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Comparison of liver and plasma metabolic profiles in Piglets of 
different ages as animal models for paediatric population  

Oihane E. Albóniga*a, Oskar Gonzáleza, Rosa M. Alonsoa, Yun Xub, Royston Goodacreb

Liver plays an important role in drug metabolism, so studying the grade of maturation of this organ would help to develop 

more appropriate dosing regimens for paediatric populations. Nevertheless, considering the invasive nature of liver analyses 

there are obvious ethical boundaries, particularly in babies and children. In this work, we investigated the suitability of blood 

plasma as an alternative matrix to evaluate the biological age of liver. With this aim, we studied the correlation of plasma 

and liver metabolomic profiles obtained by HPLC-TOF-MS for piglets of different ages (newborns, neonates and infants). By 

means of Pearson correlation analysis we observed that 360 and 1784 pairs of metabolite features were significantly 

correlated in positive and negative ionization mode, respectively. Procrustes analysis was applied in order to assess the 

similarity of the clustering resulting from the data obtained from the two matrices and the two ionisation modes. The 

Procrustes distances were low for both ESI+ (0.3753) and ESI- (0.3673) and, hence, liver and plasma are expected to provide 

similar discriminatory information. Furthermore, we found that Multiblock Principal Component Analysis (MB-PCA) readily 

allowed us to combine the data obtained from both matrices and to better understand the clustering according to the three 

study groups. Considering all these results, we suggest that plasma can provide valuable insight into the maturation grade 

of liver in order to provide accurate dosing in paediatric population.

1. Introduction

Clinical studies involving paediatric population are scarce in part 

due to principal difficulties: ethical issues(1-4) and difficulties in 

obtaining a statistical meaningful population that can be used 

to estimate confidence intervals due to the distributions are 

heterogenic in general(5). As a consequence there is a lack of 

knowledge about drug metabolism in children and the amount 

of authorized drugs for paediatric use is limited. For these 

reasons, drug administration in children is normally made “off-

label”, which involves the usage of drugs approved for adults for 

the treatment of paediatric diseases. The drug dosage for 

children is normally calculated by an empirical approach from 

adults, based on bodyweight (mgdrug/kg), and assuming a linear 

relationship between them(6). This approximation can 

sometimes be inadequate, becoming inefficient or even toxic. 

Furthermore, it is well known that the pharmacokinetic 

response to a drug is substantially different in paediatric 

populations compared with adults because drug disposition is 

closely related to the organ maturation state(7,8). In some 

cases, the liver capacity for drug metabolism is insufficient in 

children (immature organ) and even lower doses than those 

calculated from adults are required(9). Organ maturation is a 

dynamic process that occurs not only during fetal life, but also 

during neonatal and childhood period. This maturation depends 

highly on the activation and repression of genes, or sets of 

genes, and it is related to the growth, which at the same time 

depends on environmental factors, endocrine regulation and 

nutrition(10). Therefore, all these factors lead to situations in 

which children with the same chronological age could have a 

different biological age. As a consequence, a thorough 

understanding of human developmental biology in neonates, 

infants and children is required to achieve an effective and safe 

drug therapy(8)and a better personalized medicine(11).  

Metabolomics is a promising tool that has the potential to 

provide information about the maturation state of organs by 

means of investigating changes in organ metabolism. Metabolic 

profiles are commonly obtained from matrices such as urine, 

blood, plasma and serum because these are less invasive 

compared to tissue biopsies or other biofluids such as 

cerebrospinal fluid (CSF)(12). However, the most adequate 

matrix to study organ maturation state is the organ tissue itself, 

as this will contain organ-specific metabolites (13). Obviously, 

the inconvenience of tissue sample collection limits the direct 

analysis of tissue matrices(14,15). 

This limitation leads to the use of animal models such as 

minipigs or piglets. Piglets are widely used as surrogates for 

clinical trials in paediatric populations due to the piglets size, 

similarity, physiology, organ development, and disease 

progression(16-20). The knowledge obtained from metabolic 

profiles in tissue samples from piglets can be extrapolated to 

paediatric population. These organ metabolic profiles can also 

be combined with plasma or urine profiles, obtained from the 

same individuals, to study the relationship between them. If a 
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meaningful relationship exists, these less invasive matrices 

could be used as surrogates of the organ samples, avoiding 

sample collection difficulties. The metabolomes of different 

biological samples or data sets can be explored together using 

data fusion techniques. In this aspect, multiblock statistical 

methods are widely used in metabolomics to integrate data 

from different experiments together, which distinguish for the 

type of sample, analytical platform, growth conditions, as well 

as other factors(21-25). Multiblock principal component 

analysis (MB-PCA) provides analogous information to classical 

Principal Component Analysis (PCA) and finds a correlation 

between several sets of possibly related data (the different data 

blocks) to reveal the common trend between those data 

blocks(26). Furthermore, the correlation between the data sets 

can be studied with Pearson correlation analysis to determine 

which variables are more in agreement with the underlying 

biology(22). It is important to highlight that an appropriate 

comparison between different data sets requires further 

analysis to determine if the distribution of two sets of points 

follow similar behaviors. For this purpose, Procrustes analysis is 

a useful tool since it measures the similarity in clustering and in 

information obtained from two different sets of data(27). 

The aim of this work was to study liver tissue and plasma 

samples data from the same piglets as a whole in order to 

investigate if plasma could be an adequate surrogate matrix for 

liver. In order to investigate whether plasma metabolites can be 

used as liver maturation indicator or not, MB-PCA, Pearson 

correlation and Procrustes analysis were applied to the data 

acquired by High Performance Liquid Chromatography coupled 

to a Time-Of-Flight Mass Spectrometer (HPLC-TOF-MS) at 

positive and negative ionization modes. The key metabolites 

that significantly contributed to separation of three groups of 

piglets of different ages (newborns, neonates and infants) and 

may reflect organ maturation differences were then studied. 

2. Materials and Methods

2.1. Reagent and solutions 

Acetronitile (ACN) (LC-MS grade purity) and formic acid used in 

the mobile phases were purchased from Scharlau (Sentmenat, 

Spain) and Fisher Scientific (Pittsburgh, PA, USA), respectively. 

Methanol (MeOH) used for standards and sample preparation 

was also obtained from Scharlau. Ultra-high purity water was 

used in the preparation of mobile phase and reagent solutions 

and it was obtained from tap water pre-treated by Elix reverse 

osmosis, and subsequent filtration by a Milli-Q system from 

Millipore (Bedford, MA, USA). 

Standard reagents used to assess the performance of the LC-MS 

system operation were supplied by different manufacturers: 

paracetamol, cholic acid, (±) verapamil hydrochloride, 

simvastatin, reserpine and leucine encephalin acetate salt 

hydrate were provided by Sigma-Aldrich (Steinheim, Germany), 

caffeine was purchased from Alfa Aesar (Karlsruhe, Germany) 

and salicylic acid from Fluka Analytical (Bucharest, Romania). 

Finally, sodium fluvastatin was kindly supplied by Novartis 

(Basel, Switzerland). A system suitability test (SST) was prepared 

with the nine compounds at a final concentration of 100 ng/mL 

in MeOH:H2O 2:1 (v/v. 

2.2. Animal model and experimental design 

The piglets used in this study were Topig F-1 Large White x 

Landrave breed. Sample collection was performed by the 

Experimental Neonatal Physiology Unit of the BioCruces Health 

Research Institute (Cruces University Hospital, Basque Country, 

Spain), according to protocols approved by the Ethical 

Committee for Animal Welfare and were in compliance with the 

European and Spanish regulations for protection of 

experimental animals (86/609/EFC and RD 1201/2005). The 36 

samples, 50% of each gender, were obtained from mechanically 

ventilated newborn piglets or group A (< 5 days, n=12), neonate 

piglets or group B (2 weeks, n=12) and infant piglets or group C 

(4 weeks, n=12). Plasma samples were obtained after the 

immediate centrifugation of blood, collected in EDTA tubes, at 

950g for 10 min at room temperature. Liver tissue samples were 

immediate submerged in liquid nitrogen. Both types of samples 

were stored at -80 °C until analysis. 

2.3. Preparation of metabolomic samples from piglets 

Frozen plasma samples were thawed to room temperature and 

50 µL were vortex mixed with 100 µL of cold MeOH during 2 min 

in a Signature Digital Vortex Mixer 945303 (VWR, Radnor, PA, 

USA). After centrifugation at 16110 xg for 15 min at 10 °C in a 

5415R Eppendorf centrifuge (Hamburg, Germany) the 

supernatants were collected for HPLC-TOF-MS analysis. 

Liver tissue samples were kept on liquid nitrogen and/or ice 

during the whole sample manipulation and treatment. 1 mL of 

MeOH:H2O 2:1 (v/v) solution was added to 100 mg of tissue 

weighted in precellys tubes with 6 zirconium balls and extracted 

in a Precellys 24 Tissue Homogenizer coupled to a Cryolysis 

cooling system provided with N2 stream, both from Bertin 

Instrument (Montigny-le-Bretonneus, France). After 3 cycles of 

40 s (10 s between cycles) at 4500 rpm, the supernatants were 

centrifuged 3 times at 15866 g during 15 min at 10 °C to remove 

the suspension particles. Then the supernatants were ready for 

HPLC-TOF-MS analysis. 

For the preparation of Quality Control (QC) samples. 5 µL of 

each plasma sample were taken and thoroughly mixed, 

reaching a total volume of 180 µL. From this pool, 50 µL were 

treated as previously described protocol for plasma samples. 

For the tissue analysis, 8 µL of the centrifuged supernatant of 

each liver sample were combined and mixed. The QC samples 

were injected at the beginning of the run to condition the LC 

system and then every six samples during plasma and liver 

analyses. These QCs were used to assess reproducibly of the 

metabolic profiles and when necessary for signal correction 

within the analytical sequence. 

2.4. HPLC-TOF-MS analysis 

The metabolomic profiles of plasma and liver supernatants 

were obtained separately, in positive and negative ionization 

modes, on a high performance liquid chromatography (HPLC) 

system (Agilent 1200 Series) coupled to a hybrid quadrupole-

time-of-flight (Q-TOF) mass spectrometer (Agilent 6530) from 

Agilent Technologies (Santa Clara, CA, USA).  The analysis order 
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was randomized to reduce any time-related effects. 

Chromatographic separation was performed by injecting 5 µL of 

sample on a reverse phase column (Zorbax SB-C18 (2.1 x 100 

mm, 3.5 µm) equipped with a C8 guard column (2.1 x 12 mm, 5 

µm), both from Agilent Technologies, at 35 °C and a flow rate of 

0.4 mL/min. The mobile phase was 0.1% formic acid and 5% ACN 

in water (phase A), and 0.1% formic acid in ACN (phase B). The 

gradient increased in a linear way from 0 to 100% B in 10 min, 

it was kept at 100% B for 2.5 min and returned to the starting 

conditions in 1.5 min. Finally it was re-equilibrated for 5 min. An 

Agilent Jet Stream electrospray ionization source (ESI) operated 

in positive and negative ionization modes were employed at 

capillary voltages of +3800 V and -2500 V, respectively. The rest 

MS parameters were as follows: drying gas (nitrogen) 

temperature at 325 °C and a flow rate of 10 L/min, nebulizer gas 

pressure (nitrogen) at 30 psi, sheath gas at 350 °C and a flow 

rate of 11 L/min, skimmer at 65 V, fragmentor at 125 V and 

octopole RF peak at 750 V. Data acquisition was carried out in 

low mass range (< 1700 m/z), 2 GHz extended dynamic range 

and centroid mode at a full range from 50 to 1200 m/z (rate 2 

spectra/s). A reference solution was directly infused into the 

source for internal calibration during the analysis and for 

accuracy and reproducibility controlling. For this purpose, m/z 

121.0509 (purine, [C5H4N4+H]+) and m/z 922.0098 (HP-921, 

[C18H18O6N3P3F24+H]+) for positive mode, and m/z 112.9855 

(TFANH4, [C2H4O2NF3-NH4]-) and m/z 966.0007 (HP-921COOH, 

[C18H18O6N3P3F24-COOH]-) for negative mode, were used during 

the HPLC-TOF-MS run. Additionally, in order to control the 

analytical performance of the MS instrument and the LC system, 

the SST was injected in the HPLC-TOF-MS system at the 

beginning, in the middle and at the end of each sequence. The 

data were acquired using the Agilent MassHunter Workstation 

software (version B.05.01) and the raw data were processed 

with the Agilent  MassHunter Qualitative (version B.07.00). 

2.5. Data preprocessing 

HPLC-TOF-MS raw data were converted to mzXML file format 

using msConverter (proteoWizard) from 0 to 13.5 min to avoid 

features  coming from the cleaning step of the gradient. Data 

preprocessing was performed using XCMS 1.52.0 (Metlin, La 

Jolla, CA, USA) package 

(https://www.bioconductor.org/packages/release/bioc/
html/xcms.html). The algorithms employed were centWave 

for peak picking, obiwarp for retention time correction and 

density for grouping. The parameters used in each algorithm 

were optimized with the Isotopologue Parameters Optimization 

(IPO) package 

(https://bioconductor.org/packages/release/bioc/html/I
PO.html) and the conditions used are provided in Table 1. 
Finally, CAMERA 1.32.0 package (Bioconductor Open Source 

Software for Bioinformatics; 

https://bioconductor.org/packages/release/bioc/html/C
AMERA.html) was used for isotopologues and adducts 

detection. The matrices obtained for each sample type and 

ionization modes were treated before the statistical analysis. 

The isotopes identified by CAMERA ([M+1], [M+2] and [M+3]), 

the features before the injection peak (less than 1 min) and the 

features with percentage of relative standard deviation (%RSD) 

in the QCs greater than 20 %(28,29) were removed.  

2.6. Data analysis by Multiblock Principal Component Analysis 

(MB-PCA) 

The resultant matrices of the two biological matrices (liver 

tissue and plasma) of the three different groups of piglets 

(newborn (A), neonates (B) and infants (C)), each analyzed in 

positive and negative ionization modes, , were further analyzed 

in MATLAB software (The MathWorks, Naticks, USA) using the 

in-house toolbox https://github.com/Biospec/cluster-
toolbox-v2.0 to perform multivariate statistical analysis. 

In order to study the quality of the obtained data, classical 

exploratory principal component analysis (PCA) was performed 

for each data set (Liver ESI+, Plasma ESI+, Liver ESI- and Plasma 

ESI-). For this purpose, QC intensity drop correction and 

autoscaling were applied, and the resultant PCA scores plot was 

employed to assess the reproducibility of the data and to detect 

any outliers. 

Table 1. XCMS parameter for liver and plasma samples at both ionization modes used in 

this study. 

Multiblock modelling is designed to find the underlying 

relationship between several sets (data matrices or blocks) of 

possibly related data to reveal the “common trend” between 

them, and this was used to investigate correlations between 

plasma and liver matrices(26,30). For this purpose, 

unsupervised multiblock modelling (MB-PCA), which is the 

extension of commonly used PCA, was applied and two 

different MB-PCAs were carried out based on the two ionization 

modes of analysis. The first one (MB-PCA_ESI+) was constructed 

with the positive ionization mode data sets of liver (Liver ESI+ / 

Block 1a) and plasma (Plasma ESI+ / Block 2a) and the second 

one (MB-PCA_ESI-) with the negative ionization mode data sets 

for liver (Liver ESI- / Block 1b) and plasma (Plasma ESI- / Block 

2b).  

The algorithm CPCA-W proposed by Westerhuis et al. was used 

as the MB-PCA models(31). In this way, the model consisted of 

three main components. The super scores matrix, or Tt, 

represents the common trend across all the data matrices 

incorporated into the model. c pairs of blocks scores, or Tb, and 

loadings, or Pb, matrices that represents the unique pattern of 

each block under the consensual view revealed in Tt, where c is 

LIVER PLASMA 

Algorithm Parameter ESI+ ESI- ESI+ ESI- 

CentWav

e 

ppm 29 20.75 31.68 31 

peakwidth 
12, 

39.5 

9.76, 

50 

22.01, 

81.26 
20, 80 

mzdiff 0.0034 -0.0048 -0.0123 -0.012

Obiwarp 

profStep 0.655 0.64 0.7324 1 

center QC8 QC4 QC4 QC5 

gapInit 0.64 0.928 0.7552 0.928 

gapExtend 2.4 NULL 2.4 2.688 

Density 

bw 0.879 6 0.25 0.879 

mzwid 0.0265 0.025 0.027 
0.034

2 

https://www.bioconductor.org/packages/release/bioc/html/xcms.html
https://www.bioconductor.org/packages/release/bioc/html/xcms.html
https://bioconductor.org/packages/release/bioc/html/IPO.html
https://bioconductor.org/packages/release/bioc/html/IPO.html
https://bioconductor.org/packages/release/bioc/html/CAMERA.html
https://bioconductor.org/packages/release/bioc/html/CAMERA.html
https://github.com/Biospec/cluster-toolbox-v2.0
https://github.com/Biospec/cluster-toolbox-v2.0
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the number of data sets (blocks), in this work two (plasma and 

liver) incorporated into the MB-PCA model.  Finally, a block 

weights vector, or Wt, that represents the relative contribution 

of each block to the common trend showed in Tt (25).  

An equal-variance block weighting method was applied in order 

to solve such variance disparity. This consisted on autoscaling 

each data block, so every variable had a mean of 0 and a 

standard devition of 1, followed by the application of a scaling 

factor. The scaling factor was dependent of the number of 

variables and it was calculated as the inverse of the square root 

of number of variables in that certain block (1/√n, being n the 

number of variables within the block). After the weighting step, 

the MB-PCA was built with positive or negative ionization 

modes data matrices that hopefully have a common trend of 

interest.  

Finally, the MB-PCA scores plots obtained from the combination 

of two data sets (positive or negative data sets) were compared 

with the classical PCA scores plot. That is, the PCA scores plots 

obtained for Liver ESI+ and Plasma ESI+ matrices were 

compared with the MB-PCA_ESI+ and the Liver ESI- and Plasma 

ESI- score plots were compared with the MB-PCA_ESI-. In this 

way, it was possible to study the inference improvements 

achieved by the combination of the two matrices. 

2.7. Pearson correlation studies and significant metabolites 

In addition to MB-PCA, correlation analysis was performed to 

find out which features in each block were highly correlated to 

each other. The features with a high correlation are likely to 

have a great biological interest as they might originate from the 

same biological pathway. For this purpose, a pair-wise 

correlation analysis between the liver and plasma data sets 

corresponding to the same ionization mode was performed 

using Pearson correlation coefficient(32). Then, a correlation 

coefficient heat map was generated for each ionization mode to 

have a global view of the connections of all the metabolites(25).  

In order to identify if the metabolite features showed significant 

differences among the study groups, non-parametric test 

(Kruskal-Wallis) followed by False Discovery Rate (FDR) was 

applied. Finally, a post-hoc Turkey HSD test (Honestly Significant 

Difference) was performed to obtain those significant features 

that discriminate the three groups of piglets. The criteria to 

select the features of interest in this study was as follows: (1) 

features had to be correlated between liver and plasma samples 

with a Pearson correlation coefficient value greater than 

0.8.(25) and (2) features had to be significant using non-

parametric test and after applying FDR, with a p-value lower 

than 0.001, as well as differentiate the three group of piglets 

(A≠B≠C).  

2.8. Procrustes analysis of the significant features 

In order to understand the similarities between liver and plasma 

better, Procrustes analysis was employed to perform a 

multivariate pattern comparison measurement of the clustering 

patterns generated from the ordination plots. This comparison 

shows if plasma and liver samples cluster in a similar way and if 

they offer similar discriminatory information(32).  

Procrustes analysis is a method that analyses the distribution of 

two shapes or sets of points (or, in the present study, sets of 

samples) in high dimensional space. It determines a linear 

transformation (incorporating translation, scaling and rotation 

component) of the points in one matrix (e.g., Liver ESI+) to best 

conform them to the points in the other matrix (e.g., Plasma 

ESI+). The resulting goodness-of-fit value, the Procrustes 

dissimilarity (d), is the normalized sum of squared errors and the 

value of this dissimilarity ranges from 0 to 1. This value gives an 

indication of how similar the two shapes are. Thus, a value of 0 

means that the shapes are identical and values close to 1 mean 

that the shapes have nothing in common(27). Similarity 

between liver and plasma matrices, obtained from the same 

newborn, neonate and infant piglets, were assessed to 

determine if plasma could be an appropriate biofluid to reflect 

liver behavior. The main limitation of the Procrustes 

dissimilarity is that it requires matrices with the same number 

of points (rows-samples) and small differences in dimensions 

(number of columns-variables). As a consequence, the matrices 

of Liver ESI+, Plasma ESI+, Liver ESI- and Plasma ESI- were not 

directly employed and the PCA scores of first z PCs were used 

instead. It is also important to point out that only significant 

features (p<0.001) that fulfilled non-parametric test were of 

interest. Thus, only significant features were considered to 

perform the Procrustes analysis. For these reasons, d was 

measured between the resulting z scores that included 

sufficient PCs to explain 75% of the variance of the data, 

considering only the significant features. The PCA scores were 

obtained from the separately Autoscaled data sets from both 

types of samples at same ionization modes(27,32). A 

permutation test (n = 1000000) was also performed in order to 

obtain p-values, which indicates probabilities that the similarity 

between matrices have occurred by chance(32). 

3. Results and discussion 

3.1. Liver and plasma data fusion by MB-PCA and study of 

correlations among features 

Once the data matrices were pre-processed, Liver ESI+ 

generated 5603 features, Plasma ESI+ 2207, Liver ESI- 2242 and 

Plasma ESI- 1855. These resultant matrices were block weighted 

(autoscaling followed by factor scaling, 1/√n) in order to 

generate new matrices to perform the MB-PCA models (MB-

PCA_ESI+ and MB-PCA_ESI-). The MB-PCA super scores plots are 

shown in Fig. 1 where the separation between newborns (A), 

neonates (B) and infants (C) is clearly seen.  

MB-PCA model also generated PCA block scores plots for each 

individual data set that can be observed in Fig. 2. It is worth 

noting that the separation within groups observed in the PCA 

blocks scores is very similar and could be compared to that in 

the related MB-PCA super scores plot. Furthermore, it is 

remarkable that on Fig. 2, in block scores of Liver ESI- (block 1b), 

the TEV% of PC2 is slightly higher than that of PC1. The reason 

is that the Liver ESI- data had lower signal-to-noise ratio and the 

separation between three classes were weaker than that in 

Plasma ESI+ data, particularly between group A and the other 
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two groups. Therefore, the MB-PCA is more dominated by 

Plasma ESI- block. The first PC in this MB-PCA model which were 

separation group A from the other two groups was not the 

largest variance in Liver ESI- data which resulted in TEV% of PC2 

was slightly higher than that of PC1 for Liver ESI- block. 

In addition to MB-PCA, classical PCA scores plots for each 

individual data set were generated (see ESI, Fig. S1). Even 

though classical PCAs (see ESI, Fig. S1) and MB-PCAs (Fig. 1) 

show a similar pattern within groups, the MB-PCA super scores 

plots demonstrate that using multiblock modelling improves 

the clustering and enhances the separation between newborns 

(A), neonates (B) and infants (C) piglets. Moreover, further 

comparisons were done between block scores PCAs (Fig. 2) and 

classical PCAs (see ESI, Fig. S1) to assess the clustering. In this 

context, Liver ESI+ and Liver ESI- show a clear separation of the 

three groups of piglets in all cases but the clustering within 

groups is improved when block PCAs were performed from the 

MB-PCA models. Plasma ESI+ is mainly separated in the PC1 

when using classical PCA but, as it occurred with the liver data 

sets, the employment of MB-PCA improves the group 

clustering. Finally, the classical PCA of the Plasma ESI- data set 

shows a perfect separation between group A and groups B and 

C in the PC1, whereas no obvious separation could be observed 

between groups B and C. This trend occurs also in the Plasma 

ESI- block of the MB-PCA_ESI- model but it seems that the 

separation is slightly improved. Thus, the separation of groups 

is improved both in the MB-PCA super scores plot and in the 

respective block scores plots if compared to classical PCA scores 

plot. 

 

 

Fig. 1 MB-PCA super scores plots of combined data (liver and plasma) at positive (ESI+) and negative (ESI-) ionization modes. Coding for the 

piglet groups: newborns (A), neonates (B) and infants (C). TEV = total explained variance 
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The next stage was to explore the correlation among the 

features from liver and plasma data sets. For that aim, Pearson 

correlation coefficients were calculated for all the features and 

the results were visualized as heat maps for each ionization 

mode (see ESI, Fig. S2). 360 pairs of metabolites in positive 

ionization mode and 1784 pairs in negative ionization mode 

showed an absolute correlation coefficient greater than 0.8. 

Among them, 284 unique metabolites for the positive ionization 

mode (167 from the Liver ESI+ block and 117 from Plasma ESI+ 

block) and 654 for the negative ionization mode (293 from Liver 

ESI- and 361 from Plasma ESI-) were involved.  

The correlated features obtained after applying Pearson 

correlation were located and marked with red circles in the 

block loadings plot of the MB-PCA_ESI+ (Fig. 3) and MB-

PCA_ESI- (Fig. 4) models in order to visualize how the variables 

were distributed. As it can be observed in the loadings blocks 

plot for Liver ESI+ and Plasma ESI+, the correlated features are 

distributed on a diagonal from the lower left corner to the upper 

right corner. This trend is coincident with the separation trend 

between newborns (A) neonates (B) and infants (C) piglets 

found in the block scores PCAs (Fig. 2). Similarly, the distribution 

of the correlated features along the PC1 in negative ionization 

mode fits with the separation between groups in the pertinent 

block scores PCAs (Fig. 2)

Fig. 2 MB-PCA block scores plots for liver and plasma samples at both ionization modes. Liver ESI+ or Block 1a and Plasma ESI+ or 

Block 2a belong to the MB-PCA_ESI+ model whereas Liver ESI- or Block 1b and Plasma ESI- or Block 2b belong to the MB-PCA_ESI-. 

Coding for the piglet groups: newborns (A), neonates (B) and infants (C).  TEV = total explained variance 
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Fig. 3 MB-PCA_ESI- block loading plot for liver and plasma blocks. The metabolites circled in red are the ones with an absolute value of Pearson 

correlation coefficient greater than 0.8. The ID numbers correspond to the significant features that fulfill Kruskal-Wallis test (p-value <0.001) 

among the pairs of correlated features and distinguish the three groups (newborns, neonates and infants).

Fig. 4 MB-PCA_ESI+ block loading plot for liver and plasma blocks. The metabolites circled in red are the ones with an absolute value of Pearson 

correlation coefficient greater than 0.8.
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Next, non-parametric test (Kruskal – Wallis) and FDR (p-

value<0.001), followed by the post-hoc Tukey HSD tests, were 

applied. Among the 360 pairs of correlated features in positive 

ionization mode, there was no pair that fulfilled a p-value lower 

than 0.001 and differentiate the three groups under study. In 

negative ionization mode, 3 pairs out of 1784 fulfilled a p-value 

lower than 0.001 and distinguish newborns, neonates and 

infant piglets. 

The three pairs obtained in negative ionization mode were 

combinations of a single feature from Plasma ESI- with three 

features from Liver ESI-.  This means that this unique feature in 

Plasma ESI- (ID 1072) is correlated with the three features in 

Liver ESI- and that all of them distinguish the group of study in 

a significant way. Interestingly, the Plasma ESI- feature and the 

three Liver ESI- features are located in the same position in the 

block loadings plots (Fig. 4), which means that they have the 

same trend within groups. For this specific case, newborns (A) 

have greater amount of these features compared to infants (C) 

and a down-regulated trend was observed (Fig. 5). This fact is of 

special interest as correlated and significant features follow 

same tendency in both biological matrices, liver and plasma. 

3.2. Procrustes analysis to assess the similarity of clustering in liver 

and plasma 

Finally, Procrustes analysis was performed to determine the 

similarity between liver and plasma matrices. For this purpose, 

the z score matrices obtained by considering only the significant 

features of the Liver ESI+, Plasma ESI+, Liver ESI- and Plasma ESI- 

matrices were used to perform the Procrustes analysis. The 

number of PCs included in the z score matrices, which explained 

a TEV greater than 75 %, were four for Liver ESI+, Liver ESI- and 

Plasma ESI- and two for Plasma ESI+. The Procrustes 

dissimilarity values (d) for the pairs Liver ESI+/Plasma ESI+ was 

0.3753 and for Liver ESI-/Plasma ESI- was 0.3673. The 

permutation tests indicated that similarity between liver and 

plasma at both ionization modes are very unlikely to have 

occurred by chance, with p-values below 1.0  10-6. Therefore, 

liver and plasma samples cluster in a very similar way and, in the 

case studied, plasma could be considered a biofluid that 

provides vital information for liver maturation without need to 

analyse liver tissue directly.  

 

Conclusions 

In this study, HPLC-Q-TOF-MS system was used to obtain 

metabolic profiles from plasma and liver tissue samples. A 

thorough data treatment was carried out in order to ascertain 

whether the plasma is an appropriate biofluid to reflect liver 

maturation state.  

Both the super scores and block scores plots obtained by MB-

PCA modelling provided an improvement on clustering within 

groups compared to the classical PCA .Moreover, MB-PCA has 

the advantage of considering the relationship between liver and 

plasma samples as well as revealing the trend and correlation 

between plasma and liver.  

Pearson correlation studies together with the MB-PCA was a 

successful tool to find and understand correlations between 

metabolites detected in liver and plasma. This approach, 

combined with the univariate analysis, allows to connect 

features from liver and plasma that show significant differences 

among groups and are strongly correlated. In other words, it can 

be used to find in one particular biological matrix metabolites 

that explain the changes in the other matrix. Furthermore, the 

feasibility of using plasma as a surrogate matrix of liver is also 

supported by the Procrustes analysis that indicates that both 

matrices are similar and comparable. 

This is of special interest because metabolites detected in 

plasma could be used to investigate liver state.. In this way the 

limitation on tissue sample collection can be potentially 

avoided.  With further studies in children this link between 

plasma and liver could be used to measure the maturation state 

accurately. If successful, this approach could be employed 

within clinical trials in children to improve the knowledge on 

organ maturation development which would lead to a better 

drug dosing in the paediatric populations.  
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