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Abstract

The aim of this paper is to introduce the concept of intersection be-
tween combinatorial optimisation problems. We take into account that
most algorithms, in their machinery, do not consider the exact objective
function values of the solutions, but only a comparison between them. In
this sense, if the solutions of an instance of a combinatorial optimisation
problem are sorted into their objective function values, we can see the
instances as (partial) rankings of the solutions of the search space. Work-
ing with specific problems, particularly, the linear ordering problem and
the symmetric and asymmetric traveling salesman problem, we show that
they can not generate the whole set of (partial) rankings of the solutions
of the search space, but just a subset. First, we characterise the set of
(partial) rankings each problem can generate. Secondly, we study the
intersections between these problems: those rankings which can be gener-
ated by both the linear ordering problem and the symmetric/asymmetric
traveling salesman problem, respectively. The fact of finding large inter-
sections between problems can be useful in order to transfer heuristics
from one problem to another, or to define heuristics that can be useful for
more than one problem.

Keywords— Permutation-based combinatorial optimisation problems, rankings,
traveling salesman problem, linear ordering problem.
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1 Introduction

In the last few decades, the solution of combinatorial optimisation problems (COP)
has gained importance because they are ubiquitous in many different fields, such as
transportation, industry, economy, telecommunications, logistics, or planning. Many
methods have been designed for solving these problems, from general metaheuristics
[14, 18, 2, 13, 3] to specific algorithms for particular problems [5, 10, 22, 16, 19, 21].
Among these proposals of algorithms, we find the heuristics which evaluate one or
more solutions at each step, compare them with the current solution or solutions, and
discard or accept them according to different criteria. These approaches do not make
use of the exact value of the objective function of the solutions, but they are only
interested in knowing if the objective function value of one solution is higher/lower
than the value of another solution. Any evolutionary algorithm that uses tournament
or ranking selection operators [3], local search based algorithms such as tabu search
[9], variable neighbourhood search [7], iterated local search [12, 13, 21], etc., are some
examples of this kind of algorithms. Therefore, all of them will behave equally for two
instances of two different COPs that generate the same ranking of solutions, even when
they have different objective function values. We will denote these metaheuristics as
ranking-based algorithms. Notice that other algorithms - such as simulated annealing
[20, 17], or any evolutionary algorithm that uses roulette wheel selection [11], as well
as some tabu search techniques that utilize the exact objective function values to
determine the tabu tenure [1] - do not fit in this work.

Taking the previous argument into account, for all those ranking-based algorithms,
an instance of a COP can be seen as a ranking of the solutions of the search space. Par-
ticularly, given an instance, all the solutions of the search space can be sorted into their
objective function value, from the best to the worst. Note that this ranking will be a
partial ranking when at least two solutions of the search space have the same objective
function value. Considering instances of COPs as (partial) rankings of the search space
can provide new insights into the analysis of these problems. Specifically, character-
ising the rankings generated by different COPs is useful when analysing the possible
intersections between the ranking spaces, and therefore, intersections between prob-
lems. In this sense, no matter whether a problem addresses distances between cities,
or if it copes with flows between factories, those rankings (instances) that fall into the
intersection of both problems will be solved similarly for ranking-based algorithms.

In this paper, we work with different permutation-based combinatorial optimisa-
tion problems: the linear ordering problem (LOP) and the symmetric and asymmetric
traveling salesman problem (TSP). First, the necessary conditions for a ranking to be
generated by each of the three problems are specified, accompanied with examples.
Although we can not prove the sufficiency, we take a step forward in this direction,
analysing some restrictions in the rankings by means of theorems. We also determine
an upper bound for the number of the different possible rankings produced in each
case. Secondly, we analyse the intersection between the ranking space of the LOP and
those of the two versions of the TSP. That is, we answer the following question: is
there any ranking that could be produced by an instance of the LOP and also by an
instance of the symmetric/asymmetric TSP?

The rest of the paper is organised as follows. The permutation-based combinatorial
optimisation problems analysed in the paper are formally introduced in Section 2. In
Section 3, we carry out the characterisation of the rankings induced by each of the
three problems, and the intersections between them are studied in Section 4. Finally,
in Section 5, the conclusions and future work are presented.
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2 Permutation-based Combinatorial Optimisa-
tion Problems

A combinatorial optimisation problem (COP) consists of finding the solution (or so-
lutions) that optimises a function f

f : Ω −→ R
σ 7−→ f(σ)

,

where the solutions σ are in a finite or countable infinite search space Ω. Specifically,
we work with instances of permutation-based COPs. So, from now on, Ω is the set of
permutations of size n, Ω = Sn, and a permutation σ ∈ Sn is a bijection of the set of
integers {1,2,. . . ,n} onto itself. A permutation is understood as an order of the items
{1,2,. . . ,n}, i.e.:

σ = (σ(1)σ(2) · · ·σ(n)),

where σ(i) ∈ {1, 2, . . . , n} is the item in the i-th position and σ(i) 6= σ(j), ∀i 6= j.

2.1 Linear Ordering Problem

Given a matrix A = [aij ]n×n of numerical entries, the Linear Ordering Problem (LOP)
consists of finding a simultaneous permutation σ ∈ Sn of the rows and columns of B,
such that the sum of the entries above the main diagonal is maximised, or equivalently,
the sum of the entries below the main diagonal is minimised [6]. In this paper, we
consider the version of minimisation, as we will refer to all minimisation problems.
The equation below formalises the LOP function:

fLOP (σ) =

n−1∑
i=1

n∑
j=i+1

aσ(j)σ(i). (1)

The search space is the whole space of permutations of size n, so its size is |Sn| = n!.
It is important to note that if a permutation

σ = (σ(1)σ(2) · · ·σ(n− 1)σ(n))

minimises the objective function fLOP , its reverse,

σr = (σ(n)σ(n− 1) · · ·σ(2)σ(1)),

maximises it.

2.2 Traveling Salesman Problem

Given a list of n cities and their pairwise distances D = [dij ]n×n, the aim of the TSP is
to find the shortest tour that visits each city exactly once, returning to the initial city
[8]. As the problem has n cities, the search space is specified by the set of permutations
of n elements, Sn, and the objective function to minimise is:

fTSP (σ) =

n−1∑
i=1

dσ(i)σ(i+1) + dσ(n)σ(1), (2)

where dσ(i)σ(j) represents the distance between the cities σ(i) and σ(j), i 6= j.

3



2.2.1 Symmetric TSP

In the symmetric version of the traveling salesman problem (STSP), the distance
from one city i to another city j is considered the same as from j to i. That is,
dij = dji,∀i 6= j. In this problem, one solution (tour) can be represented by 2n
different permutations, and therefore, the search space is of size n!/2n = (n − 1)!/2.
For example, for n = 4, the 8 permutations σ1, . . . , σ8 represent the same tour:

σ1 = (1234) ; σ2 = (2341) ; σ3 = (3412) ; σ4 = (4123);

σ5 = (4321) ; σ6 = (3214) ; σ7 = (2143) ; σ8 = (1432).

The objective function value for this tour is:

fSTSP (σi) = d12 + d23 + d34 + d41 , ∀i = 1, . . . , 8.

2.2.2 Asymmetric TSP

The asymmetric traveling salesman problem (ATSP) considers that the distance from
one city i to another city j is not necessarily the same as from j to i. In this case, one
solution can be represented by n different permutations, and thus, the search space is
of size n!/n = (n− 1)!. For example, for n = 4, there are 4 permutations σ1, σ2, σ3, σ4

representing the same tour.

σ1 = (1234) ; σ2 = (2341) ; σ3 = (3412) ; σ4 = (4123).

However, it is different from the tour represented by the 4 permutations σ5, σ6, σ7, σ8:

σ5 = (4321) ; σ6 = (3214) ; σ7 = (2143) ; σ8 = (1432).

The objective function values for these two different tours are:

fATSP (σi) = d12 + d23 + d34 + d41 , ∀i = 1, . . . , 4,

fATSP (σj) = d21 + d32 + d43 + d14 , ∀j = 5, . . . , 8.

3 Rankings generated by combinatorial optimi-
sation problems

A permutation-based COP has been naturally understood as the pair (f, Sn) where
f is the objective function and Sn the search space. If all the solutions of the search
space are evaluated by the objective function, we could sort these solutions from the
best to the worst one. In this sense, assuming a minimisation problem and considering
an injective function f , we can define a ranking Rn!(f) given by f as the permutation
in Sn! that reorders the elements in Sn so that the first one has the lowest value of
the objective function and the last one has the highest value:

Rn!(f) = (σ1σ2 · · ·σn!),

with f(σ1) < f(σ2) < . . . < f(σn!).
For the cases where the function f is not injective, that is, more than one solution

has the same objective function value, we can define a partial ranking. The partial
rankings accept a set of different solutions at each position:

PRn!(f) = ({σ11, σ12, . . . , σ1k1} · · · {σm1, . . . , σmkm}),
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with
f(σ11) = f(σ12) = . . . = f(σ1k1) < . . . < f(σm1) = . . . = f(σmkm).

Considering this concept of ranking, we can associate each COP with the set of all
possible rankings produced by itself [4]. One of the advantages of this point of view is
that, while the space composed by all the instances of a COP is infinite, the ranking
space induced by a COP is finite. We analyse the properties of the rankings generated
by the LOP and the symmetric and asymmetric TSP.

3.1 Rankings of the LOP

It is already known that the rankings generated by the LOP have specific properties
[5, 15]. If a solution σ is in the first position of the ranking (it is the best solution, that
is, a global optimum) its reverse σr is located at the last position of the ranking (it is
the worst solution). In general, if a solution σ′ is in the k-th position of the ranking,
its reverse σ′r is located at the (n! − k + 1)-th position of the ranking. Henceforth,
we denote this kind of rankings as reversely symmetric (RS) rankings. Assuming an
injective function, the number of all possible RS rankings would be:

|Rn!(RS)| = 2n!/2 ·
(
n!

2

)
!. (3)

This is, there is a total of n! solutions in the search space, so a total of n!
2

pairs of
solutions. As for each pair of solutions (σ, σr), one solution will be located in the
superior half of the ranking while the other will be located in the inferior half of the
ranking, the different possible ways of reordering all the solutions in the superior half
of the ranking (and consequently in the inferior half) is

(
n!
2

)
!. It comes multiplied

by the different possible ways of choosing each permutation, σ or σr, from each pair:
2n!/2.

An example of a ranking of an LOP instance of size 3 is the following, where the
4th, 5th and 6th permutations are the reverses of the 3rd, 2nd and 1st permutations,
respectively:

R3!(RS) =
(
(123) (132) (213) (312) (231) (321)

)
.

So, every instance of an LOP can be seen as a reversely symmetric ranking. The
question that arises is: can every reversely symmetric ranking be generated by an in-
stance of the LOP? In order to answer this question, we provide the following example.

Example 3.1. Let us consider a reversely symmetric ranking for permutations of size
n = 4 of the following form:

R4!(RS) =
(
(1234) (1243) (1423) (1342) (1324) (1432) (2134)

(2143) (2314) (2413) (3124) (3214) (4123) (4213) (3142) (4132)

(3412) (4312) (2341) (4231) (2431) (3241) (3421) (4321)
)
.

If an instance of the LOP which generates this ranking exists, it means that it is
possible to find a matrix

A =


a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44


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such that ∀σi, σj elements of R4!(RS) with i < j, f(σi) < f(σj).
First, we take, for example, the permutations σ2 = (1243) and σ3 = (1423), so that

f(σ2) < f(σ3) has to be fulfilled (see 1 for the calculation of the objective function).

f(σ2) = f(1243) = a21 + a41 + a31 + a42 + a32 + a34
f(σ3) = f(1423) = a41 + a21 + a31 + a24 + a34 + a32

}
⇒

⇒ a21 + a41 + a31 + a42 + a32 + a34 < a41 + a21 + a31 + a24 + a34 + a32.

Thus,
a42 < a24. (4)

Secondly, we choose the permutations σ4 = (1342) and σ5 = (1324), so f(σ4) <
f(σ5) has to be fulfilled.

f(σ4) = f(1342) = a31 + a41 + a21 + a43 + a23 + a24
f(σ5) = f(1324) = a31 + a21 + a41 + a23 + a43 + a42

}
⇒

⇒ a31 + a41 + a21 + a43 + a23 + a24 < a31 + a21 + a41 + a23 + a43 + a42.

Thus,
a24 < a42. (5)

As can be observed, the inequalities given by 4 and 5 are inconsistent.

This is a simple counterexample that shows that not all the RS rankings can
be generated by instances of the LOP. So, the number of all possible RS rankings
calculated in 3 is an upper bound for the number of all possible rankings that the LOP
can generate (assuming an injective function). In Theorem 3.1, we provide sufficient
conditions for an RS ranking (or partial ranking) not to correspond with any LOP
instance.

Theorem 3.1. Given a reversely symmetric ranking Rn!(RS), and i, j, k, r ∈ N such
that 1 ≤ i < j < k < r ≤ n!, if the following three conditions are fulfilled

(i) ∃σi, σj elements of Rn!(RS) such that σi(p) = σj(p+ 1), σi(p+ 1) = σj(p) and
σi(s1) = σj(s1),∀s1 6= p, p+ 1,

(ii) ∃σk, σr elements of Rn!(RS) such that σk(q) = σr(q+ 1), σk(q+ 1) = σr(q) and
σk(s2) = σr(s2), ∀s2 6= q, q + 1,

(iii) σi(p) = σr(q) and σi(p+ 1) = σr(q + 1),

then, Rn!(RS) can not be generated by any instance of the LOP.

Proof. Let’s suppose an RS ranking containing four permutations σi, σj , σk and σr
that fulfil the three conditions. According to the first condition (i), σi and σj just
differ from one adjacent swap: all their items are equal except the p-th and (p + 1)-
th, which are exchanged. Thus, calculating the difference of their objective function
values for the LOP:

f(σi)− f(σj) = aσi(p+1)σi(p) − aσj(p+1)σj(p).
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As σj(p+ 1) = σi(p) and σj(p) = σi(p+ 1),

f(σi)− f(σj) = aσi(p+1)σi(p) − aσi(p)σi(p+1).

It is known that f(σi) < f(σj), because i < j, therefore

aσi(p+1)σi(p) − aσi(p)σi(p+1) < 0

⇒ aσi(p+1)σi(p) < aσi(p)σi(p+1). (6)

Taking into account the second condition (ii), σk and σr have also all their items
equal except the q-th and (q+ 1)-th, which are swapped. Thus, calculating the differ-
ence of their objective function values:

f(σk)− f(σr) = aσk(q+1)σk(q) − aσr(q+1)σr(q).

As σk(q + 1) = σr(q) and σk(q) = σr(q + 1),

f(σk)− f(σr) = aσr(q)σr(q+1) − aσr(q+1)σr(q).

It is known that f(σk) < f(σr), because k < r, therefore

aσr(q)σr(q+1) < aσr(q+1)σr(q). (7)

Because of the third condition (iii), σr(q) = σi(p) and σr(q + 1) = σi(p + 1), and
therefore 7 can be rewritten as

aσi(p)σi(p+1) < aσi(p+1)σi(p). (8)

Inequalities given by 6 and 8 are inconsistent: an LOP instance that generates a
ranking under these conditions does not exist.

Theorem 3.1 can be extended to RS partial rankings. Notice, that Theorem 3.1
provides sufficient conditions for a ranking not to be an LOP instance, but we do
not state that these conditions are necessary. That is, we know that there is not an
instance of the LOP that generates a ranking of these characteristics, but we do not
know if these properties are enough to characterise all the impossible rankings for the
LOP.

3.2 Rankings of the Symmetric TSP

As seen in Section 2.2.1, in the STSP, there are 2n different permutations that represent
the same solution. Thus, for this problem, we can refer just to partial rankings,
in which at each position there are, at least, 2n solutions. Precisely, the rankings
generated by the instances of this problem are such that at the i-th position we find
the set of permutations Cr(σi):

Cr(σi) =
{

(σi(1) · · ·σi(n)), (σi(2) · · ·σi(n)σi(1)), . . . ,

, (σi(n)σi(1) · · ·σi(n− 1)), (σi(n)σi(n− 1) · · ·σi(1)),

, (σi(n− 1) · · ·σi(1)σi(n)), . . . , (σi(1)σi(n)σi(n− 1) · · ·σi(2))
}
.
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From now on, we denote this kind of partial rankings as reverse-cyclic based (RC)
rankings. Assuming that at each position of the ranking there is just one set Cr(σi) ,
the number of all possible RC rankings is

|Rn!(RC)| =
(

(n− 1)!

2

)
!. (9)

An example of a ranking of an STSP of size 4 would be the following:

R4!(RC) =
(
Cr(1234) Cr(1243) Cr(1324)

)
,

where

Cr(1234) = {(1234), (2341), (3412), (4123), (4321), (3214), (2143), (1432)},

Cr(1243) = {(1243), (2431), (4312), (3124), (3421), (4213), (2134), (1342)},
Cr(1324) = {(1324), (3241), (2413), (4132), (4231), (2314), (3142), (1423)}.

Every instance of an STSP generates an RC ranking. Again, the question that
arises is: can every RC ranking be generated by an instance of the STSP? In order to
answer this question, we provide the following example.

Example 3.2. Let us suppose an RC ranking for permutations of size n = 7, where
the best four sets of solutions are

R7!(RC) =
(
Cr(1234567) Cr(1235467) Cr(1264537) Cr(1265437) · · ·

)
.

If an instance of the STSP which generates this ranking exists, it means that it is
possible to find a matrix

D =


0 d12 · · · d17
d12 0 · · · d27

...
...

. . .
...

d17 d27 · · · 0


such that ∀σ′i ∈ Cr(σi), ∀σ′j ∈ Cr(σj) with i < j, f(σ′i) < f(σ′j).

First, we take, for example, the permutations σ1 = (1234567) and σ2 = (1235467),
so that f(σ1) < f(σ2) has to be fulfilled.

f(1234567) = d12 + d23 + d34 + d45 + d56 + d67 + d71
f(1235467) = d12 + d23 + d35 + d54 + d46 + d67 + d71

}
⇒ d12 + d23 + d34 + d45 + d56 + d67 + d71 <

< d12 + d23 + d35 + d54 + d46 + d67 + d71.

Thus,
d34 + d56 < d35 + d46. (10)

Secondly, we choose the permutations σ3 = (1264537) and σ4 = (1265437), so
f(σ3) < f(σ4):

f(1264537) = d12 + d26 + d64 + d45 + d53 + d37 + d71
f(1265437) = d12 + d26 + d65 + d54 + d43 + d37 + d71

}
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⇒ d12 + d26 + d64 + d45 + d53 + d37 + d71 <

< d12 + d26 + d65 + d54 + d43 + d37 + d71.

Thus,
d64 + d53 < d65 + d43. (11)

As dij = dji, ∀i, j, the inequalities given by 10 and 11 are inconsistent.

This is a simple counterexample that shows that not all the RC rankings can
be generated by instances of the STSP. So, the number of all possible RC rankings
calculated in 9 is an upper bound for the number of all possible rankings that the STSP
can generate (when assuming that any two different tours have different objective
function values). In Theorem 3.2, we provide sufficient conditions for an RC ranking
not to correspond with any STSP instance.

Theorem 3.2. Given a reverse-cyclic based ranking Rn!(RC), and i, j, k, r ∈ N such
that 1 ≤ i < j < k < r ≤ n!, if the following three conditions are fulfilled

(i) ∃σi, σj elements of Rn!(RC) such that σi(p) = σj(p+ 1), σi(p+ 1) = σj(p) and
σi(s1) = σj(s1),∀s1 6= p, p+ 1,

(ii) ∃σk, σr elements of Rn!(RC) such that σk(q) = σr(q+1), σk(q+1) = σr(q) and
σk(s2) = σr(s2), ∀s2 6= q, q + 1,

(iii)


σi(p) = σr(q)
σi(p+ 1) = σr(q + 1)
σi(p− 1) = σr(q − 1)
σi(p+ 2) = σr(q + 2)

or


σi(p) = σr(q + 1)
σi(p+ 1) = σr(q)
σi(p− 1) = σr(q + 2)
σi(p+ 2) = σr(q − 1)

then, Rn!(RC) can not be generated by any instance of the STSP.

Proof. Let’s suppose an RC ranking containing four permutations σi, σj , σk and σr
that fulfil the three conditions. According to the first condition (i), σi and σj just
differ from one adjacent swap: all their items are equal except the p-th and (p+ 1)-th,
which are swapped. Thus, calculating the difference of their objective function values
for the STSP:

f(σi)− f(σj) =
(
dσi(p−1)σi(p) + dσi(p+1)σi(p+2)

)
−

−
(
dσj(p−1)σj(p) + dσj(p+1)σj(p+2)

)
.

As σj(p+ 1) = σi(p) and σj(p) = σi(p+ 1),

f(σi)− f(σj) =
(
dσi(p−1)σi(p) + dσi(p+1)σi(p+2)

)
−

−
(
dσi(p−1)σi(p+1) + dσi(p)σi(p+2)

)
.

It is known that f(σi) < f(σj), because i < j, therefore(
dσi(p−1)σi(p) + dσi(p+1)σi(p+2)

)
−

−
(
dσi(p−1)σi(p+1) + dσi(p)σi(p+2)

)
< 0⇒

dσi(p−1)σi(p) + dσi(p+1)σi(p+2) <
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< dσi(p−1)σi(p+1) + dσi(p)σi(p+2). (12)

Taking into account the second condition (ii), σk and σr have also all their items
equal except the q-th and (q+ 1)-th, which are swapped. Thus, calculating the differ-
ence of their objective function values:

f(σk)− f(σr) =
(
dσk(q−1)σk(q) + dσk(q+1)σk(q+2)

)
−

−
(
dσr(q−1)σr(q) + dσr(q+1)σr(q+2)

)
.

As σk(q + 1) = σr(q) and σk(q) = σr(q + 1),

f(σk)− f(σr) =
(
dσr(q−1)σr(q+1) + dσr(q)σr(q+2)

)
−

−
(
dσr(q−1)σr(q) + dσr(q+1)σr(q+2)

)
.

It is known that f(σk) < f(σr), because k < r, therefore

dσr(q−1)σr(q+1) + dσr(q)σr(q+2) <

< dσr(q−1)σr(q) + dσr(q+1)σr(q+2). (13)

Because of the third condition (iii):

(iii-I) if σr(q) = σi(p), σr(q + 1) = σi(p + 1), σr(q − 1) = σi(p − 1) and σr(q + 2) =
σi(p+ 2), then 13 can be rewritten as

dσi(p−1)σi(p+1) + dσi(p)σi(p+2) <

< dσi(p−1)σi(p) + dσi(p+1)σi(p+2). (14)

(iii-II) or if σr(q+ 1) = σi(p), σr(q) = σi(p+ 1), σr(q+ 2) = σi(p− 1) and σr(q− 1) =
σi(p+ 2), then 13 can be rewritten as

dσi(p+2)σi(p) + dσi(p+1)σi(p−1) <

< dσi(p+2)σi(p+1) + dσi(p)σi(p−1). (15)

In both cases (iii-I) and (iii-II), inequalities given by 12 and 14, and 12 and 15,
respectively, are inconsistent: an STSP instance that generates a ranking under these
conditions does not exist.

Theorem 3.2 can be extended to RC partial rankings with sets of sizes k · 2n (1 <
k ∈ N) at the different positions of the ranking. Notice, that Theorem 3.2 provides
sufficient conditions for a ranking not to be an STSP instance, but we do not state
that these conditions are enough to characterise all the impossible rankings for the
STSP.
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3.3 Rankings of the Asymmetric TSP

In the ATSP, there are n different permutations that represent the same solution. As
in the case of the STSP, we can refer to partial rankings with, at least, n solutions
having the same objective function value at each position of the ranking. Precisely, the
rankings generated by the instances of this problem are such that at the i-th position
we find the set of permutations C(σi):

C(σi) =
{

(σi(1) · · ·σi(n)), (σi(2) · · ·σi(n)σi(1)),

, . . . , (σi(n)σi(1) · · ·σi(n− 1))
}
.

Henceforth, we denote this kind of rankings as nonreverse-cyclic based (NRC)
rankings. Supposing that at each position of the ranking there is just one set C(σi),
the number of all possible NRC rankings is

|Rn!(NRC)| = ((n− 1)!)!. (16)

An example of a ranking of an ATSP of size 4 is the following:

R4!(NRC) =
(
C(1234) C(1243) C(1324) C(1342) C(1423) C(1432)

)
,

where
C(1234) = {(1234), (2341), (3412), (4123)},
C(1243) = {(1243), (2431), (4312), (3124)},
C(1324) = {(1324), (3241), (2413), (4132)},
C(1342) = {(1342), (3421), (4213), (2134)},
C(1423) = {(1423), (4231), (2314), (3142)},
C(1432) = {(1432), (4321), (3214), (2143)}.

The same question as in the previous two cases is answered by means of a coun-
terexample: can every NRC ranking be generated by an ATSP instance?

Example 3.3. Let us suppose an NRC ranking for permutations of size n = 7, where
the best four sets of solutions are

R7!(NRC) =
(
Cr(1234567) Cr(1235467) Cr(1735462) Cr(1734562) . . .

)
.

If an instance of the ATSP which generates this ranking exists, it means that it is
possible to find a matrix

D =


0 d12 · · · d17
d21 · · · · · · d27

...
...

d71 d72 · · · 0


such that ∀σ′i ∈ C(σi), ∀σ′j ∈ C(σj) with i < j, f(σ′i) < f(σ′j).

In the same way as in Example 3.2, we obtain an inconsistency when analysing the
objective function values. On the one hand, choosing the permutations σ1 = (1234567)
and σ2 = (1235467):

d34 + d45 + d56 < d35 + d54 + d46. (17)

On the other hand, for permutations σ3 = (1735462) and σ4 = (1734562):

d35 + d54 + d46 < d34 + d45 + d56. (18)

11



This counterexample shows that not all the NRC rankings can be generated by
instances of the ATSP. So, the number of all possible NRC rankings calculated in 16
is an upper bound for the number of all possible rankings that the ATSP can generate
(when assuming that any two different tours have different objective function values).
In Theorem 3.3, we provide sufficient conditions for an NRC partial ranking not to
correspond with any ATSP instance.

Theorem 3.3. Given a nonreverse-cyclic based ranking Rn!(NRC), and i, j, k, r ∈ N
such that 1 ≤ i < j < k < r ≤ n!, if the following three conditions are fulfilled

(i) ∃σi, σj elements of Rn!(NRC) such that σi(p) = σj(p + 1), σi(p + 1) = σj(p)
and σi(s1) = σj(s1), ∀s1 6= p, p+ 1,

(ii) ∃σk, σr elements of Rn!(NRC) such that σk(q) = σr(q + 1), σk(q + 1) = σr(q)
and σk(s2) = σr(s2),∀s2 6= q, q + 1,

(iii) σi(p) = σr(q), σi(p+1) = σr(q+1), σi(p−1) = σr(q−1), σi(p+2) = σr(q+2),

then, Rn!(NRC) can not be generated by any instance of the ATSP.

Proof. The proof is similar to that of Theorem 3.2.

Theorem 3.3 can be extended to NRC partial rankings with sets of sizes k ·n (1 <
k ∈ N) at the different positions of the ranking. Theorem 3.3 provides sufficient
conditions for a ranking not to be an ATSP instance.

4 Intersection between rankings

All the COPs have at least one ranking in common: the partial ranking produced by
a constant objective function. That is, in all cases we can find a ranking where all the
solutions share the same objective function value; thus, all the solutions are located in
the first position of the ranking. However, we are interested in knowing if two COPs
have more rankings in common. As mentioned in the introduction, if this happens,
every algorithm that does not take into account the absolute objective function values,
but just takes into account the rank of the solutions, will behave in the same manner
in instances that produce the same ranking.

4.1 Intersection between LOP and STSP

If a ranking could be generated by an instance of the LOP and also by an instance
of the STSP, on the one hand, it would be an RS ranking, and, on the other hand, it
would be an RC ranking.

First, if the ranking is RC, it means that 2n solutions have the same objective
function value. Particularly, any permutation σ and its reverse σr have the same
value. Secondly, if the ranking is RS, the global optimum σ∗ is in the first position of
the ranking, and its reverse σ∗r is in the last one. These two conditions imply that all
the solutions of the ranking (the whole search space) have the same objective function
value. In other words:

LOP ∩ STSP = {fc},
where fc represents the constant objective functions.
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4.2 Intersection between LOP and ATSP

If a ranking is generated by an instance of the LOP and also by an instance of the
ATSP, on the one hand, it is an RS ranking, and, on the other hand, it is an NRC
ranking. At a first glance, we do not find any contradiction between these two kinds
of rankings, as the reverse permutations σr do not have any relation with σ in the
NRC rankings. In fact, one can find numerous rankings belonging to both LOP and
ATSP. Here, an example is provided.

Example 4.1. Given the following partial ranking for permutation size n = 4

R4! =
(
C(1234) C(1423) C(1342) C(1243) C(1324) C(1432)

)
,

we find an instance of the LOP and an instance of the ATSP that generate it. Notice
that it is an RS ranking, because all the permutations in the 1st, 2nd, and 3rd positions
have their reverses at 6th, 5th and 4th positions, respectively. It is also an NRC
ranking, as at each position a set of n = 4 cyclic permutations is found.

For instance, evaluating the LOP instance given by the following matrix

A =


0 4 1.5 0.5
1 0 9.5 0
2 4 0 8.5
3 2.5 3.5 0


the resultant objective function values for each permutation of the search space are:

f(1234) = f(2341) = f(3412) = f(4123) =16.0,

f(1423) = f(4231) = f(2314) = f(3142) =18.5,

f(1342) = f(3421) = f(4213) = f(2134) =19.0,

f(2431) = f(1243) = f(3124) = f(4312) =21.0,

f(3241) = f(1324) = f(4132) = f(2413) =21.5,

f(4321) = f(1432) = f(2143) = f(3214) =24.0.

Thus, the LOP instance given by matrix A produces the ranking that was desired.
Evaluating the ATSP instance given by the following distance matrix

D =


0 1.7 7.1 8.5
8 0 1.6 7
6 9 0 1.5
1 2 8 0


the resultant objective function values for each permutation of the search space are:

f(1234) = f(2341) = f(3412) = f(4123) =5.8,

f(1423) = f(4231) = f(2314) = f(3142) =18.1,

f(1342) = f(3421) = f(4213) = f(2134) =18.6,

f(2431) = f(1243) = f(3124) = f(4312) =22.7,

f(3241) = f(1324) = f(4132) = f(2413) =24.1,

f(4321) = f(1432) = f(2143) = f(3214) =33.5.

Thus, the STSP instance given by matrix D produces the same ranking.
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It is concluded that the intersection between the LOP and the ATSP is higher
than the set composed by just the constant objective functions. The total amount of
NRC rankings that, at the same time, are RS rankings, is

|Rn!(RS ∩NRC)| = 2(n−1)!/2 ·
(

(n− 1)!

2

)
!. (19)

However, as has been explained in Section 3, some RS rankings and NRC rankings
are impossible to be produced by LOP and ATSP instances, respectively. Therefore,
we conjecture that 19 is an upper bound for the number of rankings that the LOP and
the ATSP have in common when assuming that at each position of the ranking there
is just one set of cyclic solutions.

5 Conclusions and Future Work

Analysing the combinatorial optimisation problems and understanding the behaviour
of the algorithms when dealing with them, have been the main target of the combina-
torial optimisation field. Some of the solving techniques proposed in the literature are
focused on specific COPs. However, the association between problems and algorithms
is still unknown: given a specific problem, which is the most suitable algorithm that
solves it?

Based on the fact that most heuristics do not consider the exact objective function
values, but just a comparison between them, in this paper, we have treated the COPs
as sets of rankings of the solutions. Although the definition of the distinct problems
is completely different, the ranking-based algorithms ”see” all those instances that
generate the same ranking in the same way. Thus, their performance will be exactly
the same with these instances. In this sense, we can analyse the intersection between
two COPs, that is, the subset of rankings that both COPs have in common. So, if we
accept that an algorithm performs well for a specific COP and we find that this COP
has a large intersection with another COP, we can also predict that the algorithm will
work well when applied to this second COP.

We have worked with the LOP and the symmetric/asymmetric TSP. First, we
have shown the properties of the rankings generated by the three problems. However,
we have proved that not all the rankings with these characteristics are possible to
be generated by instances of these problems. In order to take a step forward in the
characterisation of the necessary and sufficient conditions of the generated rankings,
we provide theorems with some ranking restrictions. Secondly, we have focused on the
intersection between the set of rankings produced by the LOP and those generated by
the symmetric TSP. Also, the intersection between those of the LOP and of the asym-
metric TSP has been analysed. It has been found that the LOP and the symmetric
TSP do not share any ranking, except the one that is common in all the problems:
the ranking where all the solutions are in the same position (with the same objective
function value). Nevertheless, the LOP and the asymmetric TSP do share a number
of rankings. Until now, algorithms have been designed, mainly, taking into account
the properties of the problem at hand. However, these results show that it could be
more efficient if the algorithms are designed for specific kinds (sets) of rankings.

In order to delve into this analysis, first, it would be interesting to study if the
instances belonging to this intersection between the LOP and the ATSP are commonly
found in the usual benchmarks or in real life. As a first step to test this, it would be
useful to discover the restrictions in the elements of the LOP matrix that make the
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resultant ranking of the solutions an NRC ranking, or conversely, the restrictions in the
elements of an ATSP matrix which provoke an RS ranking. Secondly, providing the
upper bounds for the number of RS, RC and NRC rankings that satisfy Theorem 3.1,
Theorem 3.2 and Theorem 3.3, respectively, would be useful to know the magnitude
of the ranking spaces of each problem, and also, to give an approximation about the
magnitude of the intersection between the LOP and the ATSP. Of course, this work
can be extended to more different combinatorial optimisation problems, not necessarily
based on permutations.
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