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Abstract

In this paper we propose a tunable generator of instances of permutation-
based Combinatorial Optimization Problems. Our approach is based on
a probabilistic model for permutations, called the Generalized Mallows
model. The generator depends on a set of parameters that permits the
control of the properties of the output instances. Specifically, in order to
create an instance, we solve a linear programing problem in the param-
eters, where the restrictions allow the instance to have a fixed number
of local optima and the linear function encompasses qualitative charac-
teristics of the instance. We exemplify the use of the generator by giving
three distinct linear functions that produce three landscapes with different
qualitative properties. After that, our generator is tested in two different
ways. Firstly, we test the flexibility of the model by producing instances
similar to benchmark instances. Secondly, we account for the capacity
of the generator to create different types of instances according to the
difficulty for population-based algorithms. We study the influence of the
input parameters in the behavior of these algorithms, giving an example
of a property that can be used to analyze their performance.

Keywords— C ombinatorial Optimization Problems, instance generator, Gener-

alized Mallows model, permutation space, local optima.

1 Introduction

In the optimization arena, the evaluation of algorithms is usually measured by
means of benchmark problems. However, algorithms show different behaviors

1

L. Hernando, A. Mendiburu and J. A. Lozano, "A Tunable Generator of Instances of Permutation-Based Combinatorial 
Optimization Problems," in IEEE Transactions on Evolutionary Computation, vol. 20, no. 2, pp. 165-179, April 2016, https://
doi.org/10.1109/TEVC.2015.2433680
© 2016 IEEE.  Personal use of this material is permitted.  Permission from IEEE must be obtained for all other uses, in any current or 
future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, 
for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.



for different problems, or even for different instances of the same problem. So
commonly, when trying to study their performance, assumptions are needed to
be made on the algorithm itself, the problem to which it is applied or the specific
instance of the problem. Thus, having information about the characteristics of
the problem instances at hand would be really useful for improving the design
of algorithms or to identify the best performing algorithm from a toolbox. Due
to the difficulty of having real instances whose properties we know a priori at
our disposal, generators are designed in order to provide a large set of instances
with different characteristics. Therefore, a tunable generator of optimization
problem instances that depends on a reduced number of parameters able to
control the properties of the instance is an important and useful tool for this
purpose.

In spite of the works comparing and proposing algorithms to solve optimiza-
tion problems, the portfolio of models that generate customized optimization
problem instances is not so extensive. Most of the proposals found in the liter-
ature for this topic are for the continuous domain. In [1] a software framework
that generates multimodal test functions for optimization in the continuous field
was presented. In [2, 3, 4, 5] the authors proposed a continuous search space
generator based on a mixture of Gaussians. A proposal in the discrete domain,
and particularly for binary spaces, can be found in [6], where a NK landscape
generator is described. We also find a proposal of a generator of instances in
the dynamics optimization field: the moving peaks benchmark [7].

Particularly, in the space of permutations, we find generators of instances [8,
9, 10]. Unfortunately, these generators lack the flexibility to generate instances
with controlled properties. Most of them are based on populating a cost matrix
(depending on the problem they focus on) by taking random values, or taking
random points in a square and calculating the distances between each pair of
points. The complexity of the instances varies according to the interval (values
and variances) used during the random sampling. On the other hand, as pointed
out in [10], there are proposals in the literature that create instances where
the optimum is known. Nevertheless, this is the only information provided,
and there is no clue about how easy or difficult it is to solve the instance. In
this same work, the authors state that the toughest technical challenges are
finding (or generating) suitable test instances, and assessing how close heuristic
algorithms come to the optimum.

Related to this, we present a generator for permutation-based Combinatorial
Optimization Problems (COPs). Our work is inspired by [2], where the authors
proposed a generator of optimization problem instances in the continuous do-
main. We adapt the concepts that they used to those that are similar but in
the permutation space. For example, instead of working with Gaussian density
functions we work with Generalized Mallows distributions. This distribution
is an exponential probability model that depends on a consensus permutation
and spread parameters (analogous to the mean and the variance in the Gaus-
sian function). In a previous work [11], we presented a very preliminary version
of our model using the Mallows distribution. Here, we study the influence of
the parameters that the generator uses when creating the instances. We also
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provide some clues on how to tune them with the aim of controlling the prop-
erties of the instances. We pay special attention to a particular property, the
number of local optima, and set restrictions in the parameters so as to have a
predefined number of them in the resultant instance. In order to obtain a so-
lution for these restrictions in the parameters, the generator is seen as a linear
programming problem, and a linear function is defined that promotes obtaining
qualitative properties in the generated instance. In our framework, the cost of
generating the instances, as well as the cost of evaluating each solution of the
search space, is dominated by the number of local optima. In order to test our
generator, we take into account properties that generators of problem instances
in optimization should have when the resultant instances are used to evaluate
Evolutionary Algorithms [2], [12], [13], [14]. Specifically, we carry out exper-
iments to evaluate two important properties: the flexibility of the generator,
and its ability to create instances of very different complexity levels for common
metaheuristics. To test the first property, we adjust different parameters of our
generator. We considered it interesting to check the ability of the generator
to provide, for small problem sizes, instances almost identical to those found
in well-known benchmarks. We compare the instances by means of the sizes
of the attraction basins of the local optima. To evaluate the second property
of the generator, we generate instances playing with the size of the attraction
basins for the global and local optima, in addition to varying the location of
the different local optima. Then, three different algorithms, a local search, an
estimation of distribution algorithms, and a genetic algorithm are applied to
observe their behavior when solving the different types of instances. According
to the results, the generator arises as a very useful tool to perform coarse as
well as fine grain analysis of optimization algorithms, as the practitioner can
observe the algorithms under controlled scenarios (instances). Derived from the
experiments, an interesting and novelty property in the performance of the EDA
and the GA is observed.

The rest of the paper is organized as follows. In Section 2 we explain the
Mallows and the Generalized Mallows models, which are the basis of our gener-
ator. In Section 3 the most common distances used for the Generalized Mallows
model are detailed. Our generator is introduced in Section 4 and additional
details are provided in Section 5. In Section 6 we present three examples of
how to tune the parameters involved in the model to create instances with dif-
ferent properties. The experimentation is shown in Section 7, firstly, testing
the flexibility of the model by comparing created instances with instances of
common benchmarks, and secondly, comparing and analyzing properties in the
performance of different metaheuristics when applying them to instances created
with our generator with different input parameters. Finally, the conclusions are
presented in Section 8.
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2 Mallows and Generalized Mallows models

2.1 Mallows model

The Mallows model [15] is an exponential probability model for permutations
based on a distance. We denote by Ω the set of permutations of size n, and
define a permutation σ ∈ Ω as a bijection of the set of integers {1, . . . , n}
onto itself. A permutation is understood as an order of the items {1, 2, . . . , n},
this is: σ = (σ(1)σ(2) · · ·σ(n)), where σ(i) ∈ {1, 2, . . . , n} is the item in the
i-th position and σ(i) 6= σ(j),∀i 6= j. A special permutation which is worth
mentioning is the identity permutation, e = (123 · · ·n) which maps each item i
to position i. By composing two permutations σ and π of n items, we obtain a
new permutation σπ such that σπ(j) = σ(π(j)). Specifically, the inverse σ−1 of
σ is the permutation such that σσ−1 = e. Note that the composition between
a permutation and the identity is the same permutation: σe = eσ = σ.

The Mallows distribution is specified by two parameters: the consensus per-
mutation σ0 ∈ Ω and the spread parameter θ ∈ R. Hence, the probability
assigned to each σ ∈ Ω is:

p(σ|σ0, θ) =
1

Z(θ)
e−θd(σ,σ0)

where Z(θ) =
∑
σ′∈Ω e

−θd(σ′,σ0) is a normalization term and d(σ, σ0) is a dis-
tance between σ and the consensus permutation σ0.

Different values for the parameter θ produce different distributions. For in-
stance, when θ = 0 it is the uniform distribution. However, when θ > 0, then
σ0 is the permutation with the highest probability. The rest of permutations
σ ∈ Ω−{σ0} have probability inversely exponentially proportional to θ and their
distance to σ0. In this sense, the Mallows distribution with θ > 0 is usually con-
sidered analogous to the Gaussian distribution on the space of permutations.
In Figure 1 we represent the probability assigned to the permutations of size
n = 5 for different θ values considering the Kendall-tau metric (this distance is
introduced in Section 3.1). In the X axis we represent the permutations sym-
metrically distributed according to their distance to the consensus permutation
σ0, in order to see the analogy with the Gaussian distribution. We observe that
the larger the value of θ, the more peaked the distribution becomes around the
consensus permutation.

2.2 Generalized Mallows model

The Mallows model is a simple yet efficient probability model for permutations.
However, the fact that it uses just a single spread parameter limits its flexibility.
In this sense, it assigns the same probability to all the permutations that are at
the same distance from the consensus permutation. That is, for any distance d:

∀σ 6= σ′ ∈ Ω, s.t. ?d(σ, σ0) = d(σ′, σ0), then p(σ) = p(σ′).

In [16], an extension of this model was proposed, called the Generalized
Mallows (GM) model. For this model, we need to work with a distance which
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Figure 1: Probability assigned to permutations by three Mallows functions cen-
tered at σ0 and with θ = 0.1, 0.3 and 0.7. In the X axis the permutations are
distributed symmetrically according to their distance to σ0.

is able to be decomposed d(σ1, σ2) =
n−1∑
s=1

ds(σ1, σ2), in such a way that each

ds is related with the s-th item (position) of the permutation. Therefore, a
different spread parameter θs ∈ R can be associated to each of the elements ds
that is involved in the decomposition of the distance, so that instead of using
one spread parameter, a vector of them is defined. In this distribution, the
probability assigned to any permutation σ ∈ Ω is:

p(σ|σ0, θ
1, . . . , θn−1) =

1

Z(θ1, . . . , θn−1)
e
−
n−1∑
s=1

θsds(σ,σ0)
,

where Z(θ1, . . . , θn−1) =
∑
σ′∈Ω e

−
∑n−1
s=1 θ

sds(σ
′,σ0).

Notice that, the Mallows model can be seen as a particular case of the GM
model, where θs = θ,∀s. So, from now on, we will refer to the GM model taking
the Mallows model as a specific case of it, and we will consider that θs ∈ R+,∀s.

3 Distances

As seen in the previous section, the GM model makes use of a distance or
metric. The metrics utilized in this paper are the Kendall-tau and the Cayley
distances, as they are the most commonly jointly used with this probabilistic
model [17, 18, 19, 20, 21].

We define a distance or metric between two permutations σ1 and σ2 [22] as
a function

d : ΩxΩ −→ R
(σ1, σ2) 7−→ d(σ1, σ2)
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that fulfills the following properties ∀σ1, σ2, σ3 ∈ Ω:

1. Non-negativity: d(σ1, σ2) ≥ 0 (with equality iff σ1 = σ2).

2. Symmetry: d(σ1, σ2) = d(σ2, σ1).

3. Triangle inequality: d(σ1, σ2) ≤ d(σ1, σ3) + d(σ3, σ2).

Specifically, the two metrics considered in this paper also fulfill the left-invariant
property:

d(σ1, σ2) = d(σ3σ1, σ3σ2).

3.1 Kendall-tau distance

The most commonly used distance in the GM model is the Kendall-tau [17], [23],
[24]. This metric measures the minimum number of adjacent swaps between two
permutations. Formally, given two permutations σ1 and σ2, we write this metric
as:

dK(σ1, σ2) =
∑
r≺σ1s

1[s≺σ2r] (1)

where r ≺σ s means that the item r precedes s in the permutation σ, and 1[·]
denotes the indicator function. As it fulfills the left-invariant property, we can
write indistinctly dK(σ1, σ2) or dK(σ−1

2 σ1, e). The Kendall-tau distance can be
decomposed into the following form:

dK(σ1, σ2) = dK(σ−1
2 σ1, e) =

n−1∑
s=1

Vs(σ
−1
2 σ1, e) (2)

where Vs(σ, e) (s = 1, 2, ..., n− 1) is the number of items r > s that precede the
item s in σ, that is:

Vs(σ, e) =
∑
r>s

1[r≺σs].

Notice, that we define each Vs(σ, e) with respect to the identity permutation, so
that when decomposing the Kendall-tau distance between two permutations σ1

and σ2, we just need to consider the distance between the composition σ−1
2 σ1

and e. From now, we simplify the notation by writing Vs(σ) instead of Vs(σ, e).
For example, lets suppose that we have two permutations of size n = 4:

σ1 = (4132) and σ2 = (1342). Thus, σ−1
2 = (1423) and σ−1

2 σ1 = (3124).

Therefore, dK(σ1, σ2) = dK(σ−1
2 σ1, e) =

n−1∑
s=1

Vs(σ
−1
2 σ1) = 1 + 1 + 0 = 2.

As the terms Vs (for s = 1, 2, ..., n − 1) are bounded: 0 ≤ Vs ≤ (n − s),
the maximum distance between two permutations that can be reached by this

metric is (n− 1) + (n− 2) + ...+ 1 = n(n−1)
2 .

When using the Kendall-tau metric in the GM model, we consider a different
spread parameter θs associated to each Vs. So that the model depends on a
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consensus permutation σ0 ∈ Ω and the spread parameters θ = (θ1, · · ·, θn−1) ∈
(R+)

n−1
. The normalization term Z(θ) = Z(θ1, . . . , θn−1) has the following

closed form that does not depend on σ0:

Z(θ) =

n−1∏
s=1

[
1− e−(n−s+1)θs

1− e−θs
]
.

Therefore the probability assigned to each permutation σ ∈ Ω can be written
as:

p(σ|σ0,θ) =

n−1∏
s=1

[
1− e−θs

1− e−(n−s+1)θs

]
e
−
n−1∑
s=1

θsVs(σ
−1
0 σ)

.

3.2 Cayley distance

The Cayley distance dC(σ1, σ2) between two permutations σ1 and σ2 measures
the minimum number of swaps (not necessarily adjacent) that are needed to
transform σ1 into σ2. A concept closely related to the Cayley distance is the
number of cycles in the permutations. A cycle is a subset {i1, i2, ..., ir} of the
set of the items of the permutation such that

σ(i1) = i2 , σ(i2) = i3 , ... , σ(ir) = i1.

As previously mentioned, when we calculate dC(σ, e) we should count the
number of swaps to transform σ into e. Note that, in this case, every swap
involves two items of the same cycle. So, the minimum number of swaps needed
to sort the r items of the same cycle is r − 1. This means that the Cayley
distance between σ and e is n minus the number of cycles.

Taking this definition into account, we can decompose the Cayley distance
between two permutations σ1 and σ2:

dC(σ1, σ2) = dC(σ−1
2 σ1, e) =

n−1∑
s=1

Xs(σ
−1
2 σ1, e) (3)

where

Xs(σ, e) =

 0 if s is the largest item in its cycle in σ

1 otherwise

In this case, we also define Xs(σ, e) with respect to the identity permutation
e. So, similarly to the case of the Kendall-tau distance, we also simplify the
notation using Xs(σ).

For instance, considering again σ1 = (4132) and σ2 = (1342), we have

dC(σ1, σ2) = dC(σ−1
2 σ1, e) =

n−1∑
s=1

Xs(σ
−1
2 σ1) = 1 + 1 + 0 = 2.

The minimum number of cycles in a permutation is 1. This means that the
maximum distance between two permutations that can be given by this metric
is n− 1.
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The GM distribution uses a different spread parameter θs for each Xs seen in
(3). Considering the vector of spread parameters θ = (θ1, · · ·, θn−1) ∈ (R+)

n−1
,

a closed form for the normalization term Z(θ) is also found [19]:

Z(θ) =

n−1∏
s=1

(1 + (n− s)e−θ
s

).

Finally, the probability assigned to each σ ∈ Ω under the Cayley metric is
defined by:

p(σ|σ0,θ) =
1

n−1∏
s=1

(1 + (n− s)e−θs)
e
−
n−1∑
s=1

θsXs(σ
−1
0 σ)

.

4 The generator of instances: Overview

In [2] the authors proposed a generator of instances of optimization problems
in the continuous domain based on a mixture of Gaussian distributions where
each local optimum of the landscape corresponds with the mean of a Gaussian
distribution. The generated instances are such that the function value of a
solution is defined by the maximum value that any of the Gaussian components
associates to that solution. Inspired by that work, we present a generator of
instances of permutation-based COPs. The generator is founded on a mixture
of GM distributions.

The general idea of our approach to generate an instance is to choose m
consensus permutations {σ1, σ2, . . . , σm}, and m spread vectors of parameters
{θ1, . . . ,θm} to create m GM distributions with them:

p1(σ|σ1,θ1)

p2(σ|σ2,θ2)

...

pm(σ|σm,θm)

where

pi(σ|σi,θi) = pi(σ|σi, θ1
i , θ

2
i , ..., θ

n−1
i ) =

e
−
n−1∑
s=1

θsi ds(σ,σi)

Z(θi)
.

We also consider weights {w1, w2, . . . , wm}, (wi > 0,∀i) associated to each of the
GM distributions. From now on, we will assume that we generate instances of
maximization problems. In this sense, the objective function value of a solution
(permutation) of the instance is defined as the maximum value reached by all
the GM distributions multiplied by the corresponding associated weight:

f(σ) = max
1≤i≤m

{wipi(σ|σi, θ1
i , θ

2
i , . . . , θ

n−1
i )}. (4)
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Thus, this model has (n + 1)m parameters: (n − 1)m spread parameters,
m consensus permutations, and m weights. Notice that we need to evaluate m
GM models in order to assign an objective function value to each solution of
the search space.

5 The generator of instances: Particularities

Our aim is to provide a generator able to create instances with different prop-
erties. In order to do that, we should tune the parameters of our generator
appropriately. This is done by following two complementary tasks; one quan-
titative and one qualitative. In the quantitative approach we add constraints
to the parameters in order to have a predefined number of local optima. These
constraints are linear in the weights of the GM components that define the in-
stance. The qualitative approach consists of the definition of a linear function
on the weights that tries to promote certain characteristics of the instance such
as the relative size of the attraction basin of the global optimum versus the local
optima. Different linear functions can create different types of instances.

As a result of this process, each instance of the generator is created by solving
a linear programming problem in the weights.

5.1 Controlling the local optima in the instance

In this section, we study the constraints we should add in order to ensure that all
the consensus permutations of the GM models are the local optima in the gener-
ated instance. These local optima are defined when considering a neighborhood
determined by the solutions at distance one. Logically, the particular distance
used coincides with that used in the GM models (Kendall-tau or Cayley).

Notice that by our definition of an instance, no other permutation of the
search space, apart from the consensus permutations, can be a local optimum
(local maximum). This means that with our generator we know that the number
of local optima is always smaller or equal to the number m of GM components.
However, it is possible that a consensus permutation is buried by a GM com-
ponent centered at any other permutation, and thus, this permutation will not
be a local optimum. Hence, the key point is to ensure that all the consensus
permutations are, indeed, local optima for our instance. In this way, we will be
able to create instances with exactly m local optima.

In what follows, we will assume that it is not possible to find two local optima
with the same objective function value. Therefore, the distance between two
local optima needs to be higher than one, so the consensus permutations need
to satisfy:

d(σi, σj) ≥ 2,∀i 6= j. (5)

We remark that, although we work under this assumption, the generator would
be able to face with a situation in which f(σi) = f(σj), i 6= j.
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By the definition of local maximum, the following constraint has to be ful-
filled for σi to be a local optimum:

f(σi) > f(σ), ∀σ ∈ Ω s.t. d(σ, σi) = 1. (6)

The following Lemma 5.1 shows a necessary condition for a consensus permuta-
tion to be a local optimum. In Theorem 5.2 we give the necessary and sufficient
condition in the parameters to guarantee that all consensus permutations are
local optima in the instance. The proofs of Lemma 5.1 and Theorem 5.2 are
given in the appendices 9 and 10, respectively.

Lemma 5.1. Let’s consider an instance I created with our generator and let σi
be the consensus permutation of the i-th GM model used in it. If σi is a local
optimum in the generated instance, that is:

f(σi) > f(σ), ∀σ ∈ Ω such that d(σ, σi) = 1,

then the objective function value of σi is reached by the i-th GM model, i.e.:

f(σi) = max
1≤j≤m

{wjpj(σi|σj ,θj)} = wipi(σi|σi,θi)

= wi
e
−
n−1∑
s=1

θsi ds(σi,σi)

Z(θi)
=

wi
Z(θi)

(7)

Theorem 5.2. A consensus permutation σi of any of the GM models involved
in our generator is a local optimum in the generated instance if and only if:

wi
Z(θi)

>
wj

Z(θj)
e
−
n−1∑
s=1

θsjds(σ,σj)
,∀j 6= i, (8)

∀σ such that d(σ, σi) = 1.

In conclusion, if the parameters fulfill the restrictions in (8), we know that
all the consensus permutations of the GM models of our generator are local
optima in the instance. By fixing the values of θsj in the inequalities in (8), the
restrictions are linear in the weights, and therefore they can be solved with a
linear programing problem. However, we can find inconveniences when working
with the restrictions in (8). On the one hand, we could have numerical problems.

For example, for high permutation sizes n, the values e
−
n−1∑
s=1

θsjds(σ,σj)
will be

close to 0 (as the distances could be considerably high), and, due to precision
limits, when handling such values in the resolution of the linear programming
problem, the results could be stored as 0.00. Therefore, the desired restrictions
are not fulfilled and finally, the consensus permutations are not local optima
in the instance. On the other hand, the number of constraints needed to be
fulfilled is considerably high: m(m− 1)(n− 1) and m(m− 1)n(n− 1)/2, in the
case of the Kendall-tau and the Cayley distances, respectively.
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With the aim of avoiding the numerical instability of (8) and in order to re-
duce the number of restrictions, we show in the following Theorem 5.3 sufficient
conditions to fulfill (8). In fact, we find a significant decrease in the number of
restrictions, as they are a total of m, independently of the distance used. This
reduction in the number of restrictions does not imply, however, limitations in
the flexibility of the generator to create different types of instances. The proof
of the Theorem 5.3 is shown in the appendix 11.

Theorem 5.3. Let {w1, . . . , wm}, {θ1, . . . ,θm} and {σ1, . . . , σm} be the weight
values, the spread parameters and the consensus permutations, respectively, of
the m GM components used in our generator to create an instance I. If the
following constraints are fulfilled:

wi
Z(θi)

>
wi+1

Z(θi+1)
, i = 1, . . . ,m− 1 (9)

[
2− e

−
(

min
j,s
{θsj}

)]
wm

Z(θm)
>

w1

Z(θ1)
(10)

then, the restrictions in (8) are satisfied.

In summary, if restrictions (9) and (10) are fulfilled, we ensure that the
consensus permutations of the GM distributions are the local optima of the
instance when considering the neighborhood defined by the distance used in
the probabilistic models. Note that, by the Lemma 5.1, these constraints also
imply that the objective function value of a consensus permutation is reached
by the GM component centered at itself: f(σi) = wi

Z(θi)
. Thus, the restrictions

in (9) mean that: f(σi) > f(σi+1). So, σ1 is the local optimum with the
highest objective function value, that is, the global optimum. Although the
restrictions in (9) impose an order in the local optima regarding their objective
function value, this can be assumed without loss of generality. That is, one can
previously sort the consensus permutations in the desired order.

5.2 The linear programming problem

Once the number of local optima has been established, in order to customize the
properties of an instance, we use a linear function in the weights associated to the
GM models. This function carries out qualitative properties of the instance. In
the following section we use three different functions to exemplify three different
kinds of landscapes regarding the sizes of the attraction basins of the local
optima. Of course, the careful choice of the location of the different local optima
(consensus permutations), as well as the choice of the spread parameters, help
in the generation of the instances with the requested properties.

In general terms, the generator of instances of COPs based on permutations
can be described as a 5-tuple (n,m,Σ,Θ, G), where:

• n ∈ N is the size of the permutation.
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• m ∈ N is the number of GM functions (number of local optima of the
instance).

• Σ = {σ1, σ2, . . . , σm} is the set of consensus permutations of size n.

• Θ =

 θ1
1 · · · θn−1

1

· · · · · · · · ·
θ1
m · · · θn−1

m

 ∈ (R+)
m×(n−1)

is the matrix with the spread parameters of the m GM distributions.

• G is the linear objective function of the linear programming problem.

See Algorithm 1 to observe the steps that the generator follows. Notice
that in the linear programming problem (step 5 in the algorithm), we add the
constraint wm > 0, just to force the weights to be positive: if wm > 0, then
wi > 0,∀i, as (9) implies wi

Z(θi)
> wm

Z(θm) . We also force w1 < k ∈ R+, so as to

upper bound the values of the weights. Moreover, as we previously remarked,
if the user desires to work with two local optima σi and σi+1 with equal fitness
function values, inequality wi

Z(θi)
= wi+1

Z(θi+1) is needed to be used here, instead of
wi

Z(θi)
> wi+1

Z(θi+1) .

We would like to remark that the θ values should be chosen taking into
account the type of distance used and the permutation size n, in order to avoid
numerical problems when calculating the normalization terms Z(θ). We suggest
using these values in the intervals [ln(n−1

2 ), 3ln(n−1)] and [2ln(n−1
3 ), 6ln(n−1)],

for the Kendall-tau and the Cayley distances, respectively.
The source code (in R-project) of the generator is available in the website1.

5.3 Complexity of the generator

We can distinguish two kinds of complexity associated with the generator: (i)
the computational complexity of generating a particular instance, and (ii) the
cost of evaluating the objective function value of a solution in the generated
instance.

The first one is dominated by the solution of the linear programming prob-
lem. In the literature, we can find powerful algorithms whose cost, in the
worst case, depends on the number of variables, which in our problem is m:
{w1, . . . , wm}.

Given an output instance of the generator, when assigning the objective
function value to any solution of the search space (ii), we should evaluate in
the worst case m components wipi(σ|σi,θi) in order to look for the highest
value. Each of these evaluations implies the calculation of the n − 1 terms
of the decomposition of the distance (equalities (2) and (3)). In the case of
the Kendall-tau distance, the cost of calculating these terms is O(n2), whereas

1http://www.sc.ehu.es/ccwbayes/members/leticia/GeneratorOfInstances
/code.html
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Algorithm 1 Algorithm to generate instances of permutation-based Combina-
torial Optimization Problems

1. Set n
2. Set m
3. Choose the consensus permutations: σ1, σ2, ..., σm, such that: d(σi, σj) ≥

2,∀i 6= j.
4. Choose the spread parameters:

Θ =

 θ1
1 · · · θn−1

1

· · · · · · · · ·
θ1
m · · · θn−1

m


5. Solve the linear programming problem in the weights {w1, . . . , wm}:

min/max{G(w1, ..., wm)}

subject to

wi
Z(θi)

>
wi+1

Z(θi+1)
, i = 1, . . . ,m− 1

w1

Z(θ1)
<

[
2− e

−
(

min
i,s
{θsi }

)]
wm

Z(θm)

wm > 0

w1 < k (k ∈ R+)

6. ∀σ ∈ Ω define the objective function value as:

f(σ) = max
1≤i≤m

 wi
Z(θi)

e
−
n−1∑
s=1

θsi ds(σ,σi)
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for the Cayley distance it is O(n). Therefore, in the worst case, the cost in
the evaluation of each solution is O(mn2) and O(mn) for the Kendall-tau and
the Cayley distances, respectively. Commonly, in real instances of COPs, we
find that the number of local optima is considerably higher than the size of
the permutations [25]. So that we will be willing to generate instances with
m >> n. Thus, the cost of evaluating the solutions is principally conditioned
by the number of GM components used in the generator.

6 Creating Instances Using our Generator

In this section we present three examples of how to generate instances with
different properties. These three types of instances are associated with three
linear functions and three careful choices of the σi and θsi , ∀i, s. Basically, we
design instances for three different scenarios.

In the first scenario, we try to generate easy to optimize instances. In this
sense, our goal is to make the attraction basin of the global optimum σ1 as
large as possible. Our second scenario contemplates difficult instances and the
function we optimize tries to make the attraction basin of the global optimum as
small as possible. Our last setting generates instances in the middle of the two
previous examples, where we attempt to have all the attraction basins of the
local optima (including the global optimum) of similar sizes. Obviously, these
are just some illustrative examples but, by properly choosing the linear function
and tuning the rest of parameters, the generator would be able to provide other
kinds of instances.

6.1 Easy instances: Global optimum with a large attrac-
tion basin

In this example, we tune the parameters with the aim of obtaining an instance
with a large attraction basin for the global optimum. As this scenario describes
a general situation, we do not refer to any specific distance. We assume that
{σ1, σ2, . . . , σm} are the consensus permutations in our generator, so they are
the local optima in the instance, where σ1 is the global optimum.

First, we choose the linear function to optimize in the linear programming
problem. In this scenario, we propose maximizing the difference between the
objective function value of σ1 (global optimum) and the objective function value
of σ2 (local optimum with the highest value after σ1):

GMaxGO = max

{
w1

Z(θ1)
− w2

Z(θ2)

}
.

By means of this linear function, we promote that those permutations σ that
are close to σ1 will receive an objective function value given by the first GM
component, i.e.: f(σ) = max

1≤i≤m
{wipi(σ|σi,θi)} = w1p1(σ|σ1,θ1). Thus, with

the help of the rest of the parameters, we can easily force as many solutions as
possible to be in the attraction basin of σ1.
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The local optima can be chosen paying special attention to the distances
between them. For example, it is recommendable to choose σ1 far from the rest
of the local optima, in order to contribute to obtaining a large attraction basin
for it. In doing this, we provoke a large number of solutions appear closer to σ1

than to the rest of local optima.
The parameters θ1,θ2, . . . ,θm are also essential when trying to control the

properties of the generated instance. In order to provide an easy and intuitive
example, let’s assume that we are in the situation θji = θki = θi,∀j 6= k. So, we
are considering the Mallows model. Under this assumption, we are assigning the
same objective function value to all the solutions that are at the same distance
from the consensus permutation. This situation gives us intuition about how to
choose the spread parameters in order to model the different attraction basins
of the local optima. If we want the global optimum to have a large attraction
basin, we should choose θ1 << θi, i ≥ 2, because, as we saw in Section 2.1, the
larger the value of θ the more peaked the Mallows function. Hence, with a small
θ those solutions close to σ1 have an objective function value similar to σ1, and
therefore the possibilities of having them in the attraction basin of the global
optimum are very high.

6.2 Difficult instances: Global optimum with a small at-
traction basin

We propose, in this scenario, to minimize the difference between the objective
function value of the global optimum σ1 and its neighbors. When looking for
the objective function value of the neighbors we need to calculate the values
of the elements involved in the decomposition of the distance between those
neighbors and all the local optima of the instance: {σ1, σ2, . . . , σm}. However,
this calculation would imply a high computational cost. Therefore, we can
simplify this idea taking into account the following function to minimize:

GMinGO = min

{
w1

Z(θ1)
−

1

m− 1

m∑
i=2

wi
Z(θi)

e
−max

j
{θji }(d(σ1,σi)+1)

}
.

Notice that the second element in the subtraction is the average of lower bounds
for the values assigned to those neighbor solutions given by the GM components
centered at the local optima which are different from the global optimum. Thus,
it is a lower bound for the objective function values of the neighbors of σ1, and
therefore, minimizing this difference, we would be minimizing the desired differ-
ence. The aim of choosing this linear function is to help the neighbor solutions
of σ1 to have their objective function value assigned by the GM component cen-
tered at other local optimum different to σ1, and thus, to belong to a different
attraction basin.

For this scenario, σ1 can be chosen as a consensus permutation that is close
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to, at least, one local optimum. For example, this local optimum could be σ2,
i.e., the local optimum with the highest objective function value after σ1. If σ2

is near σ1, there are less possibilities of having a large number of solutions in
the attraction basin of σ1, because we can provoke (also taking into account the
rest of parameters) that the solutions belong to the attraction basin of σ2.

As we explained in the example above, choosing θji = θki , ∀j 6= k we provide
a more intuitive example. So, under this context, by denoting θi as the spread
parameter of the i-th Mallows model (θi = θ1

i = . . . = θn−1
i ), the larger the

value of θ1 in comparison to the rest of θi, i > 1, the smaller the size of the
attraction basin of the global optimum. Moreover, as an example of a more
difficult scenario, we try to obtain the size of the attraction basin of σ2 as large
as possible by choosing θ2 << θi (i 6= 2).

6.3 Local optima with similar sizes of attraction basins

In this last example, we are interested in creating instances where all the local
optima (included the global optimum) have attraction basins similar in size.

Assuming that σ1 is the global optimum, and σm is the local optimum with
the lowest objective function value, the considered function to minimize in this
case, is the difference between the objective function values of these two permu-
tations (and implicitly, minimize the difference between the objective function
values of all the local optima):

GSimAB = min

{
w1

Z(θ1)
− wm
Z(θm)

}
.

In this sense, the landscape created with this linear function is flatter than in
the other two examples.

Taking into account that we want to obtain local optima with attraction
basins of similar sizes, these solutions should be uniformly distributed in the
search space. So that we could choose them in order for them to be in a situation
as similar to the following one as possible: d(σi, σj) ≈ d, ∀i, j, where d is the
largest possible value.

The values of all θji should be similar for all the elements of the decomposition
of the distance, and also similar for all the GM components. That is, with θsi = θ,
∀i, s, the Mallows models centered at all the consensus permutations have the
same shape. This implies that we do not force any of the local optima to have
more solutions in their attraction basins than the rest of the local optima.

7 Experiments

A generator of instances of combinatorial optimization problems is a useful tool
when analyzing, comparing, and evaluating the behavior of different optimiza-
tion algorithms. In this section, we show the influence of the input parameters
in the resultant instance, and present several use cases of our generator with
the aim of demonstrating its importance and applicability.
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First, we want to show that the generator is highly flexible. For this pur-
pose, we find it interesting to check if we are able to generate instances similar
to those available in well-known benchmarks. Thus, the first part of the exper-
imentation is devoted to this goal, working with small problem sizes. Secondly,
we demonstrate that, by tuning the input parameters, the user can create dif-
ferent instances, placing emphasis on coarse grain characteristics (such as the
attraction basin sizes of the local optima) as well as on fine grain character-
istics (distribution of the local optima). This is a highlighting characteristic
of our generator, as it allows to conduct a deeper analysis of the behavior of
optimization algorithms.

7.1 Flexibility of the generator

In order to create an artificial instance similar to an instance that can be found
in well-known benchmarks (from now on we will refer to them as benchmark
instances), we carry out the following steps:

i) Calculate, for the benchmark instance, the local optima and the sizes of their
attraction basins.

ii) Use these values to fix three input parameters of our generator: n (permu-
tation size), m (number of local optima) and Σ (set of consensus permu-
tations).

iii) Choose one of the linear functions to optimize from those defined in Section
6 (GMaxGO, GMinGO and GSimAB), taking into account the characteristics
of the benchmark instance. Of course, the generator allows the user to
define other linear functions.

iv) Carry out a search over the space of Θ parameters to minimize the difference
between the artificial instance and the benchmark instance. Note that each
time a set of Θ parameters is tested, the linear programming problem needs
to be solved.

A key point in the previous process is to define a way to measure the simi-
larity between the artificial and the benchmark instance (step iv). For example,
one option could be to compare the objective function values of the solutions,
trying to create an artificial instance with the same absolute objective func-
tion values as the given benchmark instance. However, most of the local and
population-based algorithms only use the relative value of the solutions instead
of the exact function values. Therefore, we could rank the solutions according to
their objective function value in the artificial and the benchmark instances, com-
paring both rankings. Nevertheless, considering that we generate the instances
with locality criteria in mind, we have used the difference between the attrac-
tion basin sizes of the artificial and the benchmark instances as the similarity
measure.

We generate instances with properties similar to those of two well known
COPs: the Permutation Flowshop Scheduling Problem and the Linear Ordering
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Problem. The Flowshop Scheduling Problem can be stated as follows: there are
b jobs to be scheduled in c machines. A job consists of c operations and the j-th
operation of each job must be processed on machine j for a specific processing
time without interruption. We consider that the jobs are processed in the same
order on different machines. The objective of the PFSP is to find the order in
which the jobs have to be scheduled on the machines, minimizing the total flow
time. In the Linear Ordering Problem (LOP), given a matrix B = [bij ]n×n of
numerical entries, we have to find a simultaneous permutation σ of the rows
and columns of B, such that the sum of the entries above the main diagonal is
maximized (or equivalently, the sum of the entries below the main diagonal is
minimized).

We work with 5 instances of the PFSP obtained from the well-known bench-
mark proposed by Taillard2, and 5 instances of the LOP, obtained from the
xLOLIB benchmark [26]. The size of the original instances has been reduced to
n = 8, that is, in the instances of the PFSP, we consider 8 jobs and 5 machines,
and in the LOP instances, the size of the matrices is 8x8. The instances used
are available in the website3. The reason for choosing a small permutation size
is to keep, for each candidate Θ (step iv), the cost of calculating the attraction
basin sizes of the local optima affordable.

We consider two different neighborhoods: 2-exchange (N2−exch) and adja-
cent swap (NAdj). These neighborhoods can be defined using the Cayley and the
Kendall-tau distances, respectively. Particularly, the 2-exchange neighborhood
considers that two solutions are neighbors if they differ from one swap (Cayley
distance is one), whereas they are neighbor solutions under the adjacent swap
neighborhood if they differ from one adjacent swap (Kendall-tau distance is
one). Using a deterministic greedy local search algorithm, we start from each
solution of the search space with the aim of finding the number of local optima
and their attraction basin sizes. We denote by B(σi) the attraction basin of
σi in the benchmark instance, while B̂(σi) refers to the attraction basin of σi
in the artificial instance created with our generator. The error εi is, therefore,
εi = ||B(σi)| − |B̂(σi)||. We remark that, when the local optima of a benchmark
instance are calculated using N2−exch (Nadj), the artificial instance is generated
using the Cayley distance (Kendall-tau metric) in the GM models.

In order to choose the linear function to optimize in the linear programming
problem (step iii), we take into account the proportion of the attraction basin

size of the global optimum with respect to the size of the search space: |B(σ1)|
|Ω| .

According to preliminary experiments, we choose in our generator one of the
objective functions: GMaxGO, GMinGO and GSimAB (explained in Section 6),
if such a proportion is higher than 0.6

m , lower than 0.4
m , or between these two

values, respectively.
In Tables 1 and 2 we provide, for PFSP and LOP respectively, the differences

between the sizes of the attraction basins of the local optima of each benchmark

2http://mistic.heig-vd.ch/taillard/problemes.dir/ordonnancement.dir
/ordonnancement.html

3http://www.sc.ehu.es/ccwbayes/members/leticia/GeneratorOfInstances
/Instances.html
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Table 1: Results obtained for the errors in the attraction basin sizes of the local
optima for the 5 instances of the PFSP, for the Cayley and the Kendall-tau
distances.

Inst m ε1
|Ω| ε̄ = 1

m

m∑
i=1

εi
2|Ω|

1
m−1

m∑
i=1

(
εi

2|Ω| − ε̄
)2

K
e
n

d
a
ll

1 296 0.007465 0.001312 0.000004
2 319 0.005903 0.000771 0.000001
3 424 0.003571 0.000732 0.000000
4 469 0.008656 0.000575 0.000001
5 655 0.004439 0.000418 0.000000

C
a
y
le

y

1 10 0.000273 0.004058 0.000031
2 12 0.005357 0.007252 0.000073
3 24 0.000570 0.004384 0.000026
4 14 0.005456 0.005308 0.000042
5 22 0.001811 0.003102 0.000006

instance and the instance generated with our model. The first five rows in each
table refer to the results when using the Nadj neighborhood in the local search
and the Kendall-tau distance in our generator. The last five rows show the
results for the same five instances when we utilize the N2−exch neighborhood
for solving them and the Cayley distance in our generator. In the first column we
provide the number of the instance (1-5), and in the second column we indicate
the number of local optima obtained in each case. The third column shows the
proportion of solutions of the search space that are in the attraction basin of
the global optimum but should not be there, or that should be there but they

are not, that is: ||B(σ1)|−|B̂(σ1)||
|Ω| . The fourth and the fifth columns indicate the

average and the variance of the proportion of solutions of the search space that
are not in the corresponding attraction basin. Notice that we divide by 2|Ω|,
because if a solution is not in its corresponding attraction basin, the error is
counted twice: in the attraction basin that it is in and in the one that it should
be in.

We observe from Tables 1 and 2 that the artificial instances generated are
almost identical in terms of sizes of attraction basins of the local optima. The
average error found in the sizes of the attraction basins of all the local optima is
lower than 0.14% in the PFSP instances when using the adjacent neighborhood
(Kendall-tau distance), and lower than 0.73% when applying the 2-exchange
neighborhood (Cayley distance). In the LOP instances, the errors are lower
than 0.12% and 0.81%, for the adjacent and the 2-exchange neighborhoods
(Kendall-tau and Cayley distances), respectively. Moreover, we observe that
these errors are uniformly distributed among the attraction basins of the local
optima, as the variances are very small: less than 0.73 · 10−4 in all cases and
almost zero in some of them.

For illustrative purposes, we plot the sizes of the attraction basins of the
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Table 2: Results obtained for the errors in the attraction basin sizes of the
local optima for the 5 instances of the LOP, for the Cayley and the Kendall-tau
distances.

Inst m ε1
|Ω| ε̄ = 1

m

m∑
i=1

εi
2|Ω|

1
m−1

m∑
i=1

(
εi

2|Ω| − ε̄
)2

K
e
n

d
a
ll

1 435 0.003423 0.001168 0.000002
2 720 0.003993 0.000700 0.000001
3 895 0.003795 0.000536 0.000001
4 920 0.004886 0.000542 0.000001
5 3737 0.001265 0.000111 0.000000

C
a
y
le

y

1 28 0.002307 0.005175 0.000032
2 27 0.001910 0.008091 0.000037
3 19 0.002679 0.003836 0.000015
4 24 0.005704 0.005958 0.000013
5 319 0.004812 0.000877 0.000001

local optima for two pairs of benchmark and artificial instances, when using
the Cayley distance (2-exchange neighborhood). Particularly, Figure 2 shows
the fifth instance of the PFSP and Figure 3 shows the third instance of the
LOP4. For both figures, in the X axis the local optima are indicated sorted by
their objective function value. That is, the local optimum number 1 is the global
optimum, and the local optimum number m is the local optimum with the lowest
objective function value. As can be observed, the sizes of the attraction basins of
the local optima for the benchmark and artificial instances are almost identical.
Notice that, when an attraction basin of a local optimum σi is larger or smaller
than the attraction basin of the local optimum σi+1 in the benchmark instance,
it also happens in almost all of the cases of the artificial instances. Thus, we can
conclude that the generator is flexible enough to create instances as complex as
the instances found in common benchmark problems.

7.2 Tuning the parameters of the generator

We will show that our generator allows the user to control coarse grain features
of the instances, such as the sizes of the attraction basins of the local optima,
as well as to characterize the instances in a more detailed way. In this section
we work with the Mallows (not Generalized) models.

7.2.1 Choosing the linear function G to optimize

As described previously, the generator allows the practitioner to define the linear
function G to optimize. In this case, without loss of generality, we use the three
functions introduced in Section 6: GMaxGO, GMinGO and GSimAB . Our goal

4The remaining figures can be found in the website: http://www.sc.ehu.es
/ccwbayes/members/leticia/GeneratorOfInstances/figures.html
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Figure 2: Sizes of the attraction basins of the 22 local optima found in the
fifth instance of the PFSP using the 2-exchange neighborhood. We represent
those sizes found in the real instance with a circle, and the sizes obtained in the
artificial instance with a triangle.
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Figure 3: Sizes of the attraction basins of the 19 local optima found in the
third instance of the LOP using the 2-exchange neighborhood. We represent
those sizes found in the real instance with a circle, and the sizes obtained in the
artificial instance with a triangle.
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is to create instances with different attraction basin sizes for the local optima.
Based on this feature, one can expect that the easiest instances will be those with
a large attraction basin size for the global optimum. Regarding the remaining
parameters, we use four permutation sizes n = {30, 40, 50, 100}, two different
numbers of local optima m = {104, 105}, and two distances (Kendall-tau and
Cayley). The consensus permutations (local optima) Σ are taken uniformly at
random. The range of values for θ has been chosen following the recommenda-
tions given in Section 5.2 to avoid numerical errors. We specify them according
to the desired type of instance. For each combination we create 10 instances.

• MaxGO-Instances: In this set, we want to promote a radical difference
between the sizes of the attraction basins of the global optimum and the
rest of the local optima, with the aim of obtaining the attraction basin of
the global optimum as large as possible. We fix the value of θ1:

– θ1 = ln(n−1
3 ) for the Kendall-tau distance,

– θ1 = 2ln(n−1
3 ) for the Cayley distance.

The values of θi, i 6= 1 are chosen uniformly at random in the intervals:

– IK = [ln(n− 1), 2ln(n− 1)] for the Kendall-tau distance,

– IC = [3ln(n− 1), 4ln(n− 1)] for the Cayley distance.

Note that, in this sense, the value of θ1 is always smaller than the rest of
θi. The local optima are sorted such that d(σ2, σ1) ≥ d(σ3, σ1) ≥ ... ≥
d(σm, σ1) ≥ 2. Therefore, the closest local optimum to the global optimum
is the one that has the minimum objective function value: σm.

• MinGO-Instances: This set of instances is generated with the objective
of having a small attraction basin of the global optimum and a large
attraction basin of the closest local optimum. The values of θi, i 6= {1, 2},
are chosen uniformly at random in the intervals IK and IC for the Kendall-
tau and the Cayley distances, respectively, as in the MaxGO-Instances.
The values for θ1 and θ2 are chosen as the highest and the lowest. So, we
choose:

– θ1 = 3ln(n− 1) and θ2 = ln(n−1
3 ) for Kendall-tau,

– θ1 = 6ln(n− 1) and θ2 = 2ln(n−1
3 ) for Cayley.

The local optima are sorted such that 2 ≤ d(σ2, σ1) ≤ d(σ3, σ1) ≤ ... ≤
d(σm, σ1).

• SimAB-Instances: In this set of instances, the values of θi,∀i, are chosen
uniformly at random from the intervals IK and IC for the Kendall-tau
and the Cayley distances, respectively, as in the previous two examples.
Notice that this time, we do not make any distinction between θ1, θ2

and the rest of θi. The consensus permutations are also taken at random
without taking into account the distances between them.
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In order to confirm our suspicion, that is, that the difficulty of the problem
will be conditioned by the size of the attraction basin of the global optimum, we
apply a local search (LS) algorithm, an Estimation of Distribution Algorithm
(EDA) and a Genetic Algorithm (GA) to the three sets of instances proposed
above. The algorithms are run 20 times for each instance, and we take the best
solution reached by each algorithm for each repetition. The stopping criterion
in the algorithms is the evaluation of 1000n2 solutions. Below, we detail the
three algorithms used:

• LS: We use a random multi-start hill climbing approach where the best
solution found in the neighborhood is chosen at each step. The neighbor-
hoods used are: Nadj and N2−exch for the instances where the Kendal-tau
and the Cayley distances, respectively, were used in the Mallows models.

• EDA: We use the EDA presented in [27] for solving permutation-based
problems. The authors used the Mallows distribution with the Kendall-
tau distance as the probability model. As proposed by the authors, the
population size is 10n, and the n best individuals are selected for learning
the probability distribution.

• GA: We use the GA proposed in [28]. As suggested by the authors, the
population size is 20n, a position based crossover operator (POS) and an
insertion mutation operator (ISM) are used, and a tournament selection
of size 2.

Tables 3, 4 and 5 show how the LS, the EDA and the GA, respectively,
behave according to the type of instance they are applied to. Particularly, the
tables show the percentage of the times that the best solution reached by the
algorithm is the global optimum σ1, the best local optimum σ2, or any other
local optimum. For the case of the EDA and the GA not reaching a local
optimum, we have added additional information indicating which is the closest
local optimum. With these results, we prove that the MaxGO-Instances are,
indeed, easy for the LS as the global optimum is reached 100% of the times. On
the other hand, we also check that the MinGO-Instances are instances where
the global optimum is never seen. We find that in the SimAB-Instances, it is
also difficult to find the global optimum. However, the difference between the
SimAB-Instances and the MinGO-Instances is that in the MinGO-Instances
there is a local optimum (σ2 in all cases) that is seen in 100% of the runs,
whereas in the set of SimAB-Instances different local optima are reached.

For the Kendall-tau distance, when applying the EDA (Table 4) and the GA
(Table 5) to the MaxGO-Instances, the global optimum is reached, or, if not,
the best solution found is always closer to the global optimum than to any other
local optimum. In the MinGO-Instances, the global optimum is never observed,
however the best solution is σ2, or, at least, the closest local optimum to the
best solution is σ2. In the SimAB-Instances, σ1 and σ2 are never found, and
other different local optima, or solutions closer to other local optima than to σ1

and σ2, are always seen. When applying the EDA using the Cayley distance, the
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Table 3: Average percentage of the times that the best solution reached by the
LS is the global optimum σ1, the local optimum σ2, or other different local
optimum.

Kendall-tau Cayley

MaxGO-Inst MinGO-Inst SimAB-Inst MaxGO-Inst MinGO-Inst SimAB-Inst

σ1 100.00% 0.00% 0.00% 100.00% 0.00% 0.00%
σ2 0.00% 100.00% 0.00% 0.00% 100.00% 0.00%
σi, (i 6= 1, 2) 0.00% 0.00% 100.00% 0.00% 0.00% 100.00%

Table 4: Average percentage of the times that the best solution reached by the
EDA is (or is close to) the global optimum σ1, the local optimum σ2, or other
different local optimum.

Kendall-tau Cayley

MaxGO-Inst MinGO-Inst SimAB-Inst MaxGO-Inst MinGO-Inst SimAB-Inst

σ1 77.54% 0.00% 0.00% 0.00% 0.00% 0.00%
σ2 0.00% 77.87% 0.00% 0.00% 0.00% 0.00%
σi, (i 6= 1, 2) 0.00% 0.00% 76.37% 0.00% 0.00% 0.00%

closest σ1 22.46% 0.00% 0.00% 99.50% 0.00% 0.00%
closest σ2 0.00% 22.13% 0.00% 0.00% 99.88% 0.00%
closest σi 0.00% 0.00% 23.63% 0.50% 0.12% 100.00%
(i 6= 1, 2)

best solutions found are never local optima. This is due to the fact that in the
EDA we are considering the Mallows model with the Kendall-tau distance, and
therefore it is difficult for this model to reach a local optimum for the 2-exchange
neighborhood. However, a really high percentage of the times the best solutions
found are closer to σ1, σ2 and other different σi for the MaxGO-Instances, the
MinGO-Instances and the SimAB-Instances, respectively. This also happens to
the GA when it is applied to the instances generated using the Cayley distance.
However, this algorithm is able to find σ1 and σ2 in the MaxGO-Instances and
the MinGO-Instances, respectively, at least a small percentage of the times.

Table 5: Average percentage of the times that the best solution reached by the
GA is (or is close to) the global optimum σ1, the local optimum σ2, or other
different local optimum.

Kendall-tau Cayley

MaxGO-Inst MinGO-Inst SimAB-Inst MaxGO-Inst MinGO-Inst SimAB-Inst

σ1 40% 0.00% 0.00% 8.00% 0.00% 0.00%
σ2 0.00% 40.00% 0.00% 0.00% 13.00% 0.00%
σi, (i 6= 1, 2) 0.00% 0.00% 31.00% 0.00% 0.00% 20.00%

closest σ1 60% 0.00% 0.00% 92.00% 0.00% 0.00%
closest σ2 0.00% 60.00% 0.00% 0.00% 87.00% 0.00%
closest σi 0.00% 0.00% 69.00% 0.00% 0.00% 80.00%
(i 6= 1, 2)
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7.2.2 Influence of Σ and Θ

As seen in the previous experiments, changing the function to optimize, together
with a careful ranking of randomly located local optima and choice of parameters
Θ, allows us to create instances with different qualitative characteristics and
hence complexities. However, it is also interesting to know the sensitivity of the
generated instances to the input parameters, i.e. the set of permutations Σ, and
the set of parameters Θ. It is clear that the location of the local optima can
have a high impact on the complexity of an instance. Taking that into account,
our generator provides complete freedom on the choice of the location of the
local optima. We can devise several ways to do that, such as: choosing random
permutations, using some proximity criterion between the global optimum and
the local optima, or even creating a matrix with distance constraints and looking
for the set of permutations that tries to fulfill such constraints.

The contribution of the set of parameters Θ is not so intuitive. They control
the shape of the Mallows models involved in the generator and, thus, they have a
big influence on the attraction basin of the local optima. Therefore, we consider
it interesting to measure their contribution.

The experiments carried out to measure the sensitivity of the instances to
the input parameters are as follows. The permutation size and the number of
local optima have been fixed to n = {30} and m = {104}, using the Kendall-tau
and the Cayley distances in the Mallows models. The linear function considered
is GSimAB , as we think it is the least biased to analyze the influence of the input
parameters. We have evaluated 11 values for θ1 for each distance. Nine of these
values are the points that divide the intervals IK and IC previously defined, in
10 identical subintervals and the other two are the extremes of the intervals.
The rest of the spread parameters θi, i 6= 1, are chosen uniformly at random in
those intervals IK and IC .

For the location of the local optima, they have been chosen according to
three different configurations5:

• 1st configuration: Global optimum surrounded by all the local optima, as
close as possible.

• 2nd configuration: All the local optima are close except the global optimum
that is as far from them as possible.

• 3rd configuration: All the local optima, including the global optimum, are
uniformly spread along the search space.

In summary, we have a total of 66 combinations: 2 (types of distance) x 3
(distribution of Σ) x 11 (values of Θ). We create 10 instances for each possible
combination. As the criterion to evaluate the influence of the input parameters
we have used the attraction basin size of the global optimum. For each of the
generated instances we have estimated this size with the following procedure

5Due to space limitations, the algorithms to generate these configurations are available in
the website: http://www.sc.ehu.es/ccwbayes/members/leticia
/GeneratorOfInstances/configurations.html
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Figure 4: Estimated attraction basin sizes of σ1 for the 1st configuration.
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Figure 5: Estimated attraction basin sizes of σ1 for the 2nd configuration.

(note that an exact basin calculation is computationally unfeasible): we run the
LS algorithm of the previous section, recording the number of times that σ1 is
seen. The proportion of times that the LS reaches σ1 is an estimator of the
proportion of its attraction basin size.

Figures 4, 5 and 6 show the results for the 1st, 2nd and 3rd configurations
of the local optima, respectively. Each point represents the average value of the
attraction basin sizes of σ1 of 10 instances. The figures mainly prove the big
influence that the choice of θ1 has in the attraction basin of σ1. Although the
localization of the local optima is relevant, (as can be seen with small values
of θ1) this influence is neglected by the peaky shape imposed in the Mallows
model that generates the global optimum for medium to high values of θ1.

7.2.3 A case study: Discovering differences between the LS, the GA
and the EDA

As a case of use of our generator, we show in this section an example on how
to utilize the generated instances to discover new facts about metaheuristic
algorithms. Particularly, we have tested the previously defined LS, EDA and
GA in all the instances generated in the previous section. Each algorithm has
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Figure 6: Estimated attraction basin sizes of σ1 for the 3rd configuration.
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Figure 7: Performance of the LS, the EDA and the GA with respect to the
estimated attraction basin size of the global optimum. Kendall-tau distance.

been run 20 times in each instance.
In Figures 7 and 8 we show the success ratio of the LS, the EDA, and the

GA (average proportion of the times that the best solution reached is the global
optimum) with respect to the estimated size of the attraction basin of the global
optimum, for the Kendall-tau and Cayley metrics, respectively. As expected, a
good correlation can be observed for the LS. The larger the attraction basin of
the global optimum, the higher the probability of finding it. In contrast, it is
remarkable that the behavior of the EDA and the GA is not so clearly correlated.
In fact, there are cases of small attraction basins and high success ratios and
vice versa. This type of scenario puts in value the usefulness of our generator:
it allows us to go further, analyzing the impact of other characteristics such as
the distribution of the local optima in the behavior of the algorithms. For this
purpose, in Figures 9 and 10 the success ratio of the LS, the EDA, and the GA
is measured related to the average distance of the global optimum to the rest
of the local optima. For these two figures, 10 instances of each configuration of
the local optima with similar attraction basin sizes of the global optimum have
been chosen (between 1.1 · 10−31 and 1.4 · 10−25 for Kendall-tau and between
0.3 and 0.4 for Cayley). Due to this similarity, the behavior of the LS is almost

27



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Estimated proportion of size of attraction basin of the global optimum

S
u

c
c
e

s
s
 r

a
ti

o

Cayley distance

 

 

LS

EDA

GA

Figure 8: Performance of the LS, the EDA, and the GA with respect to the
estimated attraction basin size of the global optimum. Cayley distance.

0 50 100 150 200 250 300 350 400 450
0

0.2

0.4

0.6

0.8

1

                   1
st

 configuration                                             3
rd

 configuration                                             2
nd

 configuration              

Average distance of the global optimum to the rest of the local optima

S
u

c
c

e
s

s
 r

a
ti

o

n=30, m=10
4
, Kendall−tau distance

 

 

EDA

GA

LS

Figure 9: Performance of the LS, the EDA, and the GA according to the average
distance of the local optima to the global optimum. Kendall-tau distance.
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average distance of the local optima to the global optimum. Cayley distance.
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identical, independently of the average distances between the local optima and
the global optimum. However, this feature (average distance) notably affects
the performance of the other two algorithms (particularly clear is the influence
in the GA). In view of the experiments, we conjecture that, for the GA the
average distance between the local optima and the global optimum has a higher
influence on its behavior than the size of the attraction basin of the global
optimum. The potential of our generator is shown, as it would allow to perform
a set of experiments analyzing the effect that reducing or increasing the average
distance between the local optima and the global optimum has on the GA.

Regarding the EDA, for the Kendall-tau distance, we can also conclude that,
if the global optimum is close to the rest of the local optima, the probability
of finding it is a bit higher (near 0.04) than if the global optimum is not so
close (almost 0.00). Notice that in these instances the proportion of the size of
the attraction basin of the global optimum is very small, and the EDA finds it
difficult (in all the cases) to reach it. However, for the Cayley distance, despite
the proportion of the size of the attraction basin of the global optimum being
considerably high (between 0.3 and 0.4), the EDA is not able to reach the global
optimum, not even in the case that the global optimum is close to the rest of the
local optima. We can conclude that this algorithm is not suitable for this type
of instances. This is another example of a conclusion that we can obtain about
the performance of this EDA when it is applied to instances with the properties
chosen.

8 Conclusions and future work

In the optimization field we can find several proposals of generators of instances.
Above all, these generators are for the continuous domain, or for binary spaces.
However, a few generators have been proposed for permutation-based COPs,
and they are not able to control many properties of the generated instance. In
this paper, we present a flexible generator, based on a mixture of GM models.
The parameters of these GM models are input parameters for the generator,
and by tuning them, the user can control quantitative as well as qualitative
properties of the resultant instance, such as the attraction basin sizes, the num-
ber of local optima, or their location. We have provided the restrictions that
these parameters need to fulfill to obtain quantitative properties in the gener-
ated instance. Precisely, we have given sufficient conditions to ensure that the
instance has a predefined number of local optima. Moreover, we have proposed
to solve the constraints in the parameters by means of a linear programming
problem. For this purpose, we have added a linear function to optimize that
helps to obtain qualitative properties in the instance.

We have tested two important properties of our generator: its flexibility
and its ability to create instances of very different complexities for local and
population-based common algorithms. To assess the first property, we have
considered instances of the PFSP and the LOP. We have measured the similar-
ity between the artificial and the benchmark instances by means of the attrac-
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tion basin sizes of the local optima. We find that, for small permutation sizes
(those computationally comparable), our generator is flexible enough to create
instances with almost the same sizes of attraction basins of the local optima
as the benchmark instances. In order to study the second property, we have
created a large set of instances of very different properties (permutation size,
number of local optima, size of the attraction basins of the local optima, etc.)
playing with the different input parameters available. According to the results,
we claim that our generator is a very useful tool for the community to analyze
and improve the performance of different optimization algorithms, and therefore
it supposes an innovative and relevant proposal in this arena.

As we have seen, the weakest point of our algorithm is the expensive cost of
evaluating a solution, that is basically conditioned by m (the number of local
optima). Therefore, in order to be able to work with a high number of local
optima, a key issue would be to think of different processes that help to reduce
the time complexity of one fitness evaluation. Starting by sorting, from high
to low, the local optima according to their fitness value, helps significantly to
reduce this time. For example, in the case of population-based algorithms, when
assigning a fitness to a given solution, we could stop the process of looking for the
maximum value given by the GM models, when we find a value higher than the
next fitness of the consensus permutation to test. According to a preliminary
analysis, with this process we reduced the time to 10%. In the case of local
search algorithms, a kind of incremental evaluation could be carried out, and
in order to evaluate the neighbors it would not be necessary to evaluate all the
models, because their change in fitness is limited by the new distance (+1 or
-1). Other techniques such as parallelism could be also applied to make the
computation times affordable. It is important to delve into this aspect in order
to be able to produce, with our generator, instances with a large number of local
optima, for which any algorithm could find a solution in reasonable time.

9 Proof of the lemma 5.1

Let’s suppose that (7) is false, that is: ∃k 6= i such that

f(σi) = max
1≤j≤m

{wjpj(σi|σj ,θj)}

= wkpk(σi|σk,θk) = wk
e
−
n−1∑
s=1

θskds(σi,σk)

Z(θk)
.

Then, the objective function value of the first permutation found in the shortest
path between σi and σk, that is, the permutation σ such that d(σ, σi) = 1 and
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d(σ, σk) = d(σi, σk)− 1, is:

f(σ) = max
1≤j≤m

{wjpj(σ|σj ,θj)}

≥ wkpk(σ|σk,θk) = wk
e
−
n−1∑
s=1

θskds(σ,σk)

Z(θk)
.

Notice that

d(σ, σk) =

n−1∑
s=1

ds(σ, σk) < d(σi, σk) =

n−1∑
s=1

ds(σi, σk),

in fact, d(σ, σk) = d(σi, σk) − 1, so that the elements involved in the decom-
position of the distance between σ and σk need to be equal to the elements of
the decomposition of the distance between σi and σk, with the exception of one
that has to be one unit lower. This is:

ds(σ, σk) = ds(σi, σk),∀s 6= t

dt(σ, σk) = dt(σi, σk)− 1.

So then,

n−1∑
s=1

θskds(σ, σk) =
∑
s6=t

θskds(σi, σk) + θtk[dt(σi, σk)− 1]

<

n−1∑
s=1

θskds(σi, σk)

⇒ e
−
n−1∑
s=1

θskds(σ,σk)
> e
−
n−1∑
s=1

θskds(σi,σk)
,

and therefore wk
e
−
n−1∑
s=1

θskds(σ,σk)

Z(θk) > wk
e
−
n−1∑
s=1

θskds(σi,σk)

Z(θk) .

Thus, we have a permutation σ such that d(σ, σi) = 1 and f(σ) > f(σi).
This proves that if (7) is not fulfilled, σi is not a local optimum.

10 Proof of the theorem 5.2

The definition of local optimum is given by (6), so that: f(σi) > f(σ),∀σ ∈ Ω
s.t. d(σ, σi) = 1. By lemma 5.1, f(σi) = wi

Z(θi)
, and therefore we can rewrite (6)

in the following form:

wi
Z(θi)

> max
1≤j≤m

 wj
Z(θj)

e
−
n−1∑
s=1

θsjds(σ,σj)

 ,
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∀σ s.t. d(σ, σi) = 1.
Obviously, this is fulfilled for j = i, so that this is equivalent to:

wi
Z(θi)

>
wj

Z(θj)
e
−
n−1∑
s=1

θsjds(σ,σj)
,∀j 6= i,

∀σ s.t. d(σ, σi) = 1. Therefore, (8) is fulfilled.
Let’s suppose now that the constraints in (8) are satisfied, we will prove

that, then, σi is a local optimum. The definition of objective function value of
σi in our generator is the following:

f(σi) = max
1≤j≤m

 wj
Z(θj)

e
−
n−1∑
s=1

θsjds(σi,σj)

 .

We can rewrite this expression, distinguishing between j = i and j 6= i, as:

f(σi) = max
j 6=i

 wi
Z(θi)

,
wj

Z(θj)
e
−
n−1∑
s=1

θsjds(σi,σj)


However, we know by (8) that

wi
Z(θi)

>
wj

Z(θj)
e
−
n−1∑
s=1

θsjds(σ,σj)
,∀σ s.t. d(σ, σi) = 1

If this is fulfilled for all σ such that d(σ, σi) = 1, specifically, this is fulfilled
for the first permutation σ′ found in the shortest path between σi and σj , such
that d(σ′, σi) = 1 and d(σ′, σj) = d(σi, σj)− 1. Reasoning as in the proof of the
Lemma 5.1, the elements involved in the decomposition of the distance between
σ′ and σj are:

ds(σ
′, σj) = ds(σi, σj),∀s 6= t

dt(σ
′, σj) = dt(σi, σj)− 1

and therefore

n−1∑
s=1

θsjds(σ
′, σj) <

n−1∑
s=1

θsjds(σi, σj)

⇒ e
−
n−1∑
s=1

θsjds(σ
′,σj)

> e
−
n−1∑
s=1

θsjds(σi,σj)
.

So, (8) implies ∀σ s.t. d(σ, σi) = 1:

wi
Z(θi)

>
wj

Z(θj)
e
−
n−1∑
s=1

θsjds(σi,σj) ⇒ f(σi) =
wi

Z(θi)
> f(σ).
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11 Proof of the theorem 5.3

From (9) we have:
wi

Z(θi)
>

wj
Z(θj)

,∀i < j

and obviously, as
wj

Z(θj)
>

wj
Z(θj)

e
−
n−1∑
s=1

θsjds(σ,σj)
, ∀σ, then inequalities in (8) when

i < j are fulfilled. Thus, we just have to prove that (9) and (10) imply (8) when
i > j.

We can rewrite (10) in the following form:[
1− e

−
(

min
j,s
{θsj}

)]
wm

Z(θm)
>

w1

Z(θ1)
− wm
Z(θm)

(11)

As it is known by (9): wm
Z(θm) ≤

wj
Z(θj)

,∀j.
So, (11) implies:[

1− e
−
(

min
j,s
{θkj }

)]
wj

Z(θj)
>

w1

Z(θ1)
− wm
Z(θm)

,∀j

Moreover, w1

Z(θ1) −
wm

Z(θm) >
wj

Z(θj)
− wi

Z(θi)
,∀i > j

so that, [
1− e

−
(

min
j,s
{θsj}

)]
wj

Z(θj)
>

wj
Z(θj)

− wi
Z(θi)

,∀i > j

and thus

wi
Z(θi)

>
wj

Z(θj)
−

[
1− e

−
(

min
j,s
{θsj}

)]
wj

Z(θj)

⇒ wi
Z(θi)

>
wj

Z(θj)
e
−
(

min
j,s
{θsj}

)
(12)

Notice that as d(σ, σj) ≥ 1,∀σ 6= σj :

min
j,s
{θsj} < min

j,s
{θsj}d(σ, σj) = min

j,s
{θsj}

n−1∑
s=1

ds(σ, σj)

<

n−1∑
s=1

[θsjds(σ, σj)].

Finally, inequality (12) implies

wi
Z(θi)

>
wj

Z(θj)
e
−
n−1∑
s=1

[θsjds(σ,σj)]
.
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