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Abstract 

Introduction Several software packages containing diverse algorithms are available for processing Liquid 

Chromatography-Mass Spectrometry (LC-MS) chromatographic data and within these deconvolution 

packages different parameters settings can lead to different outcomes. XCMS is the most widely used peak 

picking and deconvolution software for metabolomics, but the parameter selection can be hard for inexpert 

users. To solve this issue, the automatic optimization tools such as Isotopologue Parameters Optimization 

(IPO) can be extremely helpful.  

Objectives To evaluate the suitability of IPO as a tool for XCMS parameters optimization and compare the 

results with those manually obtained by an exhaustive examination of the LC-MS characteristics and 

performance.  

Methods Raw HPLC-TOF-MS data from two types of biological samples (liver and plasma) analysed in 

both positive and negative electrospray ionization modes from three groups of piglets were processed with 

XCMS using parameters optimized following two different approaches: IPO and Manual. The outcomes 

were compared to determine the advantages and disadvantages of using each method. 

Results IPO processing produced the higher number of repeatable (%RSD <20) and significant features for 

all data sets and allowed the different piglet groups to be distinguished. Nevertheless, on multivariate level, 

similar clustering results were obtained by Principal Component Analysis (PCA) when applied to IPO and 

manual matrices. 

Conclusion IPO is a useful optimization tool that helps in choosing the appropriate parameters. It works 

well on data with a good LC-MS performance but the lack of such adequate data can result in unrealistic 

parameter settings, which might require further investigation and manual tuning. On the contrary, manual 

selection criteria requires deeper knowledge on LC-MS, programming language and XCMS parameter 

interpretation, but allows a better fine-tuning of the parameters, and thus more robust deconvolution.  

Keywords IPO · XCMS · LC-MS · Metabolomics · Data treatment 

1 Introduction 

Nowadays, LC-MS is the most widely used technique in metabolomics due to the large number of 

metabolites that can be measured in a single analysis (Spicer et al. 2017; Tautenhahn et al. 2012). The data 

obtained from LC-MS system are highly complex since hundreds or thousands of features (e.g., mass-to-

charge ratio and retention time, variables) are obtained with relatively a small number of observations 

(samples). Therefore, handling such complex data requires bioinformatic software for processing the results 

and reducing the complexity.  
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Nowadays, there are several software packages with different approaches and options available for LC-MS 

data processing. Since the algorithms employed within each program are different, the outcomes can also 

be different and, therefore, the results of a metabolomic study might differ (Myers et al. 2017). In addition, 

processing methods reply on a variety of adjustable parameters to function. An improper selection can lead 

to distorted outcomes (Libiseller et al. 2015). As reported Spicer et al., most of the day-to-day activities of 

metabolomics professionals consist of a combination of wet and dry lab work and only half have dedicated 

bioinformatics support (Spicer et al. 2017). This certainly means that metabolomics is a multidisciplinary 

science and that users need a significant knowledge on data processing including parameters selection and 

optimization. Nevertheless, software choice is not an easy task and some factors should be considered: the 

ease-of-use, the transparency of the algorithms employed the accessibility, robustness and reproducibility, 

etc. In this aspect, commercial software packages are generally more user-friendly, but also restrict the 

parameters that can be tuned and hide the algorithms behind the data processing. Moreover, commercial 

software can also be extremely expensive (Spicer et al. 2017) and normally, are intended to work with data 

files that are provided by the same manufacturer. By contrast, freely available software (usually under open-

source license) can read files with open format as mzXML, mzML, and netCDF, which are independent of 

instrument manufacturers formats. All these reasons explain the increased tendency of free software usage. 

XCMS is a freely available open source package (Smith et al. 2006) implemented in the R software 

environment. It is the most used software for LC-MS analysis as reported in a recent survey (Weber et al. 

2017). In XCMS, data are first filtered and peak detection is performed for each data file. Then, the software 

matches peaks in common among various data files and uses them to correct drifts in retention time (Lazar 

et al. 2015; Smith et al. 2006). Once the data files are aligned, it groups them across samples. Currently, 

XCMS provides three main peak detection algorithms, two retention time correction methods and three 

methods for peak grouping (Spicer et al. 2017).  These methods have, in turn, an extensive number of 

parameters that are optimizable and determine the outcome. As a result, an adequate selection of these 

parameters is critical for a successful metabolomics study. Unfortunately, this is not an easy task, especially 

for inexpert users, since the choice of some parameters is not intuitive if the process behind the algorithms 

is not properly understood. Furthermore, the dependence on the instrument used and the quality of the 

analytical performance also require a deep knowledge on mass spectrometry and liquid chromatography.  

In order to solve this issue, Libiseller et al. developed an automatic tool for the optimization of XCMS data 

processing parameters for metabolomics called Isotopologue Parameter Optimization (IPO) (Libiseller et 

al. 2015). IPO uses natural stable 13C isotopes to calculate a peak picking score. Then, retention time 

correction is optimized by minimizing the relative retention time differences within features, and grouping 

parameters are selected by maximizing the number of features showing exactly one peak from each 

injection of a pooled sample. The optimization process with IPO package starts with default settings for the 

XCMS algorithms. Then, an iterative process is followed by design of experiments (DoEs) using response 

surface models until the optimal processing parameters are achieved. This R package is freely available and 

could be helpful when a bioinformatician or a homemade optimisation tool is not accessible. IPO has been 

applied in multiple metabolomic studies, such as metabolite identification in plasma and cerebrospinal fluid 

for Parkinson’s Disease research (Stoessel et al. 2018a), multiple sclerosis metabolomic profiling (Stoessel 

et al. 2018b), tissue lipidome storage stability studies (Roszkowska et al. 2018), and many others (Grimbs 

et al. 2017; Harvey Colin et al. 2018; Narath et al. 2016). 

The aim of this present study was to evaluate the suitability of IPO as a tool for XCMS parameters 

optimization and compare the results with the ones obtained by fixing the processing parameters based on 

an exhaustive examination of the LC-MS performance. XCMS parameters optimization methods were 

applied to two sample sets (plasma and liver tissue) obtained from piglets of different ages (newborns (A), 

neonates (B) and infants (C)) analysed both in positive and negative electrospray ionisation (ESI) modes 

using High Performance Liquid Chromatography coupled to a Time-Of-Flight Mass Spectrometry (HPLC-

TOF-MS) system. 
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2 Experimental 

2.1 Reagents and solutions 

Acetronitile (ACN) (LC-MS grade purity) and formic acid used in the mobile phases were purchased from 

Scharlau (Sentmenat, Spain) and Fisher Scientific (Pittsburgh, PA, USA), respectively. Ultra-high purity 

water was used in the preparation of mobile phase and reagent solutions and was obtained from tap water 

pre-treated by Elix reverse osmosis, and subsequent filtration by a Milli-Q system from Millipore (Bedford, 

MA, USA). Methanol (MeOH) used for standards and sample preparation was also obtained from Scharlau 

(Sentmenat, Spain).  

Standard reagents used to assess the LC-MS system operation were from different manufacturers: 

paracetamol, cholic acid, (±) verapamil hydrochloride, simvastatin, reserpine and leucine encephalin 

acetate salt hydrate were provided by Sigma-Aldrich (Steinheim, Germany), caffeine was purchased from 

Alfa Aesar (Karlsruhe, Germany) and salicylic acid from Fluka Analytical (Bucharest, Romania). Finally, 

Novartis (Barcelona, Spain) gratefully donated fluvastatin sodium. A system suitability test (SST) was 

prepared with these nine compounds at a final concentration of 100 ng/mL in MeOH:H2O 2:1 (v/v); this 

solution composition was chosen as this is similar to the supernatant within plasma and liver samples.  

2.2 Study design and sample collection 

Sample collection was performed by the team of the Experimental Neonatal Physiology Unit of the 

BioCruces Health Research Institute (Cruces University Hospital, Basque Country, Spain) following the 

European and Spanish regulations for protection of experimental animals (86/609/EFC and RD 1201/2005), 

and was approved by the Ethical Committee for Animal Welfare. Samples were obtained from 

mechanically ventilated newborn piglets or group A (<5 days, n=12), neonate piglets or group B (2 weeks, 

n=12) and infant piglets or group C (4 weeks, n=12) of Topig F-1 Large White x Landrave breed. Each 

group contained the same number of females and males. Whole blood samples were collected in EDTA 

tubes, and they were immediately centrifuged at 950 g for 10 min at room temperature in order to obtain 

plasma. The supernatant was transferred to a cryovial and stored at -80 °C until analysis. Liver tissue 

samples were immediately submerged in liquid nitrogen and stored also at -80 °C until analysis. 

2.3 Plasma, liver and QC samples preparation 

Frozen plasma samples were thawed to room temperature and protein precipitation was carried out with 50 

µL of plasma and 100 µL of cold MeOH. After vortex mixing for 2 min in a Signature Digital Vortex Mixer 

945303 (VWR, Radnor, PA, USA), samples were centrifuged at 16110 g for 15 min at 10 °C in a 5415R 

Eppendorf centrifuge (Hamburg, Germany). The clean upper layer was transferred to a chromatographic 

vial to be injected into the HPLC-TOF-MS system. 

Liver tissue samples were kept on liquid nitrogen and/or ice during the whole sample manipulation and 

treatment. 1 mL of MeOH:H2O 2:1 (v/v) solution was added to 100 mg of tissue weighted in precellys tubes 

with 6 zirconium balls. The samples were extracted in a Precellys 24 Tissue Homogenizer coupled to a 

Cryolysis cooling system (both from Bertin Instrument, Montigny-le-Bretonneus, France), and this 

provided a N2 stream and set to 5 °C. The tissue homogenizer conditions applied were 3 cycles of 40 s (10 

s between cycles) at 4500 rpm. Supernatant was then centrifuged 3 times at 15866 g during 15 min at 10 

°C in order to remove the suspension particles. Finally, the supernatant was transferred to a 

chromatographic vial to be injected into the HPLC-TOF-MS system. 

QC samples were prepared as a pooled of biological samples (Broadhurst et al. 2018; Dunn et al. 2011). In 

the case of plasma QC sample, 5 µL of each biological sample were taken and thoroughly mixed, reaching 

a total volume of 180 µL. From this pool, 50 µL were treated as previously described protocol for plasma 

samples. Liver QC sample was prepared by taking 8 µL of the centrifuged supernatant from each sample. 

The QC samples were injected at the beginning of the run to set up the system and then every sixth samples, 

so they were used for signal correction within the analytical sequence.  For both plasma and liver analysis 

samples were run in a randomised order. 
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2.4 HPLC-TOF-MS analysis 

The metabolomic profiling of plasma and liver supernatants were performed using an Agilent 1200 Series 

HPLC system coupled to an Agilent 6530 hybrid quadrupole-time-of-flight (Q-TOF) mass spectrometer 

(Agilent Technologies, Santa Clara, CA, USA) accompanied by the MassHunter Workstation software for 

QTOF (version B.05.01 for data acquisition, and version B.07.00 for raw data processing). 5 µL of the 

extracted samples were injected into a Zorbax SB-C18 (2.1 x 100 mm, 3.5µm) reverse phase column with 

a C8 guard column (2.1 x 12 mm, 5 µm), both from Agilent Technologies.  

The separation was carried out at a flow rate of 0.4 mL/min and 35°C. The HPLC mobile phase consisted 

of 0.1% formic acid in water and 5% of ACN (solution A), and 0.1% formic acid in ACN (solution B). 

Gradient started from 0% to 100% B in 10 min, and then kept at 100% B for 2.5 min, returned to starting 

conditions in 1.5 min. Finally, it was kept for re-equilibrations at 0% B for 5 min.  

The ESI mass spectra data were acquired both in positive and negative ionization modes using Agilent Jet 

Stream ESI source (ESI), with capillary voltages of +3800 V and -2500 V, respectively. The other source 

parameters were kept constant in all the experiments: drying gas (nitrogen) temperature was 325 °C at a 

flow rate of 10 L/min, pressure of nebulizer gas (nitrogen) was 30 psi, sheath gas was kept at a flow rate of 

11 L/min at 350 °C temperature and the voltages of the skimmer, fragmentor, and octopole RF peak were 

65, 125 and 750 V, respectively. 

The MS detector operated in low mass range (< 1700 m/z) and 2 GHz extended dynamic range. Centroid 

acquisition mode was used at a full scan range from 50 to 1200 m/z with an acquisition rate of 2 spectra/s. 

In order to guarantee mass accuracy, a reference solution was directly infused into the source enabling 

continuous internal calibration during analysis and ensuring accuracy and reproducibility. For this purpose, 

two reference masses at m/z 121.0509 (purine, [C5H4N4+H]+) and m/z 922.0098 (HP-921, 

[C18H18O6N3P3F24+H]+) for positive mode, and m/z 112.9855 (TFANH4, [C2H4O2NF3-NH4]-) and m/z 

966.0007 (HP-921COOH, [C18H18O6N3P3F24-COOH]-) for negative mode, were used during the HPLC-

TOF-MS run. Additionally, in order to control the analytical performance of the MS instrument and the LC 

system, the SST was injected in the HPLC-TOF-MS system at the beginning, in the middle and at the end 

of each sequence. 

2.5 Data treatment and optimization of the processing parameters 

The raw HPLC-TOF-MS data were acquired with the Agilent MassHunter Workstation and were converted 

into mzXML format using msConvert (proteoWizard) from 0 to 13.5 min RT in order to avoid features 

coming from cleaning step of the gradient. Feature detection was performed in R 3.4.3 (https://www.r-

project.org/) using the XCMS 1.52.0 (Scripps, La Jolla, CA, USA) package 

(https://www.bioconductor.org/packages/release/bioc/html/xcms.html) (Smith et al. 2006). CentWave 

algorithm was used for peak picking considering that it fits better with centroid acquisition data and that it 

can detect partially overlapping features. It also results in higher precision values compared to matched- 

Filter (Tautenhahn, Boettcher, Neumann 2008). Retention time correction was directly performed on the 

profile by Obiwarp algorithm (Prince and Marcotte 2006a), which aligns multiple samples by using a center 

sample. An additional advantage of Obiwarp algorithm is that can be done independently of the peak 

picking or peak grouping (Prince and Marcotte 2006b). 

All these algorithms have some critical parameters that should be properly chosen to perform a 

metabolomics study. In this work, two different approaches to select the XCMS processing parameters were 

compared: an automated approach using IPO package 

(https://bioconductor.org/packages/release/bioc/html/IPO.html) developed by Libiseller et al. and a manual 

approach based on the HPLC-TOF-MS system (Libiseller et al. 2015). In Table 1 the most significant 

variables optimized for these two approaches are collected. 

  

https://www.r-project.org/
https://www.r-project.org/
https://www.bioconductor.org/packages/release/bioc/html/xcms.html
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Table 1. Definition of the optimized XCMS processing parameters according to R documentation. 

Processing 

Step 

XCMS 

Parameter 
Definition 

Peak Picking 

(centWave) 

ppm 
Maximal tolerated m/z deviation in consecutive scans in ppm. This is usually much 

larger than the ppm specified by the manufacturer 

peakwidth Chromatographic peak width, given as a range (min, max) in seconds 

mzdiff 
Minimum difference in m/z for peaks with overlapping retention times, can be 

negative to allow overlap 

Retention Time 

Alignment 

(Obiwarp) 

profStep Step size (in m/z) to use for profile generation from the raw data files. 

center 
The index of the sample all others will be aligned to. If center ==NULL, the sample 

with the most peaks is chosen as default. 

gapInit Penalty for Gap opening 

gapExtend Penalty for Gap enlargement 

Grouping 

(density) 

bw 
Bandwidth (standard deviation or half width at half maximum) of Gaussian smoothing 

kernel to apply to the peak density chromatogram. 

mzwid 
Width of overlapping m/z slices to use for creating peak density chromatograms and 

grouping peaks across samples. 

minfrac 
Minimum fraction of samples necessary in at least one of the sample groups for it to 

be a valid group. 

2.5.1 IPO parameters optimization 

The optimization of the processing parameters in IPO was performed using only the QC samples so that 

the biological or inter-individual variability would not affect the parameter optimization. The pipeline 

described by Libiseller et al. was followed using the default values included in the package (Libiseller et 

al. 2015). In short, IPO uses a lower and upper level for each parameter to be optimized and automatically 

calculates the center point. It generates the first Design of Experiment (DoE) and then, a new DoE is built 

according to the previous DoE results. An iterative process is performed until the optimized parameter 

setting was converged. Once the parameters were optimized, the values obtained were checked to confirm 

that they fitted with the HPLC-TOF-MS system settings and then they were applied to the all samples. 

2.5.2 Manual parameters selection 

Manual parameter selection was carried out considering the specifications of the HPLC-Q-TOF-MS 

instrument and the performance of the analysis, which was studied by using the SST. In this way, the ppm 

parameter was established considering the difference between the theoretical and experimental mass of the 

SST compounds and the tolerated mass deviation (µ) (Tautenhahn, Boettcher, Neumann 2008). The 

peakwidth was determined taking into account the minimum and maximum peak width within the standard 

compounds. In order to ensure a proper comparison, it was used as center sample the one selected by IPO 

in the optimization process. Then, mzwid was determined with the parameter manager tab in the XCMS 

Online (https://xcmsonline.scripps.edu/landing_page.php?pgcontent=institute). The bandwith (bw) was 

retention time deviation dependent and it was obtained from the figure resulted after Obiwarp retention 

time alignment when only QCs were analyzed. 

Once the data were analyzed with the parameters optimized by IPO and manually, and after grouping across 

samples, a filling step was included to reduce the number of missing peaks that could occurred during the 

peak identification or because the metabolite was not present in a sample (Smith et al. 2006). It is important 

to highlight that during the optimization processes minfrac parameter was set at 1 as features had to be in 

all the QC samples to be detected. On the other hand, when the study samples were processed minfrac was 

set at 1/6, so a feature had to be at least in the half of the samples of a group to be included. Finally, 

CAMERA 1.32.0 package (Bioconductor Open Source Software for Bioinformatics; 

https://bioconductor.org/packages/release/bioc/html/CAMERA.html) (Kuhl et al. 2012) was used for 

isotopologues and adducts detections. After the whole data processing, a two-dimensional table (matrix) 

with a list of features and their intensities was obtained for each sample set and ionization mode. These 

features include molecules, fragments, small peptides, isotopes, and so on. Then, these matrices were 

prepared before the statistical analysis in order to remove the isotopes identified by CAMERA ([M+1], 

[M+2] and [M+3]) and the features before the injection peak (less than 1 min). The percentage of relative 

standard deviation (%RSD) was calculated for all metabolic features in QC samples and the features with 

https://xcmsonline.scripps.edu/landing_page.php?pgcontent=institute
https://bioconductor.org/packages/release/bioc/html/CAMERA.html
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%RSD greater than 20% were removed due to its variability (Dudzik et al. 2018; Dunn et al. 2011). The 

amount of features that fulfill the %RSD criteria was calculated to compare easily the matrices obtained by 

both parameters optimization procedure, IPO and manual. 

2.6 Statistical analysis 

Multivariate analysis was performed in MATLAB (The MathWorks, Naticks, MA, USA) using our 

homemade MATLAB functions which is freely available online at https://github.com/Biospec/cluster-

toolbox-v2.0. The matrices obtained were further processed with QC intensity drop correction (Kirwan et 

al. 2013) and autoscaling or logarithm (log10) scaling was applied. Unsupervised analysis using principal 

component analysis (PCA) was performed as an overview for tendencies among piglets with different ages 

(newborn (A), neonates (B) and infant (C) piglets). This analysis was applied not only to reduce the 

dimensionality of the data for grouping the samples, but also to assess the data quality, such as the detection 

of potential outliers or technical variations (Lazar et al. 2015). The pattern of the data was analyzed visually 

via PCA scores plots. To evaluate if there were significant differences between the clustering obtained with 

the two parameters optimization methods a Procrustes distance (Dryden and Mardia 1998) was calculated 

between each pair of PCA scores (first 3 PCs) obtained by these two methods. Procrustes distance varied 

from 0 to 1 in which 0 indicates identical two patterns while 1 indicates that the two patterns were 

completely different. 

Univariate analysis, also performed in MATLAB, was carried out to identify molecular features that 

discriminate the three groups under study. Non-parametric testing (Kruskal - Wallis) followed by False 

Discovery Rate (FDR) was applied to detect the significant features. In order to find those significant 

features that differentiate the three groups of piglets, a post-hoc Tukey HSD test (Honestly Significant 

Differences) was performed.  Then, correlation of those features that show a similar retention time and m/z 

value in both parameters selection methods was studied. A coefficient of determination (R2) close to 1 

indicated that the same feature had been detected by IPO and manual selection method. Finally, a Venn 

Diagram was constructed with the significant features that fulfill the non-parametric test in order to 

visualize the impact of the processing parameter optimization method on the detection of features of 

interest. The diagram was built with the online version Venny 1.0 

(http://bioinfogp.cnb.csic.es/tools/venny/). 

3 Results and discussion  

3.1 IPO and manual parameter selection 

The XCMS processing parameters obtained by IPO optimization and the parameters chosen manually for 

each of the sample sets using the QC samples are collected in Table 2.  In addition to the parameters that 

were optimized (ppm, peakwidth, mzdiff, center sample, bw and mzwid), other parameters that were set by 

default within the XCMS processing algorithms, but different from the IPOs’ values, such as profStep, 

gapInit and gapExtend, are included.  

  

https://github.com/Biospec/cluster-toolbox-v2.0
https://github.com/Biospec/cluster-toolbox-v2.0
http://bioinfogp.cnb.csic.es/tools/venny/
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Table 2. Optimal processing parameters obtained with the QC samples using IPO and manual approaches 

for the four data sets. 

LIVER 

Processing Step Parameter 
ESI+ ESI- 

IPO Manual IPO Manual 

Peak Picking 

(centWave) 

ppm 29 30 20.75  30 

peakwidth 12, 39.5 13, 42 9.76, 50 13, 42 

mzdiff 0.0034 0.001 -0.0048 0.001 

Retention Time 

Alignment 

(Obiwarp) 

profStep 0.655 1 0.64 1 

center QC8 QC8 QC4 QC4 

gapInit 0.64 NULL 0.928 NULL 

gapExtend 2.4 NULL 1.668 NULL 

Grouping 

(density) 

bw 0.879 6 0.25 6 

mzwid 0.0265 0.025 0.0126 0.025 

PLASMA 

Processing Step Parameter 
ESI+ ESI- 

IPO Manual IPOb Manualc 

Peak Picking 

(centWave) 

ppm 31.68 30 74.75 [31] 30 

peakwidth 
22.01, 

81.26 
17, 84 

69.6, 70.6 [20, 

80] 17, 84 

mzdiff -0.0123 0.001 0.0029 [-0.012] 0.001 

Retention Time 

Alignment 
(Obiwarp) 

profStep 0.7324 1 0.844 [1] 1 

center QC4 QC4 QC7 [QC5] QC 7 [QC5] 

gapInit 0.7552 NULLa 0.928 [0.928] NULLa 

gapExtend 2.4 NULLa 2.358 [2.688] NULLa 

Grouping 
(density) 

bw 0.25 10 0.879 [0.879] 55 [50] 

mzwid 0.027 0.025 0.0265 [0.0342] 0.025 
a NULL represents the absence of intentional value, that is to say that the variable has an unknown value, for which it is assigned null. 
b In brackets values of the parameters after supervision (i.e., after investigation and manual tuning of ppm and peakwidth parameters 

based on the HPLC-TOF-MS performance). 
c In brackets values of the parameters adapted to allow comparison with IPO results after supervision. 

The values obtained using IPO laid within the expected range for the HPLC-TOF-MS analysis with the 

exception of the results obtained for the Plasma ESI- data set, which had significantly lower signal-to-noise 

ratio compare to the other three data sets. For the Plasma ESI- data set, the optimal values estimated for 

ppm and peakwidth parameters by IPO did not seem to be realistic. IPO reported an optimal 74.75 ppm 

value that did not fit with the standard accuracy of the MS instrument and a peakwidth of (69.6, 70.6) with 

an apparently overestimated lower range value. To understand the anomalous values for these parameters, 

results obtained for SST were carefully studied. On the one hand, it was observed that the signal strength 

was indeed low, but still most significant peaks had peak width ranged between 17 and 84 s. In addition, 

MS accuracy was also comparable to the one obtained during the analysis of the other sample sets and 

lower than 5 ppm for all the compounds in the SST. Taking into account this fact, data analysis was 

performed using the raw values for the parameters obtained by IPO (labelled as “Before Supervision”: B.S.) 

and using the values obtained after ppm and peakwidth were set to more realistic parameters (labelled as 

“After Supervision”: A.S.). For the latter, ppm parameter was set at 31 and peakwidth parameter at (20, 80) 

based on the results obtained for the Plasma ESI+ data set. Since IPO used a different center sample in each 

case, data analysis using manual parameters was performed using those two center samples optimized by 

IPO in order to allow a suitable comparison. All this information is gathered in Table 2. 

3.2 Influence of the parameter selection on the number and variability of the detected features  

Once the processing parameters were optimized using the QC samples, each data set was processed in order 

to obtain the features matrices. Table 3 shows the total number of features obtained initially for each data 

set and the number of features after filtering the matrices. For instance, for Liver ESI+ 2472 and 2045 

features were eliminated with IPO parameters and manual selection criteria, respectively. In order to study 

the variability, the %RSD across the QC samples was calculated for each feature and the percentage of 

features with a %RSD lower than 20 % was calculated for each data set. For further data processing, the 

features with %RSD higher than 20 % were removed.  

As can be observed, the impact of the processing parameters in the results for ESI+ data sets was minimal 

in terms of percentage of features with acceptable repeatability, although the total number of repeatable 

features was higher when IPO parameters were used, especially for liver data set. Regarding ESI- data sets, 
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the percentage of features with a good repeatability was significantly higher with IPO in the case of liver. 

In plasma data set it is noteworthy the total number of detected features and also the percentage of 

repeatable features (%RSD < 20%) obtained by using the parameters optimized by IPO B.S. , which were 

both lower than the ones obtained by IPO B.S. (2439 vs. 4359 and 37% vs. 52.5% respectively). This 

suggested that with such unrealistic parameter setting, many peaks had been wrongly rejected by XCMS.  

Considering these results, IPO appears to be a very valuable tool to optimize XCMS parameters. For results 

obtained by using the optimized XCMS parameters, the percentage of repeatable features was 2.2, 18.3 and 

3.2 higher than those using manually picked XCMS parameters for Liver ESI+, Liver ESI-, and Plasma 

ESI+, respectively. However, extra care is needed when IPO is applied to a data set with poor 

chromatographic performance, the optimization process can be trapped into an unrealistic region, resulted 

in impractical parameter settings, and subsequently lead to poorer peak picking and alignment results. 

Table 3. Number of features obtained with XCMS after processing the different data sets and number of 

features after each filtering step.  

 LIVER PLASMA 

 
ESI + ESI - ESI + ESI -  (B.S.) ESI - (A.S.) 

 

 IPO Manual IPO Manual IPO Manual IPO Manual IPO Manual 

Total number of features 9759 8399 4559 4724 4735 5253 2439 3352 4359 3378 

After removing isotopes and 

injection volume features  
7287 6354 3307 3782 3750 3909 2005 2636 3536 2602 

Number of features with 

%RSD < 20 
5603 4746 2242 2110 2207 2178 2005 2636 1855 1186 

Percentage of features with 

%RSD < 20  
76.9 74.7 67.8 49.5 58.9 55.7 37.0 46.9 52.5 45.6 

3.3 Influence of the parameters selection in multivariate analysis 

PCA scores plot was firstly constructed with the pre-processing methods that best fits grouping (see 

Supplementary Fig. 1), and when the intensity drop and/or the lack of grouping was observed, QC 

correction function (available at https://github.com/Biospec/cluster-toolbox-v2.0) was applied. After that, 

different transformations were tested again. In this way, for Liver ESI+, Liver ESI- and Plasma ESI+, QC 

correction and autoscaling transformation were used, whereas for Plasma ESI- (B.S. and A.S.), QC 

correction and logarithmic transformation were employed (Fig. 1). In order to allow a proper comparison, 

the scaling transformation applied in each data set was the same for both IPO and manual selection 

procedure.  

 

https://github.com/Biospec/cluster-toolbox-v2.0
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Figure 1. PCA scores plot obtained with IPO and manual parameters selection criteria for the all data sets 

(Liver ESI+, Liver ESI-, Plasma ESI+, Plasma ESI- B.S, and Plasma ESI- A.S.). Piglets groups: newborns 

(A), neonates (B) and infants (C). 
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A visual inspection of the PCA did not show significant differences between the groupings obtained with 

the different parameter setting optimization methods for any of the data sets, except for Plasma ESI-, which 

is clearly better with manual selection criteria (Fig. 1), and IPO (B.S) had resulted in artificial splitting in 

group B and C. Such split largely disappeared after parameter supervision. This clearly demonstrated the 

effect of an improper parameter setting in the final results. The Procrustes distances confirmed such 

observation. For Liver ESI+ and ESI- data sets, the Procrustes distances were 0.0096 and 0.0082 

respectively, suggesting the two patterns were virtually identical. For Plasma ESI+, the Procrustes distance 

was 0.0313, also suggested that the two patterns were highly similar. For Plasma ESI- before IPO 

supervision, the Procrustes distance was 0.5707 which indicates that there were significant differences 

between the two patterns while after supervision this distance decreased to 0.0821, indicating that the 

artefacts introduced by improper parameter settings were mostly removed. 

4 Influence of the parameters selection in the detection of features of interest 

The ultimate goal of the data processing in metabolomics is the detection of metabolites that can explain 

the differences between different groups of samples. Therefore, it was our aim to compare the features that 

better explain the differences among the three groups of the study and to see if these features match 

regardless of the methodology used for processing parameters selection.  For this purpose, univariate 

analyses were used  in order to find features that significantly distinguish newborns (A), neonates (B) and 

infants (C),  

In Table 4 the number of significant features after the univariate statistical analysis are gathered. Even 

though there were remarkable differences between the number of features initially detected, especially in 

Liver ESI+ and Plasma ESI- data sets, slightly differences were observed between the total significant 

features after the univariate statistical analysis. The number of significant features obtained with IPO (B.S.) 

was not calculated considering the poor repeatability of the features extracted. 

Table 4. Number of features of interest in the fourth data sets after applying univariate tests. 

 LIVER PLASMA 

ESI + ESI - ESI + ESI -  (A.S.) 

IPO Manual IPO Manual IPO Manual IPO Manual 

Total number after matrix 

filtering 
5603 4746 2242 2110 2207 2178 1855 1186 

Kruskal-Wallis and FDR  

(p < 0.001) 
623 587 318 302 109 102 462 329 

Total Significant Features 

A≠B≠C (Tukey HSD) 
59 57 27 25 6 8 7 5 

For each data set the retention time and m/z values of the significant features obtained with IPO were 

compared with those ones obtained with manual parameter selection and potential common features were 

identified. Those features with R2 higher than 0.9 were considered to be the same. In Figure S.2 an example 

of a two features that matched on retention time and m/z showed a good correlation and hence, were 

considered to be the same, can be observed. Similarly, another feature with R2 <0.9 is also shown. In this 

case, features were considered to be different, although the retention time and the m/z values were very 

similar. 

Once the common significant features were found, Venn Diagrams were generated in order to visualize the 

coincidence between IPO and manual selection criteria for each data set (Fig. 2). The number of common 

significant features was 44 for Liver ESI+, 15 for Liver ESI-, 1 for Plasma ESI+ and 3 for Plasma ESI- 

According to these results, the percentage of significant features obtained with IPO that were also detected 

with manual parameters were 74.6 % for Liver ESI+, 55.6 % for Liver ESI-, 16.7 % for Plasma ESI+ and 

42.9 % for Plasma ESI-. Similarly, the percentage of significant features detected by manual criteria that 

were also detected with IPO parameters were 77.2 % for Liver ESI+, 60 % for Liver ESI-, 12.5 % for 

Plasma ESI+ and 60 % for Plasma ESI-. Thus, the two methods employed to choose the processing 

parameters offered significantly different results, and many features were only detected using one of the 

methods.   
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Figure 2. Venn Diagrams highlighting the common and uncommon features of interest for liver and plasma 

matrices at both positive and negative ionization modes.  

In order to find an explanation for this lack of congruence in features selected, further study of these features 

was performed. On one hand, it was observed that, in some cases, isotopologues had not been properly 

identified by CAMERA (Kuhl et al. 2012) during the XCMS processing for one of the approaches, 

overestimating the number of non-matching features. On the other hand, it was observed that some of the 

features had a non-Gaussian shape and could not be considered proper chromatographic peaks after 

extracting the m/z value of each significant feature from the raw data (extracted ion chromatogram). It is 

remarkable that the amount of these artifacts was much higher among those features that had been only 

considered to be significant with one of the methods. For instance, for Liver ESI+ data set 8 out of the 15 

(53.3%) features that were detected only with IPO parameters showed a proper chromatographic signal, 

and among them, 3 were isotopes of other features. This means that out of the 15 features that could be 

considered as potential biomarkers only 5 (33.3 %) would be taken into consideration for further 

identification studies. Similarly, 6 out of the 13 (46.1%) features detected only using manual parameters 

criteria were considered to be suitable peaks. This contrasts with the high number of significant features 

(79.6%) that show an adequate response among the common features. Therefore, many of the significant 

features that were not in common could lead to misleading results and they would be rejected in the first 

steps of identification. Obviously, the fact that the features obtained by both methods differ might have an 

impact in the outcome of the metabolomic study, but lower than the expected from the results observed 

initially in the Venn Diagrams.  

A deeper study was next performed in the filtered matrices in order to know if the dissimilarities are due to 

a lack of detection during the preprocessing or to the subsequent statistical analysis. Therefore, the features 

that were found to be significant only with one approach were searched in the filtered matrix obtained with 

the other approach. For instance, the 15 significant features detected only with IPO in Liver ESI+ were 

searched in the matrix obtained with the manual approach. In this way, 10 of these features were observed 

in the manual matrix, which means that they were detected during the preprocessing but did not fulfill 

Kruskal-Wallis and/or post-hoc Tukey’s HSD test. Thus, a total of 54 features out of the 59 (91.5%) 

significant features detected by IPO were also in the manual matrix. Similarly, 55 features out of the 57 

(96.5%) significant features detected by manual approach were commonly detected in IPO for Liver ESI+. 

In the same way, 23 out of 27 (85.2%) and 20 out of 25 (80%) were commonly detected in Liver ESI-, 3 
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out of 6 (50%) and 5 out of 8 (62.5%) in Plasma ESI+ and 6 out of 7 (85.7%) and 4 out of 5 (80%) in 

Plasma ESI- as can be observed in Fig. 3. 

These results show that the preprocessing step has a significant impact not only in the number of features 

that are actually detected but also in the measured response of those features. This can lead to different 

statistical results and thus jeopardize the reliability of the results, even if the differences in responses are 

minimal. A remarkable case of this situation can be observed in Supplementary Fig. 3. A feature that was 

found to be significant to distinguish the three studied groups with manual approach in Plasma ESI+ was 

not observed among the significant features obtained with IPO. Nevertheless, this feature was present in 

the IPO matrix, and the responses were very similar to the ones obtained with the manual approach 

(maximum difference of 2.2 % and R2=0.99995, Supplementary Fig. 3A). Surprisingly this feature did not 

show significant differences among the three groups when the post-hoc Tukey HSD test was applied to the 

IPO data (see Supplementary Fig. 3B).  

 

 
Figure 3. Venn diagrams highlighting the significant features detected with IPO or Manual approaches that 

are coincident in the other approach matrix (but did not meet the statistical tests to be considered as 

significant features). 
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5 Concluding remarks  

Metabolomics study using XCMS requires careful processing parameters selection due to the importance 

of a reliable data matrix for the subsequent steps of the data treatment. Although there is not such a thing 

as the optimal processing solution, the values for these parameters must guarantee a reliable data 

processing. In this sense, the parameters optimization tools such as IPO can be of great interest. As reported 

in this study, the resulting matrices after all data filtration steps show that IPO offers a higher number of 

repeatable features compared with manual parameter selection and, therefore, more robust results. As an 

exception, the results obtained with IPO for a data set with a poorer chromatographic performance (Plasma 

ESI-) was less repeatable. Results were greatly improved after modifying some critical parameters 

(peakwidth and ppm), but this fact clearly indicates that IPO optimization should be supervised (i.e., have 

manual steps during the processing) or unrealistic parameters might be chosen, especially when dealing 

with challenging data sets. Even if similar results were obtained for multivariate analysis, significant 

differences were observed when applying univariate analysis to find features of interest that distinguish the 

study groups. Although the number of significant features is similar, there are remarkable differences when 

comparing IPO and manual results that can be explained to some extend by the appearance of artefacts 

during XCMS data processing. Also, even a feature had been detected by different parameter settings, small 

variations in the integrated peak areas can lead to different statistical conclusions. This demonstrated that 

p-values and FDRs also cannot be taken as granted and the threshold for statistical significance assessment 

may also need to be scrutinized before a conclusion can be drawn. Furthermore, the assessment of the IPO 

and manual matrices before the application of univariate analysis shows that most of the significant features 

in IPO data were also found in the manual data and vice versa. Nevertheless, due to differences in the 

responses of these features the statistical results were affected. These facts clearly show the high impact of 

the processing parameters in the outcome of a metabolomic study.  

The IPO tool can be useful to optimize the parameter selection in a less time-consuming manner and can 

be especially helpful for untrained users as a starting point for data treatment. Despite the ease of use of 

IPO package, the obtained parameters require supervision in order to find unreliable results as we observed 

for Plasma ESI- data set. Therefore, users need certain liquid chromatography and mass spectrometry 

knowledge. On the other hand, manual selection criteria require not only a deeper knowledge on these 

topics, but also on programming language and XCMS parameters interpretation. In return, this approach 

allows a better fine-tuning of the optimization parameters. In short, IPO optimization and manual selection 

methods have advantages and disadvantages to consider when untargeted metabolomic data has to be 

analysed. 
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SUPPLEMENTAL INFORMATION 

 

Figure S.1. PCA scores plot, before intensity drop correction and pertinent transformation obtained with 

IPO and manual parameters selection criteria for the all data sets (Liver ESI+, Liver ESI-, Plasma ESI+, 

Plasma ESI- B.S., and Plasma ESI- A.S.). Piglets groups: newborns (A), neonates (B) and infants (C). 
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Figure S.2. Correlation graph between two features obtained by IPO and Manual selection criteria for Liver 

ESI+. The left graph a good correlation and same features are shown (IPO_ID4031 = Manual_ ID1470), 

whereas the right graph shows the opposite situation (IPO_ID902 ≠ Manual_ID544). 

 

 

Figure S.3. Comparison between the significant feature obtained in Plasma ESI+ data set with manual 

approach (ID 1405) and the same feature found in the related IPO matrix (ID 1340) that were not significant. 

A. Correlation graph of IPO_ID 1340 and Manual_ID 1405 and B. Post-hoc Tukey HSD test. Left: 

difference between the three groups of piglets were not observed (IPO_ID 1340). Right: The three group 

of piglets are perfectly differentiated (Manual_ID 1405). Piglets groups: newborns (A), neonates (B) and 

infants (C). 

 




