to the massive data parallel processing model they
are aimed for [11], and not every application fits into it. Second, we evaluate the
performance of our code when running it in three state-of-the-art accelerators:
an AMD GPU, a NVIDIA GPU and an Intel Xeon Phi co-processor. We rely
on some popular performance models and benchmark suites to characterize
the devices, and provide some insights about how well our code exploits the
performance achievable from each accelerator.

The remainder of this paper is organized as follows. We provide an overview
of the state-of-the-art accelerator devices in Section 2, and describe briefly the
fundamentals of our S-KDE approach in Section 3. We present the OpenCL
implementation of KDE in Section 4, and conduct a performance analysis over
it in Section 5. Finally, we summarize conclusions and future lines of work in
Section 6.

Kernel Density Estimation in Accelerators 3

2 Accelerator devices

Current supercomputers and data processing facilities are being built around
hybrid compute nodes that include accelerator devices. The current landscape
of devices includes reconfigurable circuits (e.g. FPGAs), discrete co-processors
(e.g GPUs), hybrid chips (e.g. AMD HSA systems) or low power consumption
systems (e.g. ARM or Intel Atom based systems)[14]. In this work we are going
to focus on the most popular classes of accelerators, GPUs and Intel’s Xeon
Phi, due to their wide presence in HPC systems and for the extensive body of
literature and ecosystem of tools around them.

GPUs are hardware devices designed to make efficient image processing.
They are composed of hundreds of SIMD cores, capable of handling thou-
sands of active threads, with lightweight context switching [11]. Since their
adoption as general purpose coprocessors (coining the term GPGPU, from
general-purpose processing on GPUs), they have been enhanced with features
such as dedicated double-precision units or large cache hierarchies that make
them ready to run efficiently a wide variety of HPC workloads. GPUs can be
found as discrete coprocessors, connected to a host processor through PCI-
Express, or integrated in the same die with other type of processing cores, as
in the AMD APU architectures. In this work we will use two different discrete
GPUs connected through PCI-Express.

The Xeon Phi is a many-core processor presented by Intel in 2012. It holds
up to 61 x86 cores, 16 GB of dedicated memory and it is connected to a host
system through PCI-Express. Compared to the cores in Intel multi-core CPUs,
Xeon Phi cores make in-order processing and hold several differences in the
instruction set, such as using AVX-512 for vector computations. Current Xeon
Phi devices present a theoretical peak performance of 1 TFLOP/s in double
precision, and support a wide set of development frameworks, such as MPI,
OpenMP, OpenCL or Cilk [7].

3 Kernel Density Estimation

KDE has been applied since the 80’s as a density estimation technique in dif-
ferent environments [22]. It creates smooth density estimations, in contrast
with other techniques, such as the histogram. Intuitively, given an evaluation
landscape and a dataset of samples, KDE places in the landscape a “bump”
around each sample, aggregating the effect of those bumps to create the esti-
mated Probability Density Function (PDF). An example for a one-dimensional
case is depicted in Figure 1, where a density estimate is created for a dataset
with three samples. A kernel (a red “bump”) is placed over each sample, and
then the influence of all of them is summed creating the black thick line, which
is the estimated PDF [23].

The resulting density estimation is continuous, but most KDE implemen-
tations provide it as a set of discrete values. The user defines the boundaries
of the landscape and the separation between the points where the PDF will

4 Unai Lopez-Novoa et al.

−20 0 20 40 60 80

0.
0

0.
1

0.
2

0.
3

0.
4

X

D
en

si
ty

Fig. 1 Example of KDE for 1D data

be evaluated (an array of per-dimension steps). Therefore, the output is actu-
ally a (discrete) evaluation grid, an array of evaluation points. In the example
shown in Figure 1, the 1D evaluation space spans from −20 to 80, and the
evaluation step is 20. Thus, the estimated function will be represented as a
vector containing the densities in the evaluation points −20, 0, 20, 40, 60 and
80.

The most common way to compute KDE is to traverse every point in the
evaluation grid, and compute and add, for each of them, the density influenced
by each and every sample. This approach is completely parallelizable using a
data parallel approach, but in many cases implies a vast number of useless
computations. This is due to the fact that a sample affects only a portion
of the evaluation space, a set of points around its position. The size of this
influence area depends on the kernel of choice (the shape of the “bump”) and
other parameters. Thus, a more efficient approach is to define the influence area
of a sample as a set of evaluation points, and then traverse just the evaluation
points inside that area. The first approach has an O(kdmn) computational
complexity, being kd a dimensionality constant, m the number of evaluation
points (the size of the evaluation grid), and n the number of samples. The
second approach has an O(kdnp) complexity, where kd is a dimensionality
constant, n the number of samples and p the number of evaluation points in
the influence area of a sample. We must take into account that usually p is
much smaller than m. In this work we will implement the second approach. We
call it S-KDE (from sample-wise KDE), and include some additional features
to further avoid unneeded computations.

The KDE literature includes different proposals for kernel functions. De-
pending on the chosen one, the technique to confine the influence area of a
sample will be different. In this work we use an Epanechnikov kernel and a
technique based on the eigenvalues of the covariance matrix of the dataset
to calculate a rectangular shaped box that delimits the influence area of a
sample [6]. We will refer to this rectangle as the bounding box of a sample. In
addition, we apply a technique called Chop & Crop that minimizes the size
of the bounding box by removing evaluation points not belonging to the in-
fluence area of the kernel in spaces of dimensionality three or higher. It works

Kernel Density Estimation in Accelerators 5

by first reducing the d-dimensional bounding box to a set of 2D slices, and
then cropping the slice to the minimum squared box. This two-step process is
represented in Figures 2 and 3 respectively. The interested reader is referred to
[15] for a detailed explanation of the S-KDE algorithm and its implementation
for multi-core CPUs.

Fig. 2 Chopping a 3D bounding box into 2D
slices

Fig. 3 Cropping a 2D slice to obtain a
minimum-size bounding rectangle

We can provide some example figures to illustrate the efficiency of S-KDE.
We will assume a 3D dataset with 500k samples, and an evaluation space (grid)
with 194.81 million evaluation points. Using the traditional KDE approach
that traverses every evaluation point of the grid would lead to 9.74 ∗ 1013

sample-evaluation point operations. In contrast, a rectangular 3D bounding
box around each sample in the mentioned scenario contains on average 102461
points, and using the sample-wise KDE approach would require 5.12 ∗ 1010

computations. On top of this, if we apply the Chop & Crop technique, the
number of evaluation points per bounding box is reduced to 53511 on average,
and the resulting total number of computations is 2.67∗1010. Thus, S-KDE im-
proves KDE efficiency by several orders of magnitude. We can go even further,
exploiting massively parallel accelerators to run S-KDE.

4 An OpenCL KDE implementation for accelerators

In this section we describe the process followed to adapt S-KDE to acceler-
ators. Our aim has been to create an algorithm fitting into the data-parallel
computation model that most accelerators use, together with an implemen-
tation portable across the spectrum of existing hardware devices. Currently,
the only two frameworks that provide portability in accelerators are Microsoft
DirectCompute and OpenCL, a standard proposed by the Khronos Group [9].
Given that the former is only available for Microsoft Windows platforms, we
chose OpenCL.

6 Unai Lopez-Novoa et al.

4.1 OpenCL in a nutshell

An OpenCL application consists of a host part and a device part, which is
called a kernel (not to be confused with the kernel functions used for density
estimation). The host part orchestrates data movements from host to device
and vice-versa, and manages the execution of kernels. The device is able to run
simultaneously multiple threads or work-items, all of them running the same
kernel code. Work-items are arranged in groups called work-groups, which may
have a 1D, 2D or 3D structure; the developer chooses the shape and size of
the work-groups.

An OpenCL platform is a collection of devices managed by a single host.
OpenCL defines a device model in which the device is composed of a set of
processing elements, arranged in compute units. At run time, the OpenCL
framework assigns each work-group to a compute unit for its execution. Inter-
nally, work-items are mapped to processing elements.

Regarding memory, there is host memory and per-device global memory.
The latter is accessible by all threads running in the device. Additionally, there
is local memory shared by all treads in the work-group. Finally, each thread
has its own, small, private memory and registers. The host code is in charge
of moving data from host to device memory (and vice-versa), and threads can
move data from the device’s global memory to other memory zones.

All these abstractions enable the OpenCL framework to launch any data-
parallel application (kernel) over any device, given a mapping between the
device’s characteristics and the OpenCL model, and also given that hardware
requirements are fulfilled (for example, a certain amount of memory per thread
is necessary, and while some devices can provide it, others could be more
limited). Further information about OpenCL can be found in [17].

4.2 Implementing S-KDE with OpenCL

The starting point for the OpenCL code is the serial implementation of S-KDE.
The steps that this code follows have been depicted in Figure 4. Note that
steps 4 and 6 have been surrounded with parentheses, as they are operations
required in the OpenCL code but not in the serial one.

Step 1 is the initialization, where the evaluation grid is set to zeros and
the size of the bounding box is computed; this is a “generic” bounding box,
that must be customized per sample, in order to deal with the discrete and
bounded nature of the evaluation space. Then, the code traverses the samples
of the dataset in an iterative way.

For each sample, the bounding box is first fitted to the grid, and then the
chopping is applied (Step 2). This way, no matter the dimensionality of the
problem, it is reduced to a computation of a series of bi-dimensional slices.
Then, each slice of the bounding box is processed.

For each slice, cropping is applied to reduce it to its minimum size (Step 3).
Once the size and coordinates of the slice are defined, its evaluation points are

Kernel Density Estimation in Accelerators 7

Fit bounding box

and chop into slices

Crop: Fit the optimal

bounding box per slice

PrefixSum the number of

evaluation points per slice

Compute the densities

 Transfer calculated densities

to host via PCI-Express

 Consolidate densities into

final PDF structure

C
o

m
p

u
ta

ti
o

n

S
ta

g
e

C
o

n
s
o

lid
a

ti
o

n

S
ta

g
e

Initialization1

(

(

)

)

4

2

3

5

6

7

...8 10 11 12 12

...0 8 18 29 41

T
ra

n
s
fe

r

S
ta

g
e

Fig. 4 Workflow of KDE implementation

traversed. For each point within the slice, its distance to the sample and the
density that the sample influences on the point are computed (Step 5). Finally,
all partial densities affecting a point are accumulated in the corresponding
position of the evaluation grid (Step 7).

The described serial algorithm presents clear opportunities for paralleliza-
tion, but it also poses some challenges for its adaption to the accelerator model
due to its limited data reuse and the very low compute to memory access ratio.
That being said, a major rework has been done to adapt it to the OpenCL
model, which has required some algorithm re-structuring as well as the inclu-
sion of additional support operations.

The main opportunity for adapting the algorithm to a data-parallel model
comes from the fact that the bounding boxes around each of the samples can
be processed simultaneously, without any kind of dependency. Therefore, we
can have as many parallel threads as samples in the dataset. However, all
these bounding boxes must be aggregated into a common landscape matrix

8 Unai Lopez-Novoa et al.

in which the final PDF grid is computed, and as influence areas of samples
(and, therefore, bounding boxes) may overlap, the accumulation step must
be somehow synchronized to avoid memory write collisions. The way we have
addressed this issue is explained later.

The OpenCL code has been structured as depicted in Figure 4. It includes
new steps, as well as modifications to some of those described for the serial
code.

1. Initialization: In a first step, the entire sample dataset is copied into the
accelerator, along with the required support structures. We assume that
all the dataset fits in the memory of the accelerator (note that this is not
the evaluation grid). In this step we also compute the size of the generic
bounding box. This is host code (executed in the CPU).

2. Box fit and Chop: For every sample, its bounding box is fitted to the grid
and chopping is applied. At this point, the problem has been reduced to a
collection of 2D slices. This is implemented as an OpenCL kernel (executed
in the accelerator in a data parallel way).

3. Crop: Cropping is applied to reduce the number of evaluation points in
each slice. Additional information about each slice is computed, such as its
coordinates in the evaluation space and the number of evaluation points it
contains. This is an OpenCL kernel.

4. PrefixSum: A PrefixSum is applied to the vector that contains the number
of evaluation points per slice. This is a support computation required by
the next kernel for its threads to make ordered stores. We have used the
OpenCL implementation of PrefixSum available in the SHOC benchmark
suite [4].

5. Density Computation: Each thread calculates the influence created by a
sample on an evaluation point of a given slice. The resulting densities are
stored in an auxiliary vector and not consolidated into the global PDF
structure. This is an OpenCL kernel.

6. Densities Transfer: The resulting vector of partial densities is transferred
through PCI-Express from the accelerator to host memory. This is managed
by the host.

7. Consolidation: The host reads the vector of partial densities and accumu-
lates them into the evaluation space. This is host code.

As explained before, a critical step of S-KDE is the consolidation of par-
tial densities into the global landscape (Step 7). If done in parallel without
the proper synchronization mechanisms, results can be invalid, because the
influence areas of samples overlap and, thus, threads may incur in memory
write collisions. To avoid this issue, the current OpenCL implementation of
S-KDE leaves this task to be performed by the host CPU in a serial way. This
is pragmatic because the host has the whole output structure in main memory,
and the serialized access guarantees the absence of memory write collisions.

We tried alternative approaches to run the consolidation phase in the ac-
celerator, but they required either some sorting of partial results (an expensive
operation that resulted in even longer execution times) or the use of atomic

Kernel Density Estimation in Accelerators 9

adds (an operation not supported in OpenCL for double precision floats [9],
although some devices have specific extensions for it). Therefore, we have kept
the consolidation part in the CPU.

As a side note, the presented workflow is intended for KDE problems of
dimensionality three or higher. However, our implementation targets as well
two dimensional spaces using the same workflow but without applying the
Chop & Crop technique – because it is not needed. In this case, the workflow
is exactly the same but without the second and third steps.

In terms of the data structures used in the OpenCL code, it should be clear
that the threads running in the accelerator have access to the sample dataset
and to auxiliary structures containing partial, non-consolidated densities. The
final density matrix is managed exclusively by the CPU. The main program
is iterative after the initialization step. Each iteration consists of processing
a “chunk” of the problem, which is nothing more than a subset of the sam-
ples. This is done in a data-parallel fashion, using a chain of OpenCL kernels.
The per-chunk intermediate results are stored in the accelerator and, later,
transferred to the CPU for consolidation.

The iterative nature of the code has two main advantages. The first one is
the ability to deal with accelerators with different memory sizes, that in many
cases are not capable of holding the complete output matrix. This makes our
code limited by the RAM managed by the CPU, but not by the device’s mem-
ory, provided that the selected chunk size uses intermediate data structures
that fit into the device. The second advantage is that it opens the possibil-
ity of working in a pipelined fashion: while the device computes a chunk, the
CPU can be consolidating the results of the previous one. We will explore this
possibility later in Section 5.3.

An important parameter of our program is the chunk size, or number of
samples to process in each iteration of the algorithm. This size must be de-
fined in such a way that the intermediate results from an iteration fit into
a data object in the memory of the device, before being transfered to the
CPU. Therefore, the chunk size has to consider characteristics of the device
(maximum allocatable size) and size (number of points) of each bounding box
around a sample. Note that the maximum allocatable size can be smaller than
the device’s global RAM, and that some space may be already allocated to
other required data structures. The chunk size is rounded down to the closest
power of two, to better match the work-group sizes managed by the devices.

For example, in a 3D dataset with 500k samples and an evaluation space
with 194 million points, each per-sample bounding box could have up to 106609
points or 832.8 kB; this is problem-dependent, and computed at the initial-
ization phase. In a device with 256 MB of maximum object size, our heuristic
would assign a chunk size of 256 samples.

10 Unai Lopez-Novoa et al.

5 Performance analysis

This section presents a performance analysis of the KDE implementation de-
scribed above on three different accelerators. The code was designed for porta-
bility, so that it can run, unmodified, in any modern co-processor supporting
OpenCL. We will first present the characteristics of the platforms and datasets
used in the experiments, and then carry out a performance analysis in top-
down manner, i.e. getting first global performance measures and, afterwards,
digging into details.

5.1 Settings used in the experiments

Our experiments have been conducted with three accelerator devices: an AMD
Radeon HD 6950 GPU, a NVIDIA GTX 650 GPU and an Intel Xeon Phi 3120A
Coprocessor, whose main features are summarized in Table 1. In addition, our
code has been limited to the API features of OpenCL v1.1. Even though some
of these devices support OpenCL 1.2 or 2.0, version 1.1 is the most supported
one in currently available processors, including the Xeon Phi, GPUs, FPGAs
and ARM-based systems.

Radeon HD 6950 GTX 650 Xeon Phi 3120A
Architecture Cayman Kepler MIC
Cores 1408 384 57
Core Clock 800 Mhz 1.05 Ghz 1.1 Ghz
Memory 2 GB GDDR5 1 GB GDDR5 6 GB GDDR5
DP Performance1 563 GFLOP/s 67 GFLOP/s 1 TFLOP/s
Max. Allocatable Size 445.5 MB 255.8 MB 1435.2 MB
Host CPU Intel Core i5-2400S Intel Core i7-3820 Intel Core i7-3820
OpenCL SDK AMD APP v2.9.1 CUDA v6.0.37 Intel OpenCL v3.2.1

Table 1 Hardware features of the accelerators used in the experiments

As a reference, we also run in some experiments the serial implementation
S-KDE algorithm (including Chop & Crop) compiled with gcc v4.7.2 and
executed in a Intel Core i7-3820 (3.60 Ghz clock frequency).

As explained in Section 3, the complexity (or problem size) of a KDE exe-
cution depends mainly on the number of samples in the dataset and on the size
of the evaluation space (determined by its boundaries and step size). The latter
will also determine the size of the bounding box that limits the influence area
of a kernel. In this work we have performed several tests varying the size of the
evaluation space, for two different 3D datasets. We have fixed the boundaries
of the evaluation space and modified the step size to increase/decrease the
number of evaluation points, see Table 2. The datasets have been created syn-
thetically, sampling a multivariate normal distribution. The first one contains
500k samples, and the second one contains 1M samples.

1 Theoretical peak performance in double precision, as declared by the manufacturer

Kernel Density Estimation in Accelerators 11

Finally, there is a parameter in every KDE computation that must be taken
into account, and that has not been mentioned in Section 3: the bandwidth
or smoothing parameter. This value modifies the smoothness and size of the
kernel and, therefore, the number of evaluation points inside a bounding box.
An exploration for the choice of the right bandwidth value is out of the scope
of this work, and we have selected it using the heuristics detailed in [23].

Dim X Dim Y Dim Z Total
110 220 322 7792400
110 440 322 15584800
220 440 322 31169600
220 440 805 77924000
220 1100 805 194810000

Table 2 Size of the different evaluation spaces (number of evaluation points in the grid)
used

5.2 Initial assessment

To get an initial assessment of the performance of our OpenCL S-KDE, we
compare its total execution time against that of the serial program, for the
three target devices. Results are shown in Figures 5 and 6 for the dataset of
500k and 1M samples respectively.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 20 40 60 80 100 120 140 160 180 200

T
im

e
 (

s
)

Evaluation Points (Million)

Serial
Radeon HD 6950

GTX 650
Xeon Phi

Fig. 5 Comparison of execution times for
dataset 500k

 0

 150

 300

 450

 600

 750

 900

 1050

 1200

 0 20 40 60 80 100 120 140 160 180 200

T
im

e
 (

s
)

Evaluation Points (Million)

Serial
Radeon HD 6950

GTX 650
Xeon Phi

Fig. 6 Comparison of execution times for
dataset 1M

The first conclusion is that the OpenCL code runs significantly faster than
the serial code. Speed-ups obtained with the largest problems are 3.47x, 3.31x
and 4.27x for the Radeon, the GTX and the Phi respectively. These results,
being good, are not as impressive as those reported for other HPC applications
implemented in accelerators [13]. We can be (partially) satisfied because we

12 Unai Lopez-Novoa et al.

make use of the extra muscle provided by the accelerator, but we also want to
explore if we could do better.

After this black-box assessment, we try to understand more in detail the
limits and bottlenecks of the code when running in the accelerated platforms.
In Figures 7 and 8 we show the accumulated time spent in each of the three
stages depicted in Figure 4: Computation (steps 3, 4 and 5, executed in the
accelerator), Transfer (step 6, moving data from the accelerator to the CPU)
and Consolidation (step 7, executed in the CPU). It is to be highlighted that
the most expensive stage in all cases is the non-accelerated part of the code:
the Consolidation of partial results in the global density matrix, carried out
by the CPU to avoid memory write collisions.

 0

 50

 100

 150

 200

 250

 300

Radeon HD 6950 GTX 650 Xeon Phi

T
im

e
 (

s
)

Consolidation
Transfer

Computation

Fig. 7 Dissected execution time of OpenCL
S-KDE. 500k dataset and 194M evaluation
points

 0

 75

 150

 225

 300

 375

 450

Radeon HD 6950 GTX 650 Xeon Phi

T
im

e
 (

s
)

Consolidation
Transfer

Computation

Fig. 8 Dissected execution time of OpenCL
S-KDE. 1M dataset and 194M evaluation
points

If we focus on each stage separately, we can observe the effects in the
execution time of the different elements participating in the computation:

– The time required for the Computation stage shows how the Intel Xeon
Phi co-processor is the fastest of the tested accelerators, while the NVIDIA
GTX is the slowest.

– The time used for accelerator-to-CPU transfers is approximately the same
in the three tested platforms. This is to be expected, as all of them use the
same PCI-Express interconnect.

– For the Consolidation stage, the i7 used in the Phi and GTX platforms is
slightly faster than the i5 used in the Radeon platform.

Therefore, the good comparative results of the Phi platform comes from a
combination of a fast CPU and a fast co-processor.

The main conclusions obtained from these experiments is that we have been
partially successful with our OpenCL implementation of S-KDE: the program
is faster than the serial version, but not as fast as we would like. We dig further
inside the different parts of the code in order to understand what is limiting
its performance.

Kernel Density Estimation in Accelerators 13

5.2.1 Analyzing compute efficiency

In this subsection we focus on the Computation stage: we want to understand
how the OpenCL kernels use the capabilities of the accelerators, and to discover
if we are exploiting them in an effective way. To do so, we have relied on the
popular roofline model, presented by Williams et al. [27] in 2008. It provides a
way to visually describe the features of a machine and a program. In particular,
it is a diagram with two axes: the Operational Intensity of an application
(FLOP/Byte) in the X-Axis and the Attainable GFLOP/s in the Y-Axis.
An application will be positioned somewhere in the X-Axis depending on its
operational intensity, and the maximum attainable performance will be given
by the roof of the machine.

Even though the roofline model was originally presented for multi-core
processors, several papers have extended it to characterize accelerators and
massively parallel applications. In [8] GPURoofline is proposed, an adaption of
the roofline model for NVIDIA and AMD GPUs that takes into consideration
GPU-specific features. In [10] Kim et al. use the roofline model to explore the
scalability of a code for electromagnetic field simulations in a NVIDIA GPU.
In [3] Cramer et al. use the roofline to characterize the Intel Xeon Phi. In
[25] Wang et al. use the roofline model to characterize a GPU and an Intel
Xeon Phi, and the scalability of an OpenACC code in them. However, none
of these works presents a generic way to build a roofline model for accelerator
devices. This is what we do in this section using a method applicable to any
OpenCL-capable device.

DP Performance (GFLOP/s) Off-chip Bandwidth (GB/s)
Radeon HD 6950 556.02 130.09

GTX 650 36.25 66.39
Xeon Phi 3120A 964.48 94.36

Table 3 OpenCL Benchmarking Results

To characterize the device we need to measure the maximum attainable
performance in terms of GFLOP/s and the maximum bandwidth to the off-
chip memory in GB/s. These values can be retrieved using a benchmark suite
that stresses the devices and provides the effective peak values, which are
usually lower than the theoretical ones advertised by the manufacturer. In
particular, we use the tests from the ClPeak benchmark suite2. Relevant results
for the three target accelerators have been listed in Table 3. The roofline plot
is computed as Min(Bandwidth * Operational Intensity, GFLOP/s).

The characterization of the application is done kernel by kernel. Each kernel
is parsed using the LLVM compiler [12] to generate its intermediate represen-
tation, which we parse to count the number of floating point operations and
memory accesses.

2 https://github.com/krrishnarraj/clpeak

14 Unai Lopez-Novoa et al.

Figures 9, 10 and 11 show the roofline plots for the AMD Radeon, NVIDIA
GTX and Xeon Phi respectively. Each figure shows the roofline of the machine
as a line, the position of the Density Computation kernel (square tick), and the
position of the whole Computation stage (without data transfer, cross tick).
We can see how those ticks overlap, because the accelerators use most of their
time to compute densities. Other kernels are not depicted in the graph because
they are fast and, besides, some of them (i.e., PrefixSum) operate with integer
type values and, thus, their operational intensity is zero.

We can see how the NVIDIA GTX accelerator is way below the others
in terms of raw performance. We can also observe how our application has
a very low operational intensity and, therefore, it is far from reaching the
top performance in all cases. This is particularly harmful in powerful and
expensive accelerators, such as the Xeon Phi. The low compute-to-memory
ratio and low data reuse makes S-KDE a memory bound algorithm – but
it would be even worse using the classic, evaluation point-wise approach, or
without implementing Chop & Crop.

 4

 8

 16

 32

 64

 128

 256

 512

 1024

 0.0625 0.125 0.25 0.5 1 2 4 8 16 32 64

P
e
rf

o
rm

a
n
c
e
 (

G
F

L
O

P
/s

)

Operational Intensity (FLOPs/Byte)

Density computation kernel
Computation stage

Fig. 9 Roofline of Radeon HD 6950

 4

 8

 16

 32

 64

 128

 256

 512

 1024

 0.0625 0.125 0.25 0.5 1 2 4 8 16 32 64

P
e
rf

o
rm

a
n
c
e
 (

G
F

L
O

P
/s

)

Operational Intensity (FLOPs/Byte)

Density computation kernel
Computation stage

Fig. 10 Roofline of GTX 650

 4

 8

 16

 32

 64

 128

 256

 512

 1024

 0.0625 0.125 0.25 0.5 1 2 4 8 16 32 64

P
e
rf

o
rm

a
n
c
e
 (

G
F

L
O

P
/s

)

Operational Intensity (FLOPs/Byte)

Density computation kernel
Computation stage

Fig. 11 Roofline of Xeon Phi 3120A

Kernel Density Estimation in Accelerators 15

In order to better exploit the accelerators, modifications in the applications
would be required to increase its operational intensity: running more (double
precision) floating point operations per moved data item. Given the current
S-KDE algorithm, we have not discovered any way of doing this.

In addition, we must highlight the choice of an OpenCL parameter that
affects performance: the work-group size. As explained in Section 4.1, OpenCL
assigns work-groups to Compute Units (CUs) for their execution. Assuming
that hardware constraints are fulfilled, an excessively large work-group size
might leave CUs unused in the device, and an excessively small one might
cause stalls in some architectures such as GPUs. In the design of the OpenCL
KDE code we made an exploration on the work-group size to find the one
that minimized the execution times. We found 128 threads per work-group to
be the best size for the three tested devices. This size has given a good CU
occupancy / load balancing tradeoff in all tested cases. We refer the interested
reader to [17][24][21] for more information on this topic.

5.2.2 Analyzing PCI-Express efficiency

Let us analyze now how the OpenCL S-KDE code makes use of PCI-Express.
The data transfer stage is mandatory when using discrete accelerators and,
depending on its use, it can turn into a bottleneck. As we did in the previous
section, we first characterize the hardware and then the way our application
exploits it. For the former, we used the BusSpeedReadback benchmark from the
SHOC suite [4], which measures the attainable GB/s when reading from the
accelerator, for different block sizes. Then, we measured the GB/s achieved by
our application, using the block size (size of the intermediate data structures)
determined by the chosen chunk size. Results are depicted in Figures 12, 13
and 14 for AMD Radeon, NVIDIA GTX and Intel Xeon Phi respectively. Note
how the square tick is not in the same position in the three graphs, because
of the different chunk sizes used.

0.1

0.2

0.5

1

2

4

8

 1 10 100 1000 10000 100000

T
h
ro

u
g
h
p
u
t
(G

B
/s

)

Transfer Size (KBytes)

S-KDE

Fig. 12 PCI-Express Throughput Test in
Radeon HD 6950

0.1

0.2

0.5

1

2

4

8

 1 10 100 1000 10000 100000

T
h
ro

u
g
h
p
u
t
(G

B
/s

)

Transfer Size (KBytes)

S-KDE

Fig. 13 PCI-Express Throughput Test in
GTX 650

16 Unai Lopez-Novoa et al.

0.1

0.2

0.5

1

2

4

8

 1 10 100 1000 10000 100000

T
h
ro

u
g
h
p
u
t
(G

B
/s

)

Transfer Size (KBytes)

S-KDE

Fig. 14 PCI-Express Throughput Test in Xeon Phi 3120A

Regarding the hardware side, we see how maximum efficiency of PCI-
Express is only achieved when moving large data blocks. However, the curves
for each device are different, due to differences in the OpenCL run-times and
in the PCI-Express management routines in each platform. The chunk sizes
used in our programs allow the transfers to be in the most efficient regions.

5.3 Overlapping stages

As described in Section 4, the iterative behavior of our code makes it suitable
for working in a pipelined mode, where operations over different chunks of
data are overlapped. This mode of operation allows the simultaneous use of
CPU and accelerator, thus further accelerating program execution.

We have implemented a two-stage pipeline as depicted in Figure 15: the
computation of the partial densities corresponding to a chunk in the accel-
erator, followed by the transfer of the partial results through PCI-Express,
is overlapped with the consolidation in CPU of the results from a previous
chunk. This pipeline configuration has been motivated by the execution times
of the different stages shown in Section 4. We have implemented it using the
Pthreads API, launching a thread for the OpenCL-related operations, and a
separate one for the Consolidation.

Time

Stream 1:
Consolidation

Stream 0:
Computation
& Transfer

Consolidate Chunk 0
...

Consolidate Chunk 1

Compute
Chunk 0

Iteration 0

Transfer
Chunk 0

Compute
Chunk 1

Iteration 1

Transfer
Chunk 1

Compute
Chunk 2

Iteration 2

Transfer
Chunk 2

Fig. 15 Pipelined execution of the OpenCL implementation of S-KDE

Kernel Density Estimation in Accelerators 17

We illustrate the efficiency of the pipelined program with the execution
times for the dataset with 1 million samples, for three different sizes of the
evaluation space. Results are shown in Table 4. Each column shows the ac-
cumulated execution times in seconds for each of the stages, and the total
accumulated execution time (excluding, for the sake of clarity, initialization
and finalization). Improvements over the non-pipelined operations are impor-
tant, for the three devices.

It is to be remarked that running two operations simultaneously cause, in
some cases, extra delays. For example, in the three devices, the Consolidation
costs are higher in the pipelined program than in the non-pipelined version.
The same thing happens with the Transfer stage, but only in the Radeon
GPU. The Computation kernels executed in the accelerators require the same
time for both modes of operation. These overheads seem to be caused by the
high pressure on the memory bus, as both the Transfer and the Consolidation
are memory intensive operations. We tried leaving the Transfer stage out of
the pipeline, overlapping in each iteration just Computation and Consolida-
tion (doing the Transfer immediately afterwards) and then per-stage execution
times where the same obtained without the pipeline. However, this last ap-
proach resulted in worse performance results, and we left the numbers out of
the tables.

In a further step, we implemented a three-stage pipeline, where all the
stages are overlapped. However, the global performance results where similar
to the ones given by the two-stage pipeline. This was to be expected as, in
the tested platforms, the Consolidation stage takes longer than the summed
execution times of the Computation and the Transfer stages. This approach
would be beneficial if the relative durations of the different stages was different,
for example if Consolidation times were shorter.

The use of the presented two-stage pipeline improves the execution time
differently in each device. Interestingly, the GTX GPU is the one offering a
more efficient simultaneous operation of CPU and accelerator (1.81 perfor-
mance gain), while the Xeon Phi and the Radeon are not that efficient (1.36
and 1.40 respectively). Compared to the serial version, total speed-up values
(for the largest problem size) are now improved to 4.42x, 5.74x and 5.67x for
the Radeon, the GTX and the Xeon Phi respectively. Note how an efficient
pipelined operation results in the GTX being the best performed, when in
theory this is the least powerful accelerator.

5.4 Discussion

We can summarize the analysis stating that we have reached acceptable levels
of efficiency given the memory-bound nature of the S-KDE algorithm, that
severely limits the attainable performance. The resulting OpenCL code can be
considered useful (it offers 4.42x-5.74x speedup using the pipelined operation),
but it does not make a good use of current accelerators: operational intensity
is too low, and PCI-Express data transfer costs are high. An additional factor

18 Unai Lopez-Novoa et al.

E
v
.

S
p

a
ce

S
ize

R
a
d

eo
n

H
D

6
9
5
0

G
T

X
6
5
0

X
eo

n
P

h
i

3
1
2
0
A

C
o
m

p
.

T
ra

n
sfer

C
o
n

s.
T

o
ta

l
C

o
m

p
.

T
ra

n
sfer

C
o
n

s.
T

o
ta

l
C

o
m

p
.

T
ra

n
sfer

C
o
n

s.
T

o
ta

l
N

o
P

ip
elin

e
7
M

2
.4

9
2
.4

1
5
.1

7
1
0
.0

6
5
.7

1
2
.3

4
3
.6

6
1
1
.7

1
2
.4

4
2
.2

4
3
.4

3
8
.1

1
3
1
M

9
.1

3
8
.4

8
2
2
.2

4
3
9
.8

6
1
9
.3

8
8
.1

9
1
7
.6

1
4
5
.1

9
8
.9

4
7
.9

6
1
7
.0

0
3
3
.9

0
1
9
5
M

6
2
.3

8
5
2
.3

7
1
7
3
.2

9
2
8
8
.0

5
1
2
4
.9

9
4
9
.7

3
1
5
4
.8

5
3
2
9
.5

8
4
6
.0

5
4
8
.6

1
1
5
0
.3

4
2
4
5
.0

0
2

S
ta

g
e

P
ip

elin
e

7
M

2
.4

7
3
.8

5
6
.4

6
6
.7

8
5
.6

8
2
.3

3
3
.4

6
8
.0

5
2
.4

0
2
.2

7
4
.5

9
4
.8

0
3
1
M

9
.1

3
1
3
.5

0
2
7
.0

4
2
7
.0

9
1
9
.3

4
8
.1

9
1
7
.1

4
2
7
.5

7
9
.0

2
8
.0

7
2
1
.6

4
2
1
.7

5
1
9
5
M

6
3
.7

2
7
5
.0

4
2
0
4
.6

9
2
0
4
.7

7
1
2
5
.8

8
5
0
.9

0
1
8
1
.6

2
1
8
2
.0

5
4
7
.1

0
4
8
.8

1
1
7
8
.7

1
1
7
8
.8

6

T
a
b
le

4
R

u
n
tim

es
(s)

o
f

d
iff

eren
t

sta
g
es

fo
r

th
e

a
ccelera

to
rs.

fo
r

th
e

p
ro

b
lem

w
ith

1
M

sa
m

p
les.

fo
r

d
iff

eren
t

sizes
o
f

th
e

ev
a
lu

a
tio

n
sp

a
ces

Kernel Density Estimation in Accelerators 19

that prevents a really fast S-KDE code is the Consolidation stage: additional
recoding efforts are necessary to improve this CPU-side code.

One of our main objectives when writing this program was portability
in terms of both code and performance. We achieved it, without spending
excessive time carrying out per-device optimizations. The performance analysis
carried out has also been done with device-independent tools. More detailed
information could have been obtained using tools (profilers) provided by the
device manufacturers; for example CodeXL3, Visual Profiler4 or VTune5 for
AMD, NVIDIA and Intel platforms respectively. These tools are essential when
coarse-grain optimizations are not applicable, or to fine-tune for a specific
device.

From the previous analysis we can also draw some conclusions about the
cost of accelerating S-KDE. We have not included in the previous tables the
prices of the tested devices, because they change constantly, but they currently
are around $100 for AMD and NVIDIA GPUs (these are consumer-grade de-
vices, now discontinued) and $1700 for the Intel Xeon Phi (a server-grade
device designed for a different, smaller market). In theory, the high price tag
of the Xeon Phi should be balanced with the ease with which its peak perfor-
mance can be reached. GPUs are more difficult to exploit, if the application
does not show some specific characteristics (high data-parallelism, high oper-
ational intensity, low memory contention, low use of the PCI-Express, and so
on). For S-KDE, which is not particularly well suited for accelerators using the
OpenCL programming model, we can see that the performance of the cheapest
GPU is as good as that of the most expensive accelerator.

6 Conclusions

In this work we have presented briefly S-KDE, an efficient algorithm for ker-
nel density estimation, together with its OpenCL implementation targeting
modern accelerators. This work complements [15], which discussed the im-
plementation of S-KDE on multi and many-core devices. We have tested the
code in three accelerators: AMD Radeon HD 6950 (GPU), NVIDIA GTX 650
(GPU) and Intel Xeon Phi 3120A (many-core).

The S-KDE code does not match particularly well with the OpenCL pro-
gramming paradigm. It carries out simple operations over massive volumes of
data, and it presents memory write contention issues that makes it difficult to
delegate important parts of the code (the Consolidation stage) to the acceler-
ator. Despite this, we have achieved significant acceleration (5x) in platforms
with very modest GPUs (around $100). We have been unable, though, to ex-
ploit efficiently the capabilities of more expensive accelerators, such as the
Xeon Phi.

3 http://developer.amd.com/tools-and-sdks/opencl-zone/codexl/
4 http://developer.nvidia.com/nvidia-visual-profiler
5 http://software.intel.com/en-us/intel-vtune-amplifier-xe

20 Unai Lopez-Novoa et al.

We have analyzed thoroughly the characteristics of our code when running
on the target hardware, understanding its limits. The major issues with the
current program are (1) the need of transferring data through PCI-Express,
derived from the use of a discrete accelerator; (2) the low computational inten-
sity of the kernels running in the accelerators, that do not exploit efficiently
the floating point capabilities of those devices; and (3) the need to run at
the CPU, to avoid memory write issues, a costly Consolidation step. Both the
code and the tools used to understand its behavior are device and application
independent.

Our future work will address two main issues. The most urgent one is
to improve the Consolidation stage, which is currently the one determining
the global execution time. This is not a trivial task, because we must deal
with synchronization issues. Then, we would like to extend the work related
in this paper to convert it into an simple but powerful analysis methodology,
to be used with any OpenCL code, but device independent. The literature of
code optimization for accelerators includes excellent device-specific resources
(such as the good practices manuals [2][19] shipped by the manufacturers) and
also application-specific works (e.g. [1] for cryptographic primitives or [20] for
mathematical functions), but device and application-independent tools are still
missing.

References

1. Agosta G, Barenghi A, Di Federico A, Pelosi G (2014) Opencl performance
portability for general-purpose computation on graphics processor units:
an exploration on cryptographic primitives. Concurrency and Computa-
tion: Practice and Experience DOI 10.1002/cpe.3358

2. AMD (2013) App opencl programming guide. http://developer.

amd.com/tools/hc/AMDAPPSDK/assets/AMD_Accelerated_Parallel_

Processing_OpenCL_Programming_Guide.pdf

3. Cramer T, Schmidl D, Klemm M, an Mey D (2012) Openmp programming
on intel xeon phi coprocessors: An early performance comparison. In: Pro-
ceedings of the Many-core Applications Research Community Symposium,
pp 38–44

4. Danalis A, Marin G, McCurdy C, Meredith JS, Roth PC, Spafford K, Tip-
paraju V, Vetter JS (2010) The scalable heterogeneous computing (shoc)
benchmark suite. In: Proceedings of the 3rd Workshop on General-Purpose
Computation on Graphics Processing Units, ACM, New York, NY, USA,
GPGPU ’10, pp 63–74

5. Elgammal A, Duraiswami R, Davis L (2003) Efficient kernel density esti-
mation using the fast gauss transform with applications to color modeling
and tracking. IEEE Transactions on Pattern Analysis and Machine Intel-
ligence 25(11):1499–1504

6. Fukunaga K (1990) Introduction to statistical pattern recognition (2nd
ed.). Academic Press Professional, Inc., San Diego, CA, USA

Kernel Density Estimation in Accelerators 21

7. Jeffers J, Reinders J (2013) Intel Xeon Phi Coprocessor High Performance
Programming, 1st edn. Morgan Kaufmann Publishers Inc., San Francisco,
CA, USA

8. Jia H, Zhang Y, Long G, Xu J, Yan S, Li Y (2012) Gpuroofline: A model
for guiding performance optimizations on gpus. In: Euro-Par 2012 Parallel
Processing, Lecture Notes in Computer Science, vol 7484, Springer Berlin
Heidelberg, pp 920–932

9. Khronos OpenCL Working Group (2008) The opencl specification. A Mun-
shi, Ed

10. Kim KH, Kim K, Park QH (2011) Performance analysis and optimiza-
tion of three-dimensional FDTD on GPU using roofline model. Computer
Physics Communications 182(6):1201–1207

11. Kirk DB, Hwu WmW (2010) Programming Massively Parallel Processors:
A Hands-on Approach, 1st edn. Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA

12. Lattner C, Adve V (2004) Llvm: a compilation framework for lifelong pro-
gram analysis transformation. In: Proceedings of the International Sympo-
sium on Code Generation and Optimization, 2004. CGO 2004., pp 75–86

13. Lee VW, Kim C, Chhugani J, Deisher M, Kim D, Nguyen AD, Satish
N, Smelyanskiy M, Chennupaty S, Hammarlund P, Singhal R, Dubey P
(2010) Debunking the 100x gpu vs. cpu myth: An evaluation of throughput
computing on cpu and gpu. SIGARCH Comput Archit News 38(3):451–
460

14. Lopez-Novoa U, Mendiburu A, Miguel-Alonso J (2015) A survey of perfor-
mance modeling and simulation techniques for accelerator-based comput-
ing. IEEE Transactions on Parallel and Distributed Systems 26(1):272–281

15. Lopez-Novoa U, Sáenz J, Mendiburu A, Miguel-Alonso J (2015) An effi-
cient implementation of kernel density estimation for multi-core and many-
core architectures. International Journal of High Performance Computing
Applications DOI 10.1177/1094342015576813

16. Lopez-Novoa U, Sáenz J, Mendiburu A, Miguel-Alonso J, Errasti I, Es-
naola G, Ezcurra A, Ibarra-Berastegi G (2015) Multi-objective environ-
mental model evaluation by means of multidimensional kernel density es-
timators: Efficient and multi-core implementations. Environmental Mod-
elling & Software 63(0):123–136

17. Munshi A, Gaster B, Mattson TG, Fung J, Ginsburg D (2011) OpenCL
Programming Guide, 1st edn. Addison-Wesley Professional

18. Nickolls J, Dally W (2010) The gpu computing era. IEEE Micro 30(2):56–
69

19. NVIDIA (2012) Opencl best practices guide. www.nvidia.com/

content/cudazone/CUDABrowser/downloads/papers/NVIDIA_OpenCL_

BestPracticesGuide.pdf

20. Pennycook S, Hammond S, Wright S, Herdman J, Miller I, Jarvis S (2013)
An investigation of the performance portability of opencl. Journal of Par-
allel and Distributed Computing 73(11):1439 – 1450

22 Unai Lopez-Novoa et al.

21. Seo S, Lee J, Jo G, Lee J (2013) Automatic opencl work-group size selec-
tion for multicore cpus. In: Proceedings of the 22nd International Confer-
ence on Parallel Architectures and Compilation Techniques (PACT), pp
387–397

22. Sheather SJ (2004) Density estimation. Statistical Science pp 588–597
23. Silverman BW (1986) Density estimation for statistics and data analysis,

vol 26. Chapman & Hall/CRC
24. Torres Y, Gonzalez-Escribano A, Llanos DR (2013) ubench: exposing the

impact of cuda block geometry in terms of performance. The Journal of
Supercomputing 65(3):1150–1163

25. Wang Y, Qin Q, SEE SCW, Lin J (2013) Performance portability evalua-
tion for openacc on intel knights corner and nvidia kepler. In: HPC China
2013

26. Weissbach R (2006) A general kernel functional estimator with general
bandwidth-strong consistency and applications. Journal of Nonparametric
Statistics 18(1):1–12

27. Williams S, Waterman A, Patterson D (2009) Roofline: An insightful vi-
sual performance model for multicore architectures. Communications of
the ACM 52(4):65–76

