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A B S T R A C T

Cardiac arrest is defined by the loss, often abrupt and unexpected, of
the mechanical activity of the heart. Out-of-hospital cardiac arrest
(OHCA) is a leading cause of death in developed countries, with an
estimated incidence of 88.8 and 56.3 treated cases per 100,000 persons
year in the USA and Europe, respectively. Despite substantial efforts,
survival from OHCA remains awfully low, around or below 10%.

High-quality cardiopulmonary resuscitation (CPR), consisting of
chest compressions and ventilations, maintains a minimal but critical
flow of blood and oxygen to vital organs, and is crucial to improve
survival from OHCA. The study of optimal CPR parameters has been
an ongoing task for decades, and is largely made possible by signal
processing algorithms. Current defibrillator devices acquire multiple
biomedical signals during resuscitation, that can then be processed
using custom or proprietary software to calculate CPR parameters of
potential interest. In combination with detailed clinical information
on the care and follow-up of the patients, this has allowed the defini-
tion of optimal ranges for important CPR metrics, such as the rate
and depth of chest compressions. The optimal ventilation and airway
management strategies, on the other hand, are mostly unknown, in
large part due to limited measurement.

Capnography, which measures CO2 concentration in respiratory
gases, is the standard method to monitor ventilation in OHCA, but
is rarely available until later phases of resuscitation, and cannot be
used to measure air volumes. In contrast, thoracic impedance (TI) is
acquired through defibrillation pads early on during resuscitation,
and shows fluctuations due to air changes in the lungs that can also be
used to identify ventilations and estimate air volumes. However, TI is
also sensitive to several noise sources, including electrode motion and
artifacts due to chest compressions, that may hinder the detection of
ventilations. Few solutions have been proposed to detect ventilations
in TI during concurrent chest compressions, and they make little or
no use of potentially beneficial machine learning techniques.



The effectiveness of ventilation strategies may also be difficult to
assess without parallel information on chest compressions. Even for
this simpler task, current solutions may not adapt well to large OHCA
datasets. The most ambitious studies in resuscitation are multicenter,
and often include data from different defibrillator brands which can
be difficult to harmonize using vendor-specific software. The many
solutions in the literature are also usually designed for single specific
signals, and seldom validated outside homogeneous datasets. On
top of all this, ancillary but highly important procedures, such as the
delineation of resuscitation efforts, are typically not addressed and
left for manual review, often unfeasible for large datasets.

This thesis introduces new solutions for a more complete automatic
analysis of ventilation and CPR in large OHCA datasets. Three novel
machine learning-based solutions were developed for the detection
of ventilations in TI with concurrent chest compressions: First, a so-
lution for mechanical CPR, where the fixed and known compression
frequency enabled the use of dedicated filters. Second, a solution
for manual CPR, incorporating time series classification to exploit
the similarity between contiguous ventilations, and a quality control
stage to prevent erroneous feedback. And last, a deep learning-based
solution, which did not rely on additional reference signals and could
potentially be applied to a broader range of scenarios.

In addition, a unified methodology was proposed and evaluated
for the automatic annotation of large multi-device datasets. State-of-
the-art compression detection solutions were combined and adapted,
and new procedures were introduced to automatize ancillary tasks
such as signal loss control and delineation of resuscitation efforts.

Finally, these new solutions were used to characterize ventilation
and CPR in a large multi-device dataset derived from the Pragmatic
Airway Resuscitation Trial, the largest American clinical trial com-
paring the effectiveness of different airway management strategies.
Impactful conclusions were drawn on the effect of airway manage-
ment on ventilation characteristics and CPR quality, which could
potentially help explain outcome differences in OHCA. Collectively,
they contributed to advance knowledge in one of the hot topics in
resuscitation science.



C O N T E N T S

1 Introduction 1
1.1 Out-of-hospital cardiac arrest . . . . . . . . . . . . . . . . 1
1.2 Resuscitation therapies . . . . . . . . . . . . . . . . . . . . 2
1.3 Cardiopulmonary resuscitation . . . . . . . . . . . . . . . 4

1.3.1 CPR quality and resuscitation outcomes . . . . . . . . . . 7
1.4 Advanced airway management . . . . . . . . . . . . . . . 9
1.5 CPR monitoring and analysis . . . . . . . . . . . . . . . . 11

1.5.1 Defibrillator devices and signal acquisition . . . . . . . . 12
1.5.2 Cardiac arrest registries . . . . . . . . . . . . . . . . . . . 15

1.6 Motivation for the thesis work . . . . . . . . . . . . . . . . 16

2 Background 19
2.1 CPR quality analysis: chest compressions . . . . . . . . . 19

2.1.1 Chest compression quality metrics . . . . . . . . . . . . . 19
2.1.2 Literature solutions for chest compression analysis . . . . 22
2.1.3 Chest compression analysis in commercial software . . . . 28

2.2 CPR quality analysis: ventilations . . . . . . . . . . . . . . 31
2.2.1 Ventilation quality metrics . . . . . . . . . . . . . . . . . 31
2.2.2 Literature solutions for ventilation analysis . . . . . . . . 32
2.2.3 Ventilation analysis in commercial software . . . . . . . . 41

2.3 Suppression of chest compression artifacts . . . . . . . . . 43
2.3.1 Multichannel models . . . . . . . . . . . . . . . . . . . . 44
2.3.2 Parameterized models . . . . . . . . . . . . . . . . . . . 45

2.4 Machine learning for ventilation detection . . . . . . . . . 47
2.4.1 The classification problem . . . . . . . . . . . . . . . . . 47
2.4.2 Classification algorithms . . . . . . . . . . . . . . . . . . 48
2.4.3 The sequence labeling problem . . . . . . . . . . . . . . . 50
2.4.4 Model evaluation . . . . . . . . . . . . . . . . . . . . . . 50
2.4.5 Nested evaluation and feature selection . . . . . . . . . . 52
2.4.6 Deep learning models . . . . . . . . . . . . . . . . . . . . 54

3 Hypothesis and objectives 55



contents

4 Data Materials 57
4.1 The Resuscitation Outcomes Consortium (ROC) . . . . . 57
4.2 The D-FW database . . . . . . . . . . . . . . . . . . . . . . 59
4.3 The PART database . . . . . . . . . . . . . . . . . . . . . . 59

5 Results 61
5.1 Results related to objective 1 . . . . . . . . . . . . . . . . . 61

5.1.1 J11: Automatic detection of ventilations during mechanical
cardiopulmonary resuscitation . . . . . . . . . . . . . . . 63

5.1.2 J12: Impedance-based ventilation detection and signal qual-
ity control during out-of-hospital cardiopulmonary resus-
citation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.1.3 Deep learning for impedance-based ventilation detection
during continuous manual chest compressions . . . . . . 76

5.2 Results related to objective 2 . . . . . . . . . . . . . . . . . 80
5.2.1 J21: Methodology and framework for the analysis of car-

diopulmonary resuscitation quality in large and heteroge-
neous cardiac arrest datasets . . . . . . . . . . . . . . . . 80

5.3 Results related to objective 3 . . . . . . . . . . . . . . . . . 86
5.3.1 J31: Airway strategy and chest compression quality in the

Pragmatic Airway Resuscitation Trial . . . . . . . . . . . 86
5.3.2 J32: Airway strategy and ventilation rates in the Pragmatic

Airway Resuscitation Trial . . . . . . . . . . . . . . . . . 88
5.3.3 J33: Novel application of the thoracic impedance to charac-

terize ventilations during cardiopulmonary resuscitation
in the Pragmatic Airway Resuscitation Trial . . . . . . . . 91

6 Conclusions 95
6.1 Major contributions of the thesis . . . . . . . . . . . . . . . 95
6.2 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

6.2.1 Journals indexed in the JCR science edition . . . . . . . . 97
6.2.2 National and international conferences . . . . . . . . . . . 98

6.3 Financial support . . . . . . . . . . . . . . . . . . . . . . . 100
6.4 Future lines of research . . . . . . . . . . . . . . . . . . . . 101

Bibliography 103

A Published studies 127
a.1 Publications associated to objective 1 . . . . . . . . . . . . 129



contents

a.1.1 First journal paper . . . . . . . . . . . . . . . . . . . . . . 129
a.1.2 First conference paper . . . . . . . . . . . . . . . . . . . . 141
a.1.3 Second journal paper . . . . . . . . . . . . . . . . . . . . 149
a.1.4 Second conference paper . . . . . . . . . . . . . . . . . . 163
a.1.5 Third conference paper . . . . . . . . . . . . . . . . . . . 169

a.2 Publications associated to objective 2 . . . . . . . . . . . . 175
a.2.1 First journal paper . . . . . . . . . . . . . . . . . . . . . . 175

a.3 Publications associated to objective 3 . . . . . . . . . . . . 185
a.3.1 First journal paper . . . . . . . . . . . . . . . . . . . . . . 185
a.3.2 Second journal paper . . . . . . . . . . . . . . . . . . . . 193
a.3.3 Third journal paper . . . . . . . . . . . . . . . . . . . . . 203





L I S T O F F I G U R E S

Figure 1.1 The chain of survival . . . . . . . . . . . . . . . 3
Figure 1.2 Cardiopulmonary resuscitation (CPR) . . . . . 5
Figure 1.3 Mechanical chest compression devices . . . . . 6
Figure 1.4 Ventilation/airway devices . . . . . . . . . . . 6
Figure 1.5 Types of advanced airway . . . . . . . . . . . . 9
Figure 1.6 Defibrillator devices . . . . . . . . . . . . . . . 12
Figure 1.7 CPR assist devices . . . . . . . . . . . . . . . . . 13
Figure 1.8 Signals in defibrillator devices . . . . . . . . . . 14
Figure 2.1 Calculation of the chest compression fraction

(CCF) . . . . . . . . . . . . . . . . . . . . . . . . 20
Figure 2.2 Definition of minimum pause/interruption in

chest compressions . . . . . . . . . . . . . . . . 22
Figure 2.3 Signals acquired by CPR assist devices . . . . . 23
Figure 2.4 Signals suitable for chest compression analysis 25
Figure 2.5 Ventilation phases in the capnogram. Exam-

ples of artifacted capnogram waveforms . . . . 32
Figure 2.6 Capnogram feature calculation in the ventila-

tion detection solution by Aramendi et al. [107] 34
Figure 2.7 Ventilations in the thoracic impedance (TI) . . 36
Figure 2.8 Expiration/inspiration onsets in the ventilation

detection solution by Risdal et al. [105] . . . . . 39
Figure 2.9 Common ventilation features in the thoracic

impedance (TI) . . . . . . . . . . . . . . . . . . 48
Figure 4.1 The Resuscitation Outcomes Consortium (ROC).

Participant sites. . . . . . . . . . . . . . . . . . . 58
Figure 5.1 General block diagram for the proposed venti-

lation detection solutions . . . . . . . . . . . . . 62
Figure 5.2 Signals in J11 . . . . . . . . . . . . . . . . . . . . 63
Figure 5.3 Feature selection in J11 . . . . . . . . . . . . . . 66
Figure 5.4 Per-patient performance distribution in J11 . . 66
Figure 5.5 Ventilation rate estimation in J11 . . . . . . . . 67
Figure 5.6 Signals in J12 . . . . . . . . . . . . . . . . . . . . 69
Figure 5.7 Labeling and time series composition in J12 . . 70



list of figures

Figure 5.8 Per-minute and per-patient performance dis-
tributions in J12 . . . . . . . . . . . . . . . . . . 73

Figure 5.9 Example of an artifacted/error-prone impedance
ventilation waveform . . . . . . . . . . . . . . . 74

Figure 5.10 Per-minute and per-patient performance dis-
tributions in J12 after signal quality control . . 74

Figure 5.11 Ventilation rate estimation in J12 . . . . . . . . 75
Figure 5.12 U-Net architecture in J13 . . . . . . . . . . . . . 77
Figure 5.13 Signals in J13 . . . . . . . . . . . . . . . . . . . . 79
Figure 5.14 General methodology workflow in J21 . . . . . 82
Figure 5.15 Signals suitable for chest compression analysis

in different defibrillator devices . . . . . . . . . 83
Figure 5.16 Per-patient performance distributions of the

ventilation detection solution by Aramendi et
al. [107] . . . . . . . . . . . . . . . . . . . . . . . 91



L I S T O F TA B L E S

Table 1 Performance metrics for capnogram-based ven-
tilation detection solutions in the literature . . 35

Table 2 Performance metrics for impedance-based ven-
tilation detection solutions in the literature . . 41

Table 3 Cases/files in the PART dataset by defibrillator
brand and ROC regional site . . . . . . . . . . 60

Table 4 Cases/files in the PART dataset by defibrillator
brand and signal availability . . . . . . . . . . . 60

Table 5 Comparison of the ventilation detection solu-
tion in J12 [198] with prior literature solutions 72

Table 6 Comparison of the U-Net ventilation detection
solution [205] with other proposed solutions . 79

Table 7 Errors in compression quality metrics for com-
plete episodes using the fully-automated an-
notation methodology in J21 [199] . . . . . . . . 85

Table 8 Errors in compression quality metrics during
airway insertion using the fully automated an-
notation methodology in J21 [199] . . . . . . . . 85

Table 9 Comparison of the chest compression detection
solutions used in J21 [199, 99, 100] with vendor-
specific solutions . . . . . . . . . . . . . . . . . 86

Table 10 Chest compression quality metrics in the PART
database . . . . . . . . . . . . . . . . . . . . . . 88

Table 11 Ventilation rates in the PART database . . . . . 89
Table 12 Performance of a capnogram-based ventilation

detection solution [107] in the PART database . 90
Table 13 Ventilation impedance features for different

advanced airway devices . . . . . . . . . . . . . 92





L I S T O F A B B R E V I AT I O N S

AED automated external defibrillator

AHA American Heart Association

ANN artificial neural network

BVM bag-valve-mask

CPR cardiopulmonary resuscitation

CCR chest compression rate

CCF chest compression fraction

CC-CPR continuous compressions cardiopulmonary resusci-
tation

CD compression depth

CI confidence interval

CO-CPR compression only cardiopulmonary resuscitation

CV cross-validation

ECG electrocardiogram

EMS emergency medical services

ERC European Resuscitation Council

ETI endotracheal intubation

IDR interdecile range

IHCA in-hospital cardiac arrest

ILCOR International Liaison Committee of Resuscitation

IQR interquartile range

LMS least mean squares

LoA levels of agreement

LT laryngeal tube

MCIR minimally interrupted cardiac resuscitation

MC-RAMP multi-channel recursive adaptive matching pursuit



acronyms

NFT no-flow time

OHCA out-of-hospital cardiac arrest

OOB out-of-bag

PART Pragmatic Airway Resuscitation Trial

PEA pulseless electrical activity

PPV positive predictive value

QS quality score

RF random forest

RCT randomized controlled trial

RNN recurrent neural network

ROC Resuscitation Outcomes Consortium

ROSC return of spontaneous circulation

SD standard deviation

SE sensitivity

SGA supraglottic airway

SP specificity

TI thoracic impedance

VF ventricular fibrillation

VR ventilation rate

VT ventricular tachycardia



1 I N T R O D U C T I O N

1.1 Out-of-hospital cardiac arrest

Cardiac arrest is the cessation of mechanical activity of the heart,
which interrupts blood flow to the brain and other vital organs [1].
Cardiac arrest is often abrupt and unexpected, and potentially lethal
within a short time — usually less than an hour — from the onset of
symptoms, an event known as sudden cardiac death [2]. More than
half of cardiac arrests occur outside the hospital setting [3], so their
effective management is a complex process involving local emergency
medical services (EMS), but in which community engagement is also
critical [4]. The interventions performed to revert cardiac arrest are
collectively referred to as resuscitation.

The etiology of cardiac arrest is heterogeneous, including medical
causes but also external precipitants such as drowning or trauma [5].
About 90% of out-of-hospital cardiac arrests (OHCA) are attributed
to medical causes [6, 7], and about two thirds to cardiac etiology [8, 9].
In western countries, coronary artery disease is the most common
pathology underlying cardiogenic OHCA, accounting for about 75%
of cases [10]. Secondary pathologies include cardiomyopathies (10-
15%), valvular heart disease (1-5%), and inherited channelopathies
(1-2%) [10]. The triggering mechanism is usually electrical instability
leading to a lethal arrhythmia such as ventricular fibrillation (VF) or
ventricular tachycardia (VT) [11]. However, these rhythms degrade
rapidly [12], and most OHCA patients are nowadays in asystole or
pulseless electrical activity (PEA) — both with worse prognosis than
VF/VT — when first examined by EMS personnel [7, 13]. While an

1



2 introduction

underlying pathology is present in the large majority of cases, about
50% of cardiac-origin OHCA patients have no previous history of
diagnosed heart disease [14].

Cardiac arrest is a leading cause of death in developed countries [3,
15]. However, the precise incidence of OHCA is difficult to estimate
due to different definitions, inclusion criteria, and EMS configuration
and protocols. Most OHCA episodes occur at home, about half are
unwitnessed, and — although with large differences between EMS
systems — resuscitation is attempted in only 50 – 60% of cases [7, 13].
The incidence of EMS-treated OHCA in the USA is estimated at 88.8
cases per 100,000 persons year, with a large variation (44.2 – 135.5)
between states [13]. OHCA incidence in Europe is estimated at 56.3
EMS-treated cases, also with a large variability between countries
(from 27.0 cases in Spain to 91.0 cases in the Czech Republic [7]). The
incidence in the Basque Country can be estimated at 38.9 EMS-treated
cases per 100,000 persons year [16].

After some improvement, survival to resuscitation has stagnated
in the last decade [17]. Overall, it remains dismally low, around or
below 10% [7, 13]. Its high incidence, unexpected and sudden nature,
and low survival rates make OHCA a major public health problem
that deserves attention.

1.2 Resuscitation therapies

Introduced by the American Heart Association (AHA) in 1991 [18],
the concept of chain of survival (Figure 1.1) emphasizes the sequence
of time-sensitive interventions that must be optimized to maximize
survival from OHCA. Over the years, the chain has undergone
some changes, such as the addition of a fifth link referred to post-
resuscitation care [19], and a more recent sixth link on recovery and
rehabilitation [3]. Nevertheless, the four original links of the chain
encompass most pre-hospital interventions, and remain critical to
this day:

• Early access: The first link of the chain stresses the importance
of a rapid recognition of the cardiac arrest or its symptoms,
and immediate activation of the EMS. The chances of successful
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Figure 1.1. European Resuscitation Council version of the chain of survival [20], comprising
four links: early recognition, early cardiopulmonary resuscitation (CPR), rapid
defibrillation, and early advanced and post resuscitation care.

resuscitation can double if the arrest is witnessed, or even more
if witnessed by EMS personnel [21]. A rapid EMS response is
also an important contributor to survival [22].

• Early cardiopulmonary resuscitation (CPR): CPR consists of
chest compressions and rescue breaths or ventilations to create
a minimal flow of oxygenated blood to vital organs. While CPR
alone is unlikely to terminate cardiac arrest, its application is
crucial to slow down damage and buy time for other therapies
to be applied. Bystander 1 CPR prior to EMS arrival has been
associated with a two- to three-fold increase in survival [23, 24].
Both the AHA and the European Resuscitation Council (ERC)
stress the importance of community awareness, education and
new technologies 2 to increase the number of potential rescuers
capable and willing to provide CPR [4, 26].

• Early defibrillation: A high number of cardiac arrests begin
with a ventricular arrhythmia such as VF or VT [10]. While in
such a state, the heart can be restored to its normal function by
delivering an electrical shock known as defibrillation [27]. The
time from arrest to defibrillation is critical, as these rhythms
degrade rapidly, reducing the chances of return of spontaneous

1 The term bystander is used to refer to a person not responding as part of the EMS,
but who participates to some extent in the chain of survival [5].

2 including, but not limited to, dispatcher-assisted CPR [25], and alarm/notification
systems within first responder programs.
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circulation (ROSC) and survival [12]. Shocks delivered within
3 – 5 minutes from collapse have been associated with very
high survival rates of 50 – 70% [28, 29]. Such short response
times are in part possible thanks to public access defibrillation
programs [30], which enable defibrillation by bystanders
prior to EMS arrival using automated external defibrillators
(AED) [31]. Every minute that defibrillation is delayed, survival
from VF OHCA is estimated to decrease by 10 – 12% in absence
of treatment [32, 33], or by 3 – 4% if CPR is provided [34, 35].

• Early advanced care: Early CPR and defibrillation alone are
often not enough to achieve or sustain spontaneous circulation.
Advanced care encompasses additional interventions carried
out by healthcare professionals, such as intravenous access and
drug administration, or the insertion of an advanced airway [36].
The ERC version of the chain (see Figure 1.1) integrates into this
link post-resuscitation care, which is initiated once sustained
ROSC is achieved, and conducted primarily in-hospital [37].

The specific details and interventions associated with each link
have evolved over time in the light of new scientific evidence and
technical possibilities. Founded in 1992, the International Liaison
Committee of Resuscitation (ILCOR) provides a forum for experts
and organizations worldwide to examine and reach consensus on
the body of science. The conclusions of the ILCOR are then adopted
by regional organizations such as the AHA and ERC to update the
resuscitation guidelines, which include the latest recommendations for
resuscitation practice. The most recent AHA and ERC guidelines
date from 2020 [3] and 2021 [38], respectively.

1.3 Cardiopulmonary resuscitation

CPR has remained a central part of resuscitation since it was first
introduced in its modern form, comprising chest compressions and
ventilations, in 1960 [40]. Effective chest compressions can maintain
limited but critical blood flow to the brain and other vital organs [41].
Ventilations may also play a crucial role in resuscitation by allowing
for oxygen administration and CO2 removal [42]. Finding the optimal
CPR parameters that maximize survival has been object of study for
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Figure 1.2. Conventional CPR, comprising chest compressions and rescue breaths. Chest
compressions should be delivered in the middle of the chest, with both hands
overlapped. To provide rescue breaths, open the victim’s airway, pinch the nostrils
shut, and create a mouth-to-mouth seal. Extracted from ERC guidelines 2010 [39].

decades, and continues to this day [43]. The resuscitation guidelines
draw from all the evidence collected and describe how CPR should
be performed both by bystanders and EMS personnel [17, 44, 36]:

Chest compressions should be applied in the middle of the chest
(lower part of the sternum) using both hands (see Figure 1.2), at a
rate between 100 and 120 min−1, a depth between 5 and 6 cm, and
minimizing interruptions. Leaning on the patient should also be
avoided, as it may prevent full chest recoil and reduce the already
limited venous return [45]. When two or more rescuers are available,
it may be reasonable to switch compressors about every 2 min, since
rescuer fatigue has been associated with a decrease in compression
quality [46].

For prolonged resuscitation, EMS personnel may also consider the
use of mechanical chest compression devices (see Figure 1.3), which
are designed to deliver high-quality compressions in an autonomous
manner. However, no benefit in survival has been yet demonstrated
for these devices [47].

Regarding ventilation, compression only CPR (CO-CPR), with no
positive pressure rescue breaths, is the standard recommendation for
bystander CPR [17, 44]. However, if trained and willing, bystanders
are encouraged to perform conventional CPR, alternating series of 30
chest compressions and 2 mouth-to-mouth rescue breaths (30:2 CPR,
see Figure 1.2). EMS personnel should begin ventilating the patient
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Figure 1.3. The two main types of automatic compression devices: pneumatic pistons, such
as the LUCAS-3 (Stryker, Redmond, WA, USA; left image), and load-distributing
bands, such as the AutoPulse (ZOLL medical, Chelmsford, MA, USA; right image).

using a bag-valve-mask (BVM) system, and then progress to more
advanced airways as appropriate (see Figure 1.4). BVM ventilations
should be delivered either following 30:2 CPR, or concurrently with
continuous chest compressions at a rate of 10 min−1 (CC-CPR). Each
ventilation should be delivered over one second, and insufflate a tidal
volume around 600 mL [48], or enough to produce a visible chest rise.
Compression pauses for ventilation should be minimized (≤ 5 s), and
excessive ventilation should be avoided. Once an advanced airway is
placed, ventilations should be delivered following CC-CPR at a rate
of 10 min−1.

Figure 1.4. Ventilation devices. On the left, a standard bag-valve-mask (BVM) system. On
the right, a King laryngeal tube (LT – Ambu-King Systems, Noblesville, IN, USA),
advanced airway device.
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1.3.1 CPR quality and resuscitation outcomes

High-quality compressions have been associated with improved
OHCA outcomes. Observational studies suggest that too shallow
compressions (< 4 cm) may result in reduced hospital admission and
survival [49, 50]. No benefits have been observed for depths greater
than 6 cm, which in turn have been linked to an increase in injuries
such as contusions and broken ribs [51]. Similarly, reduced ROSC
rates have been observed for chest compression rates (CCR) below
80 min−1 [52]. Reduced ROSC and survival has also been reported for
rates > 140 min−1, sharply decaying past 125 min−1 [53]. Excessive
CCR may prevent the heart from refilling between compressions [54],
and is often accompanied by suboptimal compression depths [55].
Finally, interruptions in chest compressions have also been associated
with diminished ROSC and survival, especially if immediately prior
to a defibrillation shock [56, 57]. Reduced survival has been observed
for chest compression fractions 3 (CCF) below 60% [59], or even 80%
in case of prolonged resuscitation [60].

Compared to chest compressions, the importance of ventilation
in OHCA is much more debated, especially in the initial phases of
resuscitation. Sufficient levels of oxygen may be available during
the first minutes of arrest [42]. Excessive ventilation may also result
in adverse hemodynamics, such as diminished venous return and
cardiac output [61]. In line with this, improved survival rates have
been observed following the adoption of CO-CPR as default form of
bystander CPR [62, 63]. Increased survival has also been reported in
the EMS setting after the implementation of minimally interrupted
cardiac resuscitation (MICR) [64], where early ventilation is replaced
by passive oxygenation 4. However, lack of ventilation has also been
associated with increased atelectasis (alveolar collapse), diminished
pulmonary blood flow, and overall worse resuscitation outcomes [42].
While CO-CPR has led to higher bystander CPR and survival rates,
increased survival has been observed among patients who received

3 Chest compression fraction (CCF) is defined as the proportion of resuscitation time
during which chest compressions are delivered [58].

4 Animal studies suggest that, given an opened airway, intrathoracic pressure changes
due to chest compressions may result in passive ventilation [65].
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30:2 bystander CPR compared to those treated with CO-CPR [7, 63].
Whether passive ventilation can deliver effective air volumes is also
debated [66]. The benefits of MICR and CO-CPR in the EMS setting
have been observed mainly in patients with witnessed VF OHCA [64,
67], who may still present with oxygen reserves [42] and even some
degree of agonal breathing [68]. The heterogeneity of cardiac arrest,
and the usually ”bundled” nature of resuscitation care (encompassing
multiple interrelated interventions), make it difficult to ascertain the
true impact of ventilation.

Even when ventilations are delivered, the optimal form of CPR is
unknown. Observational studies and mathematical models suggest
that 30:2 CPR may be superior to other previously used compression-
to-ventilation ratios, such as 5:1 or 15:2 [69, 70]. Even so, pauses in
chest compressions result in a loss of perfusion pressure that may
override the benefits of ventilation [69]. Once an advanced airway is
placed, CC-CPR enables ventilation while minimizing compression
pauses. In this context, both extremely high (≥ 30 min−1) and low
(≤ 2 min−1) ventilation rates — often referred to as hyper- and hypo-
ventilation — have been associated with degraded hemodynamics
and potentially worse outcomes [71, 72]. However, and although the
resuscitation guidelines recommend a rate of 10 min−1, there is no
conclusive evidence to establish an optimal ventilation rate [73, 74].
The effectiveness of CC-CPR with BVM ventilation is also debated.
A large randomized controlled trial (RCT) comparing 30:2 CPR and
CC-CPR with BVM ventilation found no differences in the primary
survival outcome [75]. Secondary and per-protocol analyses, on the
other hand, revealed improved outcomes linked to 30:2 CPR [75, 76].
One possible explanation could be increased rescuer fatigue during
CC-CPR, leading to degraded compression quality [77]. Concurrent
ventilations and chest compressions could also result in reversal air
flow and diminished tidal volumes [78]. A recent study suggests
that insufficient/ineffective air volumes could already be common
in BVM ventilation during 30:2 CPR [79], an occurrence that could
potentially be more frequent during CC-CPR. Questions like this
remain largely unanswered, as current technology used in OHCA
does not monitor nor measure insufflated air volumes.
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Figure 1.5. Advanced airway management techniques. On the left, endotracheal intubation
(ETI). On the right, a supraglottic airway (SGA) device.

1.4 Advanced airway management

Advanced airway management provides a more direct conduit to
the lungs, which in theory should allow for more efficient ventilation
and oxygenation [42]. As shown in Figure 1.4, two types of advanced
airway techniques can be distinguished: endotracheal intubation
(ETI) and supraglottic airways (SGA). ETI has been the standard
advanced airway technique in OHCA for decades [80], and involves
the insertion — with aid of either direct or video laryngoscopy [36] —
of a flexible tube down to the patient’s trachea. The tracheal tube is
usually ended in an inflatable cuff to seal the trachea, preventing air
leakage and protecting the lungs from gastric contents. More recently,
SGAs have been adopted by many EMS agencies as primary method
of advanced airway management. Compared to ETI, SGAs require
less training, and may allow for faster insertion [42]. In general, SGAs
provide a pathway to the laryngopharinx, and include cuffs or other
methods to isolate the oropharynx (which connects to the mouth
and nose) and the esophagus. Well-known commercial SGA devices
include the esophageal tracheal Combitube (ETC; Covidien-Nellcor,
Boulder, CO, USA), the laryngeal mask airway (LMA; LMA North
America, San Diego, CA, USA), the i-gel (Intersurgical Ltd, Woking-
ham, UK), and the King laryngeal tube (LT; Ambu-King Systems,
Noblesville, IN, USA; see Figure 1.4).
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While the placement of an advanced airway is standard practice in
post-resuscitation care [17, 36], its use during ongoing resuscitation
is more controversial. Advanced airways may offer advantages over
BVM ventilation (e.g., better oxygenation and lung protection), but
may also be associated with long interruptions in chest compressions
and potential injury during the insertion process [42]. Advanced
airways are also prone to failed insertion efforts and dislodgement,
leading to further interruptions, and also periods of hypoxia in the
absence of ventilation [80]. ETI-related interruptions often exceeding
40 s — or even 100 s if accounting for multiple insertion efforts — have
been reported in the past [81]. More recent studies suggest shorter
interruptions [82], but still frequently above the 5 s recommended in
the ERC guidelines [36]. Interruptions could also be similar between
the different airway devices [82]. In terms of survival, observational
studies have often found BVM superior to advanced airways [83, 84].
However, these results have been questioned for potential biases, as
advanced airways may be associated with prolonged resuscitation
(typically with poorer outcomes), and may be rarely used if ROSC
is achieved early [42, 85]. In contrast, other studies have associated
early advanced airway insertion with improved survival in patients
with non-shockable rhythms [86, 87]. A recent RCT in a physician-
based EMS system found no significant outcome differences between
ETI and BVM ventilation [88]. No RCTs have been conducted directly
comparing BVM and SGAs.

The optimal advanced airway strategy is also unclear. ETI offers
a more direct pathway to the lungs, but this could be outweighed
by the easier handling of SGAs. Compared to ETI, SGAs have been
associated with higher first-attempt insertion success [82, 89]. ETI
may also be more prone to tube misplacement, such as esophageal
insertion, which has been reported in rates up to 17% in paramedic-
based EMS systems [36]. Observational studies suggest that ETI may
be associated with higher survival than SGAs [84, 90], but this has
not been supported by recent RCTs. The AIRWAYS-2 trial, which
compared initial ETI and i-gel SGA strategies, found no significant
outcome differences between both strategies [91]. The Pragmatic
Airway Resuscitation Trial (PART), which compared initial ETI and
King LT SGA strategies, found better outcomes associated with the
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SGA strategy [92]. The results of these RCTs, however, are difficult
to contextualize due to important crossovers and low ETI insertion
success rates, of 69% and 52% respectively [17]. By contrast, the
ILCOR recommends that ETI should only be performed within EMS
systems with a high insertion success (of 95% or higher within two
insertion attempts, based on ERC expert consensus) [36]. Thus, the
optimal airway management strategy could be highly dependent
not only on the patient’s status and characteristics, but also on the
training and experience of the EMS personnel [17].

Considering the many unknown and controversial aspects about
ventilation strategies and effects, further research is needed to better
understand the pros and cons of the different airway devices, and to
effectively tailor the ventilation strategy to different scenarios.

1.5 CPR monitoring and analysis

Resuscitation guidelines emphasize the importance of high-quality
CPR to maximize survival from cardiac arrest. However, important
deviations from the recommendations have been frequently reported
in the literature, including shallow compressions [93, 94], inadequate
CCR [43, 52], low CCF [43, 93, 94], or severe hyperventilation [71,
94, 95]. Current defibrillator devices allow the acquisition of care
and CPR information during resuscitation, which can later be used
both in observational studies and for case debriefing within quality
enhancement programs [43, 96].

A defibrillator electronic file may include, among others, a log of
device-operated events (such as shocks), continuous and/or periodic
recordings of various physiological signals, and a synchronized audio
record where the EMS personnel verbalizes the status and care of
the patient. Generally, the device manufacturer will also provide
software to retrieve and analyze this information, often embedding
proprietary algorithms to process the stored signals and derive CPR
metrics of common interest. In some cases, lightweight algorithms
may also be incorporated in the defibrillator device itself or other field
equipment, enabling real-time feedback to the rescuer. Although a
direct benefit on survival has not yet been demonstrated [97], the use
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Figure 1.6. Defibrillator devices. On the left, a Lifepak LP1000 automated external defibrillator
(AED; Stryker/Physio-Control, Redmond, WA, USA). On the right, a HeartStart
MRx monitor-defibrillator (Philips Healthcare, Andomer, MA, USA).

of feedback devices has been associated with improved CPR quality,
as in the sense of adherence to guideline recommendations [49, 98].

In addition to its own capabilities, defibrillator software usually
allows exporting all or part of the collected data to an open format,
thus enabling the use of custom analysis tools. This has led to the
development of many signal processing solutions to extract CPR
information, both on chest compressions [99, 100, 101, 102, 103, 104]
and ventilations [99, 105, 106, 107, 108, 109], from different individual
or combined signal sources. In general, the extent and reliability
of the information that can be obtained is highly dependent on the
range of signals acquired, which in turn depends on the brand and
model of the defibrillator device. The most important defibrillator
commercial brands include Philips Healthcare (Andover, MA, USA),
Stryker/Physio-Control (Redmond, WA, USA), and ZOLL Medical
(Chelmsford, MA, USA). Defibrillator models can be broadly divided
into AEDs and monitor-defibrillators (see Figure 1.6).

1.5.1 Defibrillator devices and signal acquisition

AEDs are the most basic devices used during resuscitation. The
primary purpose of AEDs is to enable rapid defibrillation, so they
are designed for minimally-trained users such as bystanders [30, 31].
Modern AEDs provide guidance to the rescuer during resuscitation,
including audio instructions for pad placement and to stop/resume
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CPR. More importantly, they include logic to automatically analyze
the heart rhythm of the patient and determine whether defibrillation
is appropriate [110, 111]. The standard AED acquires two different
signals through the defibrillation pads: the electrocardiogram (ECG),
which monitors the electrical activity of the heart and enables rhythm
analysis, and the thoracic impedance (TI), which measures the body
resistance to current flow. To obtain the TI, a high frequency current
(usually of 20 – 100 kHz and 1 – 5 mA) is injected through the pads
and the resulting voltage drop is measured; the TI is then computed
by direct application of Ohm’s law [112]. The original purpose of TI
in AEDs was to assess pad-skin contact and to adjust defibrillation
energy, but it has also been demonstrated sensitive to both chest
compressions and ventilations [113, 114, 115].

The most advanced AED models, designed for professional first
responders such as policemen or firefighters, may also be equipped
with stand-alone or integrated CPR assist pads (see Figure 1.7). These
gadgets include accelerometers and/or force sensors, whose readings
can be processed to derive important CPR parameters such as the
CCR or the compression depth [103]. This processing can usually be
done in real time, allowing immediate feedback to the rescuer.

Beyond AEDs, monitor-defibrillators are more sophisticated de-
vices used in and out of the hospital by EMS physicians and other

Figure 1.7. CPR assist pads. On the left, a Q-CPR pluggable assist pad (Laerdal, Stavanger,
Norway; Philips Healthcare, Andover, MA, USA), incorporating both force and
acceleration sensors. On the right, an AED PRO defibrillator with CPR-D-padz
accelerometer-integrated pads (ZOLL medical, Chelmsford, MA, USA).
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Figure 1.8. Example of some of the signals acquired by monitor-defibrillators. From top to
bottom: a) electrocardiogram (ECG), b) thoracic impedance (TI), c) compression
depth (CD, constructed from chest force and acceleration), and d) capnogram
(CO2). Rapid fluctuations corresponding to chest compressions can be observed
in both TI and CD (and to a minor extent in ECG and CO2). Slower fluctuations
due to ventilations can also be observed in TI and CO2.

healthcare professionals. These devices enable manual control of
defibrillation (although most of them can also operate in AED mode)
and provide extensive monitoring capabilities, including the acquisi-
tion and visual representation of multiple physiological signal wave-
forms. These signals can be interpreted by expert EMS personnel and
used as a reference for decision making throughout the resuscitation
episode. In general, monitor-defibrillators have access to a much
wider range of signals than AEDs, including the 12-lead ECG 5 and
other supplementary signals such as blood pressures, pulse oxime-
try,6, or capnography. Capnography in particular, which measures
the concentration of CO2 in exhaled gases, has seen increased used
in recent times due to its many applications in resuscitation. Capno-
gram readings may serve as both surrogate measures of CPR quality

5 ECG leads are acquired by means of electrodes placed in different body positions,
and monitor different electrical planes of the heart.

6 Pulse oximetry is a non-invasive measure of oxygen saturation in blood, acquired
through light sensors typically placed on finger or ear.
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and early indicative of ROSC, and can also be used to verify tracheal
tube placement and to monitor ventilation rates [17, 36]. Figure 1.8
shows some of the typical signals acquired by monitor-defibrillators.

1.5.2 Cardiac arrest registries

In addition to the defibrillator electronic file, healthcare personnel
collect many other clinically relevant variables related to the cardiac
arrest episode. This information is then compiled into cardiac arrest
registries, which may contain data from hundreds or even thousands
of OHCA episodes, and which constitute an invaluable resource for
the study and advancement of the treatment of cardiac arrest [116].

In an effort to enable comparison between EMS-systems, resuscita-
tion strategies and outcomes, the Utstein template was introduced in
1991 as a standardized format for uniform reporting of OHCA and
resuscitation data [18]. The current and refined Utstein template [5]
covers variables related to the patient (age, sex, ...), the arrest (initial
rhythm, etiology, ...), the response/treatment both by bystanders (wit-
nessed arrest, bystander CPR, ...) and EMS-personnel (response time,
first defibrillation time, ...), and outcomes, the latter including scene
(ROSC time, survival to hospital admission, ...), hospital (survival to
discharge, neurological status, ...) and follow up (survival at 30 days,
...) outcomes. According to EMS and ongoing RCT protocols, other
non-standard variables may also be collected, such as timestamps for
specific drug administrations or airway insertion efforts.

The combination of clinical and CPR information enables the study
of the influence of different interventions and CPR parameters on
resuscitation outcomes, while also controlling for other demographic,
interventional or CPR-related confounding factors [43].

Among the most important cardiac arrest registries worldwide we
can find both the Resuscitation Outcomes Consortium (ROC) [117]
and the Cardiac Arrest Registry to Enhance Survival (CARES) [118]
in North America, and the European Registry of Cardiac Arrest
(EuReCa) [119] in Europe.
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1.6 Motivation for the thesis work

The optimal ventilation and airway management strategies in resus-
citation are largely unknown. This is partly due to limited measuring
capabilities, as underscored by very recent technologies and pilot
studies [120, 121]. Resuscitation guidelines recommend the use of
capnography to monitor ventilation rates [36]. However, capnogra-
phy provides limited information on ventilation: first, because it is
rarely acquired before the placement of an advanced airway [109];
and second, because it misses potentially relevant metrics such as
tidal/insufflated air volumes [79, 122]. TI is sensitive to air volume
changes in the lungs, so it has also been proposed to monitor venti-
lation [114]. Compared to capnography, TI is available much earlier
during resuscitation, as soon as defibrillation pads are attached; and
while not very accurate, it can also provide surrogate measures of
tidal volumes [115]. Few algorithms have been proposed to charac-
terize ventilation based on the TI [99, 105, 106, 109]; however, they
have not been validated in large OHCA datasets, and make limited
or no use of modern machine learning techniques that have proven
effective in other resuscitation-related problems [123, 124, 125].

Besides the characterization of ventilation itself, the effectiveness of
ventilation strategies may be difficult to assess without concurrent in-
formation on chest compressions. Most commercial software enables
calculation of chest compression metrics of typical interest. However,
this software is vendor-specific, making it difficult to harmonize
analyses when different defibrillator brands are involved (as is the
case in most multicenter studies and clinical trials). Alternatively,
many solutions have been proposed in the literature to characterize
chest compressions [99, 100, 101, 126, 102]; but again, they are based
on single specific signals, and have rarely been validated outside lim-
ited and homogeneous datasets. Unified methodologies are needed
to tackle the analysis of large multi-device datasets, which can be
adapted to the retrospective analysis of registries in general, and to
the specifics of clinical trials in particular.

This thesis provides new insights for a more complete automatic
analysis of ventilation and CPR quality in large OHCA datasets. First,
through the application of signal processing and machine learning
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techniques in developing new and improved TI-based ventilation de-
tection algorithms for the CC-CPR scenario. And second, through the
design and evaluation of methodologies for automatic CPR quality
assessment in heterogeneous datasets. Together, these contributions
could facilitate the analysis of existing and future data in the study
of ventilation, airway management and CPR strategies.





2 B A C KG R O U N D

This second chapter provides context for the most important con-
tributions of the thesis. Sections 2.1 and 2.2 discuss the evolution and
current state of automatic CPR analysis. Covering chest compressions
and ventilations respectively, these two sections introduce the most
widely studied CPR quality metrics, and summarize the algorithms
and solutions proposed in the literature to derive such metrics from
typically available signal sources. A brief overview of the capabilities
and limitations of commercial software is also included. Sections
2.3 and 2.4 cover, respectively, adaptive filtering approaches used in
the suppression of chest compression artifacts, and machine learning
algorithms for classification. Some of the techniques introduced in
these two sections serve as fundamental building blocks in the design
of the ventilation detection algorithms proposed in the thesis.

2.1 CPR quality analysis: chest compressions

2.1.1 Chest compression quality metrics

High-quality CPR, as determined by quantitative measures of chest
compressions and ventilations, has been associated with improved
resuscitation outcomes [49, 50, 52, 53, 59, 60, 61]. Resuscitation guide-
lines include evidence-based recommendations for many of these
quality metrics [17, 36, 44]; however, they do not provide specific in-
structions on how to calculate and report them. The Utstein template
for homogeneous reporting of OHCA and resuscitation data also
fails to cover CPR quality [5]. To address this gap, Kramer-Johansen
et al. [58] introduced in 2007 the most representative guidelines for

19
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uniform calculation and reporting of CPR quality metrics. The most
relevant metrics related to chest compressions include:

• Pauses in chest compressions: Chest compressions are essential to
maintain circulatory flow during cardiac arrest, so a critical aspect
of CPR quality is the time of resuscitation with no compressions
delivered, known as no flow time (NFT). Kramer-Johansen et al. rec-
ommend reporting the total NFT over the full resuscitation episode
as well as the fractional NFT relative to the episode duration. The
latter is more commonly expressed as its complement, the fraction
of time with compressions delivered, known as chest compression
fraction (CCF).

Uniform calculation of NFT/CCF requires a procedural definition
of resuscitation time. Kramer-Johansen et al. suggest the use of the
interval from the first therapeutic event (i.e., first chest compres-
sion, shock, or rhythm analysis) to the termination of resuscitation
efforts (i.e., last chest compression or onset of sustained ROSC),
excluding any intermediate time interval with spontaneous pulse
(transient ROSC). Figure 2.1 illustrates the definition of resuscita-
tion time and calculation of the CCF.

Figure 2.1. Example of CCF calculation. Chest compression (CC) series and no flow intervals
are identified, respectively, as the presence or absence of thoracic impedance (TI)
fluctuations. The CCF is then computed as the proportion of time corresponding
to CC series. The analysis is restricted to resuscitation time, from first CC to last
CC (also sustained return of spontaneous circulation, ROSC). Intermediate periods
with spontaneous circulation (in green) are also excluded.
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Similarly, a procedural definition is needed for the minimum no-
flow interval, pause or interruption duration. Kramer-Johansen
et al. defined the minimum pause as 1.5 s. However, other values
such as 2 s or 3 s have often been used both in the literature and in
commercial software [59, 127, 128].

Given their potential impact in outcomes [56, 57], Kramer-Johansen
et al. also recommend reporting the median duration of pauses
before and after defibrillation.

• Compression depth (CD) is defined as the maximum deflection of
the sternum prior to chest recoil, and is typically measured using
acceleration data from CPR assist pad devices.

Kramer-Johansen el al. recommend reporting the average CD over
the full resuscitation episode, as well as the fraction of minutes
with average CD below the guideline minimum (5 cm, according
to most recent guidelines [17, 44]). Average CD values on a minute-
by-minute basis (or even in shorter segments) could also be con-
sidered.

• Chest compression rate (CCR) is defined as the frequency of chest
compressions during compression series. For any given analysis
interval, the CCR can be obtained by identifying the time points
of maximal compression, and then averaging the reciprocals of
the time differences ∆ti between contiguous chest compressions.
Mathematically, this can be expressed as

CCR = 60 / ∆ti (min−1), (1)

where ∆ti are given in seconds. Values of ∆ti exceeding the pro-
cedural definition of minimum pause should not be considered
part of compressions series and should therefore be excluded (see
Figure 2.2).

Alternatively to the CCR, the direct count of chest compressions
in a given analysis interval may provide combined information of
the interruptions and frequency of compressions.

Kramer-Johansen et al. suggest reporting both the average CCR
and the average count of compressions per minute over the full re-
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Figure 2.2. Example of a short segment of compression depth (CD) signal. Chest compression
instants are assumed at negative peaks of the signal, and used to compute the times
between compressions ∆ti . A pause of about 3 s is included. The ∆t associated
to this pause is not considered for CCR calculations, as it exceeds the procedural
definition of minimum pause ∆tmin (1.5 s, as per Kramer-Johansen et al. [58]).

suscitation episode. Given that such averaging could mask periods
of poor quality CPR, standard deviations should be provided as
a minimum. The fraction of minutes with CCR outside guideline
recommendations (100 – 120 min−1 [17, 44]) may also be optionally
reported.

Secondary chest compression quality metrics include duty cycle, de-
fined as the fraction of time compressing the chest in a compression-
decompression cycle, and incomplete release of compressions. Given the
limited evidence on the impact of these variables, and the difficulties
in measuring and/or actively intervening on them, Kramer-Johansen
et al. recommend these metrics to be reported optionally, and only
as average value over the full resuscitation episode.

2.1.2 Literature solutions for chest compression analysis

Acceleration, force and depth based solutions

CPR assist pads provide the most reliable signal sources to identify
and characterize chest compressions. The primary signal acquired by
modern CPR pads is chest acceleration, which can be integrated twice
to estimate chest displacement or compression depth (CD) [103]. In
practice, this is accomplished using numerical methods such as the
trapezoidal rule, which can be implemented in digital signal processors
and applied in real time to provide feedback to the rescuer. However,
the integration process is also unstable, highly sensitive to non-zero
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Figure 2.3. Example of the different signals acquired with a Philips-Laerdal Q-CPR assist pad,
including: (a) chest acceleration, (b) chest force, and (c) compression depth (CD).
Individual chest compressions, as given by the negative peaks of the CD signal,
are shown as vertical red dotted lines.

offsets from gravity in acceleration data [103, 129]. Several solutions
have been proposed to overcome this problem, either incorporating
additional sensors and signal data, or using more sophisticated signal
processing techniques to process the acceleration. Figure 2.3 shows
an example of the signals acquired with a CPR assist pad.

Gruben et al. [129] proposed the first accelerometer-based system
for CD measurement during CPR. The solution was accurate, with
absolute errors in CD estimation within 0.5 mm. However, effective
correction of the acceleration offset required considerable additional
sensors and mechanisms, resulting in a cumbersome system not par-
ticularly suitable for out-of-hospital use. Aase et al. [103] proposed a
simpler solution, which included, in addition to the accelerometer,
a pressure switch to identify the start and end of individual com-
pressions. Assuming the thorax returns to resting position after each
compression, the latter could be used to set boundary conditions and
avoid instabilities in the integration process. Under regular resuscita-
tion conditions 1, this approach was able to estimate CD with 95% of

1 Regular conditions imply a stiff surface and a static medium. Effective estimation of
CD in non-stiff surfaces (such as a mattress) or moving media (such as an ambulance)
may require of additional secondary devices for acceleration reference [103, 130].
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absolute errors within 1.6 mm. The solution was further developed
by Myklebust et al. [131], who replaced the pressure switch with a
force sensor. Although the relationship between force and CD is non-
linear and patient dependent [132], Gohier et al. [133] showed that
additional force data could also help estimate CD without assuming
full chest recoil.

Regarding systems based solely on acceleration, with no additional
sensors, Babbs et al. [134] proposed linear high-pass filtering before
each integration step. González-Otero et al. [104] proposed the least-
square reconstruction of the acceleration signal in terms of harmonics
of the chest compression frequency, previously identified through
spectral analysis. For both these approaches, 95% of absolute errors
were found within 11.2 mm and 5.9 mm, respectively [126].

Inaccuracies in depth estimation aside, the signals acquired from
CPR assist pads are also well suited for the identification of individ-
ual compressions, enabling the calculation of other quality metrics
such as the CCF or CCR. Ayala et al. [100] showed that, given a CD
signal constructed from acceleration and force readings, a negative
peak detector with minimum amplitude of 15 mm was able to iden-
tify compressions with a sensitivity 2 (SE) of 98.4% and a positive
predictive value 3 (PPV) of 99.8%. Considering one-minute episode
segments, the CCF and CCR could be calculated with 95% confidence
intervals (CI) of (-6.1, 5.3) % and (-1.4, 1.4) min−1, respectively. For
real-time applications, considering the last 8 chest compressions (or
a window of about 4 – 5 s), the CCR could be calculated with a 95%
CI of (-2.4, 2.4) min−1. Also in the context of real-time feedback,
Ruiz de Gauna et al. [126] showed that spectral analysis techniques
could estimate CCR with a 95% CI of (-3.0, 3.2) min−1 using only
acceleration data and in windows as short as 2 s.

2 Sensitivity (SE), also known as True Positive Rate or recall, is a performance metric
associated to detection and classification problems which indicates the proportion
of correctly identified ground truth positive class instances (in the above case, actual
chest compressions).

3 Positive predictive value (PPV), also called precision, is a performance metric asso-
ciated to detection and classification problems which indicates the proportion of
instances detected or classified as positive which actually correspond to ground
truth positive class instances.
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Thoracic impedance based solutions

In the absence of CD or acceleration data, other highly available
signals acquired through defibrillation pads can be used to identify
individual compressions. Both the TI and ECG are sensitive to chest
compressions, reflecting deformations of the thorax and changes
in electrode-skin contact [113, 135]. However, these signals usually
show more complex compression waveforms, with higher harmonic
content [136], and may also present important confounders, such as
electrical activity of the heart in the case of ECG, or ventilation [115]
and circulation [137] components in the case of TI (see Figure 2.4).
Although automatic solutions for CPR quality analysis based on the
ECG have also been proposed [138], the ECG is considered overall
inferior for compression monitoring due to major spectral overlap
between some heart rhythms and chest compressions [139]. There-
fore, most of the literature is focused on TI-based algorithms. It is
important to note that the relationship between TI and CD is highly
dependent on both the rescuer and the patient [140], so the analysis
of compression quality through TI is limited to CCR and CCF.

Figure 2.4. Example of the ECG, thoracic impedance (TI) and compression depth (CD) signals,
corresponding to a Philips MRx monitor-defibrillator recording. Individual chest
compressions, as given by negative peaks in the CD, are shown as vertical red
dotted lines. Both ECG and TI show fluctuations corresponding to chest compres-
sions. However, the ECG also shows an organized heart rhythm component. The
TI shows slower fluctuations due to ventilations, and minor fast fluctuations due
to circulation, correlated with the heart rhythm.
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Stecher et al. [113] showed that, provided with both the ECG and
TI signal traces, and evaluated against the count of compressions
verbalized in the defibrillator record, expert clinicians could identify
chest compressions with SE and PPV over 96% and 98%, respectively.
They also validated the first commercial solution for automatic chest
compression detection based on the TI. Evaluated on 122 clinician-
annotated OHCA records, the solution scored a SE of 94% and a PPV
of 90%. However, no information on the underlying algorithm was
provided, and the impact of errors in compression quality metrics
was not analyzed. Later, Aramendi et al. [141] introduced a method
to calculate the instantaneous CCR from the TI, which comprised
a 1 – 10 Hz band-pass filter and a positive peak detection algorithm
to identify individual compressions. Considering episode segments
of about 15 s, the CCR estimated from these compressions showed
a high correlation (r = 0.98) with that computed from ground truth
compressions marked in the CD. The main objective of this study
was unrelated to CPR quality, so no CCF or detailed CCR analyses
were reported either.

The first detailed algorithms for chest compression detection in TI,
specifically evaluated in the derivation of CPR quality metrics, were
proposed by Ayala et al. [100] and Alonso et al. [99] in 2014 and 2015,
respectively. The general structure of the algorithm was similar in
both cases, comprising: (a) preprocessing of the TI signal, based on
static linear filters, to enhance chest compression components; (b)
positive peak detection, to identify and characterize TI fluctuations
potentially due to compressions; and (c) rule-based discrimination of
chest compressions from other fluctuations. The most critical discrim-
ination threshold ThZ, corresponding to the minimum compression
amplitude, was set dynamically based on the amplitudes Zi of the
last N detected compressions. So, for the potential i-th compression,

Th(i)
Z =

N

∑
k=1

wk Zi−k (2)

where the weights wk (uniform in Alonso et al., and monotonically
decreasing in Ayala et al.) were optimized for maximum compression
detection performance.
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• Ayala et al. [100] analyzed 38 OHCA episodes, comprising more
than 800 min of TI signal recordings and over 60,000 individual
compressions. Evaluated against manual annotations based on the
force and ECG signals, the solution identified compressions with a
SE of 94.2% and a PPV of 97.4%. Considering complete episodes,
CCR and CCF were estimated with 95% CI of (-3.4, 2.2) min−1 and
(-4, 4) %, respectively. Considering one-minute episode segments,
CCR and CCF were estimated with 95% CI of (-5.6, 4.7) min−1 and
(-11, 11) %, respectively.

• Alonso et al. [99] analyzed 63 OHCA episodes, comprising over
2,500 min of TI recordings and 110,000 compressions. From these,
32 episodes were used for algorithm optimization and 31 for eval-
uation (using manual annotations based on the CD). In terms of
compression detection, the solution scored a median per-episode
SE and PPV of 97.2% and 97.7%, respectively. In terms of quality
metrics, considering full episodes, the mean (SD) absolute errors in
CCR and CCF were 1.8 (4.3) min−1 and 2 (2) %. Three episodes pre-
sented absolute CCF errors above 5%. A single episode presented
an absolute CCR error above 10 min−1.

Around the same time, González-Otero et al. [101] proposed an
alternative solution for estimation of compression quality metrics
based on the analysis of short TI windows: First, the TI signal was
divided into non-overlapping 2 s segments, which were band-pass
filtered in the 1 – 3.5 Hz range (or 60 – 210 min−1, in terms of CCR).
Then, the presence or absence of compressions was determined based
on an adaptive signal power threshold. Finally, for those segments
identified as presenting compressions, the CCR was estimated by
analyzing the most prominent peaks in the power spectrum. The so-
lution was evaluated using 180 episodes from three different OHCA
datasets. In terms of identifying the presence of chest compressions,
the mean per-episode SE and PPV were 96.3% and 97.0%, with 19
(10.6%) and 14 (7.8%) episodes, respectively, presenting SE and PPV
values below 90%. The error in CCF estimation exceeded 10% in 20
(11.1%) episodes. Regarding the CCR, the 95% of analysis windows
presented an absolute error below 5.8 – 13.8 min−1, depending of the
dataset. When considering full episodes, only one episode presented
a relative CCR error exceeding the 10%.
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More recently, more sophisticated statistical and machine learning
models have been applied to assess the presence of chest compres-
sions. Kwok et al. [102] introduced a hidden Markov model solution
using consecutive one-second TI segments, each characterized by
four emission features from the time and frequency signal domains.
The mean dominant frequency of the segments was used to calculate
the CCR. The solution was validated using 105 OHCA records, with
ground truth compressions annotated based on the chest force signal,
and scored a median (IQR) SE and specificity 4 (SP) of 99 (98 – 100) %
and 98 (95 – 100) %, respectively. Considering one-minute episode
intervals, the median (interdecile range, IDR) errors in CCR and CCF
were 1.8 (−0.5, 5.0) min−1 and 0 (−3, 2) %. As similar solutions, Coult
et al. [143] proposed a logistic regression model, using three time and
frequency domain features, to identify the presence of compressions
in variable length TI segments up to 5 s. Rueda et al. [144] proposed
a Random Forest classifier [145], fed with 18 features from different
signal domains, to identify chest compression pauses in TI. Despite
potential improvement, however, none of the latter methods have
been evaluated in estimating the CCF.

2.1.3 Chest compression analysis in commercial software

This section describes the capabilities of commercial software to au-
tomatically derive CPR quality information from defibrillator records.
For practical reasons, the section only covers those commercial brands
associated with the defibrillator files used in the development of the
thesis: Philips, Stryker, and ZOLL. Some of the programs analyzed
may not correspond to its latest, most developed version.

• Philips devices support the use of the Q-CPR assist pad (Laerdal,
Stavanger, Norway; Philips Healthcare, Andover, MA, USA), which
acquires both chest acceleration and force data. This information
is then processed in real-time to provide CD and CCR feedback to
the rescuer. The proprietary software Event Review Pro permits the

4 Specificity (SP) or True Negative Rate is a performance metric associated to binary
classification problems, which indicates the proportion of correctly identified true
negative class instances (in the case above, absence of chest compressions). Note
that SP is not directly applicable to detection problems, as no negative class is
defined [142].
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analysis of Q-CPR data to generate detailed CPR quality reports.
Quality metrics include: number of compressions, CD, compres-
sions above and below recommended depth, absolute and relative
NFT, CCR, incomplete releases, and duty cycle. Ayala et al. [100]
proved the reliability of the CD signal in providing CCR and CCF
estimates through simple peak detection. Default analysis intervals
include the complete episode as well as 60 s or 30 s epochs; ad-hoc
analysis intervals can also be manually specified. The latest ver-
sions of the software also enable compression analysis and limited
quality reports based on TI recordings, but were not available over
the course of this thesis.

• Stryker currently has no proprietary technology for CD estimation
and real-time CPR feedback. Physio-Control used to have its own
CPR assist pad technology True CPR, which measured distances by
sending and receiving electromagnetic signals [146], but it is now
discontinued. On the other hand, the CODESTAT analysis software
incorporates proprietary algorithms to identify compressions in TI
and generate detailed CPR quality reports. Back in 2008, Stecher
et al. [113] reported a SE of 94% and a PPV of 90% in compression
detection. Reported quality metrics include average and median
CCR, and duration of chest compressions during analysis (which,
in combination with the also reported analysis time, can be used
to compute CCF or NFT). Default analysis intervals include the
complete episode, one-minute epochs and CPR sections separated
by pauses > 10 s; ad-hoc analysis intervals are also possible.

• ZOLL features the CPR-D-padz technology, which integrates an
accelerometer in the defibrillation pads. This allows real-time CPR
feedback to the rescuer as well as extensive CPR analysis with the
RescueNet CodeReview software. Reported quality metrics include:
number of compressions, mean (SD) CD, compressions above or
below recommended depth, absolute NFT, CCF, mean (SD) CCR,
and compressions with instantaneous CCR above or below recom-
mendations. To compute this information, the software processes
acceleration data and composes a CD-like signal, denoted as CPR
waveform; no studies were identified evaluating the reliability of
this signal for CPR analysis. Default analysis intervals include the
complete episode and one-minute epochs. While some important
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events such as the start of resuscitation or intervals with ROSC
can be manually defined, fully ad-hoc analysis intervals are not
supported. Recording of the TI signal is possible with adequate
configuration of the defibrillator device, but CodeReview does not
consider it for chest compression analysis.

An important limitation of most commercial software is the need
for manual supervision to define the analysis interval. Defibrillator
files often include signal recordings prior to and following the actual
resuscitation efforts (especially if ROSC is achieved), which will be
considered for analysis unless otherwise specified. While this is not
critical for CCR or CD calculations, Gupta et al. [147] showed that
average errors of about 15 – 20 % in CCF can be expected without
manual definition of the resuscitation interval. Although the study by
Gupta et al. was limited to the Stryker/Physio-Control CODESTAT
program, similar issues were observed in other analysis software.

Note that this limitation may be extensible to many of the literature
methods described in the previous section. Some of the studies explic-
itly mention the exclusion of ROSC [101, 113] and post-resuscitation
intervals [100], and none describe any automatic procedure to deal
with this type of problem. While automatic definition of the analysis
interval using the first and last detected compressions may be a viable
strategy and could avoid many of the errors described by Gupta et
al., false positive detections outside the resuscitation interval would
still result in significant CCF errors. The low CCF errors reported,
coupled with the lack of information on this matter, suggest that
manual definition of the analysis interval may have been the norm,
and that the errors reported by most of the studies could be limited
to missed or misdetected compressions within specified intervals.

In commercial software, Gupta et al. [147] associated these missed
and misdetected compressions with errors of about 5% in CCF. All
software mentioned in this section allows manual modification of
compression instants or CPR intervals; however, this kind of review
may be exceptionally time-consuming, and not feasible when work-
ing with large OHCA registries. It should be noted that Gupta et al.
analyzed automatic compression marks based on the TI; errors could
be smaller for more reliable signal references such as the CD.
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Another direct limitation of commercial software is the inability to
process files from defibrillator brands other than their own. While
this may not be a problem for small/local research, the most ambi-
tious studies and clinical trials in resuscitation are multicenter, and
often include episode recordings from multiple different defibrillator
models. Besides potential differences in signal acquisition that may
be impossible to solve (e.g., no CD measures will be ever available
for current Stryker devices), different software may also introduce
additional procedural disparities, such as different metrics reported
or different analysis intervals considered. The harmonization of the
analyses can be extremely time-consuming, and will still suffer from
all the combined limitations of the software involved.

2.2 CPR quality analysis: ventilations

2.2.1 Ventilation quality metrics

Ventilation rate (VR) is the main CPR quality metric associated
with ventilation. Defined as the number of ventilations provided over
time, Kramer-Johansen et al. [58] recommend VR to be reported in a
minute-by-minute basis, either through direct count of ventilations or
frequency analysis. Given their potential impact in survival [54, 61],
both the fraction of minutes presenting hyper-ventilation (defined
as VR> 15 min−1) and the fraction of minutes with no ventilations
delivered (VR = 0) should also be reported.

Kramer-Johansen et al. [58] mention a number of other parameters
related to ventilation, including tidal volume, inspiratory time, and peak
inspiratory pressure. However, there were at the time important tech-
nical limitations to their measurement with monitor-defibrillators,
as well as little evidence to support their clinical relevance. Recent
studies suggest that tidal (insufflated) volumes could be associated
with survival from OHCA. Using a procedural definition for effective
ventilations of ”TI fluctuations with duration > 1 s and amplitude
> 0.5 Ω 5”, Chang et al. [79] analyzed 560 OHCA episodes treated

5 TI ventilation amplitudes of 0.5 Ω have been experimentally associated with tidal
volumes of about 300 mL [109, 115], which may be considered sufficient to produce
gas exchange and visible chest rise [148].
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with 30:2 CPR and observed significantly increased survival in those
patients who received such ventilations in the majority of compres-
sion pauses. Further research may thus be required to identify and
characterize other potentially relevant ventilation quality metrics
besides VR.

2.2.2 Literature solutions for ventilation analysis

Capnography based solutions

Resuscitation guidelines emphasize the use of end-tidal capnogra-
phy as part of advanced care due to its many applications, including
indirect assessment of CPR quality, early detection of ROSC, control
of tracheal tube placement, and ventilation rate monitoring [17, 36].
Capnography is the continuous measurement of CO2 concentration in
exhaled gases, and the resulting graphical signal trace is referred to as
capnogram. As shown in Figure 2.5, the typical capnogram describes
a characteristic four-phase pattern which enables the identification
of ventilations. However, during resuscitation, chest compressions
introduce artifacts in the capnogram due to pressure changes and in-

Figure 2.5. At the top, the typical capnogram waveform, with four distinguishable phases:
(i) inspiratory plateau, corresponding to inspired air, generally free of CO2; (ii)
expiratory upstroke, which marks the onset of expiration and transition to alveolar
gas; (iii) alveolar plateau, presenting the highest levels of CO2; and (iv) inspiratory
downstroke, which marks the onset of inspiration and transition to CO2-free air.
At the bottom, capnogram waveforms affected by chest compression artifacts.
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termittent airway closure [149]. Several solutions have been proposed
for the automatic detection of ventilations under such circumstances:

• Edelson et al. [106] proposed in 2010 the first automatic algorithm
for ventilation rate monitoring using the capnogram. The solution
was designed following a finite-state machine model. In summary,
it identified inspiratory plateaus (from instant of inspiration tinsp
to expiration texp) as sections of the capnogram below a baseline
threshold Thinsp = 2 mmHg, with duration Dinsp, k = texp, k − tinsp, k
of 0.3 – 5.0 s, and minimum separation Dexp, k = tinsp, k+1 − texp, k of
0.4 s.

The solution was evaluated using data from 37 in-hospital cardiac
arrest (IHCA) episodes, all recorded with a Philips MRx monitor-
defibrillator and treated with ETI. Ground truth ventilations were
annotated by expert clinicians based on capnogram and TI signal
data; the capnogram was deemed uninterpretable for annotation
9.7% of the time. Evaluated on a minute-by-minute basis, the so-
lution scored a median SE and PPV of 82% and 91%, respectively.
VR was underestimated by a mean (SD) of 1.6 (2.6) min−1. Hy-
perventilation, defined as rates exceeding 10 min−1, was identified
with a median SE and SP of 86% and 100%, respectively.

• Aramendi et al. [107] proposed an alternative solution for ventila-
tion detection, incorporating adaptive thresholding to exploit the
similarity between contiguous ventilations. First, inspiration and
expiration instants, tinsp and texp, were identified from positive
and negative peaks in the first difference of the capnogram. Then,
the resulting potential ventilations were discriminated based on
several fixed and adaptive thresholds: A minimum inspiration du-
ration Dinsp of 0.3 s and a minimum distance between ventilations
Dsep, k = texp, k+1 − texp, k of 1.5 s were imposed. Weighted averages
from the previous N ventilation detections were computed to set
minimum thresholds for: (a) the mean amplitude of the expiratory
plateau Aexp, (b) the relative amplitude increase between inspira-
tion and expiration ∆r, and (c) the area under the signal during
the first second of expiration Sexp (see Figure 2.6).

The algorithm was developed using data from 62 OHCA and 21
IHCA episodes. Ground truth ventilations were annotated based
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∆r,k =
Aexp,k−Ainsp,k

Aexp,k

Figure 2.6. Feature calculation in the ventilation detection solution by Aramendi et al. [107].
Adapted from the original study.

on TI and capnogram recordings in the OHCA dataset, and based
on air flow and volume recordings in the IHCA dataset (this is
the only solution in the literature validated against a ground truth
exported from gas measuring devices). A subset of 37 OHCA
episodes were used to optimize the algorithm, and the rest for
evaluation. Restricted to episode intervals with chest compressions
delivered, ventilations were identified with median per-episode
SE of 99.0% and PPV of 97.6% in the OHCA dataset, and median
SE of 99.8% and PPV of 98.3% in the IHCA dataset. Consider-
ing one-minute episode segments, the 95% of absolute errors in
VR estimation were within 1.8 min−1 in OHCA data, and within
1.5 min−1 in IHCA data. Hyperventilation, defined as one-minute
segments with VR > 15 min−1, was identified with SE of 97.8%
and PPV of 97.0% in the OHCA dataset, and SE of 99.9% and PPV
of 99.7% in the IHCA dataset.

• Leturiondo et al. [108] proposed the most widely validated solution
as of the start of this thesis, also following a finite-state machine
model. First, the solution identified a potential expiration at texp, k
as an abrupt signal upstroke crossing a baseline threshold Thamp.
Then, potential candidates for the following inspiration at tinsp, k
and next expiration at texp, k+1, also crossing Thamp, were iterated
until both the inspiration duration Dinsp, k = texp, k+1 − tinsp, k and
expiration duration Dexp, k = tinsp, k − texp, k exceeded, respectively,
the minimum thresholds Thinsp and Thexp.
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The solution was developed using data from 232 OHCA episodes,
in which about 50,000 ground truth ventilations were annotated
based on the TI signal. The 42% (98) of episodes were labeled as
distorted, presenting over one-minute of capnogram recordings
affected by compression artifacts. A subset of 30 undistorted cases
were used to optimize the algorithm, and the rest for evaluation. In
a per-episode analysis, ventilations were identified with a median
SE of 99.4% and PPV of 98.6%. In the subset of distorted episodes,
the median SE and PPV were 97.4% and 95.6%, respectively. In
the case of heavy artifacts (reaching the capnogram baseline, such
as in Figure 2.5 bottom right), denoted as type-III, the median SE
and PPV were 85.2% and 76.9%. VR was estimated with median
relative error of −0.6%, −6, 1% and −18.8% in clean, distorted and
type-III one-minute segments, respectively. For the same groups,
hyperventilation (VR > 15 min−1) was detected with SE of 99.5%,
95.7% and 90.9%, and PPV of 96.8%, 73.9% and 53.2%, respectively.
Subsequent studies have shown that signal preprocessing tech-
niques such as envelope detection [150] or adaptive filtering [151]
may help enhance ventilation detection, achieving median SE and
PPV scores over 95% even during type-III compression artifacts.
Other quality metrics would also improve accordingly.

Table 1 summarizes the most relevant performance metrics for the
different ventilation detection solutions described in this section.

Table 1. Performance metrics for the different capnogram-based ventilation detection solutions

Study
Ventilation detection VR estimation Hyper-ventilation minutes

median (IQR) per-minute

SE (%) PPV (%) SE (%) SP (%) PPV (%)

Edelson et al. per-minute mean (SD) patient median, > 10 min−1

[106] 82.0 (75.0 – 93.0) 91.0 (85.0 – 95.0) −1.6 (2.6) min−1 86.0 100.0 –

Aramendi et al. per-episode 95% CI overall, > 15 min−1

[107] 99.1 (96.9–99.8) 97.0 (95.9 – 98.9) ± 1.8 min−1 97.8 – 97.0

Leturiondo et al. per-episode median (IQR)* overall, > 15 min−1

[108] 99.4 (97.8 – 100.0) 98.6 (96.4 – 99.5) −0.6 (−1.9 – 0.0) % 95.1 – 86.8

* Restricted to undistorted data. Numeric values not available for global data.

It should be noted that most capnography equipment employed
in out-of-hospital resuscitation use a side-stream configuration, in
which a small air sample is aspirated from the primary airway to the
sensor. This introduces a time-delay of about 3.5 s between the capno-
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Figure 2.7. Example of ventilations in both the thoracic impedance (TI, top) and the capno-
gram (CO2, bottom). The time-delay of the capnogram due to gas transport has
been corrected for referencing purposes. As it can be observed, there is a close
correspondence between the inspiration phases in the capnogram (shaded in
blue) and the inflation phase of fluctuations in TI (associated with an increase in
low-conductivity air in the lungs).

gram and other signals acquired by the monitor-defibrillator [106],
which has to be corrected for reference and matching purposes. It
is also important to note that the time-based capnography used in
OHCA does not directly allow the measurement of air volumes [122].
Furthermore, in low blood-flow states, such as in cardiac arrest, pul-
monary blood flow is the main determinant of capnogram levels [42],
so indirect or surrogate measures are also mostly unfeasible.

Impedance based solutions

Ventilations are also reflected in the TI due to the poor electrical
conductivity of the air blown into the lungs [113]. Impedance-based
techniques to monitor respiration and estimate tidal volumes in the
clinical practice have been studied for more than 50 years [152, 153].
However, it was not until 2002 that Pellis et al. [114] demonstrated
that the principles of impedance pneumography — injection of a
high-frequency current through the body, and continuous monitor-
ing of voltage changes, directly proportional to impedance changes
according to Ohm’s Law — could be easily implemented in resusci-
tation using defibrillation pads. In an experiment involving five pigs,
Pellis et al. observed two different components in the TI acquired
through defibrillation pads: (a) a 1.4 – 20 Hz component, correlated
with QRS complexes in the ECG and associated with cardiac activity
(see Figure 2.4), and (b) a 0.1 – 2.0 Hz component, correlated with
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capnography readings and associated with ventilation (see Figure
2.7). Later, Losert et al. [137] analyzed the reliability of defibrillator
TI recordings for estimating tidal volumes in human data. A cohort
of 73 patients was studied, including 20 patients in cardiac arrest for
whom ventilations were measured during compression pauses. In
line with previous pneumography studies [152, 154], they found a
very high within-patient correlation between the amplitudes ∆Z of
TI fluctuations due to ventilations and the insufflated volumes ∆V,
but also a large between-patient variation of the correlation factor
α = ∆Z/∆V. For a general volume estimation model applicable to
all patients, the normalized standard error was 0.365, which repre-
sented errors > 36.5% for about the 30% of patients. As proposed by
Valentinuzzi et al. [155], errors were smaller if accounting for patient
weight, although still significant. It is unclear whether estimates of
such precision would be adequate to provide real-time alarms during
resuscitation [42, 137]; however, given enough data, they could still
be used as part of large retrospective studies to assess the impact of
ventilation [79].

Regardless of volume estimates, the detection of individual venti-
lations enables, in the same way as in capnography, the calculation
of other quality metrics such as the VR or the occurrence of hypo- or
hyper-ventilation. The detection of ventilations in TI may, however,
be subject to a number of difficulties: First, TI fluctuations due to
ventilation may adopt a wide range of shapes, amplitudes and dura-
tions [105]. And second, the TI signal itself is prone to artifacts due
to patient and electrode motion [156, 157], which may be frequent
during resuscitation. Roberts et al. [158] studied the performance
of the ventilation detection algorithm internal to the MRx monitor-
defibrillator. For a study cohort of 21 pediatric patients, the overall SE
was of 90.5%, although it decreased to 80.0% for volumes < 7 mL/kg
(presumably associated with TI fluctuations of lower amplitude). A
PPV of 100% was reported; however, some obvious artifacts were
excluded during data preparation. The patients were also hemody-
namically stable, not receiving CPR, which could have significantly
limited the presence of motion noise. Recently, Aramendi et al. [109]
proposed a solution to identify ventilations in compression pauses
during 30:2 CPR. In summary, the method employed peak detection
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and a fixed rule set to identify fluctuations with amplitude ≥ 0.5 Ω
and duration ≥ 1 s, including pairs of overlapping fluctuations and
fluctuations partially occurring during chest compressions. Validated
on a study cohort of 550 OHCA patients, and tested against ground
truth ventilations manually annotated by two different reviewers, the
solution identified pauses with one or more ventilations with a SE
of 90.8/92.4 %, similar to that reported by Roberts et al. [158], but a
much a lower PPV of 85.3/82.3 %, which could be a better indicative
of the motion noise present during resuscitation.

Nevertheless, the most common ventilation scenario in OHCA may
be that of CC-CPR, which is the standard CPR mode after advanced
airway insertion, and also considered in the guidelines [17, 44] and
increasingly frequent in early phases of resuscitation. In addition to
all the aforementioned problems for ventilation detection, CC-CPR
entails concurrent chest compressions, which are also reflected in the
TI and may obscure the ventilation waveform. Several solutions have
been proposed for this scenario:

• Risdal et al. [105] proposed in 2007 the first TI-based ventilation
detection algorithm tailored to CC-CPR. The solution comprised
three different stages: First, a series of filters were applied to the
TI in order to enhance ventilation components, including linear
static band-pass filtering in the 0.06 – 2.3 Hz range, and adaptive
filtering of compression artifacts using acceleration and force as
reference channels. Secondly, potential onsets of inspiration and
expiration, tOI and tOE, were identified in the filtered signal. For
this purpose, each point of the signal was characterized in terms
of its second- and fourth-order polynomial fit coefficients over a
centered window of 1.4 s. These coefficients were then fed to an
artificial neural network (ANN), which returned the probabilities pOI
and pOE of each point corresponding to a tOI or tOE, respectively
(see Figure 2.8). Potential tOI and tOE were selected at the most
prominent peaks of the continuous pOI and pOE outputs which
exceeded minimum probability thresholds ThOI and ThOE. Finally,
the discrimination of ventilations was performed according to a
fixed rule set, with valid ventilation inflation times and amplitudes
in the ranges ∆tmin – ∆tmax and ∆zmin – ∆zmax, respectively. ∆tmin,
∆tmax and ∆zmax were set based on the minimum and maximum
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Figure 2.8. Example of the solution by Risdal et al [105]. At the top, the thoracic impedance (TI)
after adaptive filtering of compression artifacts; the raw TI is also depicted in gray.
At the middle, continuous probability estimates for the onsets of inspiration (pOI ,
green) and expiration (pOE, red). As it can be noted, there is a close match between
the most prominent peaks in pOI and pOE, and the starts and peaks, respectively,
of the fluctuations in TI. The time aligned capnogram (CO2, bottom) is provided
as ground truth reference; inspiration phases according to the capnogram appear
shaded in blue.

values observed in the training dataset (0.2 s, 5.0 s and 8.0 Ω, ap-
proximately). ThOI , ThOE and ∆zmin = 0.25 Ω were optimized to
maximize performance.

The solution was developed and evaluated using a leave-one-out
cross-validation strategy. Recordings from a total of 30 OHCA and
IHCA cases were included, and over 10,000 ground truth ventila-
tions — both with and without concurrent compressions — were
manually annotated according to the TI signal itself. Ventilation
detection performance was optimized for maximum PPV at 90%
SE. On a per-episode basis, the overall median (IQR) SE and PPV
were 92.7 (10.9) % and 96.7 (5.4) %, respectively. Considering only
episode intervals during CC-CPR, the median (IQR) SE and PPV
were 90.6 (12.5) % and 97.4 (8.0) %. No analyses were conducted on
VR or other ventilation quality metrics.

• Edelson et al. [106] proposed a lighter solution, in which the ANN
segmentation stage was replaced by a finite-state machine model.
The preprocessing stage was similar to that of Risdal et al. [105],
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also including an adaptive filter for compression artifact removal
using force and acceleration as reference channels. The state ma-
chine model identified waves in the filtered TI with the following
specifications: amplitude of 0.25 – 4.5 Ω, inflation time of 0.3 – 3.0 s,
rise/fall rates of 0.2 – 5.0 Ω s−1, and peak-to-peak separation be-
tween ventilations of 1 s or more.

The solution shared study dataset with the previously described
capnogram-based algorithm, comprising 37 IHCA episode records
from MRx monitor-defibrillators. Ground truth ventilations were
annotated based on the capnogram and TI signals; TI was deemed
uninterpretable 19.5% of the time. On a minute-by-minute basis,
ventilation detection was achieved with median SE and PPV of 78%
and 87%, respectively. VR was underestimated by a mean (SD) of
1.9 (3.6) min−1. Hyperventilation (VR > 10 min−1) was identified
with inter-episode median (IQR) SE and SP of 81 (51 – 100)% and
100 (98 – 100) %, respectively.

• Alonso et al. [99] proposed an even lighter solution, in which adap-
tive filtering was also removed. Preprocessing of TI was limited to
static low-pass filtering with a cut-off frequency of 0.6 Hz. Then,
fluctuations potentially due to ventilation were identified through
positive peak detection. Finally, discrimination of fluctuations was
performed according to a fixed inflation-time threshold Dmin = 0.5 s,
an adaptive amplitude threshold Zmin based on the amplitudes of
the last N detected ventilations.

The solution was developed and evaluated using 63 OHCA episode
records (32 for optimization, 31 for validation), all acquired with a
MRx monitor-defibrillator. About 17,500 ground truth ventilations
were annotated based on capnogram and TI recordings. In terms
of ventilation detection, the solution scored a per-episode median
SE of 92.2% and a PPV of 81.0%. The mean (SD) absolute error in
VR estimation was of 1.5 (1.4) min−1 and 3.3 (2.9) min−1 for full
episodes and one-minute segments, respectively. In the 6.8% of
minutes analyzed (inter-episode mean), hyperventilation (VR >

15 min−1) was either missed or falsely reported.

Table 2 summarizes the most relevant performance metrics for the
ventilation detection solutions designed for CC-CPR. When disaggre-
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gated data are available, results are limited to performance metrics
during continuous chest compressions.

Table 2. Performance metrics for the different capnogram-based ventilation detection solutions

Study
Ventilation detection VR estimation Hyper-ventilation minutes

median (IQR) per-minute inter-patient mean/median

SE (%) PPV (%) SE (%) SP (%) PPV (%)

Risdal et al. per-episode
[105] 90.6 (12.5) 97.4 (8.0) – – – –

Edelson et al. per-minute mean (SD) median, VR > 10 min−1

[106] 78.0 (67.0 – 89.0) 87.0 (77.0 – 96.0) −1.9 (3.6) min−1 81.0 100.0 –

Alonso et al. per-episode mean (SD) mean, VR > 15 min−1 *
[99] 92.2 (87.4 – 95.8) 81.0 (67.2 – 90.5) 3.3 (2.9) min−1 – – –

* Hyperventilation missed or falsely reported in the 6.8% of minutes. No SE, SP or PPV values
available.

2.2.3 Ventilation analysis in commercial software

• Philips devices enable TI-based analysis of ventilations as part of
the Q-CPR system. The integrated ventilation detection algorithm
is presumed to be similar to that described by Edelson et al. [106],
including adaptive filtering to remove compression artifacts and
identify ventilations during CC-CPR. The accuracy of the algo-
rithm has been demonstrated in absence of CPR, with SE scores
above 90% for insufflated volumes > 7 mL/kg [158]. Edelson et al.
reported median SE and PPV scores of 78% and 87% for IHCA data
with active CPR. Defibrillator recordings may be loaded in Event
Review Pro software to generate detailed ventilation reports, com-
prising: number of ventilations, VR, average inflation amplitude
(in mΩ), average inflation time, and number of ventilations too
short in duration. As with chest compressions, possible analysis
intervals include the full episode, time-epochs of 30 s or 60 s, and
manually selectable ad-hoc intervals. MRx monitor-defibrillators
also enable VR readings and alarms based on capnography data,
meaning that some internal capnogram-based ventilation detec-
tion algorithm should be in place. However, the software does not
appear to support the visualization and export of these ventilation
marks, nor their use in composing CPR quality reports.

• Stryker/Physio-Control’s CODESTAT software enables automatic
annotation of ventilations based on capnography data. Although
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no analogous TI-based functionality is included, the program still
allows manual annotation of ventilations in the TI channel, and
provides a filtered representation of the TI to facilitate this process
during CC-CPR [113]. Reported metrics are limited to average and
median VR over the analysis interval. Analysis interval options
include the complete episode, one-minute epochs, CPR sections
(separated by pauses > 10 s), and ad-hoc intervals. It is interesting
to mention that, unlike with Philips or ZOLL devices/software,
where raw TI data is available, CODESTAT exports a preprocessed,
high-pass filtered version of the TI in which ventilation information
may be compromised. External algorithms for TI-based ventilation
analysis may be unsuited and/or require important modifications
in order to work with Stryker/Physio-Control data.

• ZOLL’s RescueNet CodeReview software enables automatic detection
of ventilations using both capnography and TI data. Ventilation
quality metrics are limited to the number of ventilations in each
one-minute episode epoch. A fully detailed CPR analysis report is
also available, which includes the timestamp and duration of each
individual ventilation and could be processed externally to derive
additional metrics. Ventilations detected in the capnogram and TI
are reported separately. It is important to note that the TI-based
detection algorithm appears to be highly sensitive to compression
artifacts, with ventilation counts often exceeding 100 per minute.
The newer CaseReview software, not available during this thesis,
does not support anymore automatic ventilation detection based
on TI data. It should also be noted that ZOLL defibrillator devices
do not record TI signal data by default and must be configured
explicitly to do so. ZOLL defibrillator files missing TI recordings
are thus fairly common in OHCA data registries. The new ZOLL
X-Series Advanced monitor-defibrillators incorporate Real BVM Help
technology, which employs a differential pressure-based AccuVent
flow sensor to measure tidal volumes and provide real-time VR
and volume feedback. Studies on this technology, however, seem
still limited to mannequin data [120, 159, 160]; further research is
needed to assess its reliability in real OHCA scenarios.
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2.3 Suppression of chest compression artifacts

During CC-CPR, concurrent chest compressions cause an artifact in
TI which can hinder the detection and characterization of ventilations.
Alonso et al. [99] showed that compressions and ventilations present
limited spectral overlap, and that ventilation waves can still be iden-
tified in TI after applying a 0.6 Hz low-pass filter to the signal. Such
an approach, however, may also result in excessive smoothing, losing
detail of ventilations and making them harder to distinguish from
other spurious fluctuations. In contrast, other authors [105, 106] have
proposed the use of adaptive filters, which take advantage of known
or external information about compressions in order to perform a
more selective filtering. These adaptive filters may better preserve the
ventilation waveform, enabling richer feature extraction both for the
potential clinical interest and to support more accurate detection and
discrimination solutions. The literature on adaptive suppression of
compressions artifact focuses on the ECG, where it can enable rhythm
analysis during CPR and help minimize interruptions. Nevertheless,
most of the proposed solutions can also be applied to the TI case.

In the most accepted model, the input ECG or TI signal s(n) is
assumed to be the sum of a desired component sd(n) (representing
the heart activity in the ECG case, or ventilation in the TI case), and a
chest compression component/artifact scc(n). This is a classical prob-
lem of noise/interference cancellation, in which adaptive filtering
solutions provide an estimate of this compression component ŝcc(n).
The desired signal can be then approximated as

ŝd(n) = s(n)− ŝcc(n) (3)

Proposed solutions may differ in the algorithmic approach, and in
the artifact model and the information or reference signals used to
estimate ŝcc. Optimization algorithms include, among others, least
mean squares (LMS) [136, 161, 162], recursive least squares (RLS) [162],
Wiener [163] and Kalman [164, 165, 162] filters, and matching pursuit
algorithms [105, 166]. The compression artifact models relevant to
this thesis can be divided into multichannel models and parameterized
models.
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2.3.1 Multichannel models

In these solutions, the chest compression component is estimated
as a linear combination of P reference signals sp and their time-shifted
versions, following:

ŝcc(n) =
P

∑
p=1

Kp

∑
k=−Kp

hp(k; n)sp(n− k) (4)

where hp(k; n) represent a filter of length 2Kp + 1, whose coefficients
vary slightly over time (in terms of n). The reference signals sp are
assumed to be correlated with the compression component (as in the
case of acceleration or force), and not with the information of interest.
The goal of the optimization algorithm is to first find and then keep
updated the filter coefficients hp that better match the compression
component; this is done according to some predefined criteria, such
as the mean square error. Note that Eq. 4 describes a noncausal filter,
as it uses future samples of the reference signals; if necessary, this
can be avoided by setting the lower limit of the second summation
to zero.

The first studies on multichannel filtering of compression artifacts
were conducted by Langhelle et al. [167] and Aase et al. [163], using
mixture models which combined human ECGs in VF with mechanical
CPR artifacts recorded from a pig experiment during asystole. The
solution proposed by Aase et al. was based on a Wiener filter, and
used as references the TI and CD signals recorded from the pig. Later,
Husøy et al. [166] introduced the Multi-Channel Recursive Adaptive
Matching Pursuit (MC-RAMP) solution, which used a matching pursuit-
based coefficient optimization and four reference channels: TI, CD,
acceleration and ECG common-mode. The MC-RAMP was evaluated
using a mixture model (although in this case two pigs were included,
and manual CPR was performed), and obtained results comparable
to the Wiener filter for much less computational cost. The MC-RAMP
was adapted and tested for VF detection in real human resuscitation
data by Eilevstjønn et al. [168]. Regarding ventilation detection, the
filter was also adapted by Risdal et al. [105] to identify ventilations in
the TI during CC-CPR; in this case, acceleration and force were used
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as reference signals. A similar approach was later used by Edelson et
al. [106], and is presumed to be implemented in Philips defibrillator
devices and software.

2.3.2 Parameterized models

After development of multichannel filters, efforts began to be made
to reduce or eliminate the need for reference signals which might not
always be available. Within the new approaches, the major line of
research considered that the compression artifact could be modeled
from a limited set of parameters, most notably the frequency of chest
compressions. Early solutions [169, 164, 170] were based solely on
the ECG, with the frequency and harmonic content of compressions
estimated through spectral or time-frequency analysis. Performances,
however, were inferior to those of multichannel solutions.

Later, Irusta et al. [161] proposed to construct the instantaneous
compression frequency from the chest compression instants already
identified using a CPR assist pad. While this did not eliminate the
need for reference signals, it could be implemented with minimal
hardware modification of the defibrillator device. The compression
frequency was assumed constant during a given compression, and
variable between them, so for chest compressions at sample-instants
ni, the instantaneous phase ϕ(n) could be given as

ϕ(n) =
2π

(ni+1 − ni)
(n− ni) + 2πi ni ≤ n < ni+1 (5)

which represents a linear phase-change of 2π between pairs of con-
tiguous compressions. In addition, they proposed a quasi-periodic
artifact model, based on a truncated Fourier series of N harmonics,
of the form:

ŝcc(n) = A(n)
N

∑
k=1

ak(n)cos(kϕ(n)) + bk(n)sin(kϕ(n)) (6)

where A(n) is an indicator of compressions, introduced for stability
(A(n) = 1 during compressions and A(n) = 0 during pauses, with
smooth transitions). The final solution was implemented using an
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LMS optmizer, whose goal was to find and keep tracked the optimal
in-phase and quadrature coefficients ak(n) and bk(n), and yielded
performances comparable to those of the four-channel MC-RAMP.
Ruiz et al. [165] achieved a similar performance using a Kalman filter
configuration. Later, Aramendi et al. [141] demonstrated de accuracy
of the model when compression instants were detected in the TI; this
effectively eliminated the need for reference signals outside of those
acquired through defibrillation pads.

Introduced by Aramendi et al. [136] and further studied by Isasi et
al. [162], a very particular variant of the model by Irusta et al. [161]
may be applied during mechanical chest compressions. Mechanical
compression devices operate at a very stable, fixed known frequency
fcc (e.g., fcc = 101.7 min−1, or 1.695 Hz, for the LUCAS-2 device), so
the fundamental instantaneous phase for the in-phase and quadrature
terms of the model can be given as

ϕ(n) = Ωn = 2π( fcc/ fs)n (7)

where fs is the sampling frequency of the signal under study, and
both fcc and fs are given in hertzs. The artifact model then takes the
form

ŝcc(n) = A(n)
N

∑
k=1

ak(n)cos(kΩn) + bk(n)sin(kΩn) (8)

in which A(n) is the only term including compression information
other than the nominal frequency of the device. If the optimization
algorithm converges fast enough, and/or if compression residuals
around pause transitions are not critical (note that pauses should
be minimized during mechanical compressions [36]), then the A(n)
term may also be dropped from the model, and adaptive filtering of
compression artifacts becomes possible without any sort of reference
signal or information.
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2.4 Machine learning for ventilation detection

Machine learning is a branch of artificial intelligence which focuses
on the development of models and algorithms that can find and learn
patterns in data, and make predictions or decisions without explicit
programming. Machine learning algorithms have been successfully
applied to many OHCA related problems, including discrimination
of shockable rhythms [171, 172, 173], shock outcome prediction [174,
175], detection of spontaneous pulse [124, 176, 177], or multi-class
heart rhythm classification [123, 178, 179]. Their use for CPR analysis,
however, has been minimal. Most chest compression and ventilation
detection solutions in the literature have been based on prespecified
rule sets, typically in the form of finite-state machines or fixed or
adaptive thresholds. For ventilation detection, only the solution by
Risdal et al. [105] incorporated a machine learning algorithm — an
artifical neural network (ANN) —, but still based its final decision on
fixed amplitude and duration thresholds; such an approach could
have limited the predictive potential of machine learning. This thesis
explores the use of machine learning algorithms as final elements
within ventilation detection solutions.

2.4.1 The classification problem

A classification problem involves assigning an input data instance,
characterized by a vector x ∈ RK of K features, to a predefined class
or category, denoted by a label y ∈ C, with C = {c1, c2 ..., cD} the
output space or set of D possible classes. Given a set of N labeled
examples {(x1, y1), (x2, y2) ..., (xN , yN)}, known as training set, the
main goal of classification is to learn a function f (x, ω) : x→ C that
maps input features to the corresponding classes. This is generally
achieved by finding the classifier parameters ω that minimize some
loss or error function L for the training set. Once the parameters ω

are defined, the model can be used to classify new unlabeled data
instances by applying the function f to their input features.

At its core, ventilation detection is a detection problem, in which
there is only one defined class, the ventilation [142]. In practice, and
as far as this thesis is concerned, the detection problem is artificially
translated into a classification problem through the prior detection
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of TI fluctuations potentially due to ventilation. The output space C
for these fluctuations is limited to two possible classes: ventilation
( y = 1) and not-a-ventilation ( y = 0 ). Class labels were assigned based
on the correspondence between TI fluctuations and ground truth
ventilations annotated in the capnogram.

Zu

Zd

ts

Tu

tp te

Td

Figure 2.9. Example of typical ventilation features. Given a TI fluctuation due to ventilation
(free of compression artifacts), with peak position at instant tp, and start and
end positions at instants ts and te, respectively, the inspiration/inflation or up-
wards phase of the ventilation (shaded in blue) spans from ts to tp and can be
characterized by its amplitude Zu and duration Tu. Similarly, the expiration or
downwards phase (shaded in red) spans from tp to te and can be characterized by
its amplitude Zd and duration Td.

One of the major challenges in classification problems is defining
the set of features x to characterize input data. Expert knowledge
of the problem at hand is required to design and select individual
features xi which may hold discriminative power. For widely studied
problems, such as those involving ECG processing and heart rhythms,
a plethora of different features have been proposed in the literature.
In the case of ventilation detection, however, little is known besides
the typical measures considered for thresholding, i.e., amplitudes
and durations (see Figure 2.9). In addition to these, this thesis ex-
plores orthogonal polynomial approximations and central moments
as potential features to characterize ventilation morphology.

2.4.2 Classification algorithms

Different classification algorithms employ different mapping func-
tions f and different procedures to optimize model weights ω. The
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most common example of a classifier is probably logistic regression,
which is applied to binary classification problems (C = {0, 1}), and
estimates the probability of an input data instance x corresponding
to the positive class following

p(y = 1) =
1

1 + e−(ω0+∑ wkxk)
(9)

The final class estimate ŷ is then obtained by probability thresholding
(e.g., ŷ = 1 if p ≥ 0.5). The weights ω of a logistic regression model
are typically set so as they minimize a binary cross-entropy or log-loss
function L of the form

L = − 1
N

N

∑
i=1

[
yi · log(p(xi)) + (1− yi) · log(1− p(xi))

]
(10)

over the N training set instances (xi, yi). This is accomplished using
gradient descent or other iterative optimization methods. Note that p,
and thus L, are functions of w according to (9).

Logistic regression is an example of a linear classifier, in the sense
that it establishes a linear decision boundary in the input feature
space (e.g., p ≥ 0.5 ←→ ω0 + ∑ wkxk ≥ 0). More complex decision
boundaries can be obtained using kernel methods [180] — non-linear
transformations of input data into higher-dimension spaces where
the problem can be approached through linear algorithms — and
non-linear classifiers. Examples of non-linear classifiers may include
ANNs and support vector machines [181].

Of special interest to this thesis work is the Random Forest (RF)
classifier [145]. The RF is an ensemble learning method — a method
that combines the predictions of several base classifiers — consisting
of multiple nearly uncorrelated decision trees. The term ”random”
may refer to two distinct aspects of its training procedure: First,
individual trees are grown using bootstrap aggregating or bagging [182],
that is, each tree is trained using only a random subset of Nb data
instances, sampled with replacement from the whole training set of N.
And second, each decision split at tree nodes is defined considering
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only a random subset of input features (typically of
√

K, with K the
dimension of the input feature space). All this helps decorrelate the
trees, resulting in a final classifier that generalizes better to unseen
data and is also robust against outliers and weak predictors/features.
RF classifiers have been successfully applied in resuscitation-related
problems such as spontaneous pulse detection [124] or rhythm classi-
fication [123, 172].

2.4.3 The sequence labeling problem

On occasion, temporal or other dependencies may exist between
data instances which can play a critical role in predicting class labels.
In the ventilation detection problem, for example, some degree of
periodicity and similar morphologies are to be expected between
neighboring ventilations. The odds of an average fluctuation being a
ventilation may also not be the same if surrounded by other much
larger ones than if not. Having access to information not only about
a given data instance but also about its context may help the classifier
make much more accurate predictions.

A sequence labeling problem is a particular type of time-series
classification problem where a sequence of M input data instances
X = {x1, x2 ..., xM} ∈ Rd×M has to be assigned to a sequence of same
length M class labels Y = {y1, y2 ..., yM} ∈ CM. This assignment is
not approached individually, but jointly through a mapping function
f (X, ω) : X → CM which may capitalize on context information.
Algorithms particularly well-suited for this kind of problem include
hidden Markov models, conditional random fields, and recurrent neural
networks (RNN).

2.4.4 Model evaluation

In machine learning, model evaluation involves assessing the per-
formance of a trained model on unseen data. That is, the data used
to evaluate the model (the test set) should never mix with that used to
train it (the training set). While this is general convention in machine
learning, it is especially important for highly complex 6 models that

6 In a general sense, model complexity refers to the degrees of freedom of a trainable
model, and is often measured as the number of adjustable parameters/weights.
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could be able to capture specific details of individual data instances.
In biomedical problems, this training/test separation is usually es-
tablished at case/patient level, as different data instances from the
same case/patient may present common particularities that may be
learned by the model.

There are multiple ways to divide a dataset into training and test
sets. The most common approach is to define a hold-out test set, a
portion of the whole data which is kept away for evaluation purposes.
In some cases, this approach may be particularly desirable, such as
for evaluating how a given model generalizes to data from different
EMS agencies or defibrillator devices. When important differences
in the data exist (such as highly varying levels of noise), however, a
randomly selected hold-out test set can also lead to overly arbitrary
and difficult to interpret results. In such cases, it may be reasonable
to generate multiple train-test data splits, and to report the statistical
distribution of the observed performances. Another alternative is
the use of K-fold cross-validation (CV), in which the data is divided
into K subsets or folds and K train-test processes are carried out; on
each of these processes, a distinct fold acts as test set, and the other
K− 1 as training set. Although computationally more expensive, CV
enables the use of all data for testing purposes while avoiding data
leakage. Notice that the generation of multiple K-fold partitions and
statistical representation of results is also possible in CV. Given that
the complete test set (the whole data) remains the same in all splits,
performance variations are usually smaller than in the hold-out case,
and more closely related to the consistency 7 of the model.

Regarding performance quantification, there are dozens of different
performance metrics tailored to the many types of problem that can
be addressed through machine learning. In detection problems, the
main performance metrics are SE, which indicates the proportion of
target instances detected, and PPV, which indicates the proportion of

Higher complexity implies that the model will be able to capture more complicated
patterns in the data. However, if training data is limited, a high-complexity model
may also end up learning particular details of the training samples. This leads to
poor generalization and is usually referred to as overfitting.

7 Consistency refers to the ability of a machine learning model to reproduce an output
for the same input across different trained instances of the model.
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detections which actually corresponded to target instances. Overall
performance is often reported using the F1-score, computed as the
harmonic mean of SE and PPV

F1 = 2
SE · PPV

SE + PPV
(11)

Note that, even if disguised as binary classification, ventilation detec-
tion is in essence a detection problem and should be reported as such.
Some common classification metrics such as the SP (the proportion
of negative class or not-a-ventilation instances correctly identified)
are of no practical interest except for their impact upon other metrics
(in this case, the PPV). The final performance metrics should also
account for any ventilation not reaching the classification stage (e.g.,
because the corresponding fluctuation was not identified).

2.4.5 Nested evaluation and feature selection

Development of machine learning solutions often involves design
decisions for which a performance score of reference is needed. The
most common approach to this scenario is nested evaluation, that is,
the further division of training data into inner training and test (also
known as validation) sets. In this way, the inner training set can be
used to fit multiple potential models, whose expected performance
can then be assessed using the validation set. Notice that using the
final test set to take performance references would indirectly expose
it to the model and should generally be avoided. If needed, nested
evaluation schemas may include multiple layers or levels of nesting,
each splitting the training set of the previous layer. Both hold-out and
CV strategies are possible, although the latter is far more common.

Typical procedures which may require nested evaluation include
hyper-parameter tuning and feature selection. Hyper-parameters denote
model variables, other than trainable weights, that are configurable
by the designer, such as the number of trees in a RF classifier. Fea-
ture selection implies the selection of an optimal reduced subset of
input features; this may help reduce model complexity, improving
generalization and preventing overfitting. It may also help reduce
the computational cost of the solution, as less signal features have
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to be calculated. Most feature selection techniques can be classified
into three different categories:

• Filter methods rely on statistical measures between input features
and outputs/other inputs in order to assign an importance score to
each feature; the features with lowest scores are then removed from
the model according to some predefined criteria. Filter methods
are independent of the machine learning algorithm used, and can
generally be applied without a nested validation architecture. A
well-known example of filter method is the Minimum Redundancy
Maximum Relevance algorithm [183].

• Wrapper methods rank combinations of features based on the perfor-
mance observed in a machine learning model of reference, which
does not necessarily have to match the algorithm used in the final
problem. Wrapper methods tend to produce better results than
filter ones, but are also computationally more expensive and may
require of a nested evaluation schema (especially if the reference
model is complex and prone to overfit). The most straightforward
wrapper method, although usually unpractical, is exhaustive search,
which ranks every possible combination of features. More efficient
approaches reduce the feature space of search by applying different
heuristics, which may be deterministic, such as in recursive feature
selection/elimination, or random, such as in genetic algorithms [184].

• Embedded methods are selection methods which are inherently ap-
plied by some machine learning algorithms as part of their training
process. This is the case of the Lasso-regularized logistic regres-
sion [185], or of decision trees, which employ measures such as the
Gini impurity to select the feature to rule each decision split.

A particular case of feature ranking/selection can be observed for
bagging methods such as the RF. Given that each individual tree is
trained using only a subset Nb of the training set N, another subset
NC

b exists for each tree, referred to as out-of-bag (OOB) sample, which
is unseen to the trained tree. Thus, the OOB instances can be used to
evaluate the model and rank features without the need of a nested
evaluation schema and without exposing the final test set. A feature
importance score typically calculated in this scenario is the permuted
OOB error [145], which measures the performance loss of the model



54 background

when the values of a given feature are randomly permuted over all
OOB data instances. The resulting feature ranking can then be used
to perform feature selection in many different ways, including direct
removal of features with no significant impact in performance, or as
reference within simplified recursive selection/elimination heuristics.
Notice that the permuted error is not exclusive to bagging methods;
the metric itself can be calculated for almost any machine learning
algorithm, although nested evaluation may be necessary to assess
performance loss.

2.4.6 Deep learning models

In the last decade, deep learning solutions have gained popular-
ity and outperformed classic machine learning algorithms in many
different tasks. In general, deep learning models eliminate the need
for explicit feature engineering, and are instead fed with raw data
(such as images or signal segments) from which they automatically
learn and extract relevant features. In exchange, they usually involve
an extremely large number of trainable weights, and may require
much larger amounts of training data to prevent overfitting. Deep
learning algorithms have been successfully applied in resuscitation
for problems such as discrimination of shockable rhythms [125, 186]
or pulse detection [187].

Of especial interest to this thesis work are segmentation networks.
A one-dimensional segmentation problem can be seen as a limit case
of sequence labeling, in which each time-sample of the input signal(s)
is assigned a class. This is in part similar to the ANN configuration
used by Risdal et al. [105] to locate inspiration and expiration onsets.
However, segmentation networks are generally used not to identify
individual points, but to label more extensive regions of the input,
such as specific objects in an image, or the collections of samples that
constitute ventilations in a TI signal segment. One typical example
of deep learning segmentation network for biomedical imaging is
the U-Net [188].



3 H Y P OT H E S I S A N D O B J E C T I V E S

This thesis aims to cover several knowledge gaps in the automatic
annotation and analysis of CPR, especially ventilation, in large OHCA
datasets. Two main hypotheses were considered: First, that machine
learning, and specifically context-aware algorithms, could contribute
to design solutions for ventilation detection in TI. And second, that
integrating different methods and clinical data could enable device-
unconstrained CPR quality analysis. The following objectives were
defined:

• Objective 1: Development of algorithms for TI-based ventilation
detection in the CC-CPR scenario. Most analyses of ventilation
in OHCA are currently performed using end-tidal capnography.
However, capnography is usually not available until late phases
of resuscitation. Moreover, recent studies of 30:2 CPR have high-
lighted the potential importance of tidal volumes in outcomes, a
magnitude that can not be measured through capnography but
can be estimated from TI. Accurate TI-based ventilation detection
algorithms are needed to analyze the more common scenario of
CC-CPR. Two algorithms were considered:

– Ventilation detection during mechanical CPR. Mechanical compres-
sions produce an artifact of fixed known frequency, enabling
the use of dedicated narrow-band artifact suppression filters.
Mechanical compression devices are also firmly secured to the
patient, which could minimize movement artifacts. Therefore,
minimally corrupted ventilation waveforms could be recovered,
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enabling the extraction of detailed features both for clinical
interest and high-performance machine learning discrimination.

– Ventilation detection during manual CPR. Manual compressions
imply irregular and highly variable artifacts which challenge
the design of ventilation detection algorithms. Although several
solutions have been proposed for this scenario, all of them rely
on amplitude-based discrimination of individual ventilations.
Context-aware machine learning algorithms could significantly
improve ventilation detection in noisy and/or low amplitude
scenarios.

• Objective 2: Design and validation of methodologies for chest
compression analysis in large and heterogeneous datasets. While
many accurate solutions for compression detection have been pro-
posed, most have been validated on limited and uniform datasets,
and do not automatically address important issues such as integra-
tion of different data sources, temporary signal loss, or definition
of the analysis interval. The combination of algorithms, addition
of new procedures, and integration of clinical data could represent
a step forward towards a fully automated CPR analysis of large
OHCA datasets.

• Objective 3: Analysis of CPR quality in the PART dataset. The
PART trial aimed to compare the effectiveness of ETI and LT initial
airway strategies, but did not incorporate CPR quality metrics. As
a case study, the algorithms and methodologies developed in this
thesis as part of the previous objectives could be applied to PART
defibrillator and clinical data, with the following sub-objectives:

– Comparison of chest compression quality metrics between ETI
and LT strategies.

– Comparison of ventilation rates and ventilation amplitudes in
TI between ETI and LT airway devices.



4 DATA M AT E R I A L S

This chapter describes the data materials used in the development
of the thesis work. The opening section provides a brief overview of
the Resuscitation Outcomes Consortium (ROC) [189], from which all
data originated. Following sections describe the individual datasets
within the ROC OHCA registry that were considered in the thesis:
the D-FW database and the PART database.

4.1 The Resuscitation Outcomes Consortium (ROC)

Funded in 2004 by the National Heart Lung and Blood Institute,
the Resuscitation Outcomes Consortium (ROC) is a North American
research network focused on the study of the treatment and outcomes
of OHCA and life-threatening trauma. The ROC network consists
of 11 regional sites in the United States and Canada and one data-
coordinating center (see Figure 4.1). More than 250 EMS agencies
participate in the network, serving a total population of around 24
million [189].

The first major task within the ROC program was the design and
creation of a unified epidemiological registry (Epistry), defining the
data and variables to be collected for future studies and RCTs. Two
different Epistries were considered for trauma [190] and OHCA [117].
The cardiac arrest Epistry was conceived to include all individuals
(from all ages) experiencing OHCA and attended — although not
necessarily treated — by EMS within the enrolled sites. The vari-
ables considered comprised information on the patient, event, EMS
characteristics and hospital outcomes [116]. When possible, variables
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Figure 4.1. Regional sites within the Resuscitation Outcomes Consortium (ROC).

were defined following the previous Utstein [1] and National EMS
Information System (NEMSIS) templates [117]. Unlike these prior
templates, the Epistry also considered CPR quality variables, which
could be derived from defibrillator recordings [117]; all participating
sites demonstrated the ability to capture defibrillator recordings for
more than 80% of treated patients who received CPR [43]. With an
estimated incidence of 17,500 EMS-attended OHCA cases covered
per year, the ROC Epistry constitutes one of the largest cardiac arrest
registries worldwide [191].

Since the program started, ROC investigators have designed and
coordinated four large OHCA-related multi-center RCTs: the Prehospi-
tal Resuscitation Impedance Valve and Early Versus Delayed Analysis trial
(PRIMED) [192, 193]; the Continuous Chest Compressions Versus Stan-
dard CPR trial (CCC) [75]; the Amiodarone, Lidocaine or Placebo Study
(ALPS) [194]; and the Pragmatic Airway Resuscitation Trial (PART) [92].
In addition, numerous epidemiological [116, 195] and CPR quality-
related [53, 59] retrospective studies have been conducted supported
by Epistry data.
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4.2 The D-FW database

The D-FW database comprised the defibrillator electronic files
and clinical Epistry information from 1,118 adult OHCA episodes
(1,135 files) treated by EMS between July 2013 and December 2014 in
the Dallas-Fort Worth area (Texas, USA). All defibrillator files were
acquired using a Philips MRx monitor-defibrillator. Capnogram, CD
and TI recordings were available in 1033 (1039), 1087 (1103), and 1092
(1093) cases (files), respectively. A distinctive feature of the D-FW
database was the extensive use of mechanical compression devices
(namely, LUCAS piston-driven devices), with 583 (593) cases (files)
involving mechanical compressions according to Epistry data.

4.3 The PART database

The second and main database used in the thesis comprised the de-
fibrillator files and corresponding clinical information from a subset
of the cases enrolled in the ROC PART trial (NCT02419573) [92, 196].
The PART trial was a multi-center cluster-crossover RCT comparing
the effectiveness of initial ETI and KING laryngeal tube advanced air-
way insertions. It enrolled a total of 3,004 adult non-traumatic OHCA
patients, treated by EMS between December 2015 and November
2017, and with anticipated need of advanced airway management.
The trial involved 27 EMS agencies from five different ROC regional
sites: Alabama (AL), Dallas (DAL), Milwaukee (MLW), Pittsburgh
(PGH) and Portland (PTL).

A subset of 2,472 cases (2,680 defibrillator files) were available for
the thesis. The files corresponded mostly to monitor-defibrillators —
39 files corresponded to AEDs —, including devices from the three
major commercial brands: Philips (Heartstart MRx), Stryker/Physio-
Control (LP12, LP15) and ZOLL (X-Series, E-Series). Table 3 shows
the number of cases (files) associated to each brand and ROC site.
Table 4 shows the number of cases (files) of each brand including TI,
CD and capnogram (CO2) recordings. No mixed-brand cases were
identified.

As per the specific RCT protocol, EMS personnel registered addi-
tional information on airway management not typically available in



60 data materials

Table 3. Cases (files) in the PART dataset by defibrillator brand and ROC regional site

Brand Total AL DAL MLW PTL PGH

Philips 976 (979) – 812 (815) – 164 (164) –
Stryker 439 (439) 218 (218) 52 (52) – 45 (45) 124 (124)
ZOLL 1057 (1262) – 154 (154) 825 (1030) 78 (78) –

Any 2472 (2680) 218 (218) 1018 (1021) 825 (1030) 287 (287) 124 (124)

Table 4. Cases (files) in the PART dataset by defibrillator brand and signal availability

Brand Total TI CD* CO2

Philips 976 (979) 933 (935) 928 (930) 941 (942)
Stryker 439 (439) 410 (410) – 75 (75)
ZOLL 1057 (1262) 11 (11) 1006 (1200) 962 (973)

Any 2472 (2680) 1354 (1356) 1934 (2130) 1978 (1990)

* Implies acceleration recordings for ZOLL, and both acceleration
and force recordings for Philips.

Epistry data, including start/end timestamps, airway type, and out-
come (success/failure) for every advanced airway insertion attempt.
On top of regular Epistry information, these new variables were also
available for the thesis, enabling CPR quality analyses restricted to
specific airway groups and airway-related resuscitation intervals.



5 R E S U LT S

This chapter summarizes the studies conducted in relation to the
objectives described in chapter 3. For the most part, the main focus is
on the final studies published in JCR journals [197, 198, 199, 200, 201,
202]. Preliminary, side and summary results presented in different
conferences are referenced in their respective sections and may be
briefly discussed. All journal and key conference contributions [203,
204, 205] are included verbatim in Appendix A.

5.1 Results related to objective 1

Acquired through defibrillation pads, TI represents an alternative
for ventilation analysis in resuscitation which could also help over-
come some of the major limitations of capnography (i.e., typically
late availability and inability to estimate tidal volumes). In this thesis
work, TI-based ventilation detection solutions were developed for the
CC-CPR scenario, where chest compression artifacts together with
motion noise may severely hinder the identification of ventilations.

Two different solutions were considered: First, a solution for me-
chanical CPR, where the regularity of the compression artifact enables
the use of dedicated filters, and where both detailed characterization
and high-performance detection of ventilations could potentially be
achieved. And second, a solution for the more general case of manual
CPR, where the addition of context-aware classification could help
identify ventilations under noise conditions and outperform previ-
ous solutions in the literature. Although with important differences
in the individual stages, the general structure of the solution was

61
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similar in both cases, comprising: (a) preprocessing of the TI signal,
including adaptive filtering of compression artifacts, (b) detection
and characterization of TI fluctuations potentially due to ventilation,
and (c) machine learning discrimination of ventilations from other
spurious fluctuations (see Figure 5.1).

s(t)

Signal Preprocessing

sv(t)

Signal Preprocessing

Fluctuation Detection

t
(i)
p , xi

Fluctuation Detection

Classification

ŷi

Classification

Figure 5.1. General block diagram for the ventilation detection solutions. First, the thoracic
impedance s(t) is preprocessed, including filtering of compression artifacts, to
obtain the ventilation component sv(t). Then, fluctuations potentially due to venti-
lation (shaded in gray) with peak position at tp are identified and characterized by
a feature vector x. Finally, this information is fed to a machine learning classifier to
discriminate between actual ventilations (shaded in green) and other fluctuations
(shaded in red).

Each of the solutions resulted in a JCR publication, namely J11 [197]
and J12 [198], and are described in the following. Intermediate results
were presented in international [203, 204, 206, 207] and national [208]
conferences.

Finally, initial experiments were also conducted on the application
of deep learning segmentation networks in the detection of ventila-
tions during manual CC-CPR. The results, presented in a national
conference [205], are summarized at the end of the section.
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5.1.1 J11: Automatic detection of ventilations during mechan-
ical cardiopulmonary resuscitation

For this study, a subset of 567 episodes from the D-FW database
were initially considered; those including both TI and capnogram
recordings, and in which a LUCAS mechanical compression device
had been used according to clinical annotations. Episode intervals
≥ 60 s during mechanical compressions, with no pauses > 20 s, and
with concurrent TI and interpretable capnogram signals were then
selected. Mechanical CPR was identified by assessing a stable CCR of
100 min−1 [100]. Ventilations were annotated in the capnogram (first
automatically [107], then manually reviewed), and used as ground
truth for model training and evaluation; the time-delay of the capno-
gram (median of 3.3 s) was also manually corrected. The final dataset
included data from 423 episodes, with a median (IQR) of 13 (8 – 19)
analyzable minutes, and of 72 (43 – 108) ground truth ventilations.
Figure 5.2 shows an example of all the signals involved in the devel-
opment and execution of the ventilation detection solution.

Figure 5.2. Example of the signals involved in the ventilation detection solution: (a) tho-
racic impedance (TI), with chest compression instants depicted in red; (b) chest
compression rate (CCR), computed every 2 s over a moving window of 5 s, and
used to identify mechanical chest compressions; (c) ventilation component sv(t) of
the TI, obtained after the preprocessing stage; and (d) time-aligned capnogram
(CO2), used to annotate ground truth ventilations (shaded in blue) for training
and evaluation.
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The solution was based on the three-stage architecture shown in
Figure 5.1, with the following implementation details:

• Signal preprocessing: The raw TI, originally acquired with sampling
frequency of 200 Hz, was first resampled to fs = 50 Hz and band-
pass filtered in the 0.06 – 2.5 Hz range. Then, an adaptive filter was
applied to suppress chest compression artifacts. Based on previous
models for mechanical artifacts in the ECG [136, 162] (see Section
2.3.2), the compression artifact was estimated as

ŝcc(n) =
N

∑
k=1

ak(n)cos(kΩn) + bk(n)sin(kΩn) (12)

with Ω = fcc/ fs, and fcc = 100 min−1 = 1.667 Hz the compression
frequency of the LUCAS device. An LMS algorithm was used to
optimize the coefficients ak and bk. A number of harmonics N = 3
and an LMS step-size µ = 0.15 were considered.

• Fluctuation detection: First, the largest positive peaks in the filtered
TI with minimum separation of 1.5 s were located a tp, i. Then, a
heuristic procedure was used to identify the start and end points
of fluctuations, ts, i and te, i. Inspiration and expiration durations
in the 0.45 – 5.5 s range were considered.

Final fluctuations were characterized by a vector xi of 14 features.
The first four corresponded to the amplitudes (Zu, Zd), and dura-
tions (Tu, Td) of the inspiration and expiration phases (see Section
2.4.2). In addition, central moments of first to fifth order m, µu,m

and µd,m, were computed for both phases: Let pu be a vector of
length Lu containing the signal samples of the inspiration phase,
shifted in amplitude so the lowest sample (the start of inspiration)
lies at zero, and then scaled so the sum of all samples equals one
(as in a probability distribution), µu,m were computed as

µu,m =
Lu−1

∑
l=0

pu(l) · (l/Lu)
m for m = 1, ..., 5 (13)

An analogous procedure was used to compute the moments of the
expiration phase µd,m.
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• Classification: The feature vectors xi were fed to a RF classifier to
discriminate ventilations (ŷi = 1) from other spurious fluctuations
(ŷi = 0). A number B = 100 of trees, an in-bag-fraction Nb/N of
0.5, and a default

√
K number of predictors per split were selected

as model hyper-parameters.

Both for training and evaluation, fluctuations were labeled as true
ventilations (yi = 1) when they matched a ground truth ventilation in
the time-aligned capnogram, and as yi = 0 otherwise. The solution
was evaluated in terms of the typical detection performance metrics:
SE, PPV and F1. A patient-wise 10-fold CV strategy was followed,
with fold assignment quasi-stratified so each fold included a similar
number of ground truth ventilations. A recursive feature elimination
procedure 1 was performed within each fold to reduce model com-
plexity. The evaluation process was repeated using 20 different CV
partitions, with results averaged, to minimize any data partition bias.
During training, ventilation samples were weighted patient-wise to
avoid biases due to imbalanced amounts of ventilations per patient.

The performance of the full solution was found very stable for ≥ 6
features, the six most important features (in approximate descending
order) being: Zu, µd,1/µd,2 (interchangeable), Td, Tu, µu,5, and Zd
(see Figure 5.3). For the six-feature model, the patient-averaged SE,
PPV and F1 were 96.3%, 96.4% and 96.3%, respectively. By contrast,
the model based solely in Zu (the main feature used to discriminate
ventilations in the literature [99, 105, 106]) scored a much lower F1 of
91.9%; this highlights the potential of machine learning classification
for ventilation detection solutions. The partition-wise IDR was below
0.2% for all the performance metrics, showing the robustness of the
solution to varying training data.

Broken down by patient, the F1 was above 95% and 98% for the
77.1% and 49.4% of patients, respectively. Notice that these perfor-
mances are similar to those reported in the literature for capnogram-

1 Starting from the full set of 14 features, the RF model was trained and the feature
importance computed. Then, the least important feature was removed from the
feature input space, and the process repeated until a single feature remained. The
permuted OOB error of the RF was used to assess importance, so no nested CV was
required.
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Figure 5.3. Patient-averaged F1 scores of the ventilation detection solution for classifier models
restricted to the most important K features. Scores for K ≥ 6 are detailed in the
inner axes; whiskers indicate inter-partition interdecile range.

based solutions [107, 108] (see Table 1). Only for 8 patients did the
solution score an unreliable F1 < 75%; these were mainly associated
with low ventilation amplitudes < 0.2 Ω, possibly because insufflated
volumes were low. Figure 5.4 shows a more detailed distribution of
the performance metrics by patient.

Figure 5.4. Distribution of patients for different performance metric score bands.
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Finally, the performance of the ventilation detection solution in
providing VR estimates was analyzed. The VR was computed as

VR = 60 / med{∆tv,i} (min−1), (14)

with ∆tv,i the time differences between contiguous ventilations, mea-
sured at the onsets of expiration. VR measures were acquired every
15 s over a centered one-minute window. The median ground truth
VR was of 6.0 (4.5 – 8.0) min−1. The global 90% levels of agreement
(LoA) between the estimated and ground truth VRs were of (−0.82,
1.40) min−1. A more detailed analysis of the errors in VR estimation
is shown in Figure 5.5. Errors were larger for high (> 10 min−1) and
low (< 6 min−1) rates, probably underrepresented in the study data.

Figure 5.5. Bland-Altman plot, comparing estimated (VRALG) and ground truth (VRGT) venti-
lation rates. Moving average 90% levels of agreement are depicted in light green.

5.1.2 J12: Impedance-based ventilation detection and signal

quality control during out-of-hospital cardiopulmonary

resuscitation

The initial study dataset comprised the defibrillator files and clini-
cal data from OHCA episodes in the PART database corresponding
to the Dallas ROC site (Texas, USA) and acquired with a Philips MRx



68 results

monitor-defibrillator. Episodes including TI, CD (thus also force and
acceleration) and capnogram recordings were considered. In a first
step, episodes intervals ≥ 70 s with concurrence of all signals were
selected. Pauses in chest compressions > 20 s and unusually heavy TI
artifacts were excluded. Note that the Q-CPR pad used to acquire CD
is not compatible with mechanical compressors, so manual CPR is
warranted. Ground truth ventilation were automatically annotated in
the capnogram [107] and then manually reviewed. The time-delay of
the capnogram — mean (SD) of 3.5 (0.3) s — was also corrected, with
a default delay of 3.5 s [106] applied when visual alignment was not
possible. Uninterpretable capnogram sections were excluded from
the study. Finally, the selected episode intervals were subdivided into
non-overlapping one-minute segments, which constituted the basic
analysis unit of the ventilation detection solution. A signal padding of
5 s was included to enable the characterization of partially contained
ventilations. The final dataset comprised 2,551 one-minute segments
from 367 different OHCA episodes, median (IQR) of 6 (3 – 10) minutes
per episode. A total of 20,724 ventilations were annotated, median
(IQR) of 8 (6 – 11) ventilations per minute and 45 (23 – 78) ventilations
per episode. The 97.1% of ventilations were concurrent with chest
compressions. Figure 5.6 shows an example of the signals involved
in the development and functioning of the solution.

The ventilation detection solution was designed to analyze one-
minute TI segments. The three-stage architecture described in Figure
5.1 was adopted; individual stages were implemented as follows:

• Signal preprocessing: The TI, acceleration and force signals were first
resampled to fs = 50 Hz and band-pass filtered in the 0.06 – 5 Hz
range. Then, an adaptive filter was applied to suppress compres-
sion artifacts in the TI. Finally, the TI was smoothed using a finite
impulse response low-pass filter with 1 Hz cutoff frequency.

The suppression of compression artifacts considered a multichan-
nel artifact model of the form

ŝcc(n) =
M

∑
k=−M

ak(n)sa(n− k) + bk(n)s f (n− k), (15)
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Figure 5.6. Example of a one-minute analysis segments (plus padding; faded, outside green
box), including all the signals involved in the ventilation detection solution: (a)
raw thoracic impedance (TI); (b) acceleration and (c) force, used as references for
the suppression of chest compression artifacts; (d) ventilation component sv(t) of
the TI, obtained after the preprocessing stage; and (e) time-aligned capnogram
(CO2), used to annotate ground truth ventilations (shaded in blue).

with M = 10, and sa and s f the processed acceleration and force
signals, respectively. The time-varying coefficients ak and bk were
assumed to follow Ornstein-Uhlenbeck processes and were esti-
mated through Kalman smoothing [124, 209].

• Fluctuation detection: Potential ventilations were identified in the
filtered TI as the largest fluctuations with peaks tp, i separated by
a minimum of 1.5 s, and inspiration/expiration durations within
0.45 – 5.5 s. The updated heuristic to select the start and end points
of fluctuations is fully described in the supplementary materials
of the original article [198], and also included in Appendix A.

The selected fluctuations were then characterized by a vector xi of
14 features, including the amplitudes (Zu, Zd) and durations (Tu,
Td) of the inspiration and expiration phases (see Section 2.4.2), and
the curve fit coefficients (cu,m, cd,m) of each phase in terms of order
m = {0, ..., 4} Legendre polynomials. Let pu be a vector of length
Lu containing the signal samples of the inspiration phase, and let
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gm be another vector resulting from the evaluation of the order m
Legendre polynomial in a [−1, 1] range of Lu equispaced samples,
the coefficients cu,m were computed as

cu,m =
pu · gm

||gm||2
for m = 0, ..., 4 (16)

An analogous procedure was used to compute the coefficients cd,m.

• Classification: The combined fluctuation information of the one-
minute segment was used to compose a time series X′ of 60 time-
steps, each time-step representing one second. As shown in Figure
5.7, feature vectors xi were assigned to time-steps based on their
peak position tp,i within the segment. Similarly, a label time series
Y′ was composed for training and evaluation. The allocated time-
steps took value yi = 1 when the TI fluctuation corresponded to a
ground truth ventilation (with a forward margin of 1 s), and yi = 0
otherwise. Unallocated time-steps were assigned a X′(n) = 0 null
feature vector and a Y′(n) = 0 not-a-ventilation label.

xi xi+1 xi+2x1 x2 x3

1s

Figure 5.7. Labeling and time series composition of fluctuation data. Features xi were assigned
to time-steps of X′ base on the fluctuation peak position tp, i . The corresponding
time-steps of Y′ were labeled as yi = 1 if the fluctuation matched a ground truth
ventilation in the capnogram, and as yi = 0 otherwise.
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An RNN was used for classification, which could benefit from the
enhanced context of the time-series representation. The network
was composed of a single bidirectional recurrent layer of 20 gated
recurrent units (GRU) [210] and a sigmoid output activation layer.
A sequence-to-sequence configuration was used to produce a prob-
ability output p for each time-step. Outputs were recovered from
the assigned time-steps and fluctuations classified as ventilations
if pi ≥ 0.5. Given the predominance of the negative class (mostly
due to unallocated time-steps), the network was optimized using
the Dice loss function [211] (closely related to the F1 metric).

In addition to the three fundamental stages of the solution, a fourth
signal quality control stage was also designed in order to anticipate one-
minute segments in which ventilation detection could be unreliable.
This could be used to reduce data screening in retrospective studies,
or to prevent erroneous feedback in real-time scenarios. The stage
was designed as a linear regression model, in which the F1 scores of
the ventilation detection solution were the target variable. A logit link
function was applied to ensure regression outputs between 0 and 1.
Three amplitude-independent input features were considered, which
were computed from the filtered TI resampled to 5 Hz: (1) the skew-
ness of the sample distribution, (2) the amplitude of the first peak
in the normalized autocorrelation [212], and (3) the SD12 variability
score [213] for the first signal differences. Once trained, the model
could be applied to new input segments to provide a quality score
(QS), an estimation of the performance of the solution in the given
segment.

The ventilation detection solution was evaluated using a patient-
wise 5-fold CV strategy. Fold assignment was quasi-stratified, so each
fold contained a similar number of patients, segments and ground
truth ventilations. Performance was assessed for both segments and
patients in terms of SE, PPV and F1, and compared to that of previous
solutions in the literature. A recursive feature elimination procedure
based on the permuted feature importance (see Sections 2.4.5 and
5.1.1) was also carried out to reduce model complexity; in absence
of OOB data, a nested 4-fold CV schema was used to measure the
performance loss of the permuted features. The same nested CV was
used to obtain the F1 references required to train the quality control
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model. The model was then applied to test data, and the performance
of the ventilation detection solution reassessed for different test data
inclusion rates (i.e., only the specified fraction of test segments with
highest QS were considered for evaluation). The evaluation process
was repeated and averaged over 20 different random CV partitions
to minimize data partition bias.

Table 5 shows the median (IQR) performance metrics of the ven-
tilation detection solution, evaluated on both one-minute segments
and patients (aggregating all ventilation/segments from the same
episodes). The proposed solution outperformed in about 15 points
previous solutions in the literature [99, 105, 106], which were imple-
mented and tested in the study dataset. The performances of these
solutions were also much lower than originally reported, as shown
in Table 2. This was probably due to lower ventilation amplitudes
and higher levels of noise than in the original studies, resulting in
a significant increase of false negatives and positives, respectively
(note that the solutions are mainly based on amplitude thresholding).
The addition of bidirectional filtering and context-aware classification
also helped outperform a preliminary solution [204], presented in an
international conference and which directly adapted the solution for
mechanical CPR [197] (RF classifier, LMS filter, and parameterized
model of compression artifacts [161]). Still, this preliminary solution
also outperformed previous solutions in about 10 points, highlighting

Table 5. Median (IQR) performance metrics of TI-based ventilation detection solutions

Solution F1 (%) SE (%) PPV (%)

Per-segment evaluation

Proposed solution [198] 89.1 (70.8 – 99.6) 93.3 (75.0 – 100.0) 90.0 (68.5 – 100.0)

LMS/RF solution [204] 85.2 (66.4 – 96.4) 87.5 (64.0 – 100.0) 87.9 (68.8 – 100.0)

Risdal et al. [105] 75.0 (53.3 – 90.0) 94.1 (75.0 – 100.0) 71.4 (46.7 – 91.0)
Edelson et al. [106] 66.7 (40.0 – 85.7) 83.5 (50.0 – 100.0) 71.4 (43.3 – 100.0)
Alonso et al. [99] 75.0 (55.2 – 92.3) 100.0 (85.7 – 100.0) 66.7 (42.9 – 90.0)

Per-patient evaluation

Proposed solution [198] 84.1 (69.0 – 93.9) 86.5 (71.6 – 95.1) 85.4 (68.3 – 94.7)

LMS/RF solution [204] 80.3 (65.2 – 90.7) 80.0 (59.6 – 91.5) 83.9 (69.0 – 93.4)

Risdal et al. [105] 70.0 (56.3 – 82.8) 87.3 (71.7 – 95.8) 65.2 (48.1 – 82.1)
Edelson et al. [106] 62.1 (46.5 – 70.5) 77.3 (52.2 – 91.2) 64.3 (45.8 – 83.6)
Alonso et al. [99] 68.6 (56.1 – 85.5) 92.5 (84.6 – 97.1) 60.2 (43.4 – 79.5)



5.1 results related to objective 1 73

the importance of a more detailed characterization of fluctuations
and the potential of machine learning classification.

The recursive feature elimination analysis showed that most fea-
tures positively contributed to classification. Still, the RNN proved
robust to less detailed information. A model including the four most
important features (in descending order: Zu, Zd, cu,0 and cu,1) scored
a median per-segment F1 of 88.6%, only half point behind the fully
featured solution. Interestingly, the median F1 using only Zu was of
87.1%. This was possible due to the context information managed by
the RNN. By contrast, the application of a static amplitude threshold
(found optimal at 0.25 Ω) resulted in a much lower F1 of 78.3%.

Despite the comparatively good performance of the solution, there
were still many segments and patients for which ventilation detection
was inaccurate. Figure 5.8 shows the distribution of segments and
patients for different performance bands. Per-patient metrics were
less likely to show extreme values, as aggregated patient data may in-
clude both low- and high-performance segments. Low-performance
segments were mostly characterized by low ventilation amplitudes
and/or high levels of noise. Figure 5.9 shows one such example.

The quality control stage was designed to anticipate such segments,
preventing erroneous feedback or reports. The proposed regression
model proved effective at sorting segments by performance, with a

Figure 5.8. Distributions of one-minute segments (left) and patients (right) for different SE,
PPV and F1 score bands.
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Figure 5.9. Example of an error-prone ventilation waveform. Some ventilations were correctly
identified (true positive, TP), but low ventilation amplitudes and ventilation-level
noise resulted in many false positives (FP). The fluctuation associated to the first
ground truth ventilation was also missed (false negative, FN)

Spearman correlation between estimated QS and actual F1 of ρ = 0.7.
Figure 5.10 shows the per-segment and per-patient performances
for different QS-based segment inclusion rates. The median F1 grew
monotonically as less segments were considered, and was close to
that obtained with an ideal QS (the actual F1).

Figure 5.10. Median (IQR) per-segment (top) and per-patient (bottom) F1 scores, with the
evaluation restricted to different percentages of test segments with the highest
estimated quality scores (QS). The ideal QS corresponds to the F1 score itself.
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Finally, the ventilation detection solution jointly with the quality
control were evaluated in estimating VR. For each segment, the VR
was computed as

VR = 60 / ∆tv,i (min−1), (17)

with ∆tv,i the time difference between contiguous ventilations, mea-
sured at expiration onsets. The median (IQR) ground truth VR was
8.4 (6.1 – 11.0) min−1. Errors were large without quality control, with
global 90% LoA between estimated and ground truth VRs of (−3.8,
6.8) min−1. In contrast, the 90% LoA were (−3.4, 3.9) and (−2.0,
2.0), respectively, for 70% and 35% QS-based segment inclusion rates.
Figure 5.11 shows a Bland-Altman plot with local LoA computed
for different VR ranges. Overestimation was frequent for low to
moderate rates, whereas underestimation was prevalent for high
rates (> 12 min−1). This was probably in part due to data imbalance,
and could be alleviated with data augmentation techniques.

Figure 5.11. Bland-Altman plot, comparing the estimated (VRALG) and ground truth (VRGT)
ventilation rates. Local 90% levels of agreement (LoA) were calculated every
0.5 min−1 over a centered 3 min−1 window. Segment inclusion was based on the
proposed quality control model.
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5.1.3 Deep learning for impedance-based ventilation detec-
tion during continuous manual chest compressions

One of the major limitations of the proposed solution for manual
CC-CPR [198] is the reliance on force and acceleration data to filter
out chest compression artifacts. The removal of this artifact is critical
for the solution, as it enables the detection and characterization of
fluctuations. However, force and acceleration recordings require the
use of a Q-CPR pad, which is only compatible with Philips devices
(ZOLL devices acquire only acceleration, and Stryker does not have
currently a technology for CD measurement) and may not always be
available. Different adaptive filters based solely on TI and/or ECG
(also acquired through defibrillation pads) data could enable a more
universal solution, but could also affect performance. Another option
would be the use of deep learning models. Since such models do not
require handcrafted features, no preliminary fluctuation detection
would be needed, and solutions could be fed directly with minimally
filtered TI data. This section describes initial experiments and results
on the application of deep learning segmentation architectures to the
detection of ventilations in TI during manual CC-CPR [205].

The study was conducted using the same final dataset as in J12 [198]
(see Section 5.1.2), comprising 2,551 one-minute CC-CPR segments
from 367 different patients. The segments included TI, CD (thus force
and acceleration) and capnogram signal recordings. The ventilations
annotated in the capnogram were used as ground truth for training
and evaluation. CD, force and acceleration data were not used by the
deep learning solution, but enabled direct performance comparisons
with other solutions.

A U-Net [188] architecture was implemented (see Figure 5.11). In
summary, a U-Net is a particular type of convolutional neural network 2

2 Convolutional neural networks are typically hierarchical deep learning architectures.
They are fundamentally built on convolutional layers, which produce new representa-
tions of input data by applying different filters or kernels. Hierarchical levels are
separated by strided convolutions or pooling layers, which downsample the data while
retaining critical information. Thus, the first layers of the network learn to represent
low-level features of the input (e.g, sharp edges), which are then progressively used
by deeper layers to learn higher-level features of interest (e.g, QRS complexes, or
even organized heart rhythms).
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used in segmentation problems. It consists of a encoding path, which
gradually downsamples the input signal while capturing high-level
and context-related features, and a decoding path, which restores the
original dimensions. Direct connections between encoding-decoding
level pairs allow decoding layers to combine contextual information
coming from deeper levels with lower-level or finer-detail features
that were lost in the encoding process. The implemented architecture
consisted of four hierarchical levels, with 4:1 max-pooling operations
(downsampling operations which select the maximum value among
the samples involved) between levels. So, for a TI sampling frequency
of fs = 50 Hz and a uniform convolution filter size of 16, the receptive
field of the network went from 0.32 s at input level to 20.48 s at the
fourth/deepest level. Given the size of the network and the limited
training data, separable convolutions3 were employed to reduce model
complexity. Dropout 4 layers were also included to prevent overfitting.

The network was fed with minimally processed — resampling to
fs = 50 Hz and high-pass filtering at 0.06 Hz to remove the baseline
component — one-minute TI segments. As in J12, a signal padding
of 228 samples (∼ 4.5 s) was included at both ends of the segment.
To train the network, a target/label signal y(n) of the same size as
the input TI segments was composed; samples took value y(n) = 1 if
corresponding to an inspiration phase in the time-aligned capnogram,
and y(n) = 0 otherwise. Once trained, the network returned a signal
p(n) with the predicted probability of each input TI sample being
part of an inspiration. Figure 5.2 shows an example of all the signals
involved in the training and prediction processes of the network.

To enable comparisons between solutions, the network was eval-
uated in terms of the typical performance metrics used in discrete
detection problems: SE, PPV and F1. Predicted ventilation instants

3 A typical one-dimensional convolutional layer applies multichannel filters, which
for Ni input and No output channels, and a filter size of L, implies Ni ×No × L + No
trainable weights. Separable convolutions split the process into a depthwise convolution
(single-channel filtering of input channels) and a pointwise convolution (combination
of intermediate channels) for a generally much lower number of trainable weights.

4 During the training process, dropout layers randomly deactivate a given proportion
of neurons, preventing the network from over-fixating on specific details and forcing
it to generalize better.
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Figure 5.13. Example of the signals involved in the U-Net ventilation detection solution: (a)
thoracic impedance (TI), high-pass filtered to remove baseline components; (b)
time-aligned capnogram, used as ground truth to train and evaluate the solution;
(c) target signal y(n) to train the network, taking values y = 1 for samples within
ground truth ventilations and y = 0 otherwise; and (d) output p(n) of the trained
network, trying to predict y(n) from input TI samples.

were considered at the largest peaks of p(n) ≥ 0.5, and were deemed
correct if within an inspiration phase annotated in the capnogram
(with a 0.5 s safety margin). A patient-wise 5-fold CV strategy was
followed, with fold assignment quasi-stratified so each fold included
a similar number of patients, segments and ventilations.

Table 6 shows the median (IQR) performance metrics of the U-Net
solution. Despite the lack of reference signals, the U-Net was close
in performance to the Kalman/RNN solution in J12 [198], and even
outperformed a preliminary solution [204] (based on LMS filtering

Table 6. Median (IQR) performance metrics of proposed ventilation detection solutions

Solution F1 (%) SE (%) PPV (%)

Per-segment evaluation

U-Net [205] 88.5 (66.7 – 100.0) 90.0 (69.6 – 100.0) 88.9 (71.4 – 100.0)

Kalman/RNN [198] 89.1 (70.8 – 99.6) 93.3 (75.0 – 100.0) 90.0 (68.5 – 100.0)
LMS/RF [204] 85.2 (66.4 – 96.4) 87.5 (64.0 – 100.0) 87.9 (68.8 – 100.0)

Per-patient evaluation

U-Net [198] 82.2 (66.7 – 93.3) 83.1 (65.3 – 94.2) 84.9 (71.4 – 95.0)

Kalman/RNN [198] 84.1 (69.0 – 93.9) 86.5 (71.6 – 95.1) 85.4 (68.3 – 94.7)
LMS/RF [204] 80.3 (65.2 – 90.7) 80.0 (59.6 – 91.5) 83.9 (69.0 – 93.4)
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and RF classification) which also relied on CD recordings to derive
compression instants. Note that both these solutions already outper-
formed in about 15 and 10 points, respectively, previous solutions in
the literature (see Table 5). Also, the small loss in performance of the
U-Net could be easily outweighed by its potential applicability to a
broader range of scenarios — further research is needed to assess its
generalizability to different defibrillator devices. On the negative side,
the solution does not explicitly characterize ventilations; additional
methods would thus be needed to measure morphological features
such as amplitudes.

5.2 Results related to objective 2

Multi-center studies and clinical trials are of great interest to re-
suscitation science, as they allow for larger study cohorts and help
minimize EMS and population biases. However, different EMS agen-
cies may use defibrillator devices from different vendors, each with
its particular signal acquisition and CPR analysis tools, making it
difficult to harmonize CPR quality analyses. Proprietary analysis
software may also require considerable human input [147], poten-
tially unfeasible for large study datasets. The many solutions in the
literature to characterize chest compressions [99, 100, 101, 126, 102]
offer an opportunity for ad-hoc automatic analyses. However, most
of these solutions have been validated only in homogeneous datasets,
and usually under controlled conditions (not considering signal loss,
ROSC events, and other possible but frequent complications). As
part of this thesis, a unified methodology for automatic CPR quality
analysis in large multi-device datasets was developed and evaluated.
This study resulted in a JCR publication (J21) [199].

5.2.1 J21: Methodology and framework for the analysis of

cardiopulmonary resuscitation quality in large and

heterogeneous cardiac arrest datasets

For this study, all defibrillator files available in the PART database
were initially considered. Files from three major defibrillator com-
mercial brands were included: Philips, Stryker/Physio-Control and
ZOLL. As a first step of the proposed framework, defibrillator files
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were converted to a common MATLAB (The MathWorks Inc., Natick,
MA, USA) format to enable uniform processing (see Figure 5.14).
This new format included general file information (original file name,
device model, date and time, ...), all available biomedical signal
waveforms, and timestamps for the most relevant device events (such
as defibrillation shocks or rhythm analyses). The chest compression
instants identified by the defibrillator device or associated software
were also included. In addition, relevant clinical data (ROSC and
airway insertion annotations, for this study in particular), available
in spreadsheet format, were automatically linked and incorporated.

Episodes not suitable for the analysis of chest compression (less
than 1 min of interpretable TI or CD recordings) were discarded in a
preliminary data screening. Episodes involving several defibrillator
files were also discarded or restricted to the most representative file
when synchronization was unreliable. The final dataset included data
from 2232 OHCA cases (2356 defibrillator files): 925 (926) Philips,
389 (389) Stryker, and 918 (1041) ZOLL.

All defibrillator files were subjected to a fully automatic annotation
process, including the annotation of: (a) chest compression instants,
(b) signal unavailability periods, (c) ROSC intervals, and (d) start and
termination of resuscitation efforts. Specific details were as follows:

• Chest compressions: State-of-the-art algorithms were applied and
adapted for the identification of chest compressions in the different
signals available. Compression instants in the TI (Philips, Stryker)
were annotated using the solution by Alonso et al. [99] (see Section
2.1.2). For Philips cases, compressions in the CD were identified
as negative peaks < 1.5 cm with a minimum separation of 0.35 s,
as proposed by Ayala et al [100]. For ZOLL cases, where the CD
signal is zero-centered (see Figure 5.15), the solution by Alonso et
al. was adapted; a 1 – 5 Hz band-pass filter and a 1 – 2 cm ampli-
tude adaptive threshold were considered. When both TI and CD
recordings were simultaneously available, compressions detected
in the CD were prioritized. Compression series were defined as
groups of 5 or more consecutive compressions without interrup-
tion (procedurally defined as > 3 s [127]); isolated compressions
not part of of compression series were discarded.
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Figure 5.15. Example of signals from different monitor-defibrillators suitable for chest com-
pression analysis: (a) compression depth (CD) from a Philips MRx, (b) thoracic
impedance (TI) from a Stryker/Physio-Control LP12, and (c) CD from a ZOLL
X-Series. Device chest compressions are depicted as red dashed lines.

• Signal availability: Episode intervals with unavailable signal sources
for compression analysis were annotated for exclusion in the cal-
culation of CPR quality metrics. For Stryker and ZOLL records,
unavailability was derived directly from the device event log. For
Philips records, TI and CD were deemed unavailable for TI values
< 30 Ω or > 200 Ω, and acceleration values < 5 m s−2, respectively.
For episodes involving multiple defibrillator files, blind intervals
between different files were also annotated as unavailable.

• ROSC: Intervals with spontaneous circulation were identified using
EMS ROSC annotations, which were automatically extracted from
linked clinical data spreadsheets. Transient ROSC intervals were
annotated covering the longest compression pause in the vicinity
of an EMS ROSC timestamp (considering also the interval from
last compression to end of file). For sustained ROSC events, the in-
tervals were extended to the end of the file; any chest compression
within a ROSC interval was discarded.

• Resuscitation interval: The span of resuscitation efforts was defined
according to Kramer-Johansen et al. [58], i.e., from first compres-
sion, defibrillation shock or rhythm analysis, to last compression
or onset of sustained ROSC. Sustained ROSC timestamps were de-
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rived from EMS clinical annotations, whereas shocks and rhythm
analyses were identified from the device event log. In the case of
compressions, a simple heuristic was applied to avoid compression-
like artifacts: given a compression series of length L< 30 s at the
start or end of the episode, the series was considered an artifact
and discarded if followed or preceded, respectively, by a pause> L
not corresponding to a shock, rhythm analysis or ROSC. A similar
procedure was applied at ROSC boundaries.

The automatic annotations were manually audited using a purpose-
built graphical interface. In addition, intervals with uninterpretable
signals were annotated as noise to be excluded from quality metric
calculations. Annotation of ROSC was especially relevant, as clinical
data included a single timestamp per episode, corresponding to the
first ROSC event. Secondary ROSC events were annotated for 132
cases, associated with pauses in chest compressions > 1 min during
organized heart rhythms. ROSC intervals were also annotated in 87
cases with no clinically documented ROSC events. After data review,
compression quality metrics were computed using both the automatic
and the manually audited annotations. CCF, CCR and compression
interruptions were considered as quality metrics (results related to
interruptions are omitted in the following due to high redundancy
with CCF ones). Two different analysis intervals were considered:
the entire resuscitation period, and the airway insertion period (from
the first advanced airway insertion attempt, to successful insertion
or abandonment of insertion efforts).

Table 7 summarizes the errors of the automatic analysis procedure
for the entire resuscitation episode. Median errors below 2% in CCF
and 1 min−1 in CCR were measured for all devices. The proportion
of episodes with important errors (> 10% in CCF and > 10 min−1 in
CCR) were below 10% in all cases. Median (IQR) errors in CCR and
CCF, as well as important errors in CCR, were larger for Stryker de-
vices, which only include TI recordings (less reliable, in general, than
CD). Important errors in CCF were more similar between devices,
and were related primarily to ROSC events. The 37.4% of episodes
with secondary or undocumented ROSC events presented important
errors in CCF. By contrast, only the 2.5% of episodes without ROSC
events showed important errors.
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Table 7. Median (IQR) analysis durations and unsigned errors in automatic quality metric
calculation for the entire resuscitation period

CCF CCR

Device (N) duration (min) error (%) > 10% error (min−1) > 10 min−1

Philips (925) 28.7 (19.3 – 34.9) 0.5 (0.1 – 1.9) 92 (9.9%) 0.3 (0.1 – 0.7) 1 (0.1%)
Stryker (389) 19.0 (12.5 – 27.1) 1.6 (0.6 – 3.9) 36 (9.3%) 0.8 (0.3 – 2.5) 12 (3.1%)
ZOLL (918) 21.8 (14.8 – 29.2) 0.7 (0.3 – 2.0) 68 (7.4%) 0.2 (0.1 – 0.6) 6 (0.7%)

TOTAL (2232) 23.6 (15.6 – 31.3) 1.2 (0.8 – 3.0) 196 (8.8%) 0.3 (0.1 – 0.9) 19 (0.9%)

Table 8 shows the errors of the automatic procedure in the analysis
of the airway insertion period. This period was selected as a short-
duration counterpart of the entire resuscitation analysis, but also to
highlight another important aspect of the proposed methodology:
the ability to automatically define and execute analyses in terms of
clinical or other external information. The analysis was limited to the
episodes for which the relevant airway insertion timestamps were
available, and for which TI or CD recordings were present in > 50%
of the insertion period. Median (IQR) errors were lower than for the
entire resuscitation, possibly because error sources concentrate in
parts of the episode which may often not coincide with the airway
insertion interval. By contrast, the proportion of episodes presenting
important CCR errors was larger for all devices.

Table 8. Median (IQR) analysis durations and unsigned errors in automatic quality metric
calculation for the airway insertion period

CCF CCR

Device (N) duration (min) error (%) > 10% error (min−1) > 10 min−1

Philips (607) 1.3 (1.0 – 3.0) 0.0 (0.0 – 0.0) 21 (3.5%) 0.0 (0.0 – 0.3) 10 (1.6%)
Stryker (114) 1.3 (0.8 – 3.5) 0.3 (0.0 – 2.5) 8 (7.0%) 0.5 (0.1 – 1.7) 5 (4.4%)
ZOLL (418) 1.0 (0.7 – 3.0) 0.2 (0.1 – 1.0) 11 (2.6%) 0.1 (0.0 – 0.4) 7 (1.7%)

TOTAL (1139) 1.2 (0.8 – 3.0) 0.0 (0.0 – 0.7) 40 (3.5%) 0.0 (0.0 – 0.5) 22 (1.9%)

Finally, the performance of the compression detection algorithms
used in the study was evaluated and compared to that of defibrillator
devices and their associated software. The analysis intervals were
defined using audited data (including the start/end of resuscitation
and both ROSC and noise intervals), so potential errors were limited
to those of the detection algorithms. As show in Table 9, errors were
overall low both for the study algorithms and for vendor solutions.
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TI-based compression detection was, in general, more error prone
than CD-based one. In every case, the algorithm used in the study
was at least as good as its commercial counterpart.

Table 9. Median (IQR) unsigned errors in CPR quality metrics due to malfunction of automatic
chest compression detection algorithms.

CCF CCR

Device N error (%) > 10% error (min−1) > 10 min−1

Chest compression instants from study algorithms

Philips 925 0.2 (0.0 – 0.6) 10 (1.1%) 0.2 (0.1 – 0.7) 1 (0.1%)
- TI 894 0.8 (0.3 – 1.9) 33 (3.7%) 0.5 (0.2 – 1.0) 2 (0.2%)
- CD 531* 0.1 (0.0 – 0.3) 2 (0.4%) 0.3 (0.1 – 0.6) 0 (0.0%)
Stryker (TI) 389 0.9 (0.4 – 2.1) 5 (1.3%) 0.7 (0.3 – 2.2) 10 (2.6%)
ZOLL (CD) 918 0.4 (0.2 – 0.7) 4 (0.4%) 0.2 (0.1 – 0.4) 1 (0.1%)

Chest compression instants from device software

Philips (CD) 531* 0.4 (0.2 – 1.0) 3 (0.6%) 0.3 (0.1 – 0.6) 0 (0.0%)
Stryker (TI) 389 1.8 (0.7 – 4.0) 27 (6.9%) 1.4 (0.4 – 3.4) 24 (6.2%)
ZOLL (CD) 918 0.4 (0.1 – 1.1) 20 (2.2%) 0.5 (0.2 – 1.4) 14 (1.5%)

* From 886 Philips files with CD, only 531 included compression annotations.

5.3 Results related to objective 3

The PART study [92] assessed for differences in clinical outcome
between ETI and LT initial advanced airway strategies, but did not
consider CPR quality variables. The algorithms and methodologies
developed in the thesis resulted in an extensive characterization of
CPR in the PART database, enabling comparisons of potential clinical
relevance between airway groups. Three major aspects of CPR were
considered: chest compression quality metrics, ventilation rates, and
ventilation amplitudes in the TI. The results of these studies led to
three JCR publication, namely J31 [200], J32 [201] and J33 [202], which
are described in the following. Preliminary and summary results
were presented in different international conferences [214, 215, 216,
217, 218].

5.3.1 J31: Airway strategy and chest compression quality in

the Pragmatic Airway Resuscitation Trial

The initial study dataset comprised all the electronic defibrillator
files and associated clinical data available in the PART database. Data
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preparation was shared with J21 [199] (see Section 5.2.1), compris-
ing: conversion of defibrillator files to a common MATLAB format,
integration of clinical data, and automatic annotation and posterior
manual review of chest compression instants, start and end of CPR,
noise/signal unavailability sections and ROSC intervals. The follow-
ing inclusion criteria were applied after data review: at least one ETI
or LT advanced airway insertion attempt, minimum duration of CPR
of 3 min, and minimum availability of TI or CD signals suitable for
compression analysis of 50% of the CPR duration. The final study
cohort included 1996 patients, 1001 and 995 assigned, respectively, to
LT and ETI initial airway strategies.

Manually audited data were used to compute CPR quality metrics,
including CCF, CCR, and individual and total interruptions in chest
compressions; CD was not considered due to potential biases between
different devices. A procedural definition of interruption of 3 s was
used. The interval of resuscitation was defined according to Kramer-
Johansen et al. [58], i.e., from first chest compression, shock or rhythm
analysis, to last compression or onset of sustained ROSC. CPR quality
metrics were calculated for the entire resuscitation episode, and for
resuscitation periods after and before airway insertion (defined as
successful airway insertion or abandonment of insertion efforts, as
reported by EMS personnel). Other resuscitation periods (including
the span of airway insertions and different 3 min epochs) were also
considered, but did not add value to the results; the results of these
analyses can be found in J31 [200] as supplementary material.

Table 10 shows the comparison of CPR quality metrics between LT
and ETI patient groups. Group assignment was based on intention-
to-treat, i.e, the initial airway strategy assigned according to the trial
protocol. Quality metrics were compliant with resuscitation guide-
lines. For the 76.4% of patients, the CCR was in the recommended
range of 100 – 120 min−1, and only for the 6.5% of patients deviated
by more than 10 min−1. The CCF was above 80% and 60% for the
84.3% and 98.9% of patients, respectively. No significant differences
in CCR or CCF were observed between airway groups for any of the
periods considered. The mean duration of individual interruptions
was also similar (12.6 LT vs 13.0 ETI, p = 0.78). The number and
total duration of interruptions were significantly larger for ETI, but
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Table 10. Mean (SD) chest compression variables for LT and ETI airway groups

Time-period LT ETI p-value*

Analysis duration (min)

Entire resuscitation 22.6 (10.8) 25.2 (11.3) < 0.001
Before airway insertion 7.7 (4.9) 11.0 (5.8) < 0.001
After airway insertion 16.2 (9.8) 15.9 (9.9) 0.45

CCF (%)

Entire resuscitation 87.9 (8.4) 87.1 (8.7) 0.05
Before airway insertion 86.9 (12.4) 87.3 (10.6) 0.49
After airway insertion 88.8 (9.1) 88.2 (9.8) 0.17

CCR (min−1)

Entire resuscitation 113.7 (9.1) 114.0 (10.5) 0.59
Before airway insertion 112.6 (11.2) 113.0 (11.2) 0.45
After airway insertion 113.6 (11.0) 113.8 (10.9) 0.72

* Calculated with t-test

mostly due to a longer resuscitation time (no differences in CCF).
This concerned mainly the time before airway insertion, and could
have been caused by unsuccessful or longer airway insertions in
the ETI group. However, in contrast to older studies [81], it did not
generally result in major CPR interruptions. Whether it could have
affected outcomes due to impaired ventilation is unclear.

5.3.2 J32: Airway strategy and ventilation rates in the Prag-
matic Airway Resuscitation Trial

The initial study cohort comprised all cases in the PART database
with capnogram recordings, including defibrillator files from three
major commercial brands: Philips, Stryker and ZOLL. To ensure uni-
form processing, the common format files derived from J21[199] and
J31 [200] were considered. Ventilations were first automatically anno-
tated in the capnogram [107], and then manually reviewed. Intervals
with uninterpretable capnogram were also manually annotated. After
data screening, the following inclusion criteria were set: successful
ETI or LT airway insertion (according to clinical Epistry data), and
> 50% interpretable capnogram availability (with minimum duration
of 3 min) from advanced airway insertion to termination of CPR. The
final study cohort comprised 1010 cases (583 Philips, 36 Stryker, and
436 ZOLL). Successful airway insertion corresponded to LT and ETI
in 714 and 296 cases, respectively.



5.3 results related to objective 3 89

Ventilation metrics were computed in the post-airway resuscitation
interval (from airway insertion to end of CPR) using the reviewed
ventilations annotated in the capnogram. TI was disregarded for ven-
tilation analysis due to its lower reliability and the high availability
of capnography after advanced airway insertion; the vast majority of
ZOLL files also did not include TI recordings. The VR was calculated
every 10 s as the direct count of ventilations in a one-minute window.
Exposure to hypoventilation and hyperventilation were defined as
VR< 6 min−1 and VR> 12 min−1, respectively.

Table 11. Median (IQR) ventilation variables for LT and ETI airway managed cases

ETI LT p-value*

Analysis time (min) 16.4 (11.0 – 23.3) 16.7 (10.2 – 22.7) 0.78

VR (min−1) 8.0 (6.5 – 9.6) 7.9 (6.5 – 9.7) 0.94

Hypoventilation
Total duration (min) 1.8 (0.0 – 5.6) 1.7 (0.0 – 6.1) 0.94
Time fraction (%) 10.5 (0.0 – 32.1) 11.5 (0.0 – 36.6) 0.60

Hyperventilation
Total duration (min) 0.4 (0.0 – 2.4) 0.4 (0.0 – 2.2) 0.91
Time fraction (%) 2.1 (0.0 – 15.0) 1.9 (0.0 – 13.1) 0.99

* Calculated with Mann-Whitney U test

Table 11 shows the median (IQR) ventilation metrics in post-airway
resuscitation for patients managed with LT and ETI. No significant
differences were observed for any ventilation metric. No differences
were observed either for other ranges of hyperventilation (mild: 12 –
16 min−1, moderate: 16 – 20 min−1, severe: > 20 min−1). Compared to
the guideline recommendation of 10 min−1 [17, 36], VRs were rather
low. Exposure to hypoventilation was moderate, with the 33.2% of
patients affected > 25% of time. Exposure to hyperventilation was
low, with only the 17.2% of patients affected > 25% of time despite
the low definition threshold of 12 min−1. Only 16 patients (1.6%)
received severe hyperventilation (VR> 20 min−1) > 25% of time.

The impact of exposure to hypo- and hyper-ventilation in OHCA
outcomes was also analyzed. The analyses were based on generalized
estimating equation models, with the durations of hypoventilation and
all hyperventilation subgroups as independent variables. The models
were adjusted for typical confounding demographic variables (age,
sex, witnessed arrest, bystander CPR, ...) as well as airway treatment
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group. Significant associations with outcomes were observed for
hypoventilation (negative) and all hyperventilation ranges (positive).
However, confidence intervals were large and results were not con-
sistent for all outcomes considered (ROSC, survival at 72 h, survival
to hospital discharge, and survival with good neurological status).
Further research is needed to verify the veracity of these results.

As a secondary objective of this study, and in line with the vali-
dation of compression detection algorithms in J21 [199] (see Section
5.2.1), manually audited ventilations enabled the validation of ven-
tilation detection solutions for potential application in large multi-
device datasets. Table 12 shows the performance metrics observed
for the solution by Aramendi et al. [107]. The analysis was restricted
to interpretable capnogram intervals. Automatic ventilations were
deemed correct if the onset of expiration was within 1 s of that of an
audited ventilation. Median performance metrics were above 95%
for every airway device and defibrillator brand considered. Overall,
the 64.2% and 80.6% of patients presented F1 scores above 95% and
90%, respectively. Figure 5.16 shows a more detailed distribution of
patients for different performance score bands. There were 23 (3.2%)
LT- and 20 (6.8%) ETI-managed patients for whom SE was below
50%. This was mostly due to capnogram sections below the 5 mmHg
mark, which were undetectable by the automatic solution. The higher
proportion of such cases in ETI patients could have been due to a
worse patient status, consistent with the findings of the PART trial,

Table 12. Median (IQR) performance metrics of the ventilation detection solution by Aramendi
et al. [107]

Device N F1 (%) SE (%) PPV (%)

LT advanced airway

Philips 354 96.6 (91.3 – 98.7) 96.8 (88.0 – 99.2) 97.5 (93.6 – 99.2)
Stryker 21 97.9 (95.9 – 98.9) 98.2 (94.4 – 100.0) 98.2 (93.8 – 100.0)
ZOLL 339 97.6 (94.5 – 99.2) 98.7 (95.4 – 100.0) 97.7 (95.0 – 99.0)

TOTAL 714 97.2 (93.2 – 99.0) 97.8 (92.8 – 100.0) 97.6 (94.3 – 99.4)

ETI advanced airway

Philips 184 95.0 (86.2 – 98.5) 95.9 (86.1 – 98.9) 97.3 (91.0 – 99.2)
Stryker 15 98.0 (94.3 – 99.8) 98.3 (94.0 – 100.0) 99.3 (94.8 – 100.0)
ZOLL 97 97.1 (92.1 – 99.2) 98.1 (92.6 – 99.6) 98.4 (94.1 – 91.0)

TOTAL 296 95.9 (89.4 – 98.8) 97.0 (88.7 – 99.2) 97.8 (92.3 – 100.0)
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Figure 5.16. Distributions of LT- (left) and ETI-managed (right) patients for different perfor-
mance metric score bands.

but also due to other possible complications, such as endobronchial
intubation. Interestingly, performances were lower for the Philips
MRx (the same device used in the original study); this was probably
an annotation bias, as better capnogram resolution than other devices
may had allowed interpretation of more complex waveforms. This
validation analysis was not included in J32 [201], which had a more
clinical focus, and is currently unpublished.

5.3.3 J33: Novel application of the thoracic impedance to

characterize ventilations during cardiopulmonary re-
suscitation in the Pragmatic Airway Resuscitation Trial

For this study, Philips MRx defibrillator files in the PART database
and associated to the Dallas ROC site were initially considered. The
following inclusion criteria were then applied: successful LT or ETI
airway insertion, at least 1 min of concurrent and good quality TI
and capnogram recordings after airway insertion and during manual
or mechanical CC-CPR, and a minimum of 10 ventilations within this
interval. The quality of the capnogram was assessed visually. Ventila-
tions in the capnogram were first automatically annotated [107] and
then manually reviewed. The time-offset between capnogram and
TI was also manually adjusted. The quality of the TI was indirectly
assessed through the performance of automatic ventilation detection
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solutions (F1 > 80%, evaluated against capnogram annotations): the
J11 solution [197] in case of mechanical CPR (see Section 5.1.1), and a
preliminary version [204] of the J12 solution in case of manual CPR.
Mechanical CPR was identified by monitoring a CCR of 101.7 min−1,
corresponding to the LUCAS-2 device. Manual CPR intervals without
concurrent CD recordings were discarded, as these were required by
the ventilation detection solution. The final dataset included suitable
manual CPR data from 209 cases (132 LT, 77 ETI) and mechanical
CPR data from 94 cases (53 LT, 41 ETI)

The morphology of TI fluctuations due to ventilation was analyzed.
The amplitudes (Zu, Zd) and durations (Tu, Td) of the inspiration and
expiration phases were considered (see Section 2.4.2). Median values
among all available fluctuations were used to characterize each case;
false positive ventilations that did not match capnogram annotations
were discarded. The average VR was also calculated for each episode,
following (17).

Table 13 shows a comparative between LT- and ETI-managed cases.
Separate comparisons were performed for manual/mechanical CPR,
as the detection solutions were based on different filters which could
potentially affect the ventilation waveform. No significant differences
were observed for inspiration/expiration durations. Consistent with
the results in J32 (see Table 11), no differences were observed either for
VR. Significant differences were observed for ventilation amplitudes,

Table 13. Median (IQR) ventilation variables for LT and ETI airway managed cases

Measure (units) LT ETI p-value*

Manual CC-CPR

Zu (Ω) 0.46 (0.32 – 0.68) 0.71 (0.47 – 1.01) < 0.01
Zd (Ω) 0.45 (0.34 – 0.67) 0.70 (0.45 – 0.97) < 0.01
Tu (s) 1.50 (1.24 – 1.70) 1.57 (1.36 – 1.86) 0.03
Td (s) 2.32 (1.95 – 2.86) 2.33 (1.87 – 2.94) 0.78
VR (min−1) 8.5 (6.9 – 10.2) 8.3 (6.9 – 9.3) 0.35

Mechanical CC-CPR

Zu (Ω) 0.74 (0.44 – 1.39) 1.22 (0.78 – 1.74) < 0.01
Zd (Ω) 0.68 (0.43 – 1.27) 1.14 (0.70 – 1.53) < 0.01
Tu (s) 1.52 (1.14 – 1.82) 1.50 (1.19 – 1.82) 0.96
Td (s) 2.68 (2.21 – 3.37) 2.23 (1.66 – 3.29) 0.15
VR (min−1) 7.3 (5.3 – 8.7) 6.4 (5.2 – 8.0) 0.31

* Calculated with Mann-Whitney U test
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50 – 70% larger in ETI-managed cases; this could be associated with
an increased dead-space in LT devices, as part of the insufflated air
must be used to fill the trachea and laryngopharynx. All the results
were consistent between manual and mechanical CPR cases. The
size of the dataset and the low number of survivors — only 9 (3.0%)
patients discharged alive from hospital — were deemed insufficient
for outcome analysis.





6 C O N C L U S I O N S

This chapter summarizes the main contributions of the thesis
work. First, the most important results are highlighted, followed by
a summary of all associated journal and conference contributions.
Then, all research projects and funding sources that have supported
the development of the thesis are noted. Finally, a brief section is
dedicated to potential lines of future research in relation to the results
of the thesis.

6.1 Major contributions of the thesis

The main goal of this thesis was to contribute to the automatic anal-
ysis of ventilation and CPR in large OHCA datasets, with particular
focus on its application in the study of ventilation and airway man-
agement strategies. By the end of the thesis, the main contributions
can be summarized as follows:

• Automatic detection of ventilations during mechanical CC-CPR using
the TI: A solution incorporating dedicated compression frequency-
based adaptive filtering and machine learning classification was
developed [197]. Overall performance similar to capnogram-based
solutions was achieved.

• Automatic detection of ventilations during manual CC-CPR using the TI:
A solution incorporating bidirectional adaptive filtering and time
series classification was designed [198], which outperformed in
about 15 percentage points previous solutions in the literature. A
signal quality control model was also designed, which effectively
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anticipated the performance of the solution on new TI segments,
and which could be used to minimize manual data screening or
to prevent erroneous feedback in real-time applications. A second
ventilation detection solution, based on deep-learning models, was
also developed [205], which did not require reference signals and
could potentially be applied to a broader range of scenarios.

• Automatic analysis of CPR quality in large and heterogeneous OHCA
datasets: Prior state-of-the-art solutions and new procedures were
combined, enabling the uniform and effective automatic extraction
of compression quality metrics in multi-device datasets [199]. Defi-
nition of the resuscitation period, signal availability control, and
ROSC annotation were all automatized. The different compression
detection solutions were validated and proved overall superior to
vendor-specific ones. A literature solution for capnogram-based
ventilation detection was also validated in a multi-device dataset
about 20-fold larger that the one in the original study.

• Characterization of CPR in the PART database: Novel algorithms pro-
posed in this thesis and adaptation of old ones were combined to
answer critical clinical questions in the PART study. Differences in
chest compression quality metrics [200], ventilation rates [201], and
ventilation amplitudes in TI [202] between LT- and ETI-managed
cases were analyzed. Conclusions contributed to advance knowl-
edge in resuscitation science.

6.2 Publications

The thesis work has materialized in several contributions to the
scientific community — formally listed in Sections 6.2.1 and 6.2.2 —,
including:

• Two long papers in journals indexed in the JCR Science Edition
(A1 and A6), and six contributions to national and international
conferences (C1, C2, C3, C6, C10 and C11), related to the first
objective of the thesis.

• One long paper in a journal indexed in the JCR Science Edition
(A3), related to the second objective of the thesis.
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• Three long papers in journals indexed in the JCR Science Edi-
tion (A2, A4 and A5), and 5 contributions to international con-
ferences (C4, C5, C7, C8 and C9), related to the third objective
of the thesis.

6.2.1 Journals indexed in the JCR science edition

A1 Automatic detection of ventilations during mechanical cardiopul-
monary resuscitation
Xabier Jaureguibeitia, Unai Irusta, Elisabete Aramendi, Pamela C.
Owens, Henry E. Wang, Ahamed H. Idris
IEEE Journal of Biomedical and Health Informatics 2020 (IF: 5.773,
4/30) [197]

A2 Airway strategy and chest compression quality in the Pragmatic
Airway Resuscitation Trial
Henry E. Wang, Xabier Jaureguibeitia, Elisabete Aramendi, Jeffrey
L. Jarvis, Jestin N. Carlson, Unai Irusta, Erik Alonso, Tom P. Aufder-
heide, Robert H. Schmicker, Matthew L. Hansen, Ryan M. Huebinger,
M. Riccardo Colella, Richard Gordon, Robert Suchting, Ahamed H.
Idris
Resuscitation 2021 (IF: 6.251, 3/32) [200]

A3 Methodology and framework for the analysis of cardiopulmonary
resuscitation quality in large and heterogeneous cardiac arrest datasets
Xabier Jaureguibeitia, Elisabete Aramendi, Unai Irusta, Erik Alonso,
Tom P. Aufderheide, Robert H. Schmicker, Matthew L. Hansen, Robert
Suchting, Jestin N. Carlson, Ahamed H. Idris, Henry E. Wang
Resuscitation 2021 (IF: 6.251, 3/32) [199]

A4 Novel application of thoracic impedance to characterize ventilations
during cardiopulmonary resuscitation in the Pragmatic Airway Re-
suscitation Trial
Michelle M.J. Nassal, Xabier Jaureguibeitia, Elisabete Aramendi, Unai
Irusta, Ashish R. Panchal, Henry E. Wang, Ahamed H. Idris
Resuscitation 2021 (IF: 6.251, 3/32) [202]

A5 Airway strategy and ventilation rates in the Pragmatic Airway Re-
suscitation Trial
Henry E. Wang, Xabier Jaureguibeitia, Elisabete Aramendi, Graham
Nichol, Mohamud R. Daya, Matthew L. Hansen, Michelle M.J. Nassal,
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Ashish R. Panchal, Dhimitri A. Nikolla, Erik Alonso, Jestin N. Carlson,
Robert H. Schmicker, Shannon W. Stephens, Unai Irusta, Ahamed H.
Idris
Resuscitation 2022 (IF: 6.500, 2/32) [201]

A6 Impedance-based ventilation detection and signal quality control dur-
ing out-of-hospital cardiopulmonary resuscitation
Xabier Jaureguibeitia, Elisabete Aramendi, Henry E. Wang, Ahamed
H. Idris
IEEE Journal of Biomedical and Health Informatics 2023 (IF: 7.700,
3/31) [198]

6.2.2 National and international conferences

C1 Impedance based automatic detection of ventilations during mechani-
cal cardiopulmonary resuscitation
Xabier Jaureguibeitia, Unai Irusta, Elisabete Aramendi, Erik Alonso,
Pamela C. Owens, Henry E. Wang, Ahamed H. Idris
41st Annual International Conference of the IEEE Engineering in
Medicine and Biology Society (EMBC) 2019 [203]

C2 Automatic detection of ventilations using the thoracic impedance
signal during LUCAS chest compressions
Xabier Jaureguibeitia, Unai Irusta, Elisabete Aramendi, Pamela C.
Owens, Henry E. Wang, Ahamed H. Idris
Resuscitation Science Symposium (AHA-ReSS) 2019 [206]

C3 An impedance-based algorithm to detect ventilations during cardiopul-
monary resuscitation
Xabier Jaureguibeitia, Unai Irusta, Elisabete Aramendi, Erik Alonso,
Pamela C. Owens, Henry E. Wang, Ahamed H. Idris
Computing in Cardiology (CinC) 2020 [204]

C4 Thoracic impedance reflects differences between endotracheal and
laryngeal advanced airway during mechanical chest compressions
Xabier Jaureguibeitia, Elisabete Aramendi, Unai Irusta, Ahamed H.
Idris, Henry E. Wang
Resuscitation Science Symposium (AHA-ReSS) 2020 [214]

C5 Effect of airway strategy upon chest compression quality in the Prag-
matic Airway Resuscitation Trial
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Henry E. Wang, Xabier Jaureguibeitia, Elisabete Aramendi, Graham
Nichol, Mohamud R. Daya, Matthew L. Hansen, Michelle M.J. Nassal,
Ashish R. Panchal, Dhimitri A. Nikolla, Erik Alonso, Jestin N. Carlson,
Robert H. Schmicker, Shannon W. Stephens, Unai Irusta, Ahamed H.
Idris
Resuscitation Science Symposium (AHA-ReSS) 2020 [215]

C6 Algoritmo multietapa para la detección de ventilaciones en la impedan-
cia torácica durante la resucitación cardiopulmonar
Xabier Jaureguibeitia, Unai Irusta, Elisabete Aramendi, Henry E.
Wang, Ahamed H. Idris
XXXVIII Congreso Anual de la Sociedad Española de Ingenierı́a
Biomédica (CASEIB) 2020 [208]

C7 Effect of airway strategy upon chest compression quality in the Prag-
matic Airway Resuscitation Trial
Henry E. Wang, Xabier Jaureguibeitia, Ahamed H. Idris, Unai Irusta,
Erik Alonso, Tom P. Aufderheide, Matthew L. Hansen, Ryan M. Hue-
binger, Robert H. Schmicker, Jestin N. Carlson, M. Riccardo Colella,
Richard Gordon, Robert Suchting, Elisabete Aramendi
Annual Meeting of the National Association of Emergency Medicine
Service Physicians (NAEMSP) 2021 [216]

C8 Novel application of thoracic impedance to characterize ventilations
during cardiopulmonary resuscitation in the Pragmatic Airway Re-
suscitation Trial
Michell M.J. Nassal, Xabier Jaureguibeitia, Elisabete Aramendi, Unai
Irusta, Ashish R. Panchal, Henry E. Wang, Ahamed H. Idris
Resuscitation Science Symposium (AHA-ReSS) 2021 [217]

C9 Effect of airway strategy upon ventilation rates in the Pragmatic
Airway Resuscitation Trial
Henry E. Wang, Xabier Jaureguibeitia, Elisabete Aramendi, Michelle
M.J. Nassal, Ashish R. Panchal, Graham Nichol, Mohamud R. Daya,
Matthew L. Hansen, Tom P. Aufderheide, Jestin N. Carlson, Dhimitri
A. Nikolla, Robert H. Schmicker, Shannon W. Stephens, Unai Irusta,
Erik Alonso, Ahamed H. Idris
Annual Meeting of the National Association of Emergency Medicine
Service Physicians (NAEMSP) 2022 [218]
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C10 Efficacy of thoracic impedance for ventilation detection during contin-
uous chest compressions
Xabier Jaureguibeitia, Elisabete Aramendi, Ahamed H. Idris, Henry
E. Wang
Resuscitation Science Symposium (AHA-ReSS) 2022 [207]

C11 Aprendizaje profundo para la segmentación de ventilaciones en
impedancia durante la resucitación cardiopulmonar
Xabier Jaureguibeitia, Elisabete Aramendi, Henry E. Wang, Ahamed
H. Idris
XL Congreso Anual de la Sociedad Española de Ingenierı́a Biomédica
(CASEIB) 2022 [205]

6.3 Financial support

This thesis has been primarily supported by a predoctoral grant
(P1). All projects and funding sources that have supported financially
the development of the thesis are acknowledged in the following:

P1 Ayuda para la formación de personal investigador (PRE-2019-1-0209,
PRE-2020-2-0182, PRE-2021-2-0126, PRE-2022-2-0270). Basque
Government Department of Education, Universities and Re-
search. 2020-2023.

P2 Pragmatic Airway Resuscitation Trial. CPR Process and Ventilation
Ancillary Study, Phase I (INT-UT Houston 19/01). University
of Texas Health Science Center in Houston (TX, USA). January
2019 – December 2022 (22,000€).

P3 Procesado multimodal de señal y aprendizaje automático para la
mejora del tratamiento de la parada cardiorrespiratoria extrahospita-
laria (RTI2018-101475-BI00). Spanish Ministry of Economy and
Competitiveness. February 2019 – September 2022 (96,000€).

P4 BioRes (Biomedical Engineering and Resuscitation) (IT1229-19).
Basque Government Department of Education, Universities
and Research. February 2019 – December 2021 (97,000€).

P5 Multi-center observational study of the relationship of ventilation and
outcomes from cardiac arrest using existing data (R21HL1561969).
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NIH – National Heart, Lung and Blood Institute, USA. February
2021 – January 2023 (22,252.96€).

P6 Inteligencia artificial y nuevas tecnologı́as para el guiado de la ter-
apia de resucitación en la parada cardiorrespiratoria extrahospitalaria
(PID2021-122727OB-I00). Spanish Ministry of Science, Research
and Universities. September 2022 – August 2025 (151,250€).

P7 BioRes (Biomedical Engineering and Resuscitation) (IT1717-22).
Basque Government Department of Education, Universities
and Research. January 2022 – December 2025 (81,200€).

6.4 Future lines of research

The thesis has contributed to the characterization of ventilation and
CPR in large OHCA datasets, and has helped answer some critical
questions regarding ventilation and airway management strategies in
resuscitation. As part of the process, new questions have arisen, and
new opportunities have been identified to improve or complement
the current solutions, all of which could be object of future research
efforts.

• The proposed solution for TI-based ventilation detection during
manual CC-CPR relied on force and acceleration signal data which
may often not be available. Different filtering approaches should
be explored to enable a broader applicability of the solution. Alter-
native approaches to time series classification, such as conditional
random fields, transformers or attention mechanisms, could also
be explored.

• Deep learning models showed also promising results for reference-
free TI-based ventilation detection. Data augmentation techniques
and more recent segmentation architectures [219, 220] could help
close, or even turn around, the current performance gap with other
solutions.

• The simple quality control model designed for TI-based ventilation
detection proved effective, but could be potentially improved using
more sophisticated techniques [212, 221]. The availability of two
different ventilation detection solutions with similar performance
— the Kalman/RNN ones [198] and the deep learning one [205] —



102 conclusions

could allow the design of more universally applicable quality con-
trol models, and posterior refinement of the individual solutions.

• The proposed methodology for automatic CPR analysis in large
multi-device datasets [199] yielded acceptable errors for the most
part, but presented large errors in about 10% of the cases, mainly
due to incomplete ROSC information. Automatic pulse detection
solutions available in the literature [124, 222] could be integrated
to potentially minimize these errors. The concept of signal quality
control could also be extended to chest compression detection to
prevent additional errors. A similar framework could be developed
for ventilation analysis, considering both TI- and capnogram-based
solutions.

• The analyses on CPR quality in the PART database did not reveal
major differences apart from an increased ventilation TI amplitude
and a delayed airway insertion for ETI cases. Outcome differences
favoring LT may have been related to ventilation differences before
and during airway insertion, which were not analyzed. Other anal-
yses of ventilation are possible considering both the capnogram
and the TI in order to highlight outcome related variables.
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Automatic Detection of Ventilations During
Mechanical Cardiopulmonary Resuscitation

Xabier Jaureguibeitia , Unai Irusta , Member, IEEE, Elisabete Aramendi, Member, IEEE,
Pamela C. Owens, Henry E. Wang, and Ahamed H. Idris

Abstract—Feedback on chest compressions and venti-
lations during cardiopulmonary resuscitation (CPR) is im-
portant to improve survival from out-of-hospital cardiac
arrest (OHCA). The thoracic impedance signal acquired by
monitor-defibrillators during treatment can be used to pro-
vide feedback on ventilations, but chest compression com-
ponents prevent accurate detection of ventilations. This
study introduces the first method for accurate ventilation
detection using the impedance while chest compressions
are concurrently delivered by a mechanical CPR device. A
total of 423 OHCA patients treated with mechanical CPR
were included, 761 analysis intervals were selected which
in total comprised 5 884 minutes and contained 34 864 ven-
tilations. Ground truth ventilations were determined using
the expired CO2 channel. The method uses adaptive sig-
nal processing to obtain the impedance ventilation wave-
form. Then, 14 features were calculated from the ventilation
waveform and fed to a random forest (RF) classifier to dis-
criminate false positive detections from actual ventilations.
The RF feature importance was used to determine the best
feature subset for the classifier. The method was trained
and tested using stratified 10-fold cross validation (CV)
partitions. The training/test process was repeated 20 times
to statistically characterize the results. The best ventilation
detector had a median (interdecile range, IDR) F1-score
of 96.32 (96.26–96.37). When used to provide feedback in
1-min intervals, the median (IDR) error and relative error
in ventilation rate were 0.002 (−0.334–0.572) min−1 and
0.05 (−3.71–9.08)%, respectively. An accurate ventilation
detector during mechanical CPR was demonstrated. The
algorithm could be introduced in current equipment for
feedback on ventilation rate and quality, and it could con-
tribute to improve OHCA survival rates.
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I. INTRODUCTION

OUT of hospital cardiac arrest (OHCA) is an important
public health problem. The annual incidence of treated

OHCA in industrialized countries is between 35 and 60 cases per
100 000 persons, with survival rates below 10 % [1], [2]. High-
quality cardiopulmonary resuscitation (CPR) maintains an arti-
ficial flow of oxygenated blood by means of chest compressions
and ventilations, and is essential to improve OHCA survival [3].
Advanced life support resuscitation guidelines recommend both
uninterrupted and high quality chest compressions, and con-
current ventilations with rates of approximately 10 breaths per
minute (min−1) after patient intubation [4]. Hyperventilation
should be avoided because it increases intrathoracic pressure
and may result in degraded hemodynamics [5]. However, hy-
perventilation during CPR is frequent with ventilation rates far
exceeding the recommended values [6]–[8].

Chest compression detection systems are available on
portable cardiac monitors. These technologies use accelerom-
eters or changes in thoracic impedance to detect chest compres-
sions [9]. During treatment, CPR feedback devices may help
to improve rescuer compliance with treatment guidelines [10],
[11]. After treatment, episode debriefing based on these recorded
data may allow for retrospective performance assessment and
quality improvement programs [12]. However, similar tech-
nologies for feedback on ventilation based on the impedance
are not currently commercially available. The capnogram is
the continuous measure of the partial pressure of expired CO2

in respiratory gases. Capnography is the standard method for
detecting ventilations during CPR [13], [14], but this signal is not
available until the placement of an advanced airway. Thoracic
impedance, which is recorded by most defibrillators to check
pad placement and to adjust defibrillation energy, also provides
detailed information on CPR activity [15]. Thoracic impedance
varies with air volume changes in the lungs, and can therefore be
used to identify ventilations. Even when capnography is avail-
able, impedance-based detection of ventilations is important,
either to improve the accuracy of capnography-based ventilation
detection algorithms [13], or to provide indirect evidence of tidal
volume and peak positive ventilation pressures that cannot be
inferred from the capnogram [16], [17].

2168-2194 © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
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Impedance ventilation waveforms are varied in shape, and
the impedance signal is very sensitive to motion artifacts [18],
[19]. Furthermore, during CPR the impedance presents a chest
compression component with a spectrum that may overlap that
of the ventilation waveforms [20]. Before intubation, if CPR
is delivered in sequences of 30 compressions followed by 2
ventilations (standard 30:2 CPR), ventilations can be reliably
identified during compression pauses [16]. After intubation,
chest compressions and ventilations are given concurrently.
Several ventilation detection algorithms have been proposed
for this scenario [13], [20], [21], frequently using the adaptive
filtering techniques originally conceived to remove chest com-
pression artifacts from the electrocardiogram [22], [23]. Since
manual chest compressions are variable in rate and depth, these
adaptive filters often need accelerometer data to model the chest
compression artifact [20].

Mechanical chest compression devices ensure high-quality
chest compressions and have become popular in OHCA treat-
ment. To date, there is no conclusive evidence of improved
survival with mechanical CPR [24], [25], but the use of these de-
vices has become widespread in scenarios like patient transport,
invasive procedures, or prolonged resuscitation [26]. Mechani-
cal chest compressions are stable in rate and depth, so there is
no need for accelerometer data to model compressions [27],
[28]. However, removing the mechanical chest compression
component from the impedance is challenging because it has
larger amplitudes and more spectral components than those
observed during manual CPR [29].

The goal of this study was to determine whether an
impedance-based algorithm can accurately detect ventilations
during concurrent mechanical chest compressions. For this pur-
pose, we implemented an adaptive filter to obtain the ventilation
waveform from the raw impedance signal, designed features to
characterize the impedance ventilation waveform, constructed
an optimal model to identify true ventilations using a Random
Forest (RF) with the best feature subset, and evaluated the
performance of the model to detect ventilations and measure
ventilation rate. A preliminary version of this work has been
reported [30].

II. MATERIALS

The study dataset was part of a large OHCA data repository
collected by the Dallas-Fort Worth Center for Resuscitation Re-
search, as part of the Resuscitation Outcomes Consortium [31].
A cohort of 567 patients treated between October 2012 and
March 2016 were initially considered, those that contained
concurrent impedance and capnography recordings as well as
confirmed mechanical CPR according to the OHCA epistry
data. Signals were acquired with the MRx monitor-defibrillator
(Philips Medical Systems, Andover, MA, USA). The MRx
measures impedance by applying a 32 kHz alternating current
through the defibrillation pads and measuring the resulting volt-
age. The impedance signal was digitized with a sampling rate
of 200 Hz and an amplitude resolution of 0.74 mΩ per least
significant bit. The capnogram was acquired using Microstream
(sidestream) technology, and the signal was sampled at 40 Hz

with 0.004 mmHg resolution. Finally, mechanical chest compre-
sions were given using the LUCAS-2 chest compression device
(Physio-Control Inc/Jolife AB, Lund, Sweden), that delivers
piston-driven compressions at a fixed rate of 100 min−1 and
predefined depth between 1.5–2 inches. All signals from the
MRx device were converted to an open format using custom
Matlab (MathWorks Inc., Natick, MA) tools.

Signal intervals with confirmed LUCAS-2 use were extracted
from the initial 567 patients. Chest compressions were auto-
matically detected in the impedance signal using the algorithm
proposed by Ayala et al. [32], and LUCAS-2 use was identified
when the chest compression rate was fixed at 100 min−1 with
small variability (see Fig. 1(b)). The inclusion criteria for the
intervals was: minimum duration of 100 s with mechanical CPR,
interpretable impedance and capnography signals, and no pauses
in chest compressions longer than 20 s. In the dataset there were
8 917 min of confirmed mechanical CPR use with concurrent
chest compressions, from which 5 884 min were used. Two were
the main reasons to exclude 3 033 min. First, the lack of a proper
gold standard to annotate ventilations because capnography
was either unavailable (2 642 min) or strongly artefacted and
thus uninterpretable (177 min). Second, low quality impedance
or disconnections of the impedance channel (391 min). The
latter give an estimate of how often impedance was unusable
for ventilation detection during mechanical CPR (4.4% of the
available minutes). So finally, 761 analysis intervals from 423
patients were included in the study, with a median (interquartile
range, IQR) time of mechanical CPR per patient of 13 (8–19)
minutes, and a median (IQR) duration of the analysis intervals
of 5.4 (3.2–10.6) minutes. The median (IQR) proportion of time
with concurrent compressions per patient was 98.6 (96.9–100)%
in our data, so most of the time ventilations were provided
concurrently with mechanical CPR.

The capnogram was used to annotate ground truth ventila-
tions. First, the delay between the impedance and the capnogram
caused by gas transport in the sampling tube (sidestream) was
visually assessed and corrected. The delay in the capnogram
line was different for each patient, with a median (IQR) value
of 3.3 (3.1–3.5) s. Then, for each ventilation the insufflation
(downfall) and expiration (uprise) onsets were automatically
detected in the capnogram using the algorithm introduced by
Aramendi et al. [14] (see Fig. 1(c)), and then manually in-
spected and revised. The revised annotations were considered
the ground truth ventilations. The time interval between the
onsets of inspiration and expiration marked the window for
which ventilation detections in the impedance were considered
correct (see Fig. 1(d)). As shown in the figure, the window
for correct detections was prolonged by 1-sec after expiration
onset to properly count those cases in which the impedance
peak occurred shortly after expiration had started. In total,
34 864 true ventilations were annotated in the capnogram, with
a median (IQR) of 72 (43–108) ventilations per patient.

III. METHODS

The ventilation detection method is composed of the three
stages shown in Fig. 2. First, the raw impedance signal is filtered

Authorized licensed use limited to: Universidad Pais Vasco. Downloaded on August 15,2023 at 20:03:26 UTC from IEEE Xplore.  Restrictions apply. 



2582 IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, VOL. 24, NO. 9, SEPTEMBER 2020

Fig. 1. An example of the signals in the study dataset with: (a) the raw thoracic impedance with chest compressions indicated by vertical dashed
lines, (b) the compression rate computed every 2 s, (c) the capnogram to annotate the ground truth ventilations, and (d) the ventilation induced
changes in the impedance obtained through signal processing from the raw impedance in (a) and used to detect ventilations. The compression
rate in (b) was used to confirm the use of the LUCAS-2 device, and the shaded intervals in the capnogram (c) correspond to the true insufflation
intervals. The shaded intervals in (d) are those in which a detected ventilation was considered a true positive detection, and correspond to the
insufflation intervals extended by one second.

Fig. 2. Block diagram of the ventilation detection algorithm. The
impedance signal s(n) is filtered to obtain its ventilation component
sv(n). Then a greedy peak detector detects the instants of the potential
ventilations (tpi ), and a waveform feature vector xi is computed. The
final classifier discriminates true ventilations (green) from false positive
peak detections (red) using the waveform features.

to obtain the ventilation waveform component. Then, impedance
fluctuations are detected and their peak times (tpi

) identified
using a greedy peak detector. The start and end of the fluctuation
are calculated and its waveform is characterized by a vector

of features xi. The greedy detector is designed to detect all
candidate ventilations, with the tradeoff of producing many false
positive detections. So the final stage is a machine learning
classifier based on the waveform features to discriminate true
ventilations (green) from false positives (red).

A. Signal Preprocessing

The raw impedance signal was first downsampled to fs =
50 Hz to ease the design of the filters and reduce the computa-
tional load. In what follows n is the sample index so time is t =
n · Ts, where Ts = 20 ms is the sampling period. A high-pass
filter with 0.05 Hz cut-off frequency was used to remove the DC
component, and a low pass filter with a 2.5 Hz cut-off was used to
remove high frequency residuals, including the high frequency
components caused by chest compressions. Both filters were
designed as 4-tap Butterworth filters, and zero-phase filtering
was deployed. Finally, the most critical element was a Least
Mean Squares (LMS) filter used to remove chest compression
components.

The LMS algorithm was used in the classical configuration to
cancel harmonic interferences [33], but adapted to mechanical
chest compression components following the model introduced
by Isasi et al. [28]. The block diagram of the filter is shown in
Fig. 3, which follows the notation used in this subsection.The
assumption is that after high pass and low pass filtering, the
impedance signal contains two additive components:

s(n) ≈ sv(n) + sc(n) (1)

where sv(n) and sc(n) are the ventilation and compression
components, respectively. These components are uncorrelated
since they represent two independent treatments, compressions
by the mechanical device and ventilations by the rescuer. The
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Fig. 3. Block diagram of the LMS filter used to remove the mechanical
chest compression component from the impedance.

compression component is modeled as a quasi-periodic signal
using a truncated Fourier-series representation with fundamental
frequency fc = 1.667 Hz (100 min−1), and time-varying am-
plitudes ak(n) and bk(n) to adapt to changes in the impedance
signal:

sc(n) =

N∑

k=1

[ak(n) cos(kωcn) + bk(n) sin(kωcn)] (2)

where ωc = 2πfc/fs = 0.209 is the discrete angular fre-
quency of the LUCAS-2 chest compressions, and N is the
number of harmonics in the model. In matrix notation the chest
compression component is sc(n) = xᵀ(n)w(n), where:

x(n) = [cos(ωcn), sin(ωcn). . . cos(Nωcn), sin(Nωcn)]
ᵀ, (3)

w(n) = [a1(n), b1(n). . . aN (n), bN (n)]ᵀ (4)

are the reference signal (harmonics) and coefficient vectors, re-
spectively. The LMS algorithm computes the w(n) coefficients
to minimize the mean squared error E{|e(n)|2} between the
desired signal d(n) = s(n) and the estimated chest compression
component ŝc(n):

e(n) = s(n)− xᵀ(n)w(n), (5)

so the error signal is then the estimated ventilation component,
e(n) = sv(n). The error is minimized using the steepest descent
algorithm, and the gradient at time n of the squared error is:

∇we2 =
∂e2

∂w
=

∂

∂w
(s− xᵀw)2 = −2ex. (6)

The filter coefficients are updated in the opposite direction,
following:

w(n+ 1) = w(n) + 2μe(n)x(n) (7)

where the step-size parameterμ determines the adaptation speed
and tracking capabilities of the filter. The values for the LMS
filter were set to μ = 0.15 and N = 3 after some preliminary
tests.

Fig. 4. Peak detection algorithm. The shaded intervals indicate the
search intervals for the start/end of ventilations, and the constraints on
how to determine these points. In the example for ventilation i the first
global minimum in the search interval was discarded because it did not
meet constraint 3.

B. Greedy Peak Detector

A greedy peak detector was designed to detect local maxima in
the impedance ventilation component, sv(n). For each detected
local maximum i three fiducial time points were calculated: the
start of the ventilation (tsi , insufflation onset), the peak time
(tpi

, end of insufflation), and the end of the ventilation (tei , end
of expiration). As shown in Fig. 4 (shaded intervals) an interval
of approximately 5 s was defined before and after each local
maximum to search for tsi and tei :

tpi
− 5.5 < tsi < tpi

− 0.45 (8)

tpi
+ 0.45 < tei < tpi

+ 5.5 (9)

These thresholds were obtained after some preliminary tests,
but are sensible values considering how ventilations should be
provided. During CPR, ventilation breaths should be delivered
over 1 s (insufflation) [4], so a minimum of 0.45 s is a con-
servative threshold to capture even quick ventilation events.
Recommended ventilation rates are 10 min−1 [4], or about 6 s
per ventilation, so the 5.5 s threshold for insufflation/exhalation
includes even very slow ventilations. Finally, the minimum
separation between detections was fixed at ΔTm = 1.5 s, which
is sufficient for hyperventilation rates of up to 40 min−1.

Three constraints were imposed to find tsi and tei in the inter-
vals defined in eqs (8) and (9). The constraints are graphically
illustrated in the example in Fig. 4, and were applied in order
to all potential timepoints in the search interval for the fiducial
points. For the start of ventilation the constraints were:

1) tsi must correspond to the smallest impedance value in
the interval (tsi , tpi

).
2) The mean slope of the impedance in the interval (tsi ,

tsi + 0.2 s),ms, and the total rise in impedance amplitude
from tsi to tpi

,As, were computed. The projection of that
slope to the peak position had to be in the following range:

0.4 ·As ≤ ms · (tpi
− tsi) ≤ 2 ·As (10)

This is a starting slope constraint relative to ventilation
amplitude. Low projection values are usually the result of
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a slow baseline recovery towards zero, while high ones are
caused by compression component residuals and signal
distortions.

3) The rise in amplitude between tsi and the mid point to
tpi

(half-time rise) should be at least 0.4 ·As, to prevent
selecting tsi at some point far from the actual ventilation.

A similar procedure was followed for tei , but with these
conditions on constraint 2:

0.3 ·As ≤ ms · (tei − tpi
) ≤ 1.5 ·As (11)

and a half-time fall of 0.2 ·As for constraint 3. The values
are smaller for expiration because ventilation waveforms in the
impedance tend to be concave for insufflation and convex for
expiration. Finally, all peaks for which tsi or tei could not be
found were discarded, and for all the detected peaks the condition
that two consecutive ventilations did not overlap was imposed
(tei < tsi+1

).

C. Waveform Feature Extraction

Fourteen features were extracted for each detected peak to
characterize the ventilation fluctuation waveform. The first four
features were the duration of insufflation and expiration, TIi and
TEi

, respectively; and the amplitude change in impedance for the
insufflation and expiration intervals, AIi and AEi

, respectively.
Ten waveform moments were also computed, five for each
ventilation phase. Let us denote by pIi and pEi

the vectors
with the samples of either the insufflation or expiration phase
of ventilation i, but normalized so that the total sum of the
samples is unity. So for the insufflation phase we have pIi of
length LIi and for the expiration phase pEi

of length LEi
. Let

us also denote by zi = [0, 1, 2, . . . , L− 1]/L a vector of length
L = LIi or L = LEi

depending on the case, with equispaced
values between 0 and 1. Then pIi or pEi

can be regarded as a
probability density functions in the [0, 1] support interval, and
we could compute their moments of order � as:

μI� =

LIi
−1∑

n=0

pIi(n) · (n/LIi)
� for � = 1, . . . , 5 (12)

μE�
=

LEi
−1∑

n=0

pEi
(n) · (n/LEi

)� for � = 1, . . . , 5 (13)

The features μI1 , . . . , μI5 and μE1
, . . . , μE5

, form the 10 wave-
form features used to parametrize the waveform during the
insufflation and expiration phases, respectively.

D. Peak Classification

Potential ventilations from the greedy detector were compared
to ground truth annotations, and labeled as true positives (yi =
1, actual ventilation) or false positives (yi = 0, no ventilation).
When more than one peak detection fell in the interval for true
positive detections (Fig. 1(d)), the one with tpi

closest to the
expiration onset in the capnogram was regarded as true positive,
and the rest as false positives. After peak detection and feature
extraction data was formatted as a set of instance-label pairs
{(xi, yi)}i=1,···Np

, where yi are the true/false ventilation labels

for the detected peaks, xi ∈ RM contains the M features for
peak tpi

, and Np is the number of detected peaks. The last step
was to develop a Random Forest classifier to discriminate true
from false ventilation detections.

A RF is an ensemble of nearly uncorrelated decision trees.
Decision trees present some desirable characteristics like inde-
pendence from the underlying data distribution, robustness to
outliers, and protection from correlated and/or bad predictors.
However, individual trees are poor classifiers, deep trees are
prone to overfitting and shallow trees to underfitting. Aggregat-
ing the decisions of B uncorrelated decision trees boosts clas-
sifier performance [34]. To uncorrelate the Tb(x) (b = 1, . . . B)
trees, these are trained with Nb bootstrap samples of the training
data of size Nb < Np, formed by randomly sampling the data
with replacement. In addition, the RF algorithm randomizes
the feature space by randomly selecting a subset of Mb fea-
tures at each tree split (Mb < M ). The final decision of the
B trees for the sample xi is obtained as the majority vote of
the ŷi,b = Tb(xi) for b = 1, . . . B. We chose an in-bag fraction
Nb/Np of 0.5, the number of trees was fixed to B = 100,
and the number of predictors per split to the default value of
Mb =

√
M . Preliminary tests indicated that the choice of these

RF parameters was not critical.
Data were partitioned using a 10-fold CV strategy to train

and validate the classifier. At each iteration 9 folds were used
as training data and the remaining fold as test data. The folds
were partitioned patient wise and in a balanced way, so that
each fold contained approximately 10% of the ground truth
ventilation annotations [35]. All the calculations were weighted
patient-wise to avoid biasing the results towards the patients
with more ventilations in the dataset. Since the results may
depend on the 10-fold CV partition used to train and validate the
classifier, using a single 10-fold CV partition may overestimate
or underestimate the accuracy of our method. To avoid biasing
the results, the process was repeated 20 times with different
random 10-fold CV partitions. And the accuracy metrics were
statistically characterized using the 20 values obtained for each
partition.

One of the salient characteristics of RF classifiers is a built-
in feature ranking called feature importance. Importance was
measured using the permuted out-of-bag (OOB) error. For a
given tree, the subset of the training data left out in the bootstrap
sample (out-of-bag samples) is used to evaluate the model’s
predictions. Then the values for that feature in the OOB sample
instances are randomly shuffled, and the decrease in prediction
accuracy is measured. The decrease is larger for more important
features. The process is repeated for all trees and features,
resulting in a ranking of the features from the most important to
the least. Recursive feature elimination (RFE) based on feature
importance was used to reduce the number of features [36],
[37]. Starting from a full feature model (M = 14), at each step
the classifier was trained and the individual importance of each
feature was computed. Then, the least important feature was
removed and the process repeated until a model with a single
feature was obtained. In this way we had 14 different models,
from M = 14 to M = 1. The feature elimination process was
carried out 200 times, once per test fold.
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E. Evaluation of the Detector

The performance of the ventilation detector was evaluated in
terms of sensitivity (Se), positive predictive value (PPV) and
F1-score (F1), computed as:

Se =
TP

TP + FN
, PPV =

TP
TP + FP

, F1 = 2
Se · PPV

Se + PPV
(14)

where TP, FP and FN are the true positive, false positive and false
negative detections, respectively. There is a large imbalance in
the number of ventilations that each patient contributed to the
dataset, which is associated to how much time the mechanical
compressor was used on each patient. In order make the method
applicable to as many patients as possible, we weighted the con-
tribution of each patient equally. This was done by calculating
the metrics in equations (14) individually for each patient, and
then averaging those values for the final Se, PPV and F1 for the
complete set.

IV. RESULTS

A. Classification Performance

Ventilation detection was evaluated in two stages, first for
the greedy detector and then after adding the classifier. The
greedy detector outputted 55 908 detections, from which 34 615
were actual ventilations and 21 223 were false positives. The
greedy peak detector missed 249 ventilations (0.71% of the total
amount), which were regarded as false negative detections for the
complete algorithm in the subsequent performance evaluations.
The patient-weighted Se, PPV and F1 for the greedy detector
were 99.36%, 62.04% and 76.27%, respectively.

The classifier corrected the false positive detections. The best
compromise for simplicity and performance was obtained for a
classifier with M = 6 features. After adding the classification
block, the median (interdecile range, IDR) value of Se, PPV
and F1 for the complete algorithm were 96.26 (96.15–96.31)%,
96.37 (96.32–96.43)% and 96.32 (96.25–96.36)%, respectively.
The effect of the number of features, M , in the performance
of the algorithm is presented in Fig. 5. The figure shows that
performance was very stable for M ≥ 6.

The selection probability for each feature was estimated as the
proportion of times they were selected, these probabilities are
shown in Fig. 6. For models with more than six features all four
amplitude-duration features were included, and the amplitude of
the insufflation phase (AI ) was the best predictor. A model that
used only AI produced an F1 score of 91.85 (91.78–91.94)%.
No amplitude constraints were imposed on the greedy detector,
so most false positives were caused by small impedance fluctu-
ations, thus the importance of AI . The model tends to select AI

over AE because of the difficulty to accurately determine the
end of exhalation, although both predictors are very correlated
(pearson correlation coefficient of ρ = 0.894). Waveform mo-
ments were also very correlated within the insufflation and exha-
lation phases. The smallest correlation coefficients were found
between moments 1 and 5, with values of 0.931 and 0.915 for
insufflation and exhalation, respectively. Consequently, features
μE2 and μE3 could be used interchangeably (see Fig. 6), and
when only one was used it became the second most selected

Fig. 5. Performance of the detector as a function of the number of
features used in the detector. For M ≥ 6 performance stabilizes, and
the median (IDR) values are zoomed out (F1 ≥ 96.15%) in the box.

Fig. 6. Probability of selecting a feature ordered by the number of
times features were selected.

feature. The selection probabilities for the moments of the
insufflation phase were more evenly distributed.

Finally, Fig. 7 shows some typical examples of the errors made
by the ventilation detection algorithm. Most missed detections
were caused by abrupt changes in impedance, mostly caused
by pauses in chest compressions, that produce transient effects
when using the LMS filter, or by very shallow ventilations
with short durations and possibly low insufflated volumes. Most
false positives were caused by low frequency components in the
impedance, such as motion artifacts caused by rescuers during
treatment.

B. Analysis Per Patient

A relevant sub-analysis is to evaluate how the method per-
forms for each patient, and to evaluate in what proportion of
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Fig. 7. Examples of incorrect ventilation detections. Each example
shows the impedance in grey with the ventilation component super-
posed in blue, and the capnogram with the ground truth ventilations
below. The ventilations output by the detector are indicated by dots and
are shaded in green (true positive, TP) or red (false positive, FP). The
missed ventilations (false negative, FN) are shaded in red.

patients feedback on ventilations could be accurately provided.
Fig. 8 shows the distributions for the performance metrics per
patient. In the boxplot each sample represents a patient, and for
each patient the median value for the metric over the 20-CV
partitions is represented. The proportion of patients with very
low performance metrics (under 90%) is depicted in the right
panel. As shown in the figure, accurate ventilation detection
was possible in a large proportion of patients. The F1-score was
above 95% for 77.1% of patients, and above 98 % for 49.4% of
patients. For a few patients accurate ventilation detection was not
possible with F1 scores under 75% (n = 8). For these patients
the amplitude of the impedance ventilation component was small
(<0.2Ω), probably because the insufflated volume was low [16].

Fig. 8. Per patient performance metrics for all n = 423 patients as
boxplots (left), and for the 10% (n = 43) of patients with lowest detection
accuracy (right). The rightmost graph only shows the proportion of
patients in the low accuracy range (< 90%).

C. Feedback on Ventilation Rate

The most important application of a ventilation detector
during OHCA treatment is to provide feedback on ventilation
rates. For this purpose the algorithm was implemented in the
way it would be incorporated to a monitor-defibrillator. The
detector was programmed to analyze 1-min signal intervals, and
to give feedback on that minute with no information on future
impedance values. The ventilation rate was calculated every
15-s, that is, with a 75% overlap between the 1-min windows.
For each window, ventilation time instants (tpi

) were calculated
using the process outlined in Fig. 2. The ventilation rate for the
interval was calculated as:

VR =
60

median{Δtpi
} (min−1) (15)

These values were compared to those obtained from the capno-
gram’s ground truth annotations, in which ventilation instants
were annotated in the exhalation onset (rise in CO2). The
analysis included all patients, but a separate analysis was done
excluding the patients (n = 43) with low accuracy (F1 < 90%).
For those patients, the impedance had either long intervals
of lower quality signal, and/or very low amplitude ventilation
components which could be associated to low insufflated vol-
umes [16]. A separate sub-analysis was done excluding those
patients, because in those cases the actual problem is not with
ventilation rate but with the quality of ventilations (volumes)
or with the quality of the signal used to give feedback. The
Bland-Altman plot for feedback on ventilation rate is shown in
Fig. 9. The global 90% levels of agreement (LoA) were (−0.82,
1.40) min−1 for all patients, and (−0.51, 1.10) min−1 when
the low F1 patients were excluded. The moving average LoAs
for different VR intervals are shown in the figure, in red when
all patients were included and in green after excluding low F1

patients. Rate was overestimated at rates under 6 min−1 and un-
derestimated at rates above 10 min−1, although errors were small
in all cases. The median (IDR) error and relative error in ventila-
tion rate for all patients were 0.002 (−0.334–0.572) min−1 and
0.05 (−3.71–9.08)%, respectively. Excluding the low F1 patients
the error and relative error were 0.002 (−0.204–0.351) min−1

and 0.06 (−2.45–5.11)%, respectively. So ventilation feedback
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Fig. 9. Bland-Altman plot for feedback on ventilation rate (VR). Venti-
lation rates were computed using 1-min impedance signal intervals and
compared to the ground truth VR obtained from the capnogram. Moving
average levels of agreement (LoA) are shown in red for all patients, and
in green when the patients for which the ventilation detector’s F1-score
was under 90% were excluded (n = 43).

TABLE I
COMPARISON OF THE MEDIAN (IQR) SE AND PPV PER PATIENT OF OUR

ALGORITHM (FROM FIG. 8, LEFT) DURING MECHANICAL CPR WITH
METHODS TO DETECT VENTILATIONS DURING MANUAL CPR

could be provided with errors under 9% for all patients, and
under 5% for the patients with better quality impedance, which
in our dataset amounted for over 90% of patients.

V. DISCUSSION AND LIMITATIONS

This paper presents a new approach to impedance-based venti-
lation detection during mechanical CPR that combines adaptive
signal processing and machine learning techniques. As shown
by our results, accurate ventilation detection is possible with
median (IQR) Se and PPV per patient of 99.2 (96.0–100)% and
98.3 (95.4–100)%, respectively (see Fig. 8, left). Previous stud-
ies have addressed the detection of ventilations during manual
CPR using the impedance and capnogram signals, a compar-
ative assessment of our method to those methods is shown in
Table I. Our results are comparable to those obtained using
state-of-the art algorithms based on the capnogram [14], and
were better than those obtained for impedance based methods
during manual CPR [13], [20], [21]. Two reasons could explain
why results were better for mechanical than for manual CPR

in impedance ventilation detection. First, chest compression
components in the impedance are much more stable during
mechanical CPR because the piston is at a fixed position in the
patient’s chest, and compressions are always delivered in the
same way by the machine [29]. Moreover, since the patient is
fixed to the mechanical compressors, other movement artifacts
and low quality signal intervals are less frequent. Second, our
approach combined adaptive signal processing and machine
learning, while the methods presented for manual CPR either
relied on overly complex adaptive filters [20], or were based
on rule-based detection of ventilations [13], [21]. In the future,
new approaches similar to the one presented in this study could
be demonstrated during manual CPR to exploit the potential
of machine learning algorithms [27], and thus provide a better
estimate of how accurate impedance based ventilation detection
could be during manual CPR.

A key application of the ventilation detector is ventilation
rate feedback during CPR to ensure compliance with the rec-
ommended rate of 10 min−1. In our data, ventilation rates
were abnormally low, the median (IQR) ventilation rate per
patient was 6.0 (4.5–8.0) min−1, and rates only exceeded the
recommended values in 12.5% of our patients (for a detailed
account see supplementary materials). These low ventilation
rates were associated with some distinct ventilation patterns (see
figures in supplementary materials). In many cases the patients
were not ventilated for intervals of up to one minute, ventilation
rates were very low, or the ventilation pattern followed the one
observed during 30:2 CPR. Interestingly, the ventilation rates
in our data are similar to the 7 min−1 ventilation rate observed
during 30:2 CPR in a recent study [38], or to the 8 min−1 reported
for the early stages of treatment during ALS [39]. Our data
demonstrates the need for tools like the one presented in this
study, both for feedback during treatment but also as a tool for
retrospective analysis of large OHCA datasets that could shed
light into how patients are being ventilated in the different phases
of a resuscitation episode.

Finally, this study has some limitations. First, the algorithm
was trained and tested using a 10-fold CV architecture and
should be further validated in an independent dataset. Second,
the algorithm was tailored to a piston driven mechanical
CPR device (LUCAS-2), but there are other mechanical CPR
technologies based on load distribution bands (the Autopulse
system by Zoll) in which chest compression components may be
different. Third, the algorithm can only be used during mechan-
ical CPR and given the cost of mechanical CPR devices many
EMS agencies still rely on manual chest compressions, although
there is an increased trend towards the use of mechanical devices.
And fourth, data was obtained from the Philips MRx device,
so the algorithm may need to be readjusted to be used in other
monitor-defibrillators with different impedance acquisition
circuitry.

VI. CONCLUSION

This study demonstrates the feasibility of an accurate
impedance-based ventilation detection during concurrent me-
chanical CPR. The method efficiently combines adaptive signal
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processing techniques to obtain and detect ventilation wave-
forms, with a machine learning algorithm to identify true ven-
tilations. This ventilation detection algorithm could be used be-
fore advanced airway placement and capnography are available
during resuscitation, but also to obtain additional information
on ventilation such as insufflated volumes that are not available
from the capnogram. Its use would broaden both the time feed-
back on ventilation is available, but also the available informa-
tion on the quality of ventilations. Moreover, the method could
also be used to retrospectively assess the effects of ventilations
during CPR in OHCA outcomes, by applying the detector to
large datasets of resuscitation episodes.
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Impedance Based Automatic Detection of Ventilations During
Mechanical Cardiopulmonary Resuscitation

Xabier Jaureguibeitia1, Unai Irusta1,˚, Elisabete Aramendi1, Erik Alonso2,
Pamela Owens3, Henry Wang4, Ahamed Idris3

Abstract— Monitoring ventilation rate is key to improve the
quality of cardiopulmonary resuscitation (CPR) and increase
the probability of survival in the event of an out-of-hospital
cardiac arrest (OHCA). Ventilations produce discernible
fluctuations in the thoracic impedance signal recorded by
defibrillators. Impedance-based detection of ventilations during
CPR is challenging due to chest compression artifacts. This
study presents a method for an accurate detection of ventilations
when chest compressions are delivered using a piston-driven
mechanical device. Data from 223 OHCA patients were
analyzed and 399 analysis segments totaling 3101 minutes of
mechanical CPR were extracted. A total of 18327 ventilations
were annotated using concurrent capnogram recordings. An
adaptive least mean squares filter was used to remove
compression artifacts. Potential ventilations were detected using
a greedy peak detector, and the ventilation waveform was
characterized using 8 waveform features. These features were
used in a logistic regression classifier to discriminate true
ventilations from false positives produced by the greedy peak
detector. The classifier was trained and tested using patient wise
10-fold cross validation (CV), and 100 random CV partitions
were created to statistically characterize the performance
metrics. The peak detector presented a sensitivity (Se) of
99.30%, but a positive predictive value (PPV) of 54.43%. The
best classifier configuration used 6 features and improved the
mean (sd) Se and PPV of the detector to 93.20% (0.06) and
94.43% (0.04), respectively. When used to measure per minute
ventilation rates for feedback to the rescuer, the mean (sd)
absolute error in ventilation rate was 0.61 (1.64) min-1. The
first impedance-based method to accurately detect ventilations
and give feedback on ventilation rate during mechanical CPR
has been demonstrated.

I. INTRODUCTION
Out-of-hospital cardiac arrest (OHCA) is a major public

health problem with a yearly incidence of 29-40 cases per
100 000 persons in Europe, and very low survival rates of
around 10% [1]. Early defibrillation and cardiopulmonary
resuscitation (CPR) are key therapies in the treatment of
OHCA patients. The main purpose of CPR is to artificially
maintain a minimum/sufficient flow of oxygenated blood to
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the heart and brain. This is accomplished by delivering chest
compressions and ventilations.

Quality of CPR is crucial for survival, and should
comply to the recommendations of the resuscitation
guidelines [2]. Chest compressions should be delivered at
rates between 100 - 120 min´1, and depth between 5 - 6 cm
allowing full chest recoil between compressions [2]. The
ventilation rate should be of approximately 10 min´1 and
hyperventilation should be avoided [3]. Hyperventilation
increases intrathoracic pressure and contributes to
hemodynamic deterioration, decreasing the probability
of survival [4]. However, hyperventilation is common during
resuscitation with ventilation rates ranging from moderate
(∼ 14 min´1) to severe (ą 20 min´1) [5].

Great efforts have been made to improve chest
compression quality, either using feedback devices [6] and
training in manual CPR or through the use of mechanical
compression devices [7]. Although the benefits of mechanical
CPR for survival are unclear [7], its use is becoming popular,
specially in scenarios like transport or invasive procedures.
However, there is a need for accurate methods to measure
the presence and characteristics of ventilations during CPR.
The capnogram, which measures the partial pressure of
the expired CO2, can be used to identify ventilations [8].
However, capnography is available only after an advanced
airway is placed, and cannot be used to estimate tidal
volumes. The thoracic impedance is available in most
equipment early during resuscitation, and air blown into the
lungs produces a characteristic ventilation waveform [9].

Chest compressions produce artifacts in the
impedance that hinder the detection of ventilations [10].
Ventilation detection is possible either during pauses in
compressions [11], or after the removal of the compression
artifacts [9], [12]. Suppression of compression artifacts
from the impedance is based on adaptive filters conceived
to remove CPR artifacts from the ECG [13], [14]. These
methods use accelerometer data to track the variable chest
compression frequency of manual CPR [9], [12]. Recently,
adaptive filters have been tailored to remove piston-driven
mechanical compression artifacts from the ECG [15], [16].
In mechanical CPR the frequency of the compressions is
fixed by the device, so accelerometer data is not needed for
artifact removal [15].

This study introduces the first method for ventilation
detection during mechanical CPR using only impedance
data. First, chest compression artifacts are removed using
an adaptive filter, and then potential ventilation fluctuations
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are detected and their waveform is characterized using a set
of features. Those waveform features are fed to a machine
learning algorithm to discriminate ventilation waveforms
from other fluctuations in impedance. The paper is organized
as follows. The study dataset and the data annotation process
are described in section II. The impedance filtering scheme
and the ventilation detector are presented in section III.
Finally, the results and their importance is contextualized in
section IV, followed by the main conclusions of the study.

II. MATERIALS

The study dataset originated from the DFW Center of
Resuscitation Research (UTSW, Dallas) that maintains a
large repository of OHCA electronic files. A total of 296
episodes with the following characteristics were screened:
concurrent recordings of impedance and capnography and
confirmed usage of a LUCAS-2 compression system
(Physio-Control Inc/Jolife AB, Lund, Sweden) in the clinical
records. The impedance was needed to develop the automatic
ventilation detection method, and the capnogram to annotate
the ground truth ventilation events. The electronic files
came from the MRx monitor-defibrillator (Phillips Medical
Systems, Andover, MA, USA). Thoracic impedance was
recorded with a 200 Hz sampling rate and a resolution of
0.74 mΩ. The capnogram was obtained using Microstream
technology (sidestream acquisition) and recorded with a
40 Hz sampling rate and a resolution of 0.004 mmHg.

MRx data were converted to an open file format and
reviewed using custom Matlab (MathWorks Inc., Natick,
MA) tools. First, intervals in which the LUCAS-2 device was
used were traced by identifying a steady chest compression
rate of 100 min´1. The compression rate was determined
using an impedance based automatic compression detection
algorithm [17]. Then analysis intervals during mechanical
CPR were selected with the following inclusion criteria:
minimum duration of 100 s with compression pauses no
longer than 20 s, and concurrent and interpretable impedance

and capnography signals. The final dataset consisted of 399
segments from 223 patients. There were a total of 3 101 min
of signal recordings for analysis. The median (IQR) analysis
time per patient was 13 min (9-19).

Ground truth ventilations were semi-automatically
annotated using the capnogram. Inspiration downstroke and
expiration upstroke instants were automatically detected
using a recently proposed algorithm [8]. Then, all automatic
annotations were visually reviewed by an experienced
biomedical engineer. The capnogram signal was time
advanced (2 - 4 s) to compensate for the gas transport
delay of the sidestream technology, aligning the inspiratory
downstroke (drop in CO2) to the onset of impedance
fluctuations (start of lung air filling). Figure 1 shows an
example, in which the inspiration phase annotated in the
capnogram is shaded. A total of 18 327 ground truth
ventilations were annotated, and the median (IQR) number
of ventilations per patient was 72 (45-112).

III. METHODS

The ventilation detection method is composed of three
stages. First, the impedance is filtered to obtain the
ventilatory waveform. Then, a peak detection algorithm
is used to detect potential ventilation events, which are
characterized using eight impedance waveform features.
This stage was conceived to maximize the detection of
potential ventilation events, at the risk of producing many
false positives. Finally, the classification stage discriminates
these false positives from actual ventilation events using the
impedance waveform features.

A. Ventilation Enhancement

The raw impedance signal, simppnq, was filtered to obtain
the ventilation component, sVpnq. The signal was first
downsampled (fs “ 50 Hz) to ease the design of the
filters. All linear filters were applied in a forward-backward
configuration to avoid phase distortion and time delays. Zero
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Fig. 1. Example of the signals used in the study dataset. The raw impedance with mechanical compression artifacts is shown on top. The middle trace
shows the ventilatory impedance component used to detect ventilations. The bottom trace shows the capnogram for ground truth ventilation annotations.
The inspiration phase between the inspiratory downstroke and the expiratory upstroke are highlighted in the capnogram.

20

Authorized licensed use limited to: Universidad Pais Vasco. Downloaded on August 18,2023 at 06:38:53 UTC from IEEE Xplore.  Restrictions apply. 



phase filtering is possible as 1-min signal windows are
normally analyzed for ventilation rate feedback.

Three filters were used, two linear 4th-order Chebyshev
filters with 1 dB passband ripple, and a least mean squares
(LMS) adaptive filter to remove the chest compression
artifacts. First, a high-pass filter with a cutoff frequency of
0.05 Hz was used to remove the DC component and the slow
baseline drifts. Then the LMS filter was applied, followed
by a low-pass filter with a 1.5 Hz cutoff to remove high
frequency residuals from the LMS filter.

The design of the LMS filter is based on a method
introduced to remove manual chest compression artifacts
from the ECG [14], and has been recently adapted to
remove mechanical chest compression artifacts [16]. The
chest compression artifact, sccpnq, is modeled as a N
harmonic quasi periodic interference of slowly time-varying
amplitudes, akpnq and bkpnq:

ŝccpnq “
N
ÿ

k“1

akpnq cospkωcnq ` bkpnq sinpkωcnq (1)

where ωc = 0.209 is the discrete angular frequency of the
LUCAS-2 100 min´1 compression rate for a 50Hz sampling
frequency. This equation can be expressed compactly as
ŝccpnq “ wTpnqxpnq arranging the in-phase and quadrature
harmonic components as a known input vector xpnq, and the
time-varying amplitudes as filter coefficients wpnq:

xpnq“rcospωcnq, sinpωcnq... cospNωcnq, sinpNωcnqs
T (2)

wpnq “ ra1pnq, b1pnq, a2pnq...aN pnq, bN pnqs
T (3)

In the LMS model, a gradient descent is used to minimize
the mean-square error using instantaneous estimates for the
input signal correlation matrix and the cross-correlation
vector between input and desired signals. Under these
assumptions, the problem is equivalent to minimizing the
instantaneous squared error and filter weights are updated
as:

wpn` 1q “ wpnq ´ µ∇we
2pnq (4)

epnq “ dpnq ´ ŝccpnq “ dpnq ´wTpnqxpnq (5)

∇we
2pnq “ ´2epnqxpnq (6)

where dpnq “ simppnq and epnq “ ŝVpnq is an estimate of the
ventilation component. We chose N “ 6 and µ “ 0.22 after
some preliminary tests, since they produced a good visual
removal of the artifact while ensuring the convergence of
the LMS filter.

B. Detection of potential ventilations

A greedy peak detector was used to identify potential
ventilations in sVpnq. Initially, all peaks in sVpnq were
detected with the only restriction that peaks should be
separated by at least 1.4 s (i.e. maximum ventilation rate
of 40 min-1). Let tp,i denote the time instant at which
peak i occurs. The detector searched for start time ts,i for
ventilation tp,i in the interval tsi P ptp,i´1 , tp,i ´ 0.55q.
Start time was defined as a timepoint of a local minima,

or of an steep change in positive slope. A series of slope
projection tests were done to ensure that ts,i did not fall in
the ascending phase of the impedance. If a start time could
not be determined for tp,i in the prescribed interval, or if
ts,i was separated by more than 6 s from tp,i the peak was
discarded. Once all peak and start times were determined,
ventilation end times were detected, te,i using an analogous
procedure. The definitions of the search intervals for ts,i and
te,i is not critical and was heuristically determined using a
few samples from the dataset.

C. Feature Extraction

The waveform of sVpnq in the interval ts,i ď t ď te,i
was used to compute the 8 waveform features shown in
Fig. 2. These features are the amplitude, duration, area and
curve-length of sVpnq for the inspiration (upstroke) and
expiration (downstroke) phases. Let us denote by ns,i, np,i,
ne,i the sample indexes corresponding to ts,i, tp,i, te,i,
respectively. Then inspiration starts at n1 “ ns,i and ends
at n2 “ np,i, and expiration starts at n1 “ np,i and ends at
n2 “ ne,i. The features are simply calculated as:

Zi “ sVpn2q ´ sVpn1q, Ti “ Ts ¨ pn2 ´ n1q (7)

Ai “ Ts

n2
ÿ

n“n1

sVpnq ´ sVpn1q, cli “
n2
ÿ

n“n1

T 2
s `

.
s
2
Vpnq (8)

where
.
sVpnq in the curve length calculation is the first

difference of sVpnq. So, for a peak detected at tp,i the
following feature vector was obtained:

xi “ rTui, Zui, Aui, clui, Tdi, Zdi, Adi, cldis (9)

Zui

Zdi

clui cldi

tsi Tui tpi teiTdi

Aui

Adi

Fig. 2. Visual representation of the ventilation waveform features

D. Classification

The peak detector was designed to identify all possible
ventilations, so it produces many false positive detections.
A classifier was designed to discriminate the false positives
from the actual ventilations. All detections from the peak
detector were labeled as either yi “ 1, ventilation (true
positive), or yi “ 0, no ventilation (false positive). The
peak at tp,i was considered a ventilation if it fell within the
inspiration phase (extended by 1-s) of the capnogram. When
more than one peak was detected in that region, the peak
closest to inspiration onset was labeled as true positive, and
the rest as false positives.
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The peaks output from the detector formed a dataset of
instance-labels tpx1, y1q, ..., pxn, ynqu P RKˆp0,1q, where
K “ 8 is the number of features. A simple logistic regression
classifier was adjusted to obtain the probability that peak i
corresponds to a ventilation, ppxiq, which is:

ppxiq “
1

1` e´βTxi
(10)

With coefficient and feature vectors β “ rβ0, . . . βKs and
xi “ r1, xi1, . . . , xiKs, respectively. A peak was considered
a ventilation if ppxiq ě 0.5.

The dataset was partitioned patientwise into 10-fold cross
validation (CV) partitions to estimate the accuracy of the
classifier. For each fold the remaining folds were used to
train the classifier, which was then tested on the selected
fold. The process was repeated until all instances of the
dataset were classified. A total of 100 CV partitions were
randomly obtained to statistically characterize the accuracy
of the classifier. In addition, only quasi-stratified partitions
were allowed by enforcing that each fold should deviate by
less than 15% from the proportion of the classes found in the
whole dataset. During training the instances were weighted
so that all patients contributed equally to the model.

The performance of the classifier was evaluated in terms of
sensitivity (Se), positive predictive value (PPV) and F1-score
(F1). Correctly identified ventilations were true positives
(TP), missed ventilations were false negatives (FN) and
peak detections that did not correspond to actual ventilations
false positives (FP). These metrics were computed for the
last stage (classification), but also for the complete solution
since the peak detection stage missed some true ventilations
(FN for the complete solution). Patients were also equally
weighted when computing the performance metrics.

IV. RESULTS

There were 33 432 peak detections output from the peak
detector, 15 234 false positives and 18 198 actual ventilations.
The peak detector missed 129/18 327 ventilations, it had
a high Se of 99.30% but a low PPV of 54.43%. The

classification stage removed most of the false positive
detections. The mean (sd) performance metrics for the 100
CV partitions for a classifier with 8 classification features
were, 93.58% (0.07), 94.33% (0.05) and 93.95% (0.05) for
the Se, PPV and F1. The metrics for the complete
solution (peak detection + classifier) were 92.92% (0.07),
94.33% (0.05) and 93.62% (0.05). Fig 3 shows some typical
cases of false detections and missed detections during peak
detection (cases b/c) and caused by the classifier (case d).

All possible combinations of features were tested for
classifiers with K “ 1, 2, . . . 8 features. The performance
of the best classifier for each K is shown in Fig. 4.
The best results were obtained for a classifier with the
following features: pTu, Zu, Au, clu, Td, Adq. This resulted
in Se, PPV and F1 scores of 93.86% (0.06), 94.43% (0.04)
and 94.14% (0.04) for the classifier and of 93.20% (0.06),
94.43% (0.04) and 93.81% (0.04) for the complete system.
The classifier worked best with upstroke features (inspiration
phase), so Table I shows the mean performance metrics
when only the upstroke or downstroke features were used.
A simpler peak detector and classifier could be built only
using the inspiration phase of the ventilation waveform.

TABLE I
BEST CLASSIFIERS USING UPSTROKE / DOWNSTROKE FEATURES.

Classifier Complete system

Model Se PPV F1 Se PPV F1

Upstroke
Zu 87.8 94.0 90.8 87.2 94.0 90.5
Zu, Au 87.8 94.3 90.9 87.1 94.3 90.6
Tu, Zu, clu 92.8 93.5 93.2 92.1 93.5 92.8
Tu, Zu, Au, clu 93.1 94.0 93.6 92.6 94.0 93.3

Downstroke
Zd 81.7 91.3 86.2 81.2 91.3 86.0
Zd, cld 82.8 90.5 86.5 82.3 90.5 86.2
Td, Zd, cld 86.7 90.6 88.6 86.1 90.6 88.3
Tu, Zu, Au, clu 88.4 91.4 89.9 87.9 91.4 89.6

Then, the detector’s capacity to time-locate the start of a
ventilation was determined for the best solution. The mean

a) TP b) FP c) FN + FP d) TP + FN

Fig. 3. Examples of correct (green) an incorrect (red) detections. From top to bottom the raw impedance, ventilation component and capnogram are
depicted. The first case shows a typical ventilation (TP). The second case corresponds to a FP caused by the transition from compression pauses to
compressions with edge transient filtering effects. In the third case the actual ventilation had no downstroke and was missed (FN), and a peak was labeled
as ventilation later but corresponded to an artifact in the impedance (FP). Finally, the last example shows two ventilations the first is correctly classified
(TP), the second peak was detected but later removed by the classifier (FN) because of its low amplitude.
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Fig. 4. Performance metrics for the best classifier with K features. All
possible combinations of K features were tested.

(sd) absolute error of these time differences was 0.20 s
(0.08) when averaged per patient, or 0.20 s (0.22) for all
ventilations. This shows that our solution locates ventilations
very accurately in time.

Finally, a typical application scenario was evaluated in
which the detector was used to give feedback on the per
minute ventilation rate (VR), estimated as:

VR “
60

∆Tv
pmin´1

q (11)

where ∆Tv is the mean interval between consecutive
ventilation onsets in the 1-min analysis window. A sliding
window of 15 s was used for feedback. The procedure was
repeated for the ventilations detected the most accurate
system, and the ventilation rates from the ground truth
(VR,GS) and algorithm (VR,ALG) were compared. The results
are shown as a Bland-Altman plot in Fig 5. The mean (sd)
absolute error in ventilation rate was 0.61 (1.64) min-1, and
the 90% level of agreement ranges were -1.83 – 1.74 min-1.
In 85.9% of feedbacks the absolute error was under 1 min-1,
and in 95.5% under 2 min-1.

V. CONCLUSIONS

A system to detect ventilations during mechanical chest
compressions was demonstrated, and its value to give an
accurate feedback on ventilation rate was shown. The system
is based solely on the impedance and could therefore be
used in any monitor-defibrillator during resuscitation. This
is, to the best of our knowledge, the first accurate solution
for automatic ventilation rate feedback during mechanical
compressions.
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Impedance-Based Ventilation Detection and
Signal Quality Control During Out-of-Hospital

Cardiopulmonary Resuscitation
Xabier Jaureguibeitia , Elisabete Aramendi , Member, IEEE, Henry E. Wang, and Ahamed H. Idris

Abstract—Feedback on ventilation could help improve
cardiopulmonary resuscitation quality and survival from
out-of-hospital cardiac arrest (OHCA). However, current
technology that monitors ventilation during OHCA is very
limited. Thoracic impedance (TI) is sensitive to air volume
changes in the lungs, allowing ventilations to be identified,
but is affected by artifacts due to chest compressions and
electrode motion. This study introduces a novel algorithm
to identify ventilations in TI during continuous chest com-
pressions in OHCA. Data from 367 OHCA patients were
included, and 2551 one-minute TI segments were extracted.
Concurrent capnography data were used to annotate 20724
ground truth ventilations for training and evaluation. A
three-step procedure was applied to each TI segment: First,
bidirectional static and adaptive filters were applied to re-
move compression artifacts. Then, fluctuations potentially
due to ventilations were located and characterized. Finally,
a recurrent neural network was used to discriminate venti-
lations from other spurious fluctuations. A quality control
stage was also developed to anticipate segments where
ventilation detection could be compromised. The algorithm
was trained and tested using 5-fold cross-validation, and
outperformed previous solutions in the literature on the
study dataset. The median (interquartile range, IQR) per-
segment and per-patient F1-scores were 89.1 (70.8–99.6)
and 84.1 (69.0–93.9), respectively. The quality control stage
identified most low performance segments. For the 50%
of segments with highest quality scores, the median per-
segment and per-patient F1-scores were 100.0 (90.9–100.0)
and 94.3 (86.5–97.8). The proposed algorithm could allow
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reliable, quality-conditioned feedback on ventilation in the
challenging scenario of continuous manual CPR in OHCA.

Index Terms—Adaptive filter, cardiac arrest, cardiopul-
monary resuscitation (CPR), quality control, recurrent
neural network (RNN), thoracic impedance, ventilation.

I. INTRODUCTION

OUT-OF-HOSPITAL cardiac arrest (OHCA) is a major
cause of death in industrialized countries. Emergency

medical services (EMS) assess about 350,000 cases each year in
the US alone, and survival rates to resuscitation efforts are mostly
low, around or below 10% [1]. A patient in cardiac arrest loses
spontaneous circulation and breathing, leading to death within
minutes if not treated. High-quality cardiopulmonary resuscita-
tion (CPR), consisting of chest compressions and ventilations,
maintains a minimum flow of blood and oxygen, and is critical to
improve survival from OHCA [2], [3]. Thus, considerable effort
has been made to improve the overall quality of CPR. Resusci-
tation guidelines [4], [5], [6] are periodically updated with the
latest evidence-based recommendations for CPR delivery. Sup-
portive technologies have also been developed, such as portable
accelerometers to estimate the depth of compressions [7], and
many algorithms have been proposed to extract CPR information
from different biomedical signals [8], [9], [10]. When integrated
into field equipment, these solutions enable real-time feedback
to the rescuer, improving adherence to guideline recommenda-
tions [11]. When used retrospectively, they facilitate the anno-
tation and analysis of large OHCA registries for either quality
programs or research [12]. However, most technical advances in
CPR monitoring, analysis and feedback have focused on chest
compressions. The importance of measuringventilation during
resuscitation is strongly supported by evidence [13], but current
technology to monitor ventilation in OHCA is limited, and the
optimal ventilation strategy remains unclear [14], [15].

Ventilation in OHCA is typically assessed using end-tidal
capnography, which monitors the partial pressure of CO2 in
exhaled gases [16], [17]. However, capnography is not usually
available until late phases of resuscitation, once an advanced
airway is placed, nor does it provide information on insufflated
air volumes. Thoracic impedance (TI) is sensitive to air volume
changes in the lungs, and has been extensively used to monitor
respiratory events [18], [19]. Most basic defibrillators acquire
TI along with the electrocardiogram through the defibrillation

2168-2194 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
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Authorized licensed use limited to: Universidad Pais Vasco. Downloaded on August 18,2023 at 05:50:30 UTC from IEEE Xplore.  Restrictions apply. 



JAUREGUIBEITIA et al.: IMPEDANCE-BASED VENTILATION DETECTION AND SIGNAL QUALITY CONTROL 3027

Fig. 1. Example of a one-minute segment, with all the signals used in the algorithm functioning and development: (a) the raw thoracic impedance
(TI); (b) and (c), chest force and acceleration, used as references to remove compression artifacts from the TI; (d) sv(t), the ventilation component of
the TI, obtained after the preprocessing stage of the algorithm; and (e) the time-aligned capnogram, used as ground truth for training and evaluation.
The ventilations annotated in the capnogram are shaded in blue, and closely match the inflation of fluctuations in sv(t). Additional 5 s of padding
(blurred, outside the green box) were included at both ends to allow the full characterization of fluctuations taking place near the edges.

pads, making it one of the earliest signals available in OHCA.
Thus, it could be used in a range of scenarios, from monitoring
ventilations early during compression pauses [20], to fine-tuning
capnogram readings after patient intubation [16]. Moreover, the
amplitude of the TI fluctuations due to ventilations correlates
with tidal volume [21] and, while patient-dependent, could offer
insights on the effectiveness of ventilation [22].

Impedance-based ventilation detection can be challenging,
though. Ventilatory waves may adopt a wide range of ampli-
tudes and durations [23]. The signal itself is very sensitive to
electrode motion [24], [25], frequent in ambulatory scenarios
such as OHCA. Moreover, during late phases of resuscitation,
ventilations are delivered continuously, concurrently with chest
compressions; these produce a large artifact which has to be
removed for a reliable ventilation detection. Current solutions
include harsh static filtering [26], and adaptive filtering based
on different compression reference signals, such as those from
accelerometers [16], [23].

This study introduces a novel solution for impedance-based
ventilation detection during continuous chest compressions in
OHCA. Inspired by a previous work on mechanical CPR [27],
this study proposes an algorithm for the more general case
of rescuer-delivered CPR, where compression artifacts are far
more irregular and motion noise levels larger than in me-
chanical. A preliminary version of this study has been re-
ported [28]. The present work comprises more than twice as
many OHCA cases, and improves on its performance by in-
troducing bidirectional adaptive filtering and time-series clas-
sification. A signal quality control stage is also presented,
which anticipates segments where ventilation detection could be
compromised.

II. DATA SOURCES AND PREPARATION

Study data included the de-identified files from 367 OHCA
patients treated by EMS between March 2016 and Novem-
ber 2017 in the Dallas - Fort Worth area (Texas, US), all
enrolled in the Pragmatic Airway Resuscitation Trial (PART,
NCT02419573) [29]. Data collection was approved under US
federal rules for Exception From Informed Consent for emer-
gency research (21 CFR 50.24). The files were acquired using a
HeartStart MRx monitor-defibrillator (Philips Medical Systems,
Andover, MA, US), and included TI, capnography, chest force,
and chest acceleration recordings. TI was recorded with a sam-
pling rate of 200 Hz and a resolution of 2.5 mΩ. The capnogram
was acquired using Microstream (sidestream) technology, and
recorded with a sampling rate of 40 Hz and a resolution of
0.004 mmHg. Force and acceleration were acquired using a
Q-CPR assist pad, and recorded with a sampling rate of 100 Hz
and resolutions of 0.01 kgf and 0.01 m/ s2 , respectively. Fig. 1
shows an example of the signals involved in the algorithm de-
velopment. All files were converted and processed using Matlab
(MathWorks Inc., Natick, MA, US).

Ventilations were identified in the capnogram and used as
ground truth to develop the impedance-based detection algo-
rithm. Ventilations were first automatically annotated using
a state-of-the-art solution [17], and then manually reviewed.
Capnogram intervals that could not be reliably reviewed were
deemed uninterpretable and excluded from the study. On the
finally included intervals, the automatic pre-annotation showed
a sensitivity of 91.1% and a positive predictive value of 95.6%.
The time-delay of the capnogram was also manually corrected
by aligning expiration upstrokes with TI fluctuations during
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compression-free intervals. A default time-delay of 3.5 s was
considered when no clean fluctuations could be identified [16].
The observed mean (standard deviation, SD) time-delay was of
3.5 (0.3) s.

Impedance intervals suitable for the study design were then
selected, which included concurrent recordings of acceleration,
force, and interpretable capnogram as per the manual review.
Chest compression pauses longer than 20 s were excluded, in
order to consider mostly CPR artifacted TI. Abrupt TI excursions
and other unusually large artifacts were also discarded. Given
that ventilation rates are typically measured over one-minute pe-
riods [30], the intervals were sub-divided into non-overlapping
60 s segments, with additional 5 s of starting and ending signal
padding, as shown in Fig. 1. The final dataset comprised 2551
one-minute segments and 20724 ventilations, median (interquar-
tile range, IQR) of 6 (3–10) minutes and 45 (23–78) ventilations
per patient. The 97.1% of ventilations were concurrent with chest
compressions, thus reproducing the CPR conditions.

III. METHODS

A ventilation detection algorithm was developed using the
three-block architecture introduced in previous works [27], [28].
Fig. 2 shows a block-diagram of this layout: First, the TI signal
was preprocessed to remove chest compression artifacts and
enhance the ventilation waveform. Then, impedance fluctuations
potentially due to ventilations were identified at instants tp and
characterized by a set of waveform features x. This stage was
designed to over-estimate the number of ventilations, resulting
in many false positives. Finally, fluctuation data were modeled
as a time series, and fed to a recurrent neural network (RNN) to
discriminate the actual ventilations. The algorithm was trained
and tested using non-overlapping one-minute TI segments. An
additional quality control stage was also considered to prevent
erroneous feedback under low signal quality or heavy noise
conditions.

A. Signal Preprocessing

First, the TI, force and acceleration signals were resampled
to a common frequency of fs = 50 Hz. Slow baseline drifts
and high frequency components were removed from all three
signals using a 0.06 Hz–5 Hz band-pass filter (Butterworth,
4th order) [23]. Then, an adaptive Kalman filter and smoother,
with force and acceleration as reference signals, was applied
to remove compression artifacts from the TI. Finally, the TI
was smoothed using an order 100 finite impulse response low-
pass filter; a cut-off frequency of 1 Hz was selected, which is
frequently used for impedance smoothing in respiration-related
studies [19], [25]. Both static filters were applied in a forward-
backward configuration to avoid phase distortion and delay.

In order to set up the adaptive filter, the high-pass filtered TI
signal s(t) was assumed to be the sum of a component due to
chest compressions scc(t) and a component due to ventilations
sv(t), such that s(t) ≈ scc(t) + sv(t). In addition, scc(t) was
modeled as a linear combination of the neighboring force and

Fig. 2. Block diagram of the ventilation detection algorithm. The raw
impedance signal s(t) is first filtered to obtain the ventilation component
sv(t). Then, fluctuations potentially due to ventilations are located at
instants tip, and characterized by a waveform feature vector xi. Finally,
a recurrent neural network jointly classifies fluctuations as ventilations
(ŷi = 1, shaded in green) or false positives (ŷi = 0, shaded in red). A
discretionary signal quality control block allows to identify impedance
segments where ventilation detection could be compromised.

acceleration samples, so for a time instant tj :

scc(tj) =

M∑

k=−M

ak(tj)sa(tj + kTs) + bk(tj)sf (tj + kTs)

(1)
where Ts = 1/fs is the sampling period, and sa(t) and sf (t)
the downsampled and high-pass filtered force and acceleration
signals. The slowly time-varying coefficients ak(t) and bk(t)
were also assumed to follow gaussian processes with Ornstein-
Uhlenbeck type covariances of length-scale λ−1 [31], [32]. The
process equation for the Kalman recursion follows:

xj+1 = Fj+1,jxj +wj , (2)

where the state vector xj is given by

xj = [a−M(tj), . . ., aM(tj), b−M(tj), . . ., bM(tj)], (3)

the transition matrix by Fj+1,j = exp(−λTs) · I2M+1, and
wj follows a gaussian process with zero mean and covari-
ance Qj = q (1− exp(−2λTs)) · I2M+1. Similarly, the mea-
surement equation follows:

yj = Hjxj + vj , (4)
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Fig. 3. Example of two sv(t) fluctuations, as identified by the fluc-
tuation detection stage. The amplitude (Zu) and duration (Tu) of the
upwards or inspiration phase (from ts to tp, in blue), and the amplitude
(Zd) and duration (Td) of the downwards or expiration phase (from tp to
te, in red) were computed to characterize each fluctuation.

with observation vector Hj given by

Hj = [sa(tj −MTs), . . ., sa(tj +MTs),

sf (tj −MTs), . . ., sf (tj +MTs)]
T , (5)

and vj ∼ N (0, R). Given these equations, the coefficients
ak(tj) and bk(tj) were obtained using a Rauch-Tung-Striebel
smoother, as described in [33]. The ventilation component of
interest was finally estimated as ŝv(tj) = s(tj)− ŝcc(tj), with
ŝcc(tj) = Hjxj . Values of M = 10, λ = 0.1, q = 0.0015 and
R = 1were chosen after some initial experiments. In the follow-
ing, the term sv(t) is used to represent the output of the entire
preprocessing stage.

B. Fluctuation Detection

Impedance fluctuations potentially due to ventilations were
identified in sv(t). First, the largest local maxima t

(i)
p with a

minimum separation of 1.5 s were detected. Then, the start of
the inflation phase, t(i)s , and the end of the deflation phase, t(i)e ,
were determined for each fluctuation. Inflation and deflation
durations between 0.45 s and 5.5 s were considered [27]. The
procedure to determine t

(i)
e and t

(i)
s was not critical for the

overall performance of the algorithm. A detailed description of
the heuristic used in this study is included as supplementary
material.

C. Feature Extraction

Each fluctuation was characterized in terms of a vector x of
14 waveform features. As shown in Fig. 3, the first four features
comprised the amplitudes (Zu, Zd) and durations (Tu, Td) of
the inspiration (or upwards, from ts to tp) and expiration (or
downwards, from tp to te) phases of the fluctuation, given by:

Zu = sv(tp)− sv(ts), Tu = tp − ts

Zd = sv(tp)− sv(te), Td = te − tp (6)

The remaining 10 features consisted on the curve fit coeffi-
cients of each phase in terms of order m = 0, . . ., 4 Legendre

Fig. 4. Example of the fluctuation labeling and time-series composition
procedures. Fluctuations were labeled as ventilations (yi = 1, shaded
in green) if their peak position tip fell within the bounds (extended by
up to 1 s) of a capnogram ground truth ventilation k, and as yi = 0 (in
red) otherwise. Fluctuation data were then used to compose the 60-step
feature (X′) and label (Y′) time series used in classification. Each time-
step in the series represented a one-second interval; fluctuations were
mapped to time-steps according to their peak position tip.

polynomials Pm(z). These polynomials form an orthogonal
system in the z ∈ [−1, 1] real domain, and can be recursively
obtained through

Pm+1(z) = (2m− 1)zPm(z)−mPm−1(z), (7)

with P0(z) = 1 and P1(z) = z. Let su be a column vector
containing the samples of sv(t) within the inspiration phase
[ts, tp]. Let also pm be another column vector, obtained from
evaluating (7) over a finite set of points z, with as many points
as samples in su, equispaced between -1 and 1. The curve fit
coefficients of the inspiration phase cm,u were then computed
using:

cm,u =
sT
upm

||pm||2 ∀m ∈ 0, . . ., 4 (8)

An analogous procedure was followed to obtain the expiration
phase coefficients cm,d.

D. Classification

For classification and evaluation purposes, each final fluctu-
ation output by the previous stage was labeled as either actual
ventilation (yi = 1) or false detection (yi = 0), based on the
ground truth annotations in the capnogram. As shown in Fig. 4,
ventilations in the capnogram were annotated covering the full
inspiration cycle, from inspiration onset or downstroke, at time
tOI, to expiration onset or upstroke, at time tOE. A fluctuation
i was labeled as yi = 1 when its peak position t

(i)
p fell within

one of these inspiration cycles, with an extra tolerance margin
of 1 s. When several fluctuations met this criteria for the same
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ground truth ventilation k, only the one with peak t
(i)
p closest to

t
(k)
OE was labeled as yi = 1, and the rest as yi = 0.

Classification was performed over full one-minute segments,
which could provide the classifier with comparative context on
fluctuation shapes and relative positioning. Each segment was
modeled as a time series, where each time-step n ∈ {1..60} rep-
resented a one-second interval. As shown in Fig. 4, fluctuations
i were mapped to time-steps n according to their peak position
t
(i)
p , such that n− 1 ≤ t

(i)
p < n. Then, a feature time series

X′ = {x′
n} was constructed, which contained the waveform

features xi of the individual fluctuations at mapped time-steps,
and an all-zero feature vector at unmapped ones. A ground truth
label series Y′ = {y′n} was constructed using the same proce-
dure to train and evaluate the classifier. In this case, unmapped
steps were assigned to the negative class (y′n = 0).

The classification task was performed using an RNN with
a two-layer architecture: A bidirectional recurrent layer, com-
prising 20 gated recurrent units (GRU) [34], to which the time
series were fed, and a single neuron output layer, activated by
a sigmoid function to produce an output p between 0 and 1.
The network worked on a sequence-to-sequence configuration,
so a different output p′n was obtained for each time-step. The
outputs pi associated to fluctuations were recovered from the
previously mapped time-steps, and the fluctuations classified as
true ventilations (ŷi = 1) if pi ≥ 0.5, and as false detections
(ŷi = 0) otherwise.

Given the primary interest on the positive class (y′n = 1,
the actual ventilations), and the large number of negative class
instances (mostly from unmapped time-steps), the models were
optimized using the Dice coefficient loss [35], given by:

DL (y′n, p
′
n) = 1− 2y′np

′
n + 1

y′n + p′n + 1
. (9)

The training of the models was performed over 25 epochs, with
a batch size of 32 segments, and using an Adam optimizer with
initial learning rate of 0.005. The entire classification stage was
implemented in Tensorflow 2.0 [36].

E. Evaluation

Segments were partitioned patient-wise into training and test
sets using a 5-fold cross-validation (CV) strategy. Assignment
was conducted in a balanced manner, such that approximately
one-fifth (maximum deviation of 5%) of the patients, segments
and ground truth ventilations were assigned to each fold. A total
of 20 random CV partitions were generated to minimize any bias
due to data partitioning.

For each one-minute segment, performance was assessed in
terms of sensitivity (Se), positive predictive value (PPV) and
F1-score, given by:

Se =
TP
NGT

, PPV =
TP

TP + FP
, F1 = 2

Se · PPV
Se + PPV

(10)

where TP and FP are the number of true positives (yi = 1,
ŷi = 1) and false positives (yi = 0, ŷi = 1), respectively. Se was
computed against the number of ground truth ventilations (NGT),
in order to account also for missed fluctuations (�yi). Given the

differences in the number of segments per patient, performance
metrics were also computed patient-wise, using aggregated data
from all segments of each patient. Peformance scores from
different partitions were mean-aggregated into a single value
for each segment/patient. The distributions of segments and
patients for different performance score bands were analyzed.
Overall performances by segment/patient were assessed in terms
of median (IQR).

1) Comparison With Literature Solutions: The performance
of the proposed algorithm was compared to that of various sim-
ilar solutions in the literature. Risdal et al. proposed an adaptive
filter to remove compression artifacts, followed by a machine
learning framework for ventilation segmentation [23]. Edelson
et al. replaced the machine learning framework with a real-time
fluctuation detector and a fixed rule-based discrimination of
ventilations [16]. Finally, Alonso et al. proposed the use of static
linear filters, and an adaptive rule-based discrimination, using
dynamic thresholds based on previous detections [26]. The three
methods were implemented in Matlab and trained and tested
in the study dataset. Implementation details can be found in
Appendix I.

2) Feature Importance: Permutation importance and recur-
sive feature elimination were used to assess the contribution
of the different waveform features to classification. First, the
RNN models were train-tested on clean data and a mean F1 of
reference (more robust to small differences than the median) was
computed. Then, for each feature considered, its values along
fluctuations were randomly shuffled and new predictions were
obtained. The feature whose permutation caused the smallest
decrease in mean F1 was deemed the least important and was
removed from the model. This process was repeated until a single
feature remained.

In order to prevent data leakage, the importance analysis was
conducted at each regular CV step, using an inner 4-fold CV loop
over training data. Different feature rankings were thus obtained
for each fold and partition.

F. Signal Quality Control

Impedance is sensitive to many noise sources, such as chest
compressions and electrode motion, which may jeopardize the
detection of ventilations. A signal quality control solution was
designed, which could be integrated in the ventilation detection
algorithm to anticipate the reliability of the detection.

The solution used the filtered TI signal sv(t), downsampled
to 5 Hz, to compute the following waveform features:� The skewness of the sample distribution, which should be

high for narrow, positive fluctuations, such as in Fig. 1.� The first peak amplitude (FPA) of the normalized signal
autocorrelation [37], which should be larger for regular
ventilation rates and fluctuation shapes.� SD12, a relational measure between short- and long-term
variabilities [38], computed from the Poincaré plot of the
first differences of the signal.

These features were used to fit a linear regression model where
the F1 scores (scaled to unit range) of the ventilation detection
algorithm worked as target variable. A logit link function was
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Fig. 5. Distributions of both segments (left) and patients (right) for different sensitivity (Se), positive predictive value (PPV), and F1 score bands.

applied to produce outputs between 0 and 1. As in the feature
importance analysis, an inner 4-fold CV loop (per regular CV
step) was conducted on training data to obtain an F1 score for
each training segment.

The regression models were applied to test data to obtain a
quality score (QS), a rough estimate of F1, for each segment.
Spearman’s correlation was used to measure the ability of the
QS to rank segments by F1. The performance of the ventilation
detection algorithm was then reassessed for different segment
inclusion rates; that is, when only the target fraction (inclusion
rate) of segments with highest QS were evaluated.

Finally, the reliability of the ventilation detection algorithm
(combined with the quality control) in providing feedback on
ventilation rate (VR) was analyzed. For each segment, the VR
was computed as

VR = 60 / Δt(i)v

(
min−1

)
, (11)

where ventilation instants t
(i)
v were taken at ventilation peaks

t
(i)
p for estimated VR, or at capnogram t

(i)
OE for ground truth

VR. Errors and confidence intervals were assessed through a
Bland-Altman plot.

IV. RESULTS

The ventilation detection algorithm, evaluated per segment,
achieved performance scores of 93.3 (75.0–100.0) % for Se,
90.0 (68.5–100.0) % for PPV, and 89.1 (70.8–99.6) % for F1.
When computed per patient, scores were 86.5 (71.6–95.1) %
for Se, 85.4 (68.3–94.7) % for PPV, and 84.1 (69.0–93.9) %
for F1. Fig. 5 shows the distributions of both segments and
patients for different performance decile bands. In both cases,
the distributions presented negative skew, with most samples
corresponding to the highest performance band. There were
many segments, though, for which performance was probably
too low for practical use, mostly related to high noise levels
and/or low-amplitude ventilations (see Fig. 6). As shown in
Fig. 6(b), pauses in chest compressions were also identified as

a potential error source. Per-patient metrics, which aggregated
information from several segments, were less likely to present
extreme performance values.

Lower per-patient median performances were in part due to
a higher number of segments for the patients with better overall
performances (the 50% and 25% of patients with highest F1s
comprised, respectively, the 56.6% and 26.6% of segments),
but also due to within-patient variability: the 63.5% and 36%
of patients included, respectively, one or more segments with
F1 scores 10 and 20 points below the patient’s aggregate. Note
that OHCA treatment may undergo important changes over
the course of an episode, such as patient transportation or the
placement of an advanced airway. Moreover, rescuers usually
take turns delivering CPR, which may result in very different
compression artifacts and motion noise levels.

Performance variation between partitions was minimal, with
median per-segment and per-patient F1 SDs of 0.1% and 0.2%,
respectively. The variation among the 100 individual test folds
was much larger, though, with median per-segment and per-
patient F1s ranging from 82.4% to 91.1%, and from 74.1% to
89.5%, respectively. This was most likely due to the random
assignment of patients with very different TI signal qualities.

A. Comparison With Literature Solutions

A previous version of this study [28] used a harmonic chest
compression model [39], [40] and a least-mean-squares (LMS)
filter to remove compression artifacts, and a Random Forest
(RF) classifier [41] to individually discriminate fluctuations. As
shown in Table I, the preprocessing and classification stages
introduced in the present work outperformed that preliminary
design. Replacing the Kalman smoother with the LMS filter
from the preliminary study resulted in median per-segment and
per-patient F1s of 86.5% and 81.5%, respectively. Similarly,
replacing the RNN with an RF classifier resulted in median
per-segment and per-patient F1s of 85.8% and 81.0%, showing
the benefits of a broader context on TI fluctuations.
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Fig. 6. Examples of error-prone ventilation impedance waveforms. Intervals of 20 s are presented, along with their corresponding ground truth
capnogram waveform. The unfiltered impedance signal, depicted in the brackground in gray, is scaled (scale shown top-left of each figure) so
fluctuations are highlighted. True positives (TP), false positives (FP) and false negatives (FN) are indicated.

TABLE I
MEDIAN (IQR) PERFORMANCE METRICS OF PREVIOUS SOLUTIONS IN THE LITERATURE, EVALUATED ON THE STUDY DATASET

The proposed algorithm also outperformed similar solutions
in the literature, as implemented and tested in the study dataset
(see Table I). The algorithm by Alonso et al. [26] achieved
the highest Se, but produced many false positives (low PPV).
The dynamic amplitude threshold was able to reject relatively
small artifacts; however, its starting value was low (>0.1 Ω),
rejecting only the smallest fluctuations, and adaptation failed
or was too slow under sustained noise. In the opposite end,
the solution by Edelson et al. [16] imposed much more severe
amplitude (>0.25 Ω) and, most importantly, slope (>0.2 Ω/s)
constraints. This resulted in a lower Se, as many of the low-
amplitude ventilations in the dataset were missed (a Se of zero
was obtained for 9.1% of the segments). The PPV did not
improve much, as false positives were still frequent when noise
levels exceeded the thresholds. The most elaborate solution, by

Risdal et al. [23], did not substantially improve results either.
The segmentation framework used a short window of 1.4 s to
identify the inspiration (OI) and expiration (OE) onsets, which
may had provided too little context to discriminate ventilations
from other artifacts. The final decision ruleset was also rather
simple, reliant on a correct segmentation, and did not include
information of the expiration phase. When optimized for the
study dataset, the algorithm was found to require a significant
amplitude constraint (>0.3 Ω). Finally, the solution was also
penalized by a 2.3 Hz smoothing filter, which could have let
too much noise and compression residuals through. Results
were better with a more conservative 1 Hz cut-off (median
F1 of 76.9% and 71.8% for segments and patients, respec-
tively), but still far behind those from the algorithm in this
study.
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Fig. 7. Probability of selecting a given feature in a simplified M-feature
model, computed as the proportion of training folds and partitions for
which the feature was selected through recursive feature elimination.

B. Feature Importance

As shown in Fig. 7, feature importance was very consistent
across folds and partitions, with the exception of the two most
important features, Zu and Zd, which were found on par. High
order coefficients (Cu,4, Cd,3, Cd,4) could likely be removed
from the model without affecting performance. All remaining
features contributed to performance, although the RNN proved
robust to less detailed information. A simplified model using
the four most important features (Zu, Zd, Cu,0, Cu,1) scored a
median per-segment F1 of 88.6%. Similarly, a model including
only the inflation amplitude Zu scored a median F1 of 87.1%.
Note that this was possible due to the larger context managed
by the RNN classifier. An optimal universal amplitude threshold
(found at 0.25 Ω), used independently in all fluctuations, scored
a much lower F1 of 78.3%, more in line with previous solutions
in the literature.

C. Signal Quality Control

The quality control stage identified segments where ventila-
tion detection was defective. The solution assigned a QS, an
estimate of the F1, to each segment. A Spearman’s correlation
of ρ = 0.7 was measured between QS and F1 values, proving
that the solution could reliably sort segments by performance.
Ad-hoc QS thresholds could be defined, each with a different
segment inclusion rate and expected performance range.

Fig. 8 shows the median (IQR) per-segment F1 for different
segment inclusion rates considered for evaluation. Median and
quartile scores showed monotonic growth as inclusion became
more restrictive and less segments were considered. Moreover,
the median F1 scores were close to those of an ideal QS (the F1

itself), reaching 100% for segment inclusions up to 55%. First
quartile values, however, were lower, indicating that some low
F1 segments eluded the control. For an inclusion rate of 50%,

Fig. 8. Median (IQR) per-segment F1 scores for increasing segment
inclusion rates. Segments considered for evaluation were selected ac-
cording to the proposed quality score (QS), and performance compared
to an ideal QS (the F1 itself). Median and IQR values were averaged
between partitions. Median F1 scores are also shown for the different
solutions in the literature, with quality control optimized for each case.

with overall F1 of 100.0 (90.9–100.0) %, 9.3% and 5.1% of
the selected segments presented, respectively, F1s below 80%
and 70%. Causes were varied, but often involved a dominant
segment section (due to artifacts or larger ventilations) which
governed the extraction of quality features. Similarly, 7.8% of
all study segments with F1 of 100% were incorrectly left out,
mostly showing distorted fluctuations like in Fig. 6(a).

Per-patient performances were notably lower, as many pa-
tients marginally contributed with relatively low F1 segments.
A segment inclusion of 50% comprised data from 73.2% of all
patients, for a per-patient F1 of 94.3 (86.5–97.8) %. However,
21.7% of these patients were very partially included (less than
25% of each patient’s available data) and represented only the
6.4% of the segments considered. These showed, in general,
lower performances, with F1 of 85.7 (61.7–93.4) %.

All the impedance features considered in the quality control
model were statistically significant, (p < 0.01). The individual
Spearman’s correlations were 0.40 for FPA, 0.47 for Skewness,
and −0.64 for SD12. The regression coefficients (using normal-
ized features) were 0.28, 0.27 and −0.59, respectively, denoting
SD12 as the most relevant feature. The quality control model
was also implemented for the solutions in the literature. In all
three cases, the model was effective at sorting segments by F1,
but the relative importance of the features (as given by regression
coefficients) varied. Note that quality features were computed
on the filtered TI, which was different in most cases. Moreover,
some solutions included harsh amplitude thresholds, whereas
features were intentionally amplitude independent.

D. Feedback on Ventilation Rates

Finally, the reliability of the ventilation detection algorithm
to provide VR feedback was assessed. Fig. 9 shows a Bland-
Altman plot on VR, in which 90% levels of agreement (LoA)
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Fig. 9. Bland-Altman plot, comparing estimated (VRALG) and ground
truth (VRGT) ventilation rates. The 90% levels of agreement (LoA) were
computed for different VRGT intervals (interval width of 3 /min and step
of 0.5 /min) and segment inclusion rates (according to quality control
results). Individual VRALG and LoA values were averaged partition-wise.

are depicted for the whole dataset, as well as 70% and 35% data
inclusion in combination with the quality control. Errors were
larger without quality control, with a partition-averaged global
LoA of (−3.8, 6.8) /min. Overestimation was frequent for low
to moderate rates, the median (IQR) ground truth VR being 8.4
(6.1–11) /min, whereas underestimation was prevalent for high
rates (>12 /min). Errors were larger for extreme rates, probably
affected by data imbalance; 90% of the segments were in the
(4.1–16.2) /min range.

Quality control helped prevent many of the errors. Global
LoA were (−3.4, 3.9) /min and (−2.0, 2.0) /min for 70% and
35% data inclusion, respectively. However, the improvement
was highly biased, avoiding mostly overestimation errors in low
to moderate VR segments.

V. DISCUSSION

This study presents a novel algorithm for impedance-based
ventilation detection during continuous chest compressions in
OHCA. Evaluated on ground truth annotations taken entirely
in the capnogram, the algorithm achieved median F1 scores of
89.1% and 84.1% for one-minute segments and full patients,
respectively, which represents about 4 points of improvement
over its preliminary version [28]. Two main differences may ex-
plain this improvement: First, the Kalman smoother used in this
study, with force and acceleration as reference signals, proved
superior at removing chest compression artifacts compared to
the previous LMS approach and other unidirectional adaptive
filters. And second, the RNN classifier was fed with combined
information from all fluctuations within the one-minute seg-
ment, which provided added context to discriminate ventilations.

The proposed method also outperformed previous solutions
in the literature [16], [23], [26] by more than 10 points of F1.
For all of them, performance was lower in our study dataset

than in the original study. In general, these solutions treated
each potential ventilation independently, and relied ultimately
in amplitude thresholding; this would require ventilation levels
to be overall larger than noise ones, which may not be the case
in our data or in a real setting. Only the solution by Alonso et
al. [26] included some case-specific context, but adapted too
slowly and produced many false positives in noisy scenarios.
Differences in data sources could explain these performance
disparities. All the data in Edelson et al. [16] as well as part of
the data in Risdal et al. [23] came from an in-hospital setting,
in which noise levels could have been lower. In contrast, our
dataset was collected entirely out-of-hospital, and 21.6% of
the included segments were acquired during transport, which
further hindered the detection of ventilations (median F1 of
84.0%, versus 90.3% for non-transport segments). Similarly,
endotracheal intubation may have been the norm in hospital
data [42], whereas 13.1% of our segments had no advanced
airway in place, and 56.5% corresponded to laryngeal tubes,
which have been shown to produce lower TI amplitudes [43].
Risdal et al. reported a median (IQR) patient average inflation
amplitude of 1.0 (0.8–1.3) Ω, while our dataset, considering
only flawlessly classified segments, showed a much lower 0.4
(0.3–0.7) Ω. Our results show that, in these circumstances, a
universal amplitude threshold alone is not feasible; a broader
context on the surrounding fluctuations and/or a more detailed
characterization is needed to reliably identify ventilations.

Despite the improved performance, we still identified many
TI segments where ventilation detection was unreliable. This is
in contrast with our previous study on mechanical CPR [27],
in which noise levels were found minimal and capnography-
grade performance was obtained. Thanks to the quality control
we introduced, we could anticipate low-performance segments
and prevent erroneous feedback. While different approaches
such as template matching [25] or convolutional networks [37]
could be explored in the future, our linear regression solu-
tion proved robust enough while being highly interpretable,
computationally cheap, and easy to integrate in the detection
algorithm. No fixed binary quality labels, but the continuous F1

scores of the detection algorithm were used to fit the model,
so ad-hoc quality threshold could easily be defined according
to performance requirements. All the quality features were also
amplitude-independent. Given the high correlation between F1

and quality scores, our detection algorithm should be able to
identify low-amplitude ventilations as long as not significantly
distorted.

The impact of ventilation therapy in the outcome of cardiac
arrest patients has been documented, but little is known about the
details of ventilation during OHCA because it has not been ad-
equately measured either in research studies or in practice [13].
Our ventilation detection algorithm could be used in two main
scenarios: a) to provide real-time feedback on ventilation dur-
ing OHCA treatment, and b) for the retrospective analysis of
ventilation effectiveness in large datasets. Notice that real-time
solutions could analyze overlapping segments to increase the
frequency of readings. Other modifications could also be con-
sidered, such as performing filtering and fluctuation detection
in shorter sub-segments to reduce memory requirements, or
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optimizing the signal padding to minimize delay. Whatever
the application mode, a complete solution should also include
logic to identify isolated large artifacts, which were manually
excluded in this study. As a concrete application, the algorithm
could be used to detect specific ventilation patterns, such as
potentially harmful hyper-ventilation events [44]. Notice that
the RNN in this study was trained using all data available, with
no further considerations. This may have caused performances
to be lower for minority ventilation patterns, and could be
potentially alleviated using oversampling or data augmentation
techniques. In the context of ongoing studies on ventilation
effectiveness [22], the algorithm could also be used to provide TI
amplitude measures as air volume surrogates. Given its ability
to detect low amplitude ventilations, diverse enough study data
could be selected and reliably analyzed with minimal human
effort.

A. Limitations

This study has some limitations. First, all data came from
a single device model, the Philips HeartStart MRx. Moreover,
the algorithm relied on force and acceleration data, acquired
with an external Q-CPR pad that may often not be available
and may not be compatible with other manufacturers’ devices.
Different filters should be explored to broaden the applicability
of the solution. Second, the evaluation was carried out with a
cross-validation strategy, with all data coming from a single
resuscitation site. Thus, the algorithm could be overfitted to
specific ventilation patterns, which could be different for other
EMS agencies. Further validation should be conducted on an
independent dataset, preferably from different agencies and,
if possible, different devices. Third, the evaluation was also
limited to episode intervals with a capnogram readable enough
to annotate the ground truth ventilations. Although we observed
no correlation between end-tidal CO2 levels in the capnogram
and ventilation amplitudes in the TI (Pearson’s R of −0.11),
other relationships may have existed between the two signals
that resulted in a selection bias. And fourth, the algorithm
was designed for continuous chest compression CPR. In early
resuscitation stages, however, 30:2 CPR is usually practiced,
where ventilations are delivered during pauses. Other solutions
could be more appropriate for this scenario [20].

VI. CONCLUSION

This study introduces a novel algorithm for the detection of
ventilations in TI during continuous chest compression CPR in
OHCA. The algorithm improves on previous solutions through
the use of an enhanced filtering of compression artifacts and
a recurrent neural network to leverage on signal context. The
study also introduces a quality control solution to anticipate TI
segments where ventilation detection could be defective. The
algorithm could be used to facilitate research on ventilation
effectiveness, and potentially integrated in resuscitation equip-
ment to provide real-time feedback on ventilation.

APPENDIX I
IMPLEMENTATION OF LITERATURE SOLUTIONS

In this section we highlight the details of our implementa-
tion of the algorithms proposed by others. Missing information
might have conditioned our implementation and thus resulted in
suboptimal performance metrics.

The original MC-RAMP filter by Risdal et al. [23] used, on
top of force and acceleration, the ECG common-mode channel,
which was not available in the study dataset and was therefore
ignored. Moreover, the training of the algorithm used OI and
OE annotations taken directly on the filtered TI, which had to be
derived from the capnogram: First, the largest TI local maxima,
with minimum separation of 1.5 s, were located, and annotated
as OE when they fell within 0.5 s of a capnogram tOE. Then, for
each OE, an OI was searched within 1 s of the corresponding
tOI. For each possible OI point, straight lines were fitted to the
0.5 s TI sections before and after the point; the OI was finally
selected as the point with largest positive angle change between
both lines. A window of 1.4 s and five hidden nodes were used, as
found optimal in the original study. Given possible inaccuracies
in OI and OE points, a duration of 0.2–5 s was considered; this
was specified in the original work for a rule-based solution of
reference. The decision thresholds on minimum amplitude and
segmentation outputs (gOI, gOE) were optimized through a grid
search to maximize the median per-segment F1.

The study by Edelson et al. [16] missed key information on
both static and adaptive filters, so the same TI preprocessing as
in Risdal et al. was applied. No procedural definition was given
for the potential start/end times of a ventilation, so they were
defaulted to local minima. No validity ranges were given either
for the expiration duration and the expiration/inflation ratio, so
no related checks were performed.

Finally, Alonso et al. [26] introduced a dynamic amplitude
threshold, based on information from previous detections. Am-
plitude measures were saved and applied between consecutive
segments from the same patient, but the average case duration
was about five times shorter than in the original study. This may
have prevented a successful long run adaptation.
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Fig. 1. Examples on determining the start of a fluctuation ts. The point is first updated (ts updates in light blue) from the global minimum of sv(t) preceding
tp to the maximum of r(t) − 2 sv(t) (green), where r(t) is a straight line segment connecting the initial ts and tp (gray). This procedure was able to: a)
skip flat signal plateaus, and b) naturally separate fluctuations. As shown in panel c, a last rule based on relative inflation and deflation amplitudes (red) was
included for those cases in which the split of ventilations was not achieved.

This section describes the procedure to identify fluctuations
in the filtered TI signal sv(t). First, the largest local maxima
t
(i)
p , with minimum separation of 1.5 s, were located. Then,

starting from the largest maxima and in decreasing order, the
starting and ending points, t(i)s and t(i)e , of the corresponding
fluctuation were identified. In the following, the procedure to
identify t(i)s is detailed, being analogous for t(i)e .

• An inflation duration between 0.45 s and 5.5 s was con-
sidered, setting initially the start of the fluctuation t(i)s at
t
(i)
p − 5.5 s. From there, it was advanced to the last time-

point before t(i)p , if any, for which sv(t) ≥ sv(t
(i)
p ), and

then advanced again, this time to the global minimum of
sv(t) up to t(i)p .

• Let r(t) be a line segment connecting sv(t) between t(i)s

and t(i)p . The start of the fluctuation was then updated to:

t(i)s ← argmax {r(t)− αsv(t)} t(i)s ≤ t ≤ t(i)p (1)

As shown in Fig. 1, a value of α = 2 was able to skip flat
signal plateaus and naturally split different fluctuations.
The procedure was also fairly insensitive to minor local
minima, which may act as confounders for other alterna-
tive approaches. However, as shown in Fig. 1c, this may
also result in failing to split ventilations, specially if close
to each other and a baseline drift exists.

• In case other fluctuation peaks t(k)p were contained within
the interval [t(i)s , t(i)p ], a final rule was applied to prevent
merging ventilations. Starting from the furthest secondary
peak t(k)p , the global minimum of sv(t) between t(k)p and

t
(i)
p was first identified at instant t(k)min. Then, the start of

the main fluctuation t(i)s was updated to t(k)min if both the
following were met:

Z
(k)
down ≥ C1 Z

(k)
up (2)

Z
(k)
down ≥ C2 Z

(i)
up (3)

where, as shown in Fig1c,

Z
(k)
down = sv(t

(k)
p )− sv(t(k)min)

Z(k)
up = sv(t

(k)
p )− sv(t(i)s )

Z(i)
up = sv(t

(i)
p )− sv(t(k)min)

Values of C1 = C2 = 0.35 were considered after some
preliminary experiments. This process was repeated for
all peaks t(k)p within [t(i)s , t(i)p ], from furthest from t

(i)
p to

closest, using each time the updated value of t(i)s .
If, at any point, t(i)s was updated beyond the minimum inflation
duration, t(i)p −0.45 s, the process was aborted and t(i)p was dis-
carded as a possible ventilation peak. Otherwise, an analogous
procedure was followed to locate the end of the fluctuation t(i)e .
If both t(i)s and t(i)e were located, the fluctuation was confirmed
as a potential ventilation, characterized, and forwarded to the
classification stage. Any secondary peak t(k)p within [t(i)s , t

(i)
e ]

was automatically discarded.
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Abstract

Cardiopulmonary resuscitation (CPR) is a core therapy
to treat out-of-hospital cardiac arrest (OHCA). Thoracic
impedance (TI) can be used to assess ventilations during
CPR, but the signal is also affected by chest compression
(CC) artifacts. This study presents a method for TI-based
ventilation detection during concurrent manual CCs.

Data from 152 OHCA patients were analyzed. A total
of 423 TI segments of at least 60 s during ongoing CCs
were extracted. True ventilations were annotated using the
capnogram. The final dataset comprised 1210 min of TI
recordings and 9665 ground truth ventilations.

A three-stage detection algorithm was developed. First,
the TI signal was filtered to obtain ventilation waveforms,
including a least mean squares filter to remove artifacts
due to CCs. Potential ventilations were then identified with
a heuristic detector and characterized by a set of 16 fea-
tures. These were finally fed to a random forest classifier to
discriminate between true ventilations and false positives.

Patients were split into 100 distinct training (70%) and
test (30%) partitions. The median (interquartile range)
sensitivity, PPV and F-score were 83.9 (70.2-91.2) %, 86.1
(75.0-93.3) % and 84.3 (72.1-91.4) %. Our method would
allow feedback on ventilation rates as well as surrogate
measures of insufflated air volume during CPR.

1. Introduction

High-quality cardiopulmonary resuscitation (CPR) is a
key element in the treatment of out-of-hospital cardiac
arrest (OHCA). Chest compressions (CC) and ventilations
induce an artificial flow of oxygenated blood in the patient
which delays the progress of ischemia. This buys time for
other therapies to be applied and greatly improves the odds
of survival [1]. Resuscitation guidelines recommend CCs
to be delivered at rates of 100 - 120 min−1 [1]. When CCs
are performed without interruption, ventilations should be
delivered at a rate of about 10 min−1, avoiding hyperventi-

lation [2]. Adherence to these recommendations improves
when rescuers are provided with real-time feedback on
CPR therapy [3]. Many solutions have been implemented
to enhance CC quality, from integrated accelerometers to
monitor rates and depths, to automated devices that com-
press the chest mechanically. In contrast, few solutions
exist to provide feedback on ventilation quality.

Capnography, which monitors the concentration of CO2
in expired gases, is the recommended method to assess
ventilations, but requires advanced airway management
and is therefore rarely available early during resuscita-
tion. Thoracic impedance (TI), a measure of body resis-
tance to current flow, fluctuates with air volume changes
in the lungs and can also be used to monitor ventilations.
TI is typically available much earlier, as it is recorded by
most defibrillation equipment concurrently with the ECG.
Moreover, the amplitudes of the ventilation waveforms in
the TI can be taken as surrogate measures of insufflated air
volumes and can be associated with survival outcomes [4].

Detecting ventilations in the TI is challenging even in
intervals free of CCs [5]. TI fluctuations vary significantly
between cases, and the signal itself is sensitive to noise
sources like patient or cable movements. Moreover, CCs
produce large artifacts that have to be removed to detect
ventilations. State-of-the-art solutions for this scenario
make use of adaptive filters to suppress CC artifacts [6].
The present work was built on a previous machine learn-
ing solution for ventilation detection during mechanical
CCs [7]. The challenge was in adapting those methods to
manual CPR, in which CC patterns are much more variable
due to rescuer and patient diversity.

2. Data materials

The study dataset included data from 152 OHCA cases
treated by the emergency medical services of the Dallas -
Fort Worth area and enrolled in the Pragmatic Airway Re-
suscitation Trial [8]. All cases were treated and recorded
with a Philips MRx monitor-defibrillator (Philips Medical
Systems, Andover, MA), which acquires the TI signal with
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a 200 Hz sampling frequency and a resolution of 0.74 mΩ.
The electronic recordings were converted to a MATLAB
(MathWorks Inc., Natick, MA) format, and explored to lo-
cate TI segments suitable for the study design. Segments
of at least 60 s with ongoing CCs were considered. Inter-
vals presenting abrupt TI excursions or CC pauses longer
than 20 s were discarded. Only segments with synchronous
recordings of compression depth (CD) and capnography
were included. CC instants were annotated in the CD and
used as reference to filter out the CC artifact. Ventilations
were annotated in the capnogram and set as ground truth
to develop the detection algorithm. Time delays between
the capnogram and the TI were corrected. Figure 1 shows
an example of the signals involved in the annotation pro-
cess. A total of 423 TI segments were extracted, compris-
ing 1210 min of signal recordings and 9665 ground truth
ventilations (97.7% during CCs).

3. Methods

A three-stage method was designed to detect ventila-
tions. First, the TI was preprocessed to filter out CC ar-
tifacts. A peak detection procedure was then applied to
identify potential ventilations in the resulting sv(n) signal
(see Fig 1c). The waveform fluctuation around each peak
was delimited and characterized by a set of 16 features.
Finally, a random forest classifier was used to discriminate
between true ventilations and the many false positives out-
put by the previous stage.

3.1. Signal preprocessing

The impedance signal was first downsampled to 50 Hz.
A 0.06 Hz cutoff high-pass IIR filter was then applied
to remove the DC offset, followed by a moving average
filter (L = 50) to remove high-frequency components,
including most of the CC artifact. The resulting signal
s(n) is assumed to be given by s(n) = sv(n) + scc(n),
where sv(n) contains the desired ventilation information
and scc(n) represents the residual of the CC artifact. A
Least Mean Squares (LMS) adaptive filter, following the
model proposed by Irusta et al [9], was applied to remove
CC artifacts. The CC component was approximated by a
quasi-periodic signal of the form:

ŝcc(n) =A(n)
N∑

k=1

[ak(n)cos(kφ(n)) + bk(n)sin(kφ(n))]

whereN is the number of harmonics. The phase term φ(n)
is built by producing a 2π phase shift between each pair
of consecutive compressions. A(n) differentiates intervals
with (A = 1) and without (A = 0) CCs, with a pause
in compressions being defined as an interval longer than
1.5 s in absence of CCs. The time varying in-phase and
quadrature amplitude coefficients, ak and bk, were then
estimated using the LMS algorithm for harmonic inter-
ference suppression [10]. In this setting, the error signal
e(n) = s(n) − ŝcc(n) is an estimate of the desired sv(n)
component. Values of N = 3 and step-size µ = 0.05 were
selected according to some initial experiments.

Figure 1: An example of the signals involved in the detection process. (a) The raw TI signal, as stored in defibrillator
data. (b) The CD signal, including the annotated CC instants as dotted vertical lines. (c) The ventilation component of
the TI signal, obtained through adaptive filtering using the CC instants shown in (b). (d) The time-aligned capnogram
signal, including true ventilation annotations as shaded intervals. These intervals, associated to air insufflation phases, are
reproduced in (c) and extended by up to 1 s to determine which peaks correspond to true ventilations.
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3.2. Ventilation waveform processing

Potential ventilations were detected as the highest local
maxima of sv(n) with a refractory period of 1.5 s (ven-
tilation rate of 40 min−1). For each detected peak posi-
tion tpi , the start and end points of the ventilation wave-
form, tsi and tei , were then estimated. The location of
tsi was first set to the minimum sv(n) point in the interval
(tpi
−5.5 , tpi

−0.45), and then adjusted following a series
of heuristic rules. Amplitude relations between local max-
ima and minima within (tsi , tpi

) were evaluated to avoid
merging several waveforms into a single detection. An ini-
tial slope condition was also applied to prevent tsi from
being set on a near flat signal region, far away from the ac-
tual waveform. An analogous procedure was followed to
locate tei within the interval (tpi

+ 0.45 , tpi
+ 5.5). Any

peak tpi for which tsi or tei could not be determined was
discarded as potential ventilation.

3.3. Feature extraction

A total of 16 features were used to characterize each po-
tential ventilation waveform. The first four corresponded
to the amplitude and duration of the insufflation and exha-
lation phases, that is the intervals (tsi , tpi ) and (tpi , tei ),
respectively [7]. The next 10 features, 5 for each phase,
were given by the coefficients of a least-squares approxi-
mation of the phase waveform in terms of up to fourth or-
der Legendre polynomials. Curve fitting was approached
assuming the samples of each phase to be equispaced over
a [-1,1] transformed time domain. Finally, the signal ex-
cursions ∆90 = P95(sv)−P5(sv) and ∆95 = P97.5(sv)−
P2.5(sv), which were computed in an up to 1 min interval
around the peak position. Px represents the x-th amplitude
percentile. This was deemed possible as windows of about
1 min are typically analyzed to report ventilation rates, and
allowed the classifier to adapt to the large ventilation am-
plitude differences between cases.

3.4. Classification

The waveform detection stage was conceived to miss
few true ventilations, so it produced a large number of false
positives. A random forest classifier [11] was employed to
discriminate between both cases. In order to train the clas-
sifier and test the algorithm, each potential ventilation i
reported by the detection stage was labeled as either true
ventilation (yi = 1) or false positive (yi = 0) according
to the ground truth annotations in the capnogram. Those
waveforms with peak position tpi within a ground truth in-
terval (shaded regions in Figure 1c) were labeled as yi = 1.
When several detections were reported within the same
interval, only the one closest to the expiration onset (red
lines in Figure 1c) was labeled as true ventilation. The out-

puts of the detection stage formed a set of instance-label
pairs {xi, yi} ∈ RK×(0,1) , where K = 16 is the num-
ber of features considered. A 100 tree ensemble size and
a minimum leaf-size of 5 were used as classifier hyper-
parameters. Data was patient-wise weighted to avoid bi-
asing results towards longer cases with a larger amount of
ventilations.

3.5. Model evaluation

Data were randomly partitioned patient-wise into train
(70%) and test (30%) sets. Due to large differences in the
number of ventilations, the assignment was carried out in
a quasi-stratified way, forcing the train set to contain be-
tween 65% and 75% of the ground truth ventilations. Per-
formance was assessed in terms of sensitivity (Se, propor-
tion of correctly identified true ventilations), positive pre-
dictive value (PPV, proportion of true ventilations among
reported detections) and F-score (F1, harmonic mean of Se
and PPV). To avoid data partition bias in the results, 100
different train/test splits were generated and performance
metrics were averaged patient-wise.

4. Results

The waveform detector overestimated ventilations with
a median (interquartile range, IQR) patient-wise Se of
94.1 (89.0-98.4) % and a PPV of 56.0 (44.9-66.7) %. The
classification stage corrected most of the false posi-
tives, resulting in Se, PPV and F1 scores of 83.9 (70.2-
91.2) %, 86.1 (75.0-93.3) % and 84.3 (72.1-91.4) % respec-
tively. The patient-wise distribution of performance met-
rics is shown in Figure 2.

Figure 2: Patient-wise performance metric scores for the
full algorithm, as probability distribution.
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Motion artifacts caused by rescuers during treatment
were identified as the major error source. As shown in Fig-
ure 3, these may produce many false positives, and distort
or even completely mask the actual ventilations.

5. Conclusions

An algorithm for impedance-based ventilation detection
during concurrent manual CCs was demonstrated. With
median patient-wise performance metric scores of about
85%, the method could allow accurate feedback on ven-
tilation rates and possibly on insufflated air volumes in
the majority of cases. Performances could be improved
in the future by employing more complex filters and fea-
ture selection techniques. For some cases, however, the
algorithm presented a severely degraded performance due
to motion artifacts, a phenomena not present during me-
chanical CPR [7], presumably due to the compression de-
vice being tightly attached to the patient. Devising a sig-
nal quality index to identify these situations may improve
performance in the future. This would allow to anticipate
problematic cases, avoiding inaccurate feedback, but more
importantly, preventing the classifier from being fed with
corrupted training examples which may severely hinder the
overall performance.

Figure 3: Examples of TI segments corrupted by motion
artifacts. The detections output by the algorithm are dis-
played in in green for true ventilations and in red for false
positives. For large ventilations (top), artifacts may result
in additional detections and distorted waveforms. During
shallow ventilations (bottom), artifacts might be dominant
and result in extremely degraded performances.
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Abstract
Background: Out-of-hospital cardiac arrest (OHCA) data debriefing and clinical research often require the retrospective analysis of large datasets

containing defibrillator files from dierent vendors and clinical annotations by the emergency medical services.

Aim: To introduce and evaluate a methodology to automatically extract cardiopulmonary resuscitation (CPR) quality data in a uniform and system-

atic way from OHCA datasets from multiple heterogeneous sources.

Methods: A dataset of 2236 OHCA cases from multiple defibrillator models and manufacturers was analyzed. Chest compressions were automat-

ically identified using the thoracic impedance and compression depth signals. Device event time-stamps and clinical annotations were used to set the

start and end of the analysis interval, and to identify periods with spontaneous circulation. A manual audit of the automatic annotations was con-

ducted and used as gold standard. Chest compression fraction (CCF), rate (CCR) and interruption ratio were computed as CPR quality variables.

The unsigned error between the automated procedure and the gold standard was calculated.

Results: Full-episode median errors below 2% in CCF, 1 min�1 in CCR, and 1.5% in interruption ratio, were measured for all signals and devices.

The proportion of cases with large errors (>10% in CCF and interruption ratio, and >10 min�1 in CCR) was below 10%. Errors were lower for shorter

sub-intervals of interest, like the airway insertion interval.

Conclusions: An automatedmethodology was validated to accurately compute CPRmetrics in large and heterogeneousOHCA datasets. Automated

processing of defibrillator files and the associated clinical annotations enables the aggregation and analysis of CPR data from multiple sources.
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Introduction

Quality cardiopulmonary resuscitation (CPR) is essential for the sur-

vival of patients in out-of-hospital cardiac arrest (OHCA). Current

and previous resuscitation guidelines have emphasized the impor-

tance of good chest compressions (CCs) provided continuously, or

with minimal pauses, ensuring adequate rate and depth, and avoiding

hyperventilation.1,2 Many largemulticentre research projects and clin-

ical trials focus on CPR analysis of large numbers of OHCA cases.

These datasets contain two sources of data. First, clinical annotations,

includingUtstein template data and ad-hoc annotations by emergency

medical services (EMS) providers, typically collected in an external

spreadsheet file. And second, defibrillator files with detailed informa-

tion on prehospital treatment and patient response.3–9

Current technology enables the detailed analysis and the system-

atic information retrieval from defibrillator files, including the ECG

and the thoracic impedance (TI) signal, the CPR-pad signals such

as acceleration or compression depth (CD), the capnogram, or pho-

toplethysmography and oxygen saturation. Many algorithms based

on signal processing and artificial intelligence have been described

to measure CPR quality, for compressions10–14 and ventila-

tions,15,12,16–18 to determine perfusion states or return of sponta-

neous circulation (ROSC),19–24 to predict shock success,25–27 or to

determine the patient’s heart rhythm.28,29 These algorithms use a

single biomedical signal or a combination of them to automatically

obtain CPR quality variables and patient response data. The integra-

tion of these advances in large scale OHCA research projects is still

a challenging objective.

Multicentre studies that collect data from multiple EMS agencies

may use defibrillators from different vendors, with differences in the

format of the information, the software for the analysis and visualiza-

tion of the cases, or the data export tools. All this software is propri-

etary and vendor-specific. So they differ on the use of signals (CD or

TI) to derive CPR events like CCs, on how CPR quality variables are

computed, on the definition of start/end of the analysis intervals, and

they do not exclude ROSC periods and uninterpretable or noisy sig-

nal periods from the analysis. For these reasons, CPR analysis of

large numbers of OHCA cases frequently involves an onerous labor

intensive manual annotation and revision of the data, for either com-

plete episodes or intervals of interest. Consequently, there is a need

for a uniform methodology and a framework to facilitate the analysis

of large, complex and heterogeneous OHCA datasets.

The aim of this study was to derive and validate a methodology to

automatically obtain CPR quality data in a uniform and systematic

way from large OHCA datasets with clinical annotations and defibril-

lator files from multiple vendors. Since both the TI and CD are useful

to monitor CCs during CPR,11–13,30 we propose a systematic and

uniform way to obtain CPR quality variables from the CD/TI signals

stored in the defibrillator electronic files together with clinical annota-

tions of ROSC. We demonstrate this new methodology on a large

heterogenous OHCA dataset of over 2,000 cases with files from

the three major defibrillator manufacturers.

Materials and methods

Data materials

The study dataset comprised the de-identified electronic defibrillator

files and the clinical annotations, in spreadsheet format, from the

adult OHCA cases enrolled in the Pragmatic Airway Resuscitation

Trial (PART).8 Data were collected by multiple EMS and fire agen-

cies within the Resuscitation Outcome Consortium (ROC) initiative,

and included files from the three major defibrillator vendors: Philips

(HeartStart MRx. Koninklijke Philips N.V., Eindhoven, Netherlands),

Stryker (Lifepak models 12, 15 and 500. Stryker, Kalamazoo, MI,

US) and ZOLL (X and E series, AED Pro and AED plus. ZOLL Med-

ical, Chelmsford, MA, US). As shown in Fig. 1, all files were exported

using custom and proprietary software. Then, using an automated

batch process, they were converted into a common MATLAB (Math-

Works Inc., Natick, MA, US) format to ensure uniform data process-

ing. Defibrillator data included biomedical signal waveforms as well

as time-stamps for relevant events like device power-on, shocks,

rhythm analyses or signal discontinuity, but also CPR data like the

CC time-stamps calculated by the proprietary software of each ven-

dor. The clinical annotations provided extensive additional informa-

tion including ROSC occurrences and advanced airway insertion

attempt and success/abandon times. Only the clinical annotations

needed to define the intervals to calculate the CPR quality variables

were used in this study, that is, ROSC annotations and times asso-

ciated to airway insertion.

Only files with signals suitable for CC annotation were included,

that is, impedance (Stryker and Philips) or sternal accelerometer

based compression depth (Philips and ZOLL). Cases with less than

1-min of usable CC data were discarded. Cases involving several

defibrillator files were also discarded or limited to the most represen-

tative file when the synchronization was not reliable. Of the initial

2731 defibrillator files, 51 could not be exported to an open format,

and 319 contained no usable CC information. The final dataset

included data from 2236 OHCA cases (2361 defibrillator files), 390

(390) Stryker, 925 (926) Philips, and 921 (1045) ZOLL cases,

respectively.

Methods

A uniform automatic procedure (see Section ‘Automatic annotation’)

was used to obtain CPR quality variables from all files, as shown in

Fig. 1. State-of-the-art automatic algorithms were applied to detect

CCs in the TI and/or CD signals.11,12 The boundaries of the analysis

interval, the ROSC periods, and the unreliable signal data periods

were automatically identified. Then, a manual audit with an ad-hoc

tool was conducted to correct CC annotations, ROSC periods, unre-

liable signal periods, and the boundaries of the analysis interval.

These audited data were used as gold standard to compute the

CPR quality variables. The agreement in CPR quality variables

between the uniform automatic procedure and the gold standard

was analyzed to evaluate the reliability of the automated procedure.

Automatic annotation

CCs were detected in the TI signal (Stryker and Philips files) using

the algorithm proposed by Alonso et al.12 A 2.1 Hz cut-off low-

pass filter and a 0.1–0.25 X minimum amplitude adaptive threshold

were selected as configuration parameters. Due to waveform similar-

ities, the same algorithm was also used to detect CCs in ZOLL’s CD

signal. In this case, the adaptive threshold was set to 1–2 cm and a

1–5 Hz bandpass filter was employed, as the signal was found sen-

sitive to low frequency noise and did not involve as many harmonic

components as the TI. Finally, CC detection on the Philips CD signal

was carried out using a standard peak detection method, with mini-

mum peak separation and depth of 0.35 s and 1.5 cm respectively.11

The CD algorithm was used when TI and CD signals were
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simultaneously available. Compression series were defined as

sequences of at least five consecutive and uninterrupted CCs. Inter-

ruptions were defined as intervals longer than 3 s without CCs, as

customarily done for ROC data analysis.31

Intervals of signal unavailability and ROSC were automatically

annotated and excluded from CPR quality calculations. Unreliable

signal intervals were identified from the device’s event time-

stamps. Depths resulting from small accelerations (< 5 m s�2) and

thoracic impedances outside normal values (30–200 X) were also

excluded. For cases involving several files, any time lapse between

records was also marked as unavailable. When files overlapped in

time, the annotations of the latest one prevailed for the overlapping

interval. ROSC occurrences were identified using the clinical annota-

tions. The onset of a ROSC event was moved to the start of the long-

est CC interruption around the annotated ROSC time. When pulse

loss was clinically confirmed (transient ROSC), the end of ROSC

was set at the resumption of CCs.

Following Kramer-Johansen et al.32 the start of an episode was

initially set at the first therapeutic event, i.e. first CC, shock or rhythm

analysis. Then, it was advanced until a signal suitable for CC anno-

tation was available. The end of the episode was set to the last CC or

the onset of sustained ROSC. The analysis interval was defined as

the time period between the start and end of the episode, but exclud-

ing periods with ROSC and periods with unreliable signals.

Manual audit of the episodes

A graphic user interface was developed in MATLAB to obtain the

gold standard by manually auditing the annotations from the uniform

automatic procedure. The tool allowed the display of all available sig-

nals, the modification of CC annotations (both individually and over

user selected time intervals), and the adjustment of the boundaries

of the analysis interval, including episode start/end times as well

as ROSC intervals. Noise regions were also annotated when the

CD/TI signals were uninterpretable. Fig. 2 shows a screenshot of

the graphic user interface during the review of a Philips case.

CPR quality variables

Chest compression fraction (CCF), rate (CCR) and interruption ratio

were computed. The CCR was defined as the frequency of CCs dur-

ing compression series,32 and was calculated as:

CCR ¼ 60

medianf�tccg ðmin �1Þ ð1Þ

where Dtcc is the time in seconds between two consecutive CCs. The

CCF was defined as the proportion of time with ongoing CCs in the

analysis interval.31 The interruption ratio was computed as the time-

proportion with interruptions in CCs between the first and last CC of

the analysis interval, that is, the complement of the CCF but only

from start to end of CCs.

Performance evaluation and comparative analysis

The CPR quality variables were computed using the uniform auto-

matic method and compared to the gold standard. The fully auto-

matic method annotated CCs and the start/end of the analysis

interval according to signal and event time-stamps in defibrillator

files, and ROSC intervals according to the time-stamps provided

by clinicians. The gold standard included reviewer corrections to all

the former, plus noise intervals whenever signals were deemed unin-

terpretable. The agreement in CCF, CCR and interruption ratio was

evaluated in terms of the unsigned error, the unsigned difference in

the variables between the uniform automatic procedure and the gold

standard.

When available, CPR quality variables were also computed using

the CC annotations provided by the corresponding defibrillator ven-

dor software. This allowed comparison of the uniform automatic pro-

cedure and the vendor-specific procedures.

Fig. 1 – General workflow for data conversion and the computation of cardiopulmonary resuscitation (CPR) quality

metrics. Each defibrillator file, along with the corresponding clinical annotations, was converted into a common

MATLAB format structure. The association of the clinical information with the device file data was performed using

the patient ID embedded in the defibrillator record filename. The common format files were subjected to a series of

automatic annotation procedures to compute the CPR quality variables. A graphical tool permitted themanual audit/

annotation of the cases.
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The PART study focused on the comparison of different

advanced airway strategies, and included clinical annotations on air-

way management. CPR quality variables were computed over airway

insertion intervals, as a case study to show the flexibility of the pro-

posed methodology. The airway insertion interval was defined as the

period between the start of the first airway insertion attempt and the

success/abandon time of the last one. These airway insertion

attempt times were obtained from the clinical annotations of the

PART study.

Results

Signal availability

The data converted in the uniform automatic procedure was used to

measure, in each device type, the availability of the CD and TI sig-

nals for the calculation of the CPR quality variables. Availability

was measured from device power-on to the last pads/leads discon-

nection. A total of 2236 cases were suitable for analysis, 390 from

Stryker, 925 from Philips and 921 from ZOLL. For Stryker and Philips

cases, median (interquartile range, IQR) TI availabilities were 92.9

(84.8–96.6) % and 93.4 (85.4–96.2) %, respectively. ZOLL’s CD

availability was 94.9 (88.0–97.1) %. This value is similar to that of

the TI because their technology integrates the accelerometer into

the defibrillation pads. CD availability for Philips was a lower 89.5

(59.4–96.9) %, because it requires an external CPR assist pad,

which may not be present from the beginning of the episode or might

have to be disconnected under certain circumstances, like in the use

of mechanical compression devices. Overall data availability was lar-

gest for Philips records, which often included both TI and CD (from

the 925 cases, 900 had TI and 886 CD). The blind interval from

device power-on until the first signal source became available was

also shorter for Philips, 0.5 (0.2–1.1) minutes, compared to those

measured for Stryker and ZOLL, 1.0 (0.5–1.6) and 0.9 (0.5–1.5) min-

utes, respectively.

Episode-wide CPR quality

Table 1 shows, for each vendor and for the complete dataset, the

median (IQR) error in CCF, CCR and interruption ratio between

the uniform automatic procedure and the gold standard. Median error

values below 2% in CCF, 1 min�1 in CCR and 1.5% in interruption

ratio were measured for all devices. The proportion of episodes with

large errors (>10% for CCF and interruption ratio, and >10 min�1 for

CCR) were below 10% in all cases.

Large errors in CCF and interruption ratio were mostly caused by

an incorrect delineation and identification of ROSC intervals in cases

where the clinical annotations were inaccurate or incomplete. Of the

761 episodes with clinical ROSC annotations, ROSC onset times

were reported with 1-min precision in 334 (42.9%) cases, and were

missing in 10 (1.3%) cases. There were no time-stamps for ROSC

termination, so for 329 cases with transient ROSC annotations, the

end of ROSC had to be marked at the time CCs were resumed.

Moreover, the clinical annotations only contained information about

the first occurrence of ROSC, so secondary ROSC events were

missed by the uniform automatic procedure. In the manual audit of

the data (gold standard), secondary ROSC events were identified

in 132 (40.1%) cases with clinically diagnosed pulse loss. These

events occurred in long pauses in CCs (>1 min) with an organized

heart rhythm and no other plausible explanation. Transient ROSC

events were also added to 87 cases with no clinical ROSC

Fig. 2 – Screenshot of the revision tool during the analysis of a Philips case. Traces of the ECG, compression depth

(CD) and thoracic impedance (TI), both in raw format and high-pass filtered for chest compression (CC) annotation,

are presented. CCs (dotted red vertical lines) were automatically annotated using the CD signal, or the TI when the

CD was absent. An interval with return of spontaneous circulation (ROSC) was annotated (green) using the clinical

information (orange label). In this case, ROSC was sustained, so the onset of ROSC was the end of the analysis

interval. Controls on the left permitted the manual annotation of CCs as well as ROSC and noisy intervals. (For

interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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annotations. The episodes with undeclared ROSC events showed

the largest errors in CCF, with a median (IQR) of 6.6 (2.2–17.8) %,

and 37.4% of the cases presenting large errors (>10%) in CCF.

Errors in CCF were large in 28.4% of cases with a single transient

ROSC event, and in 9.9% of cases with sustained ROSC. In con-

trast, only 2.5% of the episodes without ROSC presented large

errors in CCF. A detailed analysis of the error distributions is shown

in the Bland-Altman plots of Fig. 3. As shown in the figure, incorrect

ROSC annotations resulted in large underestimations of the CCF

(overestimations of the interruption ratio). CCR estimations were

found much more robust to misannotations of the analysis intervals.

Specific intervals, advanced airway device insertion

Table 2 shows the errors in CPR quality variables for a specific anal-

ysis sub-interval, the airway insertion interval in the PART study. The

inclusion criteria for this sub-analysis were: 1) clinical time annota-

tions for the start of the first insertion effort and the success/abandon

of the last effort, and 2) available signal data, suitable for CC anno-

tation, in over 50% of the airway insertion interval. A total of 1139

cases met the inclusion criteria, with a median (IQR) airway insertion

duration of 1.2 (0.8–3.0) min. The estimated errors in CPR quality

variables were lower for the airway insertion interval than for the epi-

sode analysis interval (Table 2).

Vendor-specific procedure

The CC detection algorithms are proprietary in the vendor-specific

software, and their output determine the values of the CPR quality

variables. Differences between vendor-specific CC-detectors and

the ones used in our uniform automatic procedure were evaluated

by comparing the errors in CPR quality variables. To evaluate only

the effect of CC detection algorithms the manually audited analysis

intervals (manual audit of episode start/end, ROSC and noise peri-

ods) were used for all the algorithms. As shown in Table 3, estimated

errors were small either way, although the errors in CCF and inter-

ruption ratio, and the proportion of cases with large errors, were all

significantly smaller for the algorithms used in this study (p < 0.05

for the Wilcoxon signed rank test). In addition, errors due to CC

detection were larger for TI based algorithms than for those based

on CD, as reported in previous studies.11 Impedance is more sensi-

tive to noise sources like patient or electrode movement, has more

waveform variability,33 and frequently presents low amplitude varia-

tions associated with CCs.

Discussion

This paper describes and evaluates a methodology to automatically

process and extract information in a uniform and systematic way from

Table 1 – Median (IQR) unsigned error in CPR quality variables for the uniform automatic procedure. Full episodes
of the three defibrillator vendors were considered.

CCF (%) CCR (min�1) Interruptions (%)

N error > 10% error > 10 min�1 error > 10%

Stryker 389 1.6 (0.6–3.9) 36 (9.3%) 0.8 (0.3–2.5) 12 (3.1%) 1.4 (0.5–3.8) 36 (9.3%)

Philips 925 0.5 (0.1–1.9) 92 (9.9%) 0.3 (0.1–0.7) 1 (0.1%) 0.4 (0.1–1.4) 71 (7.7%)

ZOLL 918 0.7 (0.3–2.0) 68 (7.4%) 0.2 (0.1–0.6) 6 (0.7%) 0.6 (0.3–1.8) 67 (7.3%)

TOTAL 2232 0.7 (0.2–2.4) 196 (8.8%) 0.3 (0.1–0.9) 19 (0.9%) 0.6 (0.2–2.0) 174 (7.8%)

Fig. 3 – Bland-Altman plot for chest compression fraction (CCF), chest compression rate (CCR), and interruption ratio

(IR). The values of the variables obtained for the uniform automatic procedure were compared to the gold standard.

For each variable the dotted line shows the median error, and the solid lines the 90% levels of agreement (LOA). The

median value of the errors is close to zero for all variables. Errors in the automatic annotation of the analysis interval

resulted in large negative errors in CCF (positive for IR) and skewed LOAs. These were mainly related to cases with

return of spontaneous circulation (ROSC) occurrences (green dots in the plot). (For interpretation of the references

to color in this figure legend, the reader is referred to the web version of this article.)
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large repositories of OHCA data, which contain clinical annotations

and defibrillator files from multiple vendors. Defibrillator files and clin-

ical annotations were obtained from the PART trial, and the analysis

was performed for complete episodes and for specific sub-intervals

of interest, such as the insertion period of the advanced airway device.

The automated method provided accurate CPR quality variables (er-

rors below 10 min�1 in CCR, and below 10% in CCF and interruption

ratio) in more than 90% of the cases. Given the advent of numerous

automatic detection algorithms for OHCA data based on signal pro-

cessing and artificial intelligence, this methodology could be extended

in the future to add information on ventilation rates12,15–18 and vol-

umes,34,35 perfusion states,22,24,36 or heart rhythm transitions,28,37–

39 depending on the available signals in the defibrillator files.

For CPR data processing, a key procedure is an accurate and sys-

tematic definition of the analysis interval, including the start/end of the

treatment and the detection of ROSC events (non cardiac arrest inter-

vals). The automated procedure used to set the start/end of the anal-

ysis interval was based on the event time-stamps of the device and its

signal recordings. If start/end times as defined by Kramer-Johansen

et al.32 were not automatically identified, and instead the power on/

power off (or last signal recording) time-stamps of the device were

used, the error in CCF raised to 23.0 (10.9–42.6) %, a problem that

has recently been reported.40 The missannotation of periods with

ROSC accounted for the majority of large errors in the automated pro-

cedure. Inaccurate clinical annotations and undocumented ROSC

events explain these errors, and were one of the major challenges of

the automatic procedure. Several methods have been proposed to

automatically identify pulsed rhythms using the ECG alone21 or in

combination with other signals such as the impedance19,20,23 or the

capnogram.22 The use of these algorithms to automatically detect

ROSC intervals could contribute to a more rapid and precise annota-

tion procedure, but those algorithms have not yet been validated for

large repositories of OHCA data.

Regarding the automatic annotation of CCs, the detection algo-

rithms used in this study were based on TI and CD, and in both cases

resulted in lower errors in CPR quality variables compared to vendor’s

proprietary algorithms. Estimated errorswere smaller for CCR than for

CCF, which is strongly associated to survival.41,42 However, errors in

CCF were low (0.7%, see Table 1), and CCF estimates were more

accurate using our procedure than the vendor specific software

(Table 3). Also, CC depth, which is the stronger correlate of out-

come,43 was not measured in this study because there is no ground

truth for depth (CD is a derived measure from accelerometer data),

and thus errors could not be evaluated. Furthermore, CD was not

available for one of the vendors. However, CC depth derived from

the CD signal could be easily calculated in the automated procedure,

and used in models to estimate patient outcome.44

Accuracy depended on the signals used to estimate the CPR qual-

ity metrics. The CD signal is derived from sternal accelerometers,

either as part of an external assist pad (Philips) or integrated in the

defibrillation pads (ZOLL), and is more stable and less artifact prone

than the TI signal. Patient and/or electrode connection movement,

short disconnections and low/high frequency noise, all affect the TI

waveform and compromise the accuracy of the CC detection algo-

rithms.12 Still, the accuracy for the TI algorithm was high, in line with

previous studies,10,11 and the algorithm worked well for different

devices. It must be stated that 192 episodes, 8.6% of the cases,

included intervals with mechanical CCs. In the PART data used in this

Table 2 – Median (IQR) duration of the advanced airway insertion intervals and unsigned error in CPR quality
variables for the uniform automatic procedure.

CCF (%) CCR (min�1) Interruptions (%)

N Duration (min) error > 10% error > 10 min�1 error > 10%

Stryker 114 1.3 (1.0–3.0) 0.3 (0.0–2.5) 8 (7.0%) 0.5 (0.1–1.7) 5 (4.4%) 0.3 (0.0–2.1) 7 (6.1%)

Philips 607 1.3 (0.8–3.5) 0.0 (0.0–0.0) 21 (3.5%) 0.0 (0.0–0.3) 10 (1.6%) 0.0 (0.0–0.0) 21 (3.5%)

ZOLL 418 1.0 (0.7–3.0) 0.2 (0.0–1.0) 11 (2.6%) 0.1 (0.0–0.4) 7 (1.7%) 0.2 (0.0–0.9) 11 (2.6%)

TOTAL 1139 1.2 (0.8–3.0) 0.0 (0.0–0.7) 40 (3.5%) 0.0 (0.0–0.5) 22 (1.9%) 0.0 (0.0–0.6) 39 (3.4%)

Table 3 – Median (IQR) unsigned error in CPR quality variables for the uniform automatic procedure compared to
the annotations of the manufacturer’s software (vendor-specific procedure). Variables were computed over the
reviewed analysis intervals, where the ROSC events and the start/end times were corrected. The manufacturer’s
software includes CC annotations based on impedance (Stryker) or depth (Philips and ZOLL).

CCF (%) CCR (min�1) Interruptions (%)

N error > 10% error > 10 min�1 error > 10%

Uniform automatic CC annotations

Stryker (TI) 390 0.9 (0.4–2.1) 5 (1.3%) 0.7 (0.3–2.2) 10 (2.6%) 0.9 (0.3–2.1) 6 (1.5%)

Philips 925 0.2 (0.0–0.6) 10 (1.1%) 0.2 (0.1–0.7) 1 (0.1%) 0.2 (0.0–0.5) 10 (1.1%)

- TI 894 0.8 (0.3–1.9) 33 (3.7%) 0.5 (0.2–1.0) 2 (0.2%) 0.8 (0.3–1.8) 33 (3.7%)

- CD 531 0.1 (0.0–0.3) 2 (0.4%) 0.3 (0.1–0.6) 0 (0.0%) 0.1 (0.0–0.2) 1 (0.2%)

ZOLL (CD) 921 0.4 (0.2–0.7) 4 (0.4%) 0.2 (0.1–0.4) 1 (0.1%) 0.4 (0.2–0.8) 4 (0.4%)

Vendor-specific automatic CC annotations

Stryker (TI) 390 1.8 (0.7–4.0) 27 (6.9%) 1.4 (0.4–3.4) 24 (6.2%) 1.8 (0.7–3.9) 25 (6.4%)

Philips (CD) 531† 0.4 (0.2–1.0) 3 (0.6%) 0.3 (0.1–0.6) 0 (0.0%) 0.4 (0.1–0.9) 2 (0.4%)

ZOLL (CD) 921 0.4 (0.1–1.1) 20 (2.2%) 0.5 (0.2–1.4) 14 (1.5%) 0.4 (0.1–1.1) 20 (2.2%)
† From the 886 Philips cases with CD only 531 contained vendor-specific CC annotations.
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study, we found no significant differences (p > 0:05, Chi square

test) in proportion of cases with large errors for the CPR quality vari-

ables between the manual and mechanical cases. There were no dif-

ferences either in median errors for CCF (p ¼ 0:07, Mann Whitney U

test), but differences between manual and mechanical CPR were sig-

nificant for CCR (0.3% vs 0.2%, p < 0:05), and interruption ratio

(0.6% vs 0.7%, p < 0:05). However, the differences in CCR and

interruption ratio were of 0.1-percent points, which have no clinical

importance. For details of this secondary analysis consult the supple-

mentary data.

Our analysis includes, as a case study, the assessment of CPR

during airway insertion, an interval of potential interest given the long

interruptions in CPR observed during advanced airway insertion in

previous studies.45 This example shows the flexibility of the pro-

posed methodology to 1) analyze CPR data in non-standard analysis

intervals, 2) include device or clinical annotations to define the

boundaries of sub-intervals of interest, such as the airway insertion

interval, and 3) define ad-hoc CPR variables. This flexibility opens

a wide variety of options to personalize the studies, add new covari-

ates to the explanatory models in large clinical trials, and answer

specific research questions. How the CPR quality variables in certain

time intervals or around certain treatment procedures affect outcome

could be analyzed. Many large clinical trials and research studies

could benefit from this methodology, which allows the automatic

analysis of thousands of OHCA cases from heterogeneous sources.

Similar procedures are currently performed manually, which involve

a very high cost in time and money. The software tools and analysis

procedures of our automatic uniform procedure are available through

the corresponding author for clinical OHCA research groups.

Limitations of the study

Although various devices from three vendors were considered, the

availability of signals and the accuracy of the algorithms depend on

their technology to acquire signals.Moreover, devicemodelswere clo-

sely linked to emergency agencies, whichmay operate under different

protocols, and thus introduce some bias in the results. We did not

include CC depth measures, nor any assessment of ventilation. Clin-

ical annotations of ROSC were inaccurate, and in cases like transient

ROSC and secondary ROSC events were frequently missing.

Conclusions

An automatic and uniform (vendor independent) methodology to

compute CPR quality variables in large repositories of OHCA defib-

rillator files from multiple vendors was presented and validated. Med-

ian episode-wide errors below 2% in CCF, 1 min�1 in CCR, and 1.5%

in interruption ratio, were measured for all signals and device mod-

els. The proposed automated method permits an accurate analysis

of CPR data in large datasets with files from multiple defibrillator ven-

dors, integrating relevant clinical information. This methodology

could be extended to answer other research questions, by integrat-

ing different automated algorithms and considering ad-hoc intervals

of interest for the analysis.
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Abstract

Background: Chest compression (CC) quality is associated with improved out-of-hospital cardiopulmonary arrest (OHCA) outcomes. Airway

management efforts may adversely influence CC quality. We sought to compare the effects of initial laryngeal tube (LT) and initial endotracheal

intubation (ETI) airway management strategies upon chest compression fraction (CCF), rate and interruptions in the Pragmatic Airway Resuscitation

Trial (PART).

Methods: We analyzed CPR process files collected from adult OHCA enrolled in PART. We used automated signal processing techniques and a

graphical user interface to calculate CC quality measures and defined interruptions as pauses in chest compressions longer than 3 s. We determined CC

fraction, rate and interruptions (number and total duration) for the entire resuscitation and compared differences between LT and ETI using t-tests. We

repeated the analysis stratified by time before, during and after airway insertion as well as by successive 3-min time segments. We also compared CC

quality between single vs. multiple airway insertion attempts, as well as between bag-valve-mask (BVM-only) vs. ETI or LT.

Results: Of 3004 patients enrolled in PART, CPR process data were available for 1996 (1001 LT, 995 ETI). Mean CPR analysis duration were: LT

22.6 � 10.8 min vs. ETI 25.3 � 11.3 min (p < 0.001). Mean CC fraction (LT 88% vs. ETI 87%, p = 0.05) and rate (LT 114 vs. ETI 114 compressions per

minute (cpm), p = 0.59) were similar between LT and ETI. Median number of CC interruptions were: LT 11 vs. ETI 12 (p = 0.001). Total CC interruption

duration was lower for LT than ETI (LT 160 vs. ETI 181 s, p = 0.002); this difference was larger before airway insertion (LT 56 vs. ETI 78 s, p < 0.001).

There were no differences in CC quality when stratified by 3-min time epochs.

Conclusion: In the PART trial, compared with ETI, LT was associated with shorter total CC interruption duration but not other CC quality measures. CC

quality may be associated with OHCA airway management.

Keywords: Cardiopulmonary arrest, Airway management, Intubation, Emergency medical service
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Introduction

Sudden out-of-hospital cardiopulmonary arrest (OHCA) is a major
public health problem affecting over 300,000 adults in the United
States each year, with only 1 in 10 surviving.1 Airway management
is an important component of resuscitation from OHCA, facilitating
delivery of oxygen to lungs for circulation to ischemic organs.
Common advanced airway management techniques used by
rescuers include endotracheal intubation (ETI�“intubation”) and
supraglottic airway insertion (SGA) such as the laryngeal tube (LT).
In the Pragmatic Airway Resuscitation Trial (PART), LT was
associated with better OHCA outcomes than ETI, including higher
72-h survival, hospital survival, and hospital survival with favorable
neurologic status.2 The mechanism for this difference was
unknown.

Successful OHCA resuscitation requires high quality chest
compressions (CC) to provide effective circulation of oxygen
throughout the body. Prior studies highlight the influence of CC rate,
fraction and interruptions upon OHCA outcomes.3�6 For example,
OHCA survival is highest when CC fraction (CCF) exceeds 0.60.3,7,8 A
CC rate of 100�120 cpm has also been associated with optimal
survival.9 Because of its complexity, ETI has strong potential to
adversely influence CC quality.10 Prior studies have linked airway
management efforts with chest compression quality.11,12 While SGA
insertion entails simpler technique than ETI, only limited data have
compared their relative influence upon CC quality.13

The objective of this study was to determine the differences in CC
quality between airway management strategies in the PART trial.

Methods

Study design

We conducted a post hoc analysis of data from the PART trial.2

Institutional Review Boards of participating institutions approved the
parent PART study under federal Exception from Informed Consent
rules (21 CFR 50.24).

Setting

The PART trial compared different paramedic airway management
strategies in adult OHCA.2 The 27 emergency medical service (EMS)
agencies participating in the trial were associated with the Birmingham
(Alabama), Dallas-Fort Worth (Texas), Milwaukee (Wisconsin), Pitts-
burgh (Pennsylvania) and Portland (Oregon) sites of the Resuscitation
Outcomes Consortium. The trial used cluster-randomization with cross-
over, assigning adult OHCA to strategies of initial-ETI vs. initial-LT.
The primary outcome was 72-h hospital survival. Secondary outcomes
included return of spontaneous circulation, hospital survival and
hospital survival with favorable neurologic function (Modified Rankin
Scale �3).

Selection of participants

The parent trial included all adult OHCA �18 years (or per local
interpretation) requiring advanced airway management or bag-valve-
mask (BVM) ventilation. Key exclusion criteria included patients < 18
years, pregnant women, prisoners, traumatic cardiac arrest, and the
initial presence of a non-study advanced EMS unit. The parent trial
enrolled 3004 patients from December 1, 2015 through November 4,

2017. For this analysis, we included all enrolled patients with available
CPR process files.

Methods of measurement � analysis of CPR process files

CPR process data were recorded by standard cardiac monitors used
by participating EMS agencies, including monitors manufactured by
Physio-Control, Inc. (Life-Pak 15 series, Physio-Control, Redmond,
Washington), Zoll, Inc. (X-series, Zoll, Inc., Chelmsford, Massachu-
setts) and Philips, Inc. (MRX series, Philips Healthcare, Andover,
Massachusetts). The monitors detected CC through either accel-
erometers (Zoll and Philips) or changes in electrical impedance
(Physio-Control and Philips), which has been widely used to detect
fluctuations due to both CC and ventilations.14�18 As part of standard
protocols, EMS personnel collected CPR process measurements on
all adult OHCA. The manufacturer's CPR files were attached
electronically to EMS electronic health record systems. A central
study team used commercial software (Philips EventReview,
PhysioControl CodeStat, and Zoll RescueNet Code Review) to view
the CPR process files and to allow cleaning of corrupted or repeated
files.

We used previously developed and extensively validated methods
for automated importing and analysis of CPR process files.14�18 All
CPR process files were converted to a common MATLAB (MathWorks
Inc., Natick, Massachusetts) file format in order to apply a uniform
annotation procedure. We first applied waveform processing
algorithms to automatically annotate and characterize CCs using
both the thoracic impedance and the accelerometer-based compres-
sion depth channels.15,18 We then used a previously developed
Graphical User Interface tool to review the CC annotations and to
identify intervals or events of interest. Research personnel used the
GUI to review each individual file to review or correct key events,
including initiation and end of CC, periods with artifact or noise, and
ROSC.14�18Suitable intervals for CPR quality analysis were identified
according to Kramer-Johansen, et al; i.e., between the first therapeutic
event (CC, shock or rhythm analysis) and the end of resuscitation (last
CC or persistent ROSC).19

Primary exposure

The primary exposure of interest was the assigned airway manage-
ment strategy (initial-LT vs. initial-ETI). We analyzed the data
according to intention-to-treat principles.

Outcomes

The primary outcomes of the study were CC fraction, rate and
interruptions.3,8,9,20,21 We defined (1) a CC interruption as a pause in
CC longer than 3 s, (2) CC series as a group of at least 5 consecutive
CCs without interruption, (3) CCF as the proportion of time (excluding
ROSC and signal unavailability intervals) with active CC series in the
analysis interval, and (4) CC rate as the number of CCs per minute of
resuscitation, computed as the inverse of the median time difference
between consecutive CCs within a CC series. We determined the
mean and total duration of CC interruptions. Due to variations in the
technologies used across participating EMS agencies, CC depth was
not consistently measured. Therefore for this analysis we opted not to
study CC depth. Because of the absence of validated detection
methods, we did not assess ventilations in this analysis.

Analysis

We determined differences between LT and ETI for each CC process
measure for a) the entire resuscitation episode, b) the time period
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before airway insertion, and c) the time period after airway insertion.
Airway insertion consisted of the point of successful airway placement
or abandonment of failed attempts, as reported by EMS personnel.
We repeated the analysis stratified by 3-min epochs. We also
analyzed the data limited to the time during airway insertion efforts. We
defined the “during” airway insertion period as a subset of the “before”
period attributed by EMS personnel to airway insertion efforts. EMS
personnel reported the beginning and end of airway insertion efforts,
including the time of successful airway placement or the abandonment
of airway efforts. We did not alter the reported timepoints when
conducting the analysis.

We repeated this analysis using imputation in cases where the
airway placement time was missing or implausible (for example, zero
or negative elapsed time). Where the end of airway insertion efforts
was missing, we imputed the value using the median duration of the
airway insertion efforts for the corresponding airway type. We similarly
imputed the airway insertion time if the reported elapsed time to airway
placement was zero or negative. Only efforts with both precise (�10 s)

timestamps were considered to compute the imputable durations.
Imputation was necessary for approximately 35% of the cases; 11.7%
for missing time points, and 23.8% for implausible values.

Finally, we examined differences in total CC interruptions between
cases with single- and multiple airway insertion attempts. We
examined CC differences in the subpopulation of patients receiving
a single airway attempt. We also examined differences between cases
receiving BVM only vs. [LT insertion or ETI].

We used univariate t-tests to facilitate all comparisons between LT
and ETI. Because our focus on the association of airway strategy with
CC quality (not patient clinical outcomes), we did not adjust the
analysis for clinical cofounders such as Utstein variables.22 We
conducted all analyses using MATLAB (MathWorks Inc., Natick,
Massachusetts).

Results

Of 3004 patients enrolled in the parent trial, we included 1996 in this
analysis, including 1001 LT and 995 ETI. We excluded cases with
unavailable or defective monitor files (n = 533), no advanced airway
insertion attempts (n = 191) or unusable impedance signals for over
50% of the CPR process file (n = 284). The final CPR process files
originated from PhysioControl (n = 316), Zoll (n = 834) and Philips
(n = 846) monitors. There were n = 191 cases with BVM ventilation
only.

LT cases were more likely to involve men and whites. Other
baseline characteristics (age, witnessed arrest, bystander chest
compressions, and initial cardiac rhythm) were similar between LT
and ETI (Table 1). Mean duration of resuscitation for the CC analysis
was shorter for LT than ETI (LT 22.6 � 10.8 min vs. ETI 25.3 � 11.3
min, p < 0.001).

CCF for the entire resuscitation episode was similar between LT
and ETI (LT 87.8% vs. ETI 87.1%, p = 0.05) (Table 2, Appendix 1).
CCF was similar between LT and ETI for the time before and after
airway insertion. There were no differences in CCF between LT and
ETI when assessed in 3-min epochs or when limited to the time period
during airway insertion efforts (Appendix 2).

CC rate for the entire resuscitation episode was similar between LT
and ETI (LT 113.7 vs. ETI 114.0 cpm, p = 0.59) (Table 3, Appendix 3).
CC rate was similar between LT and ETI for the time before and after
airway insertion. There were no differences in CC rate between LT and
ETI when assessed in 3-min epochs or when limited to the time period
during airway insertion efforts (Appendix 4).

The number of CC interruptions were higher for ETI than LT; LT
median 11.0 (IQR 6.0�17.0) vs. ETI median 12.0 (IQR 8.0�19.0),
(p = 0.001) (Table 4, Appendix 5). While the duration of each CC

Table 1 – Characteristics of the study population.
Includes n = 1001 with initial laryngeal tube (LT) and
N = 995 with endotracheal intubation (ETI).

Characteristics LT
N (%)

ETI
N (%)

P-value

Age, Median (IQR) 64 (22) 63 (22) 0.42
Sex
Male 636 (63.6) 589 (59.2) 0.05
Female 364 (36.3) 406 (40.8)
Race
White 540 (54.0) 472 (47.4) <0.001
Hispanic 53 (5.3) 69 (6.9) 0.23
Black 252 (25.2) 333 (33.5) <0.001
Asian 22 (2.2) 16 (1.6) 0.35
Pacific Islander 1 (0.1) 1 (0.1) 0.5
Native American 2 (0.2) 2 (0.2) 0.64
Other 6 (0.6) 11 (1.1) 0.37
Witnessed Arrest, n/N (%) 443 (48.8) 450 (49.0) 0.99
EMS witnessed 103 (11.4) 109 (11.9) 0.79
Bystander witnessed 340 (37.5) 341 (37.1) 0.90
Not witnessed 464 (51.2) 469 (51.0) 0.99
Bystander chest
compressions, n/N (%)
Yes 461 (53.9) 447 (54.6) 0.80
No 391 (46.1) 392 (45.4)
Initial rhythm
Shockable 175 (16.6) 160 (16.4) 0.40
Non-shockable 803 (83.4) 818 (83.6)

Table 2 – Differences in chest compression fraction between airway strategies (LT vs. ETI). Full table in Appendix 1.
Airway insertion defined as point of successful airway placement or abandonment of failed attempts.
LT = Laryngeal tube. ETI = Endotracheal intubation. CCF = Chest compression fraction.

Time period LT ETI Difference (ETI-LT)

N CCF
Mean % (SD)

Analysis time
sec (SD)

N CCF
Mean % (SD)

Analysis time
sec (SD)

DCCF
% (95% CI)

p-Value

Entire resuscitation episode 1001 87.9 (8.4) 1355.4 (650.3) 995 87.1 (8.7) 1514.3 (680.5) �0.8 (�1.5 to 0.02) 0.05
Before airway insertion 903 86.9 (12.4) 463.5 (296.2) 886 87.3 (10.6) 659.4 (349.3) 0.4 (�0.7 to 1.4) 0.49
After airway insertion 902 88.8 (9.1) 974.4 (589.6) 866 88.2 (9.8) 953.2 (596.8) �0.6 (�1.5 to 0.3) 0.17
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interruption was similar between LT and ETI (LT 12.6 vs. ETI
13.0 s, p = 0.78), the total duration of all CC interruptions was
longer for ETI than LT (ETI 180.8 vs. LT 160.0 s, p = 0.002). The
total duration of CC interruptions was higher for ETI than LT prior
to (ETI 77.9 vs. LT 56.4 s, p < 0.001) but not after airway insertion
(LT 109.9 vs. ETI 113.3 s, p = 0.58). There were no differences in
the duration of CC interruptions when stratified by 3-min epochs
(Appendix 6). When limited to the period during airway insertion,
ETI was associated with slightly longer total CC interruptions than
LT (LT 15.4 vs. ETI 20.9 s, p < 0.01; imputed values LT 10.1 vs.
ETI 16.5 s, p < 0.001). ETI was associated with longer total airway
insertion efforts than LT (LT 131.7 vs. ETI 177.2 s, p < 0.001;
imputed values LT 88.0 vs. ETI 139.0 s, p < 0.001).

Total CC interruption duration was shorter for single (n = 1457)
than multiple (n = 539) airway insertion attempts (single 127 vs.
multiple 153 s, p = 0.005). When limiting the analysis to cases with a
single airway insertion effort (n = 887 for LT, n = 570 for ETI), total CC
interruption duration was slightly higher for ETI than LT (ETI 174.6 vs.
LT 157.5 s, p = 0.03). Total duration of CC interruptions prior to airway
insertion was higher for ETI than LT (ETI 68.2 vs. LT 52.2, p < 0.001).
No differences were observed in CCF and CC rate between airway
groups. No significant differences were observed in airway insertion
durations and total CC interruptions during airway insertion.

Total CC interruption duration was shorter for BVM-only than LT or
ETI (n = 1996); BVM n = 109, 104 s vs. [LT or ETI] n = 1996, 170 s,
p < 0.001). However, the total resuscitation duration was shorter for
BVM than LT or ETI (BVM 698 s vs. [LT or ETI] 1434.6 s, p < 0.001).
CCF, which is episode duration independent, was higher for LT or ETI
than for BVM ([LT or ETI] 87.5% vs. BVM 84.1%, p < 0.001). Of note,
continuous CCs was the most frequent CPR strategy employed before
airway insertion and during BVM ventilation, with 30:2 CPR patterns
being observed only on a relatively small portion (approximately 10%)
of the cases.

Discussion

The parent PART trial found that an airway management strategy of
initial-LT resulted in improved adult OHCA outcomes compared with a
strategy of initial-ETI. A postulated reason for the differences in clinical
outcomes is the differential effects of airway strategy upon CC quality.
In the current analysis we found that compared with ETI, LT was
associated with shorter total CC interruption duration but not other CC
quality measures. Our analysis is one of the largest to describe
linkages between airway management efforts and CC quality. Our
results are bolstered by the use of automated signal processing
techniques for systematic ascertainment of CC quality measures.

In a series of 100 adult OHCA from Pittsburgh, paramedic ETI
efforts were associated with a median of two (2) chest compression
interruptions totaling a median of 109.5 s.11 In an analysis of 2767
adult OHCA resuscitations in the Resuscitation Outcomes Consor-
tium Prehospital Resuscitation using an IMpedance valve and Early
versus Delayed (PRIMED) trial, chest compression fraction was
higher with supraglottic airway insertion than ETI during the 2 min
before and after airway insertion.12 In an analysis of data from the
PARAMEDIC2 trial, Deakin, et al. found no difference in CCF between
airway management strategies (SGA vs. ETI vs. both vs. none), but
the analysis was limited to only 286 of the total 8000 patients enrolled
in the parent trial.23,24 We note that the CCF observed in our current
series (>87%) is very high compared with prior published series,
suggesting that EMS personnel were very adept at maintaining CC
quality.3,20Differences in CC quality may have been more evident with
EMS agencies or settings with lower baseline CC quality.

While we did not observe interval differences in CC rate, fraction, or
individual interruptions between airway techniques, we did observe
that ETI was associated with total CC interruptions almost 20 s longer
than with LT. We note that total resuscitation duration was 3 min longer
for ETI than LT. The exact reasons for the longer resuscitation duration
for ETI is not known. Variations in practice or selection bias may have
resulted in longer resuscitation efforts, enabling extended airway
insertion effort. However, the ETI-based strategy may have also
directly extended the direction of care. The latter is plausible given that
ETI technique entails more complex technique than LT insertion. The
extended duration of resuscitation would also explain why total CC
interruptions were greater for ETI than LT despite similar CCF.

Of note, the ETI success rate observed in PART was approximately
53%; the sensitivity analysis limited to cases with a single airway insertion
effort suggests that multiple ETI attempts may have explained some�but
not all�of the increased CC interruptions. As emphasized in the parent
trial, we believe that it is the strategy of airway management�not the
mechanics of the individual devices�that likely influenced OHCA and
outcomes. When we limited the analysis to ETI and LT cases with a single
insertion attempt, total CC interruption was still longer for ETI than LT,
suggesting that there could be other aspects of ETI technique influencing
CC continuity. While our study suggests shorter CC interruptions with
BVM than [LT or ETI], we believe that this is due primarily to the two-fold
shorter total resuscitation time observed in the BVM-only group.

In the parent PART trial, 72-h survival was 2.9% higher for LT than
ETI. It is unclear if the CC interruptions in this series influenced patient
outcomes. ETI is a complex procedure and has been associated with
numerous adverse events including failed insertion efforts, tube
misplacement or dislodgement and multiple insertion attempts.25,26

The presumption is that these deviations influence outcomes by
causing CC interruptions. However, it is unclear if the additional 20

Table 3 – Differences in chest compression rate between airway strategies (LT vs. ETI). Full table in Appendix 2.
Airway insertion defined as point of successful airway placement or abandonment of failed attempts.
LT = Laryngeal tube. ETI = Endotracheal intubation. CC = Chest compression. Cpm = compressions per minute.

Time period LT ETI Difference (ETI-LT)

N CC rate
Mean cpm (SD)

Analysis time
sec (SD)

N CC rate
Mean cpm (SD)

Analysis time
sec (SD)

DCC rate
cpm (95% CI)

p-Value

Entire resuscitation episode 1001 113.7 (9.1) 1355.4 (650.3) 995 114.0 (10.5) 1514.3 (680.5) 0.2 (�0.6 to 1.1) 0.59
Time before airway insertion 903 112.6 (11.2) 463.5 (296.2) 886 113.0 (11.2) 659.4 (349.3) 0.4 (�0.6 to 1.4) 0.45
Time after airway insertion 902 113.6 (11.0) 974.4 (589.6) 866 113.8 (10.9) 953.2 (596.8) 0.2 (�0.8 to 1.2) 0.72

96 R E S U S C I T A T I O N 1 6 2 ( 2 0 2 1 ) 9 3 �9 8



�30 s of CC interruptions in this series are clinically important. While
potentially linked with airway technique and OHCA outcomes, we did
not study CC depth because accelerometer-based data were
available for only a portion of cases.9,21 In ongoing efforts we are
using advanced processing of the thoracic impedance signal to
assess ventilation differences between ETI and LT.

While we did not observe major differences in CC quality between ETI
and LT, we still believe that maintenance of CC quality is important during
OHCA advanced airway management efforts. Resuscitation from OHCA
requires teamwork and coordination of multiple rescue interventions.
Mitigation of distractions is important to facilitate other components of
resuscitation. The current study suggests that compared with ETI, LT is
associated with shorter total CC interruptions, a finding that is consistent
with the simpler technique of LT insertion. We would expect other
supraglottic airways such as the igel and laryngeal mask airway to yield
similaradvantages.ForETI-basedefforts,videolaryngoscopyandthegum
elastic bougie have been associated with improved first-pass ETI success,
but these impact on CC and patient outcomes are unknown.27�30

Regardless of the approaches selected, EMS teams should devise
approaches that best optimize coordinated resuscitation care.

Limitations

While we did not have CPR process files for all enrolled cases, our analysis
is one of the largest series linking airway technique with CC quality. We did
not assess chest compression depth due to the limited number of cases
with accelerometer-based CPR process files; CC depth may plausibly be
influenced by different airway techniques. We did not formally link CC
quality measures with patient outcomes, but we observed few discernible
differences in CC quality when stratified by airway strategy. We did not
assess ventilations; analysisof ventilations is target of a future analysis. ETI
success rates observed in the trial were lower than those from prior reports
and the extent to which this difference may contribute to the improved
survival noted in the parent trial is not known.31We did not have information
on the airway management protocols, training protocols, or practice
patterns across the participating agencies; variations in practice and
preparation may have influenced the observed results. The intubation
success rate reported in the parent trial was approximately 53%, a figure
lower than prior studies; intubation performance may have influenced CC
quality.WerelieduponEMSpersonnel reports todefine thestartandendof
airway management efforts.

Conclusion

Compared with ETI, LT was associated with shorter total CC
interruption but not other CC quality measures in the PART trial.
Single-attempt airway insertion and BVM-only were associated with
shorter total CC interruptions. OHCA airway management may
influence CC quality.
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Abstract
Background: We sought to describe ventilation rates during out-of-hospital cardiac arrest (OHCA) resuscitation and their associations with

airway management strategy and outcomes.

Methods: We analyzed continuous end-tidal carbon dioxide capnography data from adult OHCA enrolled in the Pragmatic Airway

Resuscitation Trial (PART). Using automated signal processing techniques, we determined continuous ventilation rates for consecutive

10-second epochs after airway insertion. We defined hypoventilation as a ventilation rate < 6 breaths/min. We defined hyperventilation as a

ventilation rate > 12 breaths/min. We compared differences in total and percentage post-airway hyper- and hypoventilation between airway

interventions (laryngeal tube (LT) vs. endotracheal intubation (ETI)). We also determined associations between hypo-/hyperventilation and

OHCA outcomes (ROSC, 72-hour survival, hospital survival, hospital survival with favorable neurologic

status).

Results: Adequate post-airway capnography were available for 1,010 (LT n = 714, ETI n = 296) of 3,004 patients. Median ventilation rates were:

LT 8.0 (IQR 6.5–9.6) breaths/min, ETI 7.9 (6.5–9.7) breaths/min. Total duration and percentage of post-airway time with hypoventilation were

similar between LT and ETI: median 1.8 vs. 1.7 minutes, p = 0.94; median 10.5% vs. 11.5%, p = 0.60. Total duration and percentage of

post-airway time with hyperventilation were similar between LT and ETI: median 0.4 vs. 0.4 minutes, p = 0.91; median 2.1% vs. 1.9%,

p = 0.99. Hypo- and hyperventilation exhibited limited associations with OHCA outcomes.

Conclusion: In the PART Trial, EMS personnel delivered post-airway ventilations at rates satisfying international guidelines, with only limited

hypo- or hyperventilation. Hypo- and hyperventilation durations did not differ between airway management strategy and exhibited uncertain

associations with OCHA outcomes.

Keywords: Ventilation, Cardiopulmonary arrest, Airway management, Intubation, Emergency medical

services
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Introduction

Each year over 350,000 persons in the United States experience

sudden out-of-hospital cardiac arrest (OHCA).1 Optimal delivery of

oxygen and control of ventilation are important components of OHCA

resuscitation and the main motivations for airway management inter-

ventions such as bag-valve-mask ventilation, intubation and supra-

glottic airway insertion.2 Inadequate ventilation can result in

hypoxemia, hypercapnia, acidemia, alveolar atelectasis and pul-

monary shunting.2–3 However, excessive ventilation can also be

harmful in OHCA, increasing intrathoracic pressure, and decreasing

venous return, cardiac output and coronary perfusion.4–6.

Prior studies characterizing ventilation parameters such as venti-

lation rate and end-tidal carbon dioxide (ETCO2) levels have relied

upon discrete measurements or manual assessment of resuscitation

records.4 Modern portable cardiac monitors enable continuous real-

time recordings of resuscitation parameters such as thoracic impe-

dance, chest compression depth and ETCO2 levels.7–13 We previ-

ously demonstrated the utility of advanced automated signal

processing techniques in characterizing chest compressions deliv-

ered to OHCA patients.14–16 There have been few prior studies using

similar automated methods to characterize ventilations delivered dur-

ing OHCA.

The Pragmatic Airway Resuscitation Trial (PART) found

improved OHCA outcomes with an airway strategy of initial laryngeal

tube (LT) insertion compared with endotracheal intubation (ETI).17

Different airway management techniques may potentially influence

ventilation performance, including ventilation rate control. In this

study, we sought to determine the association between airway strat-

egy and ventilation rates in the PART trial. We also sought to deter-

mine the association between ventilation rates and OHCA outcomes.

Methods

Study design

We conducted a secondary analysis of data from the PART trial.17

The Institutional Review Boards of participating institutions approved

the parent study under federal regulations for Exception from

Informed Consent for Emergency Research (21 CFR 50.24). This

post hoc analysis was approved by the Ohio State University Office

of Responsible Research Practices.

Setting

The objective of the PART trial was to compare the effect of airway

management strategies (initial LT vs. initial ETI) upon adult OHCA

outcomes.17 The PART trial involved 27 emergency medical services

(EMS) agencies from the Birmingham (Alabama), Dallas-Fort Worth

(Texas), Milwaukee (Wisconsin), Pittsburgh (Pennsylvania) and

Portland (Oregon) communities of the Resuscitation Outcomes Con-

sortium (ROC). The trial enrolled subjects over a 2-year period and

found improved 72-hour survival, hospital survival and hospital sur-

vival with favorable neurologic outcome with the initial LT strategy.

Selection of participants

The parent trial included adult OHCAs � 18 years (or per local inter-

pretation) requiring advanced airway management or bag-valve-

mask (BVM) ventilation. Key exclusion criteria included

patients < 18 years, pregnant women, prisoners, traumatic cardiac

arrest and the initial presence of a non-study advanced EMS unit.

The trial enrolled patients from December 1, 2015 through November

4, 2017. For this post hoc analysis we included only subjects with

continuous capnography data.

Interventions

The interventions of the parent trial were initial airway management

strategies using either LT or ETI, assigned in cluster-crossover fash-

ion with each EMS agency alternating between interventions at 3–

5 month intervals. Per intention-to-treat principles, patients receiving

bag-valve-mask ventilation only were retained in their assigned treat-

ment groups. However, because of our interest in ventilation perfor-

mance after airway insertion, we assessed the results on an as-

treated basis in this secondary analysis, classifying patients accord-

ing to the final deployed airway device.

Methods of measurement – Analysis of capnography data

We identified and characterized ventilations using the capnography

signal from CPR process files, including patients enrolled in the trial.

As part of standard clinical care, the participating EMS agencies

recorded CPR process data using portable cardiac monitors manu-

factured by Physio-Control, Inc. (Life-Pak 15 series, Physio-

Control, Redmond Washington), Zoll, Inc. (X-series, Zoll, Inc.,

Chelmsford, Massachusetts) and Philips, Inc. (MRx series, Philips

Healthcare, Andover, Massachusetts). In addition to identification

of chest compressions through accelerometers (Zoll and Philips) or

changes in electrical impedance (Physio-Control and Philips), the

monitors also incorporate side-stream sensors for continuously

recording end-tidal capnography.15,18–20 EMS personnel used

ETCO2 sensors for confirming airway placement and monitoring

resuscitation according to local EMS protocols.

We used a previously validated algorithm for automated import

and analysis of capnography files and detection of ventilations deliv-

ered during chest compresions.20 The algorithm detects ventilations

based upon comparisons of features of the four phases of the capno-

gram signal, including the a) duration of inspiration, b) mean baseline

inspiration CO2, c) mean expiratory plateau CO2, d) area of the first

section of the expiratory plateau, and e) relative CO2 increase.

Import and analysis of capnography signals were accomplished

using MATLAB (Mathworks, Inc., Natick, MA) and a custom graphi-

cal user interface (GUI).21 The GUI facilitated identification of chest

compressions and ventilations, and integration of clinical information

such as return of spontaneous circulation and advanced airway type.

Outcomes – Determination of ventilation rates

The primary outcome of this analysis was the ventilation rate deliv-

ered a) after advanced airway insertion, and b) during cardiac arrest.

We included the time period from airway insertion to the earliest of

return of spontaneous circulation (ROSC – inferred by cessation of

chest compressions), arrival at hospital or field termination of resus-

citation. We excluded the time periods before advanced airway inser-

tion and after attainment of ROSC. We further constrained the

analysis to cases with a) � 3 minutes of available post-advanced air-

way capnography data and b) � 50% interpretable capnography

data.

We determined ventilation rates in consecutive 10-second time

epochs. (Fig. 1) We defined ventilation rate as the number of venti-

lations delivered during the prior 60 seconds. If a full 60-second per-
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iod was not available before the time epoch (for example, at the point

of airway insertion), we determined ventilation rate from the available

data period.

Current resuscitation guidelines recommend delivery of ventila-

tions at 8–10 breaths/min.22 While the terms “hypo-“ and

“hyperventilation” formally refer to insufficient or excessive minute

ventilation, these terms commonly connote low and high ventilation

rates during attempted resuscitation.2,23 Therefore, for this analysis

we defined “hypoventilation” as a low ventilation rate < 6 breaths/

min, and “hyperventilation” as a high ventilation rate > 12 breaths/

min. We further classified hyperventilation as mild (>12 to 16

breaths/min), moderate (>16 to 20 breaths/min) and severe (>20

breaths/min). We emphasize that the capnography-based analysis

of this study only estimated the delivery of individual breaths, not

the tidal or minute volume.

For the outcomes analysis, we used the endpoints of the parent

trial which were ROSC, 72-hour survival, hospital survival and hospi-

tal survival with favorable neurologic outcome.

Data analysis

We compared the median ventilatory rates between LT and ETI

groups. We determined the total duration of hypoventilation and

hyperventilation (including mild, moderate and severe) by summing

the 10-second epochs with hypo- or hyperventilation. We also deter-

mined the percentage of post-airway resuscitation period with hypo-

and hyperventilation. We compared the duration and percentage and

hypo- and hyperventilation exposure between LT and ETI groups.

We verified the non-normality of the distributions of ventilation rate,

hypo- and hyperventilation duration, and hypo- and hyperventilation

percentage using histograms and the Shapiro-Wilk test. We com-

pared differences between the LT and ETI groups using the Wil-

coxon Rank Sum test.

For the outcomes analysis, we fit a series of Generalized Estimat-

ing Equation (GEE) models.24 We first fit a model with ROSC as the

dependent variable, and duration of hypoventilation and mild, moder-

ate and severe hyperventilation as the primary independent vari-

ables. We modeled the duration of hypo- and hyperventilation as

continuous variables. We adjusted the models for age, sex, wit-

nessed arrest (bystander or EMS), bystander CPR, initial ECG

rhythm (shockable vs. non-shockable), public location, treatment

group (LT vs. ETI) and duration of post-airway resuscitation. We

implemented the GEE models with robust standard errors and

exchangeable correlation structure to account for grouping by ran-

domization cluster.17 We repeated the analysis for the outcomes

72-hour survival, hospital survival and hospital survival with favorable

neurologic outcome.

In a sensitivity analysis we repeated the outcomes analysis mod-

eling duration of hypo- and hyperventilation as categorical variables

(0.00–1.99, 2–3.99 and� 4.00 minutes). We conducted the analyses

using MATLAB (MathWorks Inc., Natick, MA) and Stata v.17.0

(Stata, Inc., College Station, TX).

Results

Of 3,004 patients enrolled in the parent trial, CPR process data

were available for 2,020 patients, and capnography data of suffi-

cient quality were available for n = 1,010, including 538 (53%) from

Philips monitors, 436 (43.2%) from Zoll monitors, and 36 (3.6%)

from PhysioControl monitors. (Fig. 2) Of the 13 randomization clus-

ters, 1 cluster had only 3 cases with suitable capnography data,

and 3 clusters had no cases with suitable capnography data. Com-

pared with those excluded, cases included in the analysis were

more likely to include white race, unwitnessed arrests, bystander

automated external defibrillator use, and initial non-shockable

rhythms (Appendix 1). Compared with excluded cases, patients

included in the analysis exhibited lower ROSC (17.5% vs.

30.5%), 72-hour survival (8.3% vs. 21.2%), hospital survival

(3.7% vs. 12.4%), and hospital survival with favorable neurologic

status (1.6% vs. 8.1%).

Stratified by last airway inserted, ventilation data were available

for n = 714 LT and n = 296 ETI. Mean age was slightly higher for

ETI than LT (Table 1). There were more witnessed arrests and

bystander AED use in the ETI than LT group. Sex, race, bystander

chest compressions, initial rhythm and clinical outcomes were similar

between treatment groups.

Fig. 1 – Ventilation counting strategy. Ventilation rate for each consecutive 10-second epoch determined by the

number of breaths delivered in the preceding 60-seconds.
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The duration of available post-airway capnography data was sim-

ilar between groups (Table 2, Appendix 2). Ventilatory rate was sim-

ilar between LT and ETI (Appendix 3). Of the 1,010 patients included

in the analysis cohort, 74.1% experienced at least one episode of

hypoventilation, and 55.3% experienced at least one episode of

hyperventilation. Hypoventilation occurred in approximately 11% of

the post-airway period. Median duration of hypoventilation was sim-

ilar between LT and ETI. (Appendix 4). Hyperventilation occurred in

approximately 2% of the post-airway period. Median duration of total,

mild, moderate and severe hyperventilation were similar between LT

and ETI (Appendices 5–6).

Associations between the durations of hypoventilation, and mild,

moderate and severe hyperventilation varied across OHCA out-

comes. The duration of hypoventilation was negatively associated

with adjusted odds of ROSC, 72-hour survival and hospital survival

but not hospital survival with favorable neurologic status (Table 3).

Duration of mild hyperventilation exhibited positive associations with

ROSC, hospital survival and hospital survival with favorable neuro-

logic status. Duration of moderate hyperventilation was positively

associated with 72-hour survival but not other outcomes. Duration

of severe hyperventilation was positively associated with hospital

survival but not other outcomes. In the sensitivity analysis hypoven-

tilation exhibited negative associations with 72-hour survival and

hospital survival (Appendix 7). Associations between hyperventila-

tion and OHCA outcomes were less certain.

Discussion

Ventilation control plays an important role in OHCA resuscitation,

facilitating oxygen delivery and the prevention and treatment of

hypoxemia, hypercapnia and acidosis.2 Our study offers important

new perspectives of ventilation rates delivered during OHCA. In this

subset from the PART trial, EMS personnel delivered ventilations at

6–12 breaths per minute (a range consistent with international care

guidelines) in almost 90% of the post-advanced-airway time

epochs.22 The limited durations of hypo- and hyperventilation did

not differ between patients treated with LT and ETI, and exhibited

small associations with select OHCA outcomes.

Few studies have characterized ventilation rates delivered during

clinical OHCA resuscitation. Aufderheide, et al. first observed the

common clinical practice of hyperventilating throughout the entire

duration of out-of-hospital CPR resuscitation and highlighted the

detrimental effects in pig models of cardiac arrest, finding that

increased mean intrathoracic pressure resulting from hyperventila-

tion significantly reduced coronary perfusion pressure and survival.4

In a concurrent study of 13 humans with OHCA, the authors

observed that the mean ventilation rate was 30 ± 3.2 breaths/min,

raising awareness that unrecognized and inadvertent, nearly contin-

uous hyperventilation may have detrimental hemodynamic and sur-

vival consequences during low flow states such as CPR. In a

subsequent cohort of 337 OHCA in Belgium, Vissers, et al. found

that the mean ventilation rate was 15.3 breaths/min; a ventilation

rate > 10 breaths/min was not associated with ROSC.25–26.

Our analysis adds to existing knowledge, offering the first study to

precisely quantify the duration and proportion of resuscitation time

ventilation compliant with international guidelines. Our observations

were made possible in part by the application of advanced signal pro-

cessing techniques, which enabled us to systematically identify and

characterize ventilation patterns from the capnography signal.20

These findings are bolstered by our use of clinical trial data from mul-

tiple EMS agencies and a range of cardiac monitor manufacturers.27

The current effort demonstrates the feasibility of our approach and

sets the stage for more complex analyses such as examination of

time-varying trends in chest compressions and ventilation rates.

In contrast to prior studies, we observed only limited episodes of

hyperventilation representing approximately 2% to assessed resusci-

tation time.4 We do not know if these observations would generalize

Fig. 2 – Patients included in the analysis. Analysis limited to patient with available � 3 minutes and � 50%

interpretable capnography data. CPR=cardiopulmonary resuscitation, LT=laryngeal tube, ETI=endotracheal

intubation, ETCO2=end-tidal cabon dioxide, PART=Pragmatic Airway Resuscitation Trial.
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to other EMS agencies in the US or elsewhere. The reasons for this

excellent ventilation performance are unclear; EMS personnel in the

PART trial may have gained considerable experience from prior

OHCA trials (ROC PRIMED and CCC trials) and may have been

attentive to ventilation rate control or had access to real time ventila-

tion feedback.28–30 The EMS agencies in the trial varied in the use of

30:2 and continuous chest compression ratios, but these practices

would be expected to influence ventilation patterns before (not after)

advanced airway placement.

While we observed select associations between ventilation rates

and OHCA outcomes, we believe that these results should be con-

sidered hypothesis generating only. First, the characteristics of

cases with available and sufficient ventilation data differed from

excluded cases; most notably exhibiting lower rates of ROSC, 72-

hour survival, hospital survival and hospital survival with neurologic

outcome. Ventilation rates and the frequency of hypo- and hyperven-

tilation did not different between airway interventions and thus may

not explain the differences in outcomes seen in the parent trial; how-

ever, the current analysis contains data on only one third of patients

enrolled in the PART trial. While the varying availability of capnogra-

phy may have been due to resuscitation time bias (-i.e., ETCO2 may

not have been available for cases with early ROSC), it may also have

resulted from variations in clinical practices. For example, this anal-

ysis largely excluded cases from Physio-Control monitors. The

observed associations were inconsistent across OHCA outcomes

and sensitivity analyses and in many cases exhibited wide confi-

dence intervals. We measured ventilation rates only; even with

strong compliance with recommended ventilation rates, minute vol-

umes may have varied. More studies are needed to verify the verac-

ity of these results.

We note that low ventilation rates (<6 breaths/min) occurred more

frequently (10% of time epochs) and seemed consistently associated

with poorer OHCA outcomes. In an analysis of adult OHCA assigned

to 30:2 chest compressions before advanced airway insertion in the

ROC Continuous Chest Compressions Trial, Chang, et al. found that

424 of 560 patients exhibited ventilations in less than 50% of the

chest compression pauses, and that ROSC and hospital survival

were lower in this subset.27 While our observations potentially align

with the Chang et al. findings, given their low incidence and duration

of hypoventilation in the present study, it is difficult to make definitive

conclusions linking hypoventilation and outcomes.

Clinicians should exercise care in the interpretating of these

results. Our analysis was able to characterize ventilation rate only.

There are several other dimensions of ventilation such as tidal vol-

Table 1 – Characteristics of study population included in the ventilation analysis stratified according to last
airway device inserted. *Select patients included in more than one race category.

Characteristics Laryngeal Tube Endotracheal Intubation p-value

(n = 714) (n = 296)

N (%) N (%)

Age, Mean (SD) 61.4 (17.0) 66.2 (16.1) <0.001

Sex

Male 447 (62.6) 178 (60.1) 0.61

Female 266 (37.3) 118 (39.9)

Unknown 1 (0.1) 0 (0.0)

Race*

White 391 (54.8) 159 (53.7) 0.77

Black 181 (25.4) 83 (28.0) 0.38

Asian 15 (2.1) 3 (1.0) 0.24

Pacific Islander 1 (0.1) 0 (0.0) 0.52

Native American 3 (0.4) 1 (0.3) 0.85

Hispanic 45 (6.3) 20 (6.8) 0.79

Other 3 (0.4) 5 (1.7) 0.04

Unknown 79 (11.1) 25 (8.5) 0.21

Witnessed Arrest

Bystander Witnessed 235 (32.9) 107 (36.2) 0.04

EMS Witnessed 61 (8.5) 35 (11.8)

Unwitnessed 346 (48.5) 138 (46.6)

Unknown 72 (10.1) 16 (5.4)

Bystander chest compressions

Yes 342 (47.9) 161 (54.4) 0.06

No 372 (52.1) 135 (45.6)

Bystander automated external defibrillator

Yes 69 (9.7) 46 (15.5) 0.007

No 645 (90.3) 250 (84.5)

Initial rhythm

Shockable 110 (15.4) 48 (16.2) 0.75

Non-shockable 604 (84.6) 248 (83.8)

Outcomes

ROSC 125 (17.5) 52 (17.6) 0.98

72-hour survival 63 (8.8) 21 (7.1) 0.37

Hospital survival 28 (3.9) 9 (3.0) 0.50

Hospital survival with favorable neurologic status 13 (1.8) 3 (1.0) 0.35
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ume (and resulting minute ventilation) and airway pressure. In fact,

hypo- and hyperventilation are more properly characterized by insuf-

ficient or excessive minute volume – not just ventilation rate. Mea-

surement of ventilation quality during bag-valve-mask ventilation

(prior to advanced airway insertion) is also likely relevant but more

difficult given the absence of a closed ventilatory circuit. Technolog-

ical developments may enable characterization of these parameters;

for example, identification of ventilations may be possible from

Table 2 – Differences in ventilation between airway strategies (LT vs. ETI). Hypo- and hyperventilation refer to
ventilation rate only; the analysis did not measure tidal or minute volume. Based upon last airway device
inserted. Includes 714 LT and 296 ETI. *Determined by Wilcoxon Rank-Sum test. LT = Laryngeal tube.
ETI = Endotracheal intubation. Distributions depicted in Appendices 2–6.

Time period LT ETI TOTAL p-value

ETI vs. LT*

Post-airway available ETCO2 data – mins, median (IQR) 16.4 (11.0–23.3) 16.7 (10.2–22.7) 16.5 (10.8–23.1) 0.78

Post-airway ventilatory rate - breaths/min, median (IQR) 8.0 (6.5–9.6) 7.9 (6.5–9.7) 8.0 (6.5–9.7) 0.81

Post-airway hypoventilation (<6 breaths/min)

Total duration – min, median (IQR) 1.8 (0.0–5.6) 1.7 (0.0–6.1) 1.7 (0.0–5.6) 0.94

Percentage of available post-airway time (%) 10.5 (0.0–32.1) 11.5 (0.0–36.6) 10.7 (0.0–33.5) 0.60

Post-airway hyperventilation (>12 breaths/min)

Total duration – min, median (IQR) 0.4 (0.0–2.4) 0.4 (0.0–2.2) 0.4 (0.0–2.3) 0.91

Percentage of available post-airway time (%) 2.1 (0.0–15.0) 1.9 (0.0–13.1) 2.0 (0.0–14.5) 0.99

Mild post-airway hyperventilation (>12 to 16 breaths/min)

Total duration – min, median (IQR) 0.3 (0.0–1.8) 0.4 (0.0–1.8) 0.3 (0.0–1.8) 0.57

Percentage of available post-airway time (%) 1.6 (0.0–11.4) 1.7 (0.0–9.3) 1.6 (0.0–11.0) 0.96

Moderate post-airway hyperventilation (>16 to 20 breaths/min)

Total duration – min, median (IQR) [range] 0.0 (0.0–0.0)

[0.0, 18.0]

0.0 (0.0–0.2)

[0.0, 9.3]

0.0 (0.0–0.0)

[0.0, 18.0]

0.86

Percentage of available post-airway time (%) 0.0 (0.0–0.0)

[0.0, 80.1]

0.0 (0.0–1.0)

[0.0, 38.9]

0.0 (0.0–0.0)

[0.0, 80.1]

0.38

Severe post-airway hyperventilation (>20 breaths/min)

Total duration – min, median (IQR) 0.0 (0.0–0.0)

[0.0, 20.4]

0.0 (0.0–0.0)

[0.0, 25.8]

0.0 (0.0–0.0)

[0.0, 25.8]

0.37

Percentage of available post-airway time (%) 0.0 (0.0–0.0)

[0.0, 100.0]

0.0 (0.0–0.0)

[0.0, 80.0]

0.0 (0.0–0.0)

[0.0, 100.0]

0.96

Table 3 – Association of duration of post-airway hypo- and hyperventilation with out-of-hospital cardiac arrest
outcomes. Analyses based upon Generalized Estimating Equations (GEE) models including all four exposures
(duration of hypoventilation, duration of mild hyperventilation, duration of moderate hyperventilation, and
duration of severe hyperventilation) as independent variables. Models adjusted for age, sex, witnessed arrest
(bystander or EMS), bystander CPR, initial ECG rhythm (shockable vs. non-shockable), public location, treatment
group (LT vs. ETI) and duration of post-airway resuscitation. Models implemented with robust standard errors and
exchangeable correlation structure accounting for randomization cluster. ORs reflect association of each
additional minute of hypo- or hyperventilation with each OHCA outcome. Bolded entries indicate statistically
significant associations. Hypo- and hyperventilation refer to ventilation rate only; the analysis did not measure
tidal or minute volume. OR = Odds Ratio. CI = Confidence Interval. ROSC = Return of Spontaneous Circulation.
MRS = Modified Rankin Scale.

Duration of Hypo- or

Hyperventilation

ROSC

Adjusted OR

(95% CI)

72-Hr Survival

Adjusted OR

(95% CI)

Hospital Survival

Adjusted OR

(95% CI)

Favorable Neurologic

Status (MRS � 3)

Adjusted OR

(95% CI)

Duration of Hypoventilation

(<6 breaths/min) – min

0.96 (0.94–0.99) 0.90 (0.85–0.96) 0.79 (0.72–0.87) 0.83 (0.66–1.05)

Duration of Mild Hyperventilation

(>12 to 16 breaths/min) – min

1.09 (1.04–1.15) 1.06 (0.90–1.24) 1.23 (1.07–1.40) 1.36 (1.01–1.84)

Duration of Moderate Hyperventilation

(>16 to 20 breaths/min) – min

1.05 (0.92–1.20) 1.11 (1.002–1.23) 1.12 (0.98–1.27) 1.08 (0.79–1.47)

Duration of Severe Hyperventilation

(>20 breaths/min) – min

1.05 (0.89–1.23) 1.11 (0.9998–1.24) 1.22 (1.06–1.41) 1.30 (0.92–1.84)
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changes in thoracic impedance.31 We also did not incorporate

ETCO2 values into the current analysis; while potentially useful for

gauging the efficacy of resuscitation, ETCO2 values are confounded

by chest compression quality, drug administration and pre-existing

conditions.32 Further developments are needed to assess the contri-

bution of these factors to OHCA outcomes. Most importantly, we

observed marked differences between cases included in versus

excluded from the analysis; future efforts with more detailed collec-

tion of data are needed to build on the insights of our study.

Limitations

As discussed previously, this analysis focused on ventilation rate

only and could not characterize other key ventilatory parameters

such as tidal volume, minute volume and airway pressure. Capnog-

raphy files of adequate length and quality were available for only

one-third of cases enrolled in the PART trial. Few files were available

from PhysioControl monitors; we do not know if this was due to

practice variation at these EMS agencies or technical issues

associated with capturing this information with this specific monitor.

Differences in the course of ETI compared to LT placement may

have influenced the capture of capnography. Characteristics differed

between cases included in and excluded from the analysis; these

differences may have resulted from resuscitation time bias. The par-

ent trial did not protocolize ventilation rate or the application or use of

capnography. This current analysis did not incorporate information

on chest compression quality, which may have influenced ventilation

quality.

ETI success rates observed in the trial were lower than those

from prior reports; many of these cases were rescued by LT inser-

tion, which may have influenced our observations. We did not have

information on the airway management protocols, training protocols

or practice patterns across the participating agencies; these varia-

tions may have influenced observed ventilation. We relied upon

EMS personnel reports to define the start and end of airway manage-

ment efforts. We focused on intra-arrest ventilation after advanced

airway insertion; we did not assess the bag-valve-mask phase of

ventilation nor post-ROSC ventilation. We did not adjust for FiO2

or oxygen delivery or consumption or medication administration.

EMS providers may have altered care in reaction to measured

ETCO2 values.

Conclusions

In this post-hoc analysis of the PART Trial, EMS personnel delivered

the majority of post-airway ventilations at rates satisfying interna-

tional treatment guidelines, with only limited episodes of hypo- and

hyperventilation. Duration of hypo- and hyperventilation did not differ

with airway management strategy. Duration of hypo- and hyperven-

tilation exhibited uncertain associations with OCHA outcomes. Fur-

ther research is needed to understand the impact of ventilation in

OHCA resuscitation.
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Abstract
Background: Significant challenges exist in measuring ventilation quality during out-of-hospital cardiopulmonary arrest (OHCA) outcomes. Since

ventilation is associated with outcomes in cardiac arrest, tools that objectively describe ventilation dynamics are needed. We sought to characterize

thoracic impedance (TI) oscillations associated with ventilation waveforms in the Pragmatic Airway Resuscitation Trial (PART).

Methods: We analyzed CPR process files collected from adult OHCA enrolled in PART. We limited the analysis to cases with simultaneous capnog-

raphy ventilation recordings at the Dallas-Fort Worth site. We identified ventilation waveforms in the thoracic impedance signal by applying auto-

mated signal processing with adaptive filtering techniques to remove overlying artifacts from chest compressions. We correlated detected

ventilations with the end-tidal capnography signals. We determined the amplitudes (Ai, Ae) and durations (Di, De) of both insuation and exhalation

phases. We compared dierences between laryngeal tube (LT) and endotracheal intubation (ETI) airway management during mechanical or manual

chest compressions using Mann-Whitney U-test.

Results: We included 303 CPR process cases in the analysis; 209 manual (77 ETI, 132 LT), 94 mechanical (41 ETI, 53 LT). Ventilation Ai and Ae

were higher for ETI than LT in both manual (ETI: Ai 0.71 X, Ae 0.70 X vs LT: Ai 0.46 X, Ae 0.45 X; p < 0.01 respectively) and mechanical chest

compressions (ETI: Ai 1.22 X, Ae 1.14 X VS LT: Ai 0.74 X, Ae 0.68 X; p < 0.01 respectively). Ventilations per minute, duration of TI amplitude insuf-

flation and exhalation did not dier among groups.

Conclusion: Compared with LT, ETI thoracic impedance ventilation insuation and exhalation amplitude were higher while duration did not dier. TI

may provide a novel approach to characterizing ventilation during OHCA.

Keywords: Ventilation, Cardiac arrest, Resuscitation, Thoracic impedance

Introduction

Sudden out-of-hospital cardiopulmonary arrest (OHCA) is a major

public health problem annually affecting up to 450,000 adults in the

United States.1 Successful OHCA resuscitation requires quality

chest compressions and controlled ventilation for effective oxygen

delivery.2 Recognizing that poor ventilation during resuscitation

results in adverse outcomes,3 data that objectively describes ventila-

tion dynamics during OHCA resuscitation are needed.

Currently there is limited portable technology to accurately mea-

sure key aspects of ventilation in the prehospital environment, for

example, tidal volume, inspiration and expiratory dynamics. End-

tidal capnography (ETCO2) is the current available method for char-

acterizing ventilation during resuscitation. However, ETCO2 is lim-
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ited by several factors including recording generally begins after

advanced airway placement, it is most reliable after endotracheal

intubation (ETI) and it can be effected by perfusion. Alternative meth-

ods are necessary to evaluate ventilation dynamics during the entire

resuscitation.

Thoracic impedance (TI) is the measured electrical resistance

across the thorax. It is typically recorded through chest defibrillator

pads during chest wall expansion and contraction. Changes in TI

are commonly used to characterize chest compression quality in

OHCA but may also potentially reflect ventilation quality.4,5 Early TI

pneumography was developed to record electrocardiogram and ven-

tilations simultaneously.6,7 Using low frequency signal filtering on

modern defibrillators, TI oscillations associated with ventilation wave-

forms can also be visualized.8 This offers advantages over ETCO2

as TI recording begins as soon as defibrillator electrodes are placed

on the chest. Analysis of TI could provide valuable information

on ventilation dynamics.

The Pragmatic Airway Resuscitation Trial (PART) tested different

advanced airway techniques in the resuscitation of OHCA. In this

evaluation, our objective was to characterize thoracic impedance

ventilation waveforms measured during OHCA resuscitation in the

PART trial.

Methods

Study design and setting

This study was a secondary analysis of chest compression wave-

forms from the Resuscitation Outcomes Consortium (ROC) Prag-

matic Airway Resuscitation Trial.9 The PART trial enrolled adults

(age � 18 years) with nontraumatic out-of-hospital cardiac arrest

treated by emergency medical services paramedics. The trial ran-

domized EMS agencies to either of two initial advanced airway man-

agement strategies: laryngeal tube (LT) insertion or endotracheal

intubation (ETI). The primary outcome was 72-hour survival. The

Institutional Review Board of the Ohio State University approved this

post-hoc analysis of the parent trial data.

CPR process files

EMS personnel recorded CPR process measures on all OHCA per

local protocols. Chest compression measurements occurred using

standard commercial portable cardiac monitors using accelerometer

or electrical impedance-based detection systems (Physiocontrol,

Inc., Redmond, Washington; Philips, Inc, Andover, Massachusetts;

and Zoll, Inc., Chelmsford, Massachusetts). All electronic files were

downloaded from defibrillators and stored in the central registry.

Selection of subjects

The objective of this analysis was to characterize ventilations using

TI. Furthermore, to validate the TI waveforms, we sought cases with

simultaneous capnography ventilation recordings. In the parent trial,

the only defibrillators able to provide simultaneously recorded contin-

uous TI and capnography were the Phillips MRx defibrillators. Addi-

tionally, we also wanted to evaluate differences in TI waveforms

during manual and mechanical chest compressions. To satisfy all

these needs, and avoid potential cross site confounders, we limited

the analysis to cases enrolled at the Dallas-Fort Worth ROC site,

where EMS providers used both manual and mechanical chest com-

pressions (LUCAS device, Stryker-Physio Control, Kalamazoo, MI),

and Phillips HeartStart MRx defibrillators (Philips Healthcare,

Eindhoven).

Phillips HeartStart MRX defibrillator CPR process file

collection

The HeartStart MRX defibrillator provides four modes of operation

including monitor, manual defibrillation, automatic external defibrilla-

tion and pacing. Monitoring mode includes simultaneous recording of

pulse oximetry, blood pressure, temperature, ETCO2 through desig-

nated input ports. Multifunction electrode pads can simultaneously

record ECG waveforms and TI or provide defibrillation/pacing as

needed. Multifunction electrode pads are rectangular shaped with

rounded corners covering 102 cm2 each that are placed on the ante-

rior chest (Fig. 1).

Preparation of the CPR process files

Defibrillator files were converted to an open MATLAB (MathWorks

Inc., Natick, MA) format using ad-hoc data conversion software

and then signals were processed in MATLAB. TI was recorded with

a sampling rate of 200 Hz and a resolution of 0.74 mO per least sig-

nificant bit. The capnogram was acquired using Microstream (side-

stream) technology, with a sampling rate of 40 Hz and a resolution

of 0.004 mmHg. When available, the acceleration, force and com-

pression depth signals from the Q-CPR assist pad were also

included.

We used custom tools developed in MATLAB (MathWorks Inc.,

Natick, MA) to explore defibrillator data and to extract segments,

according to the following inclusion criteria: at least 1 min of CPR

after airway insertion, containing a minimum of 10 ventilations, and

good quality TI waveform and capnography recordings. We defined

good quality for intervals where the automated algorithm for ventila-

tion detection provided an accuracy above 80%. We identified deliv-

ered chest compressions using a combination of impedance

changes and compression depth detected from the accelerometer.10

We differentiated manual from mechanical CPR by identifying the

unique fixed compression rate delivered by the Lucas devices (fre-

quency 101.7 compressions per min). We defined airway insertion

time as the time point of the last successful advanced airway inser-

tion, as indicated in the Utstein-style annotations by the EMS

personnel.

Fig. 1 – Philips HeartStart MRX Defibrilator Pads

Multipurpose defibrillator pads are placed on the

anterior chest of adults as shown.
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To identify ventilations, we used adaptive filtering techniques to

remove impedance waveform artifacts due to chest compressions

(Fig. 2). For manual CPR, the filter used the compression frequency

information acquired through the accelerometer.11 For mechanical

CPR the chest compression frequency was fixed to that of the Lucas

device.12 We applied a harmonic Least Mean Squares Filter tuned to

the frequency of the chest compressions to remove chest compres-

sion artifacts. Then, we applied a multi-stage algorithm combining

peak detection and machine learning techniques to identify impe-

dance fluctuations associated with each ventilation.11,12

We used capnography data to validate the detection by the

impedance-based algorithm. Capnography ventilations were auto-

matically annotated using a state-of-the-art algorithm13 but manually

reviewed. The time-delay of the capnogram due to air transport was

also manually corrected in each case, so that ventilations in the

capnogram would be time-aligned with the impedance ventilation

waveform (Fig. 2). Annotations served as the gold standard to audit

the ventilation peaks and the insufflation/exhalation phases. After

quality-audited impedance waveforms were obtained, we computed

the amplitudes (Ai, Ae) and durations (Di, De) of both the insufflation

and exhalation phases (Fig. 2).

Data analysis

We determined median values of the amplitudes (Ai, Ae) and dura-

tions (Di, De) for each analysis interval and assigned them to either

the ETI group or the LT group. Distributions are represented as

medians (w/ IQR). We assessed differences between TI in ETI vs

LT using a Mann-Whitney U-test. Demographic differences between

groups were assessed using Chi squared tests. Tests were sepa-

rately analyzed for manual and mechanical chest compressions. P-

values < 0.01 were considered statistically significant.

Results

The PART trial enrolled 3004 patients from December 1st 2015

through November 4 2017. CPR process data files were available

for 1996 participants. Dallas Fort-Worth included 1018 CPR process

files available for analysis. Only CPR process files collected by Phil-

lips MRx defibrillators with successful advanced airway placement

were selected for analysis resulting in 692 CPR process data files.

After quality assessment, we included 209 manual and 94 mechan-

ical chest compression CPR process files (Fig. 3).

Manual chest compression CPR process files included 77 ETI

and 132 LT cases. Mechanical chest compression CPR process files

included 41 ETI and 53 LT cases. Subjects who had endotracheal

tube devices were significantly older than subjects with laryngeal

tube devices in the manual chest compression group; but not differ-

ent in the mechanical chest compression group. White race was not

different between airway devices during manual chest compression

but was different between airway devices during mechanical chest

compressions. Sex, minority race, witnessed arrest, and initial

rhythm were not different among airway devices in either manual

or mechanical chest compressions (Table 1).

CPR defibrillator files were analyzed using filters to remove chest

compression artifacts, resulting in automatically identified TI ventila-

tion waveforms (Fig. 2). Filtering techniques differed for manual and

mechanical chest compressions. TI ventilations appropriately aligned

with corresponding capnography signals. The amplitude and dura-

tion of insufflation and exhalation phases were also automatically

annotated but manually verified (Fig. 2).

TI amplitude of insufflation (Ai) and exhalation (Ae) were higher

for subjects with placement of ETI compared to LT in both manual

and mechanical chest compressions (Fig. 4). Summary values for

TI waveform dynamics in manual compressions (ETI: Ai 0.71, Ae

0.70 vs LT: Ai 0.46, Ae 0.45; p < 0.01 respectively) and mechanical

compression (ETI: Ai 1.22, Ae 1.14 VS LT: Ai 0.74, Ae 0.68; p < 0.01

respectively) are shown in Table 2. Ventilations per minute, duration

of TI amplitude insufflation and exhalation did not differ among

groups.

Discussion

This is one of the first efforts to characterize pre-hospital ventilations

using TI during cardiac arrest.14 We found there are important con-

trasts in TI that vary between airway devices and mode of chest com-

pression. ETI consistently had increased ventilation waveform

amplitude during both insufflation and exhalation compared with LT

under both mechanical and manual chest compressions. In contrast,

Fig. 2 – Bioimpedance waveform fluctuations during ventilations in manual (left) and mechanical (right) chest

compressions with corresponding end-tidal capnography waveforms. Blue line represents filtered thoracic

bioimpedance (TI) signal. Grey line represents raw TI signal. Blue shaded area denotes insufflation phase.

Ai = amplitude of insufflation Ae = amplitude of exhalation Di = duration of insufflation De = duration of exhalation.
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Fig. 3 – Study cohort and exclusions.

Table 1 – Baseline characteristics for manual andmechanical chest compressions. ETI = endotracheal intubation,
LT = laryngeal tube, IQR = interquartile range.

Manual chest compressions Mechanical chest compressions

ETI LT ETI LT

N (%) 77 (36.8%) N (%) 132 (63.2%) p N (%) 41 (43.6%) N (%) 53 (56.4%) p

Age (years with IQR) 75 (61-85) 66 (54-77) <0.01 65 (53-75) 66 (52-75) 0.84

Gender (male) 40 (52.0%) 69 (52.3%) 0.92 28 (68.3%) 33 (62.2%) 0.70

Race

White

Black

Hispanic

Asian

Other

Unspecified

38 (49.4%)

28 (36.4%)

5 (6.5%)

0 (0%)

2 (2.6%)

4 (5.2%)

75 (56.8%)

38 (28.8%)

9 (6.8%)

3 (2.3%)

0 (0%)

7 (5.3%)

0.37

0.33

0.84

0.47

0.26

0.77

15 (36.6%)

16 (39.0%)

6 (14.6%)

1 (2.4%)

2 (4.9%)

1 (2.4%)

34 (64.2%)

11 (20.8%)

2 (3.8%)

0 (0%)

0 (0%)

6 (11.3%)

0.01

0.09

0.13

0.90

0.37

0.22

Witnessed Arrest

Bystander

EMS

Not witnessed

33 (42.9%)

8 (10.4%)

36 (46.7%)

46 (34.9%)

11 (8.3%)

75 (56.8%)

0.32

0.8

0.16

16 (39%)

3 (7.3%)

22 (53.7%)

24 (45.3%)

4 (7.6%)

25 (47.2%)

0.69

0.72

0.53

Initial Rhythm

Shockable

Nonshockable

6 (7.8%)

71 (88.3%)

14 (10.6%)

118 (87.1%)

0.50 7 (17.1%)

34 (82.9%)

8 (15.2%)

45 (83.0%)

0.80
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duration of insufflation and exhalation were not significantly different.

Our analysis illustrates the potential usefulness of TI in characteriz-

ing ventilations during cardiac arrest.

Understanding ventilations in cardiac arrest is important because

ventilation affects hemodynamics during CPR,15,16 poor ventilations

result in worse outcomes,3 and ventilation metrics can guide resus-

citation decisions.17 Objectively measuring the rate, tidal volume

and pattern of inspiratory and expiratory ventilation during OHCA

can provide necessary quality metrics for resuscitation improvement.

We have not yet validated TI as an accurate surrogate of these mea-

surements. Our next efforts are to understand these real-world mea-

surements and compare them to ventilations in controlled conditions.

Few studies have evaluated ventilation during OHCA.5,18,19

Active chest compressions further reduce the accuracy of measure-

ments with prior methods.18 Previously, we developed a novel

method of characterizing TI ventilation quality metrics during chest

compression pauses.14 Using chest compression filtering tech-

niques, we now further developed a method to include ventilation

quality metrics during active chest compressions. This resulted in fil-

tered TI waveform amplitudes that are not comparable to prior stud-

ies or between manual and mechanical chest compressions.

However, the proportional relationships between airway devices

remain true. We also simultaneously included capnography for ven-

tilation measurements which allowed for ventilations with

amplitudes < 0.5 X to be included in our analysis.

Fig. 4 – Bioimpedance waveform fluctuations during ventilation in manual chest compressions (top) and mechanical

chest compressions (bottom). Ai = amplitude of insufflation Ae = amplitude of exhalation Di = duration of insufflation

De = duration of exhalation. Values are depicted using standard box and whisker plots with median with

interquartile ranges. ETI, Purple boxes = endotracheal tube devices. LT, Orange boxes = laryngeal tube airway

devices. Outliers are represented by open circles. P-values are denoted.

Table 2 – Summary data for patients whom received manual and mechanical chest compression. ETI = endotra-
cheal intubation, LT = laryngeal tube, IQR = interquartile ranges, Ai = amplitude of insufflation, Ae = amplitude of
exhalation, Di = duration of insufflation, De = duration of exhalation. VR = ventilation rates per minute.

Manual chest compressions Mechanical chest compressions

ETI (n = 77) LT (n = 132) ETI (n = 41) LT (n = 53)

Median (IQR) Median (IQR) p Median (IQR) Median (IQR) p

Ai (O) 0.71 (0.47–1.01) 0.46 (0.32–0.68) <0.01 1.22 (0.78–1.74) 0.74 (0.44–1.39) <0.01

Ae (O) 0.70 (0.45–0.97) 0.45 (0.34–0.67) <0.01 1.14 (0.70–1.53) 0.68 (0.43–1.27) <0.01

Di (s) 1.57 (1.36–1.86) 1.50 (1.24–1.70) 0.03 1.5 (1.19–1.82) 1.52 (1.14–1.82) 0.96

De (s) 2.33 (1.87–2.94) 2.32 (1.95–2.86) 0.78 2.23 (1.66–3.29) 2.68 (2.21–3.77) 0.15

VR (vpm) 8.3 (6.9–9.3) 8.5 (6.9–10.2) 0.35 6.4 (5.2–8.0) 7.3 (5.3–8.7) 0.31
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The translational effect of our findings has yet to be determined.

This study raises specific new hypotheses that need to be evaluated

further defining if our observed differences in ventilation amplitude

are affected by tidal volume, airway leak, or dead space. Our

observed differences in ventilation amplitude may contribute to the

observed survival difference reported in the PART trial.9 Prior studies

did not find differences in time to epinephrine,20 chest compression

fraction or rate.21 Although differences in chest compression inter-

ruptions21 and first pass success9 have been reported, it is unclear

what defining characteristics contributed to the PART outcomes.

Limitations

Our study only included Phillips MRx defibrillators as these are the

only defibrillators with simultaneous TI and capnography in PART.

We were able to leverage the use of simultaneous capnography

recordings to allow for inclusion of lower amplitude TI waveforms.

Defibrillators made by other manufacturers may record TI waveforms

with different amplitudes that are not comparable among devices.

For example, Lifepak defibrillators have pre-filtered TI waveforms,

resulting in amplitudes that differ from those in the present study.

Further, we describe the two most common advanced airway inter-

ventions, ETI and LT, but it is unknown if bag-valve-mask ventilation

results in differences in TI. Finally, our studies are exploratory, future

investigations must define the clinical meaning and applicability of

our results. Further work must develop fully automatic TI analysis

for use in real-time where more potential noise to signal may exist

in an OHCA resuscitation.

Conclusions

In this study, we characterized ventilation TI waveforms during

OHCA resuscitation. TI characterization may provide valuable venti-

lation dynamics during resuscitation efforts.
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