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Abstract
Nowadays, the solution of many combinatorial optimization problems

is carried out by metaheuristics, which generally, make use of local search
algorithms. These algorithms use some kind of neighborhood structure
over the search space. The performance of the algorithms strongly depends
on the properties that the neighborhood imposes on the search space. One
of these properties is the number of local optima. Given an instance of a
combinatorial optimization problem and a neighborhood, the estimation
of the number of local optima can help, not only to measure the complex-
ity of the instance, but also to choose the most convenient neighborhood
to solve it. In this paper we review and evaluate several methods to esti-
mate the number of local optima in combinatorial optimization problems.
The methods reviewed not only come from the combinatorial optimization
literature, but also from the statistical literature. A thorough evaluation
in synthetic as well as real problems is given. We conclude by providing
recommendations of methods for several scenarios.

Keywords—
Combinatorial Optimization Problems, Local Search, Estimation, Number of local

optima, Species estimation problem, Traveling Salesman Problem, Flow Shop Schedul-
ing Problem.

1 Introduction

Metaheuristic algorithms have been proved as efficient methods for solving
hard combinatorial optimization problems. Most of these methods are based
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on, or use a kind of local search that relies on a neighborhood structure over the
search space. The properties of this neighborhood can cause dramatical differ-
ences in the performance of the local search methods (Mattfeld and Bierwirth,
1999; Reeves and Eremeev, 2004; Kirkpatrick and Toulouse, 1985; Hertz et al.,
1994; Fonlupt et al., 1999; Tomassini et al., 2008). One of the characteristics that
the neighborhood imposes on the search space is the number of local optima.
This property has attracted much attention because it seems to be related to
the difficulty of finding the global optima (Eremeev and Reeves, 2002; Albrecht
et al., 2008, 2010; Reeves and Aupetit-Bélaidouni, 2004; Reeves, 2001; Grundel
et al., 2007; Garnier and Kallel, 2001; Caruana and Mullin, 1999; Eremeev and
Reeves, 2003). Therefore, the number of local optima has been considered as an
indirect complexity measure of an instance when solving it with a local search
algorithm. Moreover, as the number of local optima depends on the neighbor-
hood, it would be useful to take it into account in order to choose the most
suitable neighborhood to solve a particular problem instance efficiently.

Unfortunately, in practice, given an instance of a combinatorial optimiza-
tion problem and a neighborhood, we do not know in advance the number of
local optima. Thus, the development of methods that efficiently estimate the
number of local optima seems to be a requirement in order to design algorithms
that work in the right neighborhood. This work is connected to the area of evo-
lutionary computation as the analysis of the set of local optima in a landscape
associated to the problem can be related to the investigation of some properties
of evolutionary algorithms, such as properties of the stable steady-state points
in genetic algorithms (Vose and Wright, 1995; Reeves, 2002).

While several approaches have been proposed to estimate and bound the
expected number of local optima for combinatorial optimization problems (Grun-
del et al., 2007; Albrecht et al., 2008, 2010), the literature is not so extensive
when it is about estimating the number of local optima of a particular instance.
Despite this, it is possible to find works on this topic. A key aspect to take into
account when designing a method to estimate the number of local optima of
an instance is the distribution of the sizes of the attraction basins (informally,
an attraction basin of a local optimum is the set of initial solutions that, after
applying a local search algorithm to them, end at that local optimum). Most of
these approaches assume that the attraction basins are equally-sized (Caruana
and Mullin, 1999; Eremeev and Reeves, 2003), and they propose methods to
obtain lower bounds for the number of local optima. Under this assumption
on the attraction basins, there are works where biased estimators are obtained,
and they try to correct this bias to provide an unbiased estimator (Eremeev and
Reeves, 2002; Reeves, 2001; Reeves and Aupetit-Bélaidouni, 2004). On the other
hand, there are papers where the sizes of the attraction basins are assumed to
fit a certain type of parametric distribution, such as gamma or lognormal. For
example, in Garnier and Kallel (2001), the authors assume a gamma distribu-
tion for the relative sizes of the attraction basins.

The problem of estimating the number of local optima can be compared
with a well-known problem in biology: Estimating the number of different
species in a population. In the Statistics field, we can find plenty of algo-
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rithms and methods used to estimate the number of species in a population.
In fact, Eremeev and Reeves (2003) noticed the connection between these two
problems, and they applied the Schnabel-Census method, already used for es-
timating species, for estimating the number of local optima. In Bunge and
Fitzpatrick (1993), as well as in Seber (1986, 1992); Schwarz and Seber (1999),
an exhaustive classification of methods for estimating the number of species
is given. In those works the literature is organized depending on the sam-
pling model, population specification, and philosophy of the estimation. We
can also find recent papers (Chao and Bunge, 2002; Wang, 2010) that give esti-
mators for the number of classes by assuming that the species abundance fol-
lows a Poisson-Gamma model, and others (Wang and Lindsay, 2005, 2008) in
which estimators are based on the conditional likelihood of a Poisson mixture
model. Unfortunately, there are extreme difficulties associated with estimating
the population size (Link, 2003).

In this work, we present an evaluation of methods for estimating the num-
ber of local optima, that not only use the methods proposed in the combina-
torial optimization field, but also those developed for the species problem in
the statistics arena. After describing them in detail, we test their performance
under three different scenarios:

1. Simulated instances of combinatorial optimization problems.

2. Random instances of the Traveling Salesman Problem.

3. Instances of the Traveling Salesman Problem with real distances between
cities, and instances of the Flowshop Scheduling Problem obtained from
the well-known Taillard’s benchmark.

The rest of the paper is organized as follows. The preliminary mathematical
background is given in Section 2. In Section 3 we explain in detail the selected
estimate methods. Section 4 shows the experimental results when applying the
methods to synthetic data as well as to real instances, and discusses the results
observed for the different methods, providing clues to help select the most
suitable estimation algorithm for a given instance. Finally, the conclusions are
presented in Section 5.

2 Preliminaries

A combinatorial optimization problem (COP) consists of finding an optimal
solution of (from now on, minimizing) a function

f : Ω −→ R
x 7−→ f(x)

where the search space Ω is a finite or countable infinite set.
A common way of solving these problems is by means of metaheuristic

algorithms, most of which use a kind of local search that is based on a neigh-
borhood structure. A neighborhood N in a search space Ω is a mapping that
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assigns a set of neighbor solutions N(x) ∈ P(Ω) to each solution x ∈ Ω:

N : Ω −→ P(Ω)
x 7−→ N(x)

Based on the definition of neighborhood, we say that a solution x∗ ∈ Ω is
a local optimum if f(x∗) ≤ f(x), ∀x ∈ N(x∗) (local minimum) or if f(x∗) ≥
f(x), ∀x ∈ N(x∗) (local maximum). Obviously, one solution x∗ ∈ Ω can be a
local optimum under a neighborhoodN1, but not when considering a different
neighborhood N2. If y∗ ∈ Ω is a solution such that f(y∗) ≤ f(y) (or f(y∗) ≥
f(y)) , ∀y ∈ Ω, then y∗ is a global optimum. Clearly, the global optima are local
optima for any neighborhood.

Algorithm 1 Deterministic Best-Improvement Local Search Algorithm
Choose an initial solution x ∈ Ω
repeat
x∗ = x
for i = 1→ |N(x∗)| do

Choose yi ∈ N(x∗)
if f(yi) < f(x) then
x = yi

end if
end for

until x = x∗

A concept that plays an important role in this paper is that of basin of at-
traction B(x∗) of a local optimum x∗. The basin of attraction of a local optimum
depends on the neighborhood, however, we will omit the neighborhood from
the notation in order to simplify it. Roughly speaking, an attraction basin B(x∗)
is composed of all the solutions that, after applying a local search algorithm
starting with those solutions, finishes in x∗. In our case, we use a determinis-
tic best-improvement local search (see Algorithm 1). It is important to notice
that the neighbors are evaluated in a specific order, so that, in the case of two
neighbors having the same function value, the algorithm will always choose
that which was encountered first. We denote byH the operator that associates,
to each solution x, the local optimum obtained after applying the algorithm.
So, the attraction basin B(x∗) of a local optimum x∗ is the set that can be de-
fined in the following way:

B(x∗) = {x ∈ Ω | H(x) = x∗} .

The relative size of the attraction basin B(x∗) related to the search space Ω, i.e.,
the proportion of solutions of the whole search space that belong to the basin
B(x∗), denoted as p = |B(x∗)|

|Ω| , is of special relevance for the estimation of the
number of local optima. Given the deterministic nature of H, an important
property of this concept is that the attraction basins of the local optima define
a partition of Ω.
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The problem we are considering in this paper, that is, estimating the num-
ber of local optima, can be considered as a classical estimation problem in
statistics. Therefore, the most common way of solving it is by constructing
an estimator by collecting a set of statistics from a sample. Due to the fact that
we want to estimate the number of local optima, our sample has to be related
to the local optima. Basically, most of the presented methods start by taking a
uniformly distributed random sample S = {x1, x2, ..., xM} ⊆ Ω of size M . The
local search algorithm is applied to each solution in S, and from the M local
optima obtained we get the r (≤M ) different ones into the set S∗ = {x∗1, ..., x∗r}.

Two important statistics that will be used for the estimation methods are αi
and βi. We denote by αi (i ∈ {1, 2, ..., r}) the number of initial solutions of the
sample that belong to the attraction basin of the local optimum x∗i :

αi =
∣∣ {x ∈ S | H(x) = x∗i }

∣∣ =
∣∣ {x ∈ S | x ∈ B(x∗i )}

∣∣ ≤ ∣∣B(x∗i )
∣∣.

With this information, the following statistic is calculated:

βj =
∣∣ {αi | αi = j, i ∈ {1, 2, ..., r}}

∣∣ , ∀j ≥ 1.

So, βj is the number of local optima that have been seen exactly j times in
the sample. In the following section, we call β0 the number of local optima in
the search space that have not been found in the sample. Notice that βj = 0 ,
∀j > M . Two interesting relations are the following:

M∑
j=1

βj = r and
∑M
j=1 j ∗ βj = M.

3 Estimation methods

In this section we present a review of the methods proposed in the literatire
for estimating the number of local optima, as well as the most widespread
methods for estimating the number of species in a population. Table 1 shows
the methods collected from the combinatorial optimization and also from the
statistics area. Inside the combinatorial optimization field we find the follow-
ing methods: a method based on the Birthday problem (Caruana and Mullin,
1999), First Repetition Time, Maximal First Repetition Time and Schnabel-Census
(Eremeev and Reeves, 2003), Jackknife and ?Bootstrap (Eremeev and Reeves,
2002), and a method based on Gamma distributions (Garnier and Kallel, 2001).
In the statistics field, the selected methods are: Chao 1984 (Chao, 1984), Chao
& Bunge (Chao and Bunge, 2002), Chao & Lee 1 and Chao & Lee 2 (Chao and
Lee, 1992), a Poisson-Compound Gamma Model (Wang, 2010) and a Penalized
Nonparametric Maximum Likelihood Approach (Wang and Lindsay, 2005).

We discarded some of the methods shown in Table 1, due to their poor per-
formance (Caruana and Mullin, 1999), high dependence with the sample size
(Garnier and Kallel, 2001), or the high computation time (Wang and Lindsay,
2005, 2008; Wang, 2010) observed in preliminary experiments. The methods
analyzed in this paper are highlighted in bold.
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Table 1: A classification of the estimate methods selected on both the combinatorial optimization
field and the statistics area, according to the sampling model. The methods analyzed in this paper
are in bold and their abbreviations are indicated between brackets.

SAMPLING METHOD (ABBREVIATION) REFERENCEMODEL

C
O

M
BI

N
A

TO
R

IA
L

O
PT

IM
IZ

A
TI

O
N

Multinomial

Method based on the Birthday problem Caruana and Mullin (1999)

Confidence Eremeev and Reeves (2003)

First Repetition Time (FRT)

Intervals Maximal First Repetition Time (MFRT)

Schnabel-Census (Sch-Cen)

Bias Eremeev and Reeves (2002)
Jackknife (Jckk)

Correction Bootstrap (Boots)

Gamma Method based on a Gamma model Garnier and Kallel (2001)

ST
A

T
IS

TI
C

S

Multinomial

Chao (1984)Chao 1984 (Chao1984)

Chao and Lee (1992)
Chao & Lee 1 (ChaoLee1)

Chao & Lee 2 (ChaoLee2)

Poisson - Gamma

Chao and Bunge (2002)Chao & Bunge (ChaoBunge)

Poisson-Compound Gamma Model Wang (2010)

Mixed Poisson Wang and Lindsay (2005)Penalized Nonparametric
Maximum Likelihood Approach

The five methods proposed in the field of optimization are explained in de-
tail. First Repetition Time (FRT), Maximal First Repetition Time (MFRT) and
Schnabel-Census are methods that provide lower bounds and that can be used
for computing confidence intervals, while Jackknife and Bootstrap are bias cor-
recting non-parametric methods. FRT has attracted our interest because it is a
parameter-less method, whereas MFRT and Sch-Cen only depend on one pa-
rameter which is the sample size. So, these three methods do not require too
much computation time. Jackknife is a method that also depends on the sam-
ple size and it is very fast. Bootstrap not only needs the sample size, but also
another parameter: the number of repetitions inside the method. The fact of
carrying out repetitions causes the method to take more time than the other
methods in providing the estimated value.

In a second step, we present methods proposed in the field of statistics used
by biologists and ecologists when determining how many different classes of
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species are in a population of plants or animals. They are non-parametric meth-
ods, but they are based on particular sampling models. Chao1984, ChaoLee1 and
ChaoLee2 are based on multinomial sampling, while ChaoBunge is based on a
mixed Poisson sampling model. The main reason for choosing these methods
is that, according to preliminary experiments, they do not require too much
computation time and, in general, they give very good estimates.

3.1 Methods proposed in the field of optimization

3.1.1 Methods used for computing confidence intervals

In this section we describe the methods proposed in Reeves and Eremeev (2004):
First Repetition Time, Maximal First Repetition Time and Schnabel-Census
Procedure. These three methods assume that all the attraction basins of the
local optima are equal in size. Under this assumption, and supposing a finite
multinomial model, they give (with a high probability) lower bounds for the
number of local optima. First, we explain the common aspects of these three
methods, and then, the particular details of each of them are given.

Let us start by considering that the continuous distribution function Fv(t) of
a random variable T that depends on a parameter v is known, and this distribu-
tion function is a strictly monotonically decreasing function on this parameter
v, that is:

if v2 > v1 then Fv2(t) < Fv1(t) , ∀t.

Now, the (1 - ε1 - ε2)*100% confidence interval for the parameter v is calculated.
So, the goal is to find [v1 , v2], with v1 < v2, and such that P(v1 ≤ v ≤ v2) = 1 -
ε1 - ε2, from the known distribution function Fµ(t) = P (T ≤ t | v = µ). Taking
into account that τ ∈ N is an observed value sampled from this distribution,
we obtain:

v1 = min {µ | 1− Fµ(τ − 1) ≥ ε1} , v2 = max {µ | Fµ(τ) ≥ ε2} .

Following the framework of Reeves and Eremeev (2004), we work with the
fixed value ε1 = 0.05. So, these methods will define v1 as a lower bound with
probability 0.95 when ε2 = 0, and consequently v2 is infinity.

Particularly, in FRT, MFRT, and Schanbel-Census methods, we will denote
v as the number of local optima. Let p = (p1, p2, ..., pv) be the vector of prob-
abilities of finding the corresponding local optima, that is, the relative sizes of
the attraction basins of the local optima. If p = p̄ = ( 1

v ,
1
v , ...,

1
v ) then all the

local optima have the same probability of being found. These methods calcu-
late the distribution function Fp̄(t) according to a random variable T , which in
each case will determine different concepts.

1. The First Repetition Time method

This method starts taking uniformly at random a solution x1 from the
search space Ω, and a local search algorithm (in our case, algorithm H)
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is applied to x1, ending at a local optimum x∗1. This process is repeated
until a local optimum is seen twice.

The random variable T denotes, in this case, the number of initial solu-
tions xi taken until a local optimum is repeated. The distribution function
of T corresponding to the vector p is Fp(t). It can be proved (Reeves and
Eremeev, 2004) that for any t ≥ 2, Fp(t) is minimal only at p = p̄ =
( 1
v ,

1
v , ...,

1
v ), where v is the number of local optima.

Now, the distribution function Fp̄(t) is calculated for the variable T .

Fp̄(t) = P (T ≤ t | p = p̄) = 1− P (T > t | p = p̄),

where P (T > t | p = p̄) is the probability of finding none of them
repeated in the t first optima: P (T > t | p = p̄) = v

v .
v−1
v ...v−t+1

v =(
1
v

)t (v
t

)
t!.

So,

Fp̄(t) = 1−
(

1

v

)t(
v

t

)
t!.

Assuming that τ is the value obtained from the sample for the variable T ,
the estimate for the number of local optima v1 is given by the following
formula:

v̂FRT = v1 = min

{
µ
∣∣∣ ( 1

µ

)τ−1(
µ

τ − 1

)
(τ − 1)! ≥ 0.05

}
.

2. The Maximal First Repetition Time method
In this case a uniformly distributed random sample S of size M is taken
from the search space: S = {x1, x2, ..., xM} ⊆ Ω. Then, a local search is
applied to each solution of the sample, so thatM local optima {x∗1, x∗2, ..., x∗M}
are obtained. Notice that not all of them have to be different. Then, start-
ing from x∗1 and taking the local optima in order of appearance, subse-
quences Si ⊆ S are created, where each of them ends with its first re-
occurrence of a local optimum. It is as if we were repeating the First Rep-
etition Time procedure many times. If there is no local optima repeated,
then the unique subsequence obtained is S1 = S of size M .

The number of subsequences obtained is denoted by s. The variable that
denotes the length of the j-th subsequence is Tj , and T (s) = maxjTj
represents the maximum length of all the subsequences.

The distribution function of the variable T (s) corresponding to the vector
of probabilities of the local optima p is

F (s)
p (t) = P (T (s) ≤ t | p) = P (Tj ≤ t, j = 1, ..., s | p).

As in the previous case, for a fixed value of t and a fixed value of s, it
can be proved (Reeves and Eremeev, 2004) that F (s)

p is minimal when
p = p̄ = ( 1

v ,
1
v , ...,

1
v ).
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The distribution function F (s)
p̄ (t) for the variable T (s) is:

F
(s)
p̄ (t) =

s∏
i=1

P (Ti ≤ t | p = p̄) =

[
1−

(
1

v

)t(
v

t

)
t!

]s
.

If τ is the value obtained from the sample for the variable T (s), then the
estimate for the number of local optima v1 is given by the following for-
mula:

v̂MFRT = v1 = min

{
µ
∣∣∣ 1−

[
1−

(
1

µ

)τ−1(
µ

τ − 1

)
(τ − 1)!

]s
≥ 0.05

}
.

3. Schnabel Census Procedure
This method has also been used in ecology to provide an estimate of the
size of a population of animals. It consists of taking a sample of size M
and counting the number of distinct animals seen. However, we include
it in this section because there are already works (Eremeev and Reeves,
2002; Reeves and Eremeev, 2004) that have used this method to estimate
the number of local optima in COP. The way to proceed in the case of esti-
mating the number of local optima is similar to the problem of estimating
the number of animals.

Firstly, a uniformly distributed random sample S = {x1, x2, ..., xM} ⊆ Ω
of size M is taken from the search space Ω, and a local search algo-
rithm is applied to each solution in S, obtaining r different local optima
{x∗1, x∗2, ..., x∗r}, with r ≤M .

Let R be the random variable that represents the number of different lo-
cal optima found. The distribution function for the variable R, when a
sample of size M has been taken from Ω and when it corresponds to the
vector of probabilities of the local optima p is:

Fp(r, v,M) = P (R ≤ r |M,v,p) =

r∑
i=1

P (R = i |M,v,p).

If p = p̄, then P (R = i | M,v) = v!S(M,i)
(v−i)!vM , where S(M, i) is the Stirling

number of the second kind, that is, the number of all possible partitions
of an M -element set into i non-empty subsets.

Then,

Fp̄(r, v,M) =

r∑
i=1

v!S(M, i)

(v − i)!vM
.

The estimate for the number of local optima v1 is given by the following
formula:

v̂Sch−Cen = v1 = min

{
µ
∣∣∣ 1−

r−1∑
i=1

µ!S(M, i)

(µ− i)!µM
≥ 0.05

}
.
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3.1.2 Bias-correcting nonparametric methods

In this section we describe the application of two commonly used bias-correcting
methods to the problem of estimating the number of local optima. These meth-
ods are Jackknife and Bootstrap, and their specific use in this context was pro-
posed in Reeves (2001); Eremeev and Reeves (2002, 2003); Reeves and Aupetit-
Bélaidouni (2004). While in the original papers only the mechanic of the algo-
rithm is provided, we have also added the assumptions of the methods, as we
consider them relevant for our work.

Jackknife and Bootstrap are nonparametric methods based on ideas of re-
sampling. Moreover, they use the concept of bias of an estimator (the difference
between the estimated value and the real value) to improve an initial estimate.
There is an important difference that the authors make between the application
of Jackknife and the application of Bootstrap. In the Jackknife method, no as-
sumptions about the sampling model are made when calculating the initial bi-
ased estimate. However, the Bootstrap method has an underlying assumption
about the sampling model because it uses the maximum likelihood estimator
as an initial biased estimator.

1. Jackknife
The Jackknife method starts from a biased estimator v̂, and assumes that
the bias decreases asymptotically as the size of the sample increases. The
underlying resampling technique consists of leaving the different points
xi of the initial sample out, and finding estimators that reduce the bias of
v̂. The mean of these estimates is considered the Jackknife estimator.
This method, in the same way as Schnabel Census Procedure, was pre-
viously proposed for the estimation of population sizes (Burnham and
Overton, 1978). In the context of estimating the number of local op-
tima (Eremeev and Reeves, 2002), a uniformly distributed random sam-
ple S = {x1, ..., xM} of size M is taken from the search space. After
applying a local search algorithm to each solution xi ∈ S, the set of lo-
cal optima L∗ = {x∗1, x∗2, ..., x∗M} is obtained, with r ≤ M different local
optima.
Next, one point xi is left out from the sample S. The subset L∗i ⊆ L∗ that
contains the local optima that correspond to all the solutions in S − {xi}
is considered: L∗i = L∗−H(xi). If this idea is repeated leaving each of the
points out from the original sample once each time, we obtain M subsets
L∗1,L∗2, ...,L∗M ⊆ L∗, with r−1, r−2, ..., r−M ≤ r different local optima.
The biased estimator v̂ = r of v is assumed to be of the form r = v+ a1

M +
a2
M2 + a3

M3 + .... Thus, the bias is of order 1
M . The purpose is to find an

estimator that reduces the bias to O( 1
M2 ). So, for each i ∈ {1, 2, ...,M},

the following estimator is defined:

ri = Mr − (M − 1)r−i , (1)

so that ri = v +O

(
1
M2

)
.
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Since

r−i = r−ji , where ji =

 0 if ∃ xk 6= xi ∈ S s.t.H(xk) = x∗i

1 otherwise
(2)

then, from (1) and (2) the estimator is:

ri = r + (M − 1)ji , ∀i ∈ {1, 2, ...,M}.

The Jackknife estimator for the number of local optima is the mean value
of ri:

v̂Jckk =
1

M

M∑
i=1

ri = r +
M − 1

M
β1,

where β1 is the number of local optima which have only been seen once.

Notice that when the sample size tends to infinity, β1 tends to 0, and
therefore, the estimate for the number of local optima tends to the real
number of local optima. So, this is an unbiased estimator.

2. Bootstrap

The Bootstrap method starts from a biased estimator v̂, obtained from a
sample S. Resamples from S are taken and the biased estimate is cal-
culated in each case. With this information, an estimator of the bias is
provided. So, the result of adding the estimated bias to the initial v̂ is the
Bootstrap estimator.

In the application of this method to the estimation of the number of
local optima (Eremeev and Reeves, 2002), we start from the set S∗ =
{x∗1, x∗2, ..., x∗r} of r different local optima. Assuming a multinomial model
(Reeves and Aupetit-Bélaidouni, 2004), with equally sized attraction basins,
the probability distribution of the random variable R that represents the
number of different local optima found in the sample S is given by

P (R = r) = v!
(v−r)!

S(M,r)
vM

, ? 1 ≤ r ≤ min{M,v} ,

where S(M, r) is again the Stirling number of the second kind. From
this, the maximum likelihood estimate v̂ML

r of v is obtained by solving
the equation:

M ∗ log
(

1− 1

v

)
− log

(
1− r

v

)
= 0.

If r/M is small (lower than 0.3) the best estimate for the number of local
optima (Reeves and Aupetit-Bélaidouni, 2004) is actually r, because it is
assumed that with small values it is likely that all local optima have been
found. So, in this case it is considered that v̂ML

r = r.
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Afterwards, a resample with replacement of the same size M from S is
taken, obtaining r1 different local optima, and the maximum likelihood
estimate of r1 is considered: v̂ML

r1 . The same procedure is repeated b
times, that is, b resamples with replacement from S are taken, obtaining
{r1, r2, ..., rb} different local optima, and the maximum likelihood esti-
mate for each ri is calculated: {v̂ML

r1 , v̂ML
r2 , ..., v̂ML

rb
}.

With the maximum likelihood estimates for the number of local optima
of the resamples {v̂ML

r1 , v̂ML
r2 , ..., v̂ML

rb
} and the maximum likelihood esti-

mate for the number of local optima obtained in the original sample v̂ML
r ,

the bias can be estimated and used as a bias correction for v̂ML
r . The bias

can be calculated as the difference between the maximum likelihood es-
timate of the number of local optima found with the original sample and
the average maximum likelihood estimates of the number of local optima

from the resamples: bias = v̂ML
r − 1

b

b∑
i=1

v̂ML
ri .

Hence, the Bootstrap estimator for the number of local optima is v̂ =
v̂ML
r + bias, so:

v̂Boots = 2v̂ML
r − 1

b

b∑
i=1

v̂ML
ri .

A very important observation is that, as the sample size tends to infinity,
the number of local optima found tends to be the real number of local
optima. In addition, as r/M is very small (M is very large, and r is con-
stant), the maximum likelihood estimate is the number of local optima
found from the sample. Moreover, the bias tends to 0, so the estimate
tends to be the real number of local optima.

3.2 Methods proposed in the field of statistics

In this section we present four nonparametric methods based on sampling
models: Chao1984 (Chao, 1984), ChaoLee1, ChaoLee2 (Chao and Lee, 1992) and
ChaoBunge (Chao and Bunge, 2002). Although they were proposed to estimate
the number of species in a population, we explain here their specific applica-
tion to our problem. An important consideration is that they assume an infinite
population, while the common COP have a finite search space. However, we
treat the search spaces as if they were infinite because of their large cardinality.

All of the methods presented below start from a sample S = {x1, x2, ..., xM} ⊆
Ω of size M . A local search algorithm is applied to each solution xi ∈ S and r
different local optima {x∗1, x∗2, ..., x∗r} are obtained.

1. Chao 1984

This is a nonparametric method proposed in Chao (1984) based on multi-
nomial sampling that has been used to estimate the number of classes in
an infinite population.

12



The estimator given by this method is the result of adding to the number
of local optima obtained from the sample a quantity that depends only
on the number of local optima seen once and twice in the sample.

This method is based on the estimate of the expected value of the number
of unobserved local optima Eβ0

. Harris (1959) proved that if j2 = O(M),

then Eβj
∼

v∑
i=1

(Mpi)
j e−Mpi

j! , where pi is the relative size of the attrac-

tion basin of the local optimum x∗i . The method considers the following
distribution function:

F (x) =

∑
Mpi≤x

(Mpi)e
−Mpi

v∑
i=1

(Mpi)e−Mpi

and it assumes that the number of unobserved local optima is of the fol-

lowing form: Eβ0 ∼
v∑
i=1

e−Mpi ∼ (Eβ1)

∫ M

0

x−1 dF (x).

We want to obtain an estimator F̂ (x) of F (x) and thus, find an estimator
v̂ of v that is the sum of r and the estimated number of unobserved local
optima. That is,

v̂ = r + β1

∫ M

0

x−1 dF̂ (x).

The moment estimates were proposed in Chao (1984) to obtain an esti-
mator F̂ (x) of F (x), and once attained, a lower bound for v was found.
As the sample size M tends to infinity, the lower bound tends to the
Chao1984 estimator:

v̂chao1984 = r +
β2

1

2β2
.

It is very important to take into account that this estimator works when
the information is concentrated on the low order occupancy numbers,
that is, when β1 and β2 carry most of the information. If β2 = 0, that is, if
there is no local optima seen exactly twice from the sample, the method
does not work. Moreover, β1 is also very important in this estimator,
because if β1 = 0, the estimate is just the number of local optima obtained
from the sample. We find these situations, for example, when M is much
higher than the real number of local optima. In this case, it is unlikely
that the local optima will be found only once or twice. Furthermore, we
can also find β1 = 0 and β2 = 0 when the attraction basins are close
in size, because the different local optima are probably found the same
number of times. Notice that only if we force the method to return r as
the estimate for the number of local optima when β1 = 0 and β2 = 0, we
can ensure that when M tends to infinity we obtain the real number of
local optima.
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2. Chao & Lee

Chao and Lee (1992) proposed two new estimators based on the estima-
tors proposed by Esty (1985). The methods are also nonparametric, used
for infinite population, and based on multinomial sampling.

They are the first methods that included the idea of sampling coverage.
These estimators are the sum of the number of local optima observed
many times, and quantities dependent on the number of local optima
found few times in the sample.

Given a sample S, the sample coverage C is defined as the sum of the
probabilities of the observed local optima. That is, the sum of the relative
sizes of the attraction basins of the local optima found. Obviously, C is
a random variable and an estimator Ĉ of C (Good, 1953) is Ĉ = 1 −
β1/M . Notice that if all the local optima have the same probability of
being chosen, that is p1 = p2 = ... = pv = 1

v , then C = r
v . So, an initial

estimator of v is v̂1 = r
Ĉ

. Based on (Esty, 1985) and using v̂1, Chao and Lee

proposed an estimator v̂ of v of the following form: v̂ = v̂1 + M(1−Ĉ)

Ĉ
γ2,

where γ = 1
p̄

[
v∑
i=1

(pi − p̄)2/v

]1/2

is the coefficient of variation (with p̄ =

1
v

v∑
i=1

pi).

Notice that γ2 = v
v∑
i=1

p2
i−1. Therefore, they suggested: γ2 =

v
M∑
i=1

i(i−1)βi

M(M−1) −

1.

Chao and Lee distinguished between what they call abundant species
and rare species. Transferring these concepts to our problem, we will
distinguish between easy-to-find local optima and hard-to-find local op-
tima. We define a local optimum x∗k as hard-to-find if αk ≤ δ for some
cut-off value δ. So, the easy-to-find local optima are the x∗k such that
αk > δ. One can select this cut-off value in advance, but there are studies
(Chao and Yang, 1993), that are based on empirical experience set δ = 10.
We call rh the number of hard-to-find local optima, and re the number of
easy-to-find local optima.
So, taking this distinction into account, the estimators are the following:

v̂ChaoLee1 = re +
rh

Ĉh
+
β1

Ĉh
γ̂h

2
1 , γ̂h

2
1 = max


rh

Ĉh

δ∑
i=1

i(i− 1)βi

Mh(Mh − 1)
− 1, 0



v̂ChaoLee2 = re +
rh

Ĉh
+
β1

Ĉh
γ̂h

2
2 , γ̂h

2
2 = max

γ̂h
2
1

1 + (1− Ĉh)

δ∑
i=1

i(i− 1)βi

(Mh − 1)Ĉh

 , 0
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where Mh =
δ∑
j=1

jβj and Ĉh = 1− β1/Mh.

It is important to take into account that if Ĉh = 0, the method does not
work. This occurs when β1 6= 0 and βi = 0,∀i ∈ {2, ..., δ}. Neither does
the method work when Mh = 0 or Mh = 1, that is, when βi = 0,∀i ∈
{1, ..., δ}, or when ∃i ∈ {1, ..., δ} such that βi = 1 and βj = 0,∀j 6= i.
In these cases we redefine the estimators as the number of the different
local optima that appear in the sample r. Only under this consideration,
we ensure having an unbiased estimator and therefore, obtaining the real
number of local optima when M tends to infinity.

3. Chao & Bunge

A new estimate technique was proposed by Chao and Bunge (2002). This
estimator is also nonparametric in form, but it has some optimality prop-
erties under a particular parametric model. This method is based on a
mixed Poisson sampling model. It is closely related to the estimators in
Chao and Lee (1992).

This method bases the estimate of unobserved local optima on (β1, β2, ..., βδ)
for some cut-off value δ, and then they complete the estimate by adding
the number of local optima found more that δ times in the sample.

Firstly, they showed that, for the Gamma-Poisson case, the expected pro-
portion of duplicates in the sample, denoted by θ, can be estimated by

θ̂ = 1 −
β1

M∑
k=1

k2βk(
M∑

k=1

kβk

)2 . Secondly, and based on this estimator, they pro-

posed the following estimator for the expected number of unseen op-

tima: β̂0 = (θ̂−1 − 1)
M∑
k=2

βk − β1. Thirdly, with this estimator of the un-

seen optima, the estimator of the number of local optima was defined as

v̂∗ = (θ̂−1 − 1)
M∑
k=2

βk − β1 + r =
M∑
k=2

βk

θ̂
.

Finally, based on the data (β1, β2, ..., βδ) and the estimator v̂∗, and taking
into account the distinction between hard-to-find local optima (rh) and
easy-to-find local optima (re), their final proposed estimator of v is:

v̂ChaoBunge = re +

δ∑
k=2

βk

θ̂
, θ̂ = 1−

β1

δ∑
k=1

k2βk( δ∑
k=1

kβk

)2
(3)

where θ̂ takes only into account the hard-to-find local optima, and not all
the local optima found in the sample.
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Notice that, if δ > max{j | βj 6= 0}, then all the local optima are con-

sidered as hard-to-find, and therefore v̂ChaoBunge =
M∑
k=2

βk

θ̂
, θ̂ = 1 −

β1

M2

M∑
k=1

k2βk.

It is important to take into account that if we have a sample in which
β1 6= 0 and βi = 0,∀i ∈ {2, ..., δ}, then θ̂ = 0 and therefore the method
does not work. In these cases, we consider that θ̂ = 1 and so, the estimate
is just r. Considering this point we have that, as M tends to infinity, we
obtain the real number of local optima.

4 EXPERIMENTS

The accuracy of the different estimators presented in the previous section has
been tested on three different datasets: simulated instances of COPs, instances
of the Traveling Salesman Problem (TSP) taking random distances, and in-
stances of the TSP with real distances between different cities, as well as in-
stances of the Flow Shop Scheduling Problem (FSSP) obtained from the well-
known Taillard’s benchmark. Using these datasets we can first test the methods
over a wide set of instances with different characteristics (the dataset with sim-
ulated instances) and then check whether these conclusions can be generalized
for artificial and real instances (second and third datasets). In these three sce-
narios, we work with problems for which we already know the number of local
optima, which allows us to evaluate the accuracy of the different estimates. We
report a comparison of the different methods, giving recommendations of the
methods that provide the best estimates.

4.1 Synthetic data

4.1.1 Experimental design

The aim of this section is to study the performance of the methods when they
are applied to instances with different number of local optima and different dis-
tributions of the sizes of the attraction basins. Therefore, we are interested in
a set of data that includes instances with attraction basins very similar in size,
as well as instances with very different sizes of attraction basins. However, it
is not easy to obtain many real or random instances with the desired charac-
teristics. On the one hand, looking for the real number of local optima and the
sizes of their attraction basins of a given instance of a COP would require high
computation time. On the other hand, it is not easy to find in the literature in-
stances with a high number of local optima that are realistic enough. These are
the reasons why we decide to simulate instances of COP, instead of working
with real ones.

As far as the methods for estimating the number of local optima are con-
cerned, an instance of a COP is determined by the number of local optima
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and the size of their attraction basins. Therefore, we can summarize an in-
stance as the pair (v,p), where v denotes the number of local optima and

p = (p1, p2, ..., pv), with 0 < pi < 1 , ∀i ∈ {1, 2, ..., v},
v∑
i=1

pi = 1, is the vec-

tor that gives the relative sizes of the attraction basins of the local optima. So,
we create instances just assuming a certain number of local optima and assign-
ing to each local optimum a probability of being chosen (or a certain relative
size of its attraction basin).
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Figure 1: Average variance of the values of the samples obtained from D(v, d), for the different
values of d, and for v = 100, 1000 and 10000. The Y axis is at logarithmic scale.

One way to do that is by sampling a Dirichlet distribution. When a Dirich-
let distribution with v parameters D(d1, d2, ..., dv) is sampled, a vector with v
values (r1, r2, ..., rv) is obtained that fulfills the following two relations:

0 < ri < 1 , ∀i ∈ {1, 2, ..., v} and
v∑
i=1

ri = 1.

So, we take advantage of this property of the Dirichlet distribution to simulate
the relative sizes of the attraction basins of v local optima. We simplify the
sampling by assuming d1 = d2 = ... = dv = d, so that we sample Dirichlet
distributions with only two parameters: D(v, d).

For the parameter v we decide to work with the following values: 100, 1000
and 10000. Regarding d, working with many values of this parameter would
be unfeasible. We decide to make an initial experiment to choose values of
d that could simulate very different distributions of the sizes of the attraction
basins. In order to choose these values, we sample different D(v, d), for v =
100, 1000 and 10000, and d = 0.1, 0.2, 0.3, ..., 4.8, 4.9, 5. For each v and dwe take
100 samples and calculate the variance of the v data obtained in each sample.
Then, according to the average of the 100 variances of each case, we will choose
the values of d that we will use to simulate the instances. Figure 1 shows the
average values of the 100 variances obtained for each combination of d and v.

Observing the plot, we choose the following values for d: 0.1, 0.2, 0.5 (high-
medium variance) and 2, 4 (low variance). Once the values of d are decided,
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we obtain 10000 samples of a Dirichlet distribution for each combination of d
and v, that pretend to be 10000 different instances of COPs for each case. So, we
have a set of 150000 instances divided in 15 equally sized groups according to
v and d. Each method is run 100 times for each of the simulated instances using
two different sample sizes: M = 1000 and M = 10000. The results provided
are the average of the 100 values. Note that as FRT does not depend on the
sample size, it is only applied 100 times for each instance.

4.1.2 Results

In this section we analyze the performance of the methods and compare them
taking into account the different parameters (v, d and M ). Firstly, we check if
the methods provide useful estimates. Secondly, we use nonparametric tests
to rank the methods and study the significant differences among the observed
results. Finally, a more qualitative study is developed, emphasizing an impor-
tant characteristic which is the stability of the methods.

The closeness of the estimates provided by the methods to the value we
want to estimate is the most important factor. Obviously, there are methods
that estimate better than others, but it does not mean that the estimates pro-
vided by the best methods are close enough to the real value. In order to check
if we are able to obtain good estimates with these methods, we choose for each
combination of v, d, and M , the method that provides the best average estima-
tion over all the 1000000 results (10000 instances x 100 repetitions). In Figure 2
we represent the average estimate obtained with this best method and the real
number of local optima (with a dashed line) for each v and d. As expected, the
quality of the estimate depends on the parameters of the instances (v and d)
and the sample size. For small values of d (0.1, 0.2 and 0.5, i.e. high variance
of the sizes of the attraction basins) the estimates are really far from the real
number. Furthermore, the higher the number of local optima, the worse the
estimate (see Figure 2 (a)-(c)-(e) and (b)-(d)-(f)). For scenarios where the sizes
of the attraction basins are quite similar (d = 2, 4), the methods provide precise
estimates. As regards the sample size, it can be observed that the larger the
sample size, the better the estimates provided are (see Figure 2 (a)-(b), (c)-(d)
and (e)-(f)). However, this improvement is not enough to reach accurate results
in cases of low values of d.

Continuing with the study of the methods, we carry out a statistical analysis
to compare the estimates obtained for the different methods. We consider three
different scenarios for comparison according to the parameters of the study
(M, v, d). In the first scenario considered, the estimates are grouped in two
sets according to M = 1000 and 10000. The second scenario considers three
different sets that contain the estimates of the instances with v = 100, 1000 and
10000 local optima. In the last scenario the estimates are grouped in five sets,
according to the parameter d = 0.1, 0.2, 0.5, 2, 4. A nonparametric Friedman’s
test with level of significance α = 0.05 is used to test if there are statistical
significant differences between the estimates provided by the 9 methods in the
different scenarios. It provides a ranking of the methods while also giving an
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Figure 2: Boxplot that represents the estimations provided by the best method (on average over
the 10000 instances x 100 repetitions) for the different values of d. The datasets are created assum-
ing 100 ((a), (b)), 1000 ((c), (d)), and 10000 ((e), (f)) local optima, which are indicated in each figure
with a dashed line. In (a), (c) and (e) the methods are applied with sample size 1000, while in (b),
(d) and (f) the sample size is 10000.
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average rank value for each method. As we always find statistical differences
in all the cases, we proceed with a post-hoc test which carries out all pairwise
comparisons. Particularly, we use the Holm’s procedure fixing the level of
significance to α = 0.05. Pairwise significant differences are found between all
of the methods in the three scenarios.

Table 2 shows the ranking obtained for the methods with the Friedman’s
test in the first scenario, when using a sample of size M = 1000 (first pair of
columns) and M = 10000 (last pair of columns). The lower the rank, the worse
the performance of the method is. So, the methods are ordered from best to
worst. Therefore, the best methods when separating the estimates according to
the sample size, are ChaoLee2 and ChaoBunge.

In Table 3 the ranking for the methods is shown, but this time for the sec-
ond scenario, that is, when grouping the estimates for the instances created
with v = 100 (the first pair of columns), v = 1000 (the pair of columns in the
middle), and v = 10000 (the last pair of columns). In these three cases the
Holm’s procedure states that significant differences exist among each pair of
methods. From this table we can observe that the lower the number of local
optima, the better the estimates provided by Chao1984 are. On the contrary,
ChaoLee2 improves its performance as the number of local optima grows.

Table 2: Average rankings of the methods according to the sample size M
M=1000 M=10000

Method Ranking Method Ranking
ChaoLee2 7.79 ChaoBunge 7.78
ChaoBunge 7.03 ChaoLee2 6.88
Chao1984 6.87 Chao1984 6.68
ChaoLee1 6.50 Jckk 6.31
Jckk 5.67 ChaoLee1 5.71
Boots 4.59 Boots 4.71
Sch-Cen 3.27 Sch-Cen 3.63
MFRT 1.94 MFRT 1.88
FRT 1.35 FRT 1.41

Finally, Table 4 shows the ranking obtained for the methods when the esti-
mates are separated according to the instances created with the same Dirichlet
parameter d. This ranking gives an idea of the method that is better to use ac-
cording to the variance of the sizes of the attraction basins of the local optima.
For high variance (small values of d) the recommended method is ChaoBunge,
but ChaoLee2 also provides very good estimates. For instances with quite simi-
lar sizes of attraction basins the best method is ChaoLee2.

From the statistical analysis, we can conclude that the worst methods in all
scenarios are FRT, MFRT and Sch-Cen. On the other hand, we can not conclude
that there is a best overall method for all scenarios. However, if we consider the
first three best methods, ChaoBunge and ChaoLee2 are always among them. So,
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Table 3: Average rankings of the methods according to the number of local optima v
v=100 v=1000 v=10000

Method Ranking Method Ranking Method Ranking
Chao1984 7.25 ChaoBunge 8.25 ChaoLee2 8.33
ChaoBunge 7.05 ChaoLee2 7.30 ChaoLee1 7.06
ChaoLee2 6.37 Chao1984 6.85 ChaoBunge 6.91
Jckk 6.35 Jckk 6.03 Chao1984 6.24
ChaoLee1 5.40 ChaoLee1 5.87 Jckk 5.58
Boots 5.21 Boots 4.51 Boots 4.23
Sch-Cen 3.93 Sch-Cen 3.20 Sch-Cen 3.22
MFRT 2.22 MFRT 2.00 FRT 1.92
FRT 1.22 FRT 1.00 MFRT 1.52

Table 4: Average rankings of the methods according to the Dirichlet parameter d
d=0.1 d=0.2 d=0.5

Method Ranking Method Ranking Method Ranking
ChaoBunge 8.37 ChaoBunge 8.02 ChaoBunge 7.39
ChaoLee2 7.52 ChaoLee2 7.31 ChaoLee2 7.13
Chao1984 7.07 Chao1984 7.01 Chao1984 7.08
Jckk 6.30 Jckk 6.58 Jckk 7.01
ChaoLee1 5.51 ChaoLee1 5.82 ChaoLee1 6.05
Boots 4.06 Boots 4.07 Boots 4.13
Sch-Cen 3.06 Sch-Cen 3.07 Sch-Cen 3.07
MFRT 2.05 MFRT 1.90 MFRT 1.73
FRT 1.05 FRT 1.23 FRT 1.40

d=2 d=4
Method Ranking Method Ranking
ChaoLee2 7.17 ChaoLee2 7.53
Chao1984 6.75 ChaoLee1 6.84
ChaoBunge 6.59 ChaoBunge 6.63
ChaoLee1 6.31 Chao1984 5.99
Boots 6.03 Boots 4.96
Jckk 5.16 Jckk 4.90
Sch-Cen 3.72 Sch-Cen 4.33
MFRT 1.80 MFRT 2.07
FRT 1.47 FRT 1.74

in case of lack of information about the number of local optima of the instance,
or the sizes of their attraction basins, using both of them we will probably be
obtaining more accurate estimates than by using any other method.

Although the statistical analysis gives a global picture of the performance
of the methods, it is also relevant to consider some aspects that are not reflected
in the hypothesis tests. One of these aspects is that of stability. Imagine that we
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have some instances with similar properties (the same number of local optima
and similar distribution of sizes of the attraction basins). We are interested
in knowing if the method will provide comparable estimates for the different
instances, or if they will be extremely different. In the first case we say that
the method is stable, while in the second it is unstable. ChaoBunge is a very
unstable method in certain situations, while the rest of the methods are very
stable. Under some circumstances, ChaoBunge provides a very good estimate
for the number of local optima for most of the instances, but there are instances
where the given estimate is very far from v. For example, for v = 100, M =
1000 and d = 0.1 (Figure 3 (a)). In other situations, for example, for v = 1000,
M = 1000 and d = 2 (Figure 3 (b)) it is the method that provides the best
estimates of the number of local optima for all instances. In order to compare
the performance of this method with ChaoLee2 in these particular scenarios, the
estimates provided by ChaoLee2 are also reflected in Figure 3 (b). We provide
all the figures that represent the estimates given by each method for each v and
each d, in the following website 1.

We conclude from the tables that ChaoBunge is one of the best methods, but
we find specific situations where the estimate provided is very far from the
real value we want to estimate. In order to know if the estimate provided by
ChaoBunge is valid, we could also apply other methods, such us ChaoLee2, and
compare both results. If these estimates are close enough, the one provided
by ChaoBunge could be accepted. Otherwise, if these estimates are very far one
from each other, we are almost sure that ChaoBunge is giving a useless estimate.
So, we consider that a suitable way for estimating the number of local optima
of an instance is not by using a single method, but a comparison of different
methods.
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Figure 3: Estimates of the number of local optima provided by ChaoBunge (a) and ChaoBunge
and ChaoLee2 (b) for 10000 synthetic instances created by samplingD(100, 0.1) andD(1000, 2), re-
spectively. The sample size used in both cases is 1000. In (a) we see the instability of the ChaoBunge
method, but in (b) it is stable.

1http://www.sc.ehu.es/ccwbayes/members/leticia/EstimationNumOpt/EstNumOptFig.html
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4.2 Random instances of TSP

4.2.1 Experimental design

In order to contrast our initial conclusions, in this section we work with ran-
dom instances of the Traveling Salesman Problem. Given a list of cities and
their pairwise distances, the aim of this problem is to find the shortest tour that
visits each city exactly once, returning to the initial city. Particularly, we work
with random instances of the Symmetric Traveling Salesman Problem with 14
and 15 cities. In the symmetric version, the distance from the city A to the
city B is considered the same as from B to A. The instances were created by
placing 14 and 15 points respectively, uniformly at random on a square of area
100 in an Euclidean space (Gent and Walsh, 1996). Afterwards, we calculated
the matrix that gives the Euclidean distance between every pair of cities. We
randomly created 500 instances with 14 cities, and 110 instances with 15 cities.

For the purpose of measuring the accuracy of the estimation methods we
first calculated the exact number of local optima of the instances when using a
2-exchange neighborhood (NS). The 2-exchange neighborhood considers that
two solutions are neighbors if one is generated by swapping two elements of
the other:

NS(π1π2...πn) =
{

(π′1π
′
2...π

′
n) | π′k = πk,∀k 6= i, j, π′i = πj , π

′
j = πi, i 6= j

}
.

So, applying to each solution of the search space a deterministic local search
algorithm (see Algorithm 1 in Section 2) with a 2-exchange neighborhood, the
exact number of local optima of the instance and their corresponding sizes of
the attraction basins are obtained. Notice that in the symmetric TSP there are 2n
permutations encoding the same solution. Therefore, we only take into account
one of all these different representations, and thus we search in a space of size
(n− 1)!/2.

The different methods for estimating the number of local optima were ap-
plied to all the instances considering two sample sizes: M = 1000 and 10000.
For each instance the methods are repeated 100 times and we evaluate and
compare the average estimates of each method.

4.2.2 Results

A first step in the analysis of the methods when applying them to random
instances of the TSP is the study of the accuracy of the estimates provided
by the methods. Secondly, a parameter d is associated to each instance and,
as in the previous section, the performance of the methods is studied again
according to d, v and M .

In order to check if the methods provide useful estimates, the average er-
rors of the estimates with respect to the real number of local optima are calcu-
lated. Table 5 shows the average relative errors and the standard deviations (in
brackets) grouped by the number of cities and the sample size.

A general conclusion deduced from Table 5 is that for n = 14 the meth-
ods provide better estimates than for n = 15. Table 5 also confirms the im-
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provement of the estimates as the sample size grows. It is remarkable that for
n = 15 cities (higher number of local optima than for n = 14) and sample size
M = 1000, the estimates are very far from the real value, and the standard de-
viations for these estimates are considerably high. Particularly, ChaoBunge has
a very high standard deviation when the sample size is 1000. This fact confirms
the unstable behavior observed in the previous experiments. The instability of
this method is a consequence of the variability on the estimation of the param-
eter θ̂ (see equation (3) of Section 3.2). If β1 >> βi (2 ≤ i ≤ δ), then θ̂ ≈ 0
and the estimation v̂ChaoBunge in this case is very large and very far from the real
value. This occurs when we have a sample where a lot of local optima are seen
only once, but there is a small number of local optima seen twice, three times,
etc. These particularities are commonly found when the sample size is small
with respect to the number of local optima, or even when the variance of the
sizes of the attraction basins of the local optima is high.

Table 5: Average relative errors and standard deviations (in brackets) of the estimates provided
by the different methods, according to the number of cities n and the sample size M . The range
for the real number of local optima of the instances appears in brackets under the number of cities
n.

FRT MFRT Sch-Cen Jckk Boots Chao1984 ChaoBunge ChaoLee1 ChaoLee2

n = 14 M=1000 96.15

89.20 43.61 ? 27.95 ? 36.75? 26.08 27.15 ? 28.42 22.70

(34 ≤ v ≤ 648) (3.48)

(17.76) (76.89) (71.81) (74.53) (57.02) (5949.52) (49.49) (45.48)

M=10000 87.15 14.29 5.65 10.28 6.71 7.34 8.93 7.86
(23.55) (29.03) (14.61) (21.50) (14.77) (15.49) (15.99) (13.83)

n = 15 M=1000 97.46

93.04 59.38 44.42 52.87 41.42 59.46 41.72 33.78

(97 ≤ v ≤ 1087) (2.11)

(11.48) (66.19) (83.04) (73.92) (62.66) (19247.69) (61.08) (61.47)

M=10000 91.68 26.47 14.64 20.91 16.33 14.64 18.16 16.20
(15.19) (47.48) (29.51) (39.67) (24.74) (14.20) (24.32) (18.40)

To visualize the performance of the methods, in Figure 4 we represent the
estimates provided. We first arrange the instances according to the number of
local optima and take 10 groups of 11 instances. For each group we calculate
the average estimate of each method. We represent the five methods that pro-
vide the best results: Jckk, Boots, Chao1984, ChaoLee1 and ChaoLee2. ChaoBunge
is removed from the plots because of its instability. Figure 4 shows the aver-
age estimates obtained for the instances of the TSP with 15 cities, for sample
size 1000 (up) and 10000 (bottom). We observe from the graphs that, when
the number of local optima is lower than 400 − 500, the estimates are close to
the real values. However, as the number of local optima grows, the estimates
provided by all the methods tend to distance themselves from the real number
of local optima. For sample size 1000, it can be clearly seen that in all groups
the best method is ChaoLee2, while ChaoLee1, Chao1984 and Jckk provide simi-
lar estimates. For sample size 10000, we observe that Jckk is the best method.
Additional information about the estimates provided by each method for each
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instance, can be found in the website 2.
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Figure 4: Estimates of the number of local optima provided by the different methods for 110
random instances of the TSP with 15 cities. The 110 instances are arranged according to the number
of local optima, and are put in 10 groups of 11 instances each. The average of the 11 estimates is
shown by the histogram for each method. The methods consider a sample of size 1000 (top graph)
and 10000 (bottom graph). The solid line indicates the number of local optima of the instances.

We compare the methods according to different parameters, as proceeded
in the previous section. Firstly, a parameter d is associated to each instance,
supposing that the sizes of the attraction basins were created sampling a Dirich-
let distribution with that particular d. Due to the fact that we know the number
of local optima v of the 610 random instances of the TSP, for each value of v we
sample Dirichlet distributions D(v, d), for each d = 0.1, 0.2, 0.5, 2, 4. We take
100 samples for each v and d and the variance of the v data is calculated in
each sample. On the other hand, the variance of the relative sizes of the attrac-
tion basins of the local optima of each of the random instances is calculated.
For each instance, we compare the variance of its relative sizes of the attrac-
tion basins with the variances obtained when sampling D(v, d), being v the
corresponding number of local optima of that instance. We associate to each
instance the value of d for which the variance of the instance is closer to the
average variance of D(v, d).

A classification of the instances according to d and v is carried out and we
realize that most of the instances have low values of d, that is, they have high
variances of the sizes of the attraction basins of the local optima. Table 6 shows
the number of instances that we associate with the different values of d de-
pending on the different number of local optima. Next, we study the perfor-
mance of the methods taking into account d, v and M , and we compare it with
the results of the previous section. As we have only found one instance with

2http://www.sc.ehu.es/ccwbayes/members/leticia/EstimationNumOpt/EstNumOptFig.html
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parameter d = 4, we analyze it separately. We saw in the previous section
that the three methods that provided the best estimates for d = 0.1, 0.2, 0.5, 2
as well as for M = 1000, 10000, were Chao1984, ChaoLee2 and ChaoBunge. Ta-
ble 7 shows the percentage of instances for which the three best estimates are
provided by these three methods, according to d and M . We observe that for
M = 1000 the percentages are lower than for M = 10000 and this is because
when M = 1000 ChaoBunge is more unstable than for M = 10000. For small
values of d (d = 0.1, 0.2, 0.5), and when the sample size used by the meth-
ods is 1000, the best method is ChaoBunge in more than 77% of the estimates.
In 379 of the 610 instances the second best method is ChaoLee2, and the third
best method is Chao1984 in 367 of the 610 instances. These results corroborate
the conclusions obtained from the analysis of the methods for the synthetic in-
stances (Table 4). When sample size is 10000, for small values of d, Chao1984
provides very good estimates, and in most of the instances it is the best method.
The reason is that almost all of the instances that have been associated a low
value of d have also a low number of local optima and, as was seen in Table 3,
the best method in these scenarios is Chao1984.

We only find one instance with a high value of d, and furthermore, it is the
instance that has the highest number of local optima (v = 1087). When the
methods are applied to this instance with sample size 1000, the best estimates
are provided by ChaoLee2 and ChaoLee1. As we saw in Table 4, these are the
best methods for d=4. On the other hand, when sample size is 10000, the best
methods are ChaoBunge and ChaoLee2. This matches the results shown in Table
2 (last pair of columns) and Table 3 for v = 1000.

Table 6: Number of instances that are assigned different values of d according to v.
30 < v < 500 500 < v < 1100

d=0.1 346 0
d=0.2 155 0
d=0.5 81 3
d=2 13 11
d=4 0 1

Table 7: Percentages of the number of instances for which the best three estimates obtained are
provided by Chao1984, ChaoBunge and ChaoLee2.

M = 1000 M = 10000

d=0.1 80.64% 97.40%
d=0.2 78.71% 99.35%
d=0.5 55.95% 100.00%
d=2 41.67% 95.83%
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4.3 Instances of TSP and FSSP

4.3.1 Experimental design

This section is devoted to experiments with real instances of COPs, as well as
instances taken from the Taillard’s benchmark. We work with 10 instances of
the Traveling Salesman Problem (with real distances between cities) and other
10 instances of the Flow Shop Scheduling Problem. The FSSP can be stated as
follows: there are n jobs to be scheduled in m machines. A job consists of m
operations and the j-th operation of each job must be processed on machine j
for a specific processing time without interruption. We consider that the jobs
are processed in the same order on different machines, what is known as the
Permutation Flow Shop Scheduling Problem (PFSP). The objective of the PFSP
is to find a permutation that represents the order in which the jobs have to be
scheduled on the machines, minimizing the total flow time.

For the TSP we take the real distances between 14 cities of the continents
Africa, America, Asia and Europe, and 14 cities of The United States, Spain
and Australia and Pacific cities 3. For the PFSP we consider instances with 13
jobs and 5 machines, obtained from the well-known benchmark proposed by
Taillard 4 that has been commonly used by numerous authors, such as Taillard
(1990), Bierwirth and Mattfeld (1999) or Ceberio et al. (2012). The instances of
both TSP and PFSP used in this section of the experiments are available in the
website 5.

We apply Algorithm 1 to each instance starting from each solution of the
search space. Notice that the size of the search space of the TSP instances is
13!/2, while the instances of the PFSP have a search space of size 13!. In this
section we consider two neighborhoods: 2-exchange and Insert. Two solutions
are neighbors under the Insert neighborhood (NI ) if one is obtained by moving
an element of the other one to a different place:

NI(π1π2...πn) =
{
(π′1π

′
2...π

′
n) | π′k = πk,∀k < i and ∀k > j, π′k = πk+1, ∀i ≤ k < j, π′j = πi

}
∪
{
(π′1π

′
2...π

′
n) | π′k = πk, ∀k < i and ∀k > j, π′i = πj , π

′
k = πk−1, ∀i < k ≤ j

}
.

The different methods for estimating the number of local optima are ap-
plied to all the instances using both neighborhoods. The reason why we have
considered these two neighborhoods in this section is that they provoke dif-
ferent situations for the estimates obtained with the different methods. As the
Insert neighborhood explores at each step more solutions than the 2-exchange
neighborhood, the number of local optima obtained when considering the first
neighborhood is probabilistically lower than when assuming the second one.

3http://www.mapcrow.info
http://locuraviajes.com/blog/wp-content/uploads/2011/08/cuadro-distancias-ciudades-

espa?a.gif
4http://mistic.heig-vd.ch/taillard/problemes.dir/ordonnancement.dir/ordonnancement.html
5http://www.sc.ehu.es/ccwbayes/members/leticia/EstimationNumOpt/EstNumOptInst.html
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4.3.2 Results

In this final section our aim is to extend the previous analysis focusing on the
accuracy of the methods and their relation to the sample size. For this purpose
we first look for the minimum sample size that allows each method to reach
estimates closed to the real number of local optima. We consider that a method
that needs a smaller sample size to provide good estimates will be more useful.
In addition, we also analyze the effect of the sample size on the methods using
small as well as large sample sizes, in order to find the methods that provide
better estimates in more realistic situations. That is, when the sample size is
very small compared with the real number of local optima of the instance.

In order to study the sample sizes needed to obtain good estimates, we
choose for each method the minimum sample size for which at least 95 of 100
estimates provided are closer than 95% from the real number of local optima
of each instance under each neighborhood. The algorithm used to obtain the
minimum sample sizes starts with M = 100. It doubles the value of M , until it
succeeds or reaches the maximum sample size considered (6553600 = 100x216).
In case of success for a given M , a bisection procedure is applied until the
difference between the last accepted sample size and the previously discarded
one is 100. So, it converges to the minimum sample size wanted. We repeat
this process 10 times and show the average values.

Tables 8 and 9 show the average sample sizes that the methods need when
they are applied to the TSP and PFSP instances, respectively. In both tables,
each row represents an instance and a neighborhood. The first half of the ta-
bles is related to the Insert operator and the second half to the 2-exchange op-
erator. Inside each group, instances are put in an ascending order according to
the number of local optima (first column). In most of the instances the MFRT
method is not able to fulfill the condition stated (a line is drawn for these cases).
Notice that FRT is not taken into account because this method does not depend
on the sample size and, as we saw in the previous sections, this method pro-
vides such bad estimates that we decided to take it out from the study in this
section.

Looking at the overall results, one could conclude that the best methods are
Jackknife and Bootstrap, because in almost all instances they need a smaller
sample size to provide very good estimates. This fact seems to be in conflict
with almost all the results obtained in the previous sections, where Chao1984,
ChaoBunge, ChaoLee1 and ChaoLee2 seemed to be the most promising. How-
ever, this result agrees with that observed in the previous section, where Jckk
provided better estimates than the rest of the methods for sample size 10000.
Therefore, and in order to obtain additional information about the performance
of the methods, we decided to study the estimates provided by them when the
sample sizes are small. This idea arose when we realized that in real life we
have to face problems of such high dimensions that they have a huge num-
ber of local optima. So, the sample we are able to deal with is usually tiny
compared to the number of local optima. Thus, we are interested in finding
methods that do not need such a large sample size to provide a good estimate.
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Table 8: Average of the minimum sample sizes obtained for which at least 95 of 100 estimates
provided by each of the methods are closer than 95% to the real number of local optima for each
TSP instance under Insert and 2-exchange neighborhoods. The minimum sample size obtained for
each instance is in bold.

Number of MFRT Sch-Cen Jckk Boots Chao1984 ChaoBunge ChaoLee1 ChaoLee2local optima

TSP Insert

1 100 100 100 100 100 100 100 100
2 100 100 100 100 100 100 100 100
2 100 100 100 100 100 100 100 100
5 650 100 110 100 100 100 100 100

? 9 —— 1320 2030 1220 1330 1910 1870 1840
9 353940 ?200 ?250 200 200 230 200 200

12 —— 1690 2750 1650 1750 2520 2600 2590
22 —— 2740 4330 2720 3600 4030 3580 4000
29 —— 2260 3360 2270 2670 5240 2860 5480
32 —— 2370 3490 2320 2960 3110 2750 2950

TSP 2-exchange

67 —— 23270 28810 22010 37130 34250 24280 28590
73 —— 522490 483810 515930 647950 1095310 793700 1009610
90 —— 55220 44460 57090 81340 174680 55320 152200
92 —— 24980 30450 20020 39110 23770 21740 23250

103 —— 40450 26450 32110 48070 35920 36390 36790
117 —— 179670 132460 173490 251070 228310 165270 177680
188 —— 88860 47150 66520 129460 75440 74640 70690
201 —— 93970 45850 68870 107460 69160 70890 65720
393 —— 224390 91510 150410 167600 168980 167560 166950
455 —— 275540 89380 ?161850 189310 189850 199250 193950

Table 9: Average of the minimum sample sizes obtained for which at least 95 of 100 estimates
provided by each of the methods are closer than 95% to the real number of local optima for each
FSSP instance under Insert and 2-exchange neighborhoods. The minimum sample size obtained
for each instance is in bold.

Number of MFRT Sch-Cen Jckk Boots Chao1984 ChaoBunge ChaoLee1 ChaoLee2local optima

FSSP Insert

14 —— 3320 5540 3150 3640 4720 4830 4760
70 —— 17920 19380 16520 25220 17680 16390 18130

134 —— 25710 25730 18880 45320 21540 19870 20750
160 —— 47300 28170 34350 63310 39850 37040 35380
190 —— 19930 11630 13770 32110 16050 15910 15960
285 —— 23820 9840 15260 19310 16620 18110 17240
404 —— 29830 10670 18430 19880 18790 20100 19270
461 —— 51320 17550 31200 35040 34770 36670 33560
506 —— 77700 24780 45910 52990 54730 58060 56180
923 —— 137950 40850 79530 88750 92460 94730 93780

FSSP 2-exchange

192 —— 39410 19540 29300 55320 31750 32290 33600
1643 —— 445780 134260 254870 264950 264640 285060 264130
1846 —— 628440 199600 363320 338380 323990 366380 338730
1997 —— 592030 177390 341020 337870 343950 370630 354610
2130 —— 912200 273490 527160 508690 521420 576430 539570
2382 —— 763420 227140 435560 411080 426840 466190 431230
2386 —— 613130 179250 353810 346650 357130 384600 363640
5119 —— 2149000 643230 1229450 1098740 1093250 1235370 1128300
6485 —— 1671460 456690 927350 863640 875150 994270 900410
8194 —— 2052570 568480 1148250 1032760 1058350 1204950 1094970

We apply the methods taking small sample sizes (compared to the number
of local optima) and analyze them according to the estimate they provide. We
have only considered the instances with more than 100 local optima, without
making distinctions between the two neighborhoods. We take sample sizes in
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the range 50-600 with steps of 50. MFRT and Sch-cen have been removed from
the study because for the instances with the highest number of local optima, the
estimates provided by these methods are lower bounds very far from the real
values. So we analyze Jckk, Boots, Chao1984, ChaoBunge, ChaoLee1 and ChaoLee2.

Table 10: Best methods obtained from the Friedman’s test for the TSP and PFSP according to the
sample size. The average relative error of the estimates provided by these methods is also shown.

Sample size Best method Average relative error

TSP
50 ... 350 ChaoLee2 22.56

400 ... 450 ChaoLee2, ChaoBunge 18.76, 20.05
500 ... 600 ChaoBunge 11.46

PFSP 50 ... 600 ChaoLee2 49.95

The methods are applied 100 times for each sample size. We carry out the
nonparametric Friedman’s test with level of significance α = 0.05 to the es-
timates, grouping them according to the sample size. We observe that there
are statistical significant differences between the estimates provided by the
six methods for all the sample sizes. We continue with the Holm’s procedure
which carries out all pairwise comparisons, setting the level of significance to
α = 0.05. Table 10 shows the best methods obtained from the Friedman’s test
for the TSP and PFSP according to the sample sizes. For the TSP, and using
sample sizes lower than 400, we find that the best method is ChaoLee2 and sig-
nificant differences between ChaoLee2 and the rest of the methods are found.
For sample sizes 400 and 450, the best methods are ChaoLee2 and ChaoBunge.
There are no significant differences between them, but there are between them
and the rest of the methods. For sample sizes larger than 450, the best method
in the ranking is ChaoBunge, with significant differences between this method
and the rest. For the PFSP instances, and for all sample sizes, ChaoLee2 is the
best performing method, and when we study the pairwise significant differ-
ences with the Holm’s procedure we can see that there are significant differ-
ences between ChaoLee2 and the rest of the methods.

Let’s now study in detail the estimates obtained for the two instances with
the highest number of local optima. Tables 11 and 12 show the average of 100
estimates provided by each method for small sample sizes (with respect to the
number of local optima) for the instances 9 and 10 of PFSP, respectively, when
using the 2-exchange neighborhood. These tables show that, when sample size
is small, Boots and Jckk provide worse estimates than the other methods. Obvi-
ously, the estimates improve as the sample size grows for all methods, except
for ChaoBunge. As was seen in previous sections, the ChaoBunge method is very
unstable. The estimate provided by this method varies significantly depending
on the sample size. Notice that although ChaoLee2, ChaoLee1 and Chao1984 pro-
vide the best estimates, these are also far from the real number of local optima.

If we analyze all the results obtained in this section, on the one hand, we
find that Jckk and Boots need a smaller sample size than the rest of the methods
to provide very good estimates. On the other hand, ChaoLee2 and ChaoBunge
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Table 11: Average of 100 estimates provided by each method for small sample sizes for the
instance 9 of PFSP when using 2-exchange neighborhood.

Instance 9 PFSP. Real number of local optima: 6485

Method M=50 M=100 M=150 M=200 M=250 M=300 M=350 M=400 M=450 M=500 M=550 M=600

Jckk 92 171 241 304 363 418 469 517 563 605 646 687
Boots 64 122 173 220 265 307 344 381 416 449 481 511

Chao1984 508 683 741 756 798 835 879 919 968 1016 1061 1099
ChaoBunge 254 390 508 259 425 607 600 533 1345 53853 519 393

ChaoLee1 576 682 799 847 876 910 950 988 1032 1074 1129 1176
ChaoLee2 789 1009 1221 1293 1290 1292 1341 1378 1441 1493 1584 1664

Table 12: Average of 100 estimates provided by each method for small sample sizes for the
instance 10 of PFSP when using 2-exchange neighborhood.

Instance 10 PFSP. Real number of local optima: 8194

Method M=50 M=100 M=150 M=200 M=250 M=300 M=350 M=400 M=450 M=500 M=550 M=600

Jckk 95 182 262 335 405 470 532 593 648 702 754 803
Boots 66 129 185 241 292 340 386 431 473 512 551 587

Chao1984 1018 1050 1048 1077 1150 1194 1240 1278 1334 1367 1405 1445
ChaoBunge 341 476 753 1634 5392 1144 5634 1211 1165 1279 4140 540

ChaoLee1 701 1035 1055 1061 1140 1200 1274 1323 1402 1443 1492 1543
ChaoLee2 745 1195 1195 1247 1396 1492 1633 1718 1858 1915 1992 2080
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Figure 5: Average of 100 estimates obtained by the different methods for the instance number 9
(up) and instance number 10 (bottom) of PFSP using the 2-exchange neighborhood as the sample
size grows.

are considered the best methods for small sample sizes. So, we suspect that
there is a threshold for the sample size where the estimates provided by ChaoLee2
and ChaoBunge, or even ChaoLee1 and Chao1984, are worse when compared
with the estimates provided by Jckk and Boots.

These suspicions motivate us to represent the estimates obtained by the dif-
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ferent methods for the two instances with the highest number of local optima
as the sample size grows. Here, we just plot the estimates corresponding to
Jckk, ChaoLee1 and ChaoLee2 to see the threshold mentioned more clearly. Nev-
ertheless, more detailed graphs are available in the website 6. In Figure 5 we
take into account very small sample sizes as well as high sample sizes (from
M = 50 to M = 200000). We observe that, when the sample size is small, the
best methods are ChaoLee2 and ChaoLee1. There is a threshold (for sample size
between 20000 and 60000) where Jckk improves its estimates compared with
those provided by ChaoLee1, and for sample size between 80000 and 200000,
the estimates given by Jckk also improve those provided by ChaoLee2. The rea-
son is that with a small growth in the sample size, the estimate provided by
Jckk improves more than the estimates given by ChaoLee1 or ChaoLee2. So,
our recommendation is to use the Jckk and Boots methods when we are able to
work with large sample sizes. But, if we suspect that our sample is very small
compared to the real number of local optima, the best methods to apply are
ChaoLee2 or ChaoLee1.

5 Conclusions and future work

In this paper we have reviewed different methods for estimating the number
of local optima of instances of combinatorial optimization problems. Our main
contribution is the comparison of methods in the optimization field with some
methods previously used for estimating the number of species in a population
in the field of statistics.

The methods have been applied to three datasets: synthetic instances, in-
stances of the TSP with 14 and 15 cities taken at random, and instances of
TSP with real distances between cities and instances of FSSP taken from the
well-known Taillard’s benchmark. The main conclusions observed for all the
methods in the three scenarios are the following:

1. When the attraction basins are similar in size, the methods provide esti-
mates close to the real number of local optima. Of course, the higher the
sample, the more precise the estimates.

2. The further the sizes of the attraction basins from the uniformity, the
worse the estimates. In fact, in the real instances (where the variance
of the sizes of the attraction basins is very high) the predictions are really
far from the real number of local optima.

Based on the results observed through the experiments, we provide the fol-
lowing rules of thumb:

• If we are able to take a sample of large size with respect to the number of
local optima, we recommend using Jckk.

6http://www.sc.ehu.es/ccwbayes/members/leticia/EstimationNumOpt/EstNumOptFig.html
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• If we suspect that our sample size is small (with respect to the number
of local optima), we recommend using ChaoBunge and ChaoLee2. Due to
the instability observed for ChaoBunge, both methods should be executed
independently. If the results provided are close, ChaoBunge is usually the
choice. Otherwise, select ChaoLee2.

• If analyzing the sample we realize that each (or most) of the initial solu-
tions reach different local optima, that is r = M and β1 = M , none of the
previous methods can be applied. In this case, we can base our estimator
on the proportion of local optima over the sample (Caruana and Mullin,
1999; Grundel et al., 2007).

We consider two different lines of future work. In a first step, we plan to
improve the quality of the estimates of some of the presented methods. For ex-
ample, methods such us ChaoBunge or ChaoLee2 depend on a cut-off value that
fixes the border between rare and abundant species. We think that this cut-
off value could be properly tuned for each instance and sample size instead of
being a fixed number. Our second line is related to the design of specific esti-
mation methods for COPs. As we have seen, the evaluated methods provide
unacceptable estimates in real instances. We conjecture that this is due to, on
the one hand, the fact that the methods have not been explicitly designed to
calculate the number of local optima but the number of species, and these are
different problems. On the other hand, they do not use all the information that
we have at hand when we try to calculate the number of local optima in a COP.
For example, the search space is structured and therefore, it could be divided
based on a certain criterion, performing estimates for each chunk. Also, the
number of steps (solutions) traversed from the initial solution to the local op-
tima can provide valuable information about the relative sizes of the attraction
basins.
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