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(A) Abstract

Aim – To assess the spatial congruence between hotspots based on taxonomic, phylogenetic and functional

diversity, after accounting for the correlation between diversity metrics, and the spatial scale and sampling

completeness of data.

Location – The Ordesa and Monte Perdido National  Park (Central  Pyrenees,  Spain), a  species-rich area

subjected to intensive botanical sampling. 

Methods – We selected hotspots using different diversity metrics and two different data sources (~49,000

occurrence records of 1379 vascular plants in 1x1 km grid cells, and 1218 inventories of plant communities

containing a total of 859 taxa), and compared their spatial congruence. The effect of sampling completeness

of data was explicitly assessed. Phylogenetic and functional diversity (measured with richness-dependent and

independent metrics) were based on a molecular phylogeny, and a functional dendrogram, respectively. The

effectiveness  of  different  types  of  hotspots  in  representing  other  diversity  components  was  tested  with

permutation tests.
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Results – We found that spurious correlations between diversity metrics explained the congruence between

taxonomic, phylogenetic and functional hotspots. When richness-independent metrics were used, diversity

hotspots were no longer congruent regardless of the source of data. Hotspots were biased towards intensively

sampled grid cells, and the amount of diversity they captured was exaggerated due to the coarse spatial scale

of species-occurrence data. The efficiency of hotspots in terms of integrating different diversity components

was lower  at  community scale,  and not  significantly higher  than expected at  random,  regardless  of  the

sampling completeness. 

Main conclusions – Our results stress that the arbitrary use of diversity metrics and the scale of analyses

along with the sampling bias in data can distort the true location of hotspots, and exaggerate their spatial

congruence. After accounting for such methodological issues, we found a clear mismatch between diversity

components that challenges the utility of hotspots as a conservation tool of multiple diversity components.

Keywords biodiversity database, functional traits, National Park, phylogeny, plant records, spatial bias
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(A) Introduction

'Agony', 'crisis', and 'emergency' are terms repeatedly used in the scientific literature to depict the

current  status  of  biodiversity.  In  the  face  of  this  alarming scenario  and limited  conservation  resources,

priority is often given to hotspots, defined broadly as exceptionally rich areas containing a large number of

species within a relatively small area (Myers, 1988). However, hotspots of species richness (SR) do not

always capture other traditional conservation targets (e.g. threatened species or, endemisms) if the spatial

distribution of target species and SR is not congruent (Prendergast et al. 1993, Orme et al., 2005; Ceballos &

Ehrlich, 2006). Yet, it is unclear whether SR hotspots also present large gaps in the representation of other

diversity components such as evolutionary or functional ones, whose relevance for biodiversity conservation

is increasingly recognized (Winter et al., 2013). Several authors have shown that maintaining high levels of

phylogenetic diversity (i.e. the amount of evolutionary differences between species based on a phylogeny;

PD; Faith, 1992), is not only crucial for preserving the evolutionary potential of diversity (Mace et al., 2003;

Forest  et  al.,  2007),  but  also  for  reducing  the  loss  of  evolutionary  history,  because  extinction  is

phylogenetically  non-random  (Purvis  et  al.,  2000).  Other  contributions  have  emphasized  instead  the

importance of functional diversity (FD), defined as trait complementarity between species (Tilman 2001), in

determining ecosystem functioning (Díaz & Cabido, 2001; Cadotte  et al., 2011). Although PD is a good

surrogate of FD when target traits have evolved under the pattern of the common ancestor (i.e. when species

retain their ancestral traits; e.g. Flynn et al., 2011), this is not always so (e.g. Prinzing et al., 2008; Pavoine et

al., 2013), and it is therefore advisable to measure FD directly from trait data (Cadotte et al., 2013). 

While several studies have evidenced spatial mismatches between SR, PD and FD in fish, birds,

mammals and plants (Forest et al., 2007; Devictor et al., 2010; Mouillot et al., 2011), some others have not

(Rodrigues & Gaston, 2002; Sechrest  et al., 2002; López-Osorio & Miranda-Esquivel, 2010). The spatial

mismatch and congruence between diversity components is often attributed to ecological mechanisms and/or

historical events (Orme et al., 2005; Davies & Buckley, 2011; Fritz & Rahbek, 2012). However, the causes

for divergent results may be multiple, including methodological ones. In fact, not all results from previous

PD and FD studies are comparable, because they are based on different phylogenetic and functional metrics
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(Winter  et  al.,  2013).  For  instance,  we  may  expect  a  spatial  overlap  between  PD,  FD and  SR  when

phylogenetic and functional metrics are richness-dependent (Pavoine et al.,  2013). Another methodological

issue affecting the degree of overlap between different diversity components is the spatial scale (i.e. the size

of units used in analysis; Reid 1988, Curnut et al., 1994), because richness patterns are often scale-dependent

(e.g. Rahbek, 1995). Finally, the spatial congruence between diversity components may also be contingent

upon the quality and quantity of distributional data (Rodrigues  et al., 2011). Species richest areas inferred

from species-occurrence data tend to be biased towards well-sampled ones (Hortal et al., 2007, Boakes et al.,

2010), but we do not know yet if other diversity components are also substantially biased.  Therefore, it is

unclear to what extent sampling biases can underlie the spatial congruence and mismatch between diversity

congruence. Given the range of methodological issues that can potentially affect the outputs, it seems clear

that  we  still  need  to  improve  and  standardize  methods  before  generating  hypothesis  about  the  spatial

congruence and mismatch between diversity components.

In  this  study we assess  the  spatial  congruence between taxonomic,  phylogenetic  and  functional

diversity components in the Ordesa and Monte Perdido National Park (OMPNP; Central Pyrenees), and its

implications for the utility of hotspots as a conservation tool of multiple diversity components. We examine

the  potential  correlation  between  diversity  metrics,  and  the  effect  of  the  spatial  scale  and  sampling

completeness on results by using two data sources: species-occurrence data in grid-cells of 1x1 km and a

dataset based on local inventories of plant communities. We used the OMPNP as a case study, because aside

from its extraordinary rich flora (nearly 20% of the Iberian Peninsula in only 0.07% of the territory), it has

been subjected to intensive botanical sampling. In addition, the spatial resolution of data available is similar

to that chosen for prioritization strategies, including hotspot-based ones, at small-scale elsewhere (Gjerde et

al., 2004; Laguna et al., 2004).

(A) Methods 

(B) Study site

The Ordesa and Monte Perdido National Park (42°N, 0°E) extends over a topographically complex
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area of 35000 ha (including the buffer area) in the Central Pyrenees, with an elevational range between 700-

3354 m. The main bedrock type is limestone, but flysch and sandstone outcrops are relatively abundant all

across the National Park. Main habitats are, in order of decreasing abundance: grasslands, most of which

have traditionally been used for summer pasturing; rocky habitat, including rocky grasslands, screes and

cliffs;  coniferous  forests  dominated  by  Abies  alba,  Pinus  sylvestris or  P.  uncinata; deciduous  forests,

including those dominated by Fagus sylvatica, and mixed ones; Mediterranean forests, mainly dominated by

Quercus ilex;  and  shrublands.  Other  habitats  such  as  wetlands  and  anthropogenic  habitat  (vegetation

occurring along pathways) cover less than 1% of the OMPNP (see Appendix S1 in Supporting Information).

(B) Plant distribution data

All analyses were separately conducted on the basis of two information sources: species-occurrence

data in grid cells, and local inventories of plant communities. The former consists of ~49,000 records of

species and subspecies of vascular plants (ferns, gymnosperms and angiosperms) obtained from herbarium

collections  and  inventories  and  aggregated  in  sampling  units  of  1x1  km

(http://proyectos.ipe.csic.es/floragon/index.php). More than 95% of these records were gathered in the last

two decades. Although the OMPNP stands out in terms of density of plant records in the Iberian Peninsula

(Font et al. 2010), the knowledge about the spatial distribution of taxa (including species and subspecies) is

still incomplete and spatially biased due to uneven sampling effort (i.e. some grid cells have been subjected

to more intense sampling than others; Pardo et al., 2013).

The second set of data was based on local inventories of plant communities collected following the

phytosociological method, which were compiled from the SIVIM website (http://www.sivim.info/sivi/). We

initially  retrieved  1962 inventories,  from which  only 1218 were selected for  analysis  after  filtering for

taxonomic accuracy and source reliability. Most of these inventories (80%) were relatively recent (collected

between  1990-2010),  and  their  size  ranged between 0.001-0.03  ha  (median  size  was  0.004  ha).  In the

phytosociological sampling the size of the inventory is associated to the density of species, e.g. it is, on

average, larger in forests than in grasslands. For subsequent analyses, plant inventories were grouped into
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main habitat  classes  according to  their  syntaxonomy.  Although inventories  were performed in scattered

localities (Fig. 1), main habitats were proportionally represented regarding their area (see Appendix S2).

(B) Quantifying diversity components

Species richness (SR) was measured as the number of species and subspecies at each sampling unit

(i.e. grid cells and inventories), and endemism richness (ER) as the number of taxa whose distribution is

restricted to the Pyrenees. For PD estimation, we first generated a molecular phylogeny of the flora of the

OMPNP resolved to the  genus level, following Roquet  et al. (2013). DNA sequences for 10 regions were

downloaded  from  GenBank:  three  conserved  regions  (matK,  ndhF and  rbcL),  plus  seven  regions  less

conserved that were clustered to the family or order level for the alignment (atpB,  ITS,  psbA-trnH,  rpl16,

rps16,  rps4-trnS intergenic spacer,  trnL-F). Alignment for each region was performed with three methods:

Kaling (Lassmann & Sonnhammer, 2005), MAFFT (Katoh et al., 2005) and MUSCLE (Edgar, 2004). The

best  alignment was determined with MUMSA (Lassmann & Sonnhammer,  2006),  checked visually with

Seaview (Gouy et al., 2010) and depurated later on with TRIMAL software (Capella-Gutiérrez et al., 2009).

All regions were concatenated with FASconCAT (Kück & Meusemann, 2010). For phylogenetic inference,

we conducted a maximum likelihood (ML) by using RAxML (Stamatakis  et  al.,  2008) with the model

GTR+Gamma, applying a supertree constraint at the family-level on the basis of Davies  et al. (2004) and

Moore  et  al. (2010), and setting one partition for each DNA region.  Node support  was estimated using

bootstrap values. Once the topology of the best ML tree was obtained, we dated the tree with penalized-

likelihood as implemented in r8s (Sanderson, 2003), and used a wide range of fossil data to calibrate the tree

(25 fossils extracted from Bell  et al., 2010; Smith et al., 2010). Finally, we transformed polytomies at the

genus level into dichotomies of branches of length zero at random with the multi2di function in PICANTE

(Kembel et al., 2010).

On the basis  of  this  phylogeny,  we calculated PD as  the  sum of the  branch lengths  of  the  co-

occurring  taxa  for  each  sampling  unit  (grid  cells  and  inventories).  Among existing  metrics  of  PD, we

selected the one by Faith (1992) because it is widely used in similar studies (Sechrest et al., 2002; Forest et
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al., 2007; Fritz & Rahbek, 2012), it provides a more robust basis for conservation than other metrics (Pio et

al., 2011), and it is probably the most intuitive one for interpretation. All phylogenetic analyses were done in

R 3.3.0 (R Development Core Team, 2016) by using PICANTE (Kembel et al., 2010), APE (Paradis et al.,

2004) and GEIGER (Harmon et al., 2008) R-packages.

Functional diversity was estimated on the basis of eight traits related to life-history (Raunkiaer's life

form, life span), plant propagation, dispersal syndrome, pollination system, sexual expression, inflorescence

architecture and floral colour (Table 1), plus regional mean population size of adults (a few individuals; <25

individuals; <100 individuals; <1000 individuals; and >1000 individuals). Trait information was compiled

from the literature and online databases (Table 1). Taxa with no trait information (<10%) were excluded

from calculations of FD. Correlation of traits along the phylogeny (i.e. phylogenetic signal) was tested with

'phylo.signal.disc' function, a phylogenetic permutation test written in R by E. Rezende, which indicated that

all  traits were  significantly correlated  (p  < 0.05).  Following Petchey and Gaston  (2002),  we  calculated

functional distance based on Gower's metric (Gower 1971), and performed a hierarchical clustering analysis

to  produce  a  functional  dendrogram  by  using  daisy  (Maechler  et  al.,  2013) and  hclust  R-functions,

respectively. Next, we used treedive function in the VEGAN R-package (Oksanen et al., 2013) to calculate

FD of sampling units as the sum of the total branch lengths connecting recorded along the dendrogram

(Petchey & Gaston, 2002).

These phylogenetic and functional metrics are not independent from SR (Pavoine et al., 2013). To

measure  richness-independent  phylogenetic  and  functional  diversity, we  performed  quadratic  models

between SR and PD, and FD, respectively, and used residuals of these models (PDR and FDR; Davies et al.,

2008;  Devictor  et  al.,  2010;  Fritz & Rahbek,  2012;  see Appendix S3).  Since model  residuals were not

spatially correlated, we did not consider models with autocorrelation structures .

(B) Spatial congruence between hotspots and their utility for conservation

Hotspots were initially defined as the top 5% sampling units (n=16 grid cells, and n=64 inventories)

of each diversity component (SR, ER, PD, FD, PDR and FDR).  The spatial congruence between different
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types of hotspots was measured as 

 

A∩ B∩C ∩ D
A+B+C+D [1]

where A, B, C and D are the set of hotspots of each diversity component.  Dividend was substituted by

(A∩B∩C), and (A∩B) to calculate the overlap between all possible combinations of three and two types of

hotspots, respectively.

We evaluated  the  utility  of  hotspots  as  a  conservation  tools  in  terms  of  their  representation  of

multiple diversity components, by comparing the percentage of each diversity component captured at each

type of hotspots with that  found in the same number of sampling units  selected at random.  Differences

between observed diversity values in hotspots and those expected at random were contrasted at the 0.05

significance level with a permutation test (1000 iterations). To assess the consistency of results regarding the

percentage of sampling units selected as hotspots (hereafter hotspot definition criterion), all analyses  were

repeated by gradually relaxing the criterion from 5% to 30% top sampling units.

(B) The effect of sampling completeness

We estimated the sampling completeness in grid cells following Pardo  et al. (2013), as the first

derivative of a Generalized Additive Model fitted to randomized species accumulation curves at the end of

the curve. For the sake of interpretation, values obtained with this procedure were rescaled by subtracting

initial values from one,  so that  values close to one indicate almost  complete sampling.  The relationship

between estimates of sampling completeness and diversity was then tested by means of quantile regression

(Koenker & Bassett, 1978). This method was applied to parse out the strength of spatial biases in data across

quantiles of interest (Cade & Noon, 2003), which in the case of this study are the highest ones (0.8, 0.9,

0.95).  Quantile  regressions  with  bootstrapped  standard  errors  were  performed  with  qr  function  from

QUANTREG R-package (Koenker, 2013),

Inventories  are  virtually  complete  samples  of  plant  communities,  however,  this  source  of
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information was incomplete in the sense that not all communities and taxa of the OMPNP were included. To

assess whether our incomplete knowledge about plant diversity affected the consistence of our results,  we

repeated analyses with three sub-datasets created by selecting 75%, 50% and 25% of total inventories at

random (see Appendix S4 for further details).

(A) Results

(B) Species-occurrence data

Seventy percent of the 321 grid cells included in the complex topography of the OMPNP contained

plant  records.  After  filtering  for  synonyms,  we  listed  1379  taxa  (3%  ferns,  1%  gymnosperms,  96%

angiosperms), of which 73 (5%) were endemic to the Pyrenees. Phylogenetic and functional trees were based

on 98% of these taxa (see Appendix S5). Values of SR, ER, PD and FD were highly correlated to each other

(Spearman coefficient > 0.77; Table 2), and their spatial distribution was similar (Appendix S1). Since SR

significantly explained the variation in PD and FD across grid cells (r2= 0.95, p-value < 0.001; r2=0.98, p-

value < 0.001, respectively; see Appendix S3), these metrics provided almost the same values of diversity,

and identical selection of hotspots. We therefore choose to present results based on PD and FD in Appendix

S6. Measures of PDR and FDR were instead uncorrelated with SR and ER (Table 2), and accordingly, and

their  corresponding hotspots  were  no  longer  spatially  congruent  with  each  other  (Fig.  2).  This  general

mismatch between diversity hotspots was relatively consistent even if the percentage of grid cells considered

as hotspots increased from 5% till 22% (i.e. 71 grid cells; Fig. 2).

The effect  of sampling completeness on SR, ER and PDR was significant  (Fig.3),  and increased

towards  highest  conditional  quantiles,  as  indicated  by increasing  slopes  of  regression lines  (Fig.  3;  see

coefficient and statistics of regressions in Appendix S7). Accordingly, the set of hotspots of these metrics

were located in intensively sampled grid cells (sampling completeness above 0.95). In contrast, values of

FDR were not statistically related to sampling completeness (Fig. 3), and hotspots of FDR were found in both

poorly and excellently surveyed grid cells (sampling completeness values ranging from 0.75 to 1).
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In spite of the spatial mismatch between hotspots, the amount of each diversity component captured

in SR hotspots was high (>74%) and, on average, 15% significantly higher than expected in hotspots selected

at random (Fig. 4). Other types of hotspots included diversity components in a lower proportion, and not

always significantly higher than expected at random (Fig. 4). For instance, hotspots of PDR did not efficiently

capture any other diversity component, and FDR and ER hotspots also failed in integrating endemism and

phylogenetic  diversity,  respectively  (Fig.  4).  Importantly,  the  efficiency  of  hotspots  for  diversity

representation was similar when the definition of hotspots was relaxed (Fig. 4).

(B) Plant inventories

Inventories  selected  for  analyses  included  859  plant  species  (62%  of  total  pool),  40  (55%)

endemisms,  and  79% of  the  PD and  FD known in  the  OMPNP.  Most  missing  taxa  were  locally  rare

(occurring in less than 1% of the territory). As observed in grid cells, SR and PD and FD were correlated

(Table 1), although in this case the variance of PD explained by SR was lower (r 2=0.71, 1215 d.f., p < 0.001)

than that of FD (r2= 0.93, 1215 d.f., p-value < 0.001). Consequently, PD complemented SR for hotspots

identification when using this data source, whereas FD did not (for the sake of coherence with results based

on species-occurrence data, results based on both PD and FD are shown in the Appendix S6). 

Different types of hotspots were spatially non-congruent, except those based on PDR and FDR that

partially overlapped (Fig. 2). Although the overlap between hotspots with the number of grid cells used for

hotspot  definition,  by  no means  it  was  higher  than the mismatch  (Fig.  2).  The spatial  congruence  was

particularly low between hotspots based on SR and ER, even if more than 80% of hotspots were located in

the same habitat, i.e. grasslands. Hotspots based on PDR and FDR were frequent in forest (87% and 67% of

hotspots, respectively), especially in deciduous ones, where their spatial overlap was moderate (Fig. 2). 

When  using  inventories,  the  representation  of  multiple  diversity  components  in  hotspots  was

between 25-42% lower than observed in hotspots in grid-cells, and none of the different types of hotspots

performed  statistically  better  than  expected  at  random  (Fig.  4). Although  the  percentage  of  diversity

incidentally captured in hotspots increased with the number of inventories considered as hotspots, it was not
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significantly different from that expected at random (Fig. 4). Very similar results were found regarding the

spatial congruence and diversity representation of hotspots when the spatial overlap was inferred from sub-

datasets, and hence results are not shown here (see Appendix S4).

(A) Discussion 

Our study demonstrated that  methodological  aspects such as the choice of diversity metrics and

spatial  bias  in  species-occurrence  data  can  determine  the  spatial  congruence  between  taxonomic,

phylogenetic  and  functional  diversity  hotspots.  Analysing  two sources  of  data  of  plant  diversity  in  the

OMPNP, we found that the influence of SR overrode almost completely the contribution of the phylogeny

and functional variability to PD and FD (Pavoine et al., 2013). In contrast, the congruence between different

types of hotspots in the OMPNP dissipated when richness-independent phylogenetic and functional metrics

were used,  regardless of the data source used and the number of sampling units  considered for hotspot

selection.  Rodrigues and Gaston (2002) anticipated such redundancy between SR and PD metrics when

phylogenies are balanced (i.e. similar ramification across branches), and this may apply to FD too. However,

mathematical correlation should not be systematically discarded, unless it is explicitly tested. (Pavoine et al.,

2013). Indeed, such spurious correlation may be scale-dependent as in this study, which makes even harder

to anticipate when richness-dependent PD and FD are certainly more informative than SR for conservation.

Geographical  differences  in  sampling  completeness  clearly  affected  and  confounded  the

identification  of  hotspots  (except  those  based  on  FDR)  from  species-occurrence  data,  even  though  the

OMPNP is one of the best prospected areas in the Iberian Peninsula (Font et al., 2010). While such spatial

biases have already been demonstrated in priority areas defined according to SR (Freitag & Jaarsveld, 1998;

Guilhaumon et al., 2008), and  stressed elsewhere (Hortal  et al.,  2015), this is the first empirical evidence

showing that important areas for PD conservation may be misidentified too. Several alternatives have been

suggested  to  cope  with  this  kind  of  sampling  bias, including  the  use  of  predictive  models  based  on

environmental variables to bridge existing gap in the diversity distribution (Hortal  et  al., 2007). However,

this approach might have been problematic, given that the difference regarding environmental variability
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(including habitat) were scarce across 1x1km grid-cells of the OMPNP (Elith & Leathwick 2009). Another

recurrent  alternative  is  to  restrict analyses  to  well-sampled  units  (Hortal  et  al.  2015),  although  it  is

meaningless in the context of this study, where we demonstrated that even small differences in botanical

sampling made the difference in terms of diversity between well-sampled grid cells. 

A more certain assessment of hotspots was achieved instead by using data from plant inventories. In

this case, results were regardless of the completeness of the data, thus indicating that it was not necessary to

explore further alternatives to overcome spatial biases as in the species-occurrence data. Our results stress

the importance of grasslands and some types of forest in terms of multifaceted diversity in the OMPNP.

Hotspots of  SR  and  ER  were  mostly  found  in  phylogenetically  poor  grasslands,  indicating  a  higher

abundance of recent and species-rich lineages in this habitat (Forest et al., 2007; Davies & Buckley, 2011).

We  suggest  that  this  pattern  may  be  related  to  historical  events,  such  as  the  vicariance  and  allopatric

speciation associated to glacial-interglacial episodes throughout the Pleistocene in the Alpine arc (Tribsch,

2004). In turn, the concentration of hotspots of PDR in forests, which were not particularly rich in terms of

species, pointed out the co-occurrence of ancient and modern lineages in these habitats. Since some Tertiary

taxa evolved under a more humid climate than today (Barrón et al., 2010), it is plausible that they find more

suitable microsite conditions for persistence in certain forests than in more open habitats (De Frenne et al.,

2013). The partial congruence between PDR and FDR was probably due to the strong phylogenetic signal of

traits  considered  in  this  study.  However,  the  concentration  of  FDR  in  forests  may  still  suggest  that

environmental  filtering  in  these habitats  was  less  severe  than  at  high-elevation  grasslands,  where  harsh

environmental conditions and the long grazing history might have exerted a strong selection on life-history

traits and plant propagation strategies (de Bello et al., 2013). 

 Beyond  the  ecological  significance,  the  spatial  mismatch  between  diversity  components  has

important practical implications for conservation. The utility of hotspots as a conservation tool has often

been evaluated according to the degree of overlap between diversity components (Prendergast et al., 1993;

Brooks et al., 2006). However, our results from species-occurrence data demonstrate that a spatial mismatch

between different hotspots does not necessarily translate into a poor representation of diversity components
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(see also Rodrigues & Gaston, 2002). This may be the case when the scale of analyses (i.e. the size of the

sampling  unit)  is  too  coarse  relative  to  the  extent  of  the  study  area  and  involves  a  large  topographic

complexity too, so that large amounts of diversity are captured. In this study, for example, more than 30% of

the taxa and between 40-55% of existing endemisms, PD and FD were found in just a single grid cell of 1x1

km (<1% of the study area). Under such scenario, prioritization efforts focused on diversity representation

(e.g. hotspots) may be trivial, as almost virtually any selection of sites may capture diversity extremely well.

In contrast, the amount of multiple diversity components captured by any type of hotspots inferred from

plant inventories was much lower,  and not significantly higher than if we had selected priority areas at

random. We are aware that the use of hotspots as a conservation tool should consider other socio-economic

and ecological aspects (e.g. threats and/or land-use conflicts) neglected in this study (Margules & Pressey,

2000). However, under the strong protection regime of a National Park, the representation of biodiversity

often constitutes the ultimate goal  (Schwartz, 1999 and references herein),  and in this regard, the use of

hotspots based on a single diversity component might be of limited use. 

In summary, our results highlight the importance  of the right diversity metrics and assessing the

quality of distributional data for an accurate identification of hotspots of multiple diversity components.

Previous studies may need some critical revision regarding the potential effects of these methodological

aspects that may mask true diversity patterns, before making general predictions about the spatial mismatch

between diversity components. After accounting for the spurious correlation between metrics, and spatial

sampling bias in data, our results show that multiple diversity components might not be efficiently captured

in hotspots based on the richness of taxa or endemisms. Thus, small reserves designed to protect areas with

elevated number of taxa, or other target species (e.g. Gjerde et al., 2004 see references herein; Laguna et al.,

2004) should be reviewed, and ideally complemented with outstanding areas of other diversity components

such as phylogenetic and functional ones. Otherwise, we would risk leaving out from protection meaningful

components of diversity.
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typeset. Technical support issues arising from supporting information (other than missing files) should be

addressed to the authors.
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Table 1. Description of biological and ecological traits used for the calculation of functional diversity.

Trait Description  Categories Source

Raunkier's life-form Position of renewal buds 
during unfavourable 
seasons for growing

Terophythe; Geophyte; 
Hemicryptophyte; Chamaephyte; 
Phanerophyte 

1

Life-span Annual; short lived ( < 5 yr); long lived
(≥ 5 yr)

1

Plant propagation Main system of recruiting 
new individuals

Sexual; Vegetative; Mixed 1, 2

Dispersal syndrome Seed dispersal agent 
according to morphological
features

Autochory; Endochory; Exochory; 
Anemochory assumed due to small 
seed size (less than 1mm, and without 
special morphological characters); 
None

1, 3, 4

Pollination system Flower shape was used as a
proxy of insect accessibility

Insect and wind pollination; insect 
pollination (flowers can only be 
pollinated by specialized insects); No 
insect pollination

1, 5

Sexual expression Spatial pattern of male and 
female organs

Complex; Dioecious; Hermaphroditic; 
Monoecious

1, 5

Inflorescence architecture Abundance and 
arrangement of flower in 
the inflorescence

Dense; Specialized; Inconspicuous; 
Lax; Solitary

1, 5

Floral colour Colourless; White; Yellow; Blue; Pink; 
Red; Multiple colours

1, 5

Source:  1) Knowledge of  authors and online databases:  http://atlasflorapyrenaea.org/florapyrenaea/index.jsp,

and http://proyectos.ipe.csic.es/floragon/index.php; 2) Klimeš et al. 1997; 3) Poschlod et al. 2003; 4) Kleyer et

al. 2008; 5) Kuhn et al. 2004.
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Table 2. Coefficients of Spearman correlation between species richness (SR), endemism richness (ER),

phylogenetic diversity (PD), functional diversity (FD), richness-independent PD (PDR,) and richness-

independent FD (FDR) from two sources of data. 

Species-occurrence data SR ER PD PDR FD FDR Plant inventories

SR – 0.15 0.87 -0.12 0.96 -0.05 SR

ER 0.81 – 0.07 -0.11 0.07 -0.29 ER

PD 0.98 0.77 – 0.34 0.91 0.19 PD

PDR 0.13 -0.05 0.30 – 0.18 0.48 PDR

FD 0.99 0.78 0.99 0.13 – 0.22 FD

FDR 0.13 -0.11 0.25 0.77 0.23 – FDR

531

532

533

534

535

26



Fig. 1 Distribution of plant records and inventories of plant communities across 1x1 km grid cells in

the Ordesa and Monte Perdido National Park (core and buffer areas are separated by a black line). 
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Fig. 2 Spatial congruence between hotspots based on species richness (SR), endemism richness (ER),

and  richness-independent  measures  of  phylogenetic  and  functional  diversity  (PDR and  FDR,

respectively)  in  the  Ordesa  and  Monte  Perdido  National  Park,  according  to  two  sources  of

information. Upper panel shows the spatial congruence between all possible combinations of hotspots

defined  as  5% top  sampling  units.  Lower  panel  shows the  percentage  of  overlap  and mismatch

between two, three and four types of hotspots by relaxing the definition criterion.
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Fig.  3  Quantile  regression  between  values  of  sampling  completeness  and  species  richness  (SR),

endemism richness (ER), and richness-independent measures of phylogenetic and functional diversity

(PDR and FDR, respectively). The effect of sampling completeness was significant (p < 0.05) across

all  diversity quantiles,  except  for FDR.  Gray dots show diversity records from species-occurrence

data. See coefficients of regressions in Appendix S7.
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Fig. 4 Percentage of each diversity component represented in hotspots based on based on species

richness  (SR),  endemism richness  (ER),  and  richness-independent  measures  of  phylogenetic  and

functional  diversity (PDR and FDR,  respectively).  Observed diversity values were contrasted with

those expected at random with a permutation test (n=1000) at the 0.05 significance level, to assess the

efficiency of each type of hotspot to include other diversity components.

552
553
554
555
556

30


