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Abstract
Given a particular instance of a combinatorial optimization problem, the knowledge about the attraction basin sizes can help
to analyze the difficulty encountered by local search algorithms while solving it. As calculating these sizes exhaustively is
computationally intractable, we focus on methods for their estimation. The accuracy of some of these estimation methods
depends on the way in which the sample of solutions of the search space is chosen. In this paper, we propose a novel sampling
method, which incorporates the knowledge obtained by the already explored solutions into the sampling strategy. So, in
contrast to those that already exist, our method can adapt its behavior to the characteristics of the particular attraction basin.
We apply our proposal to a number of instances of three famous problems: the quadratic assignment problem, the linear
ordering problem and the permutation flow shop scheduling problem. We consider permutation sizes n = 10 and n = 12 and
three different neighborhoods: adjacent swap, 2-exchange and insert, and observe that the new method generally outperforms
those that already exist.

Keywords Combinatorial optimization problems · Neighborhoods · Attraction basins · Local optima · Local search
algorithms · Estimators

1 Introduction

Algorithms based on local search are efficientmethodswhich
are used to solve hard combinatorial optimization prob-
lems (COPs). These algorithms structure the search space
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defining a neighborhood, which provokes different prop-
erties that affect the performance of the algorithms: the
landscape properties. Therefore, in the last few years, many
authors have already noticed that the first step in the devel-
opment of algorithms based on local search is the analysis of
these properties [1–3,7,16,17,19,22,23,25–27,34–37,39,40].
Among these features, the two that have mainly attracted the
attention of the research community are the local optima and
their attraction basins (sets composed by all the initial solu-
tions such that, when applying the algorithm, the same local
optimum is obtained).

On theonehand, even though the number of local optima is
not directly related to the difficulty of solving a problem [20],
it can help in the analysis of its complexity. Therefore, many
authors have tried to estimate or bound this number of local
optima. These estimations have been conducted for problems
when considering different neighborhoods [1,2,11]. More-
over, as it is known that the properties could vary for distinct
instances of the same problem, methods for estimating the
number of local optima for specific instances have also been
developed [6,8–10,12,26,28].One of the conclusions of these
studies was that the accuracy of these methods is notably
affected by the variance of the attraction basin sizes of the
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local optima. In general, themore uniform the attractionbasin
sizes are, the better is the prediction.However, there aremeth-
ods that are able to provide good estimations for instances
where the variance of the attraction basin sizes is extremely
large [12]. Looking at these methods, we can observe that
their estimations rely on the concept of sample coverage.
The sample coverage is the sum of the proportions of the
sizes of the attraction basins of the local optima observed in
the sample over the size of the search space. In other words,
it measures the proportion of the search space occupied by
the attraction basins found in the sample. Thus, the size of
the attraction basins of the local optima plays an essential
role when trying to estimate the number of local optima of
an instance.

On the other hand, the difficulty encountered by local
search algorithms has also been proved to be directly related
with the size of the attraction basins of the global optima.
This is due to the fact that, when taking uniformly at ran-
dom an initial solution from the search space, the probability
that the local search algorithm finishes at a local optimum is
proportional to the relative size (with respect to the size of
the search space) of its attraction basin [1,6,18]. Moreover, it
has been proved for different problems that, on average, the
better a local optimum is in terms of fitness, the larger is the
size of its attraction basin [3,21,24,25,34–37].

We could say that the attraction basin sizes of the local
optima are useful to understand the difficulty found by local
search algorithms when trying to reach them. However, as
there is no knownmethod that calculates, in polynomial time,
the attraction basin sizes, we must focus on methods that
estimate these sizes. Commonly, the proportion of an attrac-
tion basin size over the size of the search space has been
estimated as the proportion of the number of solutions in a
sample that belong to the attraction basin over the sample
size [14,34]. However, under this method it is supposed that
there are no more local optima in the search space except
just those encountered in the sample. In [13], two methods
for estimating the attraction basin sizes were proposed. Once
it is known that a solution is a local optimum, the first method
(UM) consisted of taking solutions uniformly at random from
the whole search space, and checking if they belong to its
attraction basin. In the secondmethod (DM), the search space
was divided in different subsets, which corresponded to the
sets of solutions at different distances from the local optima.
A different number of samples were assigned to the different
subsets. The way of choosing these sample sizes according
to the distance to the local optimum was called the sampling
strategy. The sampling strategy, then, could help in the esti-
mation, or it could disorientate it. Moreover, the accuracy
of DM using a specific sampling strategy could be different
under distinct neighborhoods.

The aim of this paper is to propose a novel method to
improve the already existing sampling strategies of DM.

Our sampling method consists of two steps. Firstly, an ini-
tial sampling is carried out, using prefixed values for the
sample sizes at different distances, as implemented in [13].
After this initial sampling, we obtain an initial estimation of
the number of solutions belonging to the attraction basin at
different distances. In the second part of the process, we con-
tinue sampling, but with a distinct strategy. At each step of
the algorithm, we take advantage of the samples which have
already been explored and our decision on where to sample
next depends on this information. So, every time we need to
extract a new sample,we calculate the expected improvement
in our final estimation depending onwhere (at what distance)
we sample. Then, the next sample is extracted at the distance
which maximizes the expected improvement. So as to test
the performance of our new method, we work with a number
of instances of the quadratic assignment problem, the linear
ordering problem and the permutation flow shop scheduling
problem. Three neighborhoods are considered: the adjacent
swap, the 2-exchange and the insert neighborhoods.

The rest of the paper is organized as follows. In Sect. 2, we
provide some relevant definitions, and the estimation meth-
ods are explained in detail in Sect. 3. In Sect. 4, we report our
experimental design and results, comparing our new sam-
pling strategy with those that already exist, with problem
sizes of n = 10 and n = 12. Finally, in Sect. 5, the main
conclusions are drawn.

2 Definitions

2.1 Combinatorial optimization problem

In general, a combinatorial optimization problem (COP) con-
sists of finding the optimal solutions of a function

f : Ω −→ R
π #−→ f (π)

where the search space, Ω , is a finite or countable infinite
set.

2.2 Quadratic assignment problem

The quadratic assignment problem (QAP) is a COP that con-
sists of allocating a set of facilities to a set of locations, with
a cost function associated with the distance and the flow
between the facilities. The objective is to assign each facility
to a location such that the total cost is minimized. Specifi-
cally, we are given two n × n input matrices with real values
H = [hi j ] andD = [dkl ], where hi j is the flow between facil-
ity i and facility j , and dkl is the distance between location
k and location l. Given n facilities, the solution of the QAP
is codified as a permutation π = (π(1)π(2) · · ·π(n)) where

123



Progress in Artificial Intelligence (2018) 7:369–384 371

each π(i) (i = 1, . . . , n) represents the facility that is allo-
cated to the i th location. Thus, the fitness of the permutation
is given by the following objective function:

F(π) =
n∑

i=1

n∑

j=1

hπ(i)π( j) · di j .

2.3 Linear ordering problem

Given a matrix B = [bi j ]n×n of numerical entries, the linear
ordering problem (LOP) consists of finding a simultaneous
permutation π of the rows and columns of B, such that the
sum of the entries above the main diagonal is maximized (or
equivalently, the sum of the entries below the main diago-
nal is minimized). The equation below formalizes the LOP
function:

F(π) =
n−1∑

i=1

n∑

j=i+1

bπ(i)π( j),

where π(i) (π( j)) denotes the index of the row (column)
ranked at position i j in the solution π .

2.4 Permutation flow shop scheduling problem

In the case of the permutation flow shop scheduling problem
(PFSP), n jobs have to be scheduled on m machines in such
a way that a criterion is minimized. A job consists of m
operations, and the j th operation ( j = 1, . . . ,m) of each
job must be processed on machine j for a given specific
processing time without interruption. The processing times
are fixed nonnegative values, and every job is available at
time zero. At a given time, a job can start on j th machine
when its ( j − 1)th operation has finished on the machine
( j − 1), and machine j is idle.

The makespan is the total length of the schedule and, tra-
ditionally, has been the criterion to be optimized in the PFSP.
However, recently, total flow time (TFT) has captured the
attention of the scientific community since it is more mean-
ingful for the current industry, and thus, this criterion will be
used in this work. The following formula expresses mathe-
matically the concept of TFT for a permutation π of jobs,
where cπ(i),m stands for the completion time of job π(i)
(i = 1, . . . , n) at machine m:

F(π) =
n∑

i=1

cπ(i),m .

Being pπ(i), j the processing time required by job π(i) on
machine j , the completion time of job π(i) on machine j
can be recursively calculated as:

cπ(i), j =






pπ(i), j i = j = 1
pπ(i), j + cπ(i)−1, j i > 1, j = 1
pπ(i), j + cπ(i), j−1 i = 1, j > 1
pπ(i), j +max{cπ(i)−1, j , cπ(i), j−1} i > 1, j > 1

.

In these three problems, the QAP, the LOP and the PFSP,
the search space is the whole space of permutations of size
n, so its size is n!.

2.5 Neighborhood

A neighborhood N in a search space Ω is a mapping that
assigns, to each solution π ∈ Ω , a non-empty set of neigh-
boring solutions N (π):

N : Ω −→ P(Ω)\∅
π #−→ N (π)

,

where P(Ω) is the powerset of Ω .
Adding the concept of neighborhood to the instance of a

COP, we define a landscape as the triple ( f ,Ω,N ).
Three examples of the most commonly used neighbor-

hoods in the space of permutations are given by the adjacent
swap, the 2-exchange and the insert operators [4,7,31,32].
The adjacent swap neighborhood (NA) considers two solu-
tions as neighbors if one is generated by swapping two
adjacent elements of the other. The number of adjacent swap
neighbors of a permutation of size n is n−1. For example, in
the space of permutations of size n = 4, the set of adjacent
swap neighbors of the permutation π = (1234) is:

NA(1234) = {(2134), (1324), (1243)}.

The swap or 2-exchange neighborhood (NS) considers
that two solutions are neighbors if one is generated by swap-
ping two elements of the other, not necessarily adjacent.
Under this neighborhood, a solution has n(n − 1)/2 neigh-
bors. Taking the same permutation π = (1234) as in the
previous case, the set formed by its neighbors under the 2-
exchange neighborhood is:

NS(1234) = {(2134), (3214), (4231), (1324), (1432), (1243)}.

In the case of the insert neighborhood (NI ), two solutions
are neighbors if one is the result ofmoving an itemof the other
to a different position. The number of neighbors of a solution
under the insert neighborhood isn(n−1)−(n−1) = (n−1)2.
Following the same example, the set composed of the insert
neighbors of the permutation π = (1234) is the following:

NI (1234) = {(2134), (2314), (2341), (1324), (1342), (3124)
(1243), (4123), (1423)}.
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We say that two permutations π1 and π2 are at distance i
if, starting from π1, and moving from neighboring to neigh-
boring solutions, the length of the shortest path to reach π2 is
i . Particularly, two neighboring permutations are at distance
one. Under the adjacent swap neighborhood, the maximum
distance between two permutations is n(n − 1)/2, while for
both the 2-exchange and the insert it is n − 1.

2.6 Local optimum and attraction basin

Assuming a minimization problem, a solution π∗ ∈ Ω is a
local optimum (local minimum) under a neighborhood N if

f (π∗) ≤ f (π), ∀π ∈ N (π∗).

Each local optimum π∗ is associated with its attraction
basin B(π∗). That is, the set is composed of all the solutions
which lead to the local optimum π∗, after applying a local
search algorithm to them. We denote by H the operator that
associates, to each solution π , the local optimum obtained
after applying the algorithm. Different definitions could be
given for the attraction basin depending on the nature of the
operatorH (see for example [38,40] for stochastic operators).
We work with a deterministicH, so the attraction basin of a
local optimum, B(π∗), is the set that can be defined in the
following way:

B(π∗) =
{
π ∈ Ω | H(π) = π∗} .

The attraction basin of a local optimum depends on the
algorithm used. Furthermore, when using a deterministic
algorithm, an important property is derived from the con-
cept of attraction basins of the local optima: They define a
partition of Ω .

2.7 Deterministic best-improvement local search
algorithm

Wework with a deterministic best-improvement local search
algorithm to solve the instances. The specific steps that the
algorithm follows are detailed in Algorithm 1. It is important
to notice that the neighbors are evaluated in a specific order,
so that, in the case of two neighbors having the same function
value, the algorithmwill always choose the first encountered.

3 Estimation of attraction basin size

Our new method is based on the DM estimator presented
in [13]. In order to estimate the attraction basin size of a
local optimum π∗, we select a number of solutions and then
apply Algorithm 1 to them to check whether they belong to
the attraction basin. These will constitute our sample, from

Algorithm 1Deterministic Best-Improvement Local Search
Algorithm

Choose an initial solution π ∈ Ω
repeat

π∗ = π
for each σi ∈ N (π∗) do

if f (σi ) < f (π) then
π = σi

end if
end for

until π = π∗

which we will infer our estimation of the attraction basin
size. TheDMmethod is distance-based,whichmeans that the
sampling is not carried out uniformly at random in the whole
search space. Contrarily, the search space is divided in differ-
ent subsets, according to the distance to π∗. So, having this
division of the search space, one has to decide how the sam-
ples are going to be distributed over the various subdivisions.
To establish this distribution, we introduce a new sampling
strategy, which addresses some of the limitations of those
proposed in [13]. Our new method consists of two phases:
an initial sampling and what we have named the dynamic
sampling.

3.1 Initial sampling

In this part of the sampling process, we obtain initial esti-
mations for the number of permutations which belong to
the attraction basin, proceeding similarly to [13]. As stated
before, this method does not directly take a random sample
from the whole search space Ω . Instead, given a local opti-
mum π∗, we choose the solutions from different subsets of
Ω related to π∗. That is, we consider the different subsets
Di = {π i

1,π
i
2, . . . ,π

i
|Di |} ⊆ Ω that are composed of those

solutions at distance i from the local optimum π∗, where
i = 1, . . ., dmax and dmax denotes the maximum distance
between two permutations.

Notice that any permutation in Ω\{π∗} should belong to
one, and just one, of these subsets Di . That is:

Di ∩ Dj = ∅,∀i ,= j
dmax⋃

i=1

Di ∪ {π∗} = Ω.

So, given the local optimum π∗, we take samples S1, S2, . . .,
of uniformly random solutions at distances 1, 2, . . ., respec-
tively, from π∗:

S1 = {π1
1 ,π

1
2 , . . . ,π

1
M1

} ⊆ D1

S2 = {π2
1 ,π

2
2 , . . . ,π

2
M2

} ⊆ D2

...
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Si = {π i
1,π

i
2, . . . ,π

i
Mi
} ⊆ Di

...

Sdmax = {πdmax
1 ,π

dmax
2 , . . . ,π

dmax
Mdmax

} ⊆ Ddmax .

We use the methods described in [15] to obtain these uni-
formly random solutions π i

j for the different distances. In
order to estimate the attraction basin size of π∗, one works
with the different subsets Di independently. That is, we
record the number of solutions that belong to the attraction
basin of π∗ in each sample set Si .

In this initial sampling, we set beforehand the num-
ber of solutions which will be sampled at each distance.
M1,M2, . . . ,Mdmax denote the sizes of the sample sets. Thus,
we extract M1 samples at distance 1, M2 at distance 2, etc.
The choice of these sizes is up to the user. In our case, wewill
establish them according to the strategies proposed in [13]
for the DM. In brief, we will be using three different config-
urations:

1. Equal sample sizes for each distance (ES): Mi = Mj
∀i, j .

2. Sample sizes proportional to the number of permutations
at each distance (SP): Mi ∝ |Di |.

3. Sample sizes decreasing as the distance increases (SD):

Mi ∝ 1
i
and Mi = 0, i ≥ dmax/2.

So, we extract samples according to the given distribution
of initial sample sizes and, then, we record the number of
these samples which belong to the attraction basin at each
of the distances. Algorithm 2 details this process. The input
of the algorithm is the sample sizes M1,M2, . . . ,Mdmax . On
the other hand, the values ki denote the number of samples
at distance i that belong to the attraction basin.

The last part of the algorithm has a correction in Mi and ki
whenever the following two conditions are satisfied simulta-
neously: There is a distance i which has an associated ki = 0
and another distance j > i such that k j > 0. This means
that none of the samples extracted at distance i belong to
the attraction basin, but we have found samples at distance
j inside the attraction basin. If this happens, even though
we have not detected any solution of Di belonging to the
attraction basin, we know that there must exist at least one.
The reason is that any solution of Dj belonging to the attrac-
tion basin is connected with the local optimum following
the path established by the best-improvement local search
algorithm, and this path has permutations belonging to any
distance l < j . So, whenever this situation occurs, we can be
sure that, at distance i , there must be permutations belonging
to the attraction basin, and a correction is applied to ki by
imposing ki = 1 and Mi = Mi + 1.

Algorithm 2 Algorithm that provides the initial estimations
of the number of solutions at the different distances inside
the attraction basin of the local optimum π∗.
1: Input: M = {M1, . . . ,Mdmax }
2: Initialize (k1, k2, . . . , kdmax ) = (0, 0, . . . , 0)
3: for dist = 1 → dmax do
4: for j = 1 → Mdist do
5: take a random permutation σ j ∈ Ddist
6: σ = H(σ j )
7: if σ == π∗ then
8: kdist ++
9: end if
10: end for
11: end for
12: for j = 1 → dmax do
13: if k j = 0 & (∃ z > j s.t. kz > 0) then
14: k j = 1
15: Mj ++
16: end if
17: end for
18: Output: k = (k1, k2, . . . , kdmax ), M = {M1, . . . ,Mdmax }

3.2 Dynamic sampling

The aim of this second part of the method is to continue
sampling, butwith adifferent strategy.Thewayof proceeding
with the sampling is decided in light of the information of the
already sampled solutions. As opposed to the methods used
in [13], the user does not have to establish the sample sizes
for each distance beforehand. On the contrary, the user sets
a single size T , which is the total number of samples which
will be extracted, in this second phase. Thus, the algorithm
decides, every time it has to extract a new sample, which
distance it should sample next to obtain the most valuable
information.

Our problem shares certain similarity with the multi-
armed bandit problem [29], in which a gambler plays a slot
machine with multiple levers, each of them which has a dif-
ferent reward distribution (which is unknown), and aims at
maximizing the total payout obtained after playing a num-
ber of times. For this purpose, the player faces the dilemma
between exploration and exploitation or, in other words,
whether it is more convenient to pull the armwhich has led to
greater profit or to explore other levers in case one of themhas
a better reward. One solution to this problem is the popular
Thompson sampling [29], which has partially inspired us. In
our case, we are facing the problemof choosing themost con-
venient distance and, at each step of the algorithm, we will
be computing the expected improvement in our estimation
depending on where we sample next. Subsequently, we will
sample at that distance. This choice, however, is determinis-
tic once we have the information of the previously explored
samples, as opposed to Thompson sampling.

Our final goal is to minimize the error in our estimation,
that is, to sample in such a way that the difference between
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Table 1 Number of
permutations of size 10 at
different distances from a given
solution, according to the
neighborhood

2-Exchange Insert

dist #perms dist #perms

1 45 1 81

2 870 2 2521

3 9450 3 38,281

4 63,273 4 296,326

5 269,325 5 1,100,902

6 723,680 6 1,604,098

7 1,172,700 7 569,794

8 1,026,576 8 16,795

9 362,880 9 1

Adjacent swap

dist #perms dist #perms dist #perms dist #perms

1 9 10 21,670 19 211,089 28 162,337 37 8095

2 44 11 32,683 20 230,131 29 135,853 38 4489

3 155 12 47,043 21 243,694 30 110,010 39 2298

4 440 13 64,889 22 250,749 31 86,054 40 1068

5 1068 14 86,054 23 250,749 32 64,889 41 440

6 2298 15 110,010 24 243,694 33 47,043 42 155

7 4489 16 135,853 25 230,131 34 32,683 43 44

8 8095 17 162,337 26 211,089 35 21,670 44 9

9 13,640 18 187,959 27 187,959 36 13,640 45 1

the real size and the estimated one,
∣∣∣|B(π∗)| − |B̂(π∗)|

∣∣∣, is
minimized. For this purpose, the only thing we can control
is, at each step of the algorithm, what distance we should
sample next. So, let us assume we have extracted t samples
and denote our current estimation by |B̂t (π

∗)| (notice that
in the first phase of the algorithm we have already explored
some solutions and that, at the beginning of this secondphase,
we already have an initial estimation). If Mi is the number
of solutions explored at distance i , ki is the number of these
explored samples that belong to the attraction basin, and |Di |
is the total number of solutions at distance i from the local
optimum π∗, our current estimation of the attraction basin
size would be as follows:

|B̂t (π
∗)| = 1+ k1

M1
· |D1| +

k2
M2

· |D2|

+ · · · + kdmax

Mdmax

· |Ddmax |.

If we sample at distance i , our new estimation, which we
denote by |B̂i

t+1(π
∗)|, would be as follows:

1+ k1
M1

· |D1| + · · · + k′
i

Mi + 1
· |Di |

+ · · · + kdmax

Mdmax

· |Ddmax |,

where k′
i can have a value of ki or ki + 1, depending on

whether the solution sampled in the last step belongs to the
attraction basin or not. We approach the problem of decid-
ing what distance we should sample in the following way:
We choose the distance that on average provokes the high-
est change in the estimation, i.e., the distance that currently
has the highest influence in the global estimation (note that
the estimation of |B(π∗)| depends on the estimation of each
proportion ki/Mi ). Therefore, the expected change in our
estimation depends on the distance i that we sample and can
be computed with the following expression:

E
[∣∣∣|B̂i

t+1(π
∗)| − |B̂t (π

∗)|
∣∣∣
]
.

This is the expected difference between our current estima-
tion and the new estimation after checking a new solution,
and provides a measure of how much the estimation would
change withmore sampling. So sampling at the distance imax
that maximizes this expression will be our approach to min-
imizing our final error.

Theorem 1 The expected influence of sampling at distance i
can be estimated using the following close formula:

2|Di | · (Mi − ki ) · ki
M2

i (Mi + 1)
,
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Table 2 Number of
permutations of size 12 at
different distances from a given
solution, according to the
neighborhood

2-Exchange Insert

dist #perms dist #perms

1 66 1 121

2 1925 2 5941

3 32,670 3 153,341

4 357,423 4 2,250,887

5 2,637,558 5 18,943,343

6 13,339,535 6 87,116,283

7 45,995,730 7 192,422,979

8 105,258,076 8 153,315,999

9 150,917,976 9 24,584,693

10 120,543,840 10 208,011

11 39,916,800 11 1

Adjacent swap

dist #perms dist #perms dist #perms dist #perms dist #perms dist #perms

1 11 12 330,121 23 10,624,132 34 25,380,120 45 7,097,310 56 113,906

2 65 13 526,581 24 12,604,826 35 24,736,324 46 5,615,807 57 61,997

3 274 14 808,896 25 14,664,752 36 23,697,232 47 4,342,688 58 31,758

4 923 15 1,200,626 26 16,739,858 37 22,311,069 48 3,277,965 59 15,159

5 2640 16 1,726,701 27 18,757,500 38 20,640,357 49 2,411,747 60 6655

6 6655 17 2,411,747 28 20,640,357 39 18,757,500 50 1,726,701 61 2640

7 15,159 18 3,277,965 29 22,311,069 40 16,739,858 51 1,200,626 62 923

8 31,758 19 4,342,688 30 23,697,232 41 14,664,752 52 808,896 63 274

9 61,997 20 5,615,807 31 24,736,324 42 12,604,826 53 526,581 64 65

10 113,906 21 7,097,310 32 25,380,120 43 10,624,132 54 330,121 65 11

11 198,497 22 8,775,209 33 25,598,186 44 8,775,209 55 198,497 66 1

Table 3 Parameter setting used
in the experiments of our new
method

n Sample size QAP LOP

Adjacent 2-Exch. Insert Adjacent 2-Exch. Insert

ε r ε r ε r ε r ε r ε r

10 2250 0.1 2 0.1 2 0.01 2 0.5 3 0.5 1.5 0.01 1.5

4500 0.01 2 0.5 2 0.001 2 0.5 2 0.01 3 0.01 1.5

12 13,200 0.5 10 0.1 10 0.01 10 0.5 3 0.5 2 0.01 2.5

n Sample size PFSP

Adjacent 2-Exch. Insert

ε r ε r ε r

10 2250 0.5 2 0.5 1.5 0.001 2.5

4500 0.5 2 0.1 1.5 0.01 3

12 13,200 0.5 2.5 0.5 1.5 0.5 3

Table 4 Sample distribution for the distance methods with prefixed sample sizes for each distance

Sample size Adjacent swap 2-Exchange Insert

DM-ES DM-SP DM-SD (i ≤ 22) DM-ES DM-SP DM-SD (i ≤ 4) DM-ES DM-SP DM-SD (i ≤ 4)

2250 50
⌈

|Di |
1630

⌉ ⌈ 302
i

⌉
250

⌈
|Di |
1616

⌉ ⌈ 1080
i

⌉
250

⌈
|Di |
1617

⌉ ⌈ 1080
i

⌉

4500 100
⌈
|Di |
811

⌉ ⌈ 302
i

⌉
500

⌈
|Di |
807

⌉ ⌈ 2160
i

⌉
500

⌈
|Di |
807.3

⌉ ⌈ 2160
i

⌉
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Table 5 Comparison of the average relative errors (and variances) of the
estimations of the attraction basin sizes of the QAP with different methods
for n = 10

DM-ES DM-SP DM-SD DM-DS

Adjacent swap

M = 2250

Inst1 0.210 (0.027) 1.029 (1.498) 0.165 (0.018) 0.140 (0.009)

Inst2 0.186 (0.075) 1.360 (6.642) 0.139 (0.086) 0.099 (0.017)

Inst3 0.192 (0.039) 1.175 (3.616) 0.105 (0.012) 0.077 (0.006)

Inst4 0.245 (0.034) 0.825 (0.651) 0.116 (0.015) 0.132 (0.010)

Inst5 0.196 (0.048) 0.890 (1.048) 0.134 (0.018) 0.128 (0.007)

Inst6 0.341 (0.136) 1.308 (2.252) 0.324 (0.214) 0.202 (0.014)

M = 4500

Inst1 0.137 (0.012) 1.308 (3.096) 0.103 (0.007) 0.087 (0.004)

Inst2 0.119 (0.010) 0.995 (2.421) 0.085 (0.007) 0.057 (0.002)

Inst3 0.135 (0.018) 0.878 (0.919) 0.068 (0.005) 0.061 (0.004)

Inst4 0.164 (0.020) 1.482 (3.338) 0.115 (0.005) 0.092 (0.005)

Inst5 0.120 (0.012) 1.064 (3.637) 0.099 (0.006) 0.080 (0.004)

Inst6 0.262 (0.100) 1.754 (3.188) 0.226 (0.066) 0.191 (0.013)

2-Exchange

M = 2250

Inst1 0.151 (0.014) 0.186 (0.044) 0.796 (0.905) 0.163 (0.018)

Inst2 0.145 (0.014) 0.268 (0.122) 0.805 (4.644) 0.147 (0.011)

Inst3 0.176 (0.016) 0.356 (0.142) 0.459 (0.632) 0.198 (0.016)

Inst4 0.192 (0.026) 0.226 (0.070) 0.833 (1.748) 0.182 (0.020)

Inst5 0.163 (0.020) 0.514 (2.010) 0.741 (2.448) 0.159 (0.014)

Inst6 0.136 (0.014) 0.111 (0.010) 1.223 (3.069) 0.111 (0.010)

M = 4500

Inst1 0.132 (0.011) 0.109 (0.011) 0.839 (1.820) 0.093 (0.006)

Inst2 0.121 (0.009) 0.151 (0.034) 0.681 (1.219) 0.093 (0.004)

Inst3 0.137 (0.019) 0.256 (0.086) 0.671 (8.210) 0.154 (0.012)

Inst4 0.129 (0.013) 0.178 (0.042) 1.302 (8.620) 0.130 (0.011)

Inst5 0.103 (0.009) 0.299 (0.252) 0.904 (2.395) 0.103 (0.008)

Inst6 0.080 (0.004) 0.075 (0.005) 1.888 (47.258) 0.079 (0.005)

Insert

M = 2250

Inst1 0.358 (0.105) 0.693 (0.493) 0.944 (14.115) 0.309 (0.048)

Inst2 0.434 (0.752) 1.073 (1.082) 0.341 (0.154) 0.404 (0.089)

Inst3 0.457 (0.516) 1.587 (6.529) 0.310 (0.071) 0.341 (0.052)

Inst4 0.477 (0.131) 1.285 (0.743) 0.439 (0.099) 0.438 (0.069)

Inst5 0.497 (0.268) 1.241 (1.842) 0.283 (0.036) 0.324 (0.07)

Inst6 0.268 (0.108) 0.650 (2.556) 0.503 (3.372) 0.322 (0.2)

M = 4500

Inst1 0.282 (0.083) 0.817 (1.591) 0.495 (3.230) 0.234 (0.031)

Inst2 0.311 (0.050) 0.831 (0.548) 0.304 (0.042) 0.320 (0.113)

Inst3 0.270 (0.051) 1.065 (0.885) 0.263 (0.037) 0.272 (0.059)

Inst4 0.424 (0.265) 0.855 (0.292) 0.344 (0.038) 0.351 (0.036)

Inst5 0.296 (0.131) 0.844 (1.028) 0.279 (0.042) 0.240 (0.030)

Inst6 0.251 (0.096) 0.479 (1.459) 0.649 (11.673) 0.222 (0.060)

Bold values indicate lower errors (on average) than other estimatingmethods

where Mi is the number of solutions explored at distance i ,
ki is the number of these explored samples that belong to the
attraction basin, and |Di | is the total number of solutions at
distance i from the local optimum π∗.

Proof The estimated change in our estimation can be com-
puted as

E
[∣∣∣|B̂i

t+1(π
∗)| − |B̂t (π

∗)|
∣∣∣
]
.

If we denote the estimated number of samples inside the
attraction basin at distance i in instant t by Ni and in instant
t + 1 by N ′

i , then we can rewrite the expected improvement:

E





∣∣∣∣∣∣
1+

∑

k ,=i

Nk+N ′
i −

(

1+
dmax∑

k=1

Nk

)∣∣∣∣∣∣



 = E
[∣∣Ni − N ′

i

∣∣] .

According to our sampling, Ni = ki/Mi · |Di | = pi · |Di |,
where pi denotes the estimated proportion of samples inside
the attraction basin at distance i . On the other hand,we cannot
estimate N ′

i . However, we know that N ′
i can take either one

of the following values:

|Di | ·
ki + 1
Mi + 1

if the new sampled solution belongs to the attraction basin,
or

|Di | ·
ki

Mi + 1

if it belongs to a different one. In addition, we can estimate
the probability of sampling a solution inside the attraction
basin at distance i as pi . Hence,

E
[∣∣Ni − N ′

i

∣∣] ≈ pi ·
∣∣∣∣|Di | ·

ki
Mi

− |Di | ·
ki + 1
Mi + 1

∣∣∣∣

+ (1 − pi ) ·
∣∣∣∣|Di | ·

ki
Mi

− |Di |
ki

Mi + 1

∣∣∣∣

= |Di |
(
pi ·

∣∣∣∣
ki
Mi

− ki + 1
Mi + 1

∣∣∣∣ + (1 − pi ) ·
∣∣∣∣
ki
Mi

− ki
Mi + 1

∣∣∣∣

)

= |Di |
(

ki
Mi

·
∣∣∣∣

ki − Mi

Mi (Mi + 1)

∣∣∣∣ +
Mi − ki

Mi
·
∣∣∣∣

ki
Mi (Mi + 1)

∣∣∣∣

)

= 2|Di |(Mi − ki )ki
M2

i (Mi + 1)
.

34

Once a dynamic sampling strategy has been established
which exploits the information obtained step by step by the
algorithm, there are still some aspects which deserve further
comment. A problem which needs to be addressed is what
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happens whenever ki = 0 or ki = Mi , which occurs if none
of the permutations checked at distance i belong to the attrac-
tion basin or, conversely, if all of them belong to it. In this
case, the expression in Theorem 1 holds the value 0, imply-
ing that we will stop sampling at distance i . This undesired
behavior has its root in estimating the real proportion as pi
when computing the expected improvement. If ki = 0, the
problem is that, by setting pi = 0, we are assuming that since
we have not found any solution that belongs to the attraction
basin at distance i , there must not be any solution at that dis-
tance. However, there may exist solutions belonging to the
attraction basin which we have not found. So, if this situation
occurred, our estimation would be biased, because, regard-
less of how many samples T we extracted, we would never
detect the permutations inside the attraction basin which are
at distance i . The case where ki = Mi is analogous. Hence,
this will be corrected by assuming that, whenever ki = 0
or ki = Mi , the real proportion is slightly different than the
one we are estimating. So we set pi = (ki + ε)/(Mi + 2ε),
where ε > 0 is a small variation. In this case, the expression
of Theorem 1 becomes

|Di |
ε

(Mi + 2ε)(Mi + 1)
.

Lastly, the probability of finding permutations inside an
attractionbasin decreases as the distance to the local optimum
increases. Thus, the attraction basin does not necessarily con-
tain permutations at the furthest distances from the local
optimum. So, sampling at those distances may be not as use-
ful as sampling at the nearest ones. Accordingly, to avoid the
misuse of our resources, the ε value usedwhen ki = 0will be
decreasing with the distance. If i0 is the first index fulfilling
the condition ki0 = 0 and r is a decreasing factor, then the
expression of Theorem 1 will be

|Di |
ε/(r i−i0)

(Mi + 2ε/(r i−i0))(Mi + 1)
.

We have summarized this second part of the estimation
method inAlgorithm3,which should be executed after Algo-
rithm 2. The final estimation is computed by dividing, for
each distance, the number of samples inside the attraction
basin, ki , by the sample size, Mi , and multiplying it by the
total number of permutations that exist in each subset Di
(|Di |). Thus, we obtain the estimated number of solutions
inside the attraction basin at the different distances. So, the
sum of these quantities plus one (π∗ itself is in its attrac-
tion basin and has not been considered in any subset) is the
resultant attraction basin size of the local optimum π∗.

Algorithm 3 Method to estimate the size of the attraction
basin of a local optimum π∗.
1: Inputs: T , ε, r , k = (k1, . . . , kdmax ), M = {M1, . . . ,Mdmax }
2: for j = 1 → T do
3: set q to the last index s.t. kq > 0

4: set f _objdist = 2|Ddist | · (Mdist − kdist ) · kdist
M2

dist (Mdist + 1)
, ∀dist =

1, . . . , q s.t. kdist ,= Mdist

5: set f _objdist = |Ddist | · ε
(Mdist + 2ε)(Mdist + 1)

, ∀dist = 1, . . . , q,

s.t. kdist = Mdist

6: set f _objdist = |Ddist | · ε/(rdist−(q+1))

(Mdist + 2ε/(rdist−(q+1)))(Mdist + 1)
,

∀dist = q + 1, . . . , dmax

7: d = argmax
dist

{ f _objdist }
8: take a random permutation σ j ∈ Dd
9: Md ++
10: σ = H(σ j )
11: if σ = π∗ then
12: kd ++
13: for l = 1 → (d − 1) do
14: if kl = 0 then
15: kl = 1
16: Ml ++
17: end if
18: end for
19: end if
20: end for
21: |B̂(π∗)| = 1
22: for j = 1 → dmax do

23: |B̂(π∗)| = |B̂(π∗)| + k j
M j

· |Dj |
24: end for
25: Output: |B̂(π∗)|

4 Experiments

4.1 Experimental design

The QAP, LOP and PFSP instances used in the experiments
have been taken from the QAPLIB [5], the xLOLIB [30] and
the Taillard’s Benchmark [33], respectively. In each of the
problems, we have chosen 6 instances for which the number
of local optima and their attraction basins have been exhaus-
tively calculated according to the adjacent swap (NA), the
2-exchange (NS) and the insert (NI ) neighborhoods. That is,
Algorithm 1 has been applied to each solution of the search
space, for the three problems and neighborhoods. As this
implies a high computational cost, the size of the original
instances has been reduced in order to work with permu-
tation sizes of 10 and 12, so that the experimentation is
computationally affordable: |Ω10| = 10! ≈ 3.63 × 106 and
|Ω12| = 12! ≈ 4.79 × 108. Tables 1 and 2 show the num-
ber of permutations at different distances depending on the
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Table 6 Comparison of the
average relative errors (and
variances) of the estimations of
the attraction basin sizes of the
LOP with different methods for
n = 10

DM-ES DM-SP DM-SD DM-DS

Adjacent swap

M = 2250

Inst1 0.288 (0.071) 1.174 (4.491) 0.303 (0.075) 0.217 (0.020)

Inst2 0.562 (0.907) 1.91 (31.138) 0.423 (0.18) 0.349 (0.061)

Inst3 0.370 (0.180) 1.054 (1.633) 0.262 (0.052) 0.218 (0.019)

Inst4 0.392 (0.143) 1.401 (4.060) 0.252 (0.056) 0.206 (0.014)

Inst5 0.551 (0.418) 2.553 (84.411) 0.316 (0.075) 0.267 (0.031)

Inst6 0.528 (0.368) 1.690 (9.923) 0.467 (0.512) 0.264 (0.026)

M = 4500

Inst1 0.264 (0.076) 1.173 (3.403) 0.166 (0.016) 0.136 (0.012)

Inst2 0.378 (0.131) 1.879 (12.036) 0.387 (0.273) 0.269 (0.049)

Inst3 0.241 (0.038) 2.119 (14.497) 0.208 (0.028) 0.171 (0.013)

Inst4 0.234 (0.031) 2.078 (18.396) 0.186 (0.033) 0.144 (0.008)

Inst5 0.273 (0.074) 0.990 (0.485) 0.228 (0.038) 0.205 (0.020)

Inst6 0.318 (0.078) 1.733 (10.662) 0.331 (0.180) 0.199 (0.017)

2-Exchange

M = 2250

Inst1 0.061 (0.004) 0.053 (0.002) 1.635 (3.213) 0.065 (0.003)

Inst2 0.513 (0.291) 0.95 (0.942) 0.397 (0.049) 0.416 (0.083)

Inst3 0.163 (0.02) 0.147 (0.013) 1.403 (7.791) 0.183 (0.02)

Inst4 0.125 (0.008) 0.090 (0.005) 1.309 (4.333) 0.126 (0.011)

Inst5 0.192 (0.027) 0.144 (0.016) 1.308 (17.649) 0.171 (0.018)

Inst6 0.146 (0.018) 0.105 (0.018) 1.255 (4.579) 0.102 (0.009)

M = 4500

Inst1 0.046 (0.001) 0.034 (0.001) 1.641 (3.623) 0.046 (0.002)

Inst2 0.322 (0.088) 0.529 (0.258) 0.446 (0.04) 0.302 (0.032)

Inst3 0.128 (0.01) 0.101 (0.006) 3.514 (110.997) 0.127 (0.009)

Inst4 0.082 (0.006) 0.075 (0.005) 1.932 (9.43) 0.075 (0.004)

Inst5 0.103 (0.006) 0.109 (0.007) 1.464 (18.51) 0.120 (0.009)

Inst6 0.070 (0.005) 0.086 (0.011) 1.062 (1.029) 0.096 (0.007)

Insert

M = 2250

Inst1 0.147 (0.013) 0.144 (0.012) 1.125 (1.223) 0.143 (0.009)

Inst2 0.339 (0.047) 0.319 (0.027) 0.900 (1.059) 0.330 (0.031)

Inst3 0.444 (0.023) 0.431 (0.023) 1.167 (2.388) 0.442 (0.023)

Inst4 0.175 (0.013) 0.169 (0.011) 1.181 (2.279) 0.171 (0.011)

Inst5 0.366 (0.068) 0.284 (0.048) 1.645 (21.734) 0.299 (0.044)

Inst6 0.154 (0.014) 0.123 (0.011) 1.150 (1.359) 0.139 (0.011)

M = 4500

Inst1 0.148 (0.011) 0.134 (0.009) 1.216 (1.527) 0.142 (0.008)

Inst2 0.334 (0.029) 0.322 (0.026) 1.171 (3.902) 0.332 (0.029)

Inst3 0.444 (0.023) 0.435 (0.023) 0.894 (0.365) 0.438 (0.023)

Inst4 0.178 (0.011) 0.167 (0.009) 1.071 (0.684) 0.177 (0.008)

Inst5 0.328 (0.048) 0.354 (0.042) 2.416 (79.265) 0.319 (0.034)

Inst6 0.131 (0.012) 0.122 (0.012) 1.289 (2.155) 0.137 (0.012)

Bold values indicate lower errors (on average) than other estimating methods
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Table 7 Comparison of the
average relative errors (and
variances) of the estimations of
the attraction basin sizes of the
PFSP with different methods for
n = 10

DM-ES DM-SP DM-SD DM-DS

Adjacent swap

M = 2250

Inst1 0.403 (0.263) 1.778 (6.584) 0.255 (0.066) 0.182 (0.014)

Inst2 0.35 (0.210) 1.649 (5.940) 0.345 (0.438) 0.229 (0.080)

Inst3 0.446 (0.756) 2.273 (11.598) 0.370 (0.477) 0.268 (0.098)

Inst4 0.465 (0.394) 1.616 (6.156) 0.325 (0.085) 0.228 (0.026)

Inst5 0.458 (0.429) 1.466 (4.453) 0.544 (1.806) 0.286 (0.038)

Inst6 0.708 (0.757) 2.910 (33.510) 0.599 (0.512) 0.358 (0.103)

M = 4500

Inst1 0.211 (0.044) 1.393 (1.827) 0.192 (0.040) 0.143 (0.010)

Inst2 0.277 (0.119) 2.208 (14.421) 0.204 (0.058) 0.187 (0.024)

Inst3 0.323 (0.189) 1.682 (2.626) 0.269 (0.099) 0.189 (0.018)

Inst4 0.332 (0.504) 2.000 (7.178) 0.279 (0.092) 0.205 (0.034)

Inst5 0.329 (0.152) 2.157 (15.163) 0.330 (0.248) 0.243 (0.061)

Inst6 0.424 (0.293) 2.422 (12.415) 0.386 (0.209) 0.248 (0.035)

2-Exchange

M = 2250

Inst1 0.169 (0.023) 0.147 (0.019) 0.983 (3.364) 0.154 (0.013)

Inst2 0.125 (0.009) 0.101 (0.017) 0.942 (1.226) 0.125 (0.013)

Inst3 0.206 (0.055) 0.194 (0.055) 0.839 (1.710) 0.201 (0.021)

Inst4 0.197 (0.229) 0.390 (1.119) 1.15 (3.046) 0.155 (0.023)

Inst5 0.185 (0.025) 0.134 (0.020) 1.416 (7.114) 0.191 (0.029)

Inst6 0.116 (0.009) 0.101 (0.011) 1.046 (1.126) 0.095 (0.007)

M = 4500

Inst1 0.113 (0.011) 0.114 (0.008) 2.657 (117.965) 0.104 (0.007)

Inst2 0.114 (0.018) 0.087 (0.008) 1.554 (12.009) 0.094 (0.006)

Inst3 0.129 (0.012) 0.133 (0.019) 1.045 (5.505) 0.135 (0.010)

Inst4 0.104 (0.010) 0.206 (0.202) 1.422 (8.115) 0.102 (0.010)

Inst5 0.124 (0.012) 0.109 (0.012) 2.084 (29.721) 0.118 (0.009)

Inst6 0.081 (0.007) 0.076 (0.005) 1.263 (3.740) 0.084 (0.008)

Insert

M = 2250

Inst1 0.331 (0.040) 0.306 (0.028) 1.275 (12.954) 0.307 (0.030)

Inst2 0.248 (0.043) 0.253 (0.034) 0.866 (4.100) 0.251 (0.045)

Inst3 0.315 (0.111) 0.339 (0.119) 0.920 (1.662) 0.312 (0.076)

Inst4 0.217 (0.040) 0.186 (0.041) 1.116 (3.864) 0.189 (0.042)

Inst5 0.210 (0.041) 0.190 (0.047) 1.168 (6.034) 0.192 (0.025)

Inst6 0.167 (0.018) 0.112 (0.008) 1.271 (20.318) 0.131 (0.011)

M = 4500

Inst1 0.309 (0.043) 0.318 (0.025) 1.228 (8.955) 0.310 (0.023)

Inst2 0.245 (0.036) 0.232 (0.028) 1.412 (22.779) 0.230 (0.031)

Inst3 0.289 (0.064) 0.285 (0.058) 1.181 (4.147) 0.304 (0.074)

Inst4 0.202 (0.037) 0.189 (0.037) 1.114 (4.021) 0.179 (0.039)

Inst5 0.199 (0.038) 0.193 (0.036) 2.330 (106.195) 0.186 (0.032)

Inst6 0.137 (0.012) 0.113 (0.009) 0.945 (1.764) 0.111 (0.010)

Bold values indicate lower errors (on average) than other estimating methods
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Table 8 Results of the statistical test for n = 10

M = 2250 M = 4500

Adjacent 2-Exchange Insert Adjacent 2-Exchange Insert

Method Rank value Method Rank value Method Rank value Method Rank value Method Rank value Method Rank value

QAP

DM-DS 3.22 DM-ES 2.96 DM-DS 2.79 DM-DS 3.14 DM-DS 2.95 DM-DS 2.80

DM-SD 2.91 DM-DS 2.91 DM-ES 2.77 DM-SD 3.04 DM-ES 2.92 DM-ES 2.79

DM-ES 2.58 DM-SP 2.62 DM-SP 2.72 DM-ES 2.67 DM-SP 2.74 DM-SD 2.60

DM-SP 1.29 DM-SD 1.50 DM-SD 2.71 DM-SP 1.15 DM-SD 1.38 DM-SP 1.81

LOP

DM-DS 2.99 DM-DS 2.88 DM-SP 3.03 DM-DS 3.07 DM-ES 2.98 DM-SP 2.99

DM-SD 2.82 DM-ES 2.87 DM-DS 2.90 DM-SD 2.93 DM-SP 2.95 DM-ES 2.90

DM-ES 2.64 DM-SP 2.87 DM-ES 2.85 DM-ES 2.70 DM-DS 2.84 DM-DS 2.90

DM-SP 1.54 DM-SD 1.38 DM-SD 1.22 DM-SP 1.29 DM-SD 1.23 DM-SD 1.20

PFSP

DM-DS 3.11 DM-SP 3.05 DM-SP 2.95 DM-DS 3.06 DM-SP 2.97 DM-DS 2.98

DM-SD 2.82 DM-DS 2.93 DM-DS 2.94 DM-SD 2.87 DM-DS 2.93 DM-SP 2.91

DM-ES 2.69 DM-ES 2.80 DM-ES 2.79 DM-ES 2.81 DM-ES 2.93 DM-ES 2.83

DM-SP 1.38 DM-SD 1.22 DM-SD 1.32 DM-SP 1.26 DM-SD 1.17 DM-SD 1.28

Bold values indicate the method that is ranked first by the statistical test and the ones that show no statistical difference with the best method

three neighborhoods. In the experiments, we have compared
our distance method with dynamic sampling (DM-DS) and
the original distance method. Regarding the original distance
method, which uses prefixed sample sizes, we have used the
three strategies described in [13].

For each instance and neighborhood, we have considered
10 local optima and repeated each of the estimations 10 times.
The error in a single estimation is computed as the relative
error over the real size, that is,

||B̂(π∗)| − |B(π∗)||
|B(π∗)| .

Our new method requires two parameters, ε and r , to
be adjusted. These have been set after a series of prelimi-
nary experiments (see Online Resource 1, where the error
tables of the preliminary experiments are presented), and
they vary depending on the dimension n, the type of prob-
lem, the sample size (M = 2250 or M = 4500 when
n = 10 and M = 13,200 when n = 12) and the type
of neighborhood. However, they remain the same for the
6 instances. These preliminary experiments consist in a
grid search to find the combination of values of ε and r
that minimizes the estimation error. The grid search has
been carried over 2 local optima chosen uniformly at ran-
dom from each of the 6 instances (these optima have been
excluded from the final results). ε has been selected among
the values {0.001, 0.005, 0.01, 0.05, 0.1, 0.5}, while r has
been selected among {1.5, 2, 2.5, 3}. Table 3 shows the final
parameter setting of our experiments.

Table 9 Comparison of the average relative errors (and variances) of the
estimations of attraction basin sizes of the QAP with different methods for
n = 12

DM-ES DM-SP DM-SD DM-DS

Adjacent S.

M = 13,200

Inst1 0.240 (0.088) 1.054 (2.855) 0.162 (0.038) 0.115 (0.008)

Inst2 0.150 (0.019) 1.409 (11.911) 0.088 (0.004) 0.083 (0.003)

Inst3 0.152 (0.028) 0.994 (1.388) 0.067 (0.006) 0.056 (0.003)

Inst4 0.124 (0.011) 0.921 (0.852) 0.070 (0.003) 0.053 (0.003)

Inst5 0.137 (0.018) 1.287 (7.707) 0.095 (0.006) 0.068 (0.003)

Inst6 0.315 (0.202) 1.693 (11.536) 0.203 (0.035) 0.162 (0.016)

2-Exchange

M = 13,200

Inst1 0.085 (0.005) 0.099 (0.013) 1.579 (13.411) 0.084 (0.006)

Inst2 0.136 (0.014) 0.264 (0.105) 1.925 (44.961) 0.137 (0.009)

Inst3 0.153 (0.025) 0.389 (0.191) 0.632 (2.668) 0.144 (0.014)

Inst4 0.159 (0.025) 0.320 (0.138) 0.801 (1.340) 0.155 (0.019)

Inst5 0.210 (0.060) 0.299 (0.089) 0.582 (0.481) 0.167 (0.014)

Inst6 0.119 (0.011) 0.104 (0.008) 0.981 (0.603) 0.106 (0.008)

Insert

M = 13,200

Inst1 0.363 (0.301) 0.312 (0.261) 0.375 (0.042) 0.316 (0.027)

Inst2 0.532 (0.635) 1.319 (4.280) 0.367 (0.399) 0.293 (0.018)

Inst3 0.334 (0.077) 1.642 (11.804) 0.392 (0.208) 0.294 (0.028)

Inst4 0.557 (0.222) 1.124 (2.294) 0.510 (0.354) 0.437 (0.056)

Inst5 0.476 (1.892) 1.197 (3.646) 0.285 (0.053) 0.308 (0.039)

Inst6 0.432 (0.422) 0.167 (0.014) 0.322 (0.028) 0.341 (0.033)

Bold values indicate lower errors (on average) than other estimatingmethods
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Table 10 Comparison of the
average relative errors (and
variances) of the estimations of
attraction basin sizes of the LOP
with different methods for
n = 12

DM-ES DM-SP DM-SD DM-DS

Adjacent S.

M = 13,200

Inst1 0.139 (0.013) 0.152 (0.025) 0.156 (0.019) 0.195 (0.021)

Inst2 0.484 (0.825) 0.345 (0.215) 0.391 (0.165) 0.281 (0.052)

Inst3 0.441 (0.429) 0.533 (0.654) 0.627 (3.189) 0.372 (0.159)

Inst4 0.728 (5.667) 0.595 (0.413) 0.605 (0.625) 0.290 (0.045)

Inst5 0.292 (0.134) 0.386 (0.211) 0.344 (0.220) 0.272 (0.037)

Inst6 0.440 (0.404) 0.254 (0.061) 0.300 (0.227) 0.265 (0.053)

2-Exchange

M = 13,200

Inst1 0.186 (0.078) 3.006 (195.797) 2.010 (68.036) 0.209 (0.032)

Inst2 0.331 (2.587) 3.066 (86.330) 2.324 (10.400) 0.069 (0.003)

Inst3 0.608 (2.652) 1.705 (68.296) 0.774 (0.009) 0.226 (0.035)

Inst4 0.287 (0.782) 2.787 (69.616) 2.528 (26.020) 0.053 (0.002)

Inst5 0.852 (37.188) 1.312 (6.145) 2.522 (112.578) 0.132 (0.014)

Inst6 0.094 (0.008) 4.204 (463.418) 4.545 (331.268) 0.144 (0.017)

Insert

M = 13,200

Inst1 0.112 (0.005) 0.950 (0.866) 0.801 (0.002) 0.148 (0.009)

Inst2 0.191 (0.017) 0.724 (0.552) 0.724 (0.439) 0.201 (0.027)

Inst3 0.117 (0.008) 3.167 (76.837) 0.731 (0.029) 0.154 (0.016)

Inst4 0.140 (0.012) 1.621 (9.035) 1.977 (15.643) 0.146 (0.016)

Inst5 0.119 (0.017) 0.815 (0.747) 1.145 (5.875) 0.106 (0.009)

Inst6 0.931 (1.452) 1.114 (3.575) 1.352 (6.310) 0.301 (0.003)

Bold values indicate lower errors (on average) than other estimating methods

4.2 Comparison of sampling strategies for a
permutation size n = 10

We have computed the errors in the estimations for two dif-
ferent total sample sizes: M = 2250 and M = 4500. In
the case of the original distance-based method, the sampling
strategies are the ones described in [13]. Table 4 shows the
sample distribution used in each of these three cases, whereas
Tables 5, 6 and 7 report the performance of the three origi-
nal distance-based methods (DM), which can be classified as
static methods, and our new DM-DS for the QAP, the LOP
and the PFSP, respectively. The errors are computed as the
average of the relative errors for each of the instances, when
considering 10 local optima and with 10 repetitions.

Regarding our DM-DS, we have used half of the sam-
ples for the initial sampling and the remaining half for the
dynamic sampling. So, for a total sample size of 2250, 1125
samples would constitute the initial sampling and 1125 the
dynamic sampling. Besides, the initial sampling requires pre-
fixed sample sizes for each distance andwe have chosen these
sizes basedon the results for the three staticmethods.Wehave
selected different initial sampling strategies depending on the
type of problem and the neighborhood, in view of the results

of the static methods shown in Tables 5, 6 and 7. For this
purpose, we have computed the average error of each of the
three static methods (DM-ES, DM-SP and DM-SD) over all
the instances and have selected the initial sampling strategy
of the DM-DS according to the static method which mini-
mizes the average error. This means that, in the case of the
QAP (using the results of the static methods of Table 5), for
the adjacent swap neighborhood we have used sample sizes
which decrease as the distance increases, because the DM-
DS is the method which gives the lowest average error. On
the contrary, in the case of the 2-exchange and insert neigh-
borhoods, we have used equal sample sizes for each distance,
since the DM-ES is the static method having the lowest aver-
age error. In the case of the LOP (Table 6) and the PFSP
(Table 7), we have also used sample sizes which decrease as
the distance increases for the adjacent swap neighborhood
and equal sample sizes for each distance for the 2-exchange
neighborhood, while for the insert neighborhood, we have
used sample sizes proportional to the number of permuta-
tions at each distance.

After computing the errors of the estimations, we have
conducted a nonparametric Friedman’s test with a level of
significance α = 0.05 to check whether there are statisti-
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Table 11 Comparison of the
average relative errors (and
variances) of the estimations of
attraction basin sizes of the
PFSP with different methods for
n = 12

DM-ES DM-SP DM-SD DM-DS

Adjacent S.

M = 13,200

Inst1 0.312 (0.131) 0.432 (0.785) 0.254 (0.077) 0.248 (0.050)

Inst2 0.189 (0.047) 0.308 (0.552) 0.224 (0.039) 0.210 (0.028)

Inst3 0.233 (0.076) 0.184 (0.027) 0.294 (0.154) 0.215 (0.020)

Inst4 0.410 (0.746) 0.372 (0.337) 0.371 (0.397) 0.246 (0.026)

Inst5 0.492 (0.629) 0.537 (0.783) 0.700 (2.823) 0.338 (0.100)

Inst6 0.431 (0.500) 0.269 (0.110) 0.324 (0.314) 0.231 (0.055)

2-Exchange

M = 13,200

Inst1 0.310 (0.197) 0.879 (2.909) 0.875 (1.471) 0.182 (0.020)

Inst2 0.176 (0.052) 1.472 (18.989) 0.807 (0.311) 0.149 (0.016)

Inst3 0.266 (0.085) 1.050 (7.733) 1.967 (92.343) 0.179 (0.016)

Inst4 0.455 (1.986) 1.654 (23.013) 1.625 (20.264) 0.096 (0.013)

Inst5 0.180 (0.067) 1.695 (21.699) 1.929 (16.669) 0.084 (0.005)

Inst6 0.150 (0.023) 0.780 (0.095) 0.787 (0.102) 0.108 (0.009)

Insert

M = 13,200

Inst1 0.209 (0.050) 0.816 (0.718) 1.767 (36.316) 0.202 (0.017)

Inst2 0.118 (0.011) 1.416 (6.510) 3.183 (198.732) 0.161 (0.019)

Inst3 0.216 (0.026) 1.708 (31.032) 1.550 (16.641) 0.242 (0.029)

Inst4 0.081 (0.005) 1.537 (7.817) 2.132 (13.834) 0.101 (0.009)

Inst5 0.266 (0.089) 1.038 (2.730) 1.053 (3.002) 0.197 (0.039)

Inst6 0.075 (0.004) 2.009 (8.667) 1.738 (6.744) 0.062 (0.003)

Bold values indicate lower errors (on average) than other estimating methods

Table 12 Results of the statistical test for n = 12

Adjacent 2-Exchange Insert

Method Rank value Method Rank value Method Rank value

QAP

DM-DS 3.64 DM-ES 2.65 DM-DS 3.19

DM-SD 3.20 DM-DS 2.62 DM-ES 3.15

DM-ES 1.61 DM-SD 2.37 DM-SP 1.84

DM-SP 1.54 DM-SP 2.35 DM-SD 1.82

LOP

DM-SD 2.53 DM-DS 3.45 DM-DS 3.41

DM-DS 2.51 DM-ES 3.41 DM-ES 3.36

DM-ES 2.49 DM-SD 1.58 DM-SD 1.63

DM-SP 2.47 DM-SP 1.55 DM-SP 1.60

PFSP

DM-SP 2.53 DM-DS 3.49 DM-DS 3.46

DM-DS 2.50 DM-ES 3.27 DM-ES 3.38

DM-SD 2.50 DM-SP 1.63 DM-SP 1.59

DM-ES 2.46 DM-SD 1.61 DM-SD 1.57

Bold values indicate the method that is ranked first by the statistical test
and the ones that show no statistical difference with the best method

cal differences among the four methods. This test provides
a ranking of the methods while also giving an average rank
value for each method. These rankings are shown in Table 8,
where our method is ranked in the first position in the major-
ity of the cases (a higher rank is associatedwith a lower error).
As we always find statistical differences, we have proceeded
with a post hoc test, which carries out all pairwise compar-
isons. In particular, we have used Holm’s procedure (with
a level of significance α = 0.05). We have used bold font
to distinguish the methods which are ranked first or have no
statistical difference with the method in the first position. In
most of the cases, there is no statistical difference between
the method ranked in the first position and the one ranked as
second. What is more, in all the cases in which our method
does not hold the first position, there is no statistical dif-
ference with the best one. However, in the following cases,
our method is ranked in the first position and is significantly
better than the second one: For the adjacent swap neighbor-
hood and a sample size M = 2250, independently of the
type of problem, and, in the case of the PFSP, for the same
neighborhood and a sample size M = 4500.
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4.3 Comparison of sampling strategies for a
permutation size n = 12

We have repeated, for n = 12, the experiments conducted
for n = 10 with a sample size of 13,200. Tables 9, 10 and 11
gather the average of the relative errors for 10 local optima
and 10 repetitions, for the QAP, the LOP and the PSFP, when
using the distance method with prefixed sample sizes and our
dynamic sampling strategy. Regarding the DM-DS, its ini-
tial sampling has been established analogously to the case
n = 10. That is, the initial sampling constitutes half of
the total amount of samples and its distribution is decided
according to the results of the DM methods with prefixed
sample sizes. So, for theQAP, in the case of the adjacent swap
and insert neighborhoods, we have used sample sizes which
decrease as the distance increases and, for the 2-exchange
neighborhood, equal sample sizes for each distance. For the
LOP, in the case of the adjacent swap neighborhood, we have
used sample sizes proportional to the number of permuta-
tions, while we have used equal sample sizes for the other
two neighborhoods. In the case of the PFSP, we have used
equal sample sizes for the three neighborhoods.

As for n = 10, we have conducted the Friedman’s test and
the Holm’s procedure (with α = 0.05) to check for statistical
differences among the methods. Table 12 shows the rankings
of the methods. Similar to the case n = 10, in all the cases
in which our method does not hold the first position, there
is no statistical difference with the best one. There is one
case where our method is statistically better than the rest:
when we are working with the PFSP under the 2-exchange
neighborhood. On the other hand, when we have the LOP
and PFSP under the adjacent swap neighborhood, there is no
statistical difference among any of the methods.

5 Conclusions and future work

Calculating the attraction basin sizes of an instance of a com-
binatorial optimization problem can be useful if one wants to
measure the complexity of solving an instance with a specific
algorithm. Furthermore, the knowledge about the attraction
basin sizes helps in the estimation of the number of local
optima.Nevertheless, estimating the attraction basin sizes for
COPs is a non-trivial task, because of the size of the search
space and the complicated neighborhood structure. So, few
methods exist which fulfill this purpose.

In [13], two estimators were presented: the UM and the
DM. Based on the latter, we have proposed, in this paper,
a novel method for estimating the attraction basin size of a
local optimum. In contrast to the DM, which uses prefixed
sample sizes for each distance, our new algorithm decides its
strategy during its execution by analyzing the permutations
which have already been sampled. The main advantage of

our method is that one does not have to set the sample sizes
manually. On the contrary, this is established by the behavior
of the algorithm given a specific attraction basin, so that the
number of solutions to be explored at each of the distances
from the local optimum depends on the information given by
the already sampled solutions. The appropriateness of this
approach is confirmed by the experimentation, since our new
proposal generally has lower errors and, when this does not
hold, there is no case in which it performs statistically worse
than the original DM.

Future work will consider studying the estimations of
higher dimensions. Besides, it could be a good idea to attempt
to find the most adequate balance between the initial sam-
pling and the dynamic sampling, since we have only tried
an equally sized configuration (that is, half of the samples
for the initial sampling and the other half for the dynamic
sampling).
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