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A B ST R A C T

The skin is a complex structure located at the outermost part of the body. Its main function is to
protect against diverse forms of trauma including thermal, chemical, and ultraviolet radiation. In
addition, it prevents trans-epidermal water loss, that is, the movement of water from lower skin
layers into the atmosphere; and is necessary for regulating body temperature, synthesising vitamin
D and perceiving sensory stimuli from the environment.

The skin is divided into three main layers: epidermis, dermis, and hypodermis. Additionally, it in-
cludes adnexa such as hair follicles, sweat glands, and sensory terminals. The dermis is mainly com-
posed of a rich extracellular matrix (ECM) that provides structural support and absorbs mechanical
forces. This layer is further divided into the papillary dermis, located adjacent to the epidermis, cellu-
larised and with loosely arranged collagen fibres; and the reticular dermis, a thicker layer composed
mainly of arranged collagen I and III fibres, which provide structural support.

The main cell type located in the dermis is the fibroblast. Fibroblasts are traditionally known for
producing the ECM of tissue stroma and were thought to serve only that function. However, further
research has shown that fibroblasts are more complex than expected and are involved in the inter-
action with other structures, like endothelia, and a vast array of cell types, like immune cells. Despite
their function heterogeneity, traditional lineage tracing studies only revealed two fibroblast types in
the dermis: papillary fibroblasts and reticular fibroblasts, located in each dermis layer respectively.

Dermal fibroblast heterogeneity boomed was uncovered by the introduction of single-cell RNA se-
quencing (scRNAseq). In a preliminary study by Tabib et al. on healthy human dermis, fibroblast
heterogeneity was divided into two main groups–SFRP2+DPP4+ and FMO1+LSP1+ fibroblasts–. The
analysis revealed that these two major populations did not align in the papillary/reticular axis, and
rather differed in morphology and putative function, breaking the dogma of dermal fibroblast ar-
rangement.

Subsequent analyses confirmed previous dermal fibroblast heterogeneity results, but differences
between publications hindered their replicability. Therefore, we performed a combined analysis of 4
scRNAseq datasets to merge individual observations and unravel their true diversity. We discovered
that fibroblast clusters could be divided into 3 major axes–A, B, C–and 10 populations–A1-A4, B1-
B2, and C1-C4–. Each axis corresponded to an individual function: namely, A were ECM-producing
fibroblasts, B were immune fibroblasts and C were fibroblasts of skin adnexa.

This primary analysis was further extended into a secondary analysis, including 25 human and 9
mouse datasets, developed using a semi-supervised procedure. Human populations were extended
from 10 to 15, distributed in 5 main axes–A1-A4, B1-B4, C1-C3 + C5, D1-D2 and E1–and mouse fibroblasts
were separated into 17 populations, distributed in four main axes–x1-x2, y1-y5, z1-z2, w1-w5, v1–and 2
mixed axes–w/x, x/y–.

Further analysis of the markers of human fibroblasts reveals a large array of functions exerted by
them. For instance, ECM-producing fibroblasts (A1-A4) could be divided into papillary fibroblasts,

v



reticular fibroblasts and elastic fibre-producing fibroblasts. Immune fibroblasts (B1-B4) can be dif-
ferentiated based on the acute, adaptive and regulatory immune responses. Fibroblasts associated
with dermal adnexa (C1-C5) could be distinguished based on cell subtypes of the hair follicle, such
as dermal papilla and dermal sheath cells. Lastly, populations D1, D2 and E1 show a highly diverse
marker profile, and some of them are associated with specialised structures such as peripheral
nerves.

Comparison between mouse and human fibroblasts reveals the similarity of functions and a certain
degree of fibroblast overlap between the two species. However, this overlap lacks finesse when
looking at specific populations, probably due to the arrangement differences between human and
mouse transcriptomaically-determined axes: while human axes seem to be separated on function,
mouse axes separate on the dermal layer origin first, and on function second.

This atlas of dermal fibroblast heterogeneity is a useful tool for researchers trying to understand skin
function, where fibroblast heterogeneity cannot go unnoticed; and also for researchers working on
skin diseases, to use this combined dataset as a ground truth to discover differences in composition,
new fibroblast types arising in disease, or simply as a tool to annotate their datasets without biases
generated by experimental procedures.
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R E S U M E N

La piel es una estructura compleja situada en la parte más externa del cuerpo. Su función principal
es proteger contra diversas formas de trauma, incluidas las radiaciones térmicas, químicas y ultravi-
oleta. Además, previene la pérdida de agua transepidérmica, es decir, el movimiento de agua desde
las capas inferiores de la piel hacia la atmósfera; y es necesaria para regular la temperatura corporal,
sintetizar vitamina D y percibir los estímulos sensoriales del entorno.

La piel se divide en tres capas principales: epidermis, dermis e hipodermis. Además, incluye anexos
como folículos pilosos, glándulas sudoríparas y terminales sensoriales. La epidermis está compuesta
principalmente compuesta de keratinocitos, células que, conforme se diferencian, se corneifican,
entrelazan entre ellos, y queratinizan, todo con el objetivo de formar una barrera impermeable
contra insultos externos. La capa más extensa en volumen, y con mayor relevancia para el estudio
de la tesis, es la dermis.

La dermis se compone principalmente de una matriz extracelular (MEC) rica en componentes y fibras
que proporciona soporte estructural y absorbe las fuerzas mecánicas. Esta capa se divide a su vez
en la dermis papilar, situada junto a la epidermis, celularizada y con fibras de colágeno dispuestas
de forma laxa; y la dermis reticular, una capa más gruesa compuesta principalmente por fibras de
colágeno I y III dispuestas de manera perpendicular para formar una retícula que actúa de soporte
estructural.

De entre los diferentes tipos celulares que alberga la dermis, incluyendo, células epiteliales e in-
munes, los fibroblástos son lás células más representativas. Los fibroblastos se conocen tradicional-
mente por producir la matriz extracelular del estroma tisular y tradicionalmente se pensaba que solo
cumplían esa función. Sin embargo, investigaciones posteriores han demostrado que los fibroblas-
tos son más complejos de lo esperado y están involucrados en la interacción con otras estructuras,
como el endotelio, y una amplia gama de tipos de células, como las células inmunitarias. A pesar
de la heterogeneidad de su función, los estudios de rastreo de linaje tradicionales solo revelaron
dos tipos de fibroblastos en la dermis: fibroblastos papilares y fibroblastos reticulares, ubicados en
cada capa de la dermis respectivamente. Estos fibroblastos proceden de un linaje común que se
diferencia, durante el desarrollo embrionario de ratón a día E12.5 se diferencia en los progenitores
papilar y reticular, que posteriormente maduran a los dos tipos que mencionamos anteriormente.

Recientemente se ha desarrollado una metodología, denominada secuenciación de ARN en célula
única (scRNAseq por su abreviación en inglés), que ha permitido analizar la heterogeneidad de difer-
entes tejidos a un nuevo nivel. Esta técnica combina los métodos de secuenciación masiva de ARN
(RNAseq) con métodos de disgregación y aislamiento de células, de modo que el transcriptoma
de cada célula es analizado independientemente. De esta manera, se pueden estudiar las diferen-
cias transcritómicas de conjuntos de células entre si, para obtener información sobre grupos de
células que tienen transcriptomas similares, y que asociamos a un tipo celular, o estadío celular
independientes. Por tanto, las técnicas de scRNAseq permiten obtener, de una manera no sesgada,
un panorama general de la diversidad celular individual de todo un tejido, y así poder descubrir
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tipos celulares nuevos que con métodos más tradicionales basados en un conjunto limitado de
marcadores no ha sido posible dilucidar. Tabib et al. (2018) fueron los primeros autores en publicar
una caracterización completa de fibroblastos dérmicos humanos en piel sana utilizando scRNAseq.
En el estudio determinan que la heterogeneidad de fibroblastos se resume en dos grandes grupos
que expresan, por un lado, SFRP2 y DPP4, y por otro lado FMO1 y LSP1. El análisis reveló además que
estas dos poblaciones principales no se alineaban en el eje papilar/reticular, y más bien diferían
en morfología y función putativa (los fibroblastos SFRP2+ son alargados y están asociados a la pro-
ducción de MEC, mientras que los fibroblastos FMO1+ están asociados a la respuesta inmune). Este
descubrimiento rompió el dogma de la disposición de los fibroblastos dérmicos y su separación de
funciones en base a la localización más apical o basal.

Diferentes análisis posteriores confirmaron los resultados previos de heterogeneidad de fibroblastos
dérmicos, pero cada publicación reportaba diferencias entre las publicaciones. Puesto que estas in-
consistencias dificultaba la replicabilidad para crear un modelo de fibroblastos démicos homogéneo,
realizamos un análisis combinado de 4 conjuntos de datos scRNAseq para fusionar observaciones
individuales y desentrañar su verdadera diversidad.

Para realizar ese primer análisis, aplicamos un método de agrupación de células (clustering) para
cada conjunto de datos, y buscamos manualmente poblaciones (un cluster o grupos de clusters) que
mantuvieran un perfil transcriptómico similar, es decir, que tuvieran una expresión similar de varios
marcadores entre dos o más conjuntos de datos simultáneamente. Además, si varias poblaciones
compartían una transcriptómica más general, y colocalizaban en los gráficos de visualización que
empleamos para visualizar la heterogeneidad celular, agrupamos estas poblaciones en ejes.

En base a esta agrupación de clusters en poblaciones, y de poblaciones en ejes, descubrimos que
los clusters de fibroblastos se podían dividir en 3 ejes principales (A, B, C) y 10 poblaciones (A1-A4,
B1-B2 y C1-C4). Haciendo un análisis de literatura preliminar en base a los marcadores de cada eje,
observamos que cada eje correspondía a una función individual: a saber, el eje A corresponde a
los fibroblastos productores de MEC, el eje B corresponde a fibroblastos inmunes y el eje C cor-
responde a fibroblastos de anexos cutáneos, como el folículo piloso. La existencia de estas tres
poblaciones fue validada mediante experimentos de inmunofluorescencia, donde se observaba que
tres marcadores, uno para cada eje (SFRP2 para A, CCL19 para B y SFRP1 para C) no colocalizaban,
garantizando que cada eje era independiente.

Aunque los resultados de este análisis son muy relevantes para entender la heterogeneidad de fi-
broblastos dérmicos, observamos diferentes carencias que subsanamos en un análisis secundario.
En primer lugar, observamos que, si bien existían poblaciones con marcadores comunes a varios
conjuntos de datos, la heterogeneidad inter-dataset (entre conjuntos de datos), lejos de ser des-
preciable, podía ser un factor que disminuyese la replicabilidad para nuevos conjuntos de datos.
En segundo lugar, la metodología del análisis primario carecía de replicabilidad, al ser un proceso
completamente supervisado. Además, esta metodología no es extensible a nuevos conjuntos de
datos.

En base a estas dos limitaciones, decidimos extender el análisis primario a uno secundario, con dos
novedades. En primer lugar, para disminuir los sesgos asociados a la heterogeneidad de conjuntos
de datos individuales aumentamos significativamente el número de conjuntos de datos, incluyendo
un total de 25 conjuntos de datos de dermis humana y 9 murina. Esto implica que se relaizará un
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analisis independiente para cada organismo. Además, para realizar la caracterización de manera
menos sesgada, diseñamos un procedimiento semisupervisado.

En este procedimiento se parte de un diccionario que tiene poblaciones con sus marcadores respec-
tivos y diferentes conjuntos de datos divididos en clusters, y devuelve los conjuntos de datos con los
clusters agrupados en poblaciones, y un nuevo diccionario con los marcadores definitivos de cada
población en base a su relevancia en cada conjunto de datos individual. Este procedimiento, si bien
requiere de un esfuerzo inicial y sesgado para producir el diccionario de poblaciones y marcadores,
facilita la asignación de poblaciones a nuevos conjuntos de datos que se introduzcan, y actualiza la
lista de marcadores correspondiente.

En base a este procedimiento, y tras varias iteraciones donde se han introducido nuevos conjuntos
de datos paulatinamente y se han actualizado las poblaciones “correctas” para cada organismo las
poblaciones humanas se ampliaron de 10 a 15, distribuidas en 5 ejes principales (A1-A4, B1-B4, C1-C3
+ C5, D1-D2 y E1) y los fibroblastos de ratón se separaron en 17 poblaciones, distribuidas en cuatro
ejes principales (x1-x2, y1-y5, z1-z2, w1-w5, v1) y 2 ejes mixtos (w/x, x/y) conformados por poblaciones
que no se han podido asignar de manera concluyente a un eje en concreto.

Para compobar la eficacia y la reproducibilidad del algoritmo de asignación de poblaciones y mar-
cadores, aplicamos un método de bootstrap, que consiste en correr el algoritmo en diferentes
muestreos aleatorios de los conjuntos de datos, conteniendo un 99 % de las células originales.
Después, comprobamos cómo de similares son las asignaciones de poblaciones a las células en
comparación con la asignación empleando todas las células. El análisis de bootstrap revela que, en
general, la asignación de poblaciones es bastante robusta, sobre todo en ratón, y que en las pobla-
ciones donde menos robustez se aprecia es en aquellas que denominamos “poblaciones puente”,
es decir, poblaciones que generalmente carecen de marcadores propios, y cuyos marcadores son
una mezcla de dos poblaciones separadas.

Un análisis más profundo de los marcadores de fibroblastos humanos revela una gran variedad de
funciones, incluso entre poblaciones de un mismo eje. Si nos centramos en fibroblastos dérmicos
humanos, concluimos que hay tres poblaciones “arquetípicas”: la población A2 expresa marcadores
asociados a fibras localizadas en membranas basales y, más concretamente en piel, localizados en
la unión dermoepidérmica; las poblaciones A1 y A3 expresan el grueso de fibras localizadas en la
MEC, así como proteínas necesarias para la maduración y degradación de estas fibras; y la población
A4, derivada de A1, expresa más marcadores asociados a fibras elásticas.

En cuanto a las poblaciones del eje B, también encontramos tres poblaciones arquetípicas: la población
B1, que parece estar asociada a una respuesta inmune primaria, asociada a la expresión de inter-
leucinas agudas como IL1B o IL6, así como quemoquinas que atraen a neutrófilos y otras células
inmunes; la población B2 está asociada a una respuesta inmune adaptativa, asociada a marcadores
de maduración inmune, como los del sistema CD40/CD40L, así como quemoquinas de macrófagos
y de linfocitos B y T, como CCL19 o CSF1; y la población B4, cuya expresión de marcadores de pro-
tección frente a estrés oxidativo y de inmunoregulación parece estar asociada a una modulación
de la respuesta inmune asociada a las células inmunes y a los fibroblastos B1 y B2, así como a una
reparación del tejido tras la respuesta inflamatoria.

Por último, las poblaciones del eje C están asociadas a diferentes poblaciones del folículo piloso ya
descritas, como la vaina dérmica (C1) y la papila dérmica (C2); así como a posibles poblaciones que
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aun no están descritas formalmente en base a marcadores, pero que pueden tener una relevancia en
su homeostasis (C3, C5). Estas poblaciones, así como las poblaciones D1, D2 y E1, tienen una expresión
relevante de marcadores asociados a nervio, vasos sanguíneos y metabolismo de xenobióticos, por
lo que pueden tener una función mixta de soporte funcional asociada a nervios y vasos periféricos,
anejos dérmicos u otras estructuras de la piel.

En lo que respecta a la caracterización de la heterogeneidad de fibroblastos dérmicos murinos, si
bien no hemos realizado una caracterización funcional tan exhaustiva, basándonos en un análsis
previo realizado por Joost et al. (2020) concluimos que la heterogeneidad de los ejes de ratón se
caracteriza por su localización en la dermis; más concretamente, las poblaciones del eje x están
localizadas en la dermis, las poblaciones del eje y están localizadas en el tejido adiposo, y las
poblaciones del eje z corresponden a la fascia localizada debajo del músculo panículo carnoso.

Así pues, la comparación entre fibroblastos de ratón y humano revela una similitud de funciones y
un cierto grado de superposición de fibroblastos entre las dos especies. Por ejemplo, la correspon-
dencia x2-A2 es unívoca y asociada a la dermis papilar, mientras que A1, aunque está más asociada a
x1, también muestra cierta similitud con las poblaciones x/y, y3, z2 de ratón. También parece haber
cierta similitud entre la población B2 e y4, aunque no hay suficiente evidencia para asociar las
poblaciones B1 y B4 a poblaciones murinas concretas. Por último, observamos una similitud entre
la población C2 y las poblaciones w/x y w1/w2; la población C1 y w4; y las poblaciones D1 y D2 con
las poblaciones murinas y5 y v1.

Este cierto grado de similitud es, en general, interesante, pues revela que existe cierto nexo funcional
entre los fibroblastos dérmicos de ambos organismos. Sin embargo, la separación de funcional de
ejes humanos y la separación por localización de ejes en ratón, sobre todo en las poblaciones
asociadas a la producción de MEC y asociadas a la respuesta inmune manifiesta que hay que realizar
más análisis para elucidar cual es la razón de estas diferencias entre organismos.

Los resultados obtenidos fruto del análisis de heterogeneidad de fibroblásticos dérmicos humanos
han sido útiles como medio para determinar la calidad del análisis de conjuntos de datos realizados
por terceros. Por ejemplo, tras un reanálisis de los datos producidos por Reynolds et al. (2021) com-
probamos que, en dos grupos independientes de células, para cada uno de los grupos de células
observamos que existía una población A1, otra de A2, otra de B1 y otra de B2. Es decir, para A1 había
dos poblaciones transcriptómicamente diferentes con la misma etiqueta; y lo mismo para el resto
de poblaciones.

Debido a la anomalía de esta caracterización, realizamos un análisis más exhaustivo de genes difer-
encialmente expresados entre poblaciones y observamos que aproximadamente un tercio de las
células expresaban marcadores asociados a hipoxia, y otro tercio expresaba marcadores asociados
a estrés celular. Además, algunos de estos efectos no pudieron ser corregidos de manera computa-
cional, lo cual implica que las células afectadas por este efecto se encontraban en un estado tran-
scriptómico irreversible. Estas dos condiciones de estrés celular e hipoxia se deben, principalmente,
a un procesamiento exhaustivo del tejido durante la disgregación, posiblemente para asegurar la
máxima captación de células. En ese proceso, las células fueron expuestas durante tiempos exce-
sivamente prolongados (> 8h) a temperaturas elevadas (37°C), lo cual activó estos dos programas
transcripcionales.
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A modo de conclusión, este atlas de heterogeneidad de fibroblastos dérmicos es una herramienta
útil para intentar comprender la función de la piel, donde la heterogeneidad de fibroblastos no
puede pasar desapercibida; y también para el personal investigador que trabaje en enfermedades
de la piel, para utilizar este conjunto de datos combinados como base para descubrir diferencias
en la composición, nuevos tipos de fibroblastos que surgen en enfermedades, o simplemente como
una herramienta para anotar sus conjuntos de datos sin sesgos generados por procedimientos ex-
perimentales.
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Part I

I N T R O D U C T I O N





1
S I N G L E - C E L L T E C H N O LO G I E S A N D A N A LY S I S

The concept of cell is one of the most influential developments in modern biology. Since the improve-
ments made in microscopy by Robert Hooke and Anton van Leeuwenhoek, who first described the
cell as the structural unit of life back in the 17h century, became the vertebrating concept for many
biologists for centuries (Gest, 2004). Cell theory was developed initially around 1840, with Theodor
Schwann and Matthias Jakob Schleiden postulating two of the three common tenets currently used:
(1) all living organisms are composed of one or more cells, and (2) the cell is the most basic unit of life
(Schwann, 1839; Sharp, 1984). 15 years later, Rudolf Virchow added the third tenet–although Robert
Remak suggested it some years before–, famously known as omnis cellula e cellula: (3) all cells arise
from pre-existing cells (Mazzarello, 1999). Modern cell theory includes additional elements such as
the existence of nucleic material, cell metabolism or organism activity derived from its cells, but the
three classical tenets still hold more than 150 years afterwards (Wolfe, 1985).

Cells and tissues have traditionally been studied under the histological lens; that is, they were de-
scribed based on morphology. After the decades of 1950 and 1960, with several biochemistry develop-
ments such as the discovery of DNA structure by Franklin, Watson and Crick (Watson et al., 1953), the
location of the genetic information within it alongside its transcription and translation (Crick, 1970;
Jou et al., 1972; Roeder et al., 1969), cells were assigned their biological function based on their gene
expression patterns. Cells are different not only because of the morphology but because they have
different gene expression patterns; tissues are composed of different cell types and their secretions
which, if they change, will induce changes in the tissue.

Therefore, one of the main aspects of modern cell and tissue biology is finding ways to study cells and
tissues via their gene expression. Some common forms to analyse the expression of a few genes are
based on the direct measurement of mRNA via the Polymerase Chain Reaction (PCR), Fluorescence in
situ hybridisation (FISH); or the measurement of protein quantitatively or qualitatively with western
blots, immunohistochemistry or immunofluorescence. However, these methods can only analyse a
limited number of genes at a time and are not scalable to large numbers of genes or even the whole
genome.

The first method to analyse a large number of genes was the microarray, developed by Schena et al.,
1995, where 45 probes were designed to detect transcripts from A. thaliana. Later developments by Ag-
ilent, Affymetrix or Illumina have expanded the number of probes to detect thousands of transcripts
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across different species, which made them affordable and widely used by researchers, especially
between 2005 and 2016.

More recently, next-generation sequencing (NGS) methods such as RNA sequencing (RNA-seq) have
emerged as an alternative approach for gene expression profiling (Emrich et al., 2006; Lister et al.,
2008). In RNA-seq, mRNA is extracted, cDNA from that mRNA is synthesised and amplified, and adap-
tors are attached for sequencing. This process, unlike microarrays, allows for full sequencing of the
whole transcriptome, while the former only profiles predefined transcripts/genes through hybridis-
ation. Similar to microarrays, companies like Illumina, Pacific Biosciences or Oxford Nanopore have
democratised the use of RNA-seq for a wide range of researchers.

The main limitation of standard RNA-sequencing protocols is that they were designed for bulk RNA
extraction from tissues. Although this would allow the characterisation and comparison of tissues
under different conditions, the information at the cellular level is lost since it is averaged across
the different cell types in the sample (Grün et al., 2015). To minimise the differences between cell
types, some bulk RNA-seq studies used Fluorescence-activated cell sorting (FACS) to select specific
cell types or tissues based on a select set of markers, which is achieved more easily on immune cell
types (Carithers et al., 2015). However, the full, unbiased characterisation of the heterogeneity within
tissue was far from achievable.

Single-cell methods are a solution to the limitation of bulk tissue analysis. By tissue disaggrega-
tion and cell isolation, single-cell methods analyse the biological properties –i.e. transcriptome,
proteome, or epigenome–that may be described within each cell. Although many current single-
cell methods combine NGS approaches to analyse whole -omic properties of the cells, technically,
a method is considered "single-cell" if cells are individually analysed, regardless of the analysis
method-e.g. some publications consider FACS within the family of single-cell methods–.

1.0.1 History of single-cell methods

The first event recorded of genetic profile characterisation using single-cell methods was by Eber-
wine et al., 1992, who measured the expression of a handful of individual genes from single cells
for the first time in 1992, using a sophisticated approach based on in vivo reverse transcription (RT)
followed by amplification through in vitro transcription (IVT).

Almost 20 years afterwards, the first protocol for single-cell sequencing was published by Tang et al.,
2009, who adapted NGS and single-cell technologies to make them compatible with high-throughput
DNA sequencing, thus allowing completely unbiased transcriptome-wide investigation of the mRNA
in a single cell for the first time (Figure 1). They subsequently used this method to trace the derivation
of mouse embryonic stem cells from the inner cell mass with single-cell resolution (Tang et al.,
2010a).

The use of embryonic stem cells facilitated the use of the Tang et al., 2009 protocol, considering
these cells are relatively easily separable compared to cells from adult tissues. Furthermore, cells
were previously classified and sorted. A shift in the field came when Guo et al., 2010 demonstrated
that distinct cell types could be identified without pre-sorting. The authors used RT-qPCR of 48 genes
in parallel on more than 500 embryonic cells.
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Islam et al., 2011 published the first single-cell RNA-seq protocol for multiplexing cells from a single
96-well plate using a unique template-switching oligo (TSO) in each well via their STRT-seq method.
This method exploits the template-switching property of the reverse transcriptase to tag the 5’ ends
of poly-Adenylated mRNA molecules. Following PCR amplification, the tagged ends are pulled down
and sequenced.

Ramsköld et al., 2012 published SMART-seq, the first protocol that allowed the full-transcript char-
acterisation of gene expression in single-cells. This method later evolved into SMART-seq2, which is
currently used in many single-cell studies (Picelli et al., 2013). In the same year, Kivioja et al., 2012
reported using unique molecular identifiers (UMI) to tag independent mRNAs, although the first use
in a single-cell context did not occur until 2014 (Islam et al., 2014).

Brennecke et al., 2013 released SMARTer (C1) in 2013, the first microfluidic C1 system used for passive
cell capture in a scRNAseq context. Fluidigm later commercialised this method. In this protocol, cells
are loaded onto the chip and are passively captured in up to 96 isolated chambers in about half an
hour.

So far, all experiments have been performed in cell cultures, embryonic cells or tumour cells. The
first use of a scRNAseq method applied for a solid tissue was registered by Jaitin et al., 2014, who
studied the composition of 4,468 mouse spleen cells using their own method, MARS-seq. They could
perform an unbiased characterisation of different states of dendritic cell differentiation, B cells and
macrophages, among other hematopoietic cells.

Lastly, in 2015 two different protocols to isolate cells in droplets and carry out barcoded cDNA prepa-
ration within each droplet were published: inDrop (Klein et al., 2015) and Drop-seq (Macosko et al.,
2015). Droplet-based isolation methods have become one of the main strategies to massively isolate
hundreds to millions of cells in a single study. One of these methods, Chromium, developed by 10X
genomics based on an adaptation the Dropseq method, was developed in 2017 and is the current
gold standard in scRNAseq methods (Zheng et al., 2017).

1.0.2 Fast scaling of single-cell analysis

In the following years, many different incremental improvements have contributed to increases
in scale, such as decreases in required reagent volumes and consumable costs facilitated by the
democratisation of microfluidic technologies, random capture methods, in situ barcoding, and re-
duction in sequencing costs (Figure 1) (Illumina, 2021; Kolodziejczyk et al., 2015; Picelli et al., 2013).

As a result of these improvements, there has been a boom in the number of datasets produced and
the number of cells per dataset. Looking at the database of single-cell datasets compiled by Svens-
son et al. (Svensson et al., 2020), Figure 2 shows the scaling of the number of cells per dataset with
time. There is an inflexion point in the number of publications in 2018–the density of points visibly
increases–, possibly due to the commercialisation of different library preparation kits by companies
like 10X Genomics.

One of the consequences of this boom in dataset size is the publication of a range of single-cell
atlases, that is, large datasets consisting of the sequencing of one or several organs from different
organisms by a coordinated set of laboratories, generally using a common, standardised protocol for
sample processing and dataset analysis. Some of the examples of these atlases are (1) the Human
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Cell Atlas initiative, which recently claimed to have profiled more than 50 million cells from over 30
human organs (Lindeboom et al., 2021), (2) the Tabula Sapiens Consortium, with 500,000 cells from
24 human organs (T. Sapiens Cons. et al., 2022), (3) or the Mouse Cell Atlas, with more than 1 million
cells from more than 10 mouse tissues (Wang et al., 2022).

There are also several large datasets of more than 1 million cells, like the one focused on mammalian
organogenesis from Cao et al., 2019–with more than 2 million cells–, the large analysis of 1.5 million
immune cells related to COVID-19 by Ren et al., 2021; or the analysis of the differentiation of 1 million
dopaminergic neurons by Jerber et al., 2021.

Figure 2 shows a clear, steady expansion of the number of cells per dataset, with the regression trend
indicating an expected 2.4x increase in the number of cells per year, similar to the famous Moore’s
Law (Moore, 1998). Similar to the original predictions by Moore, whose law is predicted to reach a
fundamental limit around 2030 (Kumar, 2015), it is possible that in a near future, the number of cells
per dataset will also reach a fundamental limit based on the ability to do proper and meaningful
dataset analysis–this will be discussed in Chapter 13 of the Discussion–.

The large amounts of data and research goals associated with single-cell analysis require efficient
computational methods and sound statistical analysis. This aligns with the definition of data sci-
ence, leading us to conclude that we have entered an era of "Single-Cell Data Science" (SCDS). SCDS
amplifies the challenges already present in traditional data science techniques (Lähnemann et al.,
2020).

1.1 methods in single-cell sequencing

In the nearly 10 years that the single-cell sequencing realm has been developing and expanding,
many methods have arisen. In this section, we will focus on explaining how the most common scR-
NAseq methods work and will also mention other relevant types of methods, like the spatial or pro-
teomic single-cell methods. A full comprehensive description and analysis of single-cell methods is
available at Ding et al., 2020; Mereu et al., 2020; Stuart et al., 2019a; Ziegenhain et al., 2017.

1.1.1 Single-cell RNA sequencing

Single-cell RNA sequencing (scRNAseq) is the most frequently used method within the family of
single-cell methods. In scRNAseq, mRNA from individual cells is extracted, amplified and sequenced.
Figure 3 shows a summary of the steps of some common scRNAseq methods.

The first step within the scRNAseq processing, similar to other methods, is a proper experimental
design. Single-cell methods include a set of variables that can confound the experimental proce-
dure, such as the biological or technical replicates, sequencing runs, flow cells and lanes, as in bulk
RNA-seq (Hicks et al., 2015). Therefore, it is important to randomise over as many of the previously
stated factors as possible so that putatively interesting features observed in the data are not due to
artefacts imposed during sample preparation and/or data collection. Nonetheless, conducting a fully
randomised experiment in many cases is not realistic. Limited samples, a fixed number of single-cell
isolation platforms and sequencers, time constraints, and budgets often impede the theoretically
ideal experiment from being realised in practice (Bacher et al., 2016).
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1.1.1.1 Cell isolation

The first step after sample extraction and tissue disaggregation is cell isolation. One optional previ-
ous step performed in bulk experiments is sample purification using FACS. With unrestricted sorting
gates, random samples of cells can be purified, and dead cells and debris can be removed (Grün
et al., 2015). Additionally, with a suitable FACS instrument that performs index sorting–i.e. data about
the fluorescence levels of proteins and cell size for each well can be stored–cell subtypes can be
selected based on morphology or on the expression of a set of markers (Hayashi et al., 2010). To
maximise capture rates of FACS-based methods, diluted cell suspensions should be sorted at low
speeds–e.g., 100 cells/s–(Lafzi et al., 2018).

Before the appearance of high-throughput cell isolation methods, cells were separated by micro-
pipetting, that is, the selection of individual cells and transfer into contained compartments, or by
laser capture microdissection (LCM), where a laser attaches individual cells from a tissue to a thin
film that can then be removed (Frumkin et al., 2008; Keays et al., 2005). Both of these methods assure
the selection of the desired cells, but the recovery1 is extremely low (< 100) and time-consuming.

High-throughput methods solve these problems by automating cell isolation by several mechanisms.
Droplet methods, also known as bead-based methods, are commonly used. Here, two flows of liq-
uid—one containing reagents–including lysis buffer and reverse transcriptase–and beads with poly(T)
RT primers, and the other containing cells in the buffer are merged into a combined flow. This flow
is separated into droplets by adding oil at set intervals. By calibrating the relative rate of the two
flows and controlling the creation of droplets, it can be ensured that, in most cases, only single cells
will be isolated in droplets (Svensson et al., 2018).

Droplet methods can increase the recovery by up to millions of cells. However, because of the random
nature of this process, it requires a large number of cells and thus is not suited to samples with
limited availability of cells. Additionally, although droplets are of nanoliter volumes, relatively large
amounts of reactants are required to ensure that the co-occurrence of multiple cells in the same
droplet–a doublet– is minimised, which requires a large proportion of empty droplets (Grün et al.,
2015).

Although for some of these methods, such as CEL-seq or Drop-seq, the set-up for neither of these
methods are commercially available, and the user is required to build a microfluidic device based
on the information provided by the authors (Grün et al., 2015); other methods such as Chromium are
commercially available (Zheng et al., 2017).

A similar set of cell isolation methods are microfluidic methods. There, cells are captured using inte-
grated fluidic circuits, which currently enable an analysis of up to 96 cells per chip. These captured
cells can subsequently be inspected under a microscope. The main limitations of microfluidic meth-
ods are that (1) they require a specific setup, and the final number of cells captured is relatively low
compared to droplet methods; (2) cells have to be of a relatively homogeneous size since the capture
sites are tuned to specific ranges, and (3) the capture efficiency can be low for sticky or nonspherical
cells (Kolodziejczyk et al., 2015). For these reasons, microfluidic methods have been overshadowed
by droplet methods.

1 Technically recovery refers to the final amount of cells whereas throughput is the number of cells isolated per unit time.
Since throughput and recovery are related, throughput is usually used for the meaning of recovery as well (Tomlinson
et al., 2013).
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The last family of cell isolation methods is plate-based methods. In plate-based methods, cells can
be sorted directly into 96- or 384-well plaques for subsequent single-cell sequencing. Most of these
methods rely on flow cytometry, which might be useful since the parameter information can be
allocated to each well (Kolodziejczyk et al., 2015). However, the main drawbacks of using plate-based
methods are that (1) reactions cannot still be downscaled to nanolitre volumes, which can entail a
higher reagent cost per cell (Jaitin et al., 2014)–up to 8-12$ per cell (Lafzi et al., 2018)–; and (2) the
cell throughput is still relatively low compared to droplet-based methods, where the number of cells
ranges in the few thousands at most.

The main advantage of plate-based methods and why some are used so far is that the library prepa-
ration methods allow for full transcriptomic capture, whereas droplet-based methods currently have
a 3’ enrichment bias.

cell barcoding and pool barcoding Cell barcodes (CB) are small unique oligo fragments
attached to all the mRNA molecules of a cell so that the gene expression information of that cell is
unique. This step, applicable to plate-based and droplet-based methods, is necessary for the later
after-cell-lysis and pooling of all the droplets into a single volume (Grün et al., 2015). Cell barcoding
assignment depends on the method. For instance, in 10x chromium, CB information is appended to
individual beads that collocate with a cell in an individual droplet.

CB offers a great advantage due to the possibility of sequencing large numbers of cells. However,
CB imposes some limitations when creating compatible sets of barcodes. For instance, each pair of
barcodes should differ in at least two positions to avoid CB collapse, that is, when two independent
CBs are so similar that algorithms merge them into one when accounting for CB sequencing errors
(Grün et al., 2015). Additionally, due to Poisson statistics of cell capture, to ensure that mostly single
cells are isolated during random cell-isolation methods means that there will always be large inef-
ficiencies in terms of cell isolation, and the pool of barcodes will always have to be substantially
larger than the number of cells captured to avoid barcode duplication (Svensson et al., 2018).

Traditional cell barcoding is done at once; that is, full CBs are first synthesised, and then they are at-
tached to the mRNAs from individual cells. Recently, a new family of methods called pool-barcoding
was developed: sci-RNA-seq (Cao et al., 2017) and SPLIT-seq (Rosenberg et al., 2018). In these meth-
ods, single cells are pooled into mini-pools of 10–100 cells by FACS, distributed over multiwell plates
with unique barcodes in each well. First-strand synthesis labels all cells in the well with a first bar-
code. Cells are then pooled and again randomly split into mini-pools in plate wells by FACS, and a
second well-specific barcode is added. This procedure can be repeated multiple times before the
final pooling of the cells to amplify the material and create a sequencing library. This results in an
arbitrarily low probability that any two cells will co-locate in the same sequence of wells, so RNA
from each cell is uniquely labelled, circumventing the necessity to create an inherently large set of
CBs from traditional barcoding.

spike-in addition RNA spike-ins are manually manufactured RNA transcripts of known sequence
and quantity used to calibrate measurements in RNA-seq studies. These spike-ins can also be used in
scRNAseq to normalise differences in expression across different cells by adding the same amounts
of external spike-in RNAs to each sample (Lin et al., 2020). Different types of spike-ins can be added
to the sample, although the most commonly used ones are the ERCC spike-ins, which consist of 92
different spike-in sequences at a wide range of concentrations (Lee et al., 2016).
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Although spike-ins are widely used in certain protocols–e.g. SMART-seq2–there are certain drawbacks
to their use: (1) spike-ins are typically added in at very high relative concentrations and, consequently,
they take up a relatively large proportion of reads (Bacher et al., 2016); (2) their length ranges in 500-
2000 nucleotides, which is shorter than the average mRNA (Stegle et al., 2015), which together with
(3) their secondary structure and shorter poly(A) tail compared to endogenous mRNA, the efficiency
of amplification may be lower as well (Svensson et al., 2017); and (4) external spike-ins can vary signif-
icantly even between technical replicates, which means that, apart from being an additional variable
to control within the experimental design, technical-replicate-derived batch-effects may still occur
(Lin et al., 2020). For these reasons, spike-in use has declined for the last years (Kharchenko, 2021).

1.1.1.2 Reverse transcription and 2nd strand synthesis

The amount of RNA present in a single cell is limited and ranges from 1–50 pg depending on cell
type (Boon et al., 2011), with an estimated mean value of around 10 pg of DNA (Grün et al., 2015).
Due to the small amounts of initial material, mRNA amplification is necessary to quantify it after
sequencing.

Before amplification, because mRNA molecules are single-stranded, a second-strand synthesis is
performed. To do it, a poly-T oligo with complementary information–e.g. CB or UMIs– is added in the
mixture–i.e. well plates, droplets, etc.–, which binds to the poly-A 3’ tail of the mRNA. There are two
methods to extend this secondary strand: poly-A tailing or template switching (Kolodziejczyk et al.,
2015).

In poly-A tailing, after the poly-T oligo is mixed, the first strand is synthesised with a poly-A end
tail so that the poly-T oligo used in the first strand, or another poly-T oligo added at this second
step, binds to that poly-A tail during the second strand synthesis. In template switching, after the
first poly-T addition, a template switching oligo (TSO) is added. The reverse transcriptase switches
template strands from cellular RNA to the TSO and continues replication to the 5’ end of the TSO
(Ramsköld et al., 2012). The key advantage of using TSOs is that full-length transcript coverage can
be obtained, reducing 3’ coverage biases originating from incomplete reverse transcription.

After reverse transcription, minute amounts of cDNA have to be amplified. This step is essential for
scRNAseq, as it increases the number of cDNA copies of a gene, making it more likely to be detected
by sequencing (Jiang et al., 2022). Either PCR or IVT can achieve cDNA amplification. PCR uses the
effects of the Taq DNA polymerase to duplicate each de-hybridised molecule of cDNA, whereas IVT
uses a T7 polymerase to transcribe the same cDNA molecules continuously.

Both methods have their advantages and disadvantages. The PCR amplification process is non-linear,
which means that the ratio between the copy numbers of two differentially expressed genes is arti-
ficially distorted. This can result in the ratio becoming even larger or smaller than it originally was
before PCR (Figure 4) (Jiang et al., 2022; Mereu et al., 2020). To avoid that, a balance between a low-
er/higher number of cycles and fewer/more copies has to be considered. On the other hand, IVT lin-
ear amplification reduces these biases since the same molecule is used in each amplification round
and not molecules from previous rounds, but it requires an additional round of reverse transcription
of the amplified RNA, which results in additional 3’ coverage biases. Despite its disadvantages, PCR
amplification is the most commonly used.
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unique molecular identifiers The main drawback of the amplification is the impossibility of
differentiating two reads of different mRNAs from two reads of the same mRNA molecule derived after
amplification. Unique molecular identifiers (UMI) barcode each individual mRNA molecule within
a cell during reverse transcription, and therefore reduce this amplification bias (Grün et al., 2015;
Kolodziejczyk et al., 2015). UMIs generally consist of 6 to 20 bp oligos that are usually attached at
the 3’ end or 5’ end of the mRNA (Kivioja et al., 2012). After sequencing, the amplification bias can be
eliminated by counting each label only once instead of the reads derived from all amplicons (Grün
et al., 2015).

Although UMIs offer a great advantage in reducing noise resulting from amplification bias, protocols
that implement UMIs sequence only the 5’ or 3’ end of each transcript, making them unsuitable for
studies of isoforms or allele-specific expression (Bacher et al., 2016). Svensson also observed a UMI-
saturation phenomenon whereby even in long (> 10bp) UMIs, the amplification bias could no the
fully resolved, and absolute mRNA quantification was limited (Svensson et al., 2017).

Similar to BCs, UMIs can also suffer from different mutations or even shifting due to PCR stutter
of low-entropy templates. This effect can induce an overestimation of transcript abundances due
to shifted or mutated UMIs being considered differentiated entities. Nonetheless, computational
corrections during sample preprocessing should alleviate these biases (Sena et al., 2018).

1.1.1.3 Library construction

Once full cDNAs have been constructed, they are sequenced. Due to the length of the amplified
cDNA, it needs an additional processing step where shorter sequencer-ready fragments are built to
guarantee a robust amplification due to the limitations of sequencer read length (Natarajan et al.,
2019). The vast array of library construction methods is out of this thesis’s scope and reviewed more
in-depth in (Ziegenhain et al., 2017).

Once libraries are constructed, they are sequenced. Generally, the sequencing depth for libraries
constructed for transcriptomics studies should be based on the specific research question and the
desired resolution of cell type diversity. A shallow depth, such as 1000 to 10,000 reads per cell, may
be sufficient for resolving major cell types, while a higher depth may be necessary for resolving
cell subtypes or states (Heimberg et al., 2016). However, beyond a certain threshold, usually around
500,000 or 1 million reads, there is little change in the number of reliably expressed genes (Wu et
al., 2013). Other authors state that even ∼50,000 reads per cell are sufficient to distinguish relatively
complex cell types (Pollen et al., 2014).

1.1.2 Single-cell proteomic methods

The characterisation of mRNA molecules has been traditionally easier than the characterisation of
proteins. Therefore RNA and DNA multiplexed techniques became the gold standard of analysis of
cell state, compared to protein multiplexed techniques, which are not as widely available. This bias
in the transcriptome analysis leads to the tacit assumption of proteome and transcriptome being at
similar levels when making inferences about the function of the transcriptomic data.

However, wide evidence supports that transcriptomic and proteomic profiles are ever slightly corre-
lated. For instance, Schwanhäusser et al., 2011 determined that the correlation between mRNA and
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protein abundances in mammalian cells was 0.41; and that about 40% of the variance of protein
levels between different proteins could be explained by mRNA levels. A follow-up study re-analysing
the same dataset with a different statistical model concluded that about 56%–84% of the protein
variance could be explained by mRNA variance (Li et al., 2014).

This effect occurs for several reasons: (1) changes in mRNA concentration due to transitions be-
tween steady-states, (2) the signal delay between mRNA transcription and translation into protein,
(3) translation on demand–mRNA levels are kept at a basal rate, but a signal activates the translation
dedicating translation machinery from other mRNAs (differential ribosome usage)–, or (4) housekeep-
ing genes, where protein levels are kept the same but mRNA levels change across cells because of
transcriptional bursting (Liu et al., 2016).

As a result, single-cell proteomic methods are good candidates for obtaining more accurate descrip-
tions of the activity profiles of the different cells. Current single-cell proteomic methods can be
divided into three main types.

Mass spectrometry (MS)-based single-cell methods combine isolation of cells with MS. In both meth-
ods, cells are isolated in nanowells, where different reagents are mixed to perform then the MS/MS
of each nanowell (Cong et al., 2021; Ctortecka et al., 2021). The main advantage of these methods is
their high-resolution proteomic profile (>1000 peptides), but they suffer from low cell throughput
values (∼10–100 cells) and lack of robust data integration pipelines (Vanderaa et al., 2021).

The second family of methods is based on cell surface protein analysis, in which antibodies against
membrane proteins are coupled with DNA tags, sequenced as the rest of the elements within the
droplet (Mimitou et al., 2019; Peterson et al., 2017; Stoeckius et al., 2017). Methods from Stoeckius
et al., 2017 and Peterson et al., 2017 target common immune markers, and they observe significant
overexpression of certain markers in protein form compared to RNA–CD56, CD11c, CD14 by Stoeckius
et al., 2017, and CD56, CD19, CD33, Cd11b and CD155 by Peterson et al., 2017–. While those methods
have a higher cell throughput (∼ 10,000) and are interpreted as "a wider version of FACS", the array of
antibodies to be used–about 100, biased towards immune populations–is far from a gold standard
for general tissue analysis.

Notably, most of these proteomic methods are technically multi-omic since they capture protein and
mRNA information from each cell. Although the rise of multi-omic methods is promising, they are
out of the scope of this dissertation. Stuart et al., 2019a thoroughly explains the different methods
and the integration workflows.

1.1.3 Single-cell spatial methods

Cell location plays a fundamental role within tissue structure due to the juxtacrine and paracrine
signalling. There are many dedicated methods to study the histological structure of a tissue, as well
as to show the location of DNA, RNA or protein markers within it. However, most of these methods
are usually suited for analysing a handful of markers.

To solve this issue, single-cell spatial techniques merge histology sampling with RNA-seq or pro-
teomic signatures from individual cells or small areas within the tissue sample. These techniques
connect the expression signatures of hundreds to thousands of genes areas specific to within the
tissue, thereby providing pertinent spatial information.
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Similar to scRNAseq methods, spatial transcriptomics workflows and bioinformatic frameworks to
analise the data have emerged fairly recently and are an area of rapid evolution. Several reviews
extensively inform about the history, methods, and pros and cons (Longo et al., 2021; Moses et al.,
2022).

Currently, two main types of spatial methods exist: high-plex RNA imaging and spatial barcoding.

High-plex RNA imaging has evolved from traditional in situ hybridization and sequencing methods
and has extended the number of targets to be observed at once. Most of these techniques–seqFISH+
(Eng et al., 2019), MERFISH (Moffitt et al., 2018) or STARmap (Wang et al., 2018b)–use fluorescent probes
designed for an array of genes, which bind specifically to the mRNAs, and the probe position is iden-
tified using a sequencer. The differences between methods generally rely on the probe composition
or the method of transforming sequencing information into a barcode associated with a gene. For
instance, MERFISH uses a combination of fluorescence on-and-off signals to a binary code, which is
then assigned as a gene, whereas seqFISH+ uses a colour-coded assignment where each gene has
an associated colour sequence.

High-plex RNA methods allow for subcellular resolution and have greater depths per transcript com-
pared to spatial barcoding methods (Longo et al., 2021). Although the theoretical number of barcode
combinations would allow for a quasi-complete transcriptome characterisation–seqFISH allows for
48 = 65, 536 combinations and MERFISH could allow >10,000 genes–in reality, current methods still
require a pre-selection of gene targets (Moses et al., 2022). For instance, STARmap offers a 160-gene
panel and captures ∼250 reads per cell; and MERFISH offers a 135-gene panel and captures ∼100
reads per cell. Additionally, these methods suffer from more read-out noise and require specialised
equipment.

On the other hand, spatial barcoding methods such as Slide-seq2 (Stickels et al., 2020), Visium (Ståhl
et al., 2016) or HDST (Vickovic et al., 2019) use custom slides with immobilised probes, set up to
capture spatial information. When tissue sections are deposited on the slides, the mRNA molecules
of the tissue are hybridised to the probes on the slide, amplified, and sequenced. These probes
are located in specific locations, called spots, and include a barcode that can be demultiplexed to
provide the spatial location.

These methods show a greater field of view and greater coverage in the number of genes that can
be detected. However, they show 2 main disadvantages. First, the spot diameter–2 µm for HDST,
10µm for Slide-seq and 55µm for Visium–tends to include several cells, and thus, transcriptomic
data do not present single-cell resolution. In complex tissues with intertwined, diverse cell types,
this resolution is not enough–although novel iterations such as Visium HD claim near subcellular
resolution–. The second drawback relies on the lack of resolution. Although these methods promise
an unbiased transcriptomic representation, there is a strong bias towards housekeeping genes, and
only a handful of marker reads are captured (Schäbitz et al., 2022).

1.2 processing of scrnaseq datasets

Once single-cell RNA sequencing (scRNA-seq) data has been acquired; the next step is to process it
for analysis. While some aspects and tools used for scRNA-seq data processing are similar to those
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used for bulk RNA-seq data, the unique structure of scRNA-seq data requires specific methods and
tools to address the specific challenges it poses (Adil et al., 2021).

A crucial decision before data processing is the choice of programming language, which will impact
the selection of analysis tools. Many tools are designed in a specific programming language (Luecken
et al., 2019). The most popular languages for scRNA-seq analysis are R and Python. However, cross-
environment support is increasing (Scholz et al., 2018).

In recent years there has been an explosion of different tools for scRNA-seq analysis. According to
the scrna-tools website (Zappia et al., 2018), as of the writing of this text, there are more than 1400
tools available; 48% developed in R, 36% in Python, and 16% in other languages. Additionally, there
are platforms such as Seurat (Butler et al., 2018), Scater (McCarthy et al., 2017), or Scanpy (Wolf et al.,
2018) that provide integrated environments for developing pipelines and contain extensive analysis
toolboxes. Most of these platforms, and their underlying methods, try to address scalability to the
higher numbers of cells being sequenced and the higher resolutions per cell (Lähnemann et al.,
2020).

In this section, we will expand upon the steps involved in a single-cell analysis pipeline, presented
in their recommended order of execution–some of these are shown in Figure 5. However, it is worth
noting that the order may vary in some cases. To clarify, we will denote the essential steps for the
analysis with an asterisk (*). The remaining steps are recommended based on the data quality or
other constraints, or they may be downstream steps following clustering.

1.2.0.1 Technical aspects of single-cell data: noise and zeros

Before delving into the processing of single-cell data after sequencing, it is important to acknowl-
edge common issues about noise and high proportions of zeros in scRNA-seq data and other single-
cell technologies, which are well-known limitations of single-cell methods. scRNAseq data may ap-
pear similar to those obtained from bulk expression experiments, but the limited amount of starting
material (<10 pg) and higher resolution in scRNA-seq can result in distinct characteristics, such as
a large number of zeros (both biological and technical), greater variability, and complex patterns of
gene expression (Bacher et al., 2016; Saliba et al., 2014). While the high levels of noise in scRNA-seq
data can be offset by the larger number of cells typically analysed in these studies, compared to
bulk RNA-seq studies, it remains a significant challenge (Stegle et al., 2015).

Even deeply sequenced datasets might have 50% zeros, whereas shallowly sequenced datasets can
have 99% zeros. By contrast, in typical bulk RNA sequencing datasets, <20% of data entries are zeros
(Andrews, 2020; Haque et al., 2017; Jiang et al., 2022). The levels of noisiness and zero presence can
greatly affect downstream analysis because of a gene having up to hundreds of counts in one cell
and none in a similar cell. It is observed that even cells of the same type can show substantial gene
expression variability leading to technical variations–subtypes–that are artefacts derived from the
noisiness (Eldar et al., 2010; Munsky et al., 2012). This effect is less pronounced in genes with a high
read count, which shows similar expression profiles across similar cells (Heimberg et al., 2016).

Recently, Jiang et al., 2022 reviewed the sources of zeroes in scRNA-seq data by analysing the steps
of mRNA transcription and library preparation, as outlined in Figure 6. Zeroes in scRNA-seq data can
be divided into biological and non-biological. Biological zeroes contain valuable information about
cell states, while non-biological zeros include technical zeros, which occur during the preparation
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of biological samples for sequencing, and sampling zeros, which arise due to limited sequencing
depths. These non-biological zeroes can lead to false negative results because they are difficult to
distinguish from biological zeroes without additional knowledge.

Of note, transcriptomic noise also comes from the same sources as zeros; thus, we could use the
terms "biological noise" and "technical noise". However, to avoid confusion, we will only explain
the outcome of zeros as the reference of the section. Additionally, the single-cell community also
uses the term dropout, a data-driven concept, to refer to zeros. However, the use of this term has
been inconsistent and could be referred to all zeros (Gong et al., 2018; Pierson et al., 2015), non-
biological zeros (Li et al., 2018b; Ran et al., 2020), or even non-biological zeros and low expression
measurements (Zand et al., 2020; Zhu et al., 2018). Thus, we will avoid the use of this term throughout
the dissertation.

Biological zeros in scRNAseq data reflect the true absence of a gene’s transcripts or messenger
RNAs (mRNAs) in a cell. Biological zeros occur for two reasons: First, the gene is unexpressed in that
cell, cell state or cell type, because it is not part of its transcriptomic program (gene 1 in Figure 6).
Second, the gene is temporarily not expressed due to the transcription bursting process (gene 2), a
well-known phenomenon in gene regulation (Raj et al., 2006; Raser et al., 2004; Suter et al., 2011).
mRNA processing is transcribed intermittently due to the stochastic effects of transcription factor
binding, chromatic conformation, and other factors and, as such, a gene switches between active
and inactive states, and its transcription only occurs during the active state (Paszek, 2007).

Non-biological zeros reflect the loss of information about truly expressed genes due to the ineffi-
ciencies of the technologies employed from sample collection to sequencing. There are two types
of non-biological zeros (Silverman et al., 2020): technical and sampling zeros.

Technical zeros arise from library-preparation steps before cDNA amplification (gene 3). One cause
of technical zeros is the imperfect mRNA capture efficiency in the reverse transcription (RT) step from
mRNA to cDNA. The efficiency varies widely across protocols and may be as low as 20% (Islam et al.,
2014; Kolodziejczyk et al., 2015). For example, if an mRNA transcript has an intricate secondary struc-
ture or is bound to proteins, it might not be reversely transcribed to cDNA efficiently (Kharchenko
et al., 2014; Svensson et al., 2017), and thus would not be amplified nor sequenced.

The other type of non-biological zeros, sampling zeros, occurs due to a constraint on the total num-
ber of reads sequenced, i.e., the sequencing depth determined by the experimental budget and
sequencing machine. During sequencing, cDNAs are randomly captured and sequenced into reads.
Hence, this random sampling makes a gene with fewer cDNAs (gene 4) inefficiently amplified (gene 5)
more likely to be undetected. As a result, the genes with small cDNA proportions in the sequencing
library are likely to be missed by sequencing and thus result in sampling zeros, as showcased in
Figure 4.

If all the steps go "correctly", a sufficiently expressed gene is retro-transcribed, amplified and se-
quenced, then it will show a non-zero count (gene 6). However, the biases associated with each step
may alter the final number of retrieved reads and increase the noise of the non-zero counts. Some
of these biases may be lessened, for instance, by using UMIs to minimise amplification biases in
non-zero gene expression measurements (Islam et al., 2014).

Svensson, 2020 shows that non-zero-inflated distributions can describe the variation in droplet
scRNA-seq data using droplet-based ERCC spike-in data. Jiang et al., 2022 replicated this study and
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observed that, for samples from Drop-seq and 10x Genomics, read distribution could be fitted with
non-zero-inflated distributions (Poisson and NB) correctly, whereas, for samples from Smart-seq2
data, half of the genes’ read distribution could be better fitted with zero-inflated distributions (ZIP
and ZINB). These results confirm that the main source of the increase in the proportion of zeros is
purely technical.

Interestingly, Qiu, 2020 presents a new approach for analysing transcriptomic variability in single-cell
RNA sequencing data. The authors propose using only binarised counts, where all non-zero counts
are truncated to one. This method eliminates the need for normalising individual cells’ sequencing
depths and suggests that zeros in the data are biologically meaningful. The binarisation process
removes expression differences between highly and lowly expressed genes, making it less ideal for
certain analyses, such as clustering. It also highlights co-expression patterns that can be used for
marker gene selection and gene network construction.

1.2.1 FASTQ processing *

The output of sample processing and library construction for scRNAseq is a FASTQ file that contains
raw reads from the sequencer–or a derived format that can be ultimately transformed into a FASTQ–.
This step aims to create a matrix of cells2 and corresponding gene expression counts. Each cell of
the matrix indicates the number of UMIs mapped for a specific gene expressed in that particular cell.
This step is crucial and depends entirely on the sample quality (Adil et al., 2021).

The common pipeline for FASTQ processing involves several steps: (1) Quality control (QC) on FASTQ
files to remove low-quality reads and trim adapters. (2) Mapping the reads to a genome using an
aligner or a pseudoaligner. (3) Demultiplexing CBs and/or UMIs–if they are used–and then (4) count-
ing the UMIs assigned to each CB to construct the matrix by setting specific thresholds to differentiate
empty droplets from filled ones, in case they were used (Luecken et al., 2019).

The alignment in step (2) can be done with aligners such as STAR (Dobin et al., 2012), or with pseu-
doaligners such as alevin (Srivastava et al., 2019), or kallisto (Bray et al., 2016). The difference between
an aligner and a pseudoaligner is that the latter utilises a k-mer-based search to identify genomic
locations that are likely to be transcribed and then aligns the RNA-seq reads to those locations,
allowing for the detection of novel or unannotated transcripts. For a proper alignment, a minimum
remaining read length (> 35 bp for mouse or human) after trimming should be required to avoid
false-positive hits (Grün et al., 2015). The advantage of pseudoaligners is that they are faster and
usually are constructed using the whole genome, or the extended transcriptome, thus allowing for
the capture of mRNA isoforms.

The objective of demultiplexing in step (3) is to collapse reads with similar CBs to the same cell and
similar UMIs to each of the original mRNAs the UMI came from. Due to amplification or sequencing
errors, CBs and UMIs that are similar are collapsed into one, to avoid false negatives–i.e. reads that
belong to a specific cell/mRNA but which, due to the errors, would be assigned to another cell or as
another mRNA–(Parekh et al., 2018).

2 Technically barcodes because there might be instances of more than one cell with the same barcode due to an artefact
during processing.
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Although these steps can be done individually with different packages–e.g. bustools (Melsted et al.,
2019) or zUMIs (Parekh et al., 2018) for step (3) and DropletUtils (Griffiths et al., 2018) for step (4)–,
other pipelines perform the pre-processing from beginning to end–e.g. CellRanger for 10X chromium
data, kallisto (Bray et al., 2016) for droplet-based data of specialised pipelines from nfcore for droplet-
based and plate-based data–.

1.2.2 Sample QC *

In addition to FASTQ quality control, filtering out low-quality cells and genes in scRNAseq protocols
is essential. The preparation of scRNAseq libraries may capture stressed, broken, or dead cells, which
we refer to as "low-quality" cells. These cells can lead to misinterpretation of the data and should
be removed from the analysis (Figure 5a) (Ilicic et al., 2016).

QC on cells is commonly performed by identifying and removing cells with higher mitochondrial
genes, genes with higher non-exonic reads, high proportions of unmapped or multi-mapped reads,
and a low number of counts and genes assigned per barcode (Andrews, 2020). The distributions of
these QC covariates are analyzed to detect outliers, which are then removed by setting threshold
values. These outliers may correspond to dying cells, cells whose membranes are broken, or doublets
(Luecken et al., 2019). These variables are considered during cell QC because it is hypothesized that
when a cell’s membrane is broken, cytoplasmic RNA is lost, while RNAs enclosed in the mitochondria
and nucleus–pre-mRNA with exonic reads–are retained (Ilicic et al., 2016). Removing these deceptive
cells improves the quality of PCA and a higher number of significant differentially expressed genes
(Ilicic et al., 2016).

There are several aspects to consider of QC on cells. First, there is no gold-standard threshold for
each of the variables, and thus cut-offs are manually selected or arbitrarily defined in terms of
absolute deviations of the distributions of quality metrics (Andrews, 2020). Especially in samples
with highly heterogeneous cell types, these cutoffs should be chosen carefully (Amezquita et al.,
2019).

Also, “sufficient data quality” cannot be determined a priori, so it is judged based on a downstream
analysis performance–e.g., cluster annotation–. Thus, it may be necessary to revisit quality control
decisions multiple times when analysing the data. Often it is beneficial to start with a permissive
QC threshold and investigate the effects of these thresholds before going back to perform more
stringent QC. If datasets are known a priori to be of bad quality, stringent QC may be necessary to
avoid false positives (Luecken et al., 2019).

Additionally, if there are uncertainties about the data quality, some aligners provide the fraction of
reads that map back to the genome. If this value is low, it might indicate that RNA has degraded
(Stegle et al., 2015) and therefore, any analysis will yield bad quality results.

Lastly, considering any of these three QC covariates in isolation can lead to the misinterpretation of
cellular signals. For example, cells with a comparatively high fraction of mitochondrial counts may be
involved in respiratory processes. Likewise, other QC covariates also have biological interpretations.
Cells with low counts and/or genes may correspond to quiescent cell populations, and cells with
high counts may be larger in size (Luecken et al., 2019).
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Regarding QC on genes, raw count matrices typically contain over 20,000 genes. It is important
to filter out genes that are not expressed in a significant number of cells, as they do not provide
meaningful information about cellular heterogeneity. Like cell QC, this step is performed arbitrarily,
and the threshold values should be reevaluated based on downstream analysis results and the
overall quality of the cells (Luecken et al., 2019).

1.2.3 Dataset denoising and imputation

As commented on section 1.2.0.1 single-cell datasets show higher levels of zeros and noise in the
data. Especially regarding zeros, and considering that many downstream methods do not alter the
zeros, it is tempting to assume that they represent missing values and to fill in an estimate derived
mathematically from the detected transcripts. In principle, removing zeros could reduce the noise
and make it easier to identify the underlying structure of the data (Andrews, 2020); however, we can
never be sure which of the observed zeros represents “missing data” and which accurately represents
a true absence of gene expression in the cell (Lähnemann et al., 2020).

Dataset denoising, also named imputation–as used in traditional ML methods to fill gaps in the data–
is applied in single-cell data in response to the previously mentioned sparsity. Denoising estimates
each gene’s true expression level in each cell (Figure 7).

A vast array of imputation methods are grouped into three main groups (Hou et al., 2020; Lähnemann
et al., 2020). (1) model-based methods that use probabilistic models to model the sparsity in the data
directly and may or may not distinguish between biological and technical zeroes–SAVER (Huang et al.,
2018), scImpute (Li et al., 2018b)–; (2) data-smoothing methods that adjust all values by smoothing
or diffusing the gene expression values in cells with similar expression profiles–MAGIC (Dijk et al.,
2018), kNN-smoothing (Wagner et al., 2017)–; (3) data-reconstruction methods that use techniques
such as (a) low-rank matrix-based methods and (b) deep-learning methods to identify a latent space
representation of the cells and then reconstructs the observed expression matrix from the low-rank
or estimated latent spaces, resulting in a non-sparse matrix–DCA (Eraslan et al., 2018), scVI (Lopez
et al., 2018). The latter methods generally strongly rely on the choice of hyperparameters, which can
deter users from using them (Lähnemann et al., 2020).

Imputation methods have been shown to improve the estimation of gene–gene correlations (Luecken
et al., 2019) and, depending on the amount of sparsity, could potentially improve the result of dimen-
sion reduction, visualisation and clustering applications (Lähnemann et al., 2020). However, these
methods suffer from the circularity that arises when imputation solely relies on information internal
to the imputed dataset, which frequently results in many false-positive signals being introduced by
distorting that underlying structure (Andrews et al., 2018; Lähnemann et al., 2020). As a result, spuri-
ous structural patterns in low dimensional representations of imputed data arise, greatly affecting
downstream processing (Hou et al., 2020). For instance, distortions in expression distributions may
cause imputed data to violate assumptions of some statistical tests and a larger number of false-
positive DEGs appear (Andrews et al., 2018).

There is currently no consensus on how denoised data should be used based on its pros and cons.
Due to the modification of the data, it is still recommended not to use it for steps such as DEG, but it
can be used to improve the structure of plots of dimensionality reduction methods (Luecken et al.,
2019).
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1.2.4 Ambient gene expression removal

Ambient gene expression refers to counts that do not originate from a barcoded cell but from other
lysed cells whose mRNA contaminated the cell suspension before library construction (Luecken et
al., 2019). As a result, many cell types may express genes from the lysed cells, resulting in a false
positive signal (Angelidis et al., 2019).

To remove ambient expression profiles in scRNAseq data, cells that are unlikely to represent intact
individual cells should first be excluded (Andrews, 2020). Tools like EmptyDrops first estimate the
background levels of RNA present in empty wells or droplets and then identify cell barcodes that
significantly deviate from the background, which indicates the presence of a cell (Lun et al., 2019).

A secondary step is to directly correct the count data of contaminated cells with tools such as SoupX,
which models the ambient RNA expression and removes it from the contaminated cells (Young et al.,
2020).

1.2.5 Doublet removal

Doublets are a common artefact in single-cell RNA sequencing experiments caused by cell sorting
or capture errors. Doublets are created by capturing two cells instead of one and can be particularly
prevalent in droplet-based protocols (Amezquita et al., 2019). For instance, in certain methods, in-
ferred rates ranged from 2% (2500 cells) to 8% (10,000 cells) (Lafzi et al., 2018). Doublets can lead
to misinterpretation of results, as they may be mistaken for intermediate populations or transitory
states that do not exist.

To remove doublets, the best way is to perform cell isolation at higher dilutions, resulting in in-
creased reagent costs. Computationally, traditionally–and often nowadays–cells with higher gene
counts were removed. However, it has been observed that this method is not correct due to the as-
sumption that doublets will express a more diverse array of genes than singlets; however, the number
of counts per cell is compositional, limited by the capacity of the sequencer (Andrews, 2020).

Tools such as scrublet (Wolock et al., 2019a) and DoubletFinder (McGinnis et al., 2019) simulate possi-
ble doublets from the dataset itself and then calculate the similarity of real droplet barcodes to the
simulated doublets and define a threshold to distinguish the inferred doublets from the assumed
singlets (Andrews, 2020; Luecken et al., 2019).

1.2.6 Data integration *

Batch or data integration responds to the necessity of joining datasets across batches that arise
from various biological and technical sources–e.g. the time of the experiment, the person carrying
out the experiment or differences in reagents–(Andrews, 2020). If not properly accounted for, batch
effects can be mistaken for true biological signals, but through careful experimental design, they can
be avoided altogether (Baran-Gale et al., 2017). Data can be integrated by keeping genomic features
or cells as anchor (Argelaguet et al., 2021).

Keeping genomic features as an anchor, also known as horizontal integration, occurs in experimental
designs where the same data modality is profiled from independent groups of cells–e.g. two samples
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of the same scRNAseq experiment–. This horizontal integration is also known as batch-effect correc-
tion, although this word has different uses depending on the authors. In some cases, batch-effect
correction refers to the correction of samples from the same experiment or with a high degree of
similarity (Luecken et al., 2019), whereas for others, it is considered for all scenarios where horizontal
integration applies (Argelaguet et al., 2021), or there is no clear distinction (Andrews, 2020). In this
work, we will use either batch-effect correction or horizontal integration.

To perform horizontal integration, some authors claim that in datasets with high similarity–e.g. sam-
ples from the same experiment–it can be performed with linear correction methods derived from
bulk methods such as ComBat (Johnson et al., 2006), which outperforms methods specifically de-
signed for single-cell such as MNN (Büttner et al., 2018; Luecken et al., 2019); while other authors
state the opposite, mainly because these methods implicitly assume identical (or at least known)
cell type composition across batches (Andrews, 2020; Haghverdi et al., 2018).

Most horizontal integration methods developed for single-cell data rely on nonlinear–or locally
linear–strategies. These methods can be classified into three types depending on the output types: a
corrected feature matrix–MNN/fastMNN (Haghverdi et al., 2018) and Seurat CCA (Stuart et al., 2019b)–
, a batch-corrected embedding–Harmony (Korsunsky et al., 2019) and Scanorama (Hie et al., 2019)–,
or an integrated cell-cell similarity graph–e.g. bbknn (Polanski et al., 2020) and Conos (Barkas et
al., 2019). An extensive comparison of horizontal integration methods is available at (Luecken et al.,
2021). Depending on the output of the integration method, the downstream steps order will differ.

Batch-effect correction methods pose several challenges, especially non-linear methods. First, a
classical problem of nonlinear integration methods is overcorrection; that is, the algorithm forcibly
merges nonmatching subpopulations of cells. An optimal method should be able to detect this
and prevent the merging of datasets when no common biological variation exists. Second, high-
dimensional observations–e.g. gene expression counts–can be severely distorted due to the batch
alignment, and other downstream gene-based analyses, such as gene marker detection or differen-
tial expression analysis, can be affected. When extensive biological variability exists across batches–
e.g. when samples are profiled across a developmental time course–disentangling batch effects from
the underlying biological signal of interest is more challenging, and the previous two undesired ef-
fects become more apparent.

To assess the efficacy of integration, de visu observations on low-dimensionality representations are
usually performed. With them, samples that are not integrated or cell types in which integration is
more complex are discerned. This assessment can also be done quantitatively using different tools
such as kBET, which performs a statistical test of whether the label composition of a kNN of a cell is
similar to the expected (global) label composition (Büttner et al., 2018).

Other types of data integration are vertical integration, where cells are kept as anchors, and it is
applied in experimental designs with multiple data modalities-e.g. integrating scRNAseq data with
single-cell methylome data from the same samples–; or diagonal integration, if cells and features
are different–e.g. integrating scRNAseq data with single-cell ATAC seq data and spatial data from
different samples–. None of these scenarios is covered in the work of this thesis and are extensively
described, alongside integration strategies, by Argelaguet et al., 2021 and (Longo et al., 2021).
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1.2.7 Normalisation *

Each count in a count matrix represents the successful capture, reverse transcription and sequencing
of a molecule of cellular mRNA, as shown in Section 1.2.0.1. Count depths for identical cells can differ
due to the variability inherent in each of these steps (Luecken et al., 2019; Stegle et al., 2015). Thus,
when gene expression is compared between cells based on count data, any difference may have
arisen solely due to sampling effects. Additionally, reads obtained from a sequencing experiment
will vary between cells, due to cell cycle stage or other biological factors, even within the same cell
type, and these differences may need to be corrected as well (Andrews et al., 2019). Therefore, a
normalisation procedure to account for these effects is necessary.

Most basic normalisation methods in scRNAseq data are inherited from traditional methods of bulk
RNA-seq (Luecken et al., 2019). These approaches share the same motivation—to bring cell-specific
measures onto a common scale by standardising a quantity of interest–e.g., total read counts per
sample–across cells while assuming, for example, that most genes are not differentially expressed.
One of these methods is counts per million (CPM), which consists of dividing the number of counts
of a gene in a cell by the number of counts in the cell and then multiplying by 1,000,000 (Mortazavi
et al., 2008). Variations of this method scale the size factors with different factors of 10 or by the
median count depth per cell in the dataset.

Other less-used traditional methods exist, like the downsampling protocol, which is the process of
random sampling reads or counts from the data to leave all cells with a pre-specified number of
counts or fewer. While downsampling throws away data, it also increases technical zeros and noise,
which CPM and other global scaling normalisation methods do not. Other methods, like RPKM (Reads
per kilobase per million mapped reads) or account for the length of the gene, although this method
is only useful for full-transcript scRNAseq methods (Kowalczyk et al., 2015; Soneson et al., 2018).

All these previously mentioned methods are called global scaling/normalisation methods because
they apply a common transformation by assuming that all cells in the dataset initially contained an
equal number of mRNA molecules and count depth differences arise only due to sampling. There is
some debate on using these methods, based on the preference between whether all genes should
be weighted equally for downstream analysis or whether the magnitude of gene expression is an
informative proxy for the importance of the gene (Luecken et al., 2019; Street et al., 2018).

Some methods are designed for scRNAseq data, like scran (L. Lun et al., 2016), which achieves a
robust outcome using pools of cells to estimate size factors. Cells are normalised in each pool, and
the size factors used in the normalisation are used to build a system of linear equations to define
individual cell factors. Alternatively, spike-in RNAs from the External RNA Control Consortium or
housekeeping genes can be used to estimate size factors. These, as well as the previous methods,
are linear normalisation methods because they perform linear transformations on the data (Luecken
et al., 2019).

Although useful, it has been observed that non-linear normalisation methods have been shown
to outperform global scaling and linear methods, especially in situations with strong batch effects
(Cole et al., 2019). A new set of normalisation methods was recently created based on fitting counts
to a model. The methods by Mayer et al., 2018 and Hafemeister et al., 2019 fit an NB model to count
data, using technical covariates such as the read depth and the number of counts per gene to fit
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the model parameters, and the residuals of the model fit to serve as a normalised quantification of
gene expression.

An additional step after normalisation is applying a variance-stabilisation transformation. The most
common transformation is log1p, also known as log(1+x), adding a pseudo count to the normalised
counts and applying the logarithm of that value. Adding a pseudo count is necessary for zero counts
so that their transformed value is 0, not −∞. This transformation has three important effects. Firstly,
distances between log-transformed expression values represent log-fold changes, which are the
canonical way to measure changes in expression. Secondly, log transformation mitigates (but does
not remove) the mean-variance relationship in single-cell data (Brennecke et al., 2013)3. Finally, log
transformation reduces the skewness of the data to approximate the assumption of many down-
stream analysis tools that the data are normally distributed (Luecken et al., 2019).

This usefulness is highlighted theoretically and practically. Theoretically, (1) when performing PCA on
the gene expression matrix to find a reduced-dimensional representation that captures the variance,
it is desirable that all genes contribute equally, which is the case of log transformation; and (2) it
converts multiplicative relative changes to additive differences. In the context of PCA, this allows
for interpreting the projection axes in terms of a relative, rather than an absolute, abundance of
genes (Booeshaghi et al., 2021). Practically, log transformation is useful in downstream applications
for differential expression testing (Finak et al., 2015) or batch correction (Büttner et al., 2018; Johnson
et al., 2006), which commonly use the log transformation for these purposes.

The use of log-transformation, however, poses two main problems (Booeshaghi et al., 2021): (1) differ-
ences in log1p transformation are apparent for lowly-expressed genes, which can introduce spurious
differential expression effects into the data (Lun, 2018); and (2) highly-expressed genes, despite being
thoroughly-expressed, still have higher variance compared to genes with lower numbers of counts,
so it is not a completely variance-stabilising function. To minimise this gap, a lower factor–instead of
1,000,000–can be used during normalisation and a larger pseudo count during log-transformation
(Lun et al., 2019).

Although less popular, other variance-stabilising functions can be used such as the square root trans-
formation (

√
x) or their related transformations such as the Anscombe transformation 2

√
x+ 3/8

(Anscombe, 1948) and the Freeman-Tukey transformation
√
x +

√
x+ 1 (Freeman et al., 1950). Nor-

malising UMI counts by sequencing depths followed by one of the square-root transformations has
been advocated for UMI data processing (Wagner, 2020a,b). However, neither of these transforma-
tions is sufficiently variance stabilising (Lause et al., 2021).

1.2.8 FS

Feature selection (FS) is the process of choosing a subset of features–or variables–from the model–
or data– to reduce the dimensionality of the data and improve the downstream efficacy of a machine
learning (ML) pipeline or any other method (Saeys et al., 2007). The use of FS within ML is advised
for a series of reasons: (1) FS allows for a simplification of the model, which reduces training times;
(2) avoids overfitting and improves model performance; (3) allows for an easier interpretation of the
model by the researcher, (4) may be required to fit within the input space of the training algorithm;

3 The aim behind the choice of a variance-stabilising transformation is to transform the values such that the variability
of the transformed values is not related to their mean value (Bartlett, 1947; Yeo, 2000)
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(5) may reduce noise in the model, and therefore improve the accuracy of the training algorithm and
(6) reduces the curse of dimensionality (COD).

Alongside FS, feature extraction (FE) is also typically used in ML. FE differs from FS in that while FS
selects a subset of original features from the model, FE creates a new subset of features by modifying
and combining the original features. One example of FE is PCA, which is described in Section 1.2.9
of the Introduction. In this case, PCA is a FE method because a new set of variables–components–is
chosen by finding the best linear combination of the original features that maximises the variance
(Jolliffe et al., 2016).

1.2.8.1 The curse of dimensionality (COD)

One of the reasons to use FS and FE methods is the curse of dimensionality (CODÇ). The rationale
behind the COD is that, when looking at the distribution and number of equally-spaced points, the
higher the dimension, the exponentially higher the number of points needed to fill that space evenly.
For instance, if we consider a line (1D) with 10 points, the number of points in a plane (2D) will be
100, and 1000 in a cube (3D). Therefore, to conserve the same density of points, we will need 10
times the amount of points from the previous dimension for each increment in the dimension. If we
do not keep up with this increment, the density of points becomes much sparser across the space,
and the dataset becomes "less informative".

Another studied phenomenon that relies on COD and justifies the necessity of FS and FE is the peak-
ing phenomenon (Hughes, 1968). This phenomenom states that in a dataset with a fixed number
of training samples, a trained algorithm’s predictive power, or classification accuracy, first increases
with the number of features but then decreases, indicating a number of features at which this algo-
rithm performs best. This effect goes against the primary intuition that, with more information, the
algorithm should perform better. An example of how COD affects DR and clustering is observed in
Figure 8.

1.2.8.2 The need for FS in scRNAseq datasets

Gene expression datasets are highly dimensional, as the expression of tens of thousands of genes
is measured in any given experiment. A direct consequence is that these datasets suffer from the
COD, resulting in a sparsity of the data (Bellman, 2015). Additionally, this sparsity is exacerbated by
the low capture efficiency of mRNA in single-cell experiments, owing to the tiny amounts of genetic
material to be amplified, even though there are considerable recovery differences across methods
(Bzdok et al., 2018).

The phenomenon of COD has been recently studied in scRNAseq data (Imoto et al., 2022). It was
observed, in several datasets, that the use of higher dimensions showed a loss of closeness during
hierarchical clustering–samples were mixed–, PC contribution rates decreased drastically, 2D PCA
plots showed less separation of samples, and UMAP plots failed to discern many samples. These
results were partially explained due to the noise within scRNAseq datasets, which, at higher dimen-
sions, exacerbate the consequences of the COD. Thus, only a limited amount of genes showed a
relevant expression across many cells, and many were only expressed in a few.

As a result of the COD, methods that rely on distances, such as the kNN graph construction, may yield
contradictory results because the distances between similar and dissimilar points collapse. One way
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to minimise the effects of COD is to use a FS or a FE method–or a combination of both–to reduce
the dimensionality of the data.

Early methods for FS in scRNA-seq data were based on the idea that genes whose expression shows
a greater dispersion across the dataset are the ones that best capture the biological structure of
the dataset (Brennecke et al., 2013; Osorio et al., 2019). Conversely, genes that are evenly expressed
across cells are unlikely to define cell types or cell functions in a heterogeneous dataset and should
not be considered relevant. The most straightforward way of selecting genes that are not evenly
expressed is to look at a measure of the dispersion of each gene’s counts and select those genes
that have a dispersion over a threshold.

Newer FS methods have arisen after different corrections, like the one originally described by Satija
et al. implemented in Seurat (Satija et al., 2015), later adapted to scanpy (Wolf et al., 2018). This
method calculates the average expression and dispersion (variance/mean) across all cells; and the
genes are placed into 20 bins based on their average expression. For each bin, a z-normalised mea-
sure is calculated to correct for deviations in the dispersion, and the top genes with the highest
measure across all bins are selected.

Another dispersion-based FS method is the one implemented in scry (Townes et al., 2019). In their
study, the authors used a GLM-PCA model instead of the standard PCA to avoid the implicit as-
sumptions of PCA and selected the genes based on the binomial approximation to the multinomial
deviance.

1.2.8.3 Metrics based on the proportion of zeros to discriminate valid features

Early studies observed that the read distribution of most of the single-cell studies could be fitted to
a negative binomial (NB) (Vieth et al., 2017). More specifically, read counts produced a zero-inflated
bimodal distribution, whereas UMI counts produced a NB distribution (Chen et al., 2018b; Kharchenko,
2021). These results were later replicated by Svensson, stating that the proportion of zeros in droplet-
based scRNAseq data, originally assumed to be technical zeros, was tightly related to the mean
expression of genes, following a NB curve (Svensson, 2020).

From this observation, Svensson, 2020 concludes that genes with an expected lower percentage of
zeros tend to have an even expression across the entire set of cells. Conversely, genes with a higher-
than-expected percentage of zeros might possess biological relevance because they are expressed
in fewer cells than expected, and these cells might be associated with a specific cell type or state.

This finding opened the path for new FS methods that would rely on genes that showed a greater-
than-expected proportion of zeros, according to their mean expression. These methods are based on
a null distribution of some dataset property, and genes whose behaviour differs from the expected
are selected.

Two methods following this premise were developed by Andrews et al., 2018: nbumi and m3drop.
Both methods work by fitting different zero-count probability distributions. After parameter fitting,
they used a t-test with the expected values based on the fitting equation to calculate the p-value
associated with a gene with a mean expression having a higher proportion of zeros than expected.
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1.2.8.4 triku

The FS method used in most of the proceedings of this thesis is triku, which was developed during the
thesis period (Ascensión et al., 2022). In summary, triku favours features that are locally-expressed,
that is, that a set of transcriptomically-related cells expresses it. In contrast, sparsely expressed fea-
tures on transcriptomically-unrelated cells, or widely expressed in most of the cells, are not favoured
for selection.

To perform the selection, for each gene triku calculates two distributions: (1) the kNN count distri-
bution, that is, for each cell, its gene expression and the expression values of the kNN are summed,
and the distribution refers to the kNN counts across cells; and (2) the null distribution, which would
resemble the distribution of reads using a randomised kNN graph.

If a gene is locally expressed, its kNN count distribution will be highly skewed because most of the
counts are condensed in a set of correlated cells, whereas, in the rest of the scenarios, this skewness
is not that visible. Then, the (1) and (2) distributions are compared using the Wasserstein distance,
which increases with the divergence between the two distributions. This distance is later corrected
for average expression values, and the features with higher distances are selected. A scheme of the
algorithm can be found in Figure 9.

1.2.9 Summarisation dimensionality reduction (PCA) *

After FS, dimensionality reduction (DR) is often performed as the next step. This step involves generat-
ing a matrix with the same number of cells but with a reduced number of features, typically between
2 and 50, which capture the underlying structure in the data. Embedding the expression matrix into
a low-dimensional space is useful for several reasons and is typically done to achieve one of two
objectives: visualisation or summarisation (Luecken et al., 2019). In the context of single-cell data,
summarisation methods are often used as an intermediary step before using visualisation methods.
These methods aim to avoid major distortions in the data but are ineffective at visualising the data
in 2D or 3D space, due to the large diversity of cell types. On the other hand, visualisation methods
are useful for capturing the heterogeneity of the data in a 2D or 3D space, but at the expense of
high distortions, which may strongly bias further steps such as differentially expressed gene (DEG)
calculation or trajectory inference (Luecken et al., 2019; Xiang et al., 2021).

One of the most used summarisation methods is principal component analysis (PCA). PCA aims
to find a limited number of linear combinations4 of transcripts that capture as much variance in
the dataset as possible. In that context, capturing variance stands for emphasising variation and
similarity and bringing out strong patterns in a dataset.

Thus, the new linear combinations, called principal components (PCs), describe a low-dimensional
space where the main transcriptional variation between cells occurs. The number of PCs determines
the reliability of the information preserved; that is, a higher number of PCs will capture more in-
formation about the data; but will require more memory to save and time to compute and may

4 A linear combination is a mathematical operation that involves taking a set of numbers (coefficients) and multiplying
them by a set of variables (genes) and then summing the results: LC = a1 · gene1 + a2 · gene2 + · · ·+ an ·
genen . Linear combinations are useful because they can represent a wide range of mathematical objects concisely
and computationally efficiently. They can express a new vector as a linear combination of basis vectors. They are also
used in many areas of mathematics, science and engineering and can model a wide range of real-world phenomena.
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capture unwanted elements like noise derived from "non-relevant" genes. Therefore, the number of
top PCs is usually selected by plotting the fraction of variance explained by each component and
then identifying the point where the curve makes a sharp bend, often referred to as the ‘knee’, and
keeping only those components above the knee. This process can be done manually or automatically
(Kharchenko, 2021; Luecken et al., 2019). Additionally, a number between 25 and 50 components is
usually selected as a rule of thumb.

It has been observed that the first few principal components (PCs) often encode undesired effects
such as batch effects, size effects or cell cycle due to poor upstream correction. While these compo-
nents can be removed to eliminate these effects, it is not recommended as they may also contain
relevant biological variability. A common practice is to use this step to identify these patterns and
make the necessary upstream corrections (Barron et al., 2016).

PCA, similar to other methods, can be useful, although it has some limitations that must be con-
sidered. These limitations can be broken down into two categories: technical issues related to the
computation of PCA and data-related issues stemming from the mathematical limitations of PCA
concerning the structure of scRNA-seq data.

On the technical aspect, although PCA computation is deterministic–i.e. the computation follows a
set of well-defined rules and is guaranteed to produce a specific and predictable outcome–its calcu-
lation is only feasible with small matrices–the product of the number of cells and genes is smaller
than 107–, due to time and memory constraints (Tsuyuzaki et al., 2020). For larger matrices, if the data
matrix can be loaded onto memory as a sparse matrix 5, some implementations for these algorithms
are available (in-memory and sparse matrix), but they may require very long calculation times. Other
algorithms, such as SVD update, repeatedly perform SVD–a parallel of PCA–using subsets of the data
sampled from the data matrix and incrementally updating the result. In both cases, these implemen-
tations are heuristic and might overlook some important differential gene expression patterns. In
the case of large-scale scRNA-seq studies aiming to find novel cell types, this property may cause a
loss of clustering accuracy and not be acceptable (Tsuyuzaki et al., 2020).

Since PCA preserves Euclidean distances between cells, one of the biggest assumptions is that data
follows a Gaussian distribution structure. Although some of the transformations performed as a
first step to PCA like centring the data–i.e. subtracting by the mean and divided by the variance–
try to turn the data to fit into a Gaussian-like distribution, in reality, single-cell data fits better into
an NB distribution (Section 1.2.7) and is non-continuous (Andrews, 2020). As a result, it may exhibit
artefacts when applied to data with gradients or non-continuous data (such as counts); one such
artefact, called the “arch” or “horseshoe” effect, occurs when PCA is applied to scRNAseq data without
log-transformation (Hsu et al., 2023).

Another problem related to PCA is that the variance of an individual transcript depends heavily on its
expression magnitude–even after variance-stabilising transformations–, and the top PCs will focus
on the detailed fluctuations of highly expressed transcripts at the expense of broader transcriptional
patterns (Kharchenko, 2021).

5 A sparse matrix is a matrix with mostly zeros while a dense matrix contains mostly non-zero elements. Dense matrices
are stored in 2D arrays, whereas sparse matrices store the non-zero elements in three arrays: the 2D coordinates of the
dense matrix and the value.



26 single-cell technologies and analysis

Still, PCA remains the most widely used method largely due to its simplicity, speed, and compu-
tational efficiency. In a comparison of 18 dimension reduction methods, PCA ranked highly when
accuracy and performance in the downstream analysis were considered with computational scala-
bility (Sun et al., 2019).

Despite that, several other approaches have been made to create alternatives to PCA. One option
is to include more complex nonlinear relationships by autoencoder neural networks, which provide
a convenient computational approach for learning complex nonlinear multidimensional functions.
An autoencoder is a neural network designed to learn an effective low-dimensional representation
by finding functions that map data to and from low-dimensional space in a way that yields optimal
reconstruction of the original data (Amodio et al., 2017; Eraslan et al., 2019). Because these functions
can be nonlinear, the resulting reduced dimensions can more effectively capture the underlying
structure of the populations than can linear approaches. Nonlinear mapping, however, makes it
more difficult to interpret the latent states (Kharchenko, 2021).

Butler et al., 2018 showed batch effect removal could be formalised as canonical correlation analysis
(CCA), which is mathematically very similar to PCA. CCA is a way of inferring information from cross-
covariance matrices by finding linear combinations of the two matrices which have a maximum
correlation with each other (Tsuyuzaki et al., 2020). This, in the context of batch-effect correction, is
a way to find combinations of variables that merge the datasets by minimising these batch effects
while effectively reducing the dimension, like in PCA.

1.2.10 Manifold graph representation *

After applying a summarising dimensionality reduction technique, the next steps involve further
reducing the dataset to a 2D or 3D space easily visualisable by researchers. Then, clustering is per-
formed to find distinct populations within the data. However, due to constraints on the data input
type for some of these algorithms, as well as other reasons, the next step is to construct a k-nearest
neighbours (kNN) graph (Luecken et al., 2019).

The kNN graph is often constructed in single-cell data to help identify patterns and relationships in
the data. The kNN graph is a type of similarity graph, where each cell is represented as a node and
edges are drawn between cells that are similar to each other based on their gene expression profiles
(Kharchenko, 2021). To compute the similarity between cells, different metrics can be used. Although
the Euclidean and cosine distances are commonly used, a recent benchmark suggests using corre-
lation distances–e.g. Spearman correlation–and two proportionality measures (ϕs and ρp) defined
by (Quinn et al., 2017) to compute the similarity matrix. Once the similarity matrix is computed, for
each cell, its most k similar cells are selected, and the graph is constructed (Kharchenko, 2021).

In practice, computing the full distance matrix is intractable because the matrix would contain
ncells

2 entries which, for large datasets, is not memory-efficient. Additionally, using a heuristic
method avoids the calculation of distances of cells that are already known to be distant and thus
not within the kNN of certain cells. For instance, McInnes et al., 2018 developed an approximate near-
est neighbour search algorithm based on the Nearest-Neighbour-Descent algorithm by Dong et al.,
2011.
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One of the main advantages of constructing a kNN graph is that it allows researchers to uncover
patterns and relationships in the data that may not be immediately apparent through other methods.
The kNN graph provides a visual representation of how the cells are related to each other based on
their gene expression profiles, which can help researchers identify groups of cells that are similar
to each other and understand how they differ from other groups (Kharchenko, 2021). In practice, its
ability to capture the structure of the data can be readily appreciated when looking at embeddings
of visualisation DR (Maaten et al., 2008a; McInnes et al., 2018).

1.2.11 Visualisation dimensionality reduction *

It was previously mentioned that DR methods could be distinguished as summarisation or visual-
isation. The aim of visualisation DR algorithms is to reduce the manifold, or structure, of the data
into a 2D or 3D space, which is more interpretable for the researchers. Most of these methods are
non-linear, which implies that the transformation they apply to the data is less mathematically "in-
terpretable". The ideal aim of these methods is to avoid overcrowding of data in certain spots, which
is a common phenomenon of linear methods in datasets with a large number of entries, and instead,
find a projection in which cells similar to each other are positioned near while preserving the global
structure of the dataset (Hie et al., 2019). However, preserving the embedding without minimal dis-
tortion is almost impossible when the number of entries is large, and the reduced dimension is low
(Johnson et al., 1984). Therefore, all the DR visualisation methods will have significant distortions in
their projections, which will be more apparent depending on what variable they favour: the local
resemblance of similar cells or global structure.

If the DR method operates specifically on a kNN graph, it is called neighbour embedding (NE) (Böhm
et al., 2022). NE algorithms optimise the layout using attractive forces between all pairs of points
connected by a kNN graph edge, thus placing them closer to the low-dimensional embedding. In
addition, every point feels a repulsive force to every other point, which prevents trivial solutions,
such as positioning all points on top of each other.

One of the first NE methods widely used in single-cell methods is t-distributed stochastic neighbour
embedding (t-SNE) (Maaten et al., 2008b), which learns a low-dimensional embedding in which the
distribution of pairwise distances among cells forms a reasonably good information approximation
of the distribution of pairwise distances in the original, high-dimensional space. In general terms,
t-SNE compares two probabilities of, simplifying, cells being similar: the probabilities obtained by
transforming the distances between cells in high dimensionality and the probabilities by transform-
ing distances of projected cells in low dimensionality. This projection, called initialisation, can be
random or done with any other DR technique–generally a linear method–. Then, iteratively, it tries
to match the probabilities in the projection with the probabilities at the higher dimension by mov-
ing the position of the projected cells by a differential amount. The direction of the movement is
a combination of attractive forces of the positions of the kNN and the repulsive forces of the rest
of the cells. The aim is to minimise the divergence between the high-dimensional probabilities and
the low-dimensional probabilities (Kobak et al., 2019). A second commonly used NE method is UMAP
(McInnes et al., 2018). UMAP and t-SNE core workflow is the same, with changes in how the proba-
bilities based on the distances are calculated, how the divergences between high-dimensional and
low-dimensional probabilities are calculated, how the change of position of cells in low dimension-
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ality is executed and how their positions are set during initialisation. The consequences of these
changes will be discussed later.

Generally speaking, both UMAP and t-SNE work by preserving the local structure, that is, cell-to-cell
similarities, at the cost of losing global structure, that is, general interactions between large groups
of cells, or the more overall disposition of the data as a manifold. Other methods, such as DiffMap
(Coifman et al., 2005), ForceAtlas2 (Jacomy et al., 2014) of PHATE (Moon et al., 2019), try to preserve
more the global structure of the dataset. For instance, PHATE works by calculating the distance
between cells and transforming them into probabilities, as well as diffusion probabilities between
long-range relationships. Lastly, the informational distance that measures the dissimilarity between
diffused probabilities is used to indicate a general scale of the data. These distances are embedded
using multidimensional scaling (MDS). ForceAtlas2 uses the kNN graph and, by using a function of
attractive and repulsive forces between the nodes, finds a projection of the graph into the lower
dimension representation.

Since the creation of UMAP, there have been multiple comparatives stating that UMAP works better
than t-SNE at preserving global information and with faster computation times (Becht et al., 2018),
which made UMAP replace t-SNE as the de facto DR method. However, recent analyses by Kobak et al.
(Kobak et al., 2019, 2021) proved that both methods function similarly. Regarding computation times,
although it is true that classical integrations like Barnes-Hut t-SNE (Maaten, 2014) suffered from high
computational times, newer implementations like FIt-SNE (Linderman et al., 2019) or Multicore-tSNE
(Ulyanov, 2016) now work up to 4 times faster than UMAP on certain datasets (Kobak et al., 2019).

The second concern is that t-SNE seems to capture less global structure than UMAP and that t-
SNE initialisation was random and, therefore, less reproducible than UMAP. While this may not be
a problem in some situations, scRNA-seq datasets often exhibit biologically meaningful hierarchi-
cal structure, and thus the larger the data set, the more severe this problem becomes (Kobak et
al., 2019). Considering that both algorithms work on the same kNN graph, there is no reason to be-
lieve that global structure preservation should be worse (Kobak et al., 2019). Kobak et al., 2021 argue
that this phenomenon is entirely explained by t-SNE’s random initialisation versus UMAP’s initialisa-
tion using a linear DR method. Assigning a PCA-initialisation to t-SNE and a random initialisation to
UMAP completely reverts the outcome, and their performances are similar when both use the same
initialisation strategy (Kobak et al., 2019). This effect is represented with a toy dataset in Figure 10.
Additionally, Kobak et al., 2019 recommend a set of easy parameter changes to provide more compact
cluster visualisations, as UMAP does.

Recently, Böhm et al., 2022 provided a mathematical unification scheme of NE algorithms. The scheme
is based on a parameter, exageration (ρ), which explains the trade-off between representing contin-
uous manifold structures–stronger attraction, higher ρ–and discrete cluster structures–weaker at-
traction, lower ρ–. For instance, Laplacian Eigenmaps were generated using ρ → ∞, ForceAtlas2 with
ρ = 30, UMAP with ρ = 4 and t-SNE with ρ = 1 (Figure 11). The authors conclude that no algorithm is
"best" overall and it depends on the dataset and the context of use (Johnson et al., 2022).

1.2.12 Clustering and community detection methods *

One of the most popular algorithms used in single-cell analyses and derived from ML and data
exploratory analysis is clustering (Luecken et al., 2019). The goal of clustering is to partition a set of
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data points into clusters such that the points within a cluster are more similar to each other than to
points in other clusters. The ability to define cell types through clustering based on transcriptome
similarity has emerged as one of the most powerful applications of scRNAseq. Defining cell types
based on the transcriptome is attractive because it provides a data-driven, coherent and unbiased
approach that can be applied to any sample (Kiselev et al., 2019).

The most common clustering methods are based on cell-cell distance matrices, like the classical
Euclidean distance and cosine similarity (Haghverdi et al., 2018), or more refined metrics (Quinn et
al., 2017). One of the simplest methods is k-means clustering, in which the data is partitioned into
k centres (centroids) specified by the user, and each cell is assigned to the closest centroid. Then,
iteratively, the position of the centroids is optimised to, ideally, go to the centres of the clusters (Mac-
Queen, 2019). Certain implementations of k-means, such as Lloyd’s algorithm, have the advantage of
scaling with the number of points, which makes it a very fast algorithm. However, all the implemen-
tations of this algorithm are heuristic, which means that it usually falls in local minima, and thus
yield suboptimal solutions (Kiselev et al., 2019). Additionally, k-means tends to produce equally-sized
partitions, which for many single-cell datasets with cell types in a range of proportions, is not ideal.
These drawbacks can be overcome by repeated application of k-means using different initial condi-
tions. The SC3 algorithm exploits this process and finds a consensus, averaged solution between all
clustering solutions (Kiselev et al., 2017).

Another widely used generic clustering algorithm frequently adapted for scRNA-seq is hierarchical
clustering, which sequentially combines individual cells into larger clusters (agglomerative) or di-
vides clusters into smaller groups (divisive). The algorithm’s output is a data partition, as well as a
dendrogram that explains the different partition steps of the clustering solution and the relationship
between the partitions. An important shortcoming of hierarchical clustering is that both time and
memory requirements scale at least quadratically with the number of data points, which means that
it is prohibitively expensive to use hierarchical clustering for large datasets (Kiselev et al., 2019).

A third algorithm family has recently entered the field of single-cell analysis: community detection
methods. These methods work on the kNN graph of the data and aim to find communities. A com-
munity is defined as a set of nodes (cells) with many edges (connections) between them and fewer
edges between the nodes outside that community. In complex networks, like the kNN graph of bio-
logical samples, cells tend to group into communities based on similarity, and a community can be
inferred as a group of cells that are similar to each other. Thus, community detection methods aim to
find these communities in an unsupervised manner. Technically, community detection methods are
different from clustering methods because the former use the kNN graph to perform the partition,
whereas the latter use the cells or a distance matrix. However, it is common to abuse the term and
call communities detected by these methods clusters because often, the representations to visualise
the communities, like visualisation DR methods, do not show the kNN graph, but the cells instead.

To perform community detection, two elements are needed: (1) a measurement of strengh of the
division of a graph into its communities and (2) an algorithm that optimises the measurement, also
called quality function. The most common quality functions are modularity and its improved ver-
sion, Constant Potts Model. These measurement tries to explain the difference between the actual
number of edges in a community and the expected number of edges using a random graph with
no communities as the reference. Therefore, optimising the measurement will yield a partition of
the graph into its communities (Traag et al., 2019). Since that optimisation is an NP-hard problem,
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community detection algorithms optimise modularity and the other measurements using a heuristic
method.

One of these algorithms is the louvain algorithm (Blondel et al., 2008). This algorithm optimises
in two phases: (1) local moving of nodes; and (2) network aggregation. In the local moving phase,
individual nodes are moved to the community yielding the largest increase in the quality function.
The first iteration starts with as many communities as nodes. In the aggregation phase, a secondary
aggregate network is created based on the partition obtained in the local moving phase. Each com-
munity in this partition becomes a node in the aggregate network. These steps are iterated until
convergence.

The main problem with louvain is that a node may be moved to a different community while acting as
a bridge between different components of its old community (Traag et al., 2019). Removing that node
disconnects the old community. Therefore, it is possible to have groups of cells that belong to the
same community but are not connected, which goes against the definition of the community. To solve
that problem, a more recent algorithm called leiden applies a similar but more refined procedure
which avoids reassigning already-assigned cells to other clusters. Additionally, despite being more
complex than louvain, some optimisations make leiden have slightly better computation times than
louvain (Traag et al., 2019).

One of the reasons community detection algorithms have gained traction and are already the gold
standard in the single-cell analysis is because they can be effectively run on graphs containing
millions of cells (Andrews, 2020; Kharchenko, 2021). Additionally, they are often faster than clustering
algorithms as only neighbouring cell pairs have to be considered to belong to the same cluster and
not all cells. This approach thus greatly reduces the search space for possible clusters (Luecken et al.,
2019).

Regardless of the clustering or community detection algorithm, there are some common pitfalls that
depend on the properties of the genes selected–to calculate the distance matrix or the kNN graph–
, which are described in Figure 12: underclustering, overclustering, and cluster splitting (Hie et al.,
2019).

• Cells are underclustered if cells of different types are assigned to the same cluster, masking
variation in the data (Figure 12c). The omission of key genes that distinguish cell types leads to
underclustering if these cells are similar to one another.

• Cells are overclustered if multiple clusters represent the same cell type (Figure 12e). Including
genes whose variation across cells is not informative to the biologically meaningful clustering
could lead to overclustering.

• Cluster splitting occurs when some cells of the same type are scattered between different
clusters dominated by other cell types (Figure 12g), a common pitfall in discovering rare cell
subsets.

Most of these pitfalls have their solutions. Underclustering generally is solved by DR visualisation of
the clusters by using algorithms such as Silhouette that give a measure of the goodness of clustering
(Rousseeuw, 1987). In that case, usually isolating the populations and performing a subclustering
is the best solution. Overclustering can be partially overcome by a correct FS that removes non-
informative genes. Cluster splitting can usually be solved by using a combination of the under- and
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overclustering solutions, as well as using algorithms designed for rare cell detection, like RaceID
(Grün, 2019).

Another common problem with data partitioning is that all algorithms use a parameter related to the
number of partitions. For instance, k-means clustering uses k as the number of clusters, and louvain
and leiden use the resolution parameter, which increases the number of clusters as it increases. The
choice of parameter often has a large effect on the outcome, and therefore there are computational
methods available to help guide the choice (Kiselev et al., 2018). Many of these methods are based on
the idea of calculating a cluster quality score and identifying an ‘elbow,’ that is, the point where the
score plateaus. These scores favour a fairly coarse resolution, with clearly separated clusters rather
than closely related or overlapping cell types. However, these methods tend to work adequately with
simple datasets and break in datasets that have subtypes, trajectories or large disparities in cluster
sizes, which ultimately requires an informed judgement from the researcher and entails a risk of bias
(Kiselev et al., 2018). This phenomenon can be observed in Figure 13a, where the partitions shown in
subfigures b and c show that a more coarse partition is useful for devising general characteristics
of the graph, and a secondary partition helps retrieve detailed elements.

The general recommendation for the analysis of cellular populations in single-cell data is to use a
range of partitions in a divide-and-conquer manner to have a structure that recapitulates both tissue
development and tissue organisation in major cell types; while accounting for continuous cell states
in addition to discrete cell types, also named as minor cell types (Kharchenko, 2021; Lähnemann et
al., 2020). In some cases, secondary cell partitioning can be done using all cells at once or focusing
on specific populations and dividing them individually. This secondary approach might be preferred
because when isolating each population, only the most relevant genes are selected for DR and
clustering (Figure 13d-g). Doing the secondary clustering with all populations at once may lead to an
underclustering of the subpopulations (Hie et al., 2019).

1.2.13 Differentially expressed gene analysis

One important goal, after separating cells into distinct groups using computational methods or
cell-surface markers, is to identify the genes that most effectively distinguish between the differ-
ent groups. A common approach to achieving this is identifying genes that show different levels
of expression between pairs of groups, also known as differentially expressed genes (DEGs) (Stegle
et al., 2015). DEG analysis is typical of bulk methods, where DEGs between groups of samples from
different conditions were calculated as leads of the process or condition by running a statistical test
and obtaining the p-values. In scRNAseq analysis, DEG analysis adopts a new dimension by not only
being able to calculate DEGs between samples but between groups of cells. In fact, in the most basic
scenario of analysing one sample, typical DEG analysis is used to find markers of different cell types
or states.

While DEG analysis is commonly performed in scRNAseq pipelines and may seem straightforward,
many factors can impact the interpretation of the results. Therefore, it is important to consider
these aspects when conducting DEG analysis. One of the implicit assumptions in the null hypothesis
of DEG tests is that genes have the same distribution of expression values between the two groups.
Therefore, two genes with similar gene expression but which have different unimodal or multimodal
distributions are likely to falsely reject the null hypothesis (Adil et al., 2021; Luecken et al., 2019). If
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intrinsic variation between biological replicates exist, the most frequently used methods can identify
differentially expressed genes even in the absence of biological differences (Squair et al., 2021)

The central assumption of DEG testing is to find DEGs between two groups of cells that are not known
to be different from each other beforehand, and if they were the same, the test would not report
any DEGs. However, if DEG testing is performed after clustering, the populations being compared
are already assumed to be different, and thus, significant DEGs are expected to be found (Andrews,
2020; Lähnemann et al., 2020; Luecken et al., 2019). In fact, this assumption is flawed as it has been
demonstrated that unsupervised clustering followed by DEG analysis can result in artificially low
p-values (Zhang et al., 2019b). Therefore, it is important to be cautious when interpreting results
obtained this way. Vandenbon et al., 2020 recently developed a clustering-independent method for
finding differentially expressed genes in single-cell transcriptome data, which uses Kullback–Leibler
divergence to find genes that are expressed in subsets of cells that are non-randomly positioned in
a multidimensional space.

The sparsity and heterogeneity of single-cell data have encouraged the development of specialised
statistical methods to identify differentially expressed mRNAs (Squair et al., 2021). However, recent
comparisons have concluded that the methods developed for bulk RNA sequencing, as well as the
non-parametric Wilcoxon test, perform well compared to purpose-built methods (Soneson et al.,
2018). This is particularly true when larger cell populations are being compared, as the advantages of
sophisticated parametric models fade and standard parametric tests can provide sufficient statistical
power while making fewer assumptions (Kharchenko, 2021). In cases where single-cell methods were
used, there was a bias to label highly-expressed genes as differentially-expressed, and the opposite
to lowly-expressed genes (Squair et al., 2021).

1.2.14 Trajectory inference and RNA velocity

The dynamics of transcriptional states are of primary interest in many biological contexts, such
as organism development and response to stimuli (e.g. immune response or cancer expansion)
(Kharchenko, 2021; Tritschler et al., 2019). Current scRNA-seq protocols capture a static snapshot
of cellular states at a particular time, but some features of the underlying dynamic process can be
deduced using trajectory inference (TI) methods (Saelens et al., 2019). These methods order cells
along a trajectory based on similarities in their expression patterns, creating a continuous trajectory
where each cell can be assigned a specific position (Andrews, 2020).

TI methods reconstruct paths through cellular space by finding paths that minimise transcriptional
changes between neighbouring cells. It is assumed that the process of interest dominates this tran-
scriptomic similarity and that the more similar two cells are, the closer their stage of progression
along this process. First, a similarity measure quantifies the similarity between the gene expression
profiles of two cells. Then, by ordering the cells according to this similarity measure, a hypothetical
trajectory development can be inferred (Tritschler et al., 2019). The ordering of cells along these
paths is described by a pseudotime variable, which is often interpreted as a proxy for developmen-
tal time (Luecken et al., 2019). The resulting trajectories are often linear, bifurcating or tree-shaped,
but more recent methods also identify more complex trajectory topologies, such as cyclic or discon-
nected graphs (Luecken et al., 2019; Saelens et al., 2019). Depending on the measurement defined to
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describe intercellular similarity, and the types of trajectories that are allowed, different results may
arise.

Early TI methods typically fixed the topology algorithmically, for example, linear (Bendall et al., 2014;
Shin et al., 2015) or bifurcating trajectories (Haghverdi et al., 2016; Setty et al., 2016), or through param-
eters provided by the user (Matsumoto et al., 2016; Trapnell et al., 2014). These methods mainly focus
on correctly ordering the cells along the fixed topology. More recent methods also infer the topology
(Qiu et al., 2017; Street et al., 2018; Wolf et al., 2019), which increases the difficulty of the problem
at hand but allows the unbiased identification of both the ordering inside a branch and the topol-
ogy connecting these branches (Saelens et al., 2019). An alternative to classical visualisation on the
cell level is partition-based graph abstraction (PAGA) (Wolf et al., 2019). This tool has been shown
to adequately approximate the topology of the data while coarse-graining the visualisation using
clusters–traditional TI methods do not rely on cluster information to construct the trajectories–. In
combination with any of the above visualisation methods, PAGA produces coarse-grained visualisa-
tions, which can simplify the interpretation of single-cell data, especially with large numbers of cells
(Luecken et al., 2019).

Due to the active research on TI, more than 40 TI widely used methods have been created recently
(Saelens et al., 2019). In a recent comparison of these methods, it was concluded that no individual
method performs optimally for all trajectories (Luecken et al., 2019). For instance, Monocle and PAGA
scored better on the topology scores, whereas other methods, such as Slingshot, were better at or-
dering the cells and placing them into the correct branches. Using one method resulted in getting
a top model about 27% of the time, and up to 74% with the addition of six other methods (Saelens
et al., 2019). As a result, as a method’s performance is heavily dependent on the trajectory type be-
ing studied, the choice of method should currently be primarily driven by the anticipated trajectory
topology in the data. When inferring cellular trajectories, it is important to use multiple methods to
check the robustness of the inferred trajectory. This is important even if the topology of the trajec-
tory is known beforehand because the underlying biology is often more complex than anticipated
by the user. Using multiple methods, including those that make fewer assumptions about the trajec-
tory topology, can provide a more comprehensive understanding of the biological processes at play.
(Saelens et al., 2019).

TI methods are extremely complex and are based on several assumptions. Therefore, they should be
used considering their limitations as well. The main assumption of TI methods is that they assume
that the data contains a trajectory, even where there might not be one. For instance, Kharchenko, 2021
shows computationally optimal spanning trees for independent PBMC populations, yet interpreting
it as a dynamic process would be incorrect. It is, therefore, important to determine the identity of the
subpopulations first and restrict the trajectory modelling to the appropriate part of the dataset. This
false positive occurs because, technically, inferred trajectories only denote transcriptional similarity,
which can be mistaken for a biological trajectory (Luecken et al., 2019). Some TI methods include
an uncertainty evaluation in their model (Griffiths et al., 2018). Additionally, experimental validation
should be performed on inferred trajectories (Tritschler et al., 2019).

Another assumption of TI methods is that all the cells captured in the pseudotemporal ordering
are being captured, which requires sufficient sampling from the underlying process. Therefore, less
frequent specific cell types should be enriched to ensure a reliable inference, but with enough cau-
tion not to distort the developmental landscape (Tritschler et al., 2019). Additionally, TI methods



34 single-cell technologies and analysis

also assume ergodicity6 (Kharchenko, 2021). However, this might not be the case due to temporary
stages not being captured in the dataset, and therefore the inferred trajectory may lack steps of the
biological process.

Another set of methods, based on the same principles as TI methods, was recently developed. These
methods are constructed around the concept of RNA velocity, which relates the balance of spliced
and unspliced forms of the genes in a cell to its future state (La Manno et al., 2018). During a dynamic
process, an increase in the transcription rate results in a rapid increase in unspliced mRNA, followed
by a subsequent increase in spliced mRNA until a new steady state is reached. Conversely, a drop
in the transcription rate first leads to a rapid drop in unspliced mRNA, followed by a reduction in
spliced mRNAs. These quantities can be combined in a simple model of mRNA kinetics to estimate
the first-time derivative of the transcriptional state, which can then be used to approximate what the
state of the cell would have been shortly before or after the time of the measurement. Therefore, a
positive RNA velocity indicates that a gene is upregulated, which occurs for cells that show a higher
abundance of unspliced mRNA for that gene than expected in a steady state. Conversely, negative
velocity indicates that a gene is downregulated. The combination of velocities across genes can then
be used to estimate the future state of an individual cell.

The advantage of RNA velocity with respect to TI methods is that RNA velocity is based on the fun-
dament of spliced and unspliced mRNA, and therefore, despite its assumptions and the noisiness
of the dataset, inferences on the velocity have a biological basis. However, the major computational
limitation of RNA velocity, shared with TI methods, is its reliance on a DR method for visualization,
which may lead to a loss of interpretability. Tritschler et al., 2019 makes an important claim regard-
ing TI methods that can be extended RNA velocity, other aspects of single-cell analysis, or even in
bioinformatics as a whole: if we put too much prior knowledge–and assumptions–into a model, we
will not unbiasedly generate novel information but will recapitulate known information, reducing
the model to a visualisation tool.

1.2.15 Cell-cell communication analysis

Cell-cell communication (CCC) is a fundamental aspect of biology in which cells communicate with
each other to maintain the proper functioning of an organism. There are four main types of CCC:
(1) autocrine, in which a cell sends signals to itself, (2) juxtacrine, in which a cell communicates
with a physically adjacent cell, (3) paracrine, in which a cell communicates with nearby cells, and (4)
endocrine, in which a cell secretes molecules that travel through extracellular fluids to other parts
of the organism. Cell-cell communication is also referred to as ligand-receptor (LR) communication,
as the communication typically occurs through the binding of ligands to receptors (Armingol et al.,
2020). Analysis of CCC in single-cell shifts from focusing on which cells are present to further focusing
on what relationships between cells are present (Almet et al., 2021).

Cell-cell communication is not limited to single-cell studies and has been extensively studied using
various techniques that focus on the protein-protein interactions (PPIs) that mediate communication.
These techniques include yeast two-hybrid screening, co-immunoprecipitation, proximity labelling

6 Ergodicity expresses the idea that a point of a moving system, either a dynamical system or a stochastic process, will
eventually visit all parts of the space that the system moves in, in a uniform and random sense. This implies that the
average behaviour of the system can be deduced from the trajectory of a "typical" point.
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proteomics, fluorescence resonance energy transfer imaging, and X-ray crystallography (Rao et al.,
2014).

CCC in single-cell is studied with specific methods, which require databases of existing PPI. Due
to the technical and biological noise, the ground truth of interactions is masked, and CCC is often
defined probabilistically (Almet et al., 2021).

The most common methods in single-cell CCC analysis work with clusters of cells and compute a
communication score for each ligand–receptor pair. To compute that score, generally, a null dis-
tribution is computed–e.g. off LR expression or z-score–through cluster label permutation, and a
non-parametric test assesses the differences with the null model. The most commonly used CCC
methods in single-cell are CellChat (Jin et al., 2021) and CellPhoneDB (Efremova et al., 2020).

While the basic concept of inferring cell-cell communication (CCC) is relatively straightforward, the
method can be overly simplistic and may overestimate communication activity. This is due to several
factors (Almet et al., 2021).

First, CCC occurs at the protein level, not the gene level. This means that a gene may be expressed,
but its corresponding protein may not be present, leading to an overestimation of CCC. To address
this, single-cell proteomic methods may be useful, but currently, they are not widely used.

Second, CCC is spatially constrained. Many signalling pathways are activated through ligands diffus-
ing from sender cells to nearby receiver cells. As a result, the number of cells that a sender cell can
communicate with is limited by the finite spatial range of the ligand. This means that CCC determined
using ligand or receptor gene expression data alone may not reflect the actual communication ac-
tivity that occurs at the protein level and within a specific spatial context. To address this factor, CCC
analysis can be used in spatially-resolved methods (Almet et al., 2021).

1.2.16 Gene ontology enrichment analysis

Gene Ontology enrichment analysis (GOEA) is a method used to identify statistically significant over-
representation of specific biological terms in a set of genes (Ashburner et al., 2000). The purpose of
the analysis is to determine whether the genes in a given set are functionally related and to identify
the biological processes or molecular functions that are most associated with those genes. GOEA in
the context of scRNAseq does not vary from the rest of the contexts. In general, GO is composed of
defined terms and the structured relationships between them (GO); and the associations between
gene products and the terms (GO annotations) (Yon Rhee et al., 2008).

The p-value is calculated by comparing the observed number of genes in the set that are annotated
with a specific term to the expected number of genes that would be annotated with that term by
chance. The calculation of the p-value in a GOEA typically involves two steps. First, the expected
number of genes annotated with a specific term by chance is calculated based on the total number
of genes in the set and the proportion of genes in the entire genome that are annotated with that
term.

Next, the observed and expected numbers of genes are compared using a statistical test such as the
χ2 test or Fisher’s exact test. The p-value is the probability that the observed difference between
the number of genes in the set that are annotated with a specific term and the expected number
of genes is due to chance. A small p-value indicates that the overrepresentation of the term in the
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set of genes is statistically significant and unlikely to have occurred by chance. The common use of
GOEA is to find GO terms with statistically significant p-values from the list of GO terms available
at the ontology. To obtain the terms, a p-value is calculated for each term, and then p-values are
corrected using multiple hypothesis testing methods like the FDR.

GOEA can be performed with several tools, such as goatools (Klopfenstein et al., 2018), or Enrichr
(Kuleshov et al., 2016)–a web served that performs GOEA from a vast array of GO sets–. In Python, the
module gseapy can automate the performance of GOEA by using Enrichr API (Fang et al., 2021).

Despite the relevance and wide use of GOEA in bioinformatic analysis, it has some limitations. The
most relevant one is that a very high number–over 95%–of GO annotations are computationally
derived and have not been manually curated. Therefore, there is a high false positive rate of genes
being falsely associated with a higher number of GO terms.
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Figure 1: Representative single-cell publications. Each publication shows the number of cells detected. The
coloured publications represent novel methods that are relevant to the single-cell field. Adapted
from Svensson et al., 2018, Figure 1B.

Figure 2: Trend of number of cells per publication. Each dot in the scatter plot represents a publication from
Svensson et al., 2020 database. Datasets from 06/2014 backwards were removed to facilitate the
interpretation of the figure. The red line represents the linear regression fitted to the scatter plot.
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Figure 3: Scheme of scRNAseq methods. Each method has a graphical representation of the main steps in the
scRNAseq sample processing pipeline. Adapted from Ding et al., 2020 (Extended Data Fig. 1).
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Figure 4: Scheme of PCR amplification bias. Five genes have their cDNAs amplified by PCR. After the non-linear
amplification, their relative proportions change. If the sequencing depth is limited to 52 reads, the
first gene has sampling zeros in three out of five hypothetical sequencing experiments. Adapted from
Jiang et al., 2022 (Figure 3)
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Figure 9: Graphical abstract of triku workflow. a) DR representation of the gene expression from the count
matrix from a dataset, where each dot represents a cell. b) kNN graph representation with 3 neigh-
bours. For each cell, the k transcriptomically most similar cells are selected (3 in this example). c1)
Considering the graph in b) for each cell with positive expression, the expression of its k neighbours
is summed to yield the kNN distribution in blue. c2) With the distribution of reads (blue line), the
null distribution is estimated by sampling k random cells. d) The null and kNN distributions of each
gene are compared using the Wasserstein distance. e) For each gene, its distance is plotted against
the log mean expression, and divided into w windows (4 in this example). For each window, the me-
dian of the distances is calculated and subtracted from the distances in that window. f) All corrected
distances are ranked and the cutoff point is selected.
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Figure 5: Scheme of scRNAseq data processing. (a) Basic data processing steps, including count matrix gener-
ation, cell and gene QC, ambient RNA correction, doublet detection, normalisation, feature selection,
and dimensionality reduction. (b) Methods of direct population annotation based on discrete clusters
and continuous identities. (c) Complementary analyses performed in several single-cell scenarios.
Adapted from Heumos et al., 2023 (Figure 2).
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Figure 6: Sources of zeros in scRNA-seq data. (a) An overview of a scRNA-seq experiment. Biological factors
determining true gene expression levels include transcription and mRNA degradation (top panel).
Technical procedures that affect gene expression measurements include cDNA synthesis, PCR or IVT
amplification, and sequencing depth (bottom three panels). Finally, every gene’s expression measure-
ment in each cell is defined as the number of reads or UMIs mapped to that gene in that cell. (b)
How the biological factors and technical procedures in (a) lead to biological, technical, and sampling
zeros in scRNA-seq data. Red crosses indicate occurrences of zeros, while green checkmarks indicate
otherwise. Biological zeros arise from two scenarios: no transcription (gene 1) or no mRNA due to
faster mRNA degradation than transcription (gene 2). If a gene has mRNAs in a cell, but its mRNAs
are not captured by cDNA synthesis; the gene’s zero expression measurement is called a technical
zero (gene 3). If a gene has cDNAs in the sequencing library, but its cDNAs are too few to be captured
by sequencing, the gene’s zero expression measurement is called a sampling zero. Sampling zeros
occur for two reasons: a gene’s cDNAs have few copies because they are not amplified by PCR or IVT
(gene 4), or a gene’s mRNA copy number is too small so that its cDNAs still have few copies after
amplification (gene 5). If the factors and procedures above do not result in few cDNAs of a gene in
the sequencing library, the gene would have a non-zero measurement (gene 6). Adapted from Jiang
et al., 2022 (Figure 1)
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Figure 7: Scheme of data imputation (zeros and non-zeros). Measurement error requires denoising methods
or approaches that quantify uncertainty and propagate it down analysis pipelines. Where methods
cannot deal with abundant missing values, imputation approaches may be useful. While the true
population manifold that generated data is never known (dashed line), one can usually obtain some
estimation of it that can be used for both denoising and imputation (continuous line). Adapted from
Lähnemann et al., 2020 (Figure 2).

Figure 8: Illustration of the curse of dimensionality. PCA plots of the Deng data set using 500 (left) and 20,000
(right) of the most variable genes. Ideally, the six separate populations of cells should be distinguish-
able. When using a large number of features, clusters are less distinct, as indicated by the shorter
distances between clusters (for example, the 4-cell stage is not as isolated). Consequently, unsuper-
vised clustering becomes more challenging. Adapted from Kiselev et al., 2019, Figure 2.
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Figure 10: t-SNE and UMAP with random and non-random initialisation. Embeddings of n = 7,000 points sam-
pled from a circle with a small amount of Gaussian noise (σ = r/1,000, where r is the circle’s ra-
dius). Random and PCA initialisation were used for t-SNE and random and LE initialisation for UMAP.
Adapted from Kobak et al., 2021, Figure 1.

Figure 11: Attraction-repulsion spectrum for the MNIST data. Different embeddings of the MNIST data set of
hand-written digits (n = 70 000); colours denote digits as shown in the t-SNE panel. Multiplying all
attractive forces by an exaggeration factor ρ yields a spectrum of embeddings. Values below 1 yield
inflated clusters. Values above 1 yield more compact clusters. Higher values make multiple clusters
merge, with ρ → ∞ approximately corresponding to Laplacian eigenmaps. UMAP is similar to ρ ∼ 4.
ForceAtlas2 is similar to ρ ∼ 30. Adapted from Böhm et al., 2022, Figure 1.
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2
S K I N B I O LO GY

2.1 skin morphology and function

The skin is an important organ in most animals, in the form of a soft and flexible layer, accounting for
up to 5% of total body weight (Sontheimer, 2014). It has been shaped by the adaptation of animals to
various environments, resulting in a highly variable morphological organ with specialised structures
such as hair, scales, nails, hooves, and spurs (Montagna, 1967).

Skin serves a vast array of functions, mainly protection against diverse forms of trauma, includ-
ing thermal, chemical, and ultraviolet radiation. In addition, it prevents trans-epidermal water loss
(TEWL), that is, the movement of water from lower skin layers into the atmosphere. Other relevant
associated functions are regulating body temperature, synthesis of vitamin D and perceiving sen-
sory stimuli from the environment through its network of nerve endings (Farage et al., 2010; Yannas,
2014). These functions demonstrate how the skin is a vital component of the organism, contributing
to overall health and well-being. The importance of the skin as a barrier is illustrated by the mortal-
ity associated with large surface area burns, where increased transepidermal water loss culminates
in dehydration, renal failure and shock (Abdo et al., 2020).

2.1.1 Epidermis

The epidermis is the outermost layer of the skin. In humans, its thickness averages 0.4mm ranging
from 0.03 mm on the eyelids to 1.5 mm on the palms and soles. The epidermis is composed of four
major cell types: keratinocytes, melanocytes, Langerhans cells, and Merkel cells, with keratinocytes
making up more than 90% of cells. The epidermal structure is layered into four main strata: stra-
tum basale–basal layer–, stratum spinosum–spinous layer–, stratum granulosum–granular layer–and
stratum corneum–cornified layer–(Barbieri et al., 2014). In palms and soles, a thin layer between the
granular and cornified layers is present: the stratum lucidum–clear layer– (McGrath et al., 2004). The
lower portion of the dermis shows downward invaginations, called rete ridges, and upward interdig-
itating structures, dermal papillae, which tridimensionally resemble the bottom of an egg carton.
These structures increase the surface area and increase oxygen, nutrient and waste exchange rate,
as well as strengthen the connection between the epidermis and dermis (Barbieri et al., 2014).

47



48 skin biology

Keratinocytes are ectodermal-derived and can be distinguished from melanocytes and Langerhans
cells in the epidermis by their larger size, intercellular bridges, and ample cytoplasm (Abdo et al.,
2020; Barbieri et al., 2014). Keratinocytes proliferate to heal wounds, transport water and urea through
aquaporins, receive melanin from melanocytes, control water permeability and participate in innate
and adaptive immunity through antimicrobial peptide secretion and the presence of Langerhans
cells, respectively (Horst et al., 2018). Additionally, they release neurotransmitters, neuropeptides,
hormones and cytokines which transmit and process sensory information in the CNS, regulate skin
permeability barrier function and can affect the physiology of multiple systems (Baroni et al., 2012;
Denda et al., 2007).

2.1.1.1 Epidermal layers

stratum basale The stratum basale is the bottom layer of the epidermis, next to the dermis,
composed of cuboidal keratinocytes, and has the most mitotic activity. Keratinocytes from the basal
layer move upward through the spinous and granular layers, undergoing changes as they mature
and reach the stratum corneum over 30-50 days (Barbieri et al., 2014). Only 15% of basal layer cells
are constantly involved in renewing the epidermis; the rest are resting and activate during skin
rejuvenation or injury (Baroni et al., 2012). At the tips of epidermal rete, slow-cycling keratinocytes
with stem cell characteristics can rapidly proliferate in response to injury (Barbieri et al., 2014).

Keratinocytes from stratum basale are arranged in a single layer along the basement membrane
and contain large oval nuclei with abundant organelles and a basophilic cytoplasm due to the active
synthesis of protein used by cells in upper layers. These keratinocytes often contain melanin pigment
acquired from nearby melanocytes (Barbieri et al., 2014).

Keratins are structural proteins produced by keratinocytes and form a web-like pattern of interme-
diate filaments that originate from a perinuclear ring, extend through the cytoplasm, and connect
at junctional desmosomes and hemidesmosomes. During differentiation, keratins interact with filag-
grin to form highly ordered arrays (Baroni et al., 2012). Basal keratinocytes mainly produce keratins
5 and 14, while suprabasal keratinocytes mainly produce keratins 1 and 10. Mutations in keratins can
cause blistering diseases. Hemidesmosomes and desmosomes secure keratinocytes to the base-
ment membrane and to each other. Tonofilaments made of keratins provide internal structure and
can comprise up to 80% of the total protein in differentiated keratinocytes (Barbieri et al., 2014).

Another function of keratinocytes in basal and the spinous layers is the synthesis of vitamin D. The
precursor 7-dehidrocholesterol produced in the keratinocytes is transformed by sun UV light into
pre-vitamin D3, which is further converted into vitamin D3. This molecule goes through 2 hidroxi-
lations, the first one in the liver and the second one in the kidneys until reaching its final form–
1,25-dihidroxyvitamin D– (Abdo et al., 2020). Vitamin D is a fat-soluble prohormone steroid primarily
acknowledged for its endocrine role in calcium homeostasis and plays a lesser role in the regula-
tion of skin differentiation, immune function, hair follicle cycling, photo-protection, upregulation of
innate immune defences and wound healing (Mostafa et al., 2015).

stratum spinosum The stratum spinosum layer is typically 5 to 10 cell layers thick and is located
above the stratum basale. The cells in this layer adhere to each other by desmosomes, which give the
cells a spiny appearance due to the shrinking of the microfilaments. The cells in this layer express
keratins 1 and 10 and have large, pale-staining nuclei, as they are active in synthesizing cytokeratin,
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which forms tonofibrils and desmosomes for strong connections between cells. Desmosomes play
a significant role in maintaining the structural integrity of the epidermis, as evidenced by blistering
disorders due to mutations. This layer also contains Langerhans cells (Barbieri et al., 2014).

stratum granulosum The stratum granulosum thickness ranges from 1 to 10 cells. Keratinocytes
in the stratum granulosum are flatter and more irregular in shape than those in the stratum spinosum,
and they have deeply basophilic keratohyalin granules. Keratinocytes also release lamellar granules
and keratinosomes, which create a permeability barrier to water and facilitate cell adhesion in the
stratum corneum (Barbieri et al., 2014).

stratum corneum The outermost layer of the epidermis, the stratum corneum, provides a per-
meability barrier that prevents TEWL and protects against external agents, including bacteria, fungi,
and chemicals (Abdo et al., 2020; Baroni et al., 2012). This layer is composed of corneocytes, ker-
atinocytes that, in their differentiation process, lose their nuclei and other organelles and become
completely keratinised–up to 80%–(Abdo et al., 2020; Barbieri et al., 2014). The desmosomes that
had held the keratinocytes together begin to disappear or become nonfunctional in this layer, and
the filaggrin released from the granules of the granular layer aggregates the keratin into bundles
that promote their characteristic flattened shape (Baroni et al., 2012). The skin in this layer has an
acidic pH that may have an important function in preventing infection (Wilhelm et al., 1990).

In the upper stratum corneum, enzymes such as steroid sulfatase, break down the lamellar gran-
ules’ components from the granulocytes’ apex that facilitate cell adhesion in the stratum corneum,
resulting in the desquamation of the uppermost cells. The function of corneocytes and the contents
of the lamellar granules acts as a "brick and mortar" wall, where the corneocytes are the bricks,
and the content of the lamellar bodies acts as the mortar (Abdo et al., 2020). The main contents
of the lamella bodies are lipids such as ceramides, cholesterol and free fatty acids, most of them
produced from the hydrolysis of sphingolipids. Ceramides and fatty acids help fill and compact the
space between the corneocytes, acting as a barrier, and cholesterol may also help add a degree of
fluidity and flexibility to the membrane system (Baroni et al., 2012).

2.1.1.2 Minor epidermal cell types

melanocytes Melanocytes play a major role in protecting the skin from ultraviolet radiation
through the production of melanosomes that are transferred to keratinocytes to protect their nuclei
(Barbieri et al., 2014). These cells are located mainly at the basal and suprabasal layers of the epider-
mis, although the melanocyte stem cell reservoir lies in the bulge of hair follicles (HFs), from where
they migrate to the epidermis and mature (Abdo et al., 2020).

After sun exposure, it is thought that p53 activation in keratinocytes induces the production of a
melanocyte-stimulating hormone resulting in increased melanin production by melanocytes. A com-
plex tyrosine metabolism pathway produces melanin at the melanosomes, which later is transferred
to the cell periphery along microtubules. Melanin is further transferred from melanocytes to basal
keratinocytes, with one melanocyte supplying 30-40 keratinocytes (Costin et al., 2007).

langerhans cells Langerhans cells are a type of dendritic antigen-presenting cell (APC) found
in the epidermis. They have clear cytoplasm and can be difficult to differentiate from other cell
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types such as T cells, macrophages, and melanocytes, on hematoxylin- eosin-stained preparations.
Langerhans cells are anchored to neighbouring keratinocytes by E-cadherin, and they phagocytose
antigens in the epidermis and then migrate to draining lymph nodes by downregulating this cadherin
(Barbieri et al., 2014).

Langerhans cells present antigens to T cells using MHC class II molecules and CD1a, which can present
microbial lipids to T cells. The Langerhans cell marker CD1a also promotes effector functions and the
secretion of cytokines in the dermal layers. After T cells have been activated in the lymph nodes, they
migrate back to the epidermis as memory T cells and upregulate inflammatory pathways. Langerhans
cells also express an antigenic peptide with an affinity towards MHC-I molecules, which promotes
the function of cytotoxic T cells (CD8+) (Abdo et al., 2020).

merkel cells Merkel cells are specialised epidermal cells found in the skin and hair follicles
(Abdo et al., 2020). They are rare and located in the basal layer of the epidermis and around the
bulge region of hair follicles. They are believed to arise from epidermal ectoderm rather than neural
crest. Merkel cells have an established function as slowly adapting mechanoreceptors that detect
light touch, as well as spatial features such as curvature and edge.

Recent research suggests that Merkel cells may have endocrine and paracrine functions. This idea is
supported by the fact that Merkel cells contain neuroendocrine markers such as chromogranin A and
a variety of neurosecretory substances such as neuropeptides. Furthermore, some Merkel cells are
not associated with a nerve, supporting the idea of additional functions beyond mechanoreception.
Despite this, much about the role of Merkel cells remains to be discovered (Barbieri et al., 2014).

2.1.2 Dermo - epidermal juntion

The skin must maintain its mechanical stability to prevent the shearing of the epidermis from the
dermis. To achieve this, neighbouring keratinocytes are bound to each other by desmosomes and
a meshwork of tonofilaments, and the epidermis is further stabilised by its interlocking projections
dermal rete and papillae that increase the surface area for binding interactions between these layers
(Abdo et al., 2020).

The dermo-epidermal junction (DEJ), which represents the interface between the epidermis and der-
mis, consists of an aggregation of proteins and structures known as the basement membrane (BM).
One of the classical functions of the BM is mechanical stability of skin, but it also allows for diffu-
sion of molecules such as growth factors and cytokines, including keratinocyte and platelet-derived
growth factors (PDGFs), that regulate both keratinocyte and dermal fibroblast functions through reg-
ulation of activation and release. In addition, BM plays an important role during the remodelling
process after injury and damage to BM by cancer leads to cell activation in the stroma (Saikia et al.,
2018).

The basement membrane can be divided into the superior lamina lucida and the inferior lam-
ina densa (Barbieri et al., 2014). Hemidesmosomes at the basal keratinocytes bind through several
molecules–e.g., integrin α6β4, bullous pemphigoid antigens or collagen XVII–to the laminin 332 at
the lamina densa, primarily composed of type IV collagen arranged in a chicken-wire-like lattice
(Barbieri et al., 2014; Saikia et al., 2018). Some of these components, like integrin α6β4, have been
found to modulate basal cell cytoskeleton organisation, proliferation, differentiation, and apoptosis.
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Then, anchoring fibrils, which contain type VII collagen, link the type IV collagen of the lamina densa
to the underlying anchoring plaques in the dermis, which consist primarily of aggregates of colla-
gen VII (Barbieri et al., 2014; Goldsmith et al., 2012). Mutations in several components of the BM, like
laminin 332 or collagen VII, result in different types of epidermolysis bullosa (Goldsmith et al., 2012).
A detailed schematic of the BM can be observed in Figure 14.

2.1.3 Dermis

Below the BM lays the dermis, which is 15-40 times thicker than the epidermis. The main aim of
the dermis is to reinforce the skin and provide structural support by absorbing mechanical forces.
Additionally, through the dermis pass vascular structures that nourish the rest of the skin, neural
structures that communicate signals from within the dermis and epidermis to the nervous system,
and lymphatic vessels that facilitate immune communication. The dermis is mainly composed of an
extracellular matrix produced by fibroblasts generally producing collagen and elastic fibres, but it
also contains a wide range of cell and molecule types (Abdo et al., 2020; Barbieri et al., 2014).

2.1.3.1 Cell composition of the dermis

fibroblasts Fibroblasts are the primary cell type in the dermis and are mesenchymal cells pro-
ducing extracellular structural proteins, glycosaminoglycans, collagen and elastin fibres that provide
structural support (Abdo et al., 2020). Dermal fibroblast origins, functions and other aspects are ex-
tensively discussed in Section 2.2.1.

dendritic cells and macrophages Macrophages and dermal dendritic cells (DCs) are bone
marrow-derived cells that play important roles in innate and adaptive immunity. Under basal condi-
tions, macrophages and dermal dendritic cells are most commonly found around the perivascular
space. Although macrophages can act as antigen-presenting cells (APCs), their main function is to
engulf proteins and cellular structures to preserve ECM integrity. Additionally, they can secrete sev-
eral cytokines to generate adaptive immune responses. On the other hand, dermal dendritic cells
capture, process, and present antigens to T cells, similar to Langerhans cells in the epidermis. After
encountering antigens in the dermis, dermal dendritic cells migrate to the lymph nodes, presenting
antigens to T cells (Barbieri et al., 2014).

mast cells Mast cells are cells that are found in the bone marrow and are important in the initi-
ation of both immune and inflammatory responses. They are most commonly located around blood
vessels, especially postcapillary venules, and contain a variety of granules, including histamine, hep-
arin, cytokines, chymase, and tryptase. Mast cells serve pro-inflammatory and anti-inflammatory
roles, and one of their main functions is to enhance the recruitment of neutrophils during the in-
nate immune response. Additionally, mast cells play a role in Th2 adaptive immunity and are involved
in immediate hypersensitivity reactions through the mediation of IgE and degranulation (Barbieri et
al., 2014).
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2.1.3.2 Dermal microvascular unit

The cutaneous tissues are characterised by the presence of a complex network of blood vessels,
lymphatic vessels and nerves known as neurovascular plexi or, specifically within the skin, the dermal
microvascular unit (Figure 15) (Nolano et al., 2012). Generally, all three components can be found
intertwined in each plexus, although they can also surround other structures, like HFs or glands.
These plexi provide essential functions such as circulation, nutrition, and cutaneous sensation to
the skin (Barbieri et al., 2014).

vascular plexus The dermal vasculature of the skin comprises three major structures, each
with distinct locations and functions. The superficial vascular plexus is the first structure located
at the boundary between the papillary and reticular dermis. It contains arterioles and venules with
capillary loops extending into each dermal papilla to provide nutrition and waste removal to the
epidermis.

The second structure, the deep vascular plexus, defines the border between the reticular dermis
and the subcutaneous fat, and contains larger-calibre vessels. The third structure, the subcutaneous
plexus, is located in the hypodermis and contains larger arteries and veins. All three structures are
connected vertically with ascending arterioles and descending venules (Barbieri et al., 2014).

In addition to its role in nutrient communication, dermal vasculature has a crucial role in temper-
ature regulation. The vasculature contains specialised structures called glomus bodies, a form of
vascular anastomosis. These bodies play a key role in temperature regulation by controlling blood
flow to the area. When the anastomoses are open, large increases in blood flow occur, allowing heat
dissipation. On the other hand, vasoconstriction and closure of the anastomoses cause an abrupt
cessation of heat loss (Abdo et al., 2020).

nerve plexus The cutaneous nerve plexus belongs to the peripheral nervous system and in-
cludes afferent fibres and autonomic fibres of the sympathetic nervous system responsible for exe-
cuting involuntary responses. The afferent fibres are responsible for perceiving external stimuli and
transmitting them to the central nervous system for interpretation. Like the vascular plexus, nerve
fibres form vast meshes within each plexus and play an important role in various physiological pro-
cesses, including thermoregulation, blood vessel tone, and the regulation of glandular secretions
(Barbieri et al., 2014).

The terminals of the nerve fibres can take on three forms. They can form mechano-receptors that
are highly specialised for the perception of mechanical stimuli, they can penetrate the keratinocytes
and end up in the epidermis or they can innervate structures such as glands, blood vessels, and HFs
(Iribar et al., 2018; Weddell, 1945).

The innervation of HFs is especially relevant, since it is necessary for mechanosensory purposes.
In HF, nerves surround each hair into a structure called lanceolate complex, in which nerve end-
ings protrude from the ring in the hair upwards, arranged parallel to the hair follicle long axis. It
has been observed that epidermal stem cells in that area secrete a protein, EGFL6, necessary for
proper patterning, touch responses, and αv integrin-enrichment of lanceolate complexes (Cheng et
al., 2018a).



2.1 skin morphology and function 53

lymphatic plexus The dermal lymphatics play a critical role in the drainage of immune cells,
fluids, and macromolecules, including lipids and proteins. These lymphatic structures parallel major
vascular structures and can be found just below the superficial vascular plexus (Barbieri et al., 2014).
The main immune populations trafficking through the dermal lymphatic vasculature are Langerhans
cells and DCs. In addition, the lymphatic vasculature plays a major role in reverse cholesterol trans-
port by recirculating high-density lipoprotein-bound cholesterol from the interstitial space (Petrova
et al., 2017).

It has been observed that poorly functioning dermal lymphatics can result in several adverse effects,
including impaired immunity and recurrent infections, as well as fibroplasia secondary to chronic
lymphedema (Barbieri et al., 2014).

2.1.3.3 Extracellular matrix

The extracellular matrix (ECM) is the large embedding produced and re-structured by dermal fibrob-
lasts. The most abundant components of ECM are collagen I and III (Lynch et al., 2018), although there
are other collagens, as well as other matrix molecules produced by these fibroblasts, including fi-
bronectin, elastin, periostin, and tenascin-C. Other key ingredients of the ECMs are bridging proteins
and matrix-modifying enzymes–there are more than 300 proteins–which, together, are referred to as
the matrisome (LeBleu et al., 2020; Lendahl et al., 2022).

collagen Collagens are the main components of ECM, which provide the skin with tensile strength
and resistance to plastic deformation (Cole et al., 2019; Gosline et al., 2002). They account for around
30% of protein mass in humans, and more than 70% of dermis dry weight (Bauer et al., 1979). In the
adult dermis, the majority of collagens are fibrillary collagens, including type I (80%), type III (15%),
and type V collagen (5%), and comprise up to 70–80% of the skin dry weight (Haydont et al., 2019).
During infancy, a higher proportion of collagen III changes to a predominant collagen I deposition
(Haydont et al., 2019). The collagen turnover is infrequent, with an estimated half-life of 15 years in
human skin (Verzijl et al., 2000).

Mature collagen molecules comprise three intertwined alpha chains, each characterised by the dis-
tinctive amino acid triplet repeat Gly–X–Y. The amino acid variability at the X and Y positions and
the frequency and length of non-collagenous domains are responsible for determining the spe-
cific type of collagen (Cole et al., 2019). The production of collagen starts with the synthesis of pre-
procollagen α chains in the rough endoplasmic reticulum, some of which residues then undergo
C-vitamin-dependent hydroxylation. The α chains form a triple helical structure called procollagen,
secreted from the cell and cleaved by metalloproteases to form tropocollagen. The tropocollagen
molecules self-assemble and are cross-linked to form collagen fibres, providing tensile strength
(Barbieri et al., 2014).

The formation and assembly of collagen fibres are carried out through nucleation and regulation.
The “nucleating” collagens, mainly type V and XI, are located in the centre of the fibres and initiate
the incorporation of other types of collagen. The architecture of the dermal ECM can be further mod-
ulated by the family of ‘fibril-associated collagens with interrupted triple helices’ (FACIT), including
type XII, XIV, and XVI collagens. These proteins help bridge collagen I and III fibrils with proteoglycans
like decorin and perlecan, which regulate fibrillogenesis (Haydont et al., 2019; Reed et al., 2002).
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Post-translational modifications to type I collagen include the previously mentioned intracellular
conversion of lysine to hydroxylysine and the extracellular conversion of lysine and hydroxylysine
into aldehydes through lysyl oxidase (LOX). This LOX-directed conversion of amino acids into alde-
hydes enables non-reducible crosslinking that stabilises the dermal collagen and makes it resistant
to proteolytic cleavage (Cole et al., 2019).

other fibers Aside from collagen, the ECM also contains other components, like glycosamino-
glycans (GAGs), proteoglycans, the elastic fibre network, and water (Haydont et al., 2019).

GAGs are a group of long, negatively charged polysaccharides. They play important roles in various
biological processes, including lubrication of joints, tissue hydration and elasticity maintenance,
and cell growth and division regulation. In the dermis, GAGs like hyaluronic acid, which have a high
water-binding affinity, help keep hydration levels and confer stiffness and resistance to deformation
(Juhlin, 1997). Proteoglycans are macromolecules composed of a protein nucleus, to which GAGs–
e.g. chondroitin sulfate, dermatan sulfate–adhere and branch. Proteoglycans have great molecular
variability–e.g. lumican (LUM - 38 kDa) or decorin (DCN - 36 kDa) to aggrecan (ACAN - 220 kDa) or
versican (VCAN - 260-370 kDa). This variability confers them a wide range of functions, mainly the
regulation of size and assembly of collagen–by perlecan, lumican, decorin, versican and tenascin X
(Kadler et al., 2008)–or interaction with factors and cytokines, facilitating their retention within the
ECM (Sorrell et al., 2009).

Elastic fibres, akin to their name, confer elasticity to the skin and other structures like vascular ves-
sels by allowing deformation forces and returning to their original state (Naylor et al., 2011). Elastic
fibres form an organised and highly structured network that runs from the DEJ to the deep dermis.
For instance, oxytalan fibres penetrate the DEJ perpendicularly and are composed of fibrillin-rich
microfibrils; and elaunin fibres, composed of fibrillin and elastin in equal proportions; also run per-
pendicular to the epidermis and are slightly thicker than oxytalan fibres. In the lower layers of the
dermis, the fibres are essentially composed of elastin, thicker, and oriented parallel to the epidermis
(Haydont et al., 2019).

There are other large molecules, like fibronectins or laminins. Fibronectins are a set of glycoproteins
that connect the collagens in the ECM with the integrins at the cell surface to facilitate the movement
of the cells through the ECM. Laminins are located at the basal membrane and connect components
like integrins to collagens or form dense nets that absorb tensional forces within the dermis (Lewin
et al., 2006).

mmps and timps Another key part of the ECM are matrix metalloproteinases (MMPs) and their
respective tissue inhibitors (TIMPs). The proper balance of MMPs and TIMPs is crucial for the normal
deposition and degradation of the ECM. MMPs are calcium-dependent zinc-containing endopepti-
dases and degrade a large array of molecules like different collagens, aggrecan, laminin, elastin or
fibronectin (Van Linthout et al., 2014).

For instance, in immune settings, MMP-1 initiates cleavage of type I and type III collagen fibrils at a
specific location within their central triple helix, and, once cleaved, the fibrils are further degraded
by MMP-3 and MMP-9 (Fisher et al. 1996; Brennan et al. 2003). MMP-9 is the most relevant pro-fibrotic
MMP, and its inhibition or deletion has been shown to reduce fibrosis in models of dilated cardiomy-
opathy and myocardial infarction (Van Linthout et al., 2014).



2.1 skin morphology and function 55

MMPs in the skin are relevant to maintain homeostasis, and dysregulation can lead to different
diseases. CCN1 has been shown to up-regulate MMP-1 via interaction with αVβ3 integrin and thereby
contributes to aberrant dermal collagen homeostasis in human skin (Qin et al., 2013). TGF-β/Smad
signalling pathway promotes the synthesis of collagen, fibronectin, DCN, and VCAN, and inhibits the
synthesis of ECM-degrading metalloproteinases (MMPs), functioning as the major regulatory pathway
for ECM production (Quan et al., 2015).

2.1.3.4 Papillary and reticular dermis

The dermis can be divided into two main parts, the papillary and reticular dermis, easily distinguish-
able in histological samples. The papillary dermis is a thin–300-400 µm–zone that approximates the
epidermis and is composed of loosely arranged collagen. The thicker reticular dermis is located be-
neath the papillary dermis and connects the subcutaneous fat and tissue (Barbieri et al., 2014). The
two layers differ regarding the secretion of several extracellular matrix components, growth factors,
cytokines, MMPs and TIMPs, as well as their fibroblasts–discussed in Section 2.2.1– (Stunova et al.,
2018).

The papillary dermis comprises primarily type III collagen fibres arranged in thin and poorly organ-
ised bundles with a high density of active fibroblasts (Barbieri et al., 2014; Stunova et al., 2018). Within
the nuclear collagens, type V collagen is the predominant (Nauroy et al., 2017); regarding FACIT colla-
gens, types XII and XVI are more abundant. Moreover, the elastic fibre disposition, mainly of elaunin,
is perpendicular to the epidermis (Haydont et al., 2019).

On the other hand, the reticular dermis is composed primarily of large and well-organised type I col-
lagen bundles, with a lower density of fibroblasts and other cell types (Barbieri et al., 2014). Moreover,
type IX nucleating and type XIV FACIT collagens are more predominant in this layer (Nauroy et al.,
2017). Regarding elastic fibres, they are thicker than in the papillary dermis, and run parallel to the
epidermis (Haydont et al., 2019). It has been shown that a higher level of ECM deposition correlates
with a higher promotion of vascularization by cells near adipose tissue, which might correlate with
papillary dermis cells being most involved in human skin wound healing, compared to cells located
at the reticular dermis (Stunova et al., 2018).

2.1.4 Adnexa

2.1.4.1 Hair follicle and pilosebaceous unit

Hair is a characteristic feature of mammals. It involves physical protection, camouflage, thermal insu-
lation, perception of stimuli, and sweat dispersal. In humans, hair has a mainly social and aesthetic
role, covering almost the entire body, except the palms of the hands and feet, as well as discrete gen-
ital areas. Two types of hair are found on the body: terminal hair that is thick, long and pigmented;
and fine, short and poorly pigmented hair, called vellus hair (Marks et al., 2019). In mice, more than
four types of HFs differ in length, thickness, and in the presence or absence of kinks in the hair shaft
(Schlake, 2007).

Anatomically, the HF is an invagination of the epidermis with a channel through which the hair exits
the skin. The distal region (closest to the epidermis), named infundibulum, spans the epidermal
opening to the insertion of the sebaceous gland. Below this is the isthmus, where the arrector pili
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muscle (APM) joins. In its lower zone are the epithelial and melanocytic stem cells that support the
regeneration of the follicle and the pigmentary unit; this region is known as the bulge. Further down
the bulge, the deepest part of the HF contains the hair bulb, which contains the dermal papilla cells
(DP). DP comprises packed fibroblasts that exert inductive signals to determine cycle length, size,
and hair type (Barbieri et al., 2014; Rahmani et al., 2014).

If the HF is cut transversely, there are three main layers can be seen–from inwards to outwards–: (1)
the inner root sheath (IRS), a thin layer composed of several sublayers that helps shape and mould
the developing hair; (2) the outer root sheath (ORS), a thick layer that joins the epidermis at the upper
portion of the HF, and (3) the connective tissue sheath (CTS), made up of loose collagen fibres and
elongated cells that surround the entire follicle in transversal and longitudinal dispositions towards
the near and far ends of the CTS, as well as intertwined blood vessels and nerves (Martino et al.,
2020; Müller-Röver et al., 2001). The cells that conform the CTS are called dermal sheath (DS) cells
(Martino et al., 2020). CTS/DS is physically separated from the ORS by a cell-free glassy membrane
(Müller-Röver et al., 2001; Schneider et al., 2009). Although not considered a layer per se, the medulla
or cortex is the hair root, and is surrounded by the IRS.

The HF is made up of cells derived from the ectoderm (keratinocytes), the mesoderm (fibroblasts
of the PD and CTS/DS) and the neural crest (melanocytes), which are in constant communication
through epithelial-mesenchymal interactions and allows maintaining basic processes such as the
hair growth cycle, or morphogenesis during the embryonic period (Sennett et al., 2015). The HF, to-
gether with the sebaceous gland (SG) and the APM, form the pilosebaceous unit.

The SG is an exocrine gland that opens into the HF and secretes sebum, an oily compound that
lubricates the skin and hair. Sebaceous secretions also play an important thermoregulatory role in
conjunction with apocrine glands. In hot conditions, the secretions emulsify the sweat produced by
the eccrine glands, producing a sheet of sweat that is not readily lost in drops of sweat (Zouboulis,
2004). Additionally, sebaceous lipids help maintain the integrity of the skin barrier, and its slightly
acidic pH acts as a barrier to microbes (Zlotogorski, 1987).

The APM attaches to the bulge region of the hair follicle, which also contains the follicular stem
cells, and comprises smooth muscle innervated by the autonomic nervous system. The function of
the APM is to cause the hair to raise in response to stresses such as cold or fear (Barbieri et al., 2014).

hair cycle In all mammals, HFs follow a cycle of hair regeneration consisting of three main
phases: anagen, catagen and telogen (Martino et al., 2020). The anagen phase, or growth phase, is
the longest phase where the hair matrix is actively produced by the cells from the DP. In catagen, or
regression phase, the hair matrix is liberated and the dermal canal where the hair grows is shrunk.
During the catagen phase the DS contracts and DP retracts to the new base of the regressed hair.
Lastly, during telogen, or resting phase, the DS surrounds the DP only, and not the rest of the HF;
and both DS and DP remain dormant until a new signal enters the HF in the anagen phase. During
the early anagen, the DP cells migrate towards the lower end of the dermis, and the DS surrounds
the new hair canal. This process is schematised in Figure 16.
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2.1.4.2 Sweat glands

Apart from the SGs adjoint to the HFs in the pilosebaceous unit, sweat glands are the other major
type of gland in the hairy skin (Barbieri et al., 2014).

Sweat glands can be divided into two types: eccrine and apocrine glands. Eccrine glands function
in thermoregulation and are widely distributed over the entire skin surface. The sweat these glands
produce is mainly water, salt, and metabolic waste products. These cells are richly innervated by
cholinergic fibres, which are thought to regulate sweat production in response to thermal, emotional,
and gustatory stimuli. There are three million eccrine glands present in the skin that are capable
of producing 1.8 l of sweat per hour (Barbieri et al., 2014). In addition, cytokines and proteolytic
enzymes can be found in eccrine secretions, suggesting that eccrine glands may also play a role in
skin immunity.

Apocrine glands have an unclear function and are composed of three segments: the intraepider-
mal duct, the intradermal duct, and the secretory portion. These cells are innervated by adrenergic
and cholinergic fibres and are inactive until puberty. Apocrine secretions are a complex mixture of
lipids and proteins, like sialomucin. Epidermal bacteria act on these molecules to produce odiferous
molecules with biological effects. In lower mammals, apocrine secretions act as pheromone signals;
however, their function is poorly understood in humans and may represent evolutionary vestiges
(Barbieri et al., 2014).

2.1.4.3 Sensory terminals

There are two types of sensory receptors in the dermis: bare nerve endings, for nociception and
thermal sensation; and encapsulated mechanoreceptors, such as Meissner’s corpuscles, which de-
tect moving touch and Pacinian corpuscles, which perceive vibration and brief touch (Abdo et al.,
2020).

Regarding bare nerve endings, nociceptors are activated by noxious stimuli such as heat, pressure, or
chemicals, and they play a crucial role in transmitting pain signals to the brain. They help protect the
body by detecting harmful stimuli and triggering a withdrawal reflex, which helps to prevent further
injury. Thermoreceptors, on the other hand, are specialised nerve endings that respond to changes
in temperature. They help regulate body temperature by detecting changes in skin temperature and
transmitting this information to the brain, which then adjusts the level of sweating or shivering in
response. Both are type C fibres, which are unmyelinated and have the lowest response (Glatte et al.,
2019).

On the other hand, Meissner and Paccini fibres are of type Aβ, that is, thick, highly myelinated, and
rapid conducting with mechanoreceptive properties (Glatte et al., 2019). Meissner’s corpuscles are
found most commonly in the dermal papillae of the fingertips, composed of laminar cells functioning
similarly to Schwann cells. Meissner’s corpuscles function as rapidly adapting mechanoreceptors
important for light touch sensation. Pacinian corpuscles are commonly found in the dermis of weight-
bearing skin and subcutaneous fat, and they are rapidly adapting mechanoreceptors important for
pressure and vibration sensation.

Additionally, the skin can detect a pattern of mechanical stimuli on a smaller scale than would be
expected merely by the location of the nerve terminals (Abdo et al., 2020). Keratinocytes contain
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sensors that can recognise and respond to various physical and chemical environmental factors. For
example, TRPV1 is strongly expressed near the skin’s surface, consistent with its role in detecting tem-
perature changes. TRPV3 and 4 are activated by mechanical stress and changes in osmotic pressure
(Becker et al., 2005; Caterina et al., 1997; Vallbo et al., 1999). Subepidermal Schwann cell networks are
likely to be involved in the skin sensory role (Iribar et al., 2018).

2.1.5 Hypodermis

Below the dermis is the subcutaneous fat, which comprises lobules of adipocytes separated by fi-
brous septa, which have arteries, veins, and nerves that supply the subcutaneous fat and dermis
running through them (Barbieri et al., 2014). This layer provides mechanical support, insulation, and
thermoregulation and serves as a store for energy (Abdo et al., 2020).

In mice and humans, this layer is divided into two distinct layers: the dermal white adipose tissue
(dWAT) and the subcutaneous white adipose tissue (sWAT). In mice, both types of fatty tissue are
separated by the panniculus carnosus (PC) muscle. Humans lack PC, although it is evolutionarily
conserved in discrete locations (Naldaiz-Gastesi et al., 2018). In humans, dWAT and sWAT are contigu-
ous, making their histological identification difficult; however, various clinical observations assert
that the fascia superficialis demarcates both adipose compartments (Zwick et al., 2018).

The adipocytes that make up dWAT or sWAT differ in their metabolism, morphology, and embryonic
origin (Driskell et al., 2014). In response to tissue remodelling cycles coupled to the hair cycle, dWAT
has a high cell turnover rate, while other fatty deposits such as sWAT or vWAT (visceral WAT) have
extremely limited cell turnover (Rivera-Gonzalez et al., 2016).

It has been seen that dWAT is involved in processes as diverse as hair cycle regulation, ECM re-
modelling, healing, hormonal segregation and innate immune defence against infections (Guerrero-
Juarez et al., 2018; Zwick et al., 2018). Generally, dermal adipocytes might be considered “ROS-sensing
adipocytes”, able to orchestrate a dedifferentiation and/or an immune response depending on the
finest ROS tuning within those cells (Segalla et al., 2021).

In humans, the association of dWAT adipocytes with pilosebaceous units is particularly intriguing. In
these structures, dermal adipocytes form clusters of cells exhibiting a cone geometry–observable
under electron microscopy–extending to the first half of the hair follicle, a structure that might
suggest a sort of “sensing” offshoots. In that sense, dWAT is probably a fine sensor of epidermal
stress towards sWAT or a sensitive projection of sWAT towards epidermis (Segalla et al., 2021).

Within the WAT, a secondary classification can be performed. Within the lobules, two types of adipocytes
can be found. Most adipocytes in the subcutaneous fat are white adipocytes: spherical cells with a
large central droplet and a peripherally located nucleus. White adipocytes function in the storage
of energy. Brown adipocytes, on the other hand, more commonly found in visceral adipose tissue
than subcutaneous fat, are polygonal cells with several lipid droplets and a round nucleus. These
adipocytes express uncoupling protein 1 (UCP1), which uncouples oxidative phosphorylation from
ATP generation. This process is responsible for brown adipocyte’s role in thermoregulation (Barbieri
et al., 2014).
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2.1.6 Differences between mouse and human skin morphology

Both humans and mice are mammals, which gives them a high degree of similarity in many aspects,
including skin. Using mice as a research model has greatly contributed to understanding normal and
pathological cutaneous repair, but there are challenges in bridging the gap between preclinical and
clinical studies because skin morphology and repair in mice do not perfectly mirror that of humans.
To properly interpret the results, it is important to understand the particularities of each species
(Zomer et al., 2018) (Figure 17).

Mice have small bodies, shorter life expectancy, and differences in physiology compared to humans,
making it difficult to effectively reproduce the pathogenesis of certain human diseases such as di-
abetes (Cibelli et al., 2013). In light of these limitations, other models, such as pigs, which are phys-
iologically closer to humans, are being used, but they pose greater handling difficulties than mice.
Despite these limitations, most studies on skin wound healing are still performed in mice (Zomer
et al., 2018).

Although human and mouse skin have the same layers of cells in the dermis and epidermis, they
greatly differ in thickness and number. Human skin is relatively thick, firm, and adheres to underlying
tissues, while mouse skin is thinner and looser. Each major layer in the human epidermis contains
more layers–5-10 each–than mice epidermis–2-3 each– (Abdullahi et al., 2014), which increases its
barrier function and increases percutaneous absorption (Bronaugh et al., 1982). The rete-papillae
structure between the human dermis and epidermis is lacking or less apparent in mouse (Zomer
et al., 2018).

Mouse skin is covered by hair follicles, while human skin has sparse and uneven hair follicle dis-
tribution, and most of the epidermis is classified as interfollicular (Gerber et al., 2014). This affects
healing since areas with high hair density heal faster than those with few follicles (Martinot et al.,
1994). Hair follicles in mice are regenerated after skin healing, but this process is limited to the fetal
stage in humans (Gurtner et al., 2008).

In addition, panniculus carnosus is present in mouse subcutaneous tissue but not in humans, which
influences skin biomechanics (Gerber et al., 2014). That thin layer of muscular tissue gives contraction
potential to the skin since large wounds heal mainly by contraction and union of edges. In fact, up
to 90% of excisional wounds in mice close by contraction. The human dermis, in contrast, is firmly
attached to the subcutaneous tissues, and contraction is highly variable and much less pronounced
than in mice (Fang et al., 2008).

Eccrine sweat glands, responsible for body temperature control and playing a role in innate immune
response, are present in humans but not in mice (Gerber et al., 2014). The percentages of peripheral
blood leukocytes also differ between humans and mice, which affects innate and adaptive responses
(Doeing et al., 2003). Moreover, Langerhans and CD8+ T cells populate the human epidermis, whereas
the murine epidermis contains a specific population of γδ dendritic epidermal T cells, which are
fundamental for skin homeostasis and tissue repair, and could explain hair follicle regeneration in
mice but not in humans (Smithey et al., 2014).
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2.2 fibroblast biology

Fibroblasts are cells responsible for forming and maintaining connective tissues rich in ECM that
supports various vital organ functions. These functions include protecting the skin from blunt and
sharp injuries and facilitating elasticity and recoil in the lung during breathing (Plikus et al., 2021).

Fibroblasts were first described as a distinct cell type in 1859 by German pathologist Rudolf Virchow
(Virchow, 1859), who called them Spindelzellen des Bindegewebes—"spindle-shaped cells of the con-
nective tissue", and the term "fibroblast" was first proposed by Ernst Ziegler and Alexander Maximov
to describe cells that produce new connective tissue upon healing (Maximow, 1905; Ziegler, 1895).
In 1879, Matthias Duvall distinguished fibroblasts from epithelial cells within the mesenchyme of
chick embryos (Duval, 1879). In 1896, this observation was replicated by Santiago Ramón y Cajal, who
observed células fusiformes or fibro-células as essential producers of granulation tissue in healing
skin wounds and scars (Ramón y Cajal, 1896).

It is relevant to understand the etymology of fibroblast further down, which explains why we coin
the suffix -blast to a cell type that might be quiescent. Ziegler and Maximov used the term -blast
as an indicator of active protein synthesis in these cells. In these studies, the quiescent fibroblasts
of uninjured organs were sometimes referred to as fibrocytes, which displayed a small cytoplasm,
few ribosomes and condensed chromatin, suggesting low levels of protein synthesis (Porter, 1964).
It was assumed that fibrocytes give rise to fibroblasts upon wounding, and conversely, fibroblasts
differentiate into fibrocytes during healing (Porter, 1964). The original meaning of fibrocyte was pro-
gressively lost, and fibroblast was adopted as the common name, irrespective of its state of activity.
Nowadays, fibrocytes, bone marrow-derived circulating mesenchymal stem cells, have conferred a
new meaning to the old fibrocyte term (Chong et al., 2019).

Fibroblasts have been very relevant cells in biology and are widely used. In the early days of cell
culturing, fibroblasts were sturdy and easy to propagate on artificial surfaces such as glass and
plastic. Thus, many cell lines used in research are derived from fibroblastic lineages. Additionally,
the Hayflick limit, discovered in 1965 by Leonard Hayflick, who observed that some cultured cells stop
dividing and senesce after a finite number of population doublings in vitro, was found on fibroblasts
(Hayflick, 1965). This discovery disproved the belief that cultured cells could be passaged indefinitely.

fibroblast identity and heterogeneity Fibroblasts are one of the few cell types found
across the body’s major organs. Thus, one of fibroblast biology’s hallmarks is characterising fibrob-
last heterogeneity and discovering common aspects shared across all fibroblasts. However, the re-
search on this matter has been hampered by ambiguous and diversified cell classification about, for
example, lineage, morphology, location or growth characteristics (Lendahl et al., 2022).

Classically, one of the common physical characteristics of fibroblasts is that, in adult tissues, they
appear as spindle- or stellate-shaped with an oval nucleus and a distinct endoplasmic reticulum
(Lendahl et al., 2022); but this phenotype might also be shared with other cell types with a mesenchy-
mal origin, and it is not precise enough for characterisation. One common way to characterise cell
types is via their marker expression. Although not uniquely expressed in fibroblast, certain proteins,
such as vimentin (VIM) and fibroblast-specific protein 1 (FSP1/S100A4), have served as useful mark-
ers to identify fibroblasts by immunohistochemical techniques (Dulbecco et al., 1983; Strutz et al.,
1995).
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Following the first cDNA microarray-based study of fibroblast heterogeneity, transcriptional analy-
sis of fibroblast was conducted using bulk mRNA isolates obtained from multiple cells (Heruth et
al., 2012). From these and other studies, certain molecular markers were proposed to distinguish
fibroblasts from other cell types: platelet-derived growth factor receptor-alpha (PDGFRA), fibroblast
activation protein alpha (FAP), and CD90 (Thy1), as well as the "classical" VIM and FSP1 (Lendahl et al.,
2022). However, none of the markers listed above is specific for fibroblasts, as their expression is also
observed in other cell types, such as perivascular, epithelial, and endothelial, and in substantially
reduced amounts in some immune cells. For instance, Xie et al., 2018 observed that PDGFRA is a clear
marker of lipofibroblasts in the lungs. Other markers have also been proposed, like COL1A1/COL1A2
(Philippeos et al., 2018), CAV1 (caveolin 1), DDR2 (discoidin domain receptor 2), platelet-derived growth
factor receptor-beta (PDGFRB), podoplanin (PDPN) and alpha-smooth muscle actin (α-SMA/ACTA2)
(LeBleu et al., 2020). Similarly, most of these markers are shared with perivascular cells, endothelial
cells, CAFs, or other cell types in different organs.

fibroblast intra-organ heterogeneity Despite the partially shared markers across tissues
and organs, fibroblast heterogeneity spans species, organs and developmental stage boundaries. It
has long been recognised that different fibroblast populations reside simultaneously in the same
organ (LeBleu et al., 2020; Plikus et al., 2021). Several connective tissues harbour highly specialised
cell types: adipocytes in fat, chondrocytes in cartilage, and osteocytes/blasts in bone. This translates
into fibroblasts with both in vivo and in vitro data suggesting that these cell types are lineage-
related and share a common mesenchymal origin and evolution (Lendahl et al., 2022). For instance,
comparing fibroblasts from mouse heart, skeletal muscle, intestine, and bladder revealed that less
than 20% of fibroblast-enriched genes overlapped between these four organs (Muhl et al., 2020). In
fact, it has been observed that fibroblasts are more transcriptomically similar to their local tissue
structural cells than to fibroblasts from other locations (Krausgruber et al., 2020).

The anatomy of the skin reveals that fibroblasts from different areas of the body have distinct tran-
scriptional programs. The fibroblasts in various parts of the adult body come from various embry-
ological sources, such as the neural crest, lateral plate mesoderm, and dermatomyotome (Fontaine
et al., 1977; Houzelstein et al., 2000). This is reflected in the differences in the expression patterns of
Hox genes, which determine the body plan along major axes such as craniocaudal, dorsal-ventral,
and proximal-distal, including in humans (Chang et al., 2002; Rinn et al., 2006). Thus, different "HOX
codes" of skin fibroblasts result in regional variations in matrisome and signalling factors, serving
as "information" for nearby cells. For instance, HOXA13, which regulates distal identity, is expressed
specifically by finger and foreskin fibroblasts in humans (Rinn et al., 2006).

An extensive review has recently been published by Elmentaite et al., 2022 indicating cell heterogene-
ity, including fibroblast heterogeneity, across organs based on single-cell atlases (Figure 18). Some
examples of this heterogeneity are:

• Distinct intestinal fibroblast types exist in the villus tip (WNT5A+), crypt base (WNT2B+) and
lamina propia (ADAMEC1+) of the human gut. These cells function to collaboratively support
stem cell and individual enterocyte differentiation along the crypt–villus axis (Elmentaite et al.,
2020; Kinchen et al., 2018).
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• In the endometrium, the transcriptional programme of specialised fibroblasts changes with the
menstrual cycle phase. A recently identified population of C7+ fibroblasts in the basal layer is
present in both proliferative and secretory phases (Garcia-Alonso et al., 2021).

• In the bone marrow, LEPR+ CXCL12-abundant reticular (CAR) cells have been observed to be
primed to become adipocytes or osteoclasts (Dolgalev et al., 2021; Tikhonova et al., 2019; Wolock
et al., 2019b).

The characterisation of heterogeneity across tissues is necessary to create a working atlas for the re-
search community, and single-cell technologies have advanced significantly in their creation (Lendahl
et al., 2022). However, certain caveats have to be addressed. Firstly, there is a loss of certain cell types
during single-cell sample preparation; or cells firmly embedded within the ECM, such as pericytes
and mesangial cells, are hard to extract as intact individual cells, leading to under-representation
or contamination by transcriptomes from other cell types. Secondly, the cell type terminology in
atlases should be as accurate as possible to avoid misclassification into other or new cell types. For
instance, when fibroblasts were collected and sequenced as part of broader atlas projects, they were
occasionally called by other names, such as stromal cells, mesenchymal stem cells, myofibroblasts
and unknown mesenchymal cells, illustrating the ambiguities regarding cell nomenclature (Green
et al., 2018; Tabula Muris Consortium, 2018).

fibroblast roles Beyond gene markers, functional properties should be the ultimate discrim-
inator of shared versus unique themes in fibroblast biology (Plikus et al., 2021). A major shared
function of fibroblasts, as we described in Section 2.1.3.1, is ECM synthesis to create connective tis-
sue by depositing fibre- and sheet-forming collagens, proteoglycans, elastin, fibronectin, microfibril-
lar proteins, and laminins, which collectively comprise the matrisome; as well as its remodellation
via crosslinking, proteolysis and other processes. Although this aspect is well known in the skin, it
is equally relevant for the rest of the organs. Therefore, another perspective of comprehending fi-
broblast heterogeneity is understanding its common and different functions in different tissues and
organs. Figure 19 describes some of these functions.

Apart from the canonical ECM creation and remodelling function, numerous studies now suggest
fibroblasts are heterogeneous in their origins, molecular markers, and functions, particularly during
the pathological remodelling of organ tissue; and therefore have a wide range of functions extended
beyond ECM, like that of immune and angiogenic coordinators, dynamically remodelling a changing
microenvironment (McGee et al., 2013).

Fibroblasts secrete numerous cytokines, adipokines, and growth factors whose properties, includ-
ing diffusion dynamics, are modulated by the ECM and converge to create signalling niches and
positional cues for diverse other cells, including, but not limited to, tissue-resident stem cells and
immune cells (McGee et al., 2013). In this light, fibroblasts’ role in encoding positional information
for other cells is particularly important for proper embryonic development, as revealed in classic
tissue recombination studies (Dhouailly et al., 1975). One biomechanical means to generate proper
ECM niches is by tug-and-pulling on the ECM, resulting in tissue-level mechanical forces and matrix
polarisation (Huang et al., 2012b).

Quiescent fibroblasts have also been shown to function as progenitors that can be induced to di-
vide rapidly to produce many more ECM-secreting fibroblasts and additional distinct mesenchymal
lineages, such as adipocytes in response to injury and hair cycling in the skin, or as bone-forming
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osteoblasts or lipid-filled adipocytes during embryonic development, adult homeostasis, and injury,
repair, and remodelling (Junker et al., 2009; Rivera-Gonzalez et al., 2016).

2.2.1 Dermal fibroblasts: origins, types and functions

In vitro studies in humans (Janson et al., 2012; Sorrell et al., 2004) and in vivo studies in mouse
skin (Abbasi et al., 2020; Driskell et al., 2013; Jiang et al., 2018a,b; Rinkevich et al., 2015) have shown
the existence of different subpopulations of fibroblasts in the dermis, associated to the papillary
and reticular dermis, as well as specialised populations in the HF and APM. Most of the analyses
regarding the origin of fibroblasts have been performed using mouse lineage tracing experiments.
Thus the development of human fibroblasts should be inferred with caution.

Lineage tracing experiments (Driskell et al., 2013) revealed that dermal fibroblast populations, includ-
ing papillary fibroblasts, reticular fibroblasts, and dermal papillae, are derived from a multipotent
mesenchymal progenitor (Pdgfrα+ Dlk1+ Lrig1+) that is present at embryonic day 12.5 (E12.5), with
lineage commitment occurring by E16.5 (Figure 20). In that stage, the fibroblast progenitor is differ-
entiated into a papillary dermal progenitor (Pdgfrα+ Dlk1− Blimp1+) and a reticular/hypodermal
progenitor (Pdgfrα+ Dlk1+ Blimp1−). At postnatal day 2, the dermal progenitor is differentiated into
the papillary dermal fibroblast (Pdgfrα+ Dlk1− Sca1− Cd26+), which further differentiates into the
APM fibroblast (Pdgfrα+ Cd26− Itga8+). The reticular/hypodermal fibroblast differentiates into the
reticular fibroblast (Pdgfrα+ Dlk1+ Sca1−), and the adipocyte precursor (Pdgfrα+ Dlk1+/− Sca1+

Cd24+), which further differentiates into adipocyte (Pdgfrα+ Dlk1− Perilipin+). Supporting studies
confirmed that Lrig1+ papillary fibroblasts give rise to pericytes in the upper dermis, whereas peri-
cytes in the lower dermis are primarily derived from reticular Dlk1+ fibroblasts (Ganier et al., 2022).

Using similar approaches, distinct mouse embryonic fibroblast lineages were also described within
the dorsal dermis (Rinkevich et al., 2015). The Engrailed-1 (En1)-positive (En1+) lineage primarily
contributes to connective tissue deposition and organisation during embryonic development, cuta-
neous wounding, radiation fibrosis, and cancer stroma formation. The En1+ fibroblast lineage highly
expresses Cd26. This lineage is found to be responsible for the characteristic fibrotic potential of
fibroblasts. In fact, ablation of Cd26+ fibroblasts diminishes connective tissue deposition in wounds
in adult murine skin. In contrast, En1− fibroblasts enhance dermal development and regeneration.

Of note, these markers are not useful for identifying fibroblasts in adult skin. For instance, the Cd26
marker that defines the papillary fibroblast lineage is found to be also expressed in reticular fibrob-
lasts (Rinkevich et al., 2015).

characteristics of papillary and reticular fibroblasts Normal dermal fibroblasts con-
sist of at least two distinct cell subpopulations – papillary fibroblasts and reticular fibroblasts. They
occupy unique dermis niches and differ in physiology and functional characteristics summarised in
Table 1.

Papillary fibroblasts are small, spindle-shaped cells that are more rapidly proliferating and populate
the superficial dermis (Wang et al., 2004; Wang et al., 2008). They express high levels of collagen
type XVI and DCN but have low expression of VCAN (Sorrell et al., 2004; Sriram et al., 2015). Papillary
fibroblasts play a crucial role in immune responses and are required for new hair follicle formation
following wounding (Janson et al., 2012).
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On the other hand, reticular fibroblasts are large, stellate cells surrounded by a thicker extracellular
matrix and occupy the deeper dermis (Wang et al., 2004; Wang et al., 2008). They have low expres-
sion of collagen type XVI and DCN but high secretion of VCAN (Sorrell et al., 2004; Sriram et al., 2015).
The main function of reticular fibroblasts during wound healing is cytoskeletal organisation and cell
motility expressing fibroblast activation markers such as α-SMA (Janson et al., 2012). They are pri-
marily involved in producing ECM during homeostasis and healing and respond to paracrine signals
from the epidermis. Despite their relative distance from the epidermis, reticular fibroblasts respond
to paracrine signals: the production of epidermal TGF-β2 (Transforming growth factor β2) influences
their proliferation, ECM deposition and differentiation (Lichtenberger et al., 2016).

ds and dp fibroblasts Apart from papillary and reticular fibroblasts, fibroblasts that regulate
epithelial activities such as stem cell quiescence, proliferation, and differentiation are also found in
skin appendages (Plikus et al., 2021). This includes DP fibroblasts located at the base of hair folli-
cles and dermal sheath (DS) fibroblasts surrounding the hair follicle. These fibroblasts develop from
embryonic neural crest (Sriram et al., 2015), more specifically from papillary precursors through an in-
termediary dermal condensate (Tbx18+) progenitor (Mok et al., 2019; Sennett et al., 2015) and express
specific marker genes upon full formation (Driskell et al., 2011; Rezza et al., 2016). Several markers
have been described for human and mouse DP and DS fibroblasts, including CD133–in human and
mouse–and nonspecific alkaline phosphatase–in human–(Anan et al., 2003; Ito et al., 2007; Johnson
et al., 1945). Marker expression changes according to the stage of the hair cycle and, in the mouse, it
also depends on the hair follicle type (Driskell et al., 2009, 2012; Rendl et al., 2005).

DP fibroblasts play a central role in hair development and the coordination of the hair cycle (Driskell
et al., 2011; Sennett et al., 2012). Specifically, they regulate bulb size, hair length and thickness, and
the duration of the hair growth phase (anagen) (Sriram et al., 2015). Additionally, they have several
distinctive features (Plikus et al., 2021). First, they are highly aggregative, including in vitro, where they
form mound-like colonies before reaching confluence. Second, they associate with and function as
the signalling niche for epithelial hair stem cells. Third, their gene expression changes prominently
and periodically in synchrony with the hair growth cycle. Interestingly, there is evidence that, in cer-
tain circumstances, DP fibroblasts can differentiate to other cell types, including nerve and cartilage
(Toma et al., 2001).

DS fibroblasts surround the entire hair follicle, forming the CTS. Their function has been associ-
ated with interfollicular skin regeneration, hair follicle regeneration, and hair cycle-associated an-
giogenesis (Higgins et al., 2017; Yoshida et al., 2019). Gene expression by DS fibroblasts is distinct and
prominently includes contractile proteins paramount for hair growth termination, as smooth muscle-
like contraction by the DS helps the shrinking hair follicle remodel properly (Heitman et al., 2020).
Moreover, DS fibroblasts interface directly with skin resident immune cells and produce immune-
suppressive factors such as the TGF ligands b1 and b2 and immunomodulatory molecules such as
programmed death-ligand 1 (PDL1) and CD200, which may contribute to the immune privilege of hair
follicles, a property that guards them against autoimmune reactions (Paus et al., 2003).
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2.2.2 Main cell signalling pathways related to dermal fibroblast functioning

2.2.2.1 Wnt

Many signalling pathways have been implicated in skin fibrosis and fibroblast homeostasis, and the
Wnt pathway is one of them. This complex pathway has been studied for over 30 years (Nusse et al.,
1982). Wnt signalling activates many intracellular transduction pathways to control cell fate. The main
two pathways activated by Wnt are the canonical Wnt pathway (cWnt) or Wnt/β-catenin-dependent
pathway and the noncanonical (ncWnt) or β-catenin independent pathway (Figure 21). Two of the
most common ncWnt pathways are planar cell polarity (PCP) and the Wnt/Ca2+ pathways, reviewed
in (Griffin et al., 2021; Niehrs, 2012).

Wnts are the secreted glycoproteins that trigger the specific cascades upon binding to their respec-
tive receptors. Wnt receptors, or frizzled (Fz), are a family of transmembrane receptors resembling
GPCRs. These receptors act jointly with different co-receptors, such as lipoprotein-related proteins
(LRP), specifically LRP5/6. There is no clear Wnt-Fz relationship or relationship between Wnt lig-
ands and activated pathways. For instance, it is more likely that Wnt1, Wnt3a and Wnt8 are linked
to canonical Wnt signalling, whereas Wnt5a and Wnt11 are predominantly involved in non-canonical
Wnt signalling (Kikuchi et al., 2011).

canonical wnt pathway This pathway is based on the activation and translocation of β-catenin
into the nucleus, targeting an array of genes. Without Wnt activation, β-catenin is degraded by the
β-catenin destruction complex, composed of Axin, APC, PP2A, GSK3, and CK1α. When Wnt binds to its
receptor, Axin and DVL are activated, which inhibits GSK3 and allows the translocation of β-catenin
to the nucleus. In the nucleus, β-catenin binds to T-cell factor/lymphoid enhancer factor (TCF/LEF)
to regulate the expression of Wnt target genes (e.g., Wnt2b, Wnt3, Wnt1).

It has been observed that DVL can form oligomers, which may cluster Wnt-FZR complexes and pro-
mote endocytosis of downstream signalling. This endocytosis process gathers more recruiting com-
plexes than at the membrane without endocytosis. As a result, larger amounts of β-catenin are free
in the cytoplasm to be translocated.

non-canonical wnt pathways The ncWnt signalling comprises numerous pathways, the most
studied being the PCP pathway and the Wnt/Ca2+ pathway.

In the PCP pathway, Wnt activates DVL, which binds to and activates DAAM or RAC1. DAAM activation
leads to the activation of ROCK, which induces cytoskeleton rearrangement. This pathway is promi-
nently involved in regulating cell polarity and morphogenic processes. It also uses ROR and PTK7 as
co-receptors instead of LRP5/6. On the other hand, the Wnt/Ca2+ pathway also leads to DVL activa-
tion, which binds to and activates PLC signalling, increasing intracellular Ca2+ concentration. One
interesting outcome of this pathway is that CAMKII is activated, which inhibits β-catenin activity in
the nucleus. This pathway is more involved in cancer, inflammation and neurodegeneration.

regulation of wnt signalling We have observed that different Wnt pathways compete with
each other, like Wnt/Ca2+ pathway antagonising with Wnt/β-catenin pathway. It is also widely
observed that Wnt/PCP pathway and Wnt/β-catenin pathways are also virtually exclusive, and in-
hibiting one usually upregulates the other. This antagonistic crosstalk occurs, in part, at the lig-
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and–receptor level. For example, WNT5A, which preferentially activates PCP signalling, competes for
and inhibits the binding of WNT3A to Frizzled 2, thereby suppressing the β-catenin-dependent path-
way (Sato et al., 2009).

Wnt signalling is also controlled by several upstream endogenous inhibitors, such as secreted frizzled-
related proteins (SFRPs), Dickkopf (DKK) proteins, and the Wnt inhibitory protein (WIF). SFRPs and WIF
bind to Wnt proteins, thereby preventing their interaction with their receptor. On the other hand, DKK
proteins are thought to bind to LRP co-receptors, thereby disturbing the formation of the Fz receptor
complex.

There is a secondary activatory regulation of Wnt signalling by a family of proteins called R-spondins
(RSPOs). RSPOs are necessary for β-catenin signalling to occur and promote PCP signalling (Kazan-
skaya et al., 2004; Kim et al., 2008; Ohkawara et al., 2011). Under no RSPO presence, the Zinc and RING
finger 3 surface protein (ZNRF3) ubiquitylates FZR, targeting it for degradation and further internal-
ising other receptors. RSPOs bind to their receptors, such as LGRs, which capture ZNRF3 to make a
complex. With no free ZNRF3, FZRs accumulate on the plasma membrane again.

effects of wnt signalling in fibroblasts Wnt pathway has been shown to regulate the
fate specification of fibroblast progenitors into various lineages, notably in the skin. One of the
main targets of this pathway is HF formation. It was observed that Wnt signalling is activated in the
papillary fibroblast progenitors of the upper skin layer and then becomes progressively restricted
to the so-called dermal condensate cells of developing hair follicles (DasGupta et al., 1999; Zhang
et al., 2019c). In adults, overexpression of β-catenin in basal epidermal leads to de novo hair follicle
morphogenesis in adult skin.

In the context of skin wounding, transient Wnt activity in myofibroblasts promotes regenerative heal-
ing with new hair follicles (Lim et al., 2018), whereas its chronic activity drives fibrotic response and
failure to regenerate hairs (Gay et al., 2020). Rognoni et al., 2016 observes contrary results, showing
that Wnt/β-catenin expression in the adult dermis inhibits de novo hair follicle formation in healing
wounds, and postnatal ablation of β-catenin in dermal fibroblasts enhances new hair formation.

It has also been observed that Wnt signalling has an inhibitory effect on adipocyte differentiation of
mesenchymal cells in vitro (Plikus et al., 2021). In vivo studies show that Wnt/β-catenin signalling in
the epidermis impairs adipogenesis (Donati et al., 2014) and, in dermal fibroblasts, it leads to fibrosis
and impairs adipogenesis too (Mastrogiannaki et al., 2016).

2.2.2.2 TGF-β/BMP

TGF-β is a growth factor that plays a crucial role in fibrotic processes and belongs to a family of
related growth factors. It is a protein secreted and usually bound to ECM components but can be
activated by cleavage from proteases such as plasmin, or MMP2 and MMP9. The active form of TGF-β
is a homodimer, while the latency-associated peptide (LAP) and the latent TGF-β binding protein
(LTBP) form the inactive form by sequestering the homodimer. After cleavage, TGF-β binds to TGF-
β receptor 2 (TGFR2) and activates it, which activates receptor signalling by a combination of both
isomers–TGFR1 and TGFR2– (Figure 22a) (Meng et al., 2016).

The activated TGF-β receptor 1 phosphorylates Smad2 and Smad3, which form a complex with Smad4
and move to the nucleus. Smad3 in the complex directly binds to gene promoters, triggering the
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transcription of profibrotic molecules such as α-SMA, connective tissue growth factor (CTGF/CCN2),
collagen I, and TIMP, leading to myofibroblast activation and matrix deposition. Smad3 also induces
the transcription of profibrotic microRNA (miRNA) and long noncoding RNA (lncRNA), indirectly in-
hibiting antifibrotic miRNAs. Furthermore, Smad3 increases the transcription of profibrotic molecules
by impacting epigenetic modifications of DNA and histones (Meng et al., 2016).

Smad2 and Smad4 do not have DNA binding domains, but rather serve as regulators of Smad3-
driven gene transcription. Different genes are influenced by the transcription of Smad3-containing
complexes, as they are bound by non-Smad co-activators such as histone acetyltransferase p300,
AP-1, Sp-1, and CREB binding protein, or co-suppressors such as Ski proto-oncogene, SnoN, and
Smad nuclear-interacting protein-1. Other members of the Smad family act as negative regulators of
Smad2/3/4, such as Smad7; inhibiting fibrosis (Meng et al., 2016).

A secondary pathway involves the activity of the bone morphogenic protein 7 (BMP7), which upon
binding to different receptors–BMPRII, and Alk2/3/6–phosphorylates Smad 1 and Smad5 proteins,
which bind Smad4 and the complex migrates to the nucleus (Villapol et al., 2013). This pathway
can be inhibited by Smad7 too, as well as Smad6 (Villapol et al., 2013). Interestingly, Smad1-5 may
indirectly inhibit the "classical" pathway to avoid redundant TGF-β signalling (Meng et al., 2016), in
a similar fashion to the Wnt pathway.

Many signalling pathways regulate TGF-β/Smad signalling and vice versa, resulting in a complex set
of interactions known as pathway crosstalk (Figure 22b), often referred as the non-canonical TGF-β
pathways (Meng et al., 2016):

• Mitogen-activated protein kinases (MAPKs): MAPKs interact with TGF-β/Smad signalling at sev-
eral levels, and these interactions are the most clearly established example of pathway crosstalk
with TGF-β/Smad signalling. TGF-β1 can directly induce ERK activation in a Smad-independent
manner. In addition, TGFR1 can induce the activation of p38 and JNK via a pathway involving
TNF receptor-associated factor 6 and TGF-β activated kinase-1/M3K7.

• Wnt/β-catenin: Crosstalk between the Wnt/β-catenin and TGF-β/Smad pathways is poorly un-
derstood. On one hand, Wnt3a may induce the production of TGF-β and collagen I in fibroblasts.
On the other hand, TGF-β may activate Wnt signalling, for example, by inhibiting GSK3, or by
suppressing the production of DKK1 in a p38-dependent manner.

• BMP-7: BMP-7, a member of the TGF-β superfamily, is a well-characterised antifibrotic factor
that can counteract the effects of TGF-β. BMP-7 binds to several receptors–activin A receptor
type I and BMP receptors type 1A and 1B–to activate Smad1 and Smad5 and thereby inhibit
Smad3-dependent gene transcription as well as Smad-independent pathways.

TGF-β is a canonical marker of myofibroblast activation and is widely observed in fibrotic processes.
This aspect is discussed further in Section 2.2.4.

2.2.3 Fibroblast interaction with other cells

Fibroblasts play a critical role in regulating tissue homeostasis and wound healing by interacting with
various other cell types in the body, including immune cells, epithelial cells, and smooth muscle cells,
to maintain tissue integrity and respond to injury or disease. In this section, we will study the major
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interactions between fibroblasts and other cell types, some of which have been extensively reviewed
by Van Linthout et al., 2014 and Stunova et al., 2018.

2.2.3.1 Immune system

Fibroblasts in fibrotic or malignant lesions play an important role in modulating immune reactions by
exerting their regulatory functions through their inflammatory secretome. This secretome includes
chemokines, interleukins, and growth factors that influence the activation of adjacent immune mi-
croenvironments (LeBleu et al., 2020; Van Linthout et al., 2014).

Fibroblasts control the recruitment of immune cells and regulate their behaviour, retention, and
survival in damaged tissue. This crosstalk between fibroblasts and leucocytes sometimes depends
on the interaction between the surface antigen CD40 on fibroblasts and its ligand, CD40L, on immune
cells (Yellin et al., 1995). These interactions are similar to those between lymphocytes and antigen-
presenting cells–CD40-CD40L between APCs and T cells, for instance–, indicating fibroblasts’ crucial
role in the crosstalk (Van Linthout et al., 2014).

As per some general observations, fibroblasts from fibrotic lesions express higher levels of the MCP-
1 receptor, CCR2, compared to those from non-fibrotic lesions (Hogaboam et al., 1998). MCP-1 itself
stimulates collagen expression and endogenous up-regulation of TGF-β expression in fibroblasts,
leading to autocrine or juxtacrine stimulation of collagen gene expression (Gharaee-Kermani et al.,
1996). An example of this regulation is in periostin-expressing cardiac fibroblasts, which, when ge-
netically modified to lose IL-17 signalling, reduce the production of the pro-fibrotic growth factor
GM-CSF, effectively limiting cardiac inflammation and tissue death (Chen et al., 2018a).

t cells T cells are indispensable, proved by the finding that T-cell-deficient mice develop in
a "permanent" fibrosis state (McLarren et al., 2011). Different studies have shown that fibroblasts
interact with a range of T cells, including Th2 and Th17.

Generally, the adhesion of T-lymphocytes to fibroblasts appears to be mediated by IL-1R, which is
associated with the cell membrane on both T-lymphocytes and fibroblasts (Qwarnström et al., 1991).
Consequently, dermal fibroblasts produce increased IL-6 and IL-8, and T lymphocytes are activated to
secrete soluble IL-1β and IL-6 (Spörri et al., 1996). A general intermediary observed to mediate T-cell
interaction is TNFα. TNF-α-activated dermal fibroblasts stimulate T-lymphocyte proliferation, and
that growth-promoting activity requires cell–cell interactions between IL-15 on the wound fibroblast
surface and the IL-15 receptor (IL-15RA) on T-lymphocytes (Bodnár et al., 2008). Physical interactions
between activated T-lymphocytes and dermal fibroblasts reduce the production of type I and III
collagen by fibroblasts (Rezzonico et al., 1998).

Regarding Th2 cells, characterised by the secretion of the cytokines IL-4, IL-5, and IL-13, with wound
healing and fibrosis, IL-13 has been observed to be a mediator of fibrosis, and in combination with IL-4
is capable of inducing the phenotypic transition of human fibroblasts to myofibroblasts. In addition,
IFNα and IFNγ have been shown to inhibit fibroblast collagen production by inhibiting IL-4- and
IL-13-promoted differentiation into myofibroblasts (Spörri et al., 1996).

Lastly, IL17A-producing Th17 cells have been suggested to inhibit Type I collagen production in der-
mal fibroblasts of healthy and systemic sclerosis patients (Hatamochi et al., 1984). Additionally, they
induce the expression of a variety of pro-inflammatory mediators, such as IL-1, IL-6, TNF-a, CXCL8,
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granulocyte colony-stimulating factor, and granulocyte–macrophage colony-stimulating factor by
endothelial and epithelial as well as fibroblasts, which ultimately results in the recruitment and
activation of neutrophils (Saalbach et al., 2000).

apcs Fibroblasts may also play a role in immune modulation by acting as amateur antigen-presenting
cells, possibly devoid of costimulatory signals (Sprent, 1995). Additionally, APCs such as macrophages
interact directly within dermal fibroblasts and other immune types to elicit an adaptive response.
Macrophages stimulated by TLR ligands and IFNγ undergo classical M1 activation, while those stim-
ulated by IL-4 and IL-13 become M2 macrophages. M2 macrophages are involved in wound healing,
tissue remodelling, fibrosis, and inflammatory responses (Martinez et al., 2009; Martinez, 2008).

It has been shown that M1 macrophages induce the release of fibroblast pro-inflammatory cytokines
and chemokines (CCL2, IL-6 and CCL7), MMPs (MMP-1, MMP-2, MMP-3 and MMP-14) and TIMP-1 (Ploeger
et al., 2013). On the other hand, M2 macrophages secrete PDGF-CC, which accelerates the differentia-
tion of wound fibroblasts into myofibroblasts (Glim et al., 2013), or arginase 1, capable of controlling
L-proline production essential for the collagen synthesis of activated myofibroblasts. Additionally,
the stimulation of dermal fibroblasts with M2 macrophage paracrine factors leads to higher fibrob-
last proliferation than stimulation via M1 macrophage soluble factors (Hesse et al., 2001).

Looking into the macrophage activation by fibroblasts, macrophage colony-stimulating factor (M-
CSF), secreted by keratinocytes and fibroblasts, is thought to support the growth of dermal dendritic
and Langerhans cells (Takashima et al., 1995).

2.2.3.2 Keratinocytes

Keratinocytes are dynamic cells within the skin and are actively bound to the dermis via the DEJ.
Therefore, cell-cell communication between keratinocytes–mainly from the basal layer–and fibrob-
lasts is active and bidirectional.

Fibroblasts influence keratinocytes via paracrine and juxtacrine signalling. For instance, fibroblast-
derived soluble factors, including KGF, hepatocyte growth factor (HGF), granulocyte-macrophage
colony-stimulating factor (GM-CSF), IL-6, IL-19 and FGF-10, diffuse into the epidermis and influence
both keratinocyte growth, differentiation and synthesis of the basement membrane (Gron et al.,
2002; Marchese et al., 2001; Smola et al., 1998; Sorrell et al., 2004; Sun et al., 2013). Other factors, like
the fibroblast-secreted heparin-binding EGF-like growth factor (HB-EGF), upon binding to its recep-
tor, stimulate keratinocyte migration and proliferation in direct contact. Lastly, it has already been
mentioned that the origin of dermal fibroblasts is important. For instance, keratin 9, responsible
for the thickening of the epidermis, is not expressed by trunk-derived keratinocytes; however, the
co-culturing of trunk-derived keratinocytes with fibroblasts derived from palms and soles have been
found to induce the expression of keratin 9 (Yamaguchi et al., 2005).

Reversely, there is a large amount of evidence supporting keratinocytes influencing fibroblast biology.
For instance, IL-1α, secreted by keratinocytes, is thought to act as an inducer of the production of
IL-6 and IL-8 in dermal fibroblasts (Boxman et al., 1996). Additionally, keratinocyte-derived stratifin
(also known as 14-3-3σ protein) promotes the degradation of ECMs by dermal fibroblasts through
the secretion of MMPs – primarily MMP-1 and MMP-3 (Ghaffari et al., 2006). In a related study, the
activities of both MMP-2 and MMP-9, produced by fibroblasts and keratinocytes, are significantly
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enhanced in co-culture systems. This effect replicates with the fibroblast-produced expression of
TIMP-1 and TIMP-2 (Stunova et al., 2018).

2.2.3.3 Endothelial cells

Endothelial cells are necessary for a healthy dermis due to their function in nutrient transport. There-
fore, it is expected that vascular endothelial cells, as well as perivascular cells, will be highly reliant
on ECM and fibroblast-derived signalling. Angiogenesis–the development of new blood vessels from
existing ones–is highly dependent on fibroblast-derived factors. In fact, endothelial cell adhesion to
the ECM through integrins is essential for proliferation, which requires the ECM-remodelling capacity
of fibroblasts. It is thought that the ECM acts as a scaffold for forming capillaries and a “trap” that re-
tains and concentrates growth factors in the micro-environment surrounding cells. MMPs modify the
ECM via degradation, which supports endothelial cell migration, vessel sprouting and the cleavage
of ECM proteins, which leads to the formation of anti-angiogenic fragments (Berthod et al., 2006); for
example, MMP-9 cleaves collagen type IV, one of the components that make up the endothelial base-
ment membrane, into the anti-angiogenic peptide tumstatin. Therefore fibroblast-produced TIMP1,
which inhibits MMP9, indirectly leads to a pro-angiogenic environment (Belotti et al., 2011; Liu et al.,
2008).

Other classical factors produced by fibroblasts, like TGF-β, lead to the expression of VEGF under
non-physiological conditions, leading to vessel formation (Berthod et al., 2006). VEGF stimulates
endothelial cell proliferation, migration and NO release by activating the VEGF receptors Flt1 (VEGF-
R1) and KDR (VEGF-R2/Flk-1). Other factors secreted by fibroblasts that are tightly related to vessel
formation are HGF, FGF-2, angiopoietin-1 (Ang-1), angiopoietin-2 (Ang-2) and IL-8 (Kroll et al., 2000;
Martin et al., 2001; Orlandini et al., 2001; Staton et al., 2010). Ang-1 acts via the PI3K/Akt signalling
pathway and while Ang-1 acts as an agonist for Tie-2, Ang-2 constitutes a Tie-2 antagonist (Kim et al.,
2000). Following binding, Ang-1 induces endothelial migration and survival and tube formation in
vitro and, moreover, promotes blood vessel structural integrity in vivo (Saito et al., 2003; Staton et al.,
2010).

2.2.4 Myofibroblast

In adult organs, fibroblasts are relatively quiescent unless tissue repair mechanisms or dynamic
structural changes are initiated. Gabbiani et al., 1971 reported that fibroblasts respond to tissue
injury by assuming a contractile phenotype found in granulation and fibrotic tissue. Later on, Majno
et al., 1971 coined the term myofibroblast to these fibroblasts “. . . that, under certain conditions, are
capable of modulating toward a cell type that is structurally and functionally close to smooth muscle;
for these cells, the name ‘myofibroblast’ may be appropriate”. Much research has been done since,
and myofibroblasts are currently well established as the cell type associated with fibrosis in several
tissues and organs, as well as participating in the wound healing process without leading to fibrosis
with an appropriate environment. Extensive reviews on myofibroblasts can be found at Schuster et
al., 2022; Shaw et al., 2020; Tai et al., 2021.

Despite carrying “fibroblast” in their name, myofibroblasts can be generated from different cell
sources, including different fibroblast types (Chang et al., 2002; Correa-Gallegos et al., 2021; Jiang
et al., 2018a,b; Rognoni et al., 2018), adipocytes (Festa et al., 2011; Marangoni et al., 2015; Shook et al.,
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2018), pericytes, MSC (Jiang et al., 2020; Soliman et al., 2021; Yokota et al., 2021); and other more exotic
sources such as vascular endothelial cells (Zhao et al., 2021) and circulating CD45+ cells–e.g. fibro-
cytes, macrophages–(Chong et al., 2019; Sinha et al., 2018). This section will focus on the fibroblast-to-
myofibroblast transition, although other transitions share common characteristics (Schuster et al.,
2022).

Fibroblast-to-myofibroblast differentiation typically occurs in injury environments, such as wound
healing in the skin (Figure 23). In this process, TGF-β, Wnt, PDGF, TNF-α, IL-1, or IL-6–i.e. canonical in-
flammatory markers–are present and signal quiescent fibroblasts to transform intro myofibroblasts,
which are specialised to produce collagen faster than quiescent fibroblasts (Tsukui et al., 2020).
Myofibroblast precursors with fibroblast characteristics typically express collagen I, VIM, PDGFRα
(Iwayama et al., 2015; Li et al., 2018a), β1 integrin (CD29) Hic1 (Abbasi et al., 2020), Thy-1–cluster of
differentiation, CD90–(Jiang et al., 2018a; Worthen et al., 2020), and FSP1 (Li et al., 2020b).

After this signalling, fibroblasts undergo an intermediary proto-myofibroblast stage in which they
synthesise and deposit ECM components such as collagen I and III, which replace the provisional
matrix, to reduce the extent of the injury and create the granulation tissue (Darby et al., 2007). At this
stage, proto-myofibroblasts are still subjected to TGF-β1 transformation and lack α-SMA expression
(Gabbiani et al., 1971; Hinz et al., 2007). Upon further activation, proto-myofibroblast transform into
α-SMA+ myofibroblasts, which have a higher contractile force and adhere to the ECM to rearrange it
(Schuster et al., 2022). When the damage is healed, myofibroblasts disentangle their focal adhesions
from the ECM and revert to quiescence (Thannickal, 2013). Sometimes, they also prune by undergoing
apoptosis or senescence (Demaria et al., 2014; Wilkinson et al., 2019).

Depending on tissues and conditions, activated myofibroblasts also express high levels of certain
cell membrane proteins, PDGFRβ) (Henderson et al., 2013), α11β1 integrin–binds fibrillar collagen–
(Zeltz et al., 2020), αv integrins (Conroy et al., 2016), and cadherin-11 (Lodyga et al., 2019; To et al.,
2019). LRRC15 is expressed by CAFs activated into a contractile phenotype (“myCAF”) (Purcell et al.,
2018).

It has also been observed that myofibroblasts can revert to the original cell type under the proper
conditions (Hinz et al., 2012), or display broader lineage plasticity and convert into other specialised
mesenchymal lineages upon injury resolution. For example, myofibroblasts in large murine skin
wounds terminate their contractile behaviour and reprogram into new lipid-filled adipocytes in re-
sponse to BMP ligands secreted by hair follicles (Plikus et al., 2017).

Although the transition to the myofibroblast state is essential for tissue repair after injury, its aber-
rant and sustained switch critically drives fibrosis and contributes to cancer progression (Plikus et al.,
2021). The excessively stiff and compositionally abnormal ECM disrupts the microarchitecture and re-
sults in the loss of other tissue-resident cells, causing organ dysfunction. Moreover, myofibroblasts
are usually absent in normal interstitial spaces but increase in number in fibrotic or cancerous
lesions; thus, they are often thought of as pathology-associated fibroblasts (LeBleu et al., 2020). Fi-
brosis is estimated to contribute to almost 50% of all deaths in the developed world (Friedman et
al., 2013), and despite the existence of drugs that can delay its progression, to date, there is no truly
effective treatment (Dempsey et al., 2019).

tgf-β in myofibroblasts The TGF-β pathway dominantly controls activation of the myofibrob-
last state, originating from the latent TGF-β in the LTBP1 form bound to ECM components. This acti-
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vation by TGF-β leads to the transcription of CCN2 and ACTA2; the former binds to ECM components
such as HSPG, and the latter constitutes the α-SMA fibres that strengthen the cell. A summary of
TGF-β pathway in myofibroblasts is available in Figure 23.

Different elements of the TGF-β pathway contribute to the myofibroblast activation or differentiation
in different tissues and are a clear indicator of fibrosis after prolonged exposure.

For instance, it has been reviewed that human fibrotic tissue displays an elevated expression of TGF-
β ligands in the lungs, skin, and skeletal muscle (Lodyga et al., 2020). Another TGF-b superfamily
member, Activin A, which, like TGF-β ligands, activates SMAD2/3 (Pangas et al., 2000), is upregulated
in human scars and other fibrotic diseases. Other members, like BMP, appear during skeletal muscle
regeneration, where BMP signalling converts fibroblasts to myofibroblasts (Lima et al., 2020), and
during wound healing in the skin, where it reprograms myofibroblasts to adipocytes (Plikus et al.,
2017).

2.3 tables and figures

Table 1: Characteristics of papillary and reticular fibroblasts. More characteristics are available at (Stunova
et al., 2018)

Papillary fb Reticular fb

Size small large
Shape spindle stelated
Proliferaion rate high low
Focal adhesions rare abundant
Angiogenesis promote no effect
Collagen I low high
Collagen VI high low
Versican low high
Decorin high low
α-SMA low high
TGF-β low high
PDPN high -
TGM2 - high
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Figure 14: Schematic diagram of the dermal basement membrane. The main components located at the DEJ
cell membrane, dermis, and lamina lucida and densa are depicted. Adapted from (Goldsmith et al.,
2012), Figure 53-9.

Figure 15: Schematic diagram of the dermal microvascular unit. Adapted from Goldsmith et al., 2012, Figure
6-1.
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Figure 17: Differences between mouse and human skin morphology. Human skin is thicker, contains more
epidermal layers than murine skin, and adheres to the underlying tissues. Rete ridges, eccrine sweat
glands and neutrophil defensins are present in humans but absent from mice skin. On the other
hand, murine skin is richer in hair follicles, presents γδ dendritic epidermal T cells (DETCs) and
the panniculus carnosus, a muscle layer with important contraction potential. Adapted from Zomer
et al., 2018, Figure 2.

Figure 16: Schematic diagram of the HF cycle. During the growth phase (anagen), the DP signals to epithelial
progenitors to instruct their proliferation and upward differentiation. During the regression phase
(catagen), dermal sheath contraction at the interface of the club hair and epithelial strand (the
“bottleneck”) powers follicle regression and upward movement of the DP. DS contraction facilitates
the relocation of the DP to its stem cell-adjacent position by the resting phase (telogen). During
follicle regeneration at the onset of the next growth phase, the DP provides activating signals to the
SCs to trigger their proliferation. Adapted from Martino et al., 2020, Figure 3.
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Figure 18: Universal and specialised fibroblasts found across human organs. (A) The first class of fibroblasts
is ubiquitous or pan-tissue fibroblasts, including adventitial fibroblasts, that form a niche for blood
vessels; parenchymal fibroblasts that fill tissue spaces such as those found in the lung (part Aa);
and immune- organising fibroblasts found across lymphoid organs (part Ab). (B) Tissue- specialised
fibroblasts occupy specialised niches, for example, compartmentalised intestinal crypt–villus fibrob-
lasts and CXCL12-abundant reticular cells in the bone marrow. (C) Disease-activated fibroblasts are
found in chronically inflamed or cancer-invaded tissues. These activated fibroblast states are tran-
scriptionally distinct from fibroblasts found in healthy tissues. Markers described using single-cell
approaches are highlighted in bold. ADIPO, adipocyte; DC, dendritic cell; HSC, haematopoietic stem
cell; OLC, osteoclast; TH cell, T helper cell. Adapted from Elmentaite et al., 2022, Figure 3.
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Figure 19: Summary of fibroblast outputs and functions. (A–D) Key outputs of fibroblasts and their mes-
enchymal lineages include extracellular matrix (ECM) secretion and remodelling (A), secretion of
signalling factors for surrounding cells (B), mechanical force generation (C), and regulation of tis-
sue metabolism and metabolite secretion (D). (E–H) Fibroblasts also function as progenitor cells for
mesenchymal lineages (E), as "makers" of new tissue during organ morphogenesis and tissue repair
and upon various pathological conditions (F), as sources of positional information across distinct
anatomical regions of the same organ and as key signal contributors toward stem cell niches (G), as
well as target cells and reciprocal modulators of diverse innate and adaptive immune functions (H).
Adapted from Plikus et al., 2021, Figure 1.
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Figure 20: Mouse dermal fibroblast lineages. Dermal fibroblasts derive from common fibroblast progenitor
cells and differentiate into specific lineages by postnatal day 2 (P2). These subtypes display distinct
functions. Adapted from Lynch et al., 2018, Figure 3.
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Figure 21: Wnt signalling pathways. Simplified schemes showing the main Wnt pathways directed by spe-
cific Wnt, Frizzled and Wnt co-receptor interactions. (a) Planar cell polarity (PCP) signalling trig-
gers activation of the small GTPases RHOA and RAC1, which in turn activate RHO kinase (ROCK) and
JUN-N-terminal kinase (JNK), respectively, leading to actin polymerization and microtubule stabiliza-
tion. This pathway prominently regulates cell polarity, motility and morphogenetic movements. (b)
Under steady-state conditions, glycogen synthase kinase 3 (GSK3) phosphorylates β-catenin, which
triggers its degradation. However, in the presence of Wnt ligand, the destruction complex (com-
prising GSK3, casein kinase Iα (CKIα), Axin and adenomatosis polyposis coli (APC)) is recruited to
the Wnt–receptor complex and inactivated. This allows β-catenin to accumulate and translocate to
the nucleus, where it activates the transcription of target genes under the control of T cell factor
(TCF), among others. (c) The Wnt–Ca2+ pathway activates Ca2+- and calmodulin-dependent kinase
II (CAMKII), protein kinase C (PKC) and calcineurin. Calcineurin activates the nuclear factor of acti-
vated T cells (NFAT), which regulates the transcription of genes controlling cell fate and cell migra-
tion. PCP and Ca2+ pathways antagonise β-catenin signalling at various levels. (d) Major pathways
used by Wnt receptors and co-receptors. Only the three best-characterized Wnt pathways are shown:
the β-catenin-dependent pathway (β-catenin); the PCP pathway; and the Wnt–Ca2+ pathway (Ca2+).
Adapted from Niehrs, 2012, Figure 3.
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T H E S K I N B I O LO GY F R O M A S I N G L E - C E L L P E R S P E C T I V E

In this section we are going to describe, based on the information explained in chapters 1 and 2 about
scRNAseq and skin structure and composition respectively, the new discoveries about epidermis and
dermis cell composition using scRNAseq. To simplify the understanding, each paper will be discussed
individually.

3.1 state-of-the-art of epidermis and hf composition from single-cell rna-seq datasets

3.1.1 Human

Cheng et al., 2018c The first study of the epidermis in human samples was performed by Cheng
et al., 2018c, who researched the heterogeneity of epidermal cell types on the human scalp, trunk,
and foreskin tissue, as well as psoriatic skin. In a primary analysis where all 3 tissues were merged,
the traditional epidermal strata could be recovered: basal keratinocytes expressed COL17A1, KRT5 and
KRT14; spinous layer keratinocytes expressed KRT1, KRT10, DSG1 and DSP; and granular keratinocytes
expressed SPINK5, FLG and LOR. This latter layer showed a very reduced cell count due to the loss of
these cells during processing.

A secondary analysis of only basal keratinocytes revealed differences across tissues and samples.
Basal keratinocytes could be separated intro 3 main categories: basal1 enriched for CXCL14 and DMKN,
basal2 enriched for CCL2 and ILR2, and basal3, enriched for amphiregulin (AREG) and EGFR. Basal1
was more or less consistent across tissues and was more prominent in the trunk and scalp. On the
other hand, basal2 was enriched in the foreskin and psoriasis, possibly indicating an immune modu-
lation of these keratinocytes, and basal3 was enriched in the foreskin, with AREG and EGFR indicating
a higher proliferative rate of neonatal skin (Gilchrest, 1983). For instance, AREG has been described
to promote keratinocyte dedifferentiation and proliferation by binding to EGFR and triggering the
MAPK/ERK pathway (Seykora, 2010).

Apart from the classical layer view of the epidermis, Cheng et al., 2018c also identified 4 other
populations: WNTI, which expressed a range of Wnt antagonists–SFRP1, FRZB, DKK3, WIF1–; follicu-
lar, which expressed transcripts known to be expressed in HF and sebaceous glands–S100A2, APOE,
KRT17, MGST1, APOC1–; channel, which was upregulated for ion channel and cell-cell communication

81
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transcripts–GJB2, GJB6, ATP1B3, ATP1B1, FXYD3–and mitochondrial channels–VDAC2, SLC25A5–; and mi-
totic, which overexpressed different DNA synthesis and cell cycle markers–PCNA, KI67–.

Considering that WNTI and follicular clusters were more prominent in the scalp sample, a secondary
reanalysis with that sample was performed. WNTI transcripts were replicated in the reanalysis, and
these cells may represent outer bulge cells, which have been shown to secrete Wnt inhibitors (Lim
et al., 2016). For instance, SFRP1 was shown to be expressed in cuboidal cells of ORS at the base of
the HF, and is potentially active in regressing telogenic HFs (Geyfman et al., 2014). MGST1 and APOE
transcripts of the follicular cluster were also identified in a scalp subpopulation named sebaceous.
Finally, an additional cluster was identified, UHF diff, which expressed CST6, KRT17 and KRT79, and
might correspond to differentiated upper HF cells. Lastly, within the spinous layer, an additional
subcluster was identified expressing S100A7/8/9 and IFI27. These genes have been expressed in
clinically normal scalp (Ruano et al., 2016; Suomela et al., 2004), and the authors suggest that may
be primers of typical inflammation, pruritus and scaling in the area.

Finnegan et al., 2019 A later reanalysis of the neonatal foreskin data by the same group reca-
pitulated the epidermal differentiation into 8 discrete clusters based on an unsupervised clustering
method (Finnegan et al., 2019). This method fitted each cluster with different continuous stages based
on the basal-to-granular differentiation model. Stages 1 to 3 were related to basal keratinocytes, and
stages 5 to 7 to differentiated keratinocytes. Stage 8 related to the channel population discovered
by Cheng et al., 2018c, and did not fit within the linear stage differentiation trajectory.

Interestingly, stage 4 corresponded to the previously characterised mitotic population by Cheng et al.,
2018c, which had a high expression of basal markers KRT5 and KRT14, and an intermediate expression
of early differentiation markers KRT1 and KRT10, indicating that the population is rapidly cycling from
a basal state into a differentiated state. TF analysis revealed that there were sets of TFs which were
either expressed in basal stages or differentiated stages, and a subset of TFs specific to the mitotic
stage had the highest expression and relevance compared to the rest of TFs–e.g. EZH2, DNMT1, UHRF1–
indicating that this mitotic population might be an inflexion point within the differentiation trajectory.
Depletion of some of these transcripts, such as ETV4 and ZBED2 induced a significant increase in
differentiation marker KRT10.

The authors performed an additional analysis to group different transcription factors into modules
based on similar functions. This analysis revealed, for instance, a module consisting of calcium-
binding and cell adhesion genes (CDH3, FAT1, DSG3); a module enriched in mitotic stage-associated
keratins (KRT6A, KRT6B); and a module that contained genes involved in barrier function (DEGS2,
CERS3), cell adhesion (DSC1, PERP), tight junctions (CLDN1, CLDN8), and desquamation (KLK8, KLK11).
Based on this analysis, they observed that basal keratinocytes showed enrichment of antioxidant
proteins located at organelles like mitochondria, whereas differentiated keratinocytes expressed an
antioxidant core program located at cytoplasmic vesicles. Authors argue that increasing ROS levels in
mitochondria promote basal keratinocyte differentiation, and thus these antioxidant proteins protect
against endogenous ROS, whereas the location of antioxidant proteins in vesicles may be important
for epidermal barrier function.

Wang et al., 2020 A recent study by Wang et al., 2020 used human neonatal epidermis samples
to understand basal stem cell transition states. Their analysis observed 4 basal populations (BAS-
I to BAS-IV), two spinous populations (SPN-I and SPN-II), and a granular population in addition
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to melanocytes and Langerhans cells. The authors developed an estimate of cell type transition
likelihood during the process of reconstructing the differentiation trajectory of keratinocytes. From
that model, they observed that BAS-III and BAS-IV were the populations with higher likelihood of
differentiating into spinous populations. Based on that, the authors concluded that BAS-III and BAS-
IV were putative basal stem cells that differentiate into spinous keratinocytes.

Furthermore, the researchers discovered that the presence of PTTG1 in BAS-I and HELLS, as well as
UHRF1 in BAS-II, is essential for maintaining the epidermal homeostasis. This finding suggests that
these genes play a crucial role in epidermal homeostasis. Moreover, the study indicates that the
spatial distribution of putative stem cell populations within the epidermis is more significant than
previously believed. The authors emphasize the importance of the specific localization of these cell
populations in relation to the epidermal rete ridges for maintaining the overall health and function
of the epidermis. BAS-III population was defined by the expression of ASS1, COL17A1, POSTN, and
located at the top and side of the rete ridges, whereas BAS-IV was defined by the expression of GJB2,
KRT6A and KRT16, and located at the bottom of the rete ridges. This observation may agree with
the previous ones from Cheng et al., 2018c and Finnegan et al., 2019, who observed that the mitotic
population was located between basal and spinous keratinocytes.

However, the main difference is that while Cheng et al., 2018c and Finnegan et al., 2019 observe one
mitotic population, Wang et al., 2020 observes two. They argue that the need for multiple stem cell
populations may be protective against harmful insults by requiring a redundancy or complementary
mechanism to ensure proper cell proliferation and differentiation in homeostasis.

Takahashi et al., 2020 In Cheng et al., 2018c HF populations derived from scalp epidermis are
present in the sample. However, the enrichment for IFE during sample processing limited the het-
erogeneity of HF populations recovered. Takahashi et al., 2020 harvested hair grafts from patients
undergoing hair transplantation to analyse the heterogeneity of populations within the HF. The unsu-
pervised clustering revealed a range of populations. The classical IFE populations were appearing–2
basal, 3 spinous and 1 granular layer–, as well as HF-associated populations: infundibulum–RCAN1,
CXCL14–, isthmus–EPCAM, CYR61–, bulge–CXCL14–, lower bulge–ANGPTL7, COMP, CHI3L1–, matrix/cor-
tex/medula–KRT85, KRT35–, IRS cuticle–KRT73, KRT28–, IRS Huxley and Henle’s layers–TCHH, FABP9–,
ORS companion layer–KRT75–, ORS basal–KRT16, KRT6A–, ORS suprabasal–KRT16–, sebaceous/apoc-
rine cells–DCD–, as well as immune, endothelial and melanocyte cells.

When ordering the HF types in pseudo time, they observe that the cortex/medulla/matrix population
branches off, terminating in ORS-derived companion layer cells and a further differentiated subset of
cells, likely representing hair shaft medulla and cortex components. These data are consistent with
a prior report in which early matrix progenitors give rise to the companion layer, and later matrix
progenitors give rise to the IRS and lower hair shaft components (Mesler et al., 2017).

3.1.2 Mouse

Joost et al., 2016 Mouse epidermis and HF heterogeneity have been long studied, and the first
paper to thoroughly analyse epidermal populations was by Joost et al., 2016. In their paper the au-
thors analyse 1,422 epidermal cells, revealing 25 distinct populations, most related to HF. In a primary
analysis, cells are divided into 13 populations: IFE cells–consisting on Krt14hiMt2hi IFE basal cells (IFE
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B), Krt10+Ptgs+ IFE differentiated cells (IFE DI and DII), and Lor+Flg2+ IFE keratinised cells (IFE KI and
KII)–, upper hair follicle cells –Krt79+Krt17+ divided into three types depending on the expression
level (uHF I/II/III)–, sebaceous gland –Mgst1hiScd1hi (SG)–, outer bulge–PostnhiCd34hi (OB)–, inner
bulge–Krt6ahiKrt75hi (IB)–, T cells–Cd3hiThy1hi (TC)–, and Langerhans cells–Cd207hiCtsshi (LH)–.

Delving into subtypes, each major cell type–OB, IB, uHF and IFE B–could be further divided, leading
to 25 subtypes.

The upper HF cells were categorised into four (uHF IV–VII), one ambiguous (uHF III), and two new (uHF
I and uHF II) populations, distinguishable by their location and gene expression. The new populations
were located around the SG opening and could be distinguished by Rbp1 expression as well as high
levels of Defb6 and Cst6. uHF I cells, expressing Klk10, were located in two suprabasal rings around the
SG opening, while uHF II cells, expressing Krt14 (but not Krt5), were linked to the SG duct. The other
uHF subpopulations (uHF IV–VII) showed a typical uHF signature with gene expression associated
with the basal–Krt5, Krt14–, suprabasal–Krt10, Ptgs1–, and the keratinised layer of the IFE–Flg2, Lor–.

The outer bulge, characterised by high expression of Cd34, Krt15, and Lgr5, is the most well-investigated
HF compartment. Most outer bulge cells belong to either OB I or OB II, distinguished by their gene
expression and location in the proximal–Cd34hiPostnhiLgr5hiKrt24hi–or central–Cd34hiPostnhiLgr5dim

Krt24dim–part of the outer bulge, respectively. OB III, IV, and V are additional populations at the dis-
tal end of the bulge area and lower isthmus. OB III is unique in its gene signature, including Aspn,
Nrep, and Robo2, and shows strong expression of Gli1 and Lgr6, indicating inclusion of cells from
both Gli1+ and Lgr6+ populations. OB IV is marked by an overlapping outer bulge and upper HF
signature, while OB V is a population of suprabasal cells expressing both an outer bulge signature
and differentiation markers.

The majority of inner bulge cells belong to IB I, which exclusively expresses the typical inner bulge
signature with high levels of Krt6a, Krt75, Timp3, and Fgf18. IB II is a population of cells expressing
inner and outer bulge markers and is located in the outer bulge. IB III co-expresses an inner bulge
and a differentiation signature, including Krt10 and Ptgs1, and is located at the distal end of the inner
bulge compartment.

Regarding FE basal cells, the authors discovered a subpopulation that expresses a unique combina-
tion of signatures, including low levels of upper HF markers like Krt79 and Postn, pan-HF markers
such as Sostdc1, Aqp3, and Fst, in addition to the IFE basal signature. This signature marks basal cells
of the infundibulum, which connects the HF to the IFE and was previously not transcriptionally iden-
tified. Thus, the population is named INFU B. Two distinct basal IFE populations (IFE BI and II) were
also discovered, both expressing high levels of Krt14 and Krt5, with IFE BI additionally expressing high
levels of Avpi1, Krt16, Thbs1, and the transcription factor Bhlhe40.

Based on this demarcation of cell types, the authors conclude that classical markers of specific
homogeneous populations such as Gli1 and Lgr5 in the bulge, Lgr6 in the isthmus and Lrig1 in the
infundibulum are not that specific, but are expressed in more than one population.

Interestingly, the authors could classify most of the cell types alongside axes: a spatially-defined
axis–distal bulge cells to proximal IFE– and a differentiation axis–basal to differentiated–. The first
axis mainly separated OB and IB from uHF and SG, and the IFE group (basal, differentiated and
keratinised); whereas the second axis joined OB, IB and uHF into a basal state together with IFE B,
and separated it from IFE D and IFE K populations. Similarly to the observations performed in human
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keratinocytes, the authors postulate that epidermal basal cells reach a no-return differentiation
state that commits to the keratinisation of the epidermis, while cells not reaching that state provide
long-term renewal.

Lastly, the researchers noted that traditional markers used to identify stem cell progenitors (SCPs)
such as Cd34, Lgr5, Lgr6, or Lrig1 were not adequate for accurately distinguishing basal cell pop-
ulations. This is because a significant proportion of suprabasal cells, up to 33%, expressed these
markers, while up to 27% of SCPs did not exhibit any of these markers. Therefore, the study high-
lights the limitations of relying solely on these classical markers to identify and characterize basal
cell populations accurately.

Joost et al., 2020 The previous analysis by Joost et al., 2016 was performed in telogenic HFs.
However, many HFs are often found in other phases, mainly in the anagen or growing phase. Conse-
quently, in the study published by Joost et al., 2020, the authors extend the previous study to include
samples of skin in the anagen (5-week-old mice) as well as telogen (9-week-old mice), extending the
number of populations studied. They also characterise other major cell types such as dermal, vas-
cular, immune, and neural crest-derived cells, making it one of the most complete studies of mouse
skin.

The major cluster of cells in anagen were HF-derived cells. Upon clustering, they have two small popu-
lations and one major branched population. The two minor populations corresponded to suprabasal
and basal outer layer–Barx2hiIl11ra1lo (sbOL) and Barx2loIl11ra1hi (bOL)–. The sbOL was divided into
three continuous subtypes representing mainly different companion layers. The bOL was divided
into a larger cluster of ORS and a minor cluster of lower proximal cup cells (bottom of the bulge,
near DP cells).

The third, major Msx2+ cluster corresponded to the cells forming the IRS, the cuticle and the medulla
of the HF. Each was a distinctive branch, parting from a core of cells forming the germinative layer
(GL). These cells were divided into 4 clusters (GL1-GL4) expressing Mt2 and Dcn, from which the differ-
ent branches arise based on RNA velocity and trajectory inference analysis. For instance, IRS comes
mainly from the Id3hi GL1, whereas the medulla comes mainly from the Lef1hi GL4; although all GLs
contribute to all three branches. In the IRS branch, which could be divided into IRS1-IRS6, differenti-
ation from IRS1 cells was demarcated into a IRS3/4 branch expressing Krt71 and Tchh, or the IRS5/6
branch expressing a more cuticle identity marked by Krt72 and Krt73.

Shin et al., 2020 In this paper, Shin et al., 2020 characterise the loss of functionality of mes-
enchymal progenitors to repopulate DP during ageing, leading to mammal hair loss. For part of their
experiments, the authors perform scRNAseq of HFs from mice at the early anagen stage, using FACS
to enrich for HF mesenchymal cells (DP and DS). After computationally selecting specific cell types,
they obtained a total of 1,084 Sostdc1+, Rspo3+, Fgf7+ DPs and 702 Cd200+, Stmn2+, Ednrb+ DS/CTS
cells. There is a third population of HF mesenchymal stem cells, termed progenitor cluster (PRG),
enriched for cell cycle genes such as Cdk1 and Top2a.

DP cells could be divided into four major clusters–Notum+ DP1, Cyr61+ DP2, Sostdc1+ DP3, and
Frzb+ DP4; and CTS into two clusters–Mgp+ CTS1, Ednrb+ CTS2–. Trajectory inference analysis and
RNA velocity showed that DP cells show a DP fate–led by DP2, then DP4, and finally DP1 and DP3–and
a CTS fate–led partially by CTS1–. Additionally, based on the RNAscope of some of the markers, the
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authors state that CTS1 colocalises partially with PRG progenitor cells in the lower bulge, whereas
CTS2 resides in the middle-upper part of the HF. Regarding DP cells, DP2/4 are located in the lower
part of the DP and are termed as supplementary DP, whereas DP1/3 are located in the upper portion
of the DP and are termed as the definitive DP, which produces the medulla, cortex and IRS cells
among others. These findings were congruent with the ones described by Yang et al., 2017.

Ma et al., 2020 Most single-cell papers use scRNAseq methods during their analyses. The paper
by Ma et al., 2020 uses a novel method, SHARE-seq, that combines RNA-seq and ATAC-seq data from
the same cell. ATAC-seq reveals domains of regulatory chromatin (DORCs), regions where chromatin is
open and thus accessible for transcription. Chromatin potential has been observed to have a longer
reach in early stages, while RNA velocity has a farther reach in late pseudotimes, predicting the future
of individual cells on a timescale of hours (La Manno et al., 2018). Chromatin potential is established
before gene expression, and it is expected to predict future cell states on a longer timescale than
RNA velocity, particularly during differentiation. Thus, using ATAC-seq is usually useful to determine
early transcriptional dynamics.

The authors use SHARE-seq with brain, lung and skin tissue in the study. In skin, they focus on the
development of hair matrix. The authors found that DORCs become accessible before the associated
gene’s expression onset, indicating lineage priming. One of the target genes is Wnt3, a marker de-
tectable at the late stages of hair shaft differentiation. SHARE-seq shows that Wnt3 DORC becomes
accessible before Wnt3 gene expression, with sequential activation of peaks in the Wnt3 DORC, fol-
lowed by nascent and mature RNA expression. Additionally, the pseudo-temporal ordering of RNA
expression and TF motif activity showed that Lef1 is the lineage-priming TF, followed by Hoxc13 and
Wnt3 expression.

3.2 state-of-the-art of dermis composition from single-cell rna-seq datasets

3.2.1 Human

Philippeos et al., 2018 The first analysis of the human dermis using single-cell methods was
performed by Philippeos et al., 2018. In their analysis, they sequenced 184 cells from the abdominal
skin of a donor. To guarantee that fibroblasts were representative, cells were filtered to be CD90+,
although some CD90− cells were also included. In the analysis, they reported 4 major groups: 1) A
COL6A5+, COL23A1+, HSPB3+ group that corresponded to papillary fibroblasts; 2) a CD26+, MFAP5+,
PRG4+ population that, for being CD39+ but COL6A5−, could be identified as reticular fibroblasts; 3)
a CD74+, HLA-DR4+, CLDN5+ that lacked expression of LUM and DCN, and could be macrophages or
dendritic cells; and a 4) RGS5+ group that could be identified as perivascular cells. Therefore, the
analysis yielded only 2 effective fibroblast populations: papillary and reticular fibroblasts. Although
the analysis was relevant, it lacked enough cells to constitute a representative sample of dermal
fibroblasts.

Tabib et al., 2018 The first single-cell RNA sequencing (scRNAseq) study showing a previously
unexpected degree of heterogeneity of human dermal fibroblasts was published by Tabib et al., 2018.
The dataset amounted to 8522 across six samples, 2742 of which were fibroblasts. Unsupervised
clustering revealed several clusters that could be divided into two major populations: (1) SFRP2+
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DPP4+ cells and (2) FMO1+ LSP1+ cells. Immunofluorescence of SFRP2+/DPP4+ cells revealed small
elongated cells with elongated nuclei and overexpressed ECM- and fibrosis-related genes, suggest-
ing their classical role as a cell involved in ECM deposition and/or orientation. On the other hand,
FMO1+/LSP1+ cells were relatively large and had lower collagen expression. They also strongly ex-
pressed CXCL12, possibly indicating a role in the retention of CXCR4+ immune cells.

The two major populations could be further subdivided. SFRP2+ fibroblasts could be divided into
the WIF+ COMP+ NKD2+ population and the PCOLCE2+ CD55+ FSTL3+ population. The WIF+ cells
expressed higher levels of collagen I. Additionally, they found additional smaller populations that
were neither SFRP2+ nor FMO1+: a CRABP1+ that could be DP cells; a closely related COL11A1+ DPEP1+
RBP4+ cluster that could be related to pluripotency; a SFRP4+ PRG4+ population that clustered near
the SFRP2+ population; and an independent SFRP4+ ANGPTL7+ C2orf40+ population.

Interestingly, the two major fibroblast subtypes were found with no recognisable similarity with
papillary and reticular fibroblasts, and classical markers like DPP4, LRIG1 or DLK1 were not expressed,
of were confined to a set of populations. The authors postulate that papillary and reticular matrices
are established during development and do not require specialised fibroblast types for maintenance.

Vorstandlechner et al., 2020 While looking for the fibroblast subset responsible for fibro-
sis, Vorstandlechner et al., 2020 characterised three large fibroblast clusters, one of which could be
subdivided into four smaller groups, yielding a total of 6 different subtypes (FB1 to FB6). These fibrob-
lasts were characterised by the expression of LUM, FBLN1, PCOLCE, PLPP3, SDC2 and MXRA8 genes. FB1
(FAP, SFRP2, MFAP5, LOX, HAS, FAP, MMP14) was associated with ECM assembly and wound healing; FB2
(FMO1, APOE) with immunological process; FB3 (SFRP2, WIF1) was associated with cartilage develop-
ment and leptin signalling; FB4 (B4GALT1) was characterised by a response to growth factors; FB5
(CXCL1, APOE) with immunological processes; and FB6 (WIF1, CXCL1, SFRP2, COL14A1, FN1, MMP14) was
associated with IFNγ response and p38 and NKκB signalling, as well as with matrix assembly–due to
the expression of FN1, HAS1,. MMP14 and COL14A1–.

Additionally, they observe that traditional markers of papillary and reticular fibroblasts such as NTN1,
PDPN or MGP were detected in all fibroblasts clusters. Their dataset differed substantially from that of
Tabib et al., 2018 because it showed virtually no expression of FMO1 in any cell and SFRP2 expression
in almost every fibroblast subset. RNAscope assessed SFRP2 expression in the papillary and reticular
dermis. They attributed the variations with Tabib et al., 2018 dataset to technical reasons and donor
site-specific differences.

Solé-Boldo et al., 2020 In a study on dermal ageing, Solé-Boldo et al., 2020 determined four
main young fibroblast subpopulations that could be discriminated into five after secondary analysis:
(1) secretory reticular–WISP2, SLPI, CTHRC1, MFAP5, TSPAN8–, (2) secretory papillary–APCDD1, ID1, WIF1,
COL18A1, PTDGS–, (3) mesenchymal–ASPN, POSTN, GPC3, TNN, SFRP1–, and (4) proinflammatory–CCL19,
APOE, CXCL2, CXCL3, EFEMP1–, which in turn was composed of two subclusters–one with predominant
expression of CXCL1 and the other with predominant expression of CCL19–. Looking at collagen ex-
pression patterns, the authors observed cartilage-associated COL11A1 and COL24A1 more expressed
in the mesenchymal cluster, and papillary dermis and DEJ collagens COL13A1, COL18A1 and COL23A1
in the secretory papillary population.
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To confirm some of these patterns at the biological level, the authors used RNAscope to detect spe-
cific transcripts to establish the location of each population–secretory-reticular CTHRC1, secretory
papillary APCDD1, pro-inflammatory CCL19 and APOE, and mesenchymal ASPN–. As expected, secre-
tory papillary and secretory reticular were predominantly, but not exclusively, expressed in their
respective locations; immune was located throughout all the dermis and in association with the vas-
culature, and mesenchymal was predominantly located in the reticular dermis in association with
hair follicles.

When compared with Tabib et al., 2018 dataset, and similar to Vorstandlechner et al., 2020, they found
that the expression of FMO1 was very low in all dermal fibroblasts, whereas SFRP2 was expressed
by both secretory subpopulations and a subgroup of the proinflammatory subpopulation; similarly,
as discovered by Vorstandlechner et al., 2020. The authors found no overlap between their dataset
and the dataset from Philippeos et al., 2018. They attributed these discrepancies to variations in the
experimental approaches used in the two studies.

He et al., 2020 Lastly, He et al., 2020 performed a joint analysis of skin from healthy- and AD-
derived samples. In their analysis, they separated fibroblasts into 4 main populations: (1) FBN1+MFAP5+
(2) APOE+ABCA6+, (3) COL11A1+LAMC3+ –also expressing POSTN and EDNRA–, and (4) COL6A5+COL18A1+.
This last population, which also expressed cytokines CCL19 and CCL2, was predominant in AD samples,
indicating a putative role in the pathogenesis of this disease.

They noted parallels between the primary fibroblast clusters of healthy skin and those found in ear-
lier studies, albeit with varying gene expression patterns. They ascribed the plasticity of fibroblasts
or their transcriptional responses to atopic dermatitis. For example, they discovered low FMO1 levels
in fibroblasts, as reported in Vorstandlechner et al., 2020 and Solé-Boldo et al., 2020. In discussing
the COL6A5+ cluster identified by Philippeos et al., 2018, they emphasized its absence of proinflam-
matory characteristics. Interestingly, COL6A5 and COL18A1 are also markers of fibroblast population
from other datasets, such as the previously reported papillary population from Philippeos et al.,
2018, or the secretory papillary from Solé-Boldo et al., 2020.

3.2.2 Mouse

Salzer et al., 2018 One of the first papers to perform a scRNAseq of fibroblast cells is by Salzer
et al., 2018. Their study analyses changes in skin fibroblasts that lead them to acquire an adipogenic
profile. This profile is partially reverted by caloric restriction. Their study observes that pairwise
distances of old clusters are less separated than those from young clusters, indicating less tran-
scriptomic heterogeneity of old cells. Additionally, they observed a more marked Sca1 and Pparg
expression in old samples, as well as other genes related to a pro-adipogenic signature. Using dif-
ferent tracing methods, they observed that the old fibroblast lineage was related more to the lower
reticular dermis than the papillary dermis.

Although the results from this study are relevant, the low number of cells hindered a complete
characterisation of the fibroblast heterogeneity, mainly consisting of a major cluster per sample
and condition.
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Guerrero-Juarez et al., 2019 The first mouse study in which the fibroblast heterogeneity is
studied per sé is in Guerrero-Juarez et al., 2019. The authors study the fibroblast populations arising
after wounding (12 days post-wound). Single-cell of microdissected tissue reveals 5 main fibroblast
types: FIB-1 to FIB-5. A separate analysis of these cells yielded 12 subclusters, sC1 to sC12. All fi-
broblasts shared a common TF signature, comprised of 20 TFs such as Cebpb, Hif1a, Klf4/6/9, Nfat5,
Nr4a1/2, Prrx1 or Runx1. Some of these factors–Runx1, Tcf4, and Zeb2–were reported to be implicated
in myofibroblast differentiation.

Fibroblasts in clusters sC1/2/4-8/10/12 showed a marked Pdgfra expression, and sC1/4/5/7/8 also
showed Crabp1 expression. Some of these clusters were small, like Cyp26b1+ sC7 or G0s2+ cluster.
Regarding TGF-β signalling, two major populations were described: one comprised approximately
24% of wound fibroblasts on sC3/9/C11. This population expresses low levels of TGF-β receptors,
Tgfbr2, Tgfbr3, and PDGF receptor Pdgfra but high levels of Pdgfrb. They also stain with RGS5 and
were located throughout the wound dermis. The second population represents about 76% of wound
fibroblasts and is more heterogeneous, consisting of nine subclusters expressing intermediate to
high levels of Tgfbr2, Tgfbr3, and high levels of Pdgfra but not Pdgfrb.

The main drawback of this study is the lack of a control population to compare. Therefore, it is not
possible to ascertain the fibroblast populations on healthy, uninjured dermis based on this dataset.

Joost et al., 2020 The first full characterisation in the uninjured dermis is performed by Joost
et al., 2020, who discovered 8 main clusters: FIB1-FIB4, DS1, DS2, aDP and tDP. aDP and tDP are DP
cells present in anagen and telogen phases, respectively, with aDP expressing Corin, Nrg2 and Cntn1,
and tDP expressing Crabp1, Notum and Pappa2. DS1 cells are associated with telogen and anagen
cells–marked by Abi3bp, Ramp1 and Mylk– and DS2 cells are mainly associated with anagen –marked
by Acta2, Tagln and Grem2.

The FIB1-FIB4 populations demarcate different layers of the skin. FIB1 and FIB2 are thoroughly lo-
cated in the epidermis, FIB1–SparchiDcn+–being more prominent in anagen and FIB2–SparcloDcn+–in
telogen; FIB3 was associated with cells in the hypodermis–Plac8loCxcl12hiGpx3+–, and FIB4 to cells
in the adventitia, below the panniculus carnosus–Plac8hiMfap5hiGpx3+–. Although FIB1 and FIB2 are
independent populations based on the hair follicle phase, a classification algorithm in the valida-
tion dataset failed to replicate the differences and combines them into FIB1/FIB2. (Figure S5H in the
original publication).

Based on image analysis, both FIB1/FIB2 cells were stable, with around 40% cells in both hair cycle
stages. FIB1 cells have increased expression of genes linked to collagen production such as Sparc,
as well as core TFs Creb3, Creb3l3 and Mxd4. On the other hand, FIB2 cells exhibited an ECM signature
dominated by proteoglycans such as Dcn, Lum and Mfap4.

Jacob et al., 2022 Skin development has been an active research field, with many relevant dis-
coveries, like the fibroblast fate determination within papillary and reticular dermis described by
Driskell et al., 2013 and commented on in Section 2.2.1. Driskell et al., 2013 observed that the diver-
gent fate of papillary and reticular fibroblasts is established at E16.5. Although Rinkevich et al., 2015
have proposed the existence of potential fate-specification before E16.5, the biology of fibroblast
development is still far from being completed.
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In this recent study, Jacob et al., 2022 used scRNAseq on E12.5, E13.5 and E14.5 embryos to study cell
development of the dermis. One of their main focuses is dermal fibroblasts, where they observed
that, even at E12.5, a lineage commitment is already established. At E12.5, there are two major fi-
broblast subsets: FIB Origin and FIB Deep. The FIB Origin cells constitute a Wnt-pathway-activated
Lef1+Axin2+ fibroblast subset that maps to the upper dermis; and is divided into 6 subgroups–FIB
Origin 1/6–with different signatures and lineage fates. FIB Origin 1/2 express Lef1, Tcf7, Dkk1 and dif-
ferentiates into upper dermal fibroblasts, whereas FIB Origin 5/6 expresses Epha4, Creb5 and Thbs2
and differentiates into muscle and inter-muscle fibroblasts in the lower layers of skin. FIB Origin 3/4
are a mixture of the 1/2 and 5/6 subsets. On the other hand, FIB Deep population is divided into
three subpopulations that map mainly to the lower dermis (which was no muscle structure yet). This
population does not seem to have a clear differentiation trajectory at E13.5 and E14.5.

FIB Origin 1/2 differentiates into two populations: FIB Upper and FIB Lower. FIB Upper shows an active
Wnt pathway based on the expression of Lef1 and Axin2, and, based on other marker expressions, it
is mainly localised to the upper dermis. Some of these cells exit cell cycle and start expressing Sox2,
indicating the early settling of the dermal condensate (DC), from which HFs stem. Additionally, they
observe that Dkk2 is downregulated, which is, in fact, present in non-hairy skin while absent in hair-
bearing skin, thus supporting FIB Upper differentiation into FIB DC. FIB Origin 1/2 also differentiates
into FIB Lower, a population that lacks unique marker expression but which, based on the location of
surrounding markers, or its lack thereof, is putatively located in the upper dermis, below FIB Upper
and above the panniculus carnosus.

FIB Origin 5/6 differentiates into two populations: FIB Muscle and FIB Inter. FIB Muscle, is a group of
cells expressing Nppc, Rgcc and Gfra1 and is exclusively located within the developing muscle layers.
clustering of this population reveals two subgroups, characterised by the expression of Aspn and
Wnt4–FIB Muscle 1–or Ebf2 and Igfbp3–FIB Muscle 2–. The former is believed to maintain satellite
cell quiescence, while the latter is expected to support myofibroblast differentiation. On the other
hand, FIB Inter expresses Mfap5 and Gata6, and is divided into 3 subgroups, two of them expressing
fascia markers Nov, Dpp4, Plac8, or Col14a1, and an additional one expressing adipogenic TFs Pparg
and Cebpa, and expected to be a differentiated state of the two fascia-associated populations. These
FIB Inter are believed to be fascia and pre-adipocyte-related fibroblasts and are located beneath the
panniculus carnosus.
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T H E S I S H Y P OT H E S I S A N D O B J E C T I V E S

Fibroblasts in the dermis have been traditionally separated into "papillary fibroblasts" and "reticular
fibroblasts" based on their location in the papillary and reticular dermis. Single-cell RNA sequenc-
ing expanded this characterisation into disconnected populations across few-specific publications.
Based on this fact, we hypothesised that dermal fibroblast heterogeneity was not dataset-specific,
but rather general and consistent across studies. To study this hypothesis we followed these objec-
tives:

1. Perform a characterisation of human and mouse dermal fibroblast populations, separately.
For each organism, single-cell datasets from several sources will be jointly studied to find
similarities and differences in fibroblast populations.

2. Analyse the extent to which this characterisation shows dataset-specific fibroblasts.

3. Study the functions of individual populations based on their most representative markers.

4. Analyse the similarities between mouse and human fibroblasts to understand common fibrob-
last function patterns.

5. Study how inter-dataset heterogeneity may affect results provided by individual datasets, and
how this heterogeneity may impact the results reported in the scientific literature.
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4
P R I M A RY O F F I B R O B L A ST H E T E R O G E N E I T Y I N H U M A N A N D M O U S E S K I N U S I N G
S C R N A S E Q

4.1 human dataset downloading and fastq processing

The count table from Tabib et al. (2018) dataset was downloaded in comma-separated values format
from https://dom.pitt.edu/wp-content/uploads/2018/10/Skin_6Control_rawUMI.zip. Metadata
table including authors’ computationally assigned clusters was downloaded from https://dom.pitt.

edu/wp-content/uploads/2018/10/Skin_6Control_Metadata.zip. The count table from Solé-Boldo
et al. (2020) dataset was downloaded in mtx format from the Gene Expression Omnibus database
(dataset GSE130973). The count table from the Vorstandlechner et al. (2020) dataset (V) was kindly
provided by the authors after personal request. The count table from He et al. (2020) dataset (H) was
elaborated from the original fastq read files from healthy donors. Sequence Read Archive accession
numbers were the following: SRR11396171XX, where XX is 62, 64, 66, 67, 68, 70, 71, and 75. Each fastq
file contained Chromium 10X, version 2, Cell Barcode + Unique Molecular Identifier in the first 26
bases and the read on the rest. From each fastq, one fastq with the Cell Barcode + Unique Molecular
Identifier and a second fastq with the read were produced according to 10X file standards. All samples
were jointly processed (read pseudomapping and counting) using loompy 3.0.6, which depends on
kallisto 0.46.2, using default parameters.

4.2 human dataset preprocessing

All datasets were preprocessed using scanpy 1.4.6 (with pandas 1.0.5, numpy 1.18.5, and matplotlib
3.2.0 as dependencies) (Wolf et al., 2018). From each raw dataset, the preprocessing was done in two
steps. The first step produced a general representation of the dataset, from which fibroblasts would
be selected. The second step produced a representation of the fibroblast populations. In the first
step preprocessing, all genes without expression were removed. Datasets were log-transformed with
a pseudocount (log1p) and normalized using scanpy’s normalize_total method. Feature selection
was done with triku, version 1.1.0 (Ascensión et al., 2022), using default parameters. Next, PCA was
applied, and then kNN graph construction, UMAP dimensionality reduction (McInnes et al., 2018),
and Leiden community detection (Traag et al., 2019) with default values were performed. Fibroblast
communities were selected using LUM, PDGFRA, COL1A1, DCN, and FBLN genes. In the Vorstandlechner
et al., 2020 dataset, UMAP and leiden were substituted by the t-SNE Maaten et al., 2008b coordinates
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and cell labels provided in the metadata. In the Tabib et al. dataset, leiden communities were also
substituted by the labels in the metadata. Once the fibroblast populations were isolated from each
dataset, the second preprocessing step was done as follows. Genes not expressed in that subset were
filtered, and feature selection with triku was reapplied. PCA was calculated with 30 components, and
the kNN graph was constructed with k as half the square root of the number of fibroblasts, using
cosine distance. UMAP was run with min_dist values of 0.2 for Tabib, 0.3 for Solé-Boldo, 0.3 for
Vorstandlechner, and 0.05 for He. Then, leiden community detection was run with resolution values
(higher values yield more communities) of 2 for Tabib, 1.8 for Solé-Boldo, 2 for Vorstandlechner, and
1.3 for He.

4.3 mouse dataset downloading and processing

Refer to 5.1 for dataset download and fastq file preprocessing, and to 5.3 for dataset processing.
These are used during the secondary analysis, but the methodology is the same compared to the
primary analysis phase.

Out of all the available datasets used in the secondary analysis, the ones selected for the primary
analysis were Abbasi et al., 2020, Buechler et al., 2021, Haensel et al., 2020, Phan et al., 2020, Shook
et al., 2020.

In these datasets, due to being in a preliminary analysis phase, no metadating was applied.

4.4 mapping of clusters and axes across datasets

Once communities were obtained, (DEGs) were calculated using scanpy’s
rank_genes_groups method with the Wilcoxon method. If two or more communities did not express
different DEGs, they were joined. Applying this method, we reduced the Tabib communities from 21
to 14 (T0–T13), the Solé-Boldo communities from 17 to 11 (S0–S10), the Vorstandlechner communities
from 19 to 12 (V0–V11), and the He communities from 18 to 9 (H0–H8). To further reduce these com-
munities to clusters A1–A4, B1 and B2, and C1–C4 as well as to axes D, E, and F, we recalculated the
DEGs between the new communities and manually curated for genes that would map across two or
more datasets using T communities as reference.

A gene was considered a good candidate for a cluster marker if it was mainly expressed in that cluster,
and other genes with the same expression pattern in one dataset followed the same expression
pattern in the rest of the datasets. In some cases, one gene expressed in two or more communities
from one dataset would map to one community in another dataset. If this pattern was repeated with
the rest of the markers, those communities were candidates to be merged into one cluster, setting
a common denominator for all datasets. For example, CCL2, ITM2A, and PLAG2A are markers of T2
and T5 communities, which map to the S3; V3, V5, and V10; and H3 communities. Therefore, all these
communities were merged as B1. However, T2 and T5 do express different DEGs (T2 overexpresses
NFKBIA and GSN, whereas T5 overexpresses CXCL12 and ITM2A). The same process was applied to the
construction of axes.

If two or more clusters share a set of markers and those markers are shared across datasets, these
clusters were merged to the same axis. Again, those markers were manually curated to avoid selecting
DEGs that were more sparsely expressed or did not share a common expression across datasets. Axes



4.5 dataset integration 99

D, E, and F could technically be considered clusters. However, we decided that the axis nomenclature
fits them better.

4.5 dataset integration

To integrate datasets from different experiments, we applied the
scanpy.AnnData.concatenate() function on Tabib et al., 2018, Solé-Boldo et al., 2020, and Vorstan-
dlechner et al., 2020 datasets to concatenate them into a single dataset. He et al., 2020 dataset
was not integrated owing to poor cell viability inducing possible artefacts during integration. Batch
effect correction on the concatenated dataset was applied using bbknn (Polanski et al., 2020) with
standard parameters. Downstream analysis was performed by normalising, applying PCA, feature se-
lection, and neighbour calculation as described earlier. leiden clustering was reapplied to obtain new
clusters from which the proportion of each dataset and individual dataset cluster was calculated.

4.6 ethics approval and consent to participate

Abdominal tissue remnants used in histology and immunofluorescence were obtained from healthy
donors undergoing abdominoplasty, following all legal and ethical regulations and after protocol
approval by the Research Ethics Committee of Policlínica Gipuzkoa. Donors were informed of the
procedure and voluntarily signed written informed consent.

4.7 histology and immunofluorescence

Abdominal tissue was embedded in optimal cutting temperature medium (Tissue-Tek, Sakura Finetek,
Barcelona, Spain, 4583), frozen by immersion in isopentane previously cooled in liquid nitrogen, and
stored at−80 ◦C until usage. For immunofluorescence, cryostat sections (10 µm) from optimal cutting
temperature blocks were dried and fixed in Histofix solution (PanReac AppliChem, Barcelona, Spain,
256462.0967) for 10 minutes at RT and then permeabilized and blocked with 10 % normal donkey
serum (Merck, Kenilworth, NJ, D9663) and 0.3% Triton X-100 (Merck, T8787) in PBS for 1 hour at RT.
Primary antibodies were incubated for 1 hour 30 minutes at RT (diluted in blocking solution).

Slides were rinsed twice with PBS, and secondary antibodies were incubated for 1 hour at RT (diluted
in blocking solution). The slides were rinsed twice with PBS, and the nuclei were stained with 1 µg/ml
DAPI solution (Thermo Fisher Scientific, Waltham, MA, D3571) for 2 minutes at RT. Slides were rinsed
again with PBS and mounted with Fluoromount G mounting media (Electron Microscopy Sciences,
Hatfield, PA, 17984-25). Sections were analysed using a Zeiss LSM900 confocal laser scanning mi-
croscope (×20 objective, Zeiss, Oberkochen, Germany). Antibodies used are listed in Supplementary
Table 2.

4.8 mapping of clusters and axes across mouse datasets

Instead of the fully manual cluster labelling and mapping done in human datasets, the mechanism
proposed for mouse datasets is semi-supervised. Once all mouse datasets’ clusters are labelled,
populations are matched using the population matching algorithm from section 5.4. In this part,
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Table 2: Antibodies used in the primary study immunofluorescence staining.

Antibody Host

Species

Target

Species
Clonality Dilution Brand Cat.No.

CXCL12 Mouse Human Monoclonal

(clone 79018)
1:100 Research and

Diagnostic Systems
MAB350

SFRP1 Rabbit Human Polyclonal 1:100 Abcam ab4193

SFRP2 Rat Human Monoclonal

(clone 8H1)
1:100 Merck-Millipore MABS330

Donkey anti-mouse

IgG AF488
Donkey Mouse Polyclonal 1:500 Thermo Fisher

Scientific
A21202

Donkey anti-rabbit

IgG AF647
Donkey Rabbit Polyclonal 1:500 Thermo Fisher

Scientific
A32795

Goat anti-rat

IgG AF555
Goat Rat Polyclonal 1:500 Thermo Fisher

Scientific
A21434

instead of only matching the populations of each dataset within its own datasets, the algorithm is
applied cross-datasets. For instance, markers of cluster 1A in dataset A are mapped in datasets B
and C, markers of cluster 1B are mapped in datasets A and C, and markers of cluster 1C are mapped
in dataset A and B.

With this step we seek to find cluster correspondences between datasets, and generate a cluster
graph that explains the relationships of clusters between and within datasets. To generate this graph,
between-dataset clusters are mapped manually to seek correspondences. There are several corre-
spondence cases that can be considered to construct this graph:

• One-to-one correspondence (Figure 24A): all (or most) of the cells from one cluster in dataset
A correspond to the cells of a cluster from dataset B, when mapped into dataset A. We consider
these two clusters to be a match.

• One-to-several correspondence (Figure 24B): more than one cluster from dataset A correspond
to one cluster of dataset B. This is possible because cell types from dataset A are more diverse,
due to being more cells, or having a more diverse transcriptomic profile. This information is
considered in the graph, indicating that the clusters from dataset A belong to dataset B.

• Partial overlap (Figure 24C). Some cells of one cluster from dataset A overlap with dataset B,
but not fully. This overlap is considered a match, but the partial non-overlapping clusters are
included in the graph.

An additional step to construct the relationship graph is to consider the relations between clusters
within the same dataset. To do that, the PAGA algorithm is run within each dataset and, combined
with the structure of the UMAP plot, the relationships of clusters within datasets used in the graph
are completed. Once the graph is constructed, a second round of processing is done, where excess
clusters are manually pruned and a consensus set of labels is obtained. The markers of each new
merged label are gathered from the sets of markers of similar clusters, trying to find the ones that
are associated with the most of the clusters.
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Figure 24: Scheme of overlap types in cluster correspondence graph construction. (A) In one-to-one corre-
spondence, cluster 1 from dataset A (DAC1) maps to cluster 1 from dataset B (DBC1). (B) In one-to-
several correspondence, when mapping dataset A clusters to dataset B clusters, DAC1 maps to DBC1
and DBC2. Therefore DBC1 and DBC2 are joined in a inferior level to DAC1. (C) In partial overlap, we
see that DAC2 maps partially to DBC1 and DBC2, so this relationship is also mapped, as if DAC2 was
a bridge, either between DAC1 and DAC3, and DBC1 and DBC2.
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S E C O N D A RY A N A LY S I S O F F I B R O B L A ST H E T E R O G E N E I T Y I N H U M A N A N D M O U S E
S K I N U S I N G S C R N A S E Q

5.1 dataset downloading and fastq processing

In this section, we are going to describe the download and preprocessing of raw samples. Addition-
ally, for many datasets that are already preprocessed at the time of download, we will explain the
preprocessing steps that were applied. Unless otherwise stated, the traditional preprocessing per-
formed for already preprocessed files was running 10X CellRanger software on raw fastq files, with
hg38 or mm10 genomes as the reference.

5.1.1 Human datasets

The human datasets used in this analysis are the following:

• Ahlers et al., 2022: fastq files were downloaded from SRA archive (accession number PRJNA754272)
and were processed using kallisto, embedded in loompy pipeline.

• Billi et al., 2022: files were downloaded in 10X mtx form (unprocessed filtered file) from GEO
database (accession numbers GSE186476).

• Boothby et al., 2021: files were downloaded in h5 form (unprocessed filtered file) from GEO
database (accession number GSE183031).

• Burja et al., 2022: fastq files were downloaded from SRA archive (accession number ERR9121019)
and were processed using kallisto, embedded in loompy pipeline.

• Deng et al. (2021) (Deng et al., 2021): files were downloaded in 10X mtx form (unprocessed
filtered file) from GEO database (accession numbers GSM4994382, GSM4994383 and GSM4994384
for scar and GSM4994379, GSM4994380 and GSM4994381 for scar).

• Gao et al., 2021: files were downloaded as a unprocessed filtered loom from GEO database
(accession number GSE162183).

• Gaydosik et al., 2019: files were downloaded in csv form (unprocessed filtered file) from GEO
database (accession numbers GSM3679038, GSM3679039, GSM3679040, GSM3679041).
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• Gur et al., 2022:files were downloaded in txt form (unprocessed filtered file) from GEO database
(general accession number GSE195452).

• He et al., 2020: fastq files were downloaded from SRA archive (accession numbers SRR11396162,
SRR11396164, SRR11396166, SRR11396167, SRR11396168, SRR11396170, SRR11396171, SRR11396175)
and were processed using kallisto, embedded in loompy pipeline.

• Hughes et al., 2020: files were downloaded in csv form (unprocessed filtered file) from GEO
database (accession number GSE150672). Metadata files indicating sample and disease were
downloaded from this website (https://tinyurl.com/4e345da2).

• Kim et al., 2020a:fastq files were downloaded from SRA archive (accession numbers SRR9307706,
SRR9307707, SRR9307708, SRR9307709, SRR93077010, SRR9307711) and were processed using
kallisto, embedded in loompy pipeline.

• Liu et al., 2021a: fastq file processing produced a faulty count matrix and, therefore, the count
matrix was extracted from the Seurat object provided under personal request to the authors,
which can be downloaded from the following link (https://tinyurl.com/3bvzajkn).

• Mariottoni et al., 2021: files were downloaded in tsv form (unprocessed filtered file) from GEO
database (accession number GSM5352395).

• Mirizio et al., 2020: fastq files were downloaded from SRA archive (accession numbers SRR12955136
to SRR12955159), were trimmed using seqtk (arguments -e 124 -e 52) and were processed us-
ing kallisto, embedded in loompy pipeline.

• Reynolds et al., 2021: dataset download and processing is described in Materials and Methods
section 6.1.

• Rindler et al. (2021) (Rindler et al., 2021): files were downloaded in tsv form (unprocessed filtered
file) from GEO database (accession numbers GSM5534590 to GSM5534593).

• Solé-Boldo et al., 2020: fastq files were downloaded from SRA archive (accession numbers
SRR9036396 and SRR9036397) and were processed using kallisto, embedded in loompy pipeline.

• Tabib et al., 2018: data file in csv form was downloaded from Pittsburgh University website (link)
as well as the metadata file (link).

• Tabib et al., 2021: files were downloaded in h5 form (unprocessed filtered file) from GEO database
(accession numbers GSM4115868, GSM4115870, GSM4115872, GSM4115874, GSM4115875, GSM4115876,
GSM4115878, GSM4115880, GSM4115885, GSM4115886).

• Jones et al., 2022: files were downloaded in fastq form from Amazon Web Services platform
(under previous access request). Fastqs from samples TSP10_Skin, TSP14_Abdome, TSP14_Chest
were downloaded and processed using kallisto, embedded in loompy pipeline.

• Theocharidis et al., 2020: 10X mtx raw filtered files were obtained by personal request, and
downloaded from their Dropbox service. Sample IDs from controls were H1_080717, H2_091117,
H3_091117, H4_100317.

• Theocharidis et al., 2022: files were downloaded in csv form (unprocessed filtered file) from GEO
database (accession numbers GSM5050521, GSM5050534, GSM5050538, GSM5050540, GSM5050542,
GSM5050548, GSM5050552, GSM5050553, GSM5050555, GSM5050556, GSM5050560, GSM5050564,

https://storage.googleapis.com/fc-9fe89f6d-a673-4659-8332-0bdcecf88e03/alexandria_structured_metadata.txt?GoogleAccessId=116798894341-compute%40developer.gserviceaccount.com&Expires=1632753650&Signature=nqwIaNbwIJdKkgwebfZSwN69btGHB%2BSzDbhRbstLDwkbFjGs%2BRThwg1Ibicv7aRdjN1KvJt%2F3w6kH1wht7bpS19a5TDEG9O4vycd%2FpKLdReTTvc10tkNlkT%2FVFTkpZhfSb1AXKxWNVSQsNj4oF5L%2FrXZvHU4DVYSfGxKhFbIjccqdWi%2B04k0cuALBrHzaBQllnOw079Rur3L5TvobxizFvIV77ZlQZ2cUI8iOO1UQ7ZB70Gfdb%2Fxr6UVZHCfb%2FEAthgAHDVk%2FrNx%2FuPvmFb5XKwQEvLeoCzMQ80uixU8L4XHKBL1YSLDoaVDeIc6bjEt86%2Fl1e31Aymh0ERxvzEYrQ%3D%3D
https://drive.google.com/file/d/1kxXGcay1X6-53diDuEZOkhfyTFde8DxK/view
https://dom.pitt.edu/wp-content/uploads/2018/10/Skin_6Control_rawUMI.zip
https://dom.pitt.edu/wp-content/uploads/2018/10/Skin_6Control_Metadata.zip
https://www.dropbox.com/scl/fo/x4106l4nd2s8rrec4mboh/AACGrmqWuvbhXZaNnxOdZh9ja?dl=0
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GSM5050567, GSM5050568, GSM5050574, GSM5050522, GSM5050524, GSM5050525, GSM5050526,
GSM5050528, GSM5050529, GSM5050562, GSM5050565, GSM5050570, GSM5050572, GSM5050523,
GSM5050527, GSM5050531, GSM5050532, GSM5050536, GSM5050537, GSM5050539, GSM5050541,
GSM5050547, GSM5050566, GSM5050569, GSM5050573, GSM5050530, GSM5050533, GSM5050535,
GSM5050557, GSM5050558, GSM5050559, GSM5050563).

• Vorstandlechner et al., 2020: processed loom file was obtained under personal request.

• Vorstandlechner et al., 2021: files were downloaded in tsv form (unprocessed filtered file) from
GEO database (accession numbers GSM4729097 to GSM4729102).

• Xu et al. (2021) (Xu et al., 2021b): files were downloaded in 10X mtx form (unprocessed filtered
file) from OMIX database (accession number: OMIX691).

5.1.2 Mouse datasets

The mouse datasets used in this analysis are the following:

• Abbasi et al., 2020: files were downloaded in 10X mtx form (unprocessed filtered file) from GEO
database (accession number: GSM2910020).

• Boothby et al., 2021: files were downloaded in 10X mtx form (unprocessed filtered file) from
GEO database (accession numbers: GSM5549901 and GSM5549902).

• Buechler et al., 2021: fastq files were downloaded from ArrayExpress database (accession num-
ber E-MTAB-10315) and were processed using kallisto, embedded in loompy pipeline.

• Haensel et al., 2020: files were downloaded in 10X mtx form (unprocessed filtered file) from
GEO database (accession numbers: GSM4230076 and GSM4230077).

• Joost et al. (2020) (Joost et al., 2020): files were downloaded in 10X mtx form (unprocessed
filtered file) from GEO database (accession numbers: GSM4186888 to GSM4186893).

• Phan et al., 2020:files were downloaded in loom format (unprocessed filtered file) from GEO
database (accession numbers: GSM4647788 to GSM4647790).

• Shin et al., 2020: files were downloaded in mtx form (unprocessed filtered file) from GEO
database (accession numbers: GSM3177991, GSM3177992, GSM4155928, GSM4155929).

• Shook et al., 2020: fastq files were downloaded from SRA database (accession numbers SRR10480641
and SRR10480643 to SRR10480646) and were processed using kallisto, embedded in loompy
pipeline.

• Vorstandlechner et al., 2021: unprocessed filtered mtx files were provided under personal re-
quest.

5.2 dataset metadata

Due to the large volume of samples, we decided to apply a unified metadata scheme to all the
datasets. This unified schema will help detect sample biases based on an array of factors: age, eth-
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nicity, sex, library preparation method, etc. The accessibility of this table with metadata is available
at Materials and Methods Chapter 7.

The metadata table includes the following columns: Author, Year, DOI, Accession (General)–if there
is more than one sample in the dataset–, Accession (Sample), Accession (SRR)–if data is downloaded
in fastq form–, Data origin–e.g. FASTQ, count matrix in h5 format, mtx format, csv format or other
formats–, Aligner, Genome, Donor identifier–if more than one sample comes from the same donor–,
Sample identifier–usually obtained from the source of the dataset–, Internal sample identifier–may
differ from the Sample Identifier if it is too large or misleading–, Downloaded–yes or no, if it is consid-
ered or not for the analysis–, Analysed, Exclusion reason, Library preparation, Sequencer, Organism,
Age, Age (mean)–sometimes Age might be a range if not completely specified in the paper–, Age
format (y/m), Gender, Race, Ethnicity, Sample location, Condition, Condition (other)–additional infor-
mation such as treatment, comorbidities, etc.–. A detailed description of each variable is available
at Section 7.3 from Chapter 7.

When each dataset is downloaded and transformed into a compatible AnnData h5ad format, this
information is added to the AnnData, so it remains throughout the processing pipeline. This allows
having a unified standard for dataset processing and analysing larger numbers of datasets in the
same pipeline.

5.3 dataset preprocessing

All datasets, regardless of organism, are processed using a common scheme:

1. Dataset loading, and common gene changing: depending on the mapping database, some rel-
evant genes in the analysis with two names are merged into one. For example, CCN5/WISP2 is
set to WISP2. Most of this items were transformed due to personal observations.

2. Basic QC metric calculation: sc.pp.calculate_metrics is used to create basic metrics such as
the number of expressed genes per cell, the number of counts per cell, etc. Additionally, the
percentage of mitochondrial counts is calculated.

3. Plotting QC metrics and thresholding: pct_counts_mt VS total_counts and n_genes_by_counts

VS total_counts scatter plots are used to select the threshold of number of genes and per-
centage of mitochondrial counts. Generally, if the distribution is unimodal, up and down tails
are removed, and if the distribution is multimodal, the top part is selected. If there is more
than one sample in the dataset, these stats are plotted per sample and, depending on the
differences between samples, either a common set of cutoffs is set, or different cutoffs are set
per sample.

4. Basic transformations: the dataset is normalised, log1p-transformed, and genes with no counts
are removed.

5. PCA, harmony integration, and kNN calculation: sc.pp.pca is run to calculate PCA with 30 vari-
ables. If the dataset contains different samples, harmony is used with sce.pp.harmony_integrate

function. This function uses the PCA matrix as input, and outputs a modified matrix with the
same dimensions as the PCA matrix. To calculate the kNN graph, sc.pp.neighbors function is
used with cosine metric and the number of neighbors as

√
ncells/2.
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6. Major cell type assignment (human): UMAP–sc.tl.umap– and leiden–sc.tl.leiden– are run
to see all major cell types. Leiden is run with a high resolution (3 to 10, depending on the
dataset). This marker-to-population algorithm (section 5.4) is used to set different cell types in
an unsupervised manner. The list of populations and markers is the following:

• fibro: LUM, PDGFRA, COL1A1, DCN, SFRP2, APOE, APOD, FN1

• fibro - ANGPTL7: ANGPTL7, ENTPD2, ETV1, C2orf40, SCN7A, SOX8

• F: B4GALT1, TMSB4X, PPP1CB, WTAP, PTPRS, CTNNB1, INSR, BICC1, CTNNB1

• melanocyte: MLANA, PMEL, TRIM63, QPCT, PLP1, TYRP1

• neuro: GPM6B, PLP1, S100B, SCN7A, NRXN1, GFRA3, MPZ

• secretory cell: KRT7, KRT8, KRT18, KRT19, DCD, SCGB2A2, PPP1R1B, MUCL1, AZGP1, SCGB1D2,
PDCD4, TSPAN8

• muscle: TAGLN, DES, PCP4, ACTG2, CNN1, CSRP1, TPM1, SYNPO2, PRUNE2, SORBS1, P2RX1

• peri - CYCS: TAGLN, CRISPLD2, CYCS, VDAC1, RHOB, SORBS2, PLEKHO1, CNN1, DNAJB9, CSRP2

• peri - RERGL: TAGLN, ACTA2, CRISPLD2, RERGL, BCAM, ADIRF, NET1, ARPC1A, PLN

• peri - RGS5: ACTA2, RGS5, ABCC9, HOPX, ARHGDIB, KCNJ8, FXYD6

• peri - ZFP36: RGS16, NR2F2, TGFBI, CCL8, RERG, HOPX

• endo artery: PLVAP, CLDN5, PECAM1, IGFBP3, SRGN, SEMA3G, RHOB, HEY1

• endo capillary: PLVAP, CLDN5, PECAM1, SELE, SOCS3, CDKN1A, NFKBIA, DNAJB1, ATF3

• endo venule: PLVAP, CLDN5, PECAM1, CYP1B1, CLU, PERP, VWF, IER3, TSC22D3

• lymph: CCL21, LYVE1, CLDN5, TFF3, MMRN1, EFEMP1, FGL2, TFPI, MAF

• krt basal: KRT14, COL17A1, KRT5, KRT15, DST, PDLIM1

• krt channel: KRT23, GJB6, GJB2, CDA, MMP7, PNLIPRP3

• krt spinous: KRT1, KRT10, DMKN, KRTDAP, CHP2, LYPD3

• krt gran: FLG, NCCRP1, CNFN, TGM1, CST6, KLK7

• immune: TPSB2, TPSAB1, HLA-DRA, FCER1G, CD74

• T CD4+: CD52, CD3D, TRAC, TCF7, CD4, IL7R, CD40LG

• T CD8+: CD52, CD3D, TRAC, CD8B, THEMIS, CD8A, FOXP3, CCR4, RORC, TIGIT

• plasma cell: SDC1, SLAMF7, TNFRSF17, PTPRC, CXCR4, MYH9, PRDM1, CD38, CD27, IGHG1

• dendritic cell: GZMB, MRC1, XCR1, CLEC9A, IRF8, EPCAM, CD1B, STMN1, IDO1

• APC: HLA-DQA1, HLA-DRB6, TYROBP, FCER1G, AIF1

• mast cell: IL1RL1, CPA3, HPGDS, TPSB2, HPGD, RGS13, CTSG, TPSAB1, GATA2

• NK cell: NCAM1, XCL1, CD38, CD7, IL18R1, KLRF1, KLRK1

• mt: MTND2P28, MTND4P12, MTCO1P40, ADAM33, RN7SL2, MTRNR2L6,
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• eritro: HBB, HBA2, HBA1, HBD

Most of these signatures are based on common knowledge, or extracted from several literature
sources. For instance the classification of endothelial cells is based on Li et al., 2021, and the
classification of keratinocytes is based on Cheng et al., 2018c. Lastly, perivascular cell classifica-
tion is based on a personal classification used in a secondary unpublished project not included
in this thesis, where perivascular cells could be separated into these four major types.

Regarding the characterisation of fibroblasts, LUM, PDGFRA, COL1A1, DCN genes are used to find
this population across different single-cell studies. Generally, PDGFRA+ cells that express the
other markers are fibroblasts cells; and cells not expressing PDGFRA and expressing other mark-
ers are "similar" cell types (perivascular cells, endothelial cells, etc.). ANGPTL7 and F fibroblasts
are described in Ascensión et al., 2021 (C4 population) and in Vorstandlechner et al., 2020.

Once the classification is done, cell types within the fibroblast range are selected. This step
is not 100% accurate though, and there might be cases of fibroblasts marked as other types
(commonly neuro or melanocyte) and vice-versa. To check that the cell types selected are
correct, we make use of the expression patterns of fibroblast markers, mainly PDGFRA. Once
fibroblasts are selected, a secondary AnnData where further processing will be done is created.

7. Major cell type assignment (mouse):

• peri: Rgs5, Myl9, Ndufa4l2, Nrip2, Mylk, Rgs4, Acta2, Sncg, Tagln, Des, Ptp4a3, Myh11

• endo: Pecam1, Cdh5, Egfl7, Cd36, Srgn, Adgrf5, Ptprb, Scarb1, Plvap, Grrp1, C1qtnf9, Mmrn2,
Flt1

• kerato: Krt14, Krt15, Perp, S100a14, Ccl27a, Gata3, Dapl1, Rab25, Ckmt1, Col17a1, Serpinb5

• kerato Gjb2: Ucp2, Krt71, Gjb2, Ahcy, Acaa2, Cbs, Slc3a2, Serpina11, Lap3, Gss, Basp1

• fibro: Dcn, Pdgfra, Lum, Col1a1, Col1a2

• fibro_2: Ncam1, Ptch1, Trps1, Col11a1, Wif1

• fibro_acan: Acan, Col2a1, Col11a1, Col9a1, Snorc, Col9a3, Mia, Cnmd, Ucma, Chad

• T cell: Rac2, Ptprcap, Il2rg, Cd3g, Skap1, Hcst, Ctsw, Ets1, Cd3d, Ctla2a, Cd2

• APC: Tyrobp, Cd74, H2-Aa, H2-Eb1, Ctss, Spi1, Napsa, Cd68, Lyz2, Csf2ra

• lymph: Ccl21a, Egfl7, Mmrn1, Nsg1, Meox1, Gimap6, Kdr

• melano / schwann: Syngr1, Pmel, Mlana

• myo: Tnnt1, Tnnt2, Tnnt3, Tnnc2, Acta1, Myl1, Tnni2, Tcap, Eno3, Myoz1

• neural: Itgb8, Plp1, Ptn, Egfl8, Chl1, Cadm4, Sox10, Cdh19, Snca

Similar to the labelling in human, the genes for each of the labels come from different sources,
or as DEGs performed on the datasets to find a common set of genes that would be applicable
to label these populations. In fibroblast populations, there are a set of peculiarities to be
mentioned. "fibro_2" label refers to fibroblast axis w populations; and "fibro_acan" label refers
to chondrogenic fibroblasts. None of the 9 mouse datasets contain these fibroblasts, but are
included in the list regardless.
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8. Fibroblast processing: To obtain a complete picture of all fibroblast subpopulations, secondary
processing of the fibroblast datasets is performed. Many genes used for manifold learning in
the general dataset (e.g. endothelial, neural or APC-related markers) will not be necessary for
fibroblasts and, therefore, a secondary analysis of the subset of fibroblasts will allow finding
subtler differences within its core transcriptome and, therefore, obtain a more accurate and
complete picture of the dataset structure and, therefore, fibroblast subpopulations.

9. PCA, kNN and FS on fibroblasts: to do the subprocessing, genes with no expression on fibrob-
lasts are filtered, and PCA and kNN are run as before. triku is used for FS, with default settings.
The output from this method is a boolean array indicating if each gene is selected or not as
highly variable. With this information, PCA, harmony and kNN calculation are rerun to produce
the definitive set of neighbours for the following steps.

Of note, FS is not run on the main dataset with all cell types because we are not doing a
thorough analysis of major cell types, since fibroblast populations are easily separable from
the rest of populations. Therefore, avoiding this step saves time frrom the initial processing,
specially with big datasets.

10. Analysing fibroblast subpopulations: to obtain the different subpopulations, UMAP and leiden
are run again, with min_dist and resolution values adjusted for each dataset. The goal is to
obtain a high number of clusters to run the marker-to-population algorithm on them. Once pop-
ulations are obtained, if there is no need to reanalyse populations or investigate new arising
populations, the processing is concluded. The list of populations and markers for the detection
of mouse and human subpopulations, at the time of writing this thesis, is described in section
10.1 of results.

11. Additional step - detecting new populations: sometimes the marker-to-population algorithm
assigns the same label to more than two clusters, or assigns some cluster as unassigned. In
these cases, it is possible that a new cluster is being discovered. To check that, DEGs of that
population are calculated, and the marker-to-population algorithm is used with a set of mark-
ers. DEGs should be exclusive of the population and biologically relevant–ribosomal, IER, or
basic metabolism genes should be excluded–. If the algorithm assigns the cluster correctly, it
is a putative population. To assert that this putative new population is verifiable, it has to be
assigned in other datasets. If not, it will not be considered as a sufficiently relevant population.
In this scenario, it is possible that clusters assigned to a population are assigned to this new
population for being a more likely target.

12. Additional step - removing unwanted populations: In some cases, when assigning fibroblast
subpopulations, unwanted populations appear–stressed cells, non-fibroblast cells, etc.–. In
these cases, these cells are removed from the AnnData, and the whole processing of fibroblast
cells is redone.

5.4 marker-to-population algorithm

The aim of this algorithm is to, given a dictionary of populations and their respective markers, gen-
erate a mapping between the clusters of the dataset and the populations. This correspondence,
schematically shown in Figure 25 is not univocal: it is possible to assign one population to several
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clusters, but it is not possible to assign several populations to one cluster. Additionally, it is possible
to obtain clusters that are not assigned, that is, there is no population whose markers are not suffi-
ciently representative of that cluster. These populations are usually relevant at the initial iterations,
because they might be novel populations that were unnoticed in previous datasets.

The algorithm follows these steps:

• For each category, a matrix of shape the number of cells in the AnnData by the number of
markers of that category, M0, is created.

For each gene in M0, the gene expression array is multiplied by the neighbour matrix, to pro-
duce a matrix similar to the kNN count matrix described in section 5.4.1. In this case, this would
be the expression of the gene in each cell and in its neighbours. The aim of this product is to re-
inforce the expression of local genes. This kNN matrix is divided by the number of neighbours,
and the result is stored in the corresponding column of M0.

• Once M0 has been completed, the mean is extracted, column-wise. This produces a column
matrix with the mean kNN values across genes, m1. We create the matrix M1, resulting of
concatenating m1 matrices with all populations. Therefore, the M1 shape is the number of
cells in the AnnData by the number of populations.

• The cluster labelling from leiden is added to M1, and this information is collapsed into a M2

matrix, whose dimension is the number of clusters by the number of populations. To collapse
the information of several cells from one cluster in M1 into one number in M2, either the
percentile defined in the quantile_gene_sel argument, the CV, or the maximum value are
computed.

• For the M2 matrix with the selected collapsing function, the assigned population is the one
with the highest value across clusters.

It is possible to select more than one population as the best for each cluster. To do that,
intermediate_states argument is set to True and the populations with a smaller difference to the
best population than the one defined in the argument diff are selected.

If none of the populations achieves a minimum value established in min_score the population as-
signed to the cluster is undefined.

5.4.1 Calculation of kNN count distribution per gene

Considering a scRNAseq count matrix of c cells by g genes, and given a number k of neighbours per
cell (half the square root of the number of cells by default), first a k-Nearest Neighbour (KNN) matrix
was created using the kNN graph from a previous step in the processing before FS. The kNN matrix
contains, for each cell in the matrix, the indices of its k most similar cells.

Once the kNN matrix was calculated, the following procedure was applied for each gene. For each
cell with positive read counts (read counts > 0), the number of counts of that cell and the number
of counts of neighbour cells were summed. For each gene, this summarises a distribution of the
counts in the kNN cells. This is the kNN count distribution. The process for the kNN count distribution
construction is schematised in Figure 26.
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5.5 population-to-marker algorithm

The aim of this algorithm is to, given a set of datasets with labelled populations, produce a list
of markers that are commonly expressed in all datasets for each population. This algorithm arises
because of the scenario of certain genes being markers of a specific dataset, and not in others, due
to specific characteristics derived from each dataset. In order to avoid these types of genes, this
algorithm achieves robustly-expressed sets of markers across all datasets instead. A scheme of the
algorithm is shown in Figure 27.

For each of the populations, the algorithm follows these steps:

• First, a common set of markers across all datasets is extracted. For that, the DEGs of that
population in each dataset are obtained, following a threshold–by default, p-value < 0.01–
. Then, genes that follow unwanted patterns–ribosomal genes, mitochondrial genes, MALAT1,
S100 genes, etc.– are excluded. The non-excluded set is the set of genes that will be used for
evaluation.

• For each gene and each dataset, two values are stored: the scoring value used in the DEG
calculation–by default, the score value from sc.tl.rank_genes function–, and the sum of the
expression of that gene in the cells within that population. This will produce two matrices of
shape the number of genes from the first step by the number of datasets that will store these
values.

• For each of these two matrices (M)–the one based on the DEGs, and the one based on the
expression–, a mean value is computed across datasets, so that we have a value per gene. This
mean is pondered (µ∗) using the sigmoid function of the value, so that expression values of
datasets with greater quality–overall, genes with more localised expression and, thus, higher
scores–are dampened and thus the selected markers are not completely biased towards one
or two datasets:

µ∗ =

∑
dataset adataset ·wdataset∑

datasetwdataset
, wdataset = 2

 1

1+ e
−

∑
Mdataset∑

M

− 0.5


Where adataset is the scoring value is in the DEG calculation, and wdataset is the weight
computed for the pondered mean, which is based on adataset.

• Once mean values for genes with score based on DEGs (µ⃗∗
DEG) and based on the expression

(µ⃗∗
expr) are computed, a score value is obtained by applying the following expression:

Z =
µ⃗∗
DEG

(µ⃗∗
expr)

1
4

That is, mean score values are divided by mean expression values to avoid selecting for genes
that have higher thorough expression–which makes the DEG score higher–but which are not
specifically expressed in the population of interest. Finally, in order to avoid genes selected as
DEGs but with a extremely small expression, only Z values with µ∗

expr ⩾ 0.035 are chosen. This
allows, therefore, to choose from genes with middle expression values.

In the end, the population-to-marker algorithm produces a dictionary with the representative pop-
ulations and a data frame of the markers–with scores and Z–.
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5.6 pipeline to obtain a robust set of markers and populations

The pipeline for robust markers and populations consists of a combination of the marker-to-population
and population-to-marker algorithms that tries to minimise the bias of supervised selection. This
pipeline is not unsupervised, since the initial set of markers has to be manually selected and results
in intermediate states can be tuned to suit the researcher’s biases and thoughts about existing con-
figurations. Nonetheless, the use of this pipeline produces reproducible and relevant results with
little effort. Additionally, although individual external algorithms for the marker-to-population and
population-to-marker may be found (Domínguez Conde et al., 2022; Guo et al., 2021; Zhang et al.,
2019a), we were not completely satisfied with them and decided to program it from scratch to have a
control on the code and the parameters. Additionally, some of the methods were developed during
the development of this pipeline, and were not considered (Domínguez Conde et al., 2022; Guo et al.,
2021).

The pipeline, schematised in Figure 28, consists of three steps:

1. Given a set of handpicked populations and genes, use the marker-to-population algorithm to
assign clusters from each dataset their most probable population.

• If one or more unassigned populations arise, gene markers are plotted to see if the cluster
belongs de visu to one of the populations. If so, the threshold parameter has to be tuned.

• If no markers are expressed in unassigned populations, DEGs from that population that
are representative markers can be chosen and, if other clusters in other datasets follow
the same pattern, the new population and its markers can be added to the dictionary.

• Results of the whole pipeline are dependent on the defined populations and markers.
Therefore, careful planning to create that dictionary has to be taken. One method to craft
this dictionary is the one described in Materials and Methods section 4.8, where a mapping
between putative clusters across datasets is performed to obtain a "consensus" graph of
populations.

2. From the set of populations, applying the population-to-marker algorithm yields a "robust"
set of markers for each of the populations across datasets. This set is less biased towards a
specific dataset than the first set of markers used for the first market-to-population algorithm.
Nonetheless, it should be noted that a change of the initial conditions of the pipeline will
considerably affect the set of markers obtained after this algorithm.

3. Finally, with the "robust" set of markers we run the marker-to-population algorithm again to
produce a "robust" set of populations.

5.7 unsupervised assignation of populations to axes

The aim of this method is to confirm that a cluster belongs to a specific axis. If the method assigns
a cluster to a different axis than the one expected, or to more than one axis consistently across
datasets, we should consider moving that population into the corresponding axis or to a new axis,
depending on the pattern of axis assignation.
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This method uses the populations matched with the marker-to-population algorithm to create the
axis. First, a manual set of axes is created by setting each population to the axis to which it originally
belongs–i.e. populations A2 and A3 are assigned to axis A, and populations B1 and B3 are assigned to
axis B–. If a population is a bridge between two axes–e.g. a/d, b/c, c/d axes on mouse–it is assigned as
an independent axis. With this automatic "manual" assignation, the population-to-marker algorithm
is run to obtain a dictionary of axes and markers of each axis.

Finally, the marker-to-population algorithm is run against the unsurpervisedly-assigned populations
using also the marker-to-population algorithm, so that each population is mapped to an axis. Con-
trary to the populations, the marker-to-population algorithm is run with the diff parameter set to
0.05, so that populations that have a mixed transcriptome between two or more axes are not univo-
cally assigned to one cluster. This step is crucial to see if specific populations have to be reallocated
to an existing or a new axis if necessary.

5.8 paga and population-relationship graphs

One important step in the secondary analysis is to detect relationships between individual popula-
tions. This is important because fibroblasts, like any other cell type, are not independent entities,
but rather interact within the tissue, either with other fibroblasts or other cell types. Therefore, fi-
broblast subpopulations, as well as independent axes will likely interact with each other, or share
more similarities between them.

To analyse the similarities between fibroblast populations, PAGA algorithm is used (Wolf et al., 2019).
The objective of the algorithm is to extend the idea behind the neighbouring concept that is applied
cell-wise to clusters. Using the kNN information computed during the processing steps, and for a
given set of clusters, PAGA produces an adjacency matrix indicating relationships between each
cluster. With this information a graph between clusters is created where, the greater the connection
between two nodes, the greater the similarity between two clusters.

To simplify the relationships within the PAGA graph a secondary tree graph is constructed, which
explains the major relationships, and forces interactions to be in that tree structure. This graph
comes with the limitation of "breaking" cliques or looped cluster relationships, but allows for a
clearer lecture of an otherwise sometimes complex graph. Additionally, this graph tends to preserve
relationships that are clearly meaningful.

Thus, for each dataset these two PAGA graphs are computed. This allows to analyse the heterogeneity
of populations and interactions between populations across datasets.

In order to integrate all the information, a joined graph is built. To build this graph, to the PAGA adja-
cency matrix from the tree graph of each dataset, we remove interactions with values smaller than
a threshold–0.6 by default–, and then compute a power of that number–between 1 and 2, depend-
ing on the graph–. The first step removes loose relationships that tend to saturate the joint graph,
and the second step exacerbates differences between clearly meaningful cluster relationships and
less-relevant relationships, making them stand out in the figures.
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5.9 confirming the expression of genes in fibroblast subpopulations and general
cell types

After running the robust population and marker pipelines, we produced a table of relevant informa-
tion for each gene so that it can be useful to determine the functions of each of the populations
based on their gene signature. To construct this table, we need to assign the populations in which
that gene is expressed first.

The chosen plots to this step are a combined dot plot and UMAP plot that show the expression
pattern of each gene across datasets–the dotplots are available at Figures 43 and 49, and the UMAPs
are not included within this thesis–. The size of the dot in the dot plot represents the proportion
of cells within each subpopulation that expresses that gene, and the colour represents the level of
expression. To better visualise the proportion, the value that is represented in the dot plot is scaled
as x := x

2
3 , which allows a better discrimination of genes expressed in fewer cells. The aim of this dot

plot is to have an overall view of the expression patterns of each gene, especially when the pattern
of expression is diffuse or complex.

As a complement to the dot plot, the UMAP plot with the expression of a gene in all dataset supports
the findings from the dot plot, and allows to find differences of expressions across datasets.

All this information will be used to create the table with gene information, in which we will include
the following information:

• Gene name

• DEG-based location: to create this column, genes appearing as the first 30-50 markers in the
dictionary obtained from the pipeline described above are included in this column. If a gene is
a marker of more than one population, this information is reflected. For instance, a gene with
the label "A1 | B2 | C1" is a marker or A1, B2 and C1 populations at the same time, whereas a
gene with the label "D1" is only a marker of the D1 population.

• UMAP-based fibroblast location: this column represents the pattern of expression of each gene
within different fibroblast populations. If two populations share the same level of expression,
the symbol ∼ is used; whereas if one population has a greater, or clearer, expression than the
other, the symbol > is used. For instance "A1 ∼ B2 > C1 ∼ B4" indicates that the gene is more
expressed in A1 and B2 than in C1 and B4; but it is expressed at a similar level in A1 and B2, and
in C1 and B4. If there is a thorough expression of the gene, but it is apparent in one or more
populations, "rest" is added to the comparison. For instance, "A1 > B2 ∼ B3 > rest" indicates that
the gene is clearly expressed at A1, then at B2 and B3, and there is a minor, basal expression
in the rest of the cells.

• UMAP-based general location: similar to the previous column, a combination of dot plot- and
UMAP-based visualisation are used to determine the expression patterns of each gene within
the major cell types of the skin.

• Location: location of the gene product within the cell (extracellular, endoplasmic reticulum,
plasma membrane, Golgi, nucleus, etc.). This information is obtained from GeneCards website
(Safran et al., 2021).
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• Basic gene information: in order to have a quick view of the putative functions of the gene,
summaries from Entrez gene, GeneCards and Uniprot are included. All the summaries are joined,
and extracted from, the GeneCards website (Safran et al., 2021).

It is important to remark that the expressions used in the UMAP-based fibroblast and general loca-
tion columns are arbitrarily depicted based on the dot plot and UMAP plots. Unfortunately, this level
of annotation across such heterogeneous datasets requires a subjective and arbitrary classification.
Nonetheless, this notation is really helpful to have a quick view of the gene expression patterns
without constantly needing to resort to visualisation methods. The list of cell types used is the one
described in section 5.3 of Materials and Methods.

5.10 ligand-receptor analysis on human fibroblasts

Ligand-receptor (LR) analysis is a useful method to detect putative interactions between cells, and
analyse underlying pathways and interaction networks. To perform the LR analysis we used Cell-
PhoneDB v2.0 (Efremova et al., 2020), a commonly used LR analysis library. We enhanced the LR
pair database using a secondary database with approximately 3400 human and mouse LR pairs,
CellTalkDB (Shao et al., 2020). We used cellphonedb database generate command to create a com-
mon database of LR pairs from CellPhoneDB and CellTalkDB, and followed the steps as depicted in
the "Generating user-specific custom database" section from their Github repository.

For this thesis, due to the workload demanding from this job, only interactions in human datasets
are considered. Interactions in mouse datasets will be considered for future works.

Once CellPhoneDB is run (p-value threshold: 0.1), the output is a table where each entry contains the
gene pairs and the interacting cell types, as well as the p-value. Since this analysis is run on each
dataset, the final table also contains the dataset where this interaction occurs. From this table, two
tables are created with the same filtering procedure: one with fibroblast-fibroblast interactions, and
one with interactions between fibroblast and other cells. The last one is not used for the purposes
of this thesis due to the complexity of the analysis.

The filtering procedure involves the following steps:

1. Filtering of reciprocal pairs: if pair AB and pair BA occur, their values are merged to avoid
problems in further steps.

2. Same pairs from different datasets are merged and counted.

3. Dataset filter: pairs appearing in fewer datasets are removed. This is to avoid spurious pairs
occurring in one or two datasets. The threshold applied is of a 30%. For instance, interaction of
CXCL12 in B1 with WNT5A in C3 occurs in 4 datasets. B1 appears in 12 datasets and C3 in 8. 30%
of 8 is 2.4, and since the interaction is present in 4, it is kept. Had the interaction occurred in 1
or two datasets, and it would have been discarded.

4. Gene filter: genes that are not fibroblast markers are removed. To do that, we need to first
select a wide range of gene markers. For each population, from the distribution of gene rank
VS Z value–from population-to-marker algorithm in section 5.5–the knee point is calculated
and 6-times the number of markers given by the knee point are selected–with a minimum

https://github.com/ventolab/CellphoneDB
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number of 70 and a maximum of 350, regardless of the knee point location–. Then, any pair
were one of the genes is not a marker of that population is discarded.

From these filtering steps we obtain a curated list of LR pairs. However, considering that many genes
are markers of more than one population, two scenarios tend to arise–shown with examples–:

• A gene from a LR pair is shown to occur between A1 and C3. However, the marker in A1 is also a
marker in A2, but the interaction between A2 and C3 of that LR pair is not recorded. We include
that information in that table.

• Gene A and gene B are interacting between A1 and C3, A2 and C3, and A1 and C1. These 3 entries
are simplified to genes A and B interacting between A1/A2 and C1/C3.

From these scenarios we observe that, given that many genes are markers of different populations,
we cannot omit interactions that CellPhoneDB has not implicitly considered. Additionally, to avoid
creating copies of the sample LR pairs in different populations, it is convenient to store each LR pair
with the possible populations that can interact between them.

Therefore, the last step to build the table of LR pairs is to remove duplicate LR pairs, and con-
dense them using the notation for marker expression patterns in section 5.9 of Materials and Meth-
ods. The table availability is disclosed in Section 7–Human L-R pairs (fb-fb) tab–, where the LR pair
genes are included together with the populations they are expressed in. There are two additional
columns–Clusters A/B (robust)–indicating the populations where these markers are more relevantly
expressed.

5.11 comparison of human and mouse fibroblast populations

In this section we are going to extend on methods used to compare mouse and human populations.
To do that, we need to first apply an homology step between human and mouse genes. To do that, a
human-mouse dictionary was created using a pan-organism homology table downloaded from this
link (https://tinyurl.com/fc6hrv8m).

5.11.1 Using batch effect correction methods to join human and mouse fibroblast from the same
dataset

At the time of writing this thesis, two analyses were performed with samples analysis of human and
mouse dermis at the same time: Boothby et al. (2021) (Boothby et al., 2021) and Vorstandlechner et
al. (2021) (Vorstandlechner et al., 2021).

To integrate the human and mouse samples from each dataset, harmony batch effect correction
method was used, with default settings. Additionally, bbknn was also used but produced similar
results.

5.11.2 Comparing human and mouse markers to infer population similarities

Another method to compare mouse and human populations is to compare their markers. By observ-
ing the overlap of markers for all pairs of populations, and analysing the sets of overlapped genes we

http://www.informatics.jax.org/downloads/reports/HOM_AllOrganism.rpt
http://www.informatics.jax.org/downloads/reports/HOM_AllOrganism.rpt
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can infer likely comparisons between human and mouse populations. This method is also applied,
as a control measurement, within human and mouse populations, as described in section 10.4.2.

The first step to do the comparisons is to select the number of markers from each population that
are going to be compared. To do that we applied the following algorithm:

• For each pair of populations, given a number of markers N, calculate the Jaccard index between
the first N genes in one population and N genes in the other. All Jaccard index values are stored
in a matrix of indexes, MN.

• Compute the maximum trace of MN. To do so, we use the Hungarian method from the munkres
package (Munkres, 1957). This algorithm finds the permutations of a matrix to satisfy that its
trace will have the minimum or maximum value. Therefore, obtaining the trace of MN after
applying the Hungarian method will provide a value of wellness of overlap between the most
relevant pairs of populations. This trace value is stored alongside the N value. The higher
the trace, the more general overlap between the sets of markers across different populations
occurs.

• The previous two steps are applied with a range of N values (10 to 300). To select the best
value, we plotted N values and their respective traces and analysed the trend line. Generally,
there is a knee point where trace values plateau. This was the selected N for the analysis.

Once the best N was selected, the matrix MN was plotted and correspondences were found. In
human-human and mouse-mouse comparisons, a superficial analysis was done to assert that com-
parisons are logical, and in line with the combined PAGA graph explained in the Materials and Meth-
ods section 5.8 and Results sections 10.2 and 10.3. In human-mouse comparisons, once the best N
was selected and the MN matrix was produced, best-matching comparisons were manually selected.
Afterwards, from the list of all markers for both organisms, relevant markers were selected as follows:
markers that were not relevant in humans nor mice, markers relevant in humans, markers relevant
in mice, and markers relevant in humans and mice. A marker was chosen to be relevant if it was
exclusive of that population, as shown in the "∼ and >" notation from section 5.9 of Materials and
Methods. This step is important because there are many overlapping markers that are not relevant in
humans and mice, so they could be assumed as false positives. This does not mean that an overlap-
ping marker that is not relevant is mouse and human is not expressed in those populations; rather
it implies that is not sufficiently important to be considered in downstream analyses, for being too
vague in its expression pattern.

5.12 allocation of papillary and reticular signatures in human fibroblast popula-
tions

In this section, we are going to describe different approaches used to assign human fibroblast pop-
ulations to either papillary o reticular signatures, based on markers extracted from the literature. To
do that, we consulted different bibliographic entries: Janson et al., 2012, Nauroy et al., 2017, Philippeos
et al., 2018, Korosec et al., 2019, Haydont et al., 2019, Haydont et al., 2020. Each of those entries reflects
a series of markers belonging to the papillary or reticular dermis.
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Before the allocation of the populations was performed, genes from the literature were evaluated
to see if they were markers of specific fibroblast populations or not, so that genes that are not
population markers were not considered.

The first approach to the analysis was to create a dictionary of papillary and reticular genes. Using this
dictionary, we called the marker-to-population algorithm from the Materials and Methods section
5.4 to assign each of the fibroblast populations the category of papillary and reticular, in all datasets.
Populations that had a higher difference in papillary VS reticular were possibly in a papillary location
and vice-versa.

The list of markers used is the following:

• Papillary: CADM1, DIRAS3, TOX, ADRA2A, APCDD1, AXIN2, C8orf22, CCL14, CCL2, CCL5, CCL8, ACKR4,
CD109, DPP4, CLEC2A, COL10A1, COL18A1, COL23A1, COL6A5, COL7A1, CTSC, CTSK, CTSS, CXCL1, DCN,
FAP, FGF13, HSPB3, IL15, LOXL3, LRIG, MAF, MOXD1, NPTX2, NTN1, PDGFC, PLXNC1, PTGDS, PTGS1,
PTK7, ROBO2, RSPO1, SFRP2, SGCA, SGCG, SPON1, SRPX2, STEAP1, TFAP2C, TNFRSF19, WIF1, WNT5A.

• Reticular: ACAN, COL11A1, FGF9, LIMCH1, MGST1, SOX11, VCAM1, A2M, ACTA2, ADAMTSL1, ANGPTL1,
MCAM, THY1, CNN1, COL14A1, COMP, DACT1, EFEMP1, ELN, FBLN2, FGF7, FMO1, FNDC1, IGF1, KRT19,
MFAP5, MGP, PCOLCE2, PCSK5, PDGFD, PPARG, PPP1R14A, SFRP4, SULF1, TAGLN, THBS2, TPM1.

The second approach is to create a table of correspondence between the markers and the popula-
tions. To do that, we used the "∼ and >" notation of the markers to assign a score of 1, 0.5 or 0.25 to
each marker-population combination. For instance, if the expression for one marker is "A1 ∼ A3 > B2",
then A1 and A3 receive 1 point, and B2 receives 0.5 points. If the expression pattern of that marker
is unclear for a population, it receives 0.25 points.

5.13 go term analysis

To perform GOEA, we used the python API of the enrichr module (Kuleshov et al., 2016), specifically
the gseapy.enrichr() function, and selected 6 sets of gene ontologies: GO_Biological_Process_2021,
GO_Cellular_Component_2021, GO_Molecular_Function_2021, Reactome_2022, WikiPathway_2021_Human,
KEGG_2021_Human. For each human fibroblast population, we selected the most relevant markers
and run the GOEA, selecting p < 0.03 as a threshold. The markers were selected manually based on
the "∼ and <" notation. Each population contains between 29 and 74 terms–µ=50.33, σ=11.65–. The full
list of statistically significant GO terms is available in The table disclosed in Section 7–Gene Ontology
(Human) tab–.

5.14 robustness of semi-supervised algorithm

To check the robustness of the marker-to-population algorithm we applied a methodology similar
to the classical jackknife resampling method (Quenouille, 1956; Tuckey, 1958). For a fixed number
of iterations–30 for this analysis–, and for each dataset, we sampled a number of the cells without
repetition and rerun the marker-to-population algorithm. The sampling was stratified across popu-
lations so that all populations were constantly represented. Sampling percentages were set to 50%,
70%, 80%, 95% and 99%. For the results section 10.8 we are going to present the results for the 99%
resampling, which is able to discriminate any lack of robustness.
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Therefore, this process was run on each dataset 30 times, producing a table per dataset with as many
rows as the number of cells of the dataset, and 30 columns. For each cell, the population to which
that cell is assigned in each iteration is stored. In some iterations, and for some cells, a NaN value
is stored because the marker-to-population algorithm was not run in that sample of cells.

For each cell, the quotient between the number of iterations where the assigned cluster is the same
as the original, and the number of assignments performed calculated. This term is called robustness
score. For instance, if in one cell, whose original population is A2, is assigned 20 times to A2, 7 times
to A1, and is not sampled in 3 iterations, the robustness score is 20/27=0.74.

To make Figures 60, S5 and S6 from section 10.8, the tables of robustness score are used. For Figures
S5 and S6 the distribution is plotted directly, and for Figure 60, for each population, the mean of the
robustness score across the cells in each dataset is computed, and then the distribution of means
per dataset is plotted.

To make Figures 61, S7 and S8 from section 10.8, a secondary metric derived from the aforementioned
table is calculated. Instead of computing only the percentage of assignment to the original cluster,
assignment to other populations is also computed. To do that, an adjacency matrix is created where
the rows represent the list of original populations, and the columns represent the list of populations
assigned for that dataset. This differentiation is made because there might be cases of assignment
of a cell to a population that is not in the set of populations from that dataset. For instance, one
dataset might have populations A1, A2, A3, B1, B2, and C1; and in some iterations some cells from A1
were assigned to A4. The adjacency table would have A1, A2, A3, B1 and B2 as rows, and A1, A2, A3, A4,
B1 and B2 as columns.

To create the adjacency table, for each row-column combination, the quotient between (1) the num-
ber of instances of assignment to the column population when the original labelling is the row
population and (2) the number of assignments of cells labelled with the row population is calcu-
lated. Table 3 shows an example of resampling with a dataset of 7 cells and two populations (A1 and
A2), and Table 4 shows the derived adjacency table from it, in which some cells are also assigned to
populations A3 and A4.

Figures S7 and S8 show the adjacency tables computed for each dataset. To create Figure 61, the
median value of adjacency across datasets is computed, that is, for each row-column combination,
the datasets where this combination occurs are retrieved, and the median value of array of values
for this combination are computed.
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5.15 tables and figures

Table 3: Example of resampling for robustness calculation. Original label represents the population each cell
was assigned to without any resampling, and each of the iterations show the resampling labels. Some
cells are empty because they were not sampled during that iteration.

Original label Iter. 1 Iter. 2 Iter. 3 Iter. 4 Iter. 5

A1 A1 A1 A1 A3
A1 A1 A4 A4 A1 A1
A1 A1 A1 A4
A2 A2 A2 A2 A3
A2 A3 A2 A2 A2
A2 A2 A2 A2 A3
A2 A2 A3 A3 A2

Table 4: Adjacency table derived from Table 3. The values are shown in fractional form to ease the check of
the counts.

A1 A2 A3 A4

A1 8/12 0/12 1/12 3/12
A2 0/16 11/16 5/16 0/16

Figure 25: Scheme of marker-to-population algorithm. A dataset with 5 clusters, and a dictionary of three
populations (A, B, C) are used in this algorithm, to assign the populations to the clusters.
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Figure 26: Schema of construction of kNN count distribution. In this example there are 5 cells with non-zero
counts and 11 cells with zero counts. After the kNN graph is built (k = 2 in this dataset), for each
non-zero count cell its two neighbours are considered, and the sum of counts from that cell plus
its 2 neighbours is considered to build the kNN count distribution.

Figure 27: Scheme of population-to-marker algorithm. Three datasets with different populations (A - E) are
used in the algorithm to output five tables of markers for each of the populations.

Figure 28: Scheme of pipeline for robust sets of markers and populations.
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6.1 dataset download and preprocessing

Fibroblast sample data originated from five donors, as described by Reynolds et al. (Reynolds et al.,
2021), and were processed from raw fastq files (E-MATB-8142). The ID numbers are 4820STDY7388991
[S1], 4820STDY7388999 [S2], 4820STDY7389007 [S3], SKN8104899 [S4], SKN8105197 [S5]. Fastq files were
processed using the loompy fromfq pipeline. Loompy and kallisto (RRID:SCR_016582) versions are
3.0.6 and 0.46.0. Genome fasta index and annotations were based on GRCh38 Gencode v31. Addi-
tionally, for other annotations and analysis of other populations, the processed h5ad adata from
Reynolds et al., 2021 was downloaded from the Zenodo repository (ID: 4536165).

6.2 preprocessing of fibroblast sample data

Each individual sample (S1–C fibroblast types and subtypes that we had just descS5) data was pro-
cessed equally using the following scanpy (v1.7.0rc1) (Wolf et al., 2018) procedure. To map the clus-
ters from the original publication, cells from the processed data set were extracted and mapped
to the samples. Genes with fewer than 30 counts were discarded. The sample was normalised
(sc.pp.normalize_per_cell) and log-transformed. Then, PCA with 30 components was calculated
and feature selection was performed with triku (Ascensión et al., 2022) (v1.3.1), and kNN with cosine
metric were computed. Finally, UMAP (v0.4.6) (McInnes et al., 2018) and leiden (v0.8.3) (Traag et al.,
2019) were applied to detect the fibroblast populations.

Most of the cells from the preprocessed adata were mapped to the raw dataset. However, additional
unmapped cells appeared, some of them related to other cell types (e.g. keratinocytes, immune
cells or perivascular cells). To assign unmapped cells to their corresponding cell types a population
matching algorithm was applied, explained in section 5.4 of Materials and Methods. This algorithm
requires a dictionary of cell types and markers. The markers used were the following:

• Fibroblast: LUM, PDGFRA, COL1A1, SFRP2, CCL19.

• Perivascular cell: RGS5, MYL9, NDUFA4L2.

• Erithrocyte: HBB, HBA2, HBA1.

• Immune cell: TPSB2, TPSAB1, HLA-DRA, FCER1G, CD74.
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• Melanocyte: PMEL, MLANA.

• Endothelial vascular cell: CLDN5, PECAM1.

• Keratinocyte: DMKN, KRT1, KRT5.

• Mitochondrial content (low quality): MTND2P8, MTND4P12, MTCO1P40, ADAM33, RN7SL2, MTRNR2L6.

Once cell types have been assigned, non-fibroblast cells were discarded, and the PCA, triku, kNN,
UMAP, leiden cycle was repeated to recalculate the new cell projection.

The sample S5 was discarded from the analysis due to its lack of SFRP2 expression, a well established
fibroblast marker that is expressed in the rest of samples (Ascensión et al., 2021).

Then, we separated the Fb2 population from the Fb1 and Fb3 populations for each dataset and ap-
plied the population matching algorithm to annotate them with the labels assigned from (Ascensión
et al., 2021). The genes used for the population assignation were the following:

• A1: PI16, QPCT, SLPI, CCN5, CPE, CTHRC1, MFAP5, PCOLCE2, SCARA5, TSPAN8

• A2: APCDD1, COL18A1, COMP, NKD2, F13A1, HSPB3, LEPR, TGFBI

• B1: CXCL2, MYC, C7, SPSB1, ITM2A

• B2: SOCS3, CCL19, CD74, RARRES2, CCDC146, IGFBP3, TNFSF13B

• C: CRABP1, PLXDC1, RSPO4, ASPN, F2R, POSTN, TNN

Next, all datasets with Fb1 and Fb3, or Fb2 populations were joined. We applied the previous pro-
cessing routine and, to correct for batch effects, we used bbknn (v1.4.0) (Polanski et al., 2020) with
metric=angular and neighbors_within_batch=2 parameters.

To analyse the transcriptomic profile between Fb1 and Fb3, and Fb2 populations, we joined the two
datasets and applied the same processing pipeline as before. We first characterised the genes driving
the differences by obtaining the DEGs between the two sets of populations, and running GOEA with
the first 150 DEGs of each category. The set of ontologies used was GO Biological Process 2018 with the
module gseapy (v0.10.4) (Fang et al., 2021). Then, to assess that the differences were due to cellular
stress in the Fb2 population, we downloaded several lists of genes, stored in the project GitHub repos-
itory (alexmascension/revisit_reynolds_fb/tree/master/papers_genes_bad_quality), and genes ap-
pearing in more than two lists were selected. This is further explained in section 11.2 of Results
section. Then, the population matching algorithm was run against this list, and clusters with scores
lower than 0.55 were assigned as "Non-stress" clusters.

To analyse the differences in transcriptomic profiles within Fb1 and Fb3 populations, we obtained
the DEGs between the two sets of A2 populations, which were the easiest to separate in clusters. By
using that list of DEGs, we applied the population matching algorithm and divided the Fb1 and Fb3
populations into two halves. We then obtained the DEGs between the two halves and ran GOEA with
the first 150 DEGs of each category, which revealed a hypoxia pattern in one of the halves. To assess
that the differences were due to hypoxia, we downloaded the lists of hypoxia-related genes, and
genes appearing in more than two lists were selected. Since some key genes (some glycolysis genes,
or important genes appearing in one list) were missing, they were manually added to obtain a more
robust list. Then, the population matching algorithm was run against this list, as well as the list of
stress-related genes, and clusters with scores lower than 0.5 were assigned as "Normal" clusters.

https://github.com/alexmascension/revisit_reynolds_fb/tree/master/papers_genes_bad_quality
https://github.com/alexmascension/revisit_reynolds_fb/tree/master/papers_genes_bad_quality
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To replicate the analysis on the rest of the cell types, we used the processed h5ad file, and followed
the same steps as with the fibroblast cell type.

6.3 correction of stress and hypoxia cell states

In order to correct for stress and hypoxia cell states we used the sc.pp.regress_out implementation
from scanpy on the stress and hypoxia scores. We first created two sub-datasets, one containing
stress and normal cells, and another one with hypoxia and normal cells, and then the scores were
regressed out. Finally, the common processing pipeline was applied. Additional correction methods
tried to pursue the correction of hypoxia and stress are (1) creating the gene count matrix without
the genes related to hypoxia or/and stress, (2) using bbknn and/or harmony to correct for the states,
assuming they are batch-recoverable.
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A N A LY S I S R E P R O D U C I B I L I T Y

When developing the projects within this thesis, all the software and analyses were conceived to
be reproducible and open access for the scientific community. This section will introduce the steps
applied to achieve this reproducibility.

7.1 marker-to-population algorithm

The source code of the marker-to-population algorithm described in Section 5.4 of Materials and
Methods is available at the alexmascension/cell_asign GitHub repository.

7.2 skin primary analysis (human)

Skin fibroblast primary analysis–referred to in Materials and Methods chapter 4 and Results chapter
8–was developed using Jupyter notebooks, which are available at the
alexmascension/fibroblast-population-detection GitHub repository (notebook 1H). Notebooks in HTML
form, together with the processed h5ad files of the project are available at the Zenodo repository
(doi: 10.5281/zenodo.4017653).

Additionally, a CellxGene viewer with the processed four datasets is available through
fb-pop-detection.herokuapp.com Heroku application.

7.3 skin secondary analysis

Skin fibroblast secondary analysis–referred to in Materials and Methods chapter 5 and Results chap-
ter 10–; as well as the updated files from the primary mouse analysis were developed using Jupyter
notebooks, which are available at the
alexmascension/fibroblast-population-detection Github repository (notebooks 2 onwards, notebooks
1H and 1M for primary analyses). Notebooks in HTML form and the raw notebook ipybn files of the
project are available at the Zenodo repository (doi: 10.5281/zenodo.7492966). Additionally, initial and
processed .h5ad AnnData files, as well as the adata file for the combined datasets, can be found at
the Zenodo repository for human datasets (doi: 10.5281/zenodo.7785089) and the Zenodo repository
for mouse datasets (doi: 10.5281/zenodo.7785085).
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https://github.com/alexmascension/cell_asign
https://github.com/alexmascension/fibroblast-population-detection
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https://doi.org/10.5281/zenodo.7785089
https://doi.org/10.5281/zenodo.7785085
https://doi.org/10.5281/zenodo.7785085
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The CellxGene viewer with the processed human and mouse datasets is available through the fol-
lowing link: cellxgene.cziscience.com/collections/3c4f0970-7614-43de-beb7-6128b3cb74ed (thank you
Jennifer Yu-Sheng Chien for curating and preparing the datasets for the upload!). In each collection,
a combined UMAP of all datasets is shown. The UMAP can display information about discrete cat-
egories such as age, author, and other categories described in the following paragraph. Expression
of individual genes can be displayed, and DEGs between manually selected subpopulations can
be performed. The expression values are based on the processed matrix counts. However, to unify
value expression across datasets, mean-variance scaling from scanpy sc.pp.scale() function is per-
formed. The arctan function is applied afterwards to remove outlier weight, whose range is [-1.5, 1.5].
This double-step transformation allows for the comparison of gene expression across all datasets.

The metadata file with the information of all human and mouse datasets is available at
github.com/alexmascension/fibroblast-population-detection/blob/master/data/sample_metadata.csv
GitHub repository, and the version at the time of writing this thesis is available at the Zenodo repos-
itory (doi: 10.5281/zenodo.7492966) together with the HTML and .ipybn files.

The metadata file contains the following entries:

• Author: Surname of the first author of the publication.

• Year: Registered year of last publication date.

• DOI: DOI of last registered publication.

• Accession (General): Accession number of all the samples.

• Accession (Sample): Accession number of each sample.

• Accession (SRR): If the file is a FASTQ, SRR number of the SRA archive, if existing.

• Data origin: Type of raw data–e.g. FASTQ, Raw count matrix–.

• Aligner: Alignment software used for preprocessing.

• Genome: Genome used during the alignment.

• Donor identifier: Identification number for the donor. If none, natural numbers are used.

• Sample identifier: Identification tag of the sample, as of the dataset repository.

• Internal sample identifier: Sample identifier used within the anndata file. Sometimes, the in-
ternal sample identifier differs from the sample identifier because the sample identifies is too
long or missing.

• Downloaded: Raw data files were downloaded (boolean).

• Analysed: Raw data files were processed (boolean).

• Exclusion reason: If data were not downloaded or processed, indicate the reason if necessary.

• Library preparation: Library preparation method.

• Sequencer: Sequencer used after library preparation.

• Organism: mouse or human.

• Age: Individual age–in days, weeks, months or years depending on the organism–.

https://cellxgene.cziscience.com/collections/3c4f0970-7614-43de-beb7-6128b3cb74ed
https://github.com/alexmascension/fibroblast-population-detection/blob/master/data/sample_metadata.csv
https://doi.org/10.5281/zenodo.7492966
https://doi.org/10.5281/zenodo.7492966


7.4 reynolds et al. dataset reanalysis 129

• Age (mean): Sometimes, due to a lack of information on individual ages, an age range is pro-
vided. For calculation measures, the mean age is computed.

• Age format (y/m): Format of the age stated before.

• Gender: Gender of the individual.

• Race: Race of individual.

• Ethnicity: Ethnicity of the individual.

• Sample location: Body location where the sample was extracted from.

• Condition: Condition of individual, either healthy/control, wounding, or any disease.

• Condition (other): Notes on the condition–e.g. severity of the disease, or days after wounding–.

Lastly, information pieces from the secondary analysis are available in a Google Docs spreadsheet:
docs.google.com/spreadsheets/d/1lfI6sgjEyg37BGL7VRMfW7KgwGKwX5QrCtnKYk1DXY4–updatable version–
, and at the Zenodo repository (doi: 10.5281/zenodo.7492966)–fixed version, last updated as of 2023/03/30–
. These tables contain information about Gene Ontologies, human and mouse markers descriptions,
and LR pairs. Some of these tables, such as "Specific marker function" were manually completed to
produce certain tables from section 12 and the main text from that section.

7.4 reynolds et al. dataset reanalysis

Reynolds et al. dataset reanalysis–referred to in Materials and Methods chapter 6 and Results chapter
11–was developed using Jupyter notebooks, which are available at the
github.com/alexmascension/revisit_reynolds_fb GitHub repository. Notebooks in HTML form, together
with the processed h5ad files of the project are available at the Zenodo repository (doi: 10.5281/zen-
odo.4596374).

https://docs.google.com/spreadsheets/d/1lfI6sgjEyg37BGL7VRMfW7KgwGKwX5QrCtnKYk1DXY4/edit?usp=sharing
https://doi.org/10.5281/zenodo.7492966
https://github.com/alexmascension/revisit_reynolds_fb
https://doi.org/10.5281/zenodo.4596374
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P R I M A RY O F F I B R O B L A ST H E T E R O G E N E I T Y I N H U M A N S K I N U S I N G S C R N A S E Q

8.1 independent datasets show a common de visu fibroblast coherence pattern

The motivation for this thesis chapter began when researching the diversity of fibroblasts in the skin
from human scRNAseq samples. At that time, four major articles were openly available: Tabib et al.,
2018, Vorstandlechner et al., 2020, He et al., 2020, and Solé-Boldo et al., 2020. Additionally, Philippeos
et al., 2018 published a dataset of culture-adapted fibroblasts, which were not as reliable as studies
from skin biopsies. The individual papers are described in Section 3.2.1 of Introduction.

From the raw analysis of the literature, and at a first glance, we first assumed that the heterogeneity
of fibroblasts across datasets was high and that more experiments would be needed to understand
this phenomenon. However, doing a more thorough analysis of the Supplementary Materials of the
articles, we observed that most of their predicted populations showed a clear overlap of markers,
as shown in Figure 29.

We observed that there are, based only on the populations that the authors defined, 5 major types
of fibroblasts that share several markers across 3 or more references. For instance, there is one
population that expresses MFAP5, PI16, and DCN, which is thoroughly referred to in the literature as
the one secreting the ECM. Also, there is one population expressing C7, CCL19, CD74 and CXCL12 that
shows an immune profile, as stated by Tabib et al., 2018 or Solé-Boldo et al., 2020.

Therefore, from these observations, we conclude that the independent populations claimed individ-
ually by each article are already described. Therefore, a joint reanalysis of all datasets must be done
to gain more insight into the skin fibroblast heterogeneity.

8.2 human dermal fibroblasts distribute into three major computational axes

To determine how the available scRNAseq datasets of human adult dermal fibroblasts presented
common characteristics, we selected adult healthy cell subsets of each study for comparison, as
shown in Table 5. Specifically, we analysed the following datasets: (i) 2,742 cells defined by Tabib et
al., 2018 as fibroblasts through COL1A1 and COL1A2 expression; (ii) 2,842 young cells defined by Solé-
Boldo et al., 2020 as fibroblasts through markers LUM, DCN, VIM, PDGFRA, and COL1A2; (iii) 1,871 cells
from healthy donors defined by Vorstandlechner et al., 2020 as fibroblasts through the expression
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of FBLN1, LUM, PCOLCE, PLPP3, SDC2, and MXRA8; and (iv) 6,368 cells from healthy donors defined by
He et al., 2020 as fibroblasts through the expression of COL1A1 and DCN. In total, 13,823 human adult
dermal fibroblasts that had not been adapted to culture were used for comparison.

Each dataset was independently processed with a standard preprocessing pipeline, shown in the Ma-
terials and Methods section 4.2. In brief, leiden community detection with high-resolution values was
used to obtain 15–20 communities per dataset. DEGs allowed merging communities with similar ex-
pression signatures, yielding 9–14 transcriptomically different populations, which show transcriptom-
ically independent profiles. Populations expressing robust common markers, were further merged
into axes. The differentiation of populations and axes is made to reflect a hierarchical ordering of
similar populations, which probably similar functions.

Using this procedure, three major semi-supervised axes were robustly defined across datasets, which
we termed A, B, and C (from more to less abundant percentage of cells; Figure 30 and Table 6). Axis A
(Figure 30, red; SFRP2 is shown for illustration) represents 49.5 ± 6.7% of the fibroblasts and is defined
by ELN; MMP2; QPCT; and SFRP2 expression. Axis B (Figure 30, green; APOE is shown for illustration)
represents 30.5 ± 3.0% of the fibroblasts and is defined by APOE, C7, CYGB, and IGFBP7 expression.
Axis C (Figure 30, blue; SFRP1 is shown for illustration) represents 16.2 ± 9.3% of the fibroblasts and
is defined by DKK3, TNMD, TNN, and SFRP1 expression. Other axes found were dataset-specific (such
as axes D and F; Figure 30, grey) or shared by only two datasets (axis E; Figure 30, pink). However, the
sum of cells included in axes A–C accounted for the vast majority of fibroblasts in all datasets, with
only 7.5 ± 4.5% of the fibroblasts being left unassigned to one of the three axes (Table 6).

8.3 type a fibroblasts distribute into four semi-supervised populations

Axis A is composed of, four populations that were found across at least two datasets, which we
termed A1–A4 (from more to less abundant percentage of cells; Figure 31 and Table 6). Population
A1 (Figure 31, pink; SLPI is shown for illustration) represents 42.7 ± 5.7% of the type A fibroblasts
and is defined by IGFBP6, PI16, SLPI, and WISP2 expression. Population A2 (Figure 31, brown; COMP
is shown for illustration) represents 32.3 ± 1.3% of the type A fibroblasts and is defined by APCDD1,
COL18A1, COMP, and NKD2 expression. Population A3 (Figure 31, orange; WIF1 is shown for illustration)
represents 19.5 ± 4.0% of the type A fibroblasts and is defined by ELN, RGCC, SGCA, and WIF1 expression.
Finally, population A4 (Figure 31, red; SFRP4 is shown for illustration) represents 8.2 ± 2.8% of the type
A fibroblasts and is defined by FBN1, PCOLCE2, PRG4, and SFRP4 expression.

At first sight, based on the marker pattern expression, there are some remarks about some of these
populations. First, the population A3, despite expressing some specific genes (e.g. WIF1), looks like
a bridge population between A1 and A2. Additionally, while many of the markers from A1 are jointly
expressed in A4 and A3, A2 markers look more population-specific. It is possible that A1, A3 and A4 are
similar populations, or the same population at different cell stages, whereas A2 could be a separate
cell type within the ECM-producing fibroblasts. For instance, A2 population shows a distinct collagen
pattern expression (COL13A1, COL18A1, COL23A1).
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8.4 type b fibroblasts distribute into two semi-supervised populations

Within axis B, two populations of similar abundances were robustly found in all datasets, which we
termed B1 and B2 (Figure 32 and Table 6). Population B1 (Figure 32, dark green; ITM2A and CCL2 are
shown for illustration) represents 54.0 ± 6.2% of the type B fibroblasts and is defined by CCL2, ITM2A,
SPSB1, and TNFAIP6 expression. Population B2 (Figure 32, light green; CCL19 and CTSH are shown for
illustration) represents 46.0 ± 6.2% of the type B fibroblasts and is defined by CCDC146, CCL19, CD74,
and TNFSF13B expression.

8.5 type c fibroblasts distribute into four semi-supervised populations

Within axis C, four populations were found across at least two datasets, which we termed C1–C4 (Fig-
ure 33 and Table 6). Population C1 (Figure 33, dark blue; COL11A1 is shown for illustration) represents
52.8 ± 17.5% of the type C fibroblasts and is defined by COL11A1, DPEP1, TNMD, and WFDC1 expression.
Population C2 (Figure 33, light violet; COCH is shown for illustration) represents 16.2 ± 4.7% of the type
C fibroblasts and is defined by COCH, CRABP1, FIBIN, and RSPO4 expression. Population C3 (Figure 33,
dark violet; POSTN is shown for illustration) represents 26.3 ± 18.4% of the type C fibroblasts and
is defined by ASPN, F2R, GPM6B, and POSTN expression. Finally, population C4 (Figure 33, light blue;
TM4SF1 is shown for illustration) represents 13.5 ± 4.2% of the type C fibroblasts and is defined by
ANGPTL7, APOD, C2orf40, and TM4SF1 expression.

8.6 fibroblast subpopulations cannot be fully recovered after computational inte-
gration of the datasets

A dataset integration analysis was performed further to validate the robustness of the proposed
axes and populations. Between the different common integration methods, bbknn (Polanski et al.,
2020) and harmony (Korsunsky et al., 2021) were used. The integration of all four datasets yielded a
non-homogeneous UMAP, where each dataset was separated from the rest (Figure 34). Because He
et al., 2020 reported 43–77% cell viability within their dataset, and since low cell viability is related to
artefacts in RNA capture and sequencing, which affects the biological interpretation of the results,
we excluded it from this analysis. Regarding the performance of harmony and bbknn, the two showed
similar integration results, including or excluding the He et al., 2020 dataset.

After concatenation of the Solé-Boldo et al., 2020; Tabib et al., 2018; Vorstandlechner et al., 2020
datasets, the combined data were normalised, and the standard pipeline of individual datasets was
followed, shown in Figure 35. To evaluate the performance of data integration, the obtained UMAP
were colour-coded to highlight the datasets, the proposed axes, and populations (Figures 35a to 35d).
In addition, we performed leiden unsupervised clustering and plotted the relative proportion of cells
belonging to the different datasets and fibroblast populations within each leiden cluster (Figures 35e
and 35f).

Dataset integration showed a clear bias between, Solé-Boldo et al., 2020 and Vorstandlechner et al.,
2020 on the one hand; and and Tabib et al., 2018 dataset on the other, as shown in the barplot of
dataset frequency per cluster (Figure 35e). leiden clusters 6, 8 and 11 showed the integration of Solé-
Boldo et al., 2020 and Tabib et al., 2018 datasets in axis C–the Vorstandlechner et al., 2020 dataset
showed virtually no type C fibroblasts–.
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Populations B1 and B2 were identified as leiden clusters 1 + 7 and 2, respectively. In addition, the
separation between populations A1 and A2 was apparent–clusters 0 + 4 and 0 + 3, respectively–. We
conclude that the structure of the most abundant populations is validated by integration analysis,
although the integration is incomplete, and there are some biases between datasets. For instance,
some minor populations, such as C3 or A4, were not fully recovered.

8.7 primary experimental validation in skin sections of major axes

To validate the computational findings, wet laboratory in silico validation of fibroblast populations
was performed in the human dermis. To this end, full-thickness abdomen skin punch sections were
analysed by triple immunofluorescence with antibodies detecting the expression of representative
markers of type A (SFRP2), type B (CXCL12), and type C (SFRP1) fibroblasts, all cells being simultane-
ously highlighted by nuclear staining (Figure 36).

Immunofluorescence staining proves that there are no cells with colocalised expression of nei-
ther SFRP2, CXCL12 nor SFRP1 (Figures 36j and 36k). Therefore, fibroblast populations are defined
as SFRP2posCXCL12negSFRP1neg (consistent with type A fibroblasts), SFRP2negCXCL12posSFRP1neg (type
B fibroblasts), and SFRP2negCXCL12negSFRP1pos (type C fibroblasts), thus confirming that the compu-
tational stratification of fibroblast populations based on scRNAseq data was also present at the
protein level in situ.

Some of these findings were confirmed by immunostained skin sections of the Human Protein Atlas
initiative (Uhlén et al., 2015). The expression at the protein level of selected markers of type A, B,
and C fibroblasts are shown in Figures S16-S18 of Ascensión et al., 2021. Several markers of fibroblast
subtypes A1–A4 (Figures S19-S22), B1 and B2 (Figures S23, S24), and C1–C4 (Figures S25-S28) were also
confirmed by immunostaining.

SFRP2-type fibroblasts show a dim gene expression and look scattered throughout the dermis. Im-
munohistochemistry location of proteins from axis A (ELN, MMP2, CD9) shows that cells expressing
those markers are located throughout the dermis (CD9) or are segregated towards the reticular der-
mis (ELN), as shown in Figure S16 in Ascensión et al., 2021. This fibroblast type has a slightly elongated
shape, although not spindle-shaped, similar to the descriptions provided by Tabib et al., 2018.

CXCL12-type cells show two levels of intensity. CXCL12hi cells are located within compact structures,
and it is highly likely that those cells represent a non-fibroblastic population (Figure 36d). Possibly,
they might be located in perivascular or near glandular structures. Additionally, there is a secondary
population, CXCL12dim, which is also scattered through the dermis. This type of fibroblast has a more
spherical morphology. Immunohistochemistries of B2 markers (CD74, CTSH, RBP5) show a clear ex-
pression pattern either at vassal structures or surrounding them (Figure S24 in Ascensión et al., 2021).
Moreover, some CD74+ and CTSH+ cells also appear with high and compacted expression outside of
these structures, which may be the aforementioned CXCL12dim cells.

SFRP1-type cells express this gene in a dim manner too, and the cell morphology cannot be easily
established. They are located in the basal epidermis and in dense cell accumulations, indicating a
putative substructural role within the dermis, possibly related to hair. This is expected considering
that CRABP1, a marker of C1-type fibroblasts, is a classical dermal papillary marker (Collins et al., 2011).
Immunohistochemistry pictures of POSTN, a C3 population marker, show a clear expression within
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the papillary dermis and certain structures within the reticular dermis (Figure S27 in Ascensión et al.,
2021).
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8.8 tables and figures

Table 5: Human adult dermal fibroblast datasets used in the preliminary study Relevant information for each
of the 4 datasets used in the study.

Dataset Donors (n) Age (y) Sex Ethnicity

Tabib (Tabib et al., 2018) 6 23, 24, 54, 62, 63, 66 3M/3F 5 Caucasian, 1 Asian

Solé-Boldo (Solé-Boldo et al., 2020) 2 25, 27 M Caucasian

Vorstandlechner (Vorstandlechner et al., 2020) 3 30, 36, 43 F -

He (He et al., 2020) 7 38–82 4 F, -

Anatomic Area Time from Harvest to Processing Number of Fibroblasts

Dorsal mid-forearm - 2,742

Inguinoiliac (sun protected) <1 h 2,842

Abdomen - 1,871

Extremities Punch biopsies at –80 °C (4–5 mo) 6,368

Original Reference Clusters Platform and Chemistry Cell Type Enrichment

SLM clusters 0, 3 and 4 Chromium Single Cell 3’ v 1 (10X) No

clusters 1, 2, 3, and 9 Chromium Single Cell 3’ v 2 (10X) Magnetic isolation of live cells

FB clusters Chromium Single Cell 3’ v 2 (10X) FACS isolation of live, single cells

FB1–FB3 clusters Chromium Single Cell 3’ v 2 (10X) No
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Figure 29: Comparison of ARI for FS methods on artificial datasets. Each diagram represents sets of markers
in common across the 4 datasets. Each column represents markers obtained via the literature be-
longing to each dataset, sorted alphabetically. Markers in a white circle are markers that are not
shared across datasets, and therefore their gene symbols are not included. Markers in a full circle
are shared between datasets, using a line to connect the circles. The legend for the dataset names
is: H - He et al., 2020, T - Tabib et al., 2018, V - Vorstandlechner et al., 2020, SB - Solé-Boldo et al.,
2020.
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Figure 30: Top shared markers of axes A, B, and C. Top shared markers of axes A, B, and C. UMAP plots with
expression values of SFRP2 (axis A marker), APOE (axis B marker), and SFRP1 (axis C marker). The top
row shows, in different colours, the cells belonging to each of the axes for each dataset. Percentages
indicate mean ± SD.
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Figure 31: Markers of axis A. UMAP plots with expression values of the most relevant marker for each popu-
lation in axis A (A1–A4). The top row shows, in different colours, the cells belonging to each of the
populations for each dataset.
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Figure 32: Markers of axis B. UMAP plots with expression values of the most relevant markers for each popu-
lation in axis B (B1–B2). The top row shows, in different colours, the cells belonging to each of the
populations for each dataset.
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Figure 33: Markers of axis C. UMAP plots with expression values of the most relevant marker for each popu-
lation in axis C (C1–C4). The top row shows, in different colours, the cells belonging to each of the
populations for each dataset.
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Figure 34: Comparison of integration methods with 4 datasets. Comparison of integration with no integration
methods, bbknn and harmony. The first column shows the distribution of datasets per each of the
unsupervised leiden clusters. The second and third columns show the UMAP plots with the dataset
and leiden labels, respectively.
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Figure 35: bbknn integration of Tabib, Vorstandlechner and Solé-Boldo datasets. To evaluate the perfor-
mance of the data integration, UMAPs (colour coded by dataset, axes, and populations) are shown.
(b) In addition, leiden unsupervised clustering is shown. The integration of the three datasets us-
ing bbknn yielded a fairly acceptable integration. (e) Barplots of dataset frequency per cluster and
(f) fibroblast population frequency per cluster are also shown. A clear bias between S + V and T
datasets was detected. Despite the integration not being 100% successful, the structure of the most
important populations was recovered.
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Figure 36: Validation of major fibroblast axes human skin. (a–r) Abdominal skin sections were tested by im-
munostaining with antibodies specific for the markers SFRP2 (type A fibroblasts, red), CXCL12 (type B
fibroblasts, green), and SFRP1 (type C fibroblasts, dark blue). Representative images at low (a: Bar =
500 µm), medium (b–d: Bar = 50 µm), and high (e–r: Bar = 20 µm) magnifications are shown. Aster-
isks in d denote a non-fibroblastic CXCL12-positive population in a perivascular location. Coloured
arrows in j and k demonstrate the existence of discrete dermal cell populations expressing each of
the representative markers of types A–C fibroblasts. Cell nuclei were counterstained with DAPI (light
blue) in a–d and l–r. Cell nuclei in e–k are shown without DAPI staining.
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9.1 motivation for primary mouse analysis

Once Ascensión et al., 2021 was published in four human datasets, and during the development of
the human secondary fibroblast analysis (Chapter 10), we found that, despite the classical papillary
and reticular fibroblast classification by Driskell et al., 2013, there was no mouse fibroblast charac-
terisation similar to the one done in human fibroblasts based on different datasets. Therefore, we
began this primary mouse characterisation with 5 datasets of healthy mouse dermis available at
that time: Abbasi et al., 2020, Buechler et al., 2021, Haensel et al., 2020, Phan et al., 2020, Shook et al.,
2020

Furthermore, we found that the manual labelling performed in Ascensión et al., 2021 lacked robust-
ness and was prone to be biased with clusters from datasets from personal preference. Although
we reckon that population labelling and mapping across datasets will contain an inherent load of
supervised execution–e.g. when deciding the clustering resolution or joining non-fully overlapping
clusters–a more robust method for semi-supervised de novo labelling was necessary. This semi-
supervised labelling method would, in turn, be applied to labelling populations in other organs,
organisms, or major cell types.

9.2 fibroblast heterogeneity is capitulated in at least four different axes

Before the combined labels were constructed, primary clustering was done in each dataset to get a
set of clusters that could be mapped to each other afterwards. The results are shown in Figure 37. In
Abbasi et al., 2020, 16 clusters are described in four main axes (A1a-A3a, B1a-B6a, C1a-C4a, D1a-D2a);
in Buechler et al., 2021 13 clusters are described in four main axes (A1b-A5b, B1b-B4b, C1b-C2b, D1b-
D2b); in Haensel et al., 2020 25 clusters are described in six main axes (A1h-A6h, B1h-B9h, C1h-C3h,
D1h-D5h, Eh, Fh); in Phan et al., 2020 19 clusters are described in seven main axes (A1p-A7p, B1p-B3p,
C1p-C2p, D1p-D3p, E1p-E2p, Fp, Gp); and in Shook et al., 2020 16 clusters are described in three main
axes (A1s-A2s, B1s-B6s, C1s-C8s).

The clusters were classified in different axes based on the concurrent appearance in the UMAP; that
is, if two or more leiden clusters belong to the same bigger UMAP cluster, they were merged into the
same axis. In Haensel et al., 2020 and Phan et al., 2020 datasets, some axes (Eh, Fh, Fp, Gp) consist
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of one cluster. It is likely that these are minor populations and do not belong to the mainstream
fibroblast types. Therefore, when looking at the consistency of the axes, it is apparent that 3 to 5
axes are most surely shared between datasets.

It is important to note that the nomenclature of the axes and clusters in each dataset is arbitrary.
Therefore, if there is any correspondence between axes and clusters of different datasets, this fact
is not reflected in the current nomenclature but in the ones in the following steps. In other words,
axis A in Haensel et al., 2020 and axis A in Shook et al., 2020 may not reflex the same axis based
on transcreiptomic similarity. Thus, the next step required to build the consensus annotation of all
datasets is to find the correspondences between clusters of different datasets.

9.3 cluster relationship graph uncovers a joint fibroblast composition across datasets

To find the common ground for fibroblast populations, we generated a graph where relationships
between fibroblasts of different datasets and relationships of fibroblasts within the same dataset
are considered. The creation of this graph is explained in Section 4.8 of the Materials and Methods
section. The first step was to find the markers of each cluster for each dataset and to perform a
double mapping: map the markers of one population to its own dataset and the rest of the datasets.
With that information, we built a plot, as depicted in Figure 38, that represents the mapping of
clusters between datasets.

The interpretation of this figure is complex due to the combinatorial amount of mappings that can
be done. Here we show some one-to-one and one-to-several mappings.

• C1p cluster from Phan et al., 2020 maps to D2a cluster from Abbasi et al., 2020 and C4s cluster
from Shook. Each of these mappings can be done inversely, too: D2a cluster in Abbasi et al.,
2020 maps to C1p in Phan et al., 2020. Interestingly, the C1p cluster in Shook maps to C4s, C5s
and C6s clusters in Shook, indicating that C1p to C4s-C6s is a one-to-several mapping case.

• B1s cluster in Shook et al., 2020 maps in a one-to-one fashion to B4a in Abbasi et al., 2020 and
B2b from Buechler et al., 2021

• A1s in Shook et al., 2020 maps to A2b in Buechler et al., 2021 and A2a in Abbasi et al., 2020.

• When doing the mapping, it is important to confirm that the reverse mapping is also true. For
instance, the A1a cluster from Abassi maps to part of the A2b of Buechler. However, A1a cluster
is not mapped to any of Buechler et al., 2021 clusters per sé. Therefore, it is possible that the
A1a-A2b correspondence is false since A2b also maps to A2a, and thus A2b is the most similar
cluster to A1a when mapping, but it is not reciprocal.

After all possible mappings are performed, and together with the relationships of clusters within
the same dataset, the graph from Figure 40 is constructed. In this graph, we observe that there are
many sets of mappings of 2 or more datasets in all axes (e.g. A1a-A4b-C3h, B5a-B7h-B3/B4s, C1a-
C8s-C2b, C7s-A3p-A3b, etc.). Few isolated clusters are either a bridge between axes (B2s, C2b-C8s),
between clusters (A4p, C4a), or are simply isolated within the axis (C2h, B8h, D3p). Of note, although
it is true that some cluster mapping begins with the same letter (A2a-A1s-A2b, B1s-B2h-B1/B2b-B4a,
C1a-C8s-C2d), this naming was arbitrary and coincidental.
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The next step in constructing the joint populations is to merge all cluster mappings into a joint
nomenclature. This nomenclature can be observed in Figures 39 and 41. From this point onwards in
the analysis, and to differentiate between human and mouse axes and clusters, human axes and
clusters will begin in upper case (A2, B3, C1), and mouse ones in lower case (a1, b4, c2). The simplified
graph of relationships between clusters can be observed in Figure 41. Generally, all mappings have
been condensed into one label, and most of the cluster labels that were only belonging to a specific
dataset were removed or simplified. As a result, the preliminary common labels between datasets are
divided into four axes and 18 clusters (a1-a3, b1-b7, c1-c3, d1-d5), and two additional bridge clusters
(a/b, b/c).

During the process of condensing labels, markers shared between the labels of each dataset were
found. As a result, the preliminary set of markers for these populations is the following:

• a1: Abl2, Ccl2, Ccl7, Cxcl1, Cxcl10, Dusp10, Fosl1

• a2: Ak1c18, Cotl1, Efhd1, Fez1, Il18, Lims2, Mustn1, Pts

• a3: Cdca3, Cdca8, Stmn1, Cks2, Birc5, Lockd, Top2a, Ccna2

• a/b: Ackr1, Ccn3, Cmah, Efhd1, Fbn1, Fn1, Galnt16, Has2

• b1: Adam12, Ccl19, Cd36, Col6a6, Creb3l3, Cthrc1, Cxcl12, Hmcn2

• b2: Cadm2, Angptl4, Galnt5, Mex3b

• b3: Adamtsl2, Bmp5, Cilp, Col8a1, Fbln7, Fhl2, Fibin, G0s2

• b4: Abcc9, Akr1c14, Cilp, Col12a1, Crispld2, Eln, Fibin, Igf1

• b5: C2, Cfh, Chrdl1, Cp, Cxcl16, Naalad2, Scn7a, Sned1

• b6: Acot1, Adamtsl3, Apod, Ccl11, Clec1a, Col26a1, Col8a1, Cp

• b/c: C1qtnf3, Mkx, Tnmd, Adam12, Akr1cl, Col12a1, Creb3l3, Crp

• c1: Abcc4, Cgref1, Creb3l3, Fcgr3, Wisp2, Adcy1, Ahrr, Aldh1l2

• c2: Ccdc42, Col13a1, Col7a1, Fxyd6, Grem1, Igfbp2, Sema3a, Stc1

• c3: Ccl19, Ccl2, Ccl7, Ccl8, Cpxm1, Ets2, Ltbp1, Mmp3

• d2: Cd200, Col11a1, Mafb, Robo2, Tagln, Tnmd, Actg2, Actn1

• d4: Abi3bp, Acta2, Adam12, Adamts15, Arhgdib, Bok, Cdc42ep3, Chchd10

• d5: Cilp, Cmklr1, Cpxm2, Eln, Fam180a, Il15, Mmp16, Nrep

When mapping the populations using these markers into the five datasets, we obtain a common
mapping shown in the UMAP of Figure 39. However, we found some discrepancies between datasets
when looking closely at the populations.

For example, there is an imbalance of axes regarding their number of cells across datasets: Haensel
et al., 2020 and Phan et al., 2020 have an increased number of cells in axes c and d; and Phan et al.,
2020 has, in comparison to Abbasi et al., 2020 or Shook et al., 2020 an extremely reduced amount
of cells from axes a and b. Shook et al., 2020 has a low amount of cells from axis c, and Buechler
et al., 2021 as a low amount of cells from axis d. We expect fluctuations in the number of cells to
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happen, as is already observed in the primary analysis of human dermal fibroblasts, but some of
these discrepancies seem exaggerated.

Regarding the internal coherence of populations within clusters, we observe similar results. In most
datasets, we observe that axes c and d are connected by d5 population. In all datasets, there is a
coherence that axes c and d are related, d5 being putative bridge population. However, while axes
a and b are related in Abassi et al. and Shook et al.–probably in Buechler et al. and Phan et al. as
well– in Haensel et al. these populations do not show a clear relationship.

Similar to the preliminary analysis of human datasets, in the secondary analysis, we will include new
datasets that will help us achieve a better consensus on the labels and their markers.
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Figure 37: Primary characterisation of clusters for five mouse datasets. Characterisation of clusters for Abbasi
et al., 2020 (A), Buechler et al., 2021 (B), Haensel et al., 2020 (C), Phan et al., 2020 (D), Shook et
al., 2020 (E). The first column shows a UMAP plot with each dataset clusters, and the second and
third columns show their respective PAGA graphs. The first PAGA graph is a complete graph with
interactions between all clusters, and the second is a pruned graph showing the most relevant
interactions in a tree structure.
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Figure 38: Cross mapping of clusters across datasets. For each pair of datasets, the UMAP plot shows the row
dataset with the population labels and clusters of the column dataset. For example, row Abassi with
column Phan shows the UMAP plot of the Abbasi et al., 2020 dataset with the labels of the Phan
et al., 2020 dataset.

Figure 39: Mapping of primary analysis populations into five mouse fibroblast datasets. For each dataset, the
mapping of the preliminary populations is shown.
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Figure 40: Complete graph of relationships between clusters. This graph includes the relationships from the
PAGA graphs from Figure 37 and the mappings between datasets depicted in Figure 40. Groups of
clusters within the same square (e.g. A1a, A4b and C3h in axis a) are the mapping of the same clus-
ter. Mapping groups merged into one common square (e.g. A1a-A4b-C3h and A1h-A3a mappings are
within the A2s cluster) indicate a one-to-several mapping case. Filled lines indicate likely relation-
ships between clusters observed in several datasets jointly, and dotted lines indicate relationships
that are likely to occur but were not directly observed in many datasets.

Figure 41: Simplified graph of relationships between clusters. This graph is created to simplify clusters of
mapping into a single, combined primary notation that is present in Figure 39.
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10.1 motivation

This section is built upon the results from the primary analysis chapters 8–in human–and 9–in
mouse–.

The primary analysis of human samples yielded 10 populations distributed in 4 axes. The main lim-
itation of that study was that, despite the consistency of these populations across datasets, there
were some populations specific to one dataset–populations D1 and D2 from Tabib et al., 2018, pop-
ulation E from Solé-Boldo et al., 2020 and He et al., 2020, and population F from Vorstandlechner
et al., 2020–. Additionally, we could not discern the A axis in He et al., 2020 using the manual anno-
tation. Moreover, although the consistency of the populations was promising, it was only proven in
4 datasets, and we were unsure if samples from other body parts and conditions would result in the
same populations.

Regarding the mouse samples, at the time of developing the primary analysis, 5 datasets were used.
The main problem from that analysis was that, although most of the populations were present across
datasets, the number of cells was highly variable. For instance, axes a and b in Phan et al., 2020, or
axes c and d in Buechler et al., 2021 were almost non-existent in comparison to the rest of the
datasets; or the relationships between populations from axes a and b in Haensel et al., 2020 were
unrelated from Abbasi et al., 2020 or Shook et al., 2020. We were not sufficiently comfortable with
this approach and were unsure if the initial manual labels were correct. To gain more confidence in
these results, we needed to include new datasets that were made publicly available and search for
fibroblast signatures that could be compared to the existing ones in the literature.

After the inclusion of new datasets into the analysis, the number of human datasets used in this
part of the analysis was incremented from 4 to 25, and the number of mouse datasets from 5 to 9.
We developed a dataset integration pipeline to integrate large numbers of datasets, which outputs
robust populations and markers. This pipeline is iterative; that is, after the addition of new datasets,
some new populations may be detected or relabelled. This information is reflected in a new iteration
of the pipeline. Therefore, because the analysis presented in this section has gone through several
cycles since the development of the primary analyses, we will only show the results of the latest
analysis at the time of writing this thesis.
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In this chapter, we will describe the heterogeneity and characteristics of populations across datasets,
similarly to the previous chapter, and the relationships and similarities between them based on
marker expression and neighbouring populations. We will also try to determine the location of some
relevant populations and explore the comparison between human and mouse fibroblasts. These
results will be relevant for the Discussion section 12, where we will expand on the putative functions
of each fibroblast population.

10.1.1 Description of new human datasets

A total of 25 datasets of human dermal fibroblast were used in this part of the analysis. The basic
demographic characteristics of each dataset’s samples are described in Table 7. Most datasets are
related to samples in disease states, and some share interesting findings shaping the results from
the secondary analysis and discussion.

Additionally, certain datasets originally included in the pipeline were excluded from further analysis
due to several reasons.

• Alkon et al., 2022: the dataset was discarded because we found no cells expressing the common
fibroblast signature at close inspection.

• Capolupo et al., 2022: the dataset was discarded because fibroblasts were cultured and showed
a completely altered transcriptomic profile compared to non-cultured cells.

• Saluzzo et al., 2021: the dataset was discarded because there were too few fibroblasts (< 100).

Ahlers et al., 2022 In this study, the authors identified four dermal fibroblast populations us-
ing unsupervised clustering. These populations were labelled as previously described populations of
fibroblasts (Solé-Boldo et al., 2020), including reticular, papillary, pro-inflammatory, and mesenchy-
mal fibroblasts. The distribution of these populations varied with age, with reticular fibroblasts being
more prevalent in older participants, while pro-inflammatory and mesenchymal fibroblasts being
more common in younger participants. Within the mesenchymal population, two subpopulations
were observed: DP (COCH+ CRABP1+), and a secondary, COL11A1+ DPEP1+ which was assigned as DS.
Combining all the individual findings, the study revealed a decrease in DS cells upon ageing, signifi-
cantly reducing their stemness score. The study also identified several key genes, including COL11A1,
TNMD, and SPARC, strongly upregulated in the DS population.

Further analysis of these genes suggested that they play a role in regulating stem cell characteris-
tics. For example, the knockdown of COL11A1 decreased adipogenic and chondrogenic differentiation
capacity, while the upregulation of COL11A1 was associated with increased differentiation capacity
and improved wound healing. The findings also suggest that geroprotective effects of HES1 might be
mediated by its role in stem cell features of the human DS.

Deng et al., 2021 The study used single-cell RNA sequencing analysis to examine keloid, a type
of fibrotic skin disease. The research found that keloid fibroblasts could be separated into four
subpopulations (papillary, reticular, mesenchymal and immune, as in Solé-Boldo et al., 2020, with
one subpopulation expressing mesenchymal cell markers significantly increased in keloid compared
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to normal scar tissue. Unsupervised clustering identified 13 subclusters among all keloid and normal
scar fibroblasts, suggesting further heterogeneity.

The study also revealed that genes associated with skeletal system development, ossification, and
osteoblast differentiation–POSTN and COL11A1–significantly increased in the mesenchymal subpop-
ulation of keloid. Furthermore, some transcription factors associated with osteogenesis, chondro-
genesis, and ligament and tendon differentiation were enriched in the mesenchymal fibroblast
subpopulation–SCX, CREB3L1, and RUNX2–, indicating the mesenchymal characteristics of this sub-
population. Myofibroblasts were increased in keloids compared to normal scars and enriched in the
mesenchymal fibroblast subpopulation. Interestingly, only a portion of mesenchymal fibroblasts ex-
pressed ACTA2, an indicator of myofibroblast differentiation, concluding that part of mesenchymal
fibroblasts were myofibroblasts, and most of the myofibroblasts were in the mesenchymal fibroblast
subpopulation in keloid.

Gur et al., 2022 Systemic sclerosis (SSc) is a rare chronic autoimmune disease that primarily
affects women between 30 and 50 years old, with higher morbidity and mortality rates than other
rheumatic diseases. SSc is characterised by heterogeneity in clinical manifestations, autoantibody
profiles, disease progression rate, treatment response, and patient survival. To further understand
this disease, Gur et al., 2022 reported the first population-scale single-cell RNA sequencing profiling
of skin biopsies derived from healthy controls, SSc patients at different stages of disease progression,
and patients with other fibrotic skin diseases.

The study primarily focused on immune populations but also analysed stromal populations. Com-
paring the stromal cell compartment of SSc patients with that of healthy subjects, the study found
significant perturbations in fibroblasts, vascular, and pericyte lineages. One striking finding was the
reduction of LGR5+ fibroblast subpopulation, which was substantially reduced in dSSc patients com-
pared to healthy subjects and lSSc patients. The study defined this cell population as ScAFs (SSc
associated fibroblasts). The ScAFs of dSSc patients showed substantial differences in gene expres-
sion compared to the ScAFs of lSSc patients, like the upregulation of genes associated with excessive
production and deposition of specific ECM components–COL1A1, COL3A1, COL5A1, EFEMP1, BGN, POSTN,
and COMP–, while downregulating genes associated with protection against oxidative damage–GPX3,
MGST1, and SCARA5–and adipogenesis–ADIRF–.

The study also detected upregulation of COL1A1 in dSSc ScAFs and other fibroblasts in the dermis, con-
sistent with the scRNA-seq data. Additionally, the ScAFs in SSc patients were found to play a key role
in aberrant L-R interactions associated with lipid metabolism–APOD-LEPR, textitAPOE-SCARB1–, ma-
trix deposition–CTGF-LRP1–, and activation of profibrotic Wnt and TGF-β signalling–LGR5-RSPO1/3/4
and TGFBR2-TGFB1–. Although it is not further investigated, the authors find two MYOC+ populations,
one overpopulated in healthy samples and the other in SSc samples.

Tabib et al., 2021 Similar to Gur et al., 2022, in Tabib et al., 2021 SSc is also studied. Com-
pared to the study on healthy skin conducted by the same laboratory (Tabib et al., 2018), they
used an updated clustering algorithm and analysed four additional discrete skin samples. The au-
thors observed the same cell populations as previously described but also identified some addi-
tional populations of cells. For instance, SFRP2/DPP4-expressing fibroblasts were separated into
WIF1+NKD2+COL6A5+APCDD1+ fibroblasts and PCOLCE2+CD55+SLPI+ fibroblasts; APOE expressing
fibroblasts were divided into previously described MYOC+FMO1+ fibroblasts and two additional pop-



160 secondary analysis of fibroblast heterogeneity in human and mouse skin using scrnaseq

ulations expressing C7 and CCL19 respectively. They also described already studied populations based
on previously described murine and human fibroblast markers like the CRABP1+COCH+ DP and
COL11A1+ACTA2+ DS, and two SFRP4+ small populations, once expressing ANGPTL7 and the other
LINC01133. Finally, they discovered two new populations near DS/DP clusters: one expressing ASPN
and POSTN, and the other expressing PTGDS.

Focusing on SSc, the authors observed that most fibroblasts from SSc patients clustered separately
from the control subjects. SSc fibroblasts clustered prominently in the SFRP2hi/PRSS23+ fibroblasts
and a discrete region within CCL19+ fibroblasts. The authors also noted that SFRP2hi/WIF1+ fibrob-
lasts were largely depleted in SSc skin with the appearance of SFRP2hi/PRSS23+ fibroblasts in the
adjacent subcluster. Focusing on SFRP2hi/PRSS23+ fibroblasts, the authors identified some highly
upregulated genes, some of which were recognisable as genes previously shown to correlate with
the severity of SSc disease. The authors broadly observed two patterns of gene expression in the
SSc SFRP2hi/PRSS23+ fibroblasts; genes were either expressed by most cells in this cluster–PRSS23,
THBS1, and TNC–or expressed by a subset of cells in this cluster–SFRP4, ADAM12, TNFSF18, CTGF, FNDC1,
COL10A1, and MATN3–. αSMA staining of myofibroblasts showed costaining with SFRP2 and SFRP4 in-
dicating that the SFRP4+ subcluster might be myofibroblasts related to SSc.

Interestingly, and contrasting with findings from Gur et al., 2022, DS cluster present in this study
was not upregulated in SSc samples. This might imply that different SSc manifestations arising from
different fibroblast subtypes is possible.

Theocharidis et al., 2022 Diabetic foot ulceration (DFU) is a common complication among
diabetic patients, with over 15% of them expected to develop DFUs during their lifetime. These ul-
cers often result from impaired wound healing, usually exclusive to the feet and associated with
neuropathy and/or vascular disease. In this study, Theocharidis et al., 2022 sought to identify the
differences between DFU patients whose ulcers heal (DFU-Healers) and those whose ulcers do not
heal (DFU-Non-healers) within 12 weeks, with a focus on gene and protein expression profiles that
affect remodelling and inflammation pathways.

The study discovered significant differences in the transcriptome profile of fibroblasts between
the DFU-Healers and DFU-Non-healers, with a unique population of fibroblasts overrepresented in
the samples from DFU-Healers. These were referred to as Healing Enriched-Fibroblasts (HE-Fibro).
Further analysis of the HE-Fibro cluster revealed high expression of multiple ECM remodelling–
MMP1, MMP3–and immune/inflammation-associated–CHI3L1, TNFAIP6–genes. Further studying iden-
tified four heterogeneous states or subtypes of HE-Fibro that were significantly enriched with cells
expressing genes related to ECM remodelling, adhesion, and migration–POSTN and ASPN–with simul-
taneous detection of IL6, TIMP1, PLA2G2A and CHI3L1 transcripts suggestive of a common inflamma-
tory response mechanism in HE-Fibro.

Pathway analysis indicated the activation of multiple immune and inflammatory pathways in the
fibroblasts from DFU-Healers, including IL6, HIF1A, and ILK signalling. The study further revealed
that HE-Fibro were enriched in the wound bed but not in the wound edge and non-wounded sam-
ples, suggesting their association with the wound healing process. Overall, the study highlights the
heterogeneity of fibroblasts across different regions of ulcers and provides insights into potential
therapeutic targets for DFUs based on the identified gene and protein expression profiles in HE-Fibro.
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Vorstandlechner et al., 2021 Hypertrophic scars are a complex and significant global disease
burden. The wound healing process consists of three stages, with prolonged inflammation leading to
increased activity of fibroblasts and increased secretion of cytokines such as TGF-β, and insulin-like
growth factor (IGF1), ultimately resulting in hypertrophic scars. In this study, Vorstandlechner et al.,
2021 used scRNAseq to examine the gene expression and mechanisms involved in hypertrophic scar
formation in both human and mouse skin. The study aimed to identify genes regulated in scar tissue
and uncover potential targets for drug development towards scar-free wound healing.

The scRNAseq analysis of human hypertrophic scar tissue and healthy skin identified 11 clusters
showing 110 significantly upregulated genes in fibroblasts derived from scar tissue compared to
healthy skin. Interestingly, one cluster–FB1–was almost exclusively present in hypertrophic scars,
suggesting a specific role in tissue fibrosis. The upregulated genes are related to collagen and extra-
cellular matrix-modifying genes, including BGN, COL14A1, COL1A1/2, COL3A1, COL5A1/2, FN1, MMP23B,
OGN, and PCOLCE. Analysis revealed a strong association of one FB cluster with TGF-β-signalling
and ECM-formation, further supporting its role in skin fibrosis. Moreover, the analysis indicated the
cluster’s role in processes important for several other cell types, including platelets, smooth muscle
cells, and cells of the skeletal system.

Similarly, when the murine scRNAseq dataset was clustered, 8-week-old mouse scars contained
a higher proportion of murine FBs as well as an increased expression of matricellular and ECM-
modulating proteins–Fbln1, Ogn, Lum, Pcolce, and Tgfbi–.

The study next focused on the identified serine proteases DPP4 and urokinase, as specific inhibitors
are commercially available only for these two serine proteases. The researchers performed siRNA-
mediated gene knockdown of DPP4 and PLAU in primary FBs from healthy human skin, significantly
downregulated the genes’ mRNA expression levels. The knockdown reduced TGF-β1-mediated ex-
pression of αSMA, accompanied by a reduced ability to contract a collagen matrix in vitro. The spe-
cific inhibitors for DPP4 (Sitagliptin) and PLAU (BC-11) abolished TGF-β1-induced αSMA production
to a comparable degree as the specific gene knockdown. Sitagliptin and BC-11 also attenuated TGF-
β1-induced overproduction of ECM-proteins Col1a1 and fibronectin by FBs. The study suggests that
Sitagliptin and BC-11 interfere with matrix deposition in vivo, representing promising candidates for
improving hypertrophic scarring.

10.1.2 Description of new mouse datasets

Nine datasets of mouse dermal fibroblast were used in this part of the analysis. The basic demo-
graphic characteristics of each dataset samples are described in Table 8. Most of the studies use
single-cell as a side element to the main results from the experiments and therefore lack significant
relevance in shedding light on the fibroblast heterogeneity.

Additionally, certain datasets were excluded from further analysis due to several reasons.

• Efremova et al., 2020: the dataset was discarded because the number of cells was small, and
the transcriptome of the populations failed to match any of the consensus populations.

• Lin et al., 2022: the dataset was discarded because the number of cells was too low to be
suitable for the analysis.
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• Leyva-Castillo et al., 2022: the dataset was discarded because of large differences in the tran-
scriptomic profiles of cells. This is probably because the mouse strain is BALB/c, while the
strain of most datasets is C57BL/6J.

• Salzer et al., 2018: the dataset was discarded because the number of cells was too low to be
suitable for the analysis. Upon closer inspection, the results showed two clusters that did not
resemble transcriptomically the main fibroblast axes in mice.

Boothby et al., 2021 In the study by Boothby et al., 2021 the authors explore the impact of a
reduction in neonatal regulatory T cells (neoTreg cells) on developing the immune system in murine
skin. The researchers found that a temporary reduction in Treg cells caused dysfunction in subcuta-
neous tissue and expansion of an unknown stromal cell type. Using single-cell RNA sequencing, the
researchers identified two clusters of stromal cells highly increased in the skin with reduced neoTreg
cells and expressed Th2 cytokine receptor genes Il4ra and Il13ra. These stromal cells were identified
as Th2-interacting fascial fibroblasts (TIFFs) and were responsible for forming fibrous bands seen in
the skin of mice with reduced neoTreg cells.

The study also found that the expansion of TIFFs was induced by subcutaneous injection of Th2
effector cytokines IL-4 and IL-13, and IL-33 in young wild-type mice. Furthermore, the researchers iso-
lated stromal cells from healthy human skin and identified two clusters of potential fascial fibrob-
lasts (fFB1 and fFB2) that expressed murine TIFF markers–PI16, SFRP2 and OGN–and immunological
genes–IL13RA1, CXCL12 and CXCL14–. The human fFB clusters were found to have a strong transcrip-
tional similarity to mouse TIFFs and THBS4+ fibroblasts.

Buechler et al., 2021 In this paper, Buechler et al., 2021 create a fibroblast-specific single-cell
atlas by collecting mouse scRNAseq datasets from their own lab and public repositories (∼120,000
cells). After cleaning the data and correcting for batch effects, they identified ten clusters based
on differential gene expression. Each cluster was annotated based on its dominant cluster-specific
gene–Pi16, Col15a1, Ccl19, Coch, Comp, Cxcl12, Fbln1, Bmp4, Npnt and Hhip–, and the functional identity
of most clusters was ascribed using tissue-distribution patterns and hallmark genes. From these
populations, it was observed that the Pi16+ and the Col15a1+ populations were present in all tissues
and were termed as "pan-tissue" fibroblasts.

Based on their gene signatures and surface markers–SCA1 for Pi16+ and LY6C and Col15a1+–Pi16+
were suggested an adventitial stromal cell role, and Col15a1+ fibroblasts a basement membrane role.
The ubiquity of both populations was suggested to be due to the elevated stemness potential.

The authors investigated how fibroblasts were affected by infection, injury, cancer, fibrosis, metabolic
changes, and arthritis. They created a perturbed-state fibroblast atlas by integrating 17 publicly avail-
able scRNA-seq datasets across 13 tissues. The analysis showed ten clusters of fibroblasts in the
perturbed-state atlas. Most of these clusters were present at the healthy atlas, like the universal
Pi16+ and Col15a1+ fibroblasts, as well as tissue-specific ones like Cxcl12+, Ccl19+, Comp+,Npnt+,
and Hhip+; and other populations like the Cxcl5+,Adamdec1+, and Lrrc15+ appeared to be perturbation-
specific. Thus, the authors provided evidence that the Pi16+ and Col15a1+ clusters were universal,
not only in healthy but also in diseased tissue.

Finally, the authors also investigated fibroblast heterogeneity in human tissues by selecting three
tissues–pancreas, intestine and lung–and sequencing cells in diseases and normal adjacent tissue. It



10.2 human dermal fibroblasts are divided into 5 main axes and 15 populations 163

was observed, for instance, that mouse Lrrc15+ population seemed to have its human LRRC15+ ana-
logue and represented a myofibroblastic state. Another myofibroblast population expressing COL3A1
was found.

10.2 human dermal fibroblasts are divided into 5 main axes and 15 populations

Human dermal fibroblasts are divided into 5 axes, A to E. UMAP plots of human fibroblast populations
across datasets (Figure 42) reveal a consistent pattern of division in two main axes: axis A and axis B.
In most, but not all datasets–Reynolds et al., 2021, Theocharidis et al., 2020, Vorstandlechner et al.,
2020 do not show–there is a third major axis, C. The presence of this axis is also variable since there
are some datasets–Theocharidis et al., 2022, Vorstandlechner et al., 2021–where there is a vestigial
number of cells. Lastly, there are two other axes, D and E, which have fewer cells than other axes. For
instance, the E axis is only clearly visible in 10 datasets, whereas in 8, it is integrated within other
cell types, or is composed of a minority of cells.

10.2.1 Axis A

Axis A is divided into four main populations: A1 to A4. Population A1 is defined by the expression of
WISP2, SEMA3B, LGR5 and ANGPTL5; A2 by COL18A1, NKD2, COL6A5 and HSPB3; A3 by WIF1, SGCA, CORIN
and SOSTDC1; and A4 by C1QNTF3, SCARA5, PRG4, and TRAC (Figure 43).

Based on UMAP populations, as well of individual and combined PAGA graphs–Figures 44 and S2, and
45 respectively–there is a common agreement that all four A axis populations form a continuum. A1
and A2 are originally the most prominent and archetypal populations; if the A axis had to be divided
into 2 populations, it would be these two. A3 is a bridge population between A1 and A2. In fact, most
of the A3 markers are also expressed in A1 and, to a lesser extent, in A2–with a few exceptions such
as WIF1 or SOSTDC1, which are mainly expressed in A3–. Lastly, A4 is a population close to A1–most A4
and A1 markers are cross-expressed–, but its own marker expression–e.g. PRG4 or TRAC–separates it
from A1. Based on UMAP plots and PAGA graphs, A4 seems like a differentiated state, or a subtype, of
A1. Generally, the A4 population comprises fewer cells and is in a terminal UMAP location of A axis
cells.

Interestingly, since the A1 population is transcriptomically related to A3 and A4, it is complicated to
define a core transcriptomic profile for this population since most of the A1 markers will be expressed
either in A3, A4 or both. The exception to this rule are a few markers with low expressions, such as
EYA2 or MTCL1. Regarding the location of the populations within individual PAGA graphs (Figure 44),
the relationships are generally consistent across datasets–when A2-A3-A1 appear together, A3 goes
between A1 and A2, and when A4 is present, it goes next to A1–. Interestingly, in some datasets, we
observe that A2 is sometimes linked to clusters from the B axis in Figure 44, although this might be,
in part, an artefact derived from the constraint of building a tree graph.

Lastly, all four populations are assigned to axis A using the unsupervised population assigning
method (Table 9). This indicates that axis A has a clear and robust transcriptomic profile across
datasets. Additionally, these populations have remained unchanged since the primary analysis (Fig-
ure 46).
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10.2.2 Axis B

Axis B was originally divided into two populations: B1 and B2 (Figure 46). During the iterations in the
secondary analysis, we realised that there was an independent population similar to B1, but with its
own transcriptomic profile–especially the expression of ITM2A and MYOC–, which is now termed B4.
This population was originally present in Tabib et al., 2018 but was merged with B1 because there
was not enough evidence to consider it a separate population, based on the other three datasets.
Secondly, in some datasets–especially in Kim et al., 2020a and Solé-Boldo et al., 2020–, we observed
a bridge population between B1 and B2, termed B3. Interestingly, we originally thought that CCL19
was a clear marker of the B2 population, but in many datasets, we observed that there was a CCL19+
population that also expressed markers of B1–e.g. IL6 or CXCL2–, which moved us to assign this
division with a bridge cluster, in a similar fashion to what occurs in axis A. Like population A3, the
limitation of establishing bridge clusters is that their assignment might be inaccurate some times,
as we will see later, in Section 10.8.

Therefore, axis B is divided into 4 populations: B1 to B4. Population B1 is defined by the expression
of GEM, CXCL2, TNFAIP6 and CXCL1; B2 by GGT5, IL33, C7 and SCN4B; B3 by CCL19, CTSH, RBP5 and ACHE;
and B4 by EFEMP1, ITM2A, MYOC, and GDF10. Based on marker expression, despite B3 being a bridge
between B1 and B2, B3 markers tend to be more expressed in B2–surprisingly, even "canonical" B2
markers such as CCL19 or CD74 show a high expression in B3–. B3 is termed as the bridge and not B2
because B1 markers such as CXCL2 and CXCL3 are also expressed in B3, not in B2.

When looking at the PAGA graphs and UMAPs, the relationships between populations are not as
clear as with axis A. In UMAPs we generally see that B3, when present, appears next to B1 and B2,
or as a mixture of both, and not as an independent population–e.g. in Deng et al., 2021; Gao et al.,
2021; Kim et al., 2021; Liu et al., 2021a; Mirizio et al., 2020; Rindler et al., 2021; Solé-Boldo et al., 2020;
Theocharidis et al., 2020, 2022; Vorstandlechner et al., 2020, Figure 42–. This effect is replicated in
individual PAGA graphs from the mentioned datasets (Figure S2). Interestingly, in some individual
PAGA graphs–Hughes et al., 2020; Tabib et al., 2018; Theocharidis et al., 2022; Vorstandlechner et al.,
2021–the B1 population looks separated from the rest of the B axis populations–although this effect
is not apparent in UMAPs, or partially replicated in complete individual graphs (Figure S2). This is
probably an artefact of branching a complexly interlaced graph, as with the A2 population. Regarding
the B4 population, it seems to interact with the rest of the axis B populations–especially with B2 and,
to a lesser extent, with B1–, as well as with the E1 population, as clearly seen in joint PAGA graphs
from Figure 45. This effect is also seen in individual PAGA graphs and in UMAPs–e.g. in Ahlers et al.,
2022; Gao et al., 2021; Gur et al., 2022; Rindler et al., 2021; Solé-Boldo et al., 2020; Theocharidis et al.,
2020; Vorstandlechner et al., 2020, 2021–, where B4 and E1 appear close together.

Lastly, unsupervised axis assignation in Table 9 reveals that axis B populations are overall assigned
to axis B, although some cases, like in B1 and B4, are assigned both to A and B in certain datasets.

10.2.3 Axis C

Axis C was originally divided into four populations: C1 to C4. However, during the addition of new
datasets, we observed that the C4 population did not express most of the typical C axis markers–e.g.
TNN, ASPN–and, indeed, the unsupervised classification algorithm categorised C4 into an Unknown
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axis (data not shown). As a result, we decided to separate C4 into a new axis, D. Addition of further
datasets–Deng et al., 2021; Gaydosik et al., 2019; Kim et al., 2021; Tabib et al., 2021; Theocharidis et al.,
2022–showed that the C4 population could be divided into two populations, which were not observed
initially in the primary analysis with Tabib et al., 2018 or Solé-Boldo et al., 2020 datasets; now termed
as D1 and D2. Additionally, in some datasets–e.g. Deng et al., 2021; Gao et al., 2021; Hughes et al., 2020;
Kim et al., 2021; Liu et al., 2021a–we observed a small population that expressed INHBA and LUZP2
that could be separated from the rest of populations and was termed as C5. Currently, there is no C4
population to keep a mapping consistency between the populations from the primary and secondary
analyses.

Therefore, axis C is divided into 4 populations: C1, C2, C3, and C5. C1 is defined by the expression of
COL11A1, MEF2C, DPEP1, and WFDC1; C2 by COCH, CRABP1, NDNF, and SLITRK6; C3 by POSTN, BGN, LRRC15,
and LTBP2; and C5 by IGFBP3, SLC5A3, WNT5A and LUZP2. When looking at the expression patterns, we
see that C1 and C2 have their own transcriptomic profile, but C3 does not–with the slight exception
of POSTN, which is more expressed in C3 than in C1 or C2–, and is instead defined as a population
that is of the axis C, but which does not express markers from C1, C2 or C5. Unlike A3 or B3, the C3
population is not a mixture of C1 and C2 per se, because it does not express their markers, or they are
expressed marginally. This effect is partially observed in PAGA graphs from several datasets–Deng
et al., 2021; Gao et al., 2021; Gur et al., 2022; Hughes et al., 2020; Kim et al., 2021; Solé-Boldo et al.,
2020; Tabib et al., 2018; Xu et al., 2021b, where C3 is a node between C2 and C1, and sometimes with
more populations. This effect is replicated in joint graphs, especially in the one created from the
tree PAGA graphs. C5, when present, appears to branch from C1, C2 or C3 without a clear pattern. This
effect is partially replicated in UMAPs, although this population tends to appear isolated within the
axis C vicinity.

Unsupervised axis assignation reveals that axis C populations have a more diffuse assignment pat-
tern, being also assigned to the A and E axes. This may be due to a lack of clear axis markers or
interaction with those axes, like C1 and C5 and E1. Regardless, we still assign these populations to
the C axis, first to keep the consistency with the primary analysis and second because, as further
discussed in the Discussion section, populations from the axis might have a clear biological function
related to HF.

10.2.4 Axes D and E

As explained before, D1 and D2 populations arise from the branching of the C4 population from the
primary analysis. Additionally, with the addition of new datasets–e.g. Deng et al., 2021; Gur et al.,
2022; Hughes et al., 2020; Liu et al., 2021a; Theocharidis et al., 2022– we observed a new population
expressing RAMP1 and OLFML2A that differed from any other population from the rest of the datasets,
and was thus assigned to a new axis, E. This is the only axis consisting of one population, E1.

D1 population is defined by the expression of ANGPTL7, ENTPD2, CDH19 and ATP1A2; and D2 population
is defined by the expression of BNC2, ITGA6, ITGB4 and TNNC1. Although these two populations are
different, there are not many clear markers that separate one from the other, and instead, most
markers are co-expressed by the two populations. Lastly, E1 population is defined by the expression
of IGFBP2, RAMP1, COL26A1 and WNT2. Since there are few populations within each axis, unsupervised
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axis assignation shows a clear assignation pattern of D1 and D2 to axis D and E1 population to axis
E.

Regarding the PAGA graphs, the joint graphs show that D1 and D2 populations are quite independent
of the rest. It may be argued that they are related to a certain extent to B axi based on the graph
in Figure 45B; however, this links are not well preserved in the combined graph derived from PAGA
trees (Figure 45A).

On the other hand, the E1 population shares a high degree of similarity with the axes B, C and
D–especially with populations B4 and C3–. This probably indicates that the E1 population shares
common functions with other axes and might be a multipurpose population.

10.2.5 T1 population

The T1 population arose during the secondary analysis as a population that failed to be classified
with the marker-to-population algorithm and did not show a clear expression pattern. When looking
at the UMAPs–Deng et al., 2021; Gaydosik et al., 2019; He et al., 2020; Kim et al., 2021; Mariottoni et
al., 2021; Rindler et al., 2021; Solé-Boldo et al., 2020; Tabib et al., 2021–T1 population seems to be
a mixture, or bridge, between B and C axes. In fact, marker expression consists mainly of markers
from the populations C1 and C3–e.g. ADAM12 (C3), ASPN (C), DKK3 (C1), DPEP1 (C1), F2R (C3), LGR4 (C1),
MDK (C3), MME1 (C1), UGT3A2 (C1)–, which might indicate that these cells are either a bridge between
axes–like an undifferentiated population–, or a processing artefact. Although this is an interesting
population, it is not prioritised for this thesis.

10.3 murine dermal fibroblasts are divided into 5 main axes, 3 bridge axes, and 17
populations

In this section, we will explain the evolution of mouse populations from the primary to the secondary
analysis and describe each population and its relationship to the others, as we have already done
in human datasets. Mouse dermal fibroblasts are divided into 5 major axes (v to z) and 2 bridge axes
(w/x and x/y), consisting of 17 populations, a similar number to the 15 human populations.

Axis nomenclature in the secondary analysis is changed from a to e, to v to z. Most prominent axes–
c, b and a–are renamed to x, y, and z, respectively; the d axis is renamed to w and e to v. This is
because of two main reasons. First, we observed that, despite the differentiation of lower casing in
mouse populations (a1, a2, a3) and upper casing in human populations (D1, D2), this nomenclature
was sometimes confusing and could induce indirectly associating axis A in humans to axis a in mice,
and similarly to the rest of the axes, when there is no direct relationship between them. Therefore,
renaming axes with a new set of letters while keeping the difference in casing, would allow less
biased comparisons.

Additionally, the naming of the nomenclature was inspired by the findings of Joost et al., 2020. In
their work, the authors analyse the composition of skin cells of hair follicles in anagen and telogen
phases, including dermal fibroblasts. Regarding the fibroblast subpopulations, they separate them
into 7 populations: FIB1 to FIB4, DS1, DS2 and tDP. FIB populations are dermal fibroblasts, DS1 and DS2
are dermal sheath cells –in anagen and telogen phases–, and tDP are cells of the DP in telogen phase
(Figure 47A). Looking specifically at the location of the FIB populations using immunofluorescence,
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they observe FIB1 and FIB2 to be located within the dermis, where FIB1 has more presence during
anagen and FIB2 during telogen; FIB3 is located within the hypodermis, and FIB4 in the adventitial
layer beneath the panniculus carnosus (Figure 47C)–Figures 6F to 6H in the publication (Joost et al.,
2020)–.

Based on this characterisation, we renamed the fibroblast populations from these axes to match
the layering observed by Joost et al., 2020. Axis x matches the expression profile of FIB1 and FIB2
fibroblasts–Col1a1, Sparc Dcn–, axis y matches the expression profile of FIB3–Cxcl12, Gpx3–, axis x/y is
a mixture of markers from FIB1/2 and FIB3, and axis z matches the expression of FIB4–Mfap5, Plac8–
Figures 47B and 47E. Populations v and w, since they are not directly associated with this layering–axis
w maps to DS and DP cells–, their letters were arbitrarily assigned. Lastly, population y5, based on
the marker expression, is unlikely to be associated with FIB3 and FIB4 populations, and it is possibly
associated with FIB2.

10.3.1 Axis x

Axis c, now renamed as x, consisted of 3 populations–c1 to c3–and a mixed axis b/c. After the ad-
dition and reanalysis of new datasets, we observed that c3 and d5 populations shared a common
transcriptomic profile, so they were merged into the mixed axis c/d, now w/x. No alterations were
observed after adding new datasets for the rest of the populations, so they are kept with the same
labels–c1 to x1, c2 to x2, and b/c to x/y– (Figure 52).

Axis x populations are defined as follows (Figure 49): population x1 is defined by the expression of
Fgfr4, Gpha2, Cib3 and Serpina3m; population x2 is defined by the expression of Igfbp2, Stc1, Sema3a
and Enho; population x/y is defined by the expression of Crp, Akr1cl, Lgr5 and Mup20; and population
w/x is defined by the expression of Coch, Emid1, Kera and Ntn5.

Regarding the structure and relationship with populations from axis x, it is clear that x2 is a terminal
state of x1; that is, x1 and x2 are always related, and x2 is in terminal points of UMAPs and in individual
tree graphs. Although x2 is related to other populations, x1 shows stronger relationships, especially
with x/y and w/x.

Unsupervised axis assignation of populations from axis x reveals that both populations are unani-
mously assigned. w/x mixed population seems to be assigned to all axes, and x/y population seems
to be assigned to either x or y.

10.3.2 Axes y and v

Axis b (now axis y) was originally divided into six populations–b1 to b6–and a mixed axis a/b. After
a reanalysis of markers, we observed that markers from the b2 population were inconsistent across
datasets in newer iterations. The marker-to-population algorithm failed to assign that population
accurately. Therefore, it was removed from the dictionary. Consequently, clusters b3, b4 and b5 were
renamed b2, b3 and b4; and now are set as y2, y3 and y4. After adding Joost et al., 2020 and Phan et al.,
2020 datasets, we observed that the b6 population was assigned to two different clusters. Therefore,
a reanalysis of the different clusters revealed that there was a primary cluster–b5, now termed as
y5–which shared an axis y-like transcriptomic profile and a secondary and less-frequent cluster that
was not unsupervisedly assigned to axis y and was therefore termed as v1. Lastly, the mixed a/b axis,
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originally termed like that for being a bridge between axes a and b, was often assigned to b1, now y1,
after adding the new datasets. This merging also occurs because, originally, a/b was only assigned
in Shook et al., 2020 dataset. Therefore, a/b and b1 were joined into the y1 population.

Axis y populations are defined as follows: population y1 is defined by the expression of Postn, Fabp4,
Cd36 and Pparg; population y2 is defined by the expression of Hmcn2, Col6a6, Fbln7 and Bmp5;
population y3 is defined by the expression of Ccn5, Ccn2, Ecrg4 and Fgf9; population y4 is defined
by the expression of C2, C4b, Chrdl1 and Gdf10; population y5 is defined by the expression of Vwa1,
Vit, P2ry14 and Kcnk2. Lastly, population v1 is defined by the expression of Cldn1, Moxd1, Tenmd2 and
Krt19.

The net of interactions within and with other axes is complex, almost behaving like a clique. Based on
the joint PAGA graphs, individual PAGA graphs, and UMAP plots, y2 seems to be a nexus of interactions
between y3, y4, and, to a lesser extent, y1; and y1 also interacts with y4. y5 is closer in interaction to
y4. Therefore, axis y is highly connected, probably due to the large number of populations within it.

Lastly, population v1 seems to interact with w3, w5 and y5; however, the interactions are less confident
due to this population’s presence in only two datasets, and it is not reflected in the combined PAGA
graphs, where it interacts only with w5. In section 10.4, we observe that y5 and v1 populations have
similar correlates in the human axis D so that this relationship could make sense. Except for y5,
all axis y populations are unanimously assigned to that axis based on unsupervised assignation.
Population b5 is either assigned to y or v—in line with what was explained previously–.

10.3.3 Axis z

Axis z (previous axis a) was divided into three populations: a1, a2 and a3. Population a1 and a2 are
now renamed z1 and z2, with no changes. Changes in population a3 will be described on axis w.

Axis z populations are defined as follows: population z1 is defined by the expression of Ptx3, Ptgs2,
Has1 and Il16; and population z2 is defined by the expression of Akr1c18, Aldh1a3, Chst1 and Itgb7.

There is some variation between datasets regarding the topology and relationships between popu-
lations. In the UMAPs of Abbasi et al., 2020; Shook et al., 2020; Vorstandlechner et al., 2020 datasets,
we see that these two clusters are independent, whereas in the rest of datasets–Boothby et al., 2021;
Buechler et al., 2021; Haensel et al., 2020; Joost et al., 2020–axis z is integrated next to axis y and
tends to be close to populations y2 and y3. The joint tree PAGA graph in Figure 51A–and individual
PAGA graphs from some datasets show that z1 and z2 share a high resemblance and that axis z links
to axis y mainly via the interaction between z1 and y1 or y4.

Based on the unsupervised axis assignation, z1 and z2 are mainly assigned to the z axis, although
the z1 population is sometimes assigned to the y axis, maybe due to the z1-y1 interaction described
before.

This discrepancy between z being a separate entity in certain datasets and being integrated within
y axis in others is intriguing and may underlie a biological basis. Considering z axis to represent
fibroblasts below the panniculus carnosus–and immediately above–and axis y to represent fibrob-
lasts within the hypodermis, a mixture may represent that these two layers come in close contact
and may interact with each other.
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10.3.4 Axis w

During the primary analysis, axis d was divided into 5 populations–d1 to d5–. As previously explained,
d5 was merged with c3 into the c/d, now w/x mixed axis. After adding new datasets, especially Joost
et al., 2020, and Shin et al., 2020, we observed that the d1 population was not consistently assigned,
so it was removed during the secondary analysis. The unsupervised analysis of Shin et al., 2020,
which contains a large set of cells from this axis, revealed 4 main clusters. These clusters, which were
translatable to the rest of the datasets, showed that previous population d3 could be consistently
divided into two populations–w1 and w2–and d4 and d2 populations could be merged into w3. d2
population was also assigned to w1, although not that frequently. Lastly, population w4 was not
assigned to any previous cluster, so it is set as it is.

Lastly, regarding the a3 population from the primary analysis, now w5, it was originally observed
only in Abbasi et al., 2020 dataset, and due to its UMAP location near axis a, it was assigned to it.
Later reanalyses with other datasets–Boothby et al., 2021; Haensel et al., 2020; Shook et al., 2020–
showed that this population was located within axis a and b–Haensel et al., 2020–but also within
axis d–Boothby et al., 2021; Shook et al., 2020–. Additionally, unsupervised axis assignation revealed
that the a3 population was assigned to either the a, b or d axes. considering all this information,
the population was renamed to a/d. However, based on the analysis developed by Shin et al. (2020)
(Shin et al., 2020), this population is associated with hair stem cells–based on the shared expression
of the Cdk1 gene, shown in Figure 49 of this thesis and Figure 5E of the original publication–, and
therefore is renamed as w5 due to this association.

Axis w populations are defined as follows: population w1 is defined by the expression of Chodl,
Slc26a7, Edn3 and S100b; population w2 is defined by the expression of Hhip, Ddx26b, Rspo4 and
Rhbdf2; population w3 is defined by the expression of Cox4i2, Pdlim3, Sema3g and Heyl; population
w4 is defined by the expression of Actg2, Hck, Hapln3 and Fam65b; and population w5 is defined by
the expression of Birc5, Diaph3, Cdk1 and Cdkn3.

Regarding the relationships between populations, it is clear that w1 and w2 populations share sim-
ilar transcriptomic profiles, based on either the UMAPs or graphs. Additionally, w3 and w4 are also
connected, although w3 seems connected to w1/w2 and w/x, as observed in the condensed graph
from Figure 51. Lastly, the w5 population shows an inconsistent pattern related to axes z, w and v in
the PAGA graphs and UMAP plots.

10.4 comparison between mouse and human populations

In this section, we will compare mouse and human populations. Despite the differences in the skin
structure between the two organisms, we assume that some degree of overlap between functions
and transcriptomic profiles of fibroblasts is feasible.

To perform that comparison, we used two methods. First, we merged the samples from the two or-
ganisms in datasets that contain information from human and mouse cells–Boothby et al., 2021;
Vorstandlechner et al., 2021–. Second, we established an overlap of populations based on the tran-
scriptomic profiles of all datasets, assuming that populations with similar functions should have a
higher degree of overlap in relevant markers than populations with dissimilar functions.
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There are advantages and disadvantages to each method. With dataset merging, the main benefit
is that samples are more likely to merge based on their transcriptomic profile; therefore, an over-
lap between two populations is more likely to be more reliable. On the other hand, the number
of datasets where this is feasible is currently 2, so the information from the rest of the datasets
is actually lost. Considering the inter-dataset heterogeneity, and possible artefacts from datasets
integration algorithms, this method may not be sufficient to have a clear image of human-mouse
interactions. Regarding the overlap of markers, the main advantage is that all human and mouse
datasets can be used in the process, so inter-dataset heterogeneity is considered. On the other
hand, the overlap is based on a sub-selection of markers and not in the full transcriptomic range,
so the nuances of the expression of specific subsets of cells may be lost.

10.4.1 Traditional batch effect correction methods fail to integrate murine and human datasets on
a large subset of genes

We aimed to merge the populations from Boothby et al., 2021; Vorstandlechner et al., 2021. We applied
an ortholog mapping between mouse and human genes and a common processing scheme for each
merged dataset. Then, we batch-effect correction by setting the organism as a batch to merge the
datasets from both organisms. The results of the batch-effect correction method are shown in Figures
53A and 54A for Boothby et al., 2021; Vorstandlechner et al., 2021 datasets, respectively. UMAP plots
show that the method failed to integrate the organism variable. UMAPs clearly show that human
cells are separated from the ones in mice.

We expected that, if this is the result of the integration, some underlying transcriptomic variability
was causing this effect. To check that, we obtained the list of DEGs between human and mouse cells,
as shown in Figures 53B and 54B. We observe a clear transcriptomic bias in both datasets. Interest-
ingly, this bias is partly dataset-specific: the biggest changes are due to differential expression of
RPL and RPS genes, B2M, MALAT1, etc., but different across organisms and datasets. Additionally, in
Boothby et al., 2021, we see the overexpression of SOD2 or IER3 in the human dataset, genes associ-
ated with stress response, and we also observe an increase of some fibroblast-associated markers
such as COL3A1, COL1A2 or BGN in the mouse dataset, which were reported as a possible false-positive
signal due to contamination of samples ((Rojahn et al., 2020; Vorstandlechner et al., 2021)).

After this observation, we used a linear regression method to correct unwanted sources of variation
from scanpy (sc.pp.regress_out). Usually, this method is not used due to the existence of more
modern and sophisticated batch-effect correction methods, since it may introduce artefacts into
the dataset due to overcorrection (Tran et al., 2020), and because it implicitly assumes identical cell
type composition across batches (Andrews, 2020; Haghverdi et al., 2018). After the application of this
method, the cells from human and mouse organisms were nearer to each other in the UMAP plot
but did not have enough overlap to do the analysis (Figures 53C and 54C). Therefore, we discarded
this method to analyse overlap between populations across datasets, not only because it does not
work but also because applying further processing steps to merge the samples may introduce such
a large amount of artefacts that hinder the certainty of the overlap between samples.

These results were initially intriguing since both Boothby et al., 2021 and Vorstandlechner et al., 2021
show a merged UMAP within their figures. To try to replicate their method, we looked at their refer-
ences to see how they performed the integration. Vorstandlechner et al., 2021 showed no processing
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method to integrate the samples, and Boothby et al., 2021 stated the following: "[...] genes within the
resulting Seurat object were renamed with their most probable human orthologues. [...] An initial
list of 313 mTIFF signature genes was generated [...]. This TIFF signature was then filtered to remove
genes that were not variably expressed in human data, which resulted in a final set of 144 genes."
From this sentence, the understanding is that they used a core set of genes commonly expressed in
human and mouse fibroblasts. Although this approach is feasible, it is not what we seek since we
lose information relevant to integrating such a reduced set of genes. Additionally, this set might bias
the integration and produce false positive results.

10.4.2 Control results in human-human and mouse-mouse marker-based comparisons

In addition to dataset integration, human-mouse population comparisons based on the expression
of common markers is also a feasible option. Before we established the comparison between human
and mouse populations, we wanted to assess the comparisons within human and mouse populations.
This is due to two main reasons: 1) to check that the overlap of markers between populations follows
a logic pattern–e.g. A1 and A4 populations, or B1 and B2 populations should share more markers than
between A1 and B2–, and 2) to assess the amount of overlap–if a common overlap in human-human
and mouse-mouse dataset is of 15%, then observing a 12% overlap in human-mouse populations
might be expected–. For the comparisons and their corresponding heatmaps, overlaps smaller than
0.03 are not considered.

10.4.2.1 Human-human comparisons

Figure 55 shows the heatmap of Jaccard index values with the top 125 markers of each population.
Most of the conclusions from the heatmap are shared based on PAGA graphs, and UMAPs commented
before. These results are expected and confirmatory to some extent since both UMAP and PAGA
information is based on the transcriptomic profiles of the populations.

• A axis is highly isolated from the rest of the clusters, except for A2 population, which shares
some markers with C and E axis (∼0.05), indicating a possible interacting functionality between
them. However, its relatively low similarity profile with C1, C3 and E1 makes it a somewhat
"independent" population.

– A3 population is a bridge between A1 and A2, being more similar to A1 (0.27) than to A2
(0.05). The most relevant overlap markers between A1 and A3 are AOX1, ARFGEF3, COL14A1,
CORIN, GLRB, OMD and SVEP1.

– A4 overlaps both with A1 and A3, but the overlap is more apparent with A1 (0.19) than
with A4 (0.08). The most relevant markers between A1 and A4 are ACKR3, CD12, CD55, CD70,
CLEC3B, DBN1, FBN1, GPX3, IGFBP6, ISLR, LGR5, SLPI.

– No overlap between A1 and A2 is found, and some overlap between A2 and A3 is found
(0.05).

– Relevant markers overlaping between A2 and C1/C3 are COL21A1, COL6A1/3, COL7A1, COMP
LAMC3, LOXL2, PTK7, and SPON1.

• B axis, similar to A axis, looks independent from most of the other axes.
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– It is clear again that B3 acts as a bridge cluster between B1 and B2, with a more appar-
ent overlap with B2 (0.36) than with B1 (0.08). Markers shared between B2 and B3 are
ADRA2A, C3, CCL19, CTSC, CX3CL1, ICAM2, IGFBP3, IL34, NLGN4X, PTGDS, RBP5, and TNFSF13B;
and markers shared between B1 and B3 are CCL2, CXCL1/2/3, GEM, HAS2, and TNFAIP3.

– B1 and B2 clusters are not related–similarly to A1 with A2–, and B2 is related to B4 as well
(0.11): ABCA8/10, APOC1, C7, EPHX1, GGT5.

– Despite the relative independence of the B axis, B1 has a partial overlap with D1 (0.04),
and B4 has partial overlaps with D1 (0.07), D2 (0.06) and E1 (0.07)

• Regarding C, D and E axes, there are instances of a high correlation–e.g. C1 and C3, D1 and D2–,
and, as a whole, there is an underlying basal correlation between all of these populations. It
is likely that all three axes have a common interaction due to a similar location or a similar
function.

– C1 and C3 are specifically related (0.19), and also C2 with C3 (0.16). This may indicate the
partial relevance of C3 as a bridge cluster between C1 and C2.

– C5 cluster is related to C1 (0.14).

– As observed from UMAPs and graphs too, D1 and D2 are highly related (0.23).

– Similar with D axis, E1 population overlaps with several populations (C and D axes, as well
as A2 and B4), which makes it a good candidate for further analysis.

10.4.2.2 Mouse-mouse comparisons

We calculated the Jaccard index with the top 150 markers to perform this comparison, similar to
human-human populations. Figure 56 shows the heatmap of Jaccard index values. Overall, there is a
high overlap of clusters with each axis and a low overlap of clusters between axes. Also, as expected,
bridge clusters show some overlap between their respective clusters.

• z2 and z1 are highly similar (0.25), as expected.

• Surprisingly, contrary to what was observed in UMAPs and PAGA graphs, there is no relevant
marker overlap between z1 and y1.

• Populations from axis x have a certain degree of similarity–x2 with x1 (0.15) and x1 with x/y
(0.13)–. The bridge axis x/y overlaps with y3 (0.10) and y1 (0.08).

• y axis shows a general overlap across all populations in that axis. The population interactions
with a higher degree are between y2 and y3 (0.12), y4 (0.15) and y5 (0.12); and between y4 and y5
(0.11). These observations align with what was previously commented before, based on UMAPs
and PAGA graphs.

• Within w axis, there are two pairs of interactions with a high overlap–between w1 and w1 (0.39)
and between w3 and w4 (0.17)–. Interestingly, and as it was previously stated, w3 also interacts
with other populations, mainly with w/x (0.08) and v1 (0.05). w/x interacts with w3, w4, and with
x2 (0.06), but not with w1, which is observed in UMAPs and PAGA graphs.
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10.4.3 Human-mouse marker-based comparison

In human-mouse comparisons, we have used the first 250 markers from each population to compute
their Jaccard index. The results are displayed in Figure 57. At a first glance, overlapping values range
between 0.08 to 0.14 in overlaps considered "relevant". Those values are in range with the ones from
human-human and mouse-mouse comparisons, taking into account that values higher than 0.2 are
considered for populations that are extremely similar–e.g. z1 and z2, or B2 and B3–.

In this heatmap, the possible pairings are more diffuse; thus, we will select the most relevant over-
laps. Additionally, for each pair of populations, we will show their overlapping markers, divided into
four categories: markers relevant in human and mouse, markers relevant in human, markers rele-
vant in mouse and the rest of markers. We consider markers relevant if they are expressed mainly in
that population. This criterion is arbitrary, so we try to make it conservative; we select relevant mark-
ers that are only expressed visibly in that population or, at most, in closely similar populations–like
A1 and A4–. Genes expressed in more populations or have mild expression are not considered.

This secondary criterion, additional to the overlap, is relevant to help us choose markers in down-
stream parts of the analysis, instead of using sets of markers that we know beforehand are not
accurate of the depicted populations.

The heatmap in Figure 57 does not show the markers in their original order. Instead, they are changed
to reflect some of the interactions better visually. We will use human populations as the reference
for comparison with mouse populations.

Beginning with axis A, there is an overlap of populations from axes x, y and z in mouse; which might
imply that the functionality of this axis might be distributed in mouse.

• A2: although it shares some markers with some populations from axes y and w, the highest
overlap is with population x2. Interestingly, the interaction of A2 with w axis populations (w1 es-
pecially), is something that we observe within human-human and mouse-mouse comparisons–
A2 with C1/C3 and x2 with w/x–, assuming that C and w are homologous populations. Although
there are slight differences between populations, this pattern is recurrent, and could be of
interest for further analysis.

– A2 - x2: CD109, COL3A1, COL5A1, LOXL2, NFATC2, NOTUM, PAM, RSPO3, SCARF2, TCF4, ZNF608, COL13A1,
CYP26B1, DAAM2, ISM1, NKD1, NKD2, PAPPA, PREX1, PTGS1, TGFBI, THBD, THSD4, C10orf105, CAV1,
CCBE1, EMX2, ENHO, LSAMP, MAMDC2, SPRY1, TWIST2, WNT5A, AHRR, AXIN2, CD9, COL7A1, F13A1, GREM2,
IGFBP2, KCNK2, PTK7, PTPRE, RSPO1, SMIM3, STC1, TNFRSF19 [11, 12, 10, 14] - 47

– A2 - w1: C4orf48, EMB, ETV1, PAPPA, PLCB1, SFRP2, WIF1, WNT5A, APCDD1, AXIN2, FGFR2, NKD1, RAMP3,
RGS2, SMIM3, LAMC3, NOTUM, NRN1, RSPO1, SPON1, TFAP2C, APELA, COL13A1, COL23A1, DAAM2, F5,
NKD2, PTK7, RSPO3 [8, 7, 6, 8] - 29
Some of these markers, such as DAAM2, NKD2, PTK7 or RSPO3 are coexpressed between A2 and C2
or other C members.

• A1: this population shows a relevant overlap in several populations, although we will focus on
x1, x/y, z2 and y3. Among the combinations, the mouse population that best overlaps A1 is z2,
with 12/40 relevant markers in mouse and human. Interestingly, none of these markers overlap
with relevant markers in the A1-x1 and A1-y3 comparisons, which may imply that A1 population
establishes functions that might be of separate fibroblast types in mice.
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– A1 - x1: C1QTNF3, CD34, CHPF, CLEC3B, COL1A1, COL1A2, COL3A1, CREB5, CTSK, DCN, ELN, FKBP9, HTRA1,
IGFBP5, ITGBL1, KDELR3, LOXL4, MFAP4, MMP14, P4HA2, PCOLCE2, PDGFRL, PLPP1, RCN3, SLC38A10,
SPARC, TSPAN4, VKORC1, AEBP1, ANGPTL1, CADM3, GDF15, GPNMB, HPGD, MMP2, PODN, SCARA5,
TIMP2, TNXB, ADAMTS2, PPIC, CGREF1, CPZ, CYBRD1, CYP4B1, MMP27, SEMA3B [28, 11, 2, 6] - 47

– A1 - x/y: ADAMTSL1, ANGPTL1, BASP1, CCDC80, CD34, CILP, COL12A1, COL1A1, COL1A2, CTSB, CTSK, DCN,
FKBP9, IGSF10, ITGBL1, NUCB2, OGN, P4HA2, MGST1, PCOLCE2, PPIB, RCN3, SERF2, SERPINF1, VKORC1,
ABCC9, ADGRD1, AEBP1, AGTR1, CADM3, CYP4B1, GALNT15, HPGD, LOX, PCOLCE, PDGFRL, SEMA3B,
SMOC2, SVEP1, THBS2, THBS3, TNXB, C1QTNF3, GPX3, GREB1L, PLTP, CGREF1, CPZ, LGR5, MMP27 [25,
17, 4, 4] - 50

– A1 - z2: CREB5, ECM1, FBN1, IGFBP5, IGFBP6, METRNL, PAMR1, PLXDC2, SEMA3C, TIMP3, VGLL3, CHRDL1,
CLEC3B, MFAP5, QPCT, SCARA5, TIMP2, ADAMTSL4, BASP1, CD248, CD34, COL14A1, DBN1, EMILIN2, LRRN4CL,
PTGIS, SFRP2, UCHL1, ACKR3, ADGRD1, CD55, DPP4, ISLR, LIMS2, MTCL1, NPR1, PI16, PRKG2, SEMA3E,
TUBB4A [11, 6, 11, 12] - 40

– A1 - y3: ANGPTL1, COL12A1, COL14A1, CRYAB, CYB5R3, DHRS3, ELN, FGL2, GAS1, GPX3, IGFBP6, ITGBL1,
MFAP4, OGN, PRELP, SERPINF1, SFRP2, TIMP3, CLU, FBLN1, FBLN2, GALNT15, LGR5, LOX, CD151, PCOLCE,
PDGFRL, C1QTNF3, CILP, MGP, PTGIS, ABCC9, OMD, PODN, SMOC2 [18, 9, 4, 4] - 35

• A4: the most overlapping mouse populations in mouse are z1 and z2. Interestingly, although y1
shows a degree of overlap comparable to z1 (0.09), it does not have relevant enough markers
to be focusing on it. Between z1 and z2, there seems to be more overlap and relevant markers
from z2 (0.12) than from z1 (0.09), although many of them are shared–e.g. AIFL, CD248, CD55,
NPR1, SEMA3C, SEMA3E, SFRP4 or WNT2–.

– A4 - z1: ADAMTS5, FSTL1, GFPT2, MGLL, RAMP2, SDK1, TIMP2, TNFAIP6, VASN, ZYX, ACE, CLEC3B, GPX3,
IGFBP6, LOXL1, MFAP5, PTGIS, RAB32, SCARA5, ACKR3, ADGRD1, AXL, CHRDL1, FLNC, GAP43, HAS1, HEG1,
PROCR, PRSS23, UGDH, AIF1L, CD248, CD55, DBN1, DPP4, EMILIN2, NPR1, SEMA3C, SEMA3E, SFRP4,
WNT2 [10, 9, 11, 11] - 41

– A4 - z2: BMP7, CD34, DDAH2, GFPT2, IGFBP5, MGLL, NHSL1, PCSK6, PPP1R14B, PXN, RAMP2, SCARA3,
SDK1, SMURF2, TRIO, ZNF385A, ZYX, ACE, ACKR3, CLEC3B, DBN1, FBN1, IGFBP6, LOXL1, MFAP5, SCARA5,
TIMP2, TIMP3, ACKR2, ADAMTSL4, ADGRG2, AXL, CHRDL1, DACT2, GAP43, HEG1, PROCR, PRSS23, UGDH,
ADGRD1, AIF1L, CD248, CD55, DPP4, EMILIN2, ISLR, LIMS2, NPR1, PAMR1, PTGIS, RAB32, SEMA3C,
SEMA3E, SFRP4, WNT2 [17, 11, 11, 16] - 55

– A4 - y1: ADAMTS5, ADGRD1, AHNAK2, APBB1IP, AXL, CAPG, CDH13, FAP, FSTL1, GFPT2, GLIPR2, HEG1,
LGR4, LSP1, MEDAG, MGST1, MMP2, PRSS23, RAMP2, TAGLN2, THBS3, TMSB10, TNFAIP6, UGDH, VCAN,
ZNF385A, CD248, CD55, CLEC3B, EMILIN2, FBN1, GPX3, IGFBP6, LOXL1, MFAP5, TNXB, TPPP3, HMCN2,
NOVA1, PLTP, SSC5D, ACE, CTHRC1 [26, 11, 4, 2] - 43

Axis B is related to several populations in mouse, mainly from axis y; although for some popu-
lations, like B4, there is an array of interaction from several axes.

• B1: B1 interacts mainly with z1 population (0.08). Interestingly, z1 also interacts with A4, which
might imply that they have similar functions, split in human.

– z1 - B1: ADAMTS1, BCL3, C3, CSRNP1, CSRP2, GFPT2, HMOX1, IFI16, MYC, NFE2L2, NFKBIZ, NOCT, PHLDA1,
PIM1, PLSCR1, PNP, SOD2, ERRFI1, KDM6B, MAFF, NFKB1, NFKBIA, NR4A3, REL, TIPARP, TNFAIP3, TN-
FAIP6, UAP1, ZC3H12A, HAS2, PTGS2, PTX3, TNFAIP2, CCL2, CXCL2, FOSL1, GCH1, IL6 [17, 12, 4, 5] - 38
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• B2 and B3: these two populations interact mainly with y4–0.07 for B3 and 0.08 for B2–. Interest-
ingly, y4 also interacts with B4, and with a higher overlap (0.14), but it is more likely that B2/B3
show relevant markers–3/61 from B4 and 7/38 from B2–.

– y4 - B2: ABCA8, ABI3BP, C1S, FRMD6, HGF, ID4, IL11RA, LDB2, NRP1, OSMR, P2RY14, PLCXD3, TRIM47,
TSPAN11, VEGFA, APOC1, C7, CXCL12, CYGB, GGT5, IGFBP3, IGFBP7, ADCYAP1R1, AVPR1A, COL4A4, NDRG2,
PTCH2, RBP1, SNED1, TMEM176A, TMEM176B, APOE, C3, IL33, MGP, NFIB, SLCO2B1, TNFSF13B [15, 7, 9,
7] - 38

– y4 - B4: ARHGDIB, COL4A2, CYGB, DACT1, EGFR, EPHA3, EPS8, F3, FAM13A, FOXP1, GSN, HGF, IGFBP3,
IGFBP7, ITM2B, MGST1, NGFR, NID2, OLFML2B, SERPING1, SRPX, TMEM176B, TNFSF13B, TSHZ2, ABCA8,
APOC1, APOD, C7, CXCL12, FGF7, FMO1, FZD4, GGT5, GPX3, HHIP, IGF1, NFIB, NTRK2, PODN, VIT, ZFHX4,
ABCC9, ADAMTSL3, APOE, BMPER, BNC2, C3, COL4A4, FMO2, IL33, INMT, NR2F2, NRP1, PEAR1, PPL, PTCH2,
SFRP4, TMEM176A, CHRDL1, GDF10, MGP [24, 17, 17, 3] - 61

• B4: B4 shows a diffuse pattern of overlap throughout y axis (y1 to y5). Although the overlap grade
is enough to be considered relevant (0.07 to 0.14), none of the overlaps have enough relevant
genes (2 or 3 in most cases). Most of the genes are relevant in human or mouse only, but not
in both. Therefore, it is likely that this population is not present in mouse and its putative
functions might be shared across the existing mouse populations. Additionally, we observe
that y2 and y3 populations also map to populations from A, C, D and E axes, so it is likely that
these populations directly cannot be comparable to any human fibroblast population.

– B4 - y1: APBB1IP, ARPC1B, COL4A2, EBF1, EGFR, GPC3, HIC1, IGFBP3, LGALS3BP, LGMN, MEDAG, NFIB,
NR1H3, PRSS23, SLIT2, TGFBR2, THY1, TMEM135, CXCL12, CYGB, EFEMP1, FMO1, FZD4, GGT5, GPX3,
IGFBP6, ITM2A, LSP1, MGST1, RARRES2, ZFHX4, BMPER, FABP4, NOVA1, PLAT, PPARG [18, 13, 4, 1] -
36

– B4 - y2: ARPC1B, CAPN6, COL15A1, COL4A2, COL4A4, CRLF1, EGFR, EPS8, F3, FHL2, HIC1, HSPG2, HTRA3,
IGFBP7, ITM2A, ITM2B, NID2, SPRY1, VWA1, ABCA9, APOD, CYGB, FMO1, FZD4, GGT5, GPX3, GSN, IGF1,
LSP1, MGP, MYOC, NFIB, PODN, TSHZ2, ZFHX4, ADAMTSL3, BMPER, INMT, PEAR1, ABCA8 [19, 16, 4, 1] -
40

– B4 - y3: ARHGDIB, DEPTOR, DHRS3, EPHA3, F3, FHL2, GHR, GPC3, IGFBP3, IGFBP6, IGFBP7, KCNJ8, NPY1R,
PEAR1, SFRP4, SLIT2, SUSD2, TIMP3, ABCA8, APOD, CYGB, FGF7, FMO1, GPX3, GSN, IGF1, ITM2A, MGP,
MYOC, NFIB, PHLDA3, PODN, TXNIP, ZFHX4, ABCC9, FMO2 [18, 16, 2, 0] - 36

– B4 - y4: ARHGDIB, COL4A2, CYGB, DACT1, EGFR, EPHA3, EPS8, F3, FAM13A, FOXP1, GSN, HGF, IGFBP3,
IGFBP7, ITM2B, MGST1, NGFR, NID2, OLFML2B, SERPING1, SRPX, TMEM176B, TNFSF13B, TSHZ2, ABCA8,
APOC1, APOD, C7, CXCL12, FGF7, FMO1, FZD4, GGT5, GPX3, HHIP, IGF1, NFIB, NTRK2, PODN, VIT, ZFHX4,
ABCC9, ADAMTSL3, APOE, BMPER, BNC2, C3, COL4A4, FMO2, IL33, INMT, NR2F2, NRP1, PEAR1, PPL, PTCH2,
SFRP4, TMEM176A, CHRDL1, GDF10, MGP [24, 17, 17, 3] - 61

– B4 - y5: ABCA8, F3, GPC3, HSPG2, IL33, ITM2A, LXN, MGP, RARRES1, COL15A1, GSN, NTRK2, ABCA6, APOD,
FOXS1, NR2F2, PHGDH, VIT, VWA1, MYOC, TSHZ2 [9, 3, 7, 2] - 21

Axis C in human mainly overlaps with axis w in mouse. This is expected due to the similarity in
functions of both axes, which are related to hair follicle cells.

• C2 population is related to several mouse populations, but mainly w/x, with whom it shares
12/42 relevant markers–based on an overlap value of 0.09–. Secondly, w1/w2 populations share
6/34 relevant markers–overlap of 0.06–. Lastly, y3 only shows overlap with 2 relevant markers,
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despite showing a similar overlap with w1/w2–0.05–. Therefore, we do not consider the C2-y3
interaction as useful.

– C2 - w/x: ADAMTS9, CBFA2T3, COL11A1, EDNRA, ENHO, HTRA1, SLC48A1, SRPX, TBXA2R, TENM3, CPNE5,
CRABP1, FZD1, GPM6B, MEOX2, NCAM1, NFATC2, PLXDC1, PTH1R, RSPO4, SLC40A1, TBX15, TCF4, TRIB2,
TRPS1, HS3ST6, KIF26B, MEGF6, NR2F1, TSHZ3, CHST15, COCH, CYP1B1, DKK2, EMID1, FIBIN, FMOD,
MAFB, MKX, NRP2, PTGFR, TNMD [10, 15, 5, 12] - 42

– C2 - w1|w2: CNTN1, CTTNBP2, PRLR, PTGER3, PTPRD, SFRP1, TSPAN7, ATP1B1, BTBD11, CLEC14A, DKK2,
EMB, GPM6B, IGFBP5, MEIS2, NCAM1, SPARCL1, ALX4, CRABP2, DUSP10, LEF1, NDP, PDE1A, PTK7, RSPO4,
RUNX3, SDC1, WNT5A, CRABP1, DAAM2, NDNF, NOTUM, TRPM3, TRPS1 [7, 10, 11, 6] - 34

– C2 - y3: CALM2, MDFIC, OGN, PDE4B, PMEPA1, PRELP, RERG, SERTAD4, SUSD2, EMB, FIBIN, FMOD, FZD1,
KCNAB1, PTPRD, PTPRK, TBX15, CAVIN2, F3, FGF9, LTBP4, PAQR6, SFRP1, ASPN, CADM1 [9, 8, 6, 2] - 25

• C1 population interacts mainly with w4 and w3 mouse populations–0.12 and 0.11 overlap respectively–
. When looking at the population marker overlap, we observe a much larger overlap of relevant
markers with w4–18/53– than with w3–2/48–.

– C1 - w4: ARHGAP28, ATP10A, CDH11, COL27A1, COL4A1, KIAA1217, KLF5, LMO7, MGLL, NPNT, NUAK1, NXN,
PALLD, PMEPA1, POSTN, RNF152, SPARC, CNN2, MME, SEMA5A, ADAMTS6, CD200, COL7A1, FOXD2, LMO4,
LRRC15, NID2, NTRK3, PARD6G, PAWR, PRR5L, SATB2, TMEM119, TNMD, TPM2, ACAN, ACTA2, ADAMTS18,
ADAMTS9, BCL11B, CALD1, CCND1, COL11A1, COL12A1, COL8A2, CPXM2, EDNRA, EDNRB, EGFL6, MEF2C,
RAMP1, TAGLN, TENM3 [17, 3, 15, 18] - 53

– C1 - w3: AFAP1L2, COL6A3, FNBP1L, FOXD2, JAG1, KIF26B, LMO4, MDK, MGLL, MICAL2, NPM1, PALLD,
PARD6G, PAWR, PMEPA1, SHOX2, SOX18, SOX4, TMEM119, TNS3, TPM2, ACAN, ACTA2, ADAMTS18, ALX4,
BCL11B, CALD1, CD200, CDH11, CNN2, COL11A1, DKK3, EDNRA, EVA1A, F2R, KIAA1217, LAMC3, MEF2C,
PTCH1, ROBO2, RUNX2, STMN1, LRRC15, MMP11, NTRK3, TAGLN, CCDC3, EGFL6 [21, 21, 4, 2] - 48

• C3 population, being established as a putative "bridge" between C1 and C2, is expected to over-
lap with mouse populations with C1 and C2. As such, C3 overlaps with w/x–0.11–and w4–0.10–
populations, as expected. Looking at the significative markers, both w/x and w4 show a slight
overlap–4/51 and 5/44– with C3. Of note, the number of relevant markers of C3 is reduced; there-
fore, we would expect this lower level of relevant marker overlap between human and mouse.
Additionally, C3 also shows some degree of overlap with x1–0.08–, but there is only 1 relevant
marker between human and mouse, so this comparison should not be considered.

– C3 - w/x: ADAMTS9, AQP1, CDH11, CHCHD10, CNN2, COL11A1, COL16A1, CRABP1, DKK3, EDNRA, EGFLAM,
EMP2, FIBIN, FZD1, GPM6B, HMCN1, MEF2C, MFAP4, MMP11, MXRA8, PLXDC1, PTMA, RSPO4, SESN3,
SLC40A1, TBX15, TCF4, THY1, TMEM119, TMEM204, TPM2, TRPS1, F2R, HTRA1, MFAP2, POSTN, TENM3,
CPXM2, DKK2, EMID1, KIF26B, MEGF6, NR2F1, NREP, NRP2, RFLNB, TSHZ3, COL7A1, MAFB, MMP16, RASL11B
[32, 5, 10, 4] - 51

– C3 - w4: BGN, BHLHE41, CALD1, CDH11, CNN2, EMP2, FABP5, ITGB1, ITGBL1, MGLL, MYH9, NPNT, PALLD,
PPIC, PRELP, SORCS2, SPARC, KIAA1217, LMO7, PMEPA1, SEMA5A, ACAN, ACTN1, ADAMTS9, AQP1, CGNL1,
COL11A1, COL12A1, CPXM2, EDNRA, EGFLAM, LBH, MEF2C, MME, SLC40A1, TAGLN, THBS4, TMEM119, TPM2,
COL7A1, COL8A2, LRRC15, POSTN, TENM3 [17, 4, 18, 5] - 44

– C3 - x1: BMP1, CHPF, COL3A1, COPZ2, GLT8D2, ITGBL1, LUM, MARVELD1, MFAP4, MMP14, MMP2, P4HA2,
PYCR1, RCN3, RRBP1, SLC16A3, SPARC, SPHK1, SPON2, BGN, C1QTNF6, COL5A1, COL5A2, ELN, HTRA1,
ADAMTS2, AEBP1, COL16A1, COL1A1, COL1A2, EMID1, PPIC, PPP1R14A, SULF2, LTBP2 [19, 6, 9, 1] - 35
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• C5 population shows some overlap with population w3–0.08–and w1|w2–0.07–. When looking
at the relevant markers, we observe a better overlap with w1|w2 than with w3–8/29 vs 2/26–.
Interestingly, the amount of markers overlapping between C2 and w1|w2 is similar to the ones
with C5 and w1|w2, although higher in proportion–6/34 vs 8/29–; and the markers that are
relevant in human and mouse between the two comparisons do not overlap between them.
Therefore, C2 and C5 functions may be shared between w1 and w2, without a clear pattern.

– C5 - w3: CFL1, COL11A1, DKK3, EDNRA, EEF1A1, F2R, PFN2, PMEPA1, PTMA, SMS, SOX4, STMN1, ALX4,
CXCR4, HEY2, JAG1, LMO4, MARCKSL1, PRDM1, PREX2, PTCH1, SOX18, KIF26B, LAMC3, CDH11, ROBO2
[12, 10, 2, 2] - 26

– C5 - w1|w2: C4orf48, FST, LAMC3, MARCKSL1, PLK2, PTCH1, PTMA, RAB34, SPARCL1, CXCR4, IGFBP3,
PDE3A, PRDM1, PREX2, ROBO1, EDN3, HEY2, SDC1, SLC26A7, SPON1, TRPS1, ALX4, BMP7, INHBA, LEF1,
PGM2L1, SOX18, TFAP2A, WNT5A [9, 6, 6, 8] - 29

Axis D has three possible populations with considerable overlap: y4, y5 and v1. To see which
populations are the most likely fit for D1 and D2 independently, we will analyse each com-
bination’s relevant marker overlap. We observe that the best fits are D1 with y5 and D2 with
v1. y5 shares 9/24 relevant markers with D1, whereas only 2/13 with D2, which makes D1 more
suitable than D2 to be associated to y5. Regarding v1, there is a 7/43 overlap with D1, whereas
there is a 19/60 overlap with D2, implying that D2 is likely to be more associated with v1. Lastly,
regarding population y4, we see that the relevant overlaps are scarce–2/29 with D1 and 1/29
with D2–compared to y5 and v1, so this mouse population is far less likely to be comparable to
D1 or D2 in human.

• D1 vs D2 - y5

– D1 - y5: ARL4A, CNN3, CSPG4, ITM2A, LUM, NID1, EBF2, ENTPD2, ETV1, GPC3, PHLDA1, SPARCL1, TM4SF1,
CDKN2B, MATN2, ABCA8, APOD, COL8A1, FOXS1, NR2F2, P2RY14, SOX9, TGFBI, VIT [6, 7, 2, 9] - 24

– D2 - y5: ABCA8, CNN3, EBF2, ETV1, ITM2A, NR2F2, SMOC2, TGFBI, TM4SF1, VIT, FOXS1, MATN2, P2RY14
[10, 0, 1, 2] - 13

• D1 vs D2 - v1

– D1 - v1: CAVIN2, CSPG4, CSRP1, CTNNAL1, DOCK9, FRMD4B, JAG1, MTUS1, NDRG1, PEAR1, PLEKHA4, PTCH1,
STMN1, SYNE2, TLN2, TUBA4A, CD200, DUSP5, EFNA1, EGR3, ETV1, MRAS, NR2F2, OLFML2A, SLC12A2,
SOX9, TENM2, TGFBI, VIT, BNC2, EZR, ITGA6, ITGB4, KLF5, SBSPON, SLC2A1, AKAP12, CLDN1, EBF2, EFNB1,
ETV4, MTSS1, NDRG2 [16, 13, 7, 7] - 43

– D2 - v1: v1 - D2: BHLHE40, DMD, ENDOD1, ETV1, FRMD4B, JAG1, KTN1, MDFIC, MFAP5, NDRG1, NR2F2,
PHLDA3, PLSCR4, PTCH1, SFRP1, STMN1, STXBP6, SYNE2, TLN2, ADAMTSL3, AKAP12, CAVIN2, CSRP1,
DACT1, DUSP5, IGFBP6, ISYNA1, MRAS, OLFML2A, PEAR1, PLEKHA4, SORBS1, TGFBI, TJP1, VIT, CCDC3,
DDIT4, EZR, PERP, TPD52, TRIB2, AQP3, BNC2, CAV1, CAV2, CLDN1, DOCK9, EBF2, EFNB1, GAB1, GPC1,
ITGA6, ITGB4, KLF5, KRT19, MTSS1, NDRG2, SBSPON, SLC2A1, TENM2 [19, 16, 6, 19] - 60

• D1 vs D2 - y4

– D1 - y4: APOD, BNC2, EBF2, EGFR, EPS8, FMO1, IGFBP7, ITGA6, KLF5, LTBP4, MEOX2, NDRG2, NGFR, NR2F2,
PEAR1, S100B, SCN7A, VIT, CYP1B1, P2RY14, PHLDA1, SPARCL1, WFDC1, ABCA8, CYGB, INMT, SFRP4,
ENTPD2, FMO2 [18, 5, 4, 2] - 29
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– D2 - y4: y4 - D2: ABCA8, ADAMTSL3, CCDC3, COL4A2, EBF2, EGFR, CYP1B1, IGFBP7, ITM2B, LTBP4, MEOX2,
MFAP5, NDRG2, NR2F1, NR2F2, P2RY14, SCN7A, VIT, BNC2, CAV1, DACT1, GPC6, ITGA6, KLF5, NGFR, PEAR1,
CHRDL1, SFRP4, INMT [18, 8, 2, 1] - 29

• E1 population shows more reduced levels of overlap–0.05 to 0.07– with several mouse popu-
lations: y2, y3, y4, w3, w4, and v1. Some of these populations, like w3, w4, and v1, have a high
chance of being related to other human populations like C1 or D2, and it is less likely, based on
the smaller overlaps of relevant markers, to be associated with E1. On the other hand, based
on the heatmap from Figure 57, and on the overlapping markers, populations y2, y3 and y4 are
not one-to-one correspondence candidates, since they have marker overlap with a wide range
of human populations. Therefore, based on this analysis, we cannot assign a clear human-to-
mouse comparison candidate to E1.

– E1 - y2: APOD, CAPG, COL15A1, FHL2, G0S2, GSN, IGF1, ITGA11, ITM2A, ITM2B, JUP, LAMA2, LPL, LSP1, MFAP5,
SCN7A, SFRP1, SPRY1, TMEM204, CMKLR1, MGP, PLEKHA6, RGMA, COL14A1, CRLF1, GPM6B, INMT, PEAR1,
TGFBI, TSHZ2, VWA1, MEOX1 [19, 4, 8, 1] - 32

– E1 - w3|w4: ACOT7, ALX4, BHLHE40, BHLHE41, C1QTNF7, CALD1, CCDC34, CDC42EP3, CDK6, DKK3, EFNB1,
EMP2, EVA1A, FHL2, HES1, HEY1, ITGB1, JUP, KLF5, LAMC3, LMO7, MAF, MFGE8, MSI2, RASGRP2, RGCC,
RUNX3, SEMA3G, SEMA5A, SHOX2, TBX18, EGR2, KIAA1217, OLFML2A, RAMP1, TCF7L2, AQP1, ARHGDIB,
CDH11, COL8A2, CSRP1, EDNRA, F2R, FOXD2, PARD6G, RUNX2, STMN2, IGFBP2, NTRK3 [31, 5, 11, 2] - 49

Therefore, as a summary of all the comparisons, we conclude that human and mouse populations
share a certain degree of overlap, with some cases of merely a one-to-one or one-to-two combinations–
e.g. A2-x2, C1-w, A4-z1/z2–; some cases where a set of human and mouse populations are comparable
as a set and not individually–e.g. A3 and A1 with x1 and x/y, or D1 and D2 with y5 and v1–; and some
cases where the overlap may be confounded by that population being similar or interacting with
other populations–e.g. E1 in human or y2 and y3 in the mouse–, and therefore not having putative
comparable populations from the other species.

10.5 depiction of papillary and reticular programs on human datasets

For many years, fibroblast-related literature has focused on the differences between dermal fibrob-
lasts from the papillary dermis and the reticular dermis. In this section, we will analyse the most
relevant markers based on the literature and use them to classify the human fibroblast populations
into papillary-like or reticular-like.

To check the relevance of each population to the papillary-reticular location, we obtained a list of
markers from 6 different references: Janson et al., 2012, Nauroy et al., 2017, Philippeos et al., 2018,
Korosec et al., 2019, Haydont et al., 2019, and Haydont et al., 2020. The full list of markers is available
in the Materials and Methods section 5.12. Based on that list, we applied the marker-to-population
algorithm to see which fibroblast populations matched more with papillary or reticular signatures.
Figure 58 shows the results of that score.

The results from the figure indicate that population A2 is the most likely to be assigned to the
papillary dermis based on the signatures and, on the other hand, A1, A4, B4, C1, D2 and E1 are more
likely to be assigned to the reticular signature. The rest of the populations tend to be equally assigned
to both signatures.
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Another way to check the belonging of the populations to each type of fibroblast is to assess, for
each marker, which population is best assigned. We used the manual scoring of markers and applied
that scoring to each fibroblast signature. Therefore, for each marker and population, we have the
information of whether the marker is assigned as papillary or reticular based on the signature and
if it is a good marker for that population. The results are available at Figure 59.

For population A2, we observe that there is a large set of genes almost specific to that population–
e.g. COL23A1, RSPO1, PTGS1, COL6A5, COL18A1–that belong to the papillary signature. For the A axis in
general, there is a larger set of genes–e.g. FAP, SGCG, PDGFC, NTN1, DPP4–that belong to the papillary
signature, as well as a smaller set of genes–e.g. ANGPTL1, THBS2–which belong to the reticular sig-
nature. Additionally, for A1 and A4 populations, there are more genes–MFAP5, FNDC1, TMP1, PCOLCE2,
FBLN2–which further contribute to the reticular signature of these populations.

Regarding the rest of the axes, the evidence of a clear signature is more complex. For instance, except
B3, which has a core set of papillary genes–e.g. CCL2, CXCL1, ADRA2A, CCL8, IL15–; B4, which has a set
of reticular genes–e.g. MGP, IGF1, FMO1, EFEMP1, PPARG, CTSK–; or C1 with a set of papillary genes–e.g.
CTSK, LRIG, CADM1, FGF13, ROBO2, DIRAS3, PTK7–, the rest of populations do not share a core set of
papillary or reticular genes.

The main limitation from these analyses comes from the selection of papillary and reticular markers
based on the literature. These markers are probably biased to the mostly expressed markers of
the populations at each dermal layer, or markers known to differ between each layer beforehand.
The fact that most markers from the papillary layer are associated with population A2 reflects that
this population may be the main contributor by cell number to the papillary dermis. On the other
hand, the reticular dermis may be populated with a more diverse range of cell types, and therefore
the markers of less predominant cell types may not be discovered, or may be underreported, and
therefore, are not suitable for this analysis. This is more prevalent with the populations from axes B
and C, where only a few markers are expressed by them.

10.6 ligand-receptor analysis on human datasets

The interaction between fibroblast populations is an important component in exploring the under-
lying biology of the skin. In this section, we will perform a basic quantitative analysis of the results
from the ligand-receptor (LR) algorithm CellPhoneDB. The biological relevance of these results will
be further explored in the discussion section.

Typical LR analyses yield a set of LR pairs with a p-value associated with the significance of the
interaction. The LR pairs are set for specific cluster combinations, that is, for each pair of clusters, a
set of LR pairs is computed. This analysis type is unsuitable for our fibroblast characterisation since
we want to summarise all LR pairs across datasets. Additionally, since we already know that most
fibroblast markers are not expressed exclusively in one population, most of the LR pairs set for a
pair of populations can be extended for other pairs, and this information has to be summarised as
well.

Therefore, to integrate results from several datasets and to retain only the most relevant interac-
tions, we applied a two-step filtering, firstly on datasets–i.e. LR interactions occurring in at least a
minimum number of datasets are considered–and secondly on genes–i.e. genes that are good pop-
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ulation markers are considered–so that we obtain a "good-quality" list of putative LR interactions
between different populations. Once the table is obtained, the additional putative populations that
can be targets of the LR pair are included. For example, the pair ACKR3-CXCL12, which is statistically
significant for populations A1 and B2, is also extended for populations A4 and B4 because ACKR3 is
also a marker of A4 and CXCL12 is also a marker of B4.

The list of interactions is defined in Table 11. A total of 69 LR pairs have been filtered between 84
different genes. From these, some appear recurrently: WNT5A 9 times, CD44 and EGFR 4 times, and
SLIT2, CADM1, NRP1, NRP2, CXCL12, LGR5, LGR4, LDLR, DPP4, FZD2, FGFR2 and EGFR 3 times.

It is interesting to observe that, although there is a variety of interactions between different families
of fibroblasts, interactions between certain axes are more persistent.

• There are 6 interactions between axes A and B–e.g. ACKR3-CXCL12, CCL19/CCL2-ACKR4, CXCL2-
DPP4, FGF7-FGFR2–. Most of them have a relationship with immune signalling and chemokine-
based communication.

• There are 14 interactions between axes D and the rest of axes–e.g. APOD-LEPR, EGFR-ICAM1/FGF13,
LDLR-APOE/F3, VEGFD-NRP2–. These interactions belong to different categories.

• There are 14 interactions between C5 or E1 populations and the rest of axes–e.g. BMP7-PTPRK,
LDLR-WNT5A and most of them of the type FZD1/2/4/6/7-WNT5A/11–. Although the interactions
belong to different categories, the most prominent one is related to the Wnt pathway.

• There are also a large set of 6 interactions, mainly between C1, C2, A1 and A2, that belong to
the family of R-spondins and they Lgr family receptors, which potentiate the effects of Wnt
signalling (Carmon et al., 2011; Lau et al., 2011; Ruffner et al., 2012).

When we look at the interactions, they can be categorised into different categories.

The most prominent one, stated before, is Wnt signalling, either via canonical–FZD1 receptor and
WNT2 ligand–, non canonical–FZD2 receptor and WNT5A ligand–, or ambivalent patways–FZD6 and
FZD7 receptors, PTPRK and PTK7 correceptors–. Interestingly, R-sponding signalling between LGR4/5
and RSPO1/3/4 is apparent Niehrs, 2012. In total, more than 18 interactions involve Wnt signalling.

Chemokine-mediated communication involving more than 7 interactions ACKR3/4, CCL2/13/19, CXCR4,
andCXCL2/12 is relevant for signalling between populations from axes A and B predominantly. Inter-
estingly, this communication may not be driven by an inflammatory context, but rather for proper
dermal homeostasis.

Ephrin and neuropilin-mediated signalling is highly relevant, with more than 7 interactions involv-
ing NRP1/2, EFNA5/B1 and EPHA3/B6, sometimes between neuropilins and ephrins, sometimes with
other interacting proteins. These interactions are mediated by populations from all axes, without
any major population being more relevant.

With similar properties to neuropilins and ephrins, more than 7 interactions involve growth factors
or their receptors, including EGFR with GRN, ICAM1, FGF13 and LRIG1; or FGF7/13-FGFR2 and FGF7-NRP1.
EGFR is mainly expressed by D axis, but it binds to populations from the rest of axes.

These categories and interactions may be relevant later on in the Discussion section to understand
the biological functions of each cell type.
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It should be noted that the LR analysis from this section contains two biases: on the one hand, al-
though these interactions are curated from bibliographic records based on biological experiments,
these are putative fibroblast interactions in the sense that they may not occur specifically in that
cell type. Additionally, the list of interactions is biased towards already studied pathways and inter-
actions, therefore, many other unregistered interactions may not have been captured.

10.7 goea explains the difference of functions between fibroblast axes, but lacks
granularity to do so with populations

A common step during the analysis of the function of cell types is Gene Ontology Enrichment Analysis
(GOEA). The aim of this step is to obtain sets of different ontologies for each fibroblast population
to shed some light on their putative functions. To do that, we used the python API of the enrichr
module (Kuleshov et al., 2016), and selected 6 sets of gene ontologies–. The full list of statistically
significant GO terms is available at this link.

Although GO terms may be functional to indicate major putative roles exerted by cells, we came
across several findings that may compromise the characterisation of fibroblast populations:

• There is a large group of genes that is repeated across ontologies and the number of genes
used in the ontologies is reduced compared to the number of genes used as input.

• This fact is in part supported because there are sets of ontologies within each population that
are similar or have the same set of genes associated to them.

• There are sets of ontologies shared across different populations.

• Most sets of ontologies are vaguely informative. Moreover, many repetitive sets are based on a
few markers and may give the false sensation of that population doing specifically one function
based only on a few markers.

The first point is addressed in Table 12. Across populations, we observe a tendency that only half of
the genes–µ=0.56, σ=0.13–are selected in GO terms, and the rest are not considered. Therefore, much
of the biological information of the population is lost, and the GO terms are biased towards the few
genes associated with them.

To prove the second point, we are going to show several examples from different populations:

• In population A1 we observe the terms carboxypeptidase activity (GO:0004180), metallocar-
boxypeptidase activity (GO:0004181) associated with similar sets of genes; positive regulation
of cytosolic calcium ion concentration (GO:0007204) and regulation of cytosolic calcium ion
concentration (GO:0051480) associated to the same set of genes (AGTR1, ACKR4, ACKR3, CD24
and CD55); or dystroglycan complex (GO:0016011) and sarcoglycan complex (GO:0016012) GO
terms associated with SGCA adn SGCG genes.

• In population A2 we observe the 4 GO sets collagen-containing extracellular matrix (GO:0062023),
external encapsulating structure organization (GO:0045229), extracellular structure organiza-
tion (GO:0043062) and extracellular matrix organization (GO:0030198) associated with the same
set of 10 genes; or regulation of Wnt signaling pathway (GO:0030111), positive regulation of Wnt
signaling pathway (GO:0030177), and regulation of canonical Wnt signaling pathway (GO:0060828)
associated with similar sets of genes.

https://docs.google.com/spreadsheets/d/1lfI6sgjEyg37BGL7VRMfW7KgwGKwX5QrCtnKYk1DXY4/edit#gid=1110488228
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• In population B1 we observe the 4 GO sets response to lipopolysaccharide (GO:0032496), cellular
response to molecule of bacterial origin (GO:0071219), cellular response to lipopolysaccharide
(GO:0071222), and NOD-like receptor signaling pathway associated with a set of 7 genes; or the
gene sets Vitamin D in inflammatory diseases WP4482, TLR4 Signaling and Tolerance WP3851,
Resistin as a regulator of inflammation WP4481, and Signal transduction through IL1R WP4496
associated with the genes NFKBIA, IL6 and NFKB1.

• In population C3 there are three similar terms collagen-containing extracellular matrix (GO:0062023),
external encapsulating structure organization (GO:0045229), and extracellular structure orga-
nization (GO:0043062) linked to a similar set of 8 genes; or sets lysosomal lumen (GO:0043202),
glycosaminoglycan catabolic process (GO:0006027), glycosaminoglycan biosynthetic process
(GO:0006024), and sulfur compound catabolic process (GO:0044273) associated with ACAN, BGN
and SDC1 genes.

• In population D1 we see a set of 8 different GO terms such as camera-type eye photoreceptor
cell differentiation (GO:0060219), negative regulation of myoblast differentiation (GO:0045662)
or morphogenesis of an epithelium (GO:0002009) linked with genes SOX8 and SOX9; or GO
terms negative regulation of cell activation (GO:0050866), negative regulation of neuroinflam-
matory response (GO:0150079), or negative regulation of macrophage activation (GO:0043031)
associated with LDLR and CD200 genes.

This effect does not resolve by adding more GO terms by lowering the p-value. In fact, many of the
following GO terms for most populations only contribute with the same markers. In some cases,
additional markers are added, but sparsely. In fact, the redundancy rate, that is, the mean number
of different GO terms in which a gene appears, is more than five–µ = 5.19, σ = 2.45–. Therefore, most
GO terms will also tend to be redundant.

This effect is expected and exacerbated since many families of terms are repeated for one population
and across populations, as we mentioned in the third point. We show some examples.

• The most repeated family of terms is related to the ECM. The term collagen-containing extra-
cellular matrix (GO:0062023) is shared by populations A1, A2, A3, A4, B4, C1, C2, and C3. Other GO
terms from the same family are repeated across populations–mainly across A1, A2, A3, C1, C3
and D2–: extracellular matrix organization (GO:0030198), extracellular structure organization
(GO:0043062), collagen fibril organization (GO:0030199) and collagen-containing extracellular
matrix (GO:0062023).

• Several immune-related populations–e.g. B1, B2 and B3–share cytokine- and chemokine-related
GO terms, such as cytokine-mediated signalling pathway (GO:0019221), or cellular response to
cytokine stimulus (GO:0071345).

Unexpectedly, the markers of each population for the same terms vary because, although useful
at first sight, these terms are extremely vague in their formulation and do not provide a detailed
picture.

GO term redundancy is partly explained by the pooling of GO terms from different ontology set–e.g.
KEGG, Wikipathways and, GO biological process–which, despite increase the diversity of GO terms,
most of them may be redundant. Despite that, even within each GOs there is considerable redun-
dancy by including vertically-related GO terms–branches or parent GO terms–.
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All these ideas can be summarised into one observation: most GO terms are biased towards existing
and general cell functions, and therefore many genes and functions are not accurately complied.
Therefore, GOEA will be severely biased towards a few GO terms based on a subset of genes and
thus can only explain some bold functions of the fibroblast populations. Thus, despite GO terms
being interesting to have a general view on the putative functions of a population based on a set of
markers, which we will be supporting during the discussion, we believe that this analysis falls short
of providing a relevant and detailed view of the functions of each population, which may require a
more profound literature analysis.

10.8 semi-supervised classification algorithm robustness

In this section, we are going to discuss the robustness of the unsupervised classification algorithm.
Since most of the results from this chapter are derived from the gene-to-population algorithm, it is
necessary to check that the categories provided are accurate and replicable so that the downstream
inferences we performed are also valid.

We applied a methodology similar to the classical Jackknife resampling method to check the robust-
ness. For a fixed number of iterations–30 for this analysis–, and each dataset, we sampled 99% of the
cells and reran the marker-to-population algorithm. The sampling was stratified across populations
so that all populations were consistently represented.

The result of this resampling is, for each dataset, a table with as many rows as cells and 30 columns.
For each cell, the population to which that cell is assigned in each iteration is shown. To show the
results numerically, we calculate the robustness score per cell, that is, the quotient between the
number of iterations where the assigned cluster is the same as the original and the number of
times the assignment was done–because for each iteration 1% of the cells is not considered, and
therefore the total number of times might be lower than the theoretical number–.

10.8.1 Robustness across datasets and populations

Since the sampling percentage is high, we should expect that the assignment is robust and that the
robustness score values are high. Figure 60 shows the distribution of the mean robustness score of
each population across datasets.

In human datasets, we observe a variation in scores between 0.6 and 0.9, with a mean value of about
0.75, which is acceptable. Some populations, such as B3, B4 or D2, show lower values. Interestingly,
the boxplots from Figure 60 show a wide range of variation across datasets, so that the robustness
might be dataset dependent. In fact, when we look at the distribution of scores across datasets, we
observe a wide disparity of values, with some datasets like Reynolds et al. (2021), Hughes et al. (2020)
or Vorstandlechner et al. (2020) having lower mean scores with high deviations.

If we look at the violin plots from Figure S5, which show the distribution of scores per population and
dataset, we confirm some previous observations. For instance, regarding population B3, we observe
that in some datasets–Liu et al., 2021a; Rindler et al., 2021; Solé-Boldo et al., 2020; Theocharidis et al.,
2020–the scores are high, whereas in other datasets–Ahlers et al., 2022; Burja et al., 2022; Reynolds
et al., 2021; Tabib et al., 2021– the scores are extremely low. In Section 10.2.2, we mentioned that, in
some datasets, there was a clear separation between B3 and B2 and B1. Interestingly, most of these
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datasets show high robustness scores, whereas, in the datasets with very low scores, the location of
B3 in the UMAP is far more diffuse or a very small cluster (Figure 42).

Similar effects can be observed for populations such as E1. The robustness score of this population
is generally approaching 1, except in a couple of datasets–Gao et al., 2021; Gaydosik et al., 2019;
Vorstandlechner et al., 2020–, where the scores are near 0. In these datasets, E1 population was
primarily assigned to B1 or B4 (Figure S7).

Regarding A1 population, we observe that, unlike other populations, it does show lower scores–
between 0.4 and 0.7–in many datasets, which is explained due to the similarity with A4. A similar
effect is observed with A3 population, which is also explainable by its similarity with A1 and A2.

Regarding mouse populations, we observe that robustness score values are higher compared to
humans, with many of them reaching values higher than 0.85 (Figure 60). Despite that, there are 5
notorious exceptions with lower score values or wider deviations: w/x, w2, x1, x2 and z1 populations.
When looking at the violin plots from Figure S6 we see that, in all cases, the general scores for these
populations are high, although, for a few datasets, it is either low or a mixed combination or high
and low. For instance, w/x is low in Joost et al., 2020 and variable in Shook et al., 2020; x2 is a variable
in Boothby et al., 2021 and low in Phan et al., 2020; z1 is variable in Phan et al., 2020. In fact, most
of this variability comes from the Phan et al., 2020 dataset, as we observe in Figure 60. This may
indicate that assignment of populations in Phan et al., 2020 dataset lacks robustness, probably due
to higher transcriptomic noisiness related to sample processing.

10.8.2 Non-robust populations "sublimate" to similar populations

From the previous section, we can easily argue that a certain degree of inter-dataset variability
explains the differences in robustness scores. However, another variable that can be discussed is
which populations are assigned by the algorithm when the assigned population is not the original.

This is a relevant point to analyse since, as we have discussed earlier, fibroblast populations have
certain degrees of similarity between them, and therefore, we should expect the classification al-
gorithm to assign the markers to the most similar population. In fact, if two populations are highly
similar, it is understandable the algorithm fails to assign these populations due to the populations
and not due to the algorithm itself. If "less similar" populations were assigned instead, this would
justify a lack of robustness.

To check this, we calculated the adjacency matrix of the resampling results per dataset, as shown in
Figures S7 and S8. The matrix indicates the proportion of assignments for each cell type (row) to the
rest of the populations (columns). The median value across datasets was calculated to produce the
combined adjacency matrix in Figure 61.

Regarding human datasets, there is a generally high proportion of cases where the assigned cluster
is the same as the original one, with some examples such as B1, C2, C5, D1 or E5, with values higher
than 0.92. From the previous, we discussed some populations, such as A1, A4 or B3, which have lower
values–0.73, 0.69 and 0.59, respectively–. When looking at the assigned clusters, we observe that for
A1, the most assigned cluster is A3–21% of the times–, for A4 is A1–21% of the times– and for B3 are
B2 and B1–25% and 16% of the times, respectively–. All cases respond similarly to what we discussed
previously in Section 10.2.
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This pattern is kept for individual datasets (Figure S7). For instance, for datasets which have lower
proportions of A1 population assigned to A1, the second most assigned population is A3 (Dataset:
proportion originally assigned/proportion of secondary assignation)–Ahlers et al., 2022: 0.49/0.20,
Gur et al., 2022: 0.58/0.30, Reynolds et al., 2021: 0.47/0.47, Rindler et al., 2021: 0.56/0.38, Tabib et al.,
2018: 0.60/0.32, Tabib et al., 2021: 0.38/0.56, Vorstandlechner et al., 2020: 0.58/0.35, Vorstandlechner
et al., 2021: 0.59/0.35–. In some datasets, the second most assigned population is not A3–Kim et al.,
2020a: 0.45/B4 (0.25), Mirizio 2020: 0.50/A4 (0.21)–. This pattern is repeated for A4 and B3 as well.

For the rest of the populations, we observe similar assignment patterns according to previously
commented similarities. For instance, B4 population (0.75) is assigned similarly to B1 and B2 (0.12
and 0.09); or D2 (0.89) is assigned to D1 (0.03) but also to B4 (0.06)–as observed in Figure 55–.

Regarding mouse populations, the assignment rate to the original population is much higher–more
than 0.85–and assignment to other populations follows similar patterns to those discussed in Section
10.3. For instance, w/x (0.87) was primarily assigned to x1 (0.06); w2 (0.88) is assigned secondarily
to w1 (0.12); w4 (0.94) is assigned to w3 (0.06); y3 (0.94) is assigned to y2 (0.04); y2 (0.86) is mainly
assigned to y3 (0.09); or z1 and z2 (0.89, 0.92) are assigned to z2 and z1 respectively (0.06, 0.08).

Therefore, in conclusion, the population assignment algorithm shows good robustness levels in hu-
man datasets and very good robustness levels in mouse datasets. Moreover, the cases of lower
robustness are either due to dataset-specific reasons and are not generalised to the population or
because the population is similar transcriptomically to other populations and thus follows similarity
patterns already described in sections 10.2 and 10.3.
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10.9 tables and figures

Table 7: Human dermal fibroblast dataset information.

Reference Donors (n) Age (y) Sex Ethnicity # of fbs.

Ahlers et al., 2022 3 22, 25, 29 F Caucasian 20743
Billi et al., 2022 14 - - - 5142
Boothby et al., 2021 3 64, 66, 67 M - 4915
Burja et al., 2022 2 46, 79 F/M Caucasian 2587
Deng et al., 2021 3 26-39 1F/2M Han chinese 5983
Gao et al., 2021 3 23, 32, 47 1F/2M - 2099
Gaydosik et al., 2019 1 64 M - 2640
Gur et al., 2022 60 28-75 49F/11M - 15393
He et al., 2020 7 38-82 4F/3M - 3443
Hughes et al., 2020 2 58,68 1F/1M - 450
Kim et al., 2020a 4 - 2F/2M - 2266
Liu et al., 2021a 4 26-32 F Han chinese 1270
Mariottoni et al., 2021 1 48 M Af. American 894
Mirizio et al., 2020 6 - - - 1074
Reynolds et al., 2021 5 25-60 F - 7327
Rindler et al., 2021 4 44-57 3F/1M Caucasian 2885
Solé-Boldo et al., 2020 2 25, 27 M - 2739
Tabib et al., 2018 6 23-66 3F/3M White 2742
Tabib et al., 2021 10 - - - 4814
T. Sapiens Cons. et al., 2022 2 33, 59 M Hispanic 2315
Theocharidis et al., 2020 7 49-75 F - 3285
Theocharidis et al., 2022 10 34-75 6F/4M White 10441
Vorstandlechner et al., 2020 3 30, 36, 43 F - 1161
Vorstandlechner et al., 2021 2 36, 43 F Caucasian 1338
Xu et al., 2021b 4 18-41 3F/1M Han chinese 494
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Table 8: Mouse dermal fibroblast dataset information.

Ref Donors (n) Age (y) Sex Ethnicity Number of fbs.

Abbasi et al., 2020 1 - - C57BL/6J 1718
Boothby et al., 2021 1 22 (d) M C57BL/6J 9280
Buechler et al., 2021 1 9 (w) F C57BL/6J 6621
Haensel et al., 2020 5 7 (w) F C57BL/6J 6327
Joost et al., 2020 10 5(6), 9(4) (w) F C57BL/6J 949
Phan et al., 2020 2 21 (d) - C57BL/6J 1493
Shin et al., 2020 3 2, 12, 18 (m) F/M C57BL/6J 8090
Shook et al., 2020 1 7 (w) M C57BL/6J 7728
Vorstandlechner et al., 2021 1 7 (w) F BALB/c 4343
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Table 12: GOEA gene statistics. Statistics from GOEA analysis on human population markers. The proportion
of genes is the ratio between the number of genes appearing associated with GO terms and the
number of genes submitted to the GOEA. The redundancy rate is the mean number of times the
genes associated to GO terms from a population appear.

A1 A2 A3 A4 B1 B2 B3 B4 C1 C2 C3 C5 D1 D2 E1

# genes submitted 74 71 31 57 54 47 45 46 53 46 29 49 53 56 44

# GO terms (p <0.03) 12 37 15 54 44 51 58 55 8 4 32 48 41 25 56

# genes across GO terms 48 39 16 37 37 29 28 28 14 13 20 27 32 22 29

% genes in GO terms .65 .55 .52 .65 .69 .62 .62 .61 .26 .28 .69 .55 .60 .39 .66

redundancy rate 1.5 5.0 3.0 4.9 8.7 5.1 10.1 7.2 2.6 1.5 5.6 7.9 4.2 4.2 6.3
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Table 11: LR pairs in human fibroblast populations. For each LR pair, the interacting genes, as well as the most
relevant populations where that gene is expressed are shown.

Gene A Gene B Population A Population B
ACKR3 CXCL12 A1, A4 B2, B4
ACKR4 CCL13 A1, A3 D2
ACKR4 CCL19 A1, A2, A3 B3
ACKR4 CCL2 A1, A2, A3 B1, B3, D1
ADA DPP4 A1, B4 A1, A4
ANTXR1 WNT5A A2 C5
APOD LEPR D1 A2
APOE LDLR B2, B3 D1
BAMBI INHBA D1 C5
BMP7 PTPRK C5 C2
BST1 CAV1 B4 A2, A3, D2
CADM1 CADM1 C2 C2
CADM1 CADM3 C2 A1
CAV1 ICAM1 D2 B1
CSF1 SIRPA B2, B3 A3
CD40 TNFSF13B B1, B2, B3, B4 B2, B3
CD44 PRG4 A2, A3, B1 A4
CD44 TIMP2 A2, A3, B1 A1, A4, C2
CD44 TIMP3 A2, A3, B1 E1
CD44 FGFR2 A2, A3, B1 A2
CMKLR1 RARRES2 B2, B4 B2, B4
CXCL12 CXCR4 B2, B3, B4 C5, D2
CXCL12 DPP4 B2, B3, B4 A1, A3, A4
CXCL2 DPP4 B1,B2 A1, A4
EDN3 EDNRA A2 C1
EFNA5 EPHA3 A2 C1
EFNA5 EPHB6 A2 A2, A3, B3
EFNB1 EPHB6 D1, D2 A2, A3, B3
EGFR GRN D1, D2 A1, A2, A3, A4
EGFR ICAM1 D1, D2 B1
EGFR FGF13 D1, D2 C2
EGFR LRIG1 D1, D2 C2
F3 LDLR D2 D1
FGF13 FGFR2 C2 A2
FGF7 FGFR2 B4 A2
FGF7 NRP1 B4 B1, B2, B3, B4
FZD1 WNT2 C2, C3, D2 E1
FZD1 WNT5A C2 C5
FZD2 SFRP1 D1 C2, E1
FZD2 WNT2 D1 E1
FZD2 WNT5A C1, D1, D2 C5
FZD4 WNT5A B4 C5
FZD6 WNT5A A1 C5
FZD7 WNT11 E1 A2
FZD7 WNT5A E1 C5
GPC1 SLIT2 C1, C2, D2 B2, B4
HGF NRP1 B2 B2
HLA-DRB1 OGN B1, B2, B3 C2, D1
HRH1 IL6 D2 B1
JAG1 NOTCH3 C1, C5, D2 B2, D2
JAM3 JAM3 D2 D2
LDLR WNT5A D1 C5
LGR4 RSPO1 C1 A2
LGR4 RSPO3 C1 C5
LGR4 RSPO4 C1 C2
LGR5 RSPO1 A1 A2
LGR5 RSPO3 A1 A2
LGR5 RSPO4 A1 C2
NCAM1 ROBO1 C2 C3, C5
NGFR TTR D2 A2
NRP1 PGF B2, B4 C2, E1
NRP2 PGF C2, C3, C5, D1, D2 C2, E1
NRP2 SEMA3C D1 A4
NRP2 VEGFD D1 C2
PTK7 WNT5A A2 C5
PTN SDC1 C3, E1 C3
PTPRK WNT5A C2 C5
ROBO1 SLIT2 C3, C5 B2, B4
ROBO2 SLIT2 A2, C1, C5 B2, B4
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Figure 42: UMAP plots of all human fibroblast datasets from secondary analysis. Colours of populations are
shared across datasets.
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Figure 43: Dot-plot of relevant markers of human fibroblast populations. 4 markers are chosen for each pop-
ulation. The size of the circle represents the proportion of cells in that population expressing the
marker–the larger the circle the larger the proportion–; and the colour represents the mean expres-
sion of the gene in that population–the redder/browner the colour the higher the expression–.
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Figure 44: PAGA tree graph of human dermal populations. Colours of populations are shared across datasets.
Thicker lines indicate greater connectivity between nodes.
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A B

Figure 45: Joint PAGA graphs of human dermal populations. Graph in A is constructed from merging all PAGA
trees, and graph in B from merging all PAGA graphs.

A1 A2 A3 A4 B4 B1 C1 C2 C3 C5 D1 D2 E1B3 B2

A1 A2 A3 A4 B1 B2 C1 C2 C3 C4

Figure 46: Changes in human populations between primary and secondary analysis. Populations in the upper
row are the ones depicted in the primary analysis from chapter 8; and the ones in the lower row are
the ones from the secondary analysis, at the time of writing this thesis.
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Figure 47: Mapping of Joost et al. (2020) populations. (A) UMAP plot of mouse dermal fibroblasts from Joost et
al. (2020), adapted from Figure 6A of the publication. (B) Tracksplot of markers genes of populations
FIB1 to FIB4, adapted from Figure 6B of the publication. (C) Scheme of the location of FIB1 to FIB4
populations in telogen and anagen phases, adapted from Figure 6I of the publication. (D) UMAP of
dermal fibroblasts from Joost et al. (2020) after being reanalysed. Only cells from axes x, y and z are
shown. (E) UMAP plots showing the expression levels of markers from subfigure (B).
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Figure 48: UMAP plots of all mouse fibroblast datasets from the secondary analysis. Colours of populations
are shared across datasets.
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Figure 49: Dot-plot of relevant markers of mouse fibroblast populations. 3 markers are chosen for each pop-
ulation. The size of the circle represents the proportion of cells in that population expressing the
marker–the larger the circle the larger the proportion–; and the colour represents the mean expres-
sion of the gene in that population–the redder/browner the colour the higher the expression–.
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Figure 50: PAGA tree graph of mouse dermal populations. Colours of populations are shared across datasets.
Thicker lines indicate greater connectivity between nodes.
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A B

Figure 51: Joint PAGA graphs of mouse dermal populations. Graph in A is constructed from merging all PAGA
trees, and graph in B from merging all PAGA graphs.
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Figure 52: Changes in mouse populations between primary and secondary analysis. Populations in the upper
row are the ones depicted in the primary analysis from chapter 9; and the ones in the lower row
are the ones from the secondary analysis, at the time of writing this thesis. Since there are major
changes between populations, compared to human ones, the primary populations are depicted with
an asterisk to separate them in instances where primary and secondary populations are mentioned
at the same time.
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B

C

Figure 53: Analysis of mouse/human integration on Boothby et al.. (A) UMAP plots of clusters and organism
of Boothby et al. dataset, using only harmony_integrate function. (B) First 10 DEGs between human
and mouse populations. (C) UMAP plots of clusters and organisms of Boothby et al., 2021 dataset,
using regress_out and harmony_integrate functions.
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A

B

C

Figure 54: Analysis of mouse/human integration on Vorstandlechner et al., 2021. (A) UMAP plots of clusters
and organism of Vorstandlechner et al., 2021 dataset, using only harmony_integrate function. (B)
First 10 DEGs between human and mouse populations. (C) UMAP plots of clusters and organism of
Vorstandlechner et al., 2021 dataset, using regress_out and harmony_integrate functions.
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Figure 55: Heatmap of human marker overlap across populations. For each pair of populations, the number
in the cell represents the proportion of overlapping markers.

Figure 56: Heatmap of mouse marker overlap across populations. For each pair of populations, the number
in the cell represents the proportion of overlapping markers.
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Figure 57: Heatmap of human and mouse marker overlap across populations. For each pair of populations,
the number in the cell represents the proportion of overlapping markers (N=150).

Figure 58: Comparison of scores for papillary and reticular signatures. Barplot of marker-to-population algo-
rithm scores for each population. Barplot error bars represent the std of the score across datasets.
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Figure 59: Heatmap of papillary/reticular markers across human populations. For each gene/population pair,
a darker colour represents that the gene is a better marker of that population.
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Figure 60: Boxplots of general robustness score. Each boxplot represents the mean robustness score of each
dataset, across datasets. Each box represents the quartiles of the distribution, centre bar represents
the median, and whiskers extend to Q1 - 1.5 * IQR and Q3 + 1.5 * IQR.
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Figure 61: Adjacency matrix of robust cluster assignation. Each row-column combination is the proportion
of times the row cluster is assigned to the column cluster. In this heatmap, numbers represent the
median of the proportions across datasets.





11
R E A N A LY S I S O F R E Y N O L D S E T A L . D ATA S E T

11.1 motivation

The analysis presented in this section is motivated by the extensive gathering and analysis performed
in the secondary analysis performed in chapter 10. One of the datasets in this analysis is from a
landmark paper published in Science, where Reynolds et al., 2021 produced a dataset of 528,253
sequenced cells obtained from healthy adult skin (five female patients undergoing mammoplasty
surgery) and fetal samples, as well as inflamed skin from atopic dermatitis and psoriasis patients.

In healthy dermal fibroblasts, the authors described three populations: the main cluster termed
Fb1, and two minor subpopulations, Fb2 and Fb3. Fb2 was additionally described as enriched in
fetal and inflamed skin samples. We aimed to analyse whether the Fb1, Fb2 and Fb3 populations
were consistent with the A–C fibroblast types and subtypes that we had just described in Ascensión
et al., 2021, and which were used in chapter 8 and in chapter 10 before the minor axis and cluster
reassignment. More specifically, we reasoned that at least the most abundant subpopulations we had
defined, A1, A2, B1 and B2, should be clearly detected in a >500k cell dataset, thus further validating
our previous scRNAseq study. In contrast, we found that a substantial proportion of the Reynolds
et al., 2021 scRNAseq dataset shows a predominance of differential expression of stress and hypoxia-
related genes. Thus, data extracted from this source should be interpreted in light of this bias. It
is possible that other existing large datasets suffer from similar methodological problems, which
might be due to insufficient oversight.

11.2 reassessment of the main cell populations in a large skin dataset reveals the
presence of clusters with stress- and hypoxia-related gene signatures

Using an unsupervised population-matching algorithm, we observed that in each of the healthy
donors analysed by Reynolds et al., 2021, at least two independent fibroblast clusters expressed
signature markers of the A1, A2, B1 and B2 populations. One set of cells corresponded to the Fb2
population, and the second set corresponded to the Fb1 and Fb3 populations. After batch effect
correction, a joint analysis of all donors showed that the cluster duplication observed in each donor
could be replicated jointly (Figure 62).

209
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We, therefore, assumed that some global effect should be affecting the cells, i.e. Fb2 might be “a
copy” of Fb1+Fb3 cells, although perhaps affected by some alteration. DEG analysis between Fb2
and Fb1+Fb3 revealed enrichment in ontology terms associated with cell stress–e.g. unfolded protein
response, regulation of apoptotic process, mRNA catabolic process–. We then designed a signature
gene list composed of 50 DEGs commonly associated with stress in very different scRNAseq settings–
e.g. ATF3, BTG2, FOS, FOSB, GADD45B, HSPA1A/B, IER2/3, JUN, JUNB, NFKBIA, NR4A1/2, PPP1R15A, RHOB–
(Adam et al., 2017; Brink et al., 2017; Denisenko et al., 2020; O’Flanagan et al., 2019; Waise et al., 2019).
Using this signature, the Fb2 population over-expressed BTG2, EGR1, FOSB, IER2, SOCS3, and ZFP36,
among others, indicating that these cells clustered together mainly due to cellular stress.

Further analysing the Fb1 and Fb3 cells independently, we observed that the A1, A2, B1 and B2 popu-
lations appeared twice again. A DEG analysis between each pair of duplicated populations disclosed
genes in one of the split populations that were related to glycolysis (ALDOC, ENO2, GAPDH, PGK1, PDK1,
PFKFB4, PYGL), cell integrity, hypoxia and apoptosis (BNIP3, BNIP3L, ANGPTL4, LOX, HILPDA); whereas
the second split population over-expressed units of the mitochondrial ATPase and complex I, indi-
cating an active oxidative metabolism. It is well known that cells under hypoxic conditions switch
from aerobic to anaerobic metabolism to keep energy homeostasis within the cell (Mohyeldin et al.,
2010; Simon et al., 2008; Xiao et al., 2019).

We, therefore, generated a curated list of hypoxia-related genes and managed to separate the non-
hypoxic from the hypoxic group with the population-matching algorithm. Once stressed or hypoxic
cells were removed based on a set threshold of expression of signature genes, we mapped the main
types of fibroblasts in what we termed the “normal” cell subset of Reynolds et al., 2021 (Figure 63A).
Fibroblast A1, A2 and B2 populations were independently mapped, and we also found clusters which
seemingly were mixtures of previously defined populations e.g. B1/B2, A1/A2, or A2/B2. No type C
fibroblasts were detected.

To understand whether the stress and hypoxic signatures were only present in fibroblast subsets
or could also be traced to other populations within the dataset, we mapped the stress and hypoxia
gene signatures to perivascular cell, keratinocyte, vascular endothelial cell, lymphoid cell, and APC
clusters. Our reanalysis of healthy donors, fibroblasts, perivascular cells, keratinocytes, and vascular
endothelial cells showed clear hypoxia and stress-related clusters (Figure 63B). For instance, the VE3
population, described by Reynolds et al., 2021 as increasing in patients suffering from inflammatory
conditions, presented a clear stress-related transcriptomic profile. On the other hand, most of the
VE2 population over-expressed hypoxia-related genes. On lymphoid cells, we did observe a sub-
cluster of stressed Tc/Th cells but no clear hypoxic profiles. On APCs, an inflammatory macrophage
cluster showed hypoxia, and the M2 and DC2 clusters showed stress-related profiles. Some of these
results may be expected in physiological conditions for immune cells, but others could be attributed
to sample handling.

Finally, we tested if the aforementioned stress and hypoxia-related signatures were present in the
previously published scRNAseq datasets of human skin (He et al., 2020; Solé-Boldo et al., 2020;
Tabib et al., 2018; Vorstandlechner et al., 2020). The levels of expression of these genes were clearly
superior in the Reynolds et al. dataset as compared to other available resources (Figure 64). For
instance, regarding the hypoxia profile, some of the clusters in Reynolds et al., 2021 dataset show
values higher than 0.6, whereas none of the clusters from the rest of the datasets achieve these
values and, instead, show predominantly values lower than 0.3.
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11.3 correction of stress and hypoxia signatures shows that stressed cells show a
non-recoverable gene signature

Since the stress and hypoxia-related expression profiles are apparent, we were interested in studying
the "reversibility" of the transcriptomic signatures, creating a normalised dataset where hypoxic and
stressed cells could merge with the normal cells, and classifying the whole dataset into the original
cell types described in (Ascensión et al., 2021). To this end, we applied two approaches with similar
results. On the one hand, we considered cell states as batches and applied batch effect correction
with bbknn and harmony. On the other hand, we applied regression on the stress and hypoxia scores
shown in Figure 64 based on the Seurat’s linear regression function implemented in scanpy. Since
both approaches showed similar results (Figure 65), we show the results of the latter case in Figure
66.

To further study if stress and hypoxia transcriptomic profiles are "recoverable", we generated two
types of datasets, one with the stress or hypoxia cells and another containing normal cells. When
applying the correction to the stress + normal dataset, we observed that there was no integration
between the two states (Figure 66A). On the other hand, there was a good integration between the
hypoxia and normal cell states (Figure 66B), and the main fibroblast populations could be correctly
mapped (Figure 66C). From these results, we infer that the transcriptome from stressed cells is much
more altered than the one from hypoxic cells, to the extent that stress cells are in a computationally
non-reversible state.

11.4 harsh sample processing can be the cause for stress and hypoxia signature

After concluding the stress and hypoxia analysis, we questioned why this phenomenon occurred to
the Reynolds et al., 2021 dataset. We believe the reason for this could be the harsh sample processing
of skin. As stated in the article’s Materials and Methods section: "The top 200 µm-thick layer of
the skin was cut with a dermatome and digested with dispase (1h at 37ºC) to separate dermal and
epidermal layers. Both layers were digested in collagenase for 12h at 37ºC, cells were filtered and
subjected to FACS sorting before library generation and sequencing".

While this strategy warrants high purity of the obtained cell populations, the long processing times
(>16h) and the use of warm dissociation for a long period might have significantly affected gene
expression patterns of relevant numbers of cells in this setting. In this sense, aiming to process
large numbers of cells involves longer processing times. High processing times (even > 60’) have
previously been reported to generate significant transcriptomic alterations (Brink et al., 2017; Waise
et al., 2019) and, in particular, warm dissociation is associated with stress response (Denisenko et al.,
2020), which is apparent in the transcriptomic profiles of part of the cells. An alternative to warm
dissociation may be the use of cold-active psychrophilic proteases (Potter et al., 2019).

A recent methodological study developed by Burja et al., 2022 states that digestion times vary from
2h to overnight digestion, although long times are completely discouraged due to their impact on cell
viability and transcriptome alteration. Additionally, QC performance in scRNAseq is rarely reported,
which hinders standardisation and result comparison. In their paper, the authors apply skin digestion
for 2 hours.
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11.5 high computational times are a second key factor to hinder scrnaseq dataset
analysis quality

TheReynolds et al., 2021 dataset contains, after some basic filterings, approximately 450k cells. We
became interested in analysing the run times of a standard single-cell pipeline procedure–consisting
of quality control, PCA, graph neighbour construction, dimensionality reduction, clustering and DEG
calculation–using different cell numbers, to see how this analysis is scaled. The analysis results are
observed in Figure 67 and detailed in Table S1. The analysis shows that running the pipeline a single
time in the whole dataset in a working station takes approximately 1 hour. The parts with the longest-
running times are the batch, clustering and DEG calculation. Additionally, when analysing trends in
the processing times, we observe an inflexion point at around 30,000 cells, marking two clear run
time trends. For higher numbers of cells, the processing times are further increased–2.1 times per
doubling of cells– compared with a lower number of cells–1.5 times per doubling of cells–. For good
measure, a single run of this pipeline analysis on an extended dataset with 1M cells would take 2
hours and 25 minutes.

Apart from the sample quality and processing, there are computational and analytic challenges with
such complex datasets. As shown in Figure 67, the run times of analytic pipelines vastly increase with
the number of cells. Thus, if the processing time is expected to be the same for a small dataset and
a big dataset, due to the low time to perform a beginning-to-end analysis adapted to the current
fast-paced times of publication, this leads to a more shallow exploration of the initial stages.

Before a pipeline is run on a single-cell dataset, researchers usually have to spend some time doing
an exploratory analysis, where they select the cutoff values for quality control, explore different
batch effect removal methods, or tune the parameters for clustering, neighbour graph calculation,
and other steps in the pipeline.

These decisions are made on the basis of the output of the differently-preprocessed versions on
downstream analyses: how the datasets look on UMAP plots, how robust their DEGs are, etc. Usually,
this part of the analysis requires several reruns of the same pipeline to find the best parameters and
obtain an overall view of the limitations of the dataset and the general information elements that
will be obtained from it. This means that single-cell pipelines are not linear but rather an iterative
process where researchers have to make decisions based on the output of previous steps.

As a consequence, if the results from the initial stages of the analysis are overlooked, and biases go
unnoticed, these effects propagate downstream the pipeline–e.g. observing differences in healthy
vs diseased samples, finding rare populations, pathway/ontology analysis, or RNA velocity analysis–
and artefacts can be presented as genuine results, hindering the dissemination of quality results to
the scientific community.
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Figure 62: Duplicated fibroblast populations can be observed in Reynolds et al. clusters. (A) UMAP plot of
Reynolds et al. fibroblast populations where each original cluster (F1=Fb1, F2=Fb2, F3=Fb3) is marked.
(B) Same UMAP as in (A) showing main fibroblast populations depicted in Chapter 8.

Figure 63: Fibroblast subpopulations reveal the presence of substantial proportions of stressed and hypoxic
cells. (A) UMAP plot of “normal” fibroblasts (after removal of hypoxic and stressed cell subsets)
reveals conservation of some, but not all, cell types previously described in independent datasets
(Ascensión et al., 2021). (B) UMAP plots of fibroblast, vascular endothelium, pericyte, keratinocyte,
lymphoid and APC cell populations from healthy donors, labelled to highlight hypoxic and stressed
cell subpopulations as characterized by overexpression of defined gene signatures.
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Figure 64: Stress and hypoxia-related signatures in published human dermal fibroblast datasets. (A) UMAP
plot of “normal” fibroblasts (after removal of hypoxic and stressed cell subsets) reveals conservation
of some, but not all, cell types previously described in independent datasets (1). (B) UMAP plots
of human dermal fibroblast subsets as defined in (Ascensión et al., 2021) are shown here for five
published datasets (He et al., 2020; Reynolds et al., 2021; Solé-Boldo et al., 2020; Tabib et al., 2018;
Vorstandlechner et al., 2020), and depicted by the average levels of expression of stress and hypoxia
gene signatures.

Figure 65: Comparison of different correction methods for stress and hypoxia. UMAP plots of (A) regression,
(B) bbknn and (C) harmony.
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Figure 66: Dataset merging of stress and hypoxia populations show mixed degrees of integration with the
"normal" dataset. (A) UMAP plot of merged "stress" and "normal" cells. There is a low degree of
integration between both cell types. (B) UMAP plot of merged "hypoxia" and "normal" cells. There
is a high degree of integration between both cell types. (C) Unsupervised assignation of fibroblast
types from (B) reveals, similar to results from Fig. 63A, major fibroblast types.
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Figure 67: Running times of a basic single-cell pipeline on Reynolds dataset. For each number of cells, three
running times are collected, and the mean (horizontal bar) and standard deviation (vertical bar) are
shown. For the [1k - 20k] and [50k - 400k] intervals, two linear regressions were trained and extended
outside of these intervals to show that there is a change in the processing time rate at ∼ 30k cells.
A doubling in the cell number implies 1.48 times more run-time in the [1k - 20k] interval, and 2.14
times in the [50k - 400k] interval.
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D I S C U S S I O N A B O U T F I B R O B L A ST H E T E R O G E N E I T Y

In chapters 8, 9, and 10, we analysed the heterogeneity of dermal fibroblast populations in hu-
man and mouse samples. Throughout this discussion section we are going to use all the previous
information–including gene markers, ontology terms, interactions with other populations and re-
lationships across species–to generate a detailed and justified view of the putative roles of each
human fibroblast population. Due to time constraints, analysis of mouse populations is not feasible,
although human-mouse population similarities may be useful to extend this knowledge.

To explain the main functions of fibroblasts, we used the most relevant markers of each population
and performed an extensive literature review of each marker. The information of all markers is recom-
piled in the Specific marker function table described in the Materials and Methods section 7. During
the literature review, we observed that many genes were classified based on common themes and
decided to describe them in depth each of the themes first. The selected themes are (1) ECM, (2) ECM
modulation, (3) complement system, (4) immune response, (5) Wnt signalling, (6) TGF-β signalling,
(7) lipid metabolism, and (8) vitamin A metabolism.

Hence, prior to analyzing each fibroblast population, we will first provide a description of each clas-
sification. This will help identify any shared patterns among the populations, making it to simpler
explain the roles of the markers in each population afterwards.

12.1 pathways of relevance

12.1.1 ECM

Due to the component diversity within the ECM, the gene markers corresponding to this section have
been divided into four categories: (1) collagens, (2) elastic fibres, (3) small leucine-rich proteoglycans
(SLRPs) and (4) other elements. The descriptions of individual genes are available in Supplementary
Table S2.

collagens Classical collagens are collagens type I and III. Each collagen is composed of differ-
ent fibres encoded by individual genes–e.g. COL1A1, COL1A3–. Both COL1 and COL3 families of genes
are expressed by A1, A3, A4 reticular fibroblasts, and C1, C2, C3 HF-associated fibroblasts. Additional
collagens–types IV, V, XII and XV–are expressed mainly by these populations as well. The principal
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function of these fibroblasts is to provide structural support to the dermis, either by interacting with
their own fibrils or interacting with other fibrils from this category.

There are collagens that are principally restricted to one or a few populations. One clear example
is A2, which almost exclusively expresses collagens COL4A2, COL6A1/2/3, COL6A5, COL7A1, COL13A1,
COL18A1 and COL23A1. Most of these collagens are located in BM or BM-like structures, surrounding
blood vessels, and in the DEJ, like COL13A1 or COL18A1.

Additionally, populations C1 and C2 express COL11A1, COL21A1 and COL24A1; populations D1 and D2
express COL8A1/2, COL9A3 and COL28A1; and E1 expresses COL26A1. Some of the functions of these
collages will be extended later. The expression of these collagens may be relevant for the future
identification of the populations in histological samples.

Lastly, there are two additional types of collagens with specific expression patterns: nucleating and
FACIT collagens. Regarding nucleating collagens, traditionally, type V is located more in the papillary
dermis and type XI more in the reticular dermis (Nauroy et al., 2017). These observations are not fully
replicated in our single-cell analysis: we observed that COL5A1/2 are expressed by A3, A4, C1, C2 and
C3 populations, with a putative reticular location. COL9A2/A3 chains are expressed predominantly
by D1 population. Interestingly, these essential collagens are not produced by the traditional ECM-
producing A1/A4 populations. Regarding FACIT collagens, COL12A1, reported as papillary (Nauroy et al.,
2017) is not expressed by A2, but by the rest of A populations. COL14A1 is also expressed by A1/3/4,
and is reported as reticular.

Therefore, the expression of collagens is extremely diverse based on the different populations that
expressed it–almost all of them, with the exception of B axis–and, therefore, their functions too.
Interestingly, mRNA expression from scRNAseq analyses does not correlate with protein deposition
for certain papillary collagens. Considering a mean turnover rate of 15 years for different collagens
(Verzijl et al., 2000), it is possible that some of the putative reticular populations are also located in
papillary regions in specific moments to produce these collagens.

elastic fibers Elastic fibre genes expressed by dermal fibroblasts are ELN, EMILIN2 and FBN1;
as well as the associated glycoproteins MFAP2 and MFAP5. All of these fibres are primarily expressed
by A4, and by A1 to a lesser extent. This indicates that one of the differentiating functions of A4 with
respect to A1 is the production of elastic fibres.

slrps SLRPs are a family of proteoglycans that contain leucine-rich repeats (LRRs) flanked by
cysteine clusters that bind different GAGs. This structure allows them (1) to bind and regulate collagen
and elastic fibre expression, (2) participate in immune functions by binding TLRs, TNFα and C1q, (3)
bind different growth factor receptors like IGFRs or EGFR and some of their ligands like BMPs and
WISP1, and (4) modulate fibrogenesis by binding TGF-β (Merline et al., 2009).

Similar to collagens, SLRPs are primarily expressed by A1, A4 from A axis; and C2 and C3 from C axis.
The most common SLRPs expressed by A and C axes–e.g. BGN, DCN, OGN, POSTN, ASPN–are associ-
ated with binding to ECM components (collagens, fibronectin, tenascin C). Interestingly, ASPN, mostly
expressed in C axis; competes with DCN, mostly expressed in A axis, to bind collagen (Kalamajski et
al., 2009).
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Therefore, as expected with collagens, it is apparent that A axis populations are involved in the
expression of the majority of ECM components. Additionally, many of these SLRPs are partially related
to some of their non-ECM functions that we will extend on, such as Wnt and TGF-β signalling, or
certain immune responses.

other ecm components For the elements of this category, we do not observe a clear pattern of
expression by fibroblast populations. However, we do find some genes that are principally expressed
in C axis populations–ACAN, COCH, NPNT, SDC1–; and some by B4 population–EFEMP1, HSPG2–.

Interestingly, we do observe TNC and TNXB, two tenascins with a complementary expression pattern
(Valcourt et al., 2015), be expressed by complementary populations too: TNC is expressed by A2, B and
C; whereas A1/A3/A4 express TNXB. Moreover, TNXB interacts with type I, III, V, XII, and XIV collagens,
which A1/A3/A4 mainly expresses. Therefore, combined with ASPN/DCN pattern mentioned before;
TNXB and DCN expression may be restricted to the dermal surroundings of A1/A3/A4 fibroblasts, and
TNC and ASPN expression to A2/C fibroblasts.

In general, due to the large range of putative binding molecules described in the literature, the
net of interactions of ECM proteins is highly complex; and specific analysis should be performed to
elucidate specific binding partners and putative roles of each gene.

12.1.2 ECM modulators

ECM modulators are proteins that change the structure or composition of the ECM, usually replenish-
ing some of the components, or during injury processes, allowing immune and other cells to reach
the injury site. ECM modulators have been divided into three main categories: MMPs and TIMPs, ADAM
family metalloproteases, and other elements. The descriptions of individual genes are available in
Supplementary Table S3.

mmps and timps There is a wide range of MMPs in dermal samples, and in this analysis, dermal
fibroblast express mainly 6 of them: MMP1, MMP2, MMP3, MMP11, MMP16 and MMP27. There is a large
variability of expression within the populations and between MMPs.

Immune populations, concretely B1 population, expresses MMP1 and MMP3, which show a wide range
of collagen degradation patterns–MMP1 degrades primarily collagens I, II, III and VIII; and MMP3
degrades collagens IV, V, IX, X and XI–. Interestingly, MMP9, commonly found in immune responses,
is not expressed by any fibroblast, but in immune cells (Jiang et al., 1998).

On the other hand, non-immune populations from axis A mainly express MMP2 and MMP27. While
MMP2 is well characterised to degrade a wide range of collagens, as well as vitronectin, fibronectin
and laminin (Cabral-Pacheco et al., 2020), the functions of MMP27 are unknown (Cominelli et al., 2014).
Lastly, MMP11 and MMP16 are populations expressed by C axis populations, and therefore are likely
to be located in HF. These MMPs degrade mainly collagen III, but also BM-associated and nucleating
collagens IV, V and IX; or aggrecan expressed by axis C populations (Cabral-Pacheco et al., 2020).

Regarding TIMPs, inhibitors of MMPs, most of them are expressed by A1 and A4–TIMP1/2/3–; but other
populations express them differentially. TIMP2 is expressed by axis C populations and is possibly
regulating the presence of MMP11 and MMP16. On the other hand, TIMP1 and TIMP3 are expressed by
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E1 and B4. Interestingly, the CD44 molecule interacts with TIMP2 and TIMP3 based on Table 11, which
might be useful since CD44 binds a vast array of ECM components and might protect them from
MMP-mediated degradation.

adam family This family is composed of ADAMTS and ADAMTS-like (ADAMTSL) proteins. Markers
extracted for this analysis reveal the expression of three ADAMTS members–ADAMTS4/9/18–as well
as 4 ADAMTSL members–ADAMTSL1/3/4/5–.

ADAMTS9 and ADAMTS18 are expressed by C axis populations. ADAMTS9 acts on ACAN and VCAN. While
VCAN is more or less thoroughly expressed in the skin, ACAN is almost exclusive of C populations,
thus its homeostatic degradation may be regulated by ADAMTS9/18. ADAMTS4, expressed by B axis
populations, also degrades ACAN and VCAN.

Regarding ADAMTSL members, there is only one member of ADAM expressed in A axis: ADAMTSL1,
with an unknown role in the skin. On the other hand, three ADAMTSLs, including ADAMTSL3, which
bind fibrillin-1 (FBN1, expressed by A4 > A1), are expressed by D2 population. FBN1 is associated with
LTBP–a binding peptide that sequesters TGF-β–, and ADAMTSL3 is related to the inhibition of TGFB
signalling. Thus, TGF-β signalling may be directly mediated by FBN1 interactions, and its activity may
be regulated by ADAMTSL proteins.

other One of the key ECM regulators from this category are proteins that are required for ECM
maturation. These components are again majorly expressed by axes A and C. Elements secreted by
axis A are (1) members of LOX family (LOX, LOXL1/4) and PCOLCE1/2 expressed by A1/A3/A4, and LOXL2
expressed by A2 and C, which crosslink collagen and elastin chains to strengthen the ECM; and (2)
proline hydroxylases–P3H2/P4HA3 in C and P4HA2 in A–, which are necessary for correct collagen
synthesis.

The rest of the elements tend to be "negative regulators" of ECM synthesis. For instance, ANGPTL7
(D1), CHADL (C2), CHST15 (C2) CTSK (A/C), WISP1/2 (A/C) may inhibit expression of different ECM com-
ponents or their binding to integrins or other anchoring elements. The complementary function
tends to be related to inflammatory processes or ECM degradation. Thus, these enzymes may be ex-
pressed either to regulate ECM in homeostasis or may be also responsible for the initiation of ECM
degradation and remodelling during inflammatory processes.

12.1.3 Complement

The complement pathway is a complex mechanism of the innate immune response. This pathway
triggers a set of reactions between different proteins that culminate in the formation of the mem-
brane attack complex, a set of complement proteins (C5b, C6, C7, C8, C9) that form a pore in the target
cell’s membrane, resulting in lysis.

Supplementary Table S4 displays the expression of complement members, showing that the B2/B3
and B4 populations are involved in the effector components of the complement and support the im-
mune function of these populations. Interestingly, complement activation is not active in population
B1.
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Additionally, Supplementary Table S4 shows three other components: CD55, CFH, and CLU, which
belong to the complement inhibitory regulation. CD55 and CFH bind different upstream C proteins
and hinder subsequent steps in the pathway, while CLU directly inhibits MAC formation. These genes
are expressed mainly by A1 and A4, ECM-secretory populations that, in homeostatic conditions, may
ensure that no immune activation occurs. CLU is expressed, to a lesser extent, by B2/B3; and CFH is
also expressed by B4. This may indicate a partial immunomodulatory function of B4, which will be
discussed later.

12.1.4 Immune

Although frequently overlooked, immune signalling is a very relevant function of fibroblasts. The
descriptions of individual genes are available in Supplementary Table S5.

Looking at the related gene expression, it is apparent that most of the genes expressed in the immune
environment belong to the axis B fibroblasts, especially B2 and B3. Interestingly, B4 fibroblasts do
not express many immune-related genes as B1, B2 or B3 do, except for CXCL12 and, with secondary
expression levels, IL11RA, IL33 and RARRES2.

Thus, considering that most of the genes in this table are expressed in pro-inflammatory environ-
ments, B1, B2, and B3 are undoubtedly pro-inflammatory fibroblasts. In this section, we are going
to extend on the immune response markers, which have been divided into five main categories: (1)
CCL - CXCL - CX3C - CXCR cytokines, (2) ACKRs, (3) interleukins, (4) TNF family members, and (5) other
elements.

ccl - cxcl - cx3c - cxcr cytokines Within the subset of chemokines and their receptors, we
observed a slight difference between B1 and B2/B3. B1 expresses principally CXCL1/2/3, which attract
several immune cells, but show an affinity for neutrophils implicated in primary immune responses.
On the other hand, B2/B3 express CCL19, CX3CL1 and CXCL12, which show higher affinity towards cells
related to adaptive immune responses, specially T cells, but also DCs, B cells, and NK cells.

Interestingly some cytokines are expressed in populations other than "canonical" axis B immune
fibroblasts, such as CCL13 or CCL2, expressed by D axis populations. Both CCL13 and CCL2 bind to
CCR2, and attract a range of immune cells, including T helper and NK cells, mast cells, DCs, LCs,
monocytes and macrophages (Craig et al., 2006; Mendez-Enriquez et al., 2013; Ouwehand et al., 2010).
Therefore, D axis populations may show some immune action, as it will be explained later.

ackrs ACKRs are receptors for certain common chemokines. The most common registered inter-
actions are ACKR3-CXCL12 and ACKR4-CCL2/19 Table 11. ACKR3 and ACKR4 are principally expressed by
populations from axis A. Interestingly, CXCR4, expressed by C5 and D axis populations, binds CXCL12
as well. All these interactions imply that either these populations attract immune-related fibroblasts
for signalling, or vice-versa; indicating a vast net of interactions related to migration of immune cells
and fibroblasts.

ACKRs are essential immune components since they act as scavengers of their respective ligands
to (1) remove and clean the environment from these cytokines and (2) to generate a gradient for
immune cell migration into the tissue. One example is the ACKR3-CXCL12-CXCR4 interaction. While
CXCL12 binds to CXCR4, ACKR3 sequesters CXCL12 to generate a gradient necessary for the migration
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of CXCR4+ cells. Therefore, axis A fibroblasts may be responsible, indirectly, for immune migration
and may also act as "cleaners" of the ECM they are producing from immune response byproducts
(Berahovich et al., 2013; Donà et al., 2013; Lipfert et al., 2013).

interleukins Interleukins were first described as cytokines produced by immune cells that act
upon immune cells (Giovine et al., 1990). However, this definition has expanded since many inter-
leukins are also produced, and may act upon, other non-immune cell types.

With the exception of IL6, which is exclusively expressed by B1 population, the majority of interleukins
are expressed by B3. The function of most of these cytokines is the activation of B and T cells, NK
cells and other immune types (IL15/IL15RA, IL33, IL34). There are some relevant family members like
IL11RA, a soluble form of IL11 receptor, which may induce IL11 signalling on cells with no receptors
(Lamertz et al., 2018; Lokau et al., 2016); and has been observed to induce fibroblast infiltration and
TGF-β signalling (Elshabrawy et al., 2018).

tnfs Contrary to chemokines, TNF signalling is not exclusive of B axis populations, but it is ex-
pressed also in populations from other axes. This may be because TNF signalling is not "restricted"
to the immune response but is present in a large range of signalling pathways. For instance, A2 pop-
ulation expresses TNFRSF19, which acts as a co-receptor of TGFBR and LGR5 to inhibit TGF-β and
activate Wnt signalling, respectively (Fafilek et al., 2013). The population A2 also expresses TNFRSF21,
which acts as a negative regulator of B and T cell proliferation and also induces axonal pruning
(Nikolaev et al., 2009).

On the other hand, ligands expressed by immune cells show a positive regulatory function. TNFSF14,
expressed by the population B1, may induce DC and T cell maturation and proliferation (Albarbar
et al., 2015); and TNFSF13B, expressed by the B2/B3 populations, acts similarly to the CD40/CD40L
system necessary for immune cell maturation, such as DC and B cells (So et al., 2013).

other Regarding the rest of immune-signalling elements, the most relevant system is conformed
by the RARRES2-CMKLR1 interaction. RARRES2 ligand is expressed by B2 and B4, but also by A, D and
E axes populations, and is consistently linked to immune response, probably more in early than in
late phases. For instance, RARRES2 activation induces chemotaxis of immature APCs, but reduces
recruitment of macrophages; or is involved in early psoriatic lesions, but it is downregulated in
IL17/IL22-mediated advance stage psoriasis (Cash et al., 2008; Luangsay et al., 2009). Interestingly,
RARRES2 receptor, CMKLR1, besides being expressed on immune types, is also expressed by E1 and
A2 populations, which may imply further putative roles in the skin.

Other chemokines, such as SOCS3 or VCAM1 are usually expressed after the binding of pro-inflammatory
interleukins or factors, although with contrary effects: VCAM1 mediates the adhesion and migration
of immune and other cell types, whereas SOCS3 has a principal immunomodulatory effect by ton-
ing down pro-inflammatory signalling. Although SOCS3 is expressed by A2, D and B fibroblasts, both
SOCS3 and VCAM1 are predominantly expressed by B3 population, despite their contrary effect, show-
casing the complexity of immune modulation by fibroblasts.
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12.1.5 Wnt

Wnt signalling consists of a complex interaction of ligands and receptors, which activate β-catenin
canonical pathway and other non-canonical pathways. More information about Wnt signalling is
available in the Introduction section 2.2.2.1, and descriptions of individual genes are available in
Supplementary Table S6.

Wnt signalling is highly relevant in the skin, principally during development and for HF homeostasis,
where it serves as a key component of the hair cycle (Chen et al., 2012; Ouji et al., 2012; Romanowska
et al., 2009). This effect is reflected in the LR interactions shown in Table 11, where we observe a
large range of interactions, including LGR4-RSPO1, FZD6-WNT5A, PTPRK-WNT5A or FZD7-WNT11, mainly
exerted between A and C axes; as well as other interactions between D and E axes, such as FZD2-WNT2
or FZD7-WNT5A.

Looking at the genes involved in Wnt signalling from Table 11, 4 of them are associated with canonical
signalling–APCDD1, FZD1, WNT2/10B–; 6 with non-canonical signalling–DAAM1/2, FZD2, WNT5A/10A/11–
; and 4 with mixed signalling–CTHRC1, FZD6/7 and PTK7–.

Regarding the patterns of populations present in each type of signalling, there are no clear differ-
ences between axes for each type of signalling. In fact, A1/A2/A4, C2/C5, D1/D2, and E1 populations
are involved in Wnt signalling; but there are no remarkable differences with each type of signalling.
Also, both Wnt ligands and Fzd receptors are present in all axes, showing that Wnt expression pat-
terns are complex, diffuse, and possibly redundant.

Analysis of positive and negative modulation of Wnt signalling shows similar results as with the
signalling itself. There are several families of repressors and activators, such as DKKs, NKDs, LGRs or
RSPOs. Each one of these families has at least one member being expressed by populations from
axis A, and another member by populations from axis C–DKK1 (A) vs DKK2/3 (C), NKD1 (C) vs NKD2 (A),
LGR4 (C) vs LGR5 (A), RSPO1 (A) vs RSPO3/4 (C)–. Thus, A and C populations are complementary in Wnt
signalling.

Therefore, from the analysis of Wnt-related genes, we highlight these points: (1) assuming assuming
that Wnt is highly related to HF homeostasis, D and E axis are likely to be related to it; however,
(2) many other relevant pathways are dependent on Wnt, and therefore Wnt expression cannot be
trusted as a proxy for HF development. (3) All in all, Wnt signalling and regulation is a complex
network that may require a profound knowledge of the details of the pathway members to elucidate
the details within the populations.

12.1.6 TGF-β

TGF-β signalling is a complex pathway, principally mediated by binding of TGF-β dimer to its recep-
tor, to induce fibrogenic processes in fibroblasts by induction of collagen I and III production and
increased proliferation. This topic is introduced in sections 2.2.2.2 and 2.2.4 of the Introduction, and
descriptions of individual genes are available in Supplementary Table S7.

When looking at the gene markers, we observed that most of the markers belonged to the regulation
of TGFβ processing instead of the pathway itself, whose members–e.g. TGFB1, TGFB2, TGFBR1, TGFBR2–
show a decreased or scarce expression among all fibroblast populations.
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We divided TGF-β regulators into positive or negative/ambivalent regulators. While the literature on
positive regulators shows a pronounced increase in TGF-β signalling, the effects are mixed regarding
negative/ambivalent modulators. In several cases, proteins encoded tend to sequester TGF-β in the
environment for release under the proper conditions or interfere with the binding of TGF-β to its
receptor until in homeostasis. Interestingly, regarding the markers from Table S7, the vast majority
of modulators are negative/ambivalent (19) compared to positive modulators (3); which probably
implies that TGF-β signalling is active constitutively, and it is regulated in homeostatic conditions to
allow its immediate activation when the conditions are appropriate.

Regarding the positive modulators, the most common modulator is BMP7, expressed by C5 and D1
populations. A similar modulator, GDF10, is expressed by the B4 population. Interestingly, other mod-
ulators, like SLPI or ADAMTSL3 may also be expressed by B4 immune fibroblast population, implying
that either TGF-β signalling partially mediates immune processes or that these genes are pleiotropic
and act on other pathways.

Looking at the heterogeneity of populations expressing negative/ambivalent modulators, results
are similar to Wnt signalling: there is a range of genes expressed by axis C populations–ASPN, FMOD,
HTRA1, INHBA, LTBP2, MFAP2–, genes expressed by axis A populations–CILP, GDF15, SLPI, SOSTDC1,
TNXB–, and genes expressed by axis D populations–ADAMTSL3, BAMBI, CAV1/2–. Some of these genes
have multiple functions, but regardless, the presence of diverse markers in different populations sug-
gests that TGF-β signaling is also diverse and may have distinct functions for each population. This
could be influenced by the environment or additional functions of the population, which requires
further research.

12.1.7 Lipid metabolism

Lipids were traditionally framed within biochemistry research as "energy molecules", with negligible
secondary functions. Nowadays, lipid metabolism is known to be more than energy-related, and sev-
eral lipid families–e.g. eicosanoids, sterols, sphingolipids, fatty acids–have a very relevant function
in signalling. In this section, we are going to divide lipid-related genes into cholesterol/lipoprotein
metabolism and eicosanoids. The descriptions of individual genes are available in Supplementary
Table S8.

Cholesterol and lipoproteins, besides their traditional role of "energy storage", are key immunomod-
ulatory components. Oxidised lipoproteins have long been known to induce proinflammatory pro-
cesses, primarily in macrophages, that lead to atherosclerosis (Parthasarathy et al., 2009). More
recently, the range of immunomodulatory functions of cholesterol-related molecules and lipopro-
teins has been expanded to (1) activation of neutrophils, (2) pro- or anti-inflammatory macrophage
lineage phating, (3) activation of T cells by gathering of receptors into cholesterol-rich lipid rafts, (4)
control of hematopoiesis, (5) activation of TLR signals by lipoproteins (Aguilar-Ballester et al., 2020;
Tall et al., 2015).

On the other hand, eicosanoids are traditionally known as signalling molecules derived from the
metabolism of arachidonic acid, which acts upon a large range of processes, including inflamma-
tion (pro- and anti-inflammatory action), allergy, fever, pain, cell growth, blood pressure, platelet
aggregation, or vascular permeability. (Dennis et al., 2015).
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In line with the role of cholesterol metabolism in immune function, we observe that many related
genes are expressed by axis B fibroblasts–APOC1, APOE, CH25H, CYP7B1, and less predominantly
ABCA8, APOD and CYP4B1–. Most of these genes are expressed concretely by B2/B3 populations and
are associated with pro-inflammatory responses–CXCL1 expression (APOE), induction of TNF and IL6
(CH25H), activation of innate immune cells and production of immunoglobulin (CYP7B1)–. Interest-
ingly, 3 genes–ABCA8, APOD, LDLR–are expressed by D1 and B4 populations. Thus D axis may also be
relevant in cholesterol metabolism.

Based on interactions from Table 11, APOD (D1 > B4 ∼ E1) interacts with LEPR (A2 > A1 ∼ A3); and APOE
(B2 > B3 ∼ B4 > B1) interacts with LDLR (D1). We see that in both interactions, population D1 is a key
element.

Regarding eicosanoid metabolism, fibroblast population patterns are more diverse. For instance,
IL1- and IL6-inducing PTGS2 is expressed by B1, and its family member PTGS1 by A2; and other
prostaglandin synthesis/degradation enzymes such as HPGD, MGST1, PLA2G2A, PTGDS or PTGIS are
expressed by A and B axis populations, as well as D1, D2 and E1. The only exception are C axis popu-
lations which, despite PTGFR expressed by C2, show no remarkable gene expression.

12.1.8 Vitamin A metabolism

Vitamin A is thoroughly used in the body, including in the skin and HF. Vitamin A can exist in different
forms, including retinol, retinal or retinoic acid, depending on the context of action. Vitamin A is
transported in plasma in its retinol form by being bound to Retinol Binding Proteins (RBPs), and is
translocated to the nucleus by binding to CRABPs in the retinoic acid form (VanBuren et al., 2022).

Vitamin A is necessary for the regulation of HF, although its effects are contradictory, depending
on dosing and dietary changes. In mouse studies, it is observed to act on anagen, catagen and
telogen; some studies indicate that it prolongs anagen, while others indicate that it favours telogen
effluvium and prolongs this phase (Everts et al., 2004, 2007; Suo et al., 2021). Vitamin A metabolism is
also involved in wound-induced HF neogenesis (WIHN), a process whereby HFs are created de novo in
large murine wounds (Bhoopalam et al., 2020). This process has been observed to be mediated by the
activation of ALDH1A3 and CRABP1, expressed by populations D1/D2 and C2 respectively (Abbasi et al.,
2020; Kim et al., 2019). Lastly, vitamin A participates in the production of melanin by melanocytes,
and also favours melanocyte differentiation (Hu et al., 2017; Inoue et al., 2012). The descriptions of
individual genes are available in Supplementary Table S9.

Based on this, we observe that the majority of genes associated with vitamin A metabolism are ex-
pressed by axis C (CRABP1, RBP4 and CYP26B1), although we also observe CYB26B1 and TTR expression
in A2, possibly indicating a paracrine role in melanin production; or any other unidentified signalling
in the papillary dermis. Interestingly, we see that RBP5 is expressed by B2 and B3 populations, which
are related to immune signalling. It has been previously reported that immune cells express CYP26
and ALD1A proteins (Stevison et al., 2015) and therefore, retinol import into cells via RBP5 in B type
fibroblasts might be necessary for part of their functioning.
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12.2 putative functionality of human fibroblasts populations

12.2.1 C axis

12.2.1.1 C1

C1 population can be described by three main markers used in other single-cell publications: ACTA2,
COL11A1 and DPEP1. This population, which shares these markers with mouse w4 population, as well
as EDNRA and TENM3, is described by Ahlers et al., 2022–COL11A1+ DPEP1+–and Tabib et al., 2021–
COL11A1+ ACTA2+–as DS cells.

One of the most relevant markers studied from C1 populations is ACTA2, the gene encoding for α-
SMA. ACTA2 is already described as a marker of DS cells (Mistriotis et al., 2013), and is traditionally
described as a myofibroblast marker. In fact, during wound healing, ACTA2+ fibroblasts also express
COL1A1 and ITGB1, although neither of them is strictly required for proper wound closure (McAndrews
et al., 2022). Another report indicates that, although ACTA2+ myofibroblasts contribute to wound clo-
sure, they are not strictly necessary, and other actins (ACTB, ACTG1) may also be involved in the
process (Ibrahim et al., 2015). Additionally, at least in myocardial fibroblasts, they may still differen-
tiate into myofibroblasts regardless of ACTA2 expression (Li et al., 2022b). All these studies may be
relevant to postulate whether ACTA2+ DS fibroblasts already exist in a primed pro-fibrotic state, or
if myofibroblasts already originate from another population. This point will be further discussed in
the Discussion chapter 13.

A set of markers relevant to DS expression are related to its location. Some markers descriptive of
this population are also expressed in the BM surrounding the CTS, such as KRT17 (Antonini et al., 2013),
COL5A1/2 (Chanoki et al., 1988), MME (Morisaki et al., 2013), and MDK (Woo et al., 2022). Interestingly,
some of these markers are also detected in DP as well as in DS: ADAMTS18 (Hagner et al., 2020),
COL7A1 (Tsutsui et al., 2021), COL12A1 (Sasaki et al., 1996), LEF1 (Sun et al., 2022), MDK (Rendl et al.,
2005).

C1 has a clear link to ECM. For instance, TNMD is expressed probably to control the width of collagen
fibres (Docheva et al., 2005); and ACAN, ASPN, COL11A1 and also TNMD are usually expressed in carti-
lage, tendon and ligaments (Kalamajski et al., 2009; Luo et al., 2019; Roughley et al., 2014; Sun et al.,
2019).

C1 may also be related to the blood vessels surrounding the CTS, due to the expression of COL15A1
(Manon-Jensen et al., 2019a) and COL21A1 (Kehlet et al., 2019a), which are usually found surrounding
blood vessels. Additionally, C1 also expresses EDNRA, which regulates blood pressure and blood
vessel constriction (Liu et al., 2019), and which, in individuals with mutations in this gene, may lead
to alopecia (Gordon et al., 2015); indicating the putative relevance of this gene, and C1 population in
general, in HF vasculature.

Also related to HF homeostasis, C1 expresses genes that are related to hair cycle regulation. For
instance, MME is more active in early anagen (Morisaki et al., 2013); KRT17 binds CDKN1B to prolong
the anagen phase (Panteleyev et al., 1997; Tong et al., 2006); and LEF1 is associated with lengthening
of anagen and shortening of telogen and catagen (Zhang et al., 2013).
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Therefore C1 DS cells that are active in the anagen phase express several genes contributing to
that state; also express HF-related specific ECM genes, and have a wide control of CTS microvessels,
probably to supply the IRS and ORS cells within the HF.

12.2.1.2 C2

C2 population shares common robust markers both with mouse w/x–CHST15, COCH, DKK2, FMOD,
POSTN–and w1/w2–CRABP1, DAAM2, NOTUM, TRPM3, TRPS1–populations. One of these markers, CRABP1,
is a classical DP marker described by Collins et al., 2008. Additionally, Ahlers et al., 2022 described a
DP population expressing both COCH and CRABP1, C2 population exclusive markers.

One of the most relevant markers of C2 is COL24A1, an specific collagen of this population. Although
its function is not well known, it has been observed to be highly expressed in bone and has 3 non-
collagenous domains that may confer additional, non-traditional, functions (Nielsen et al., 2019b).
The relationship of this collagen with bone is relevant since we observe that C2 shows highly active
participation within the ECM homeostasis, and expressed other markers, like ASPN, which has been
shown to actively participate in calcium binding of collagen to induce ECM mineralisation (Kalamajski
et al., 2009).

Other relevant ECM regulatory components are CHADL, which regulates collagen and aggrecan (ACAN)
fibrillogenesis (Tillgren et al., 2015), F13A1, which binds fibronectin and vitronectin (Huttenlocher et
al., 1996; Winnemöller et al., 1991); P3H2, which binds collagens I and IV and is necessary for their
maturation (Tiainen et al., 2008); and SDC1, a promiscuous HSPG that binds collagens I, II and IV,
fibrin, fibrillin, TNC and vitronectin, as well as MMPs, ADAMTSs, BMPs, EGFs, cytokines and complement
proteins (Stepp et al., 2015). Other relevant ECM modulators expressed by C2 are ADAMTS9 and CHST15,
which degrade CSPGs such as aggrecan (ACAN) and versican (VCAN) (Kai et al., 2017; Kelwick et al.,
2015).

This ECM regulatory activity, as well as the active expression of ECM components that are more
"cartilage-like", similar to markers from C1 DS population, may confer C2 a unique ECM microenviron-
ment necessary for DP cells to dwell within the HF.

One of the hallmarks of HF signalling is the Wnt pathway. From the analysis of markers, we observe
that C2 shows a high Wnt activity. Interestingly, this signalling is mixed, that is, both pro- and in-
hibitory markers are expressed. For instance, DAAM2 enhances Wnt activity by receptor aggregation,
which potentiates the downstream cascade (Lee et al., 2012a, 2015), but also expresses NOTUM, which
inhibits this aggregation (Zhang et al., 2015). C1 population also expresses FZD1 and RSPO4, receptor
and co-activator of canonical signalling (Gazit et al., 1999; Szenker-Ravi et al., 2018); together with
DKK2 and PTK7, which inhibit canonic signalling (Ahn et al., 2011; Lhoumeau et al., 2011). PTK7, ad-
ditionally, is a non-canonic signalling co-receptor, which may interact with C1-expressed WNT10, a
non-canonic ligand (Chen et al., 2012).

Wnt signalling in DP was observed to be mainly pro-anagenic since many of these markers are not
expressed during telogen phase (Lim et al., 2012; Reddy et al., 2001). Nonetheless, some markers
like SFRP1, also observed in cuboidal ORS at the base of the HF, are potentially active in regressing
telogenic HFs (Geyfman et al., 2014).
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12.2.1.3 C3

C3 population, based on the PAGA graphs and other population analyses from chapter 10, is highly
related to C1 and C2, since many markers expressed by C3 are also expressed by C1 and C2, but not
vice-versa. Based on human-mouse population similarity, C3 is most related with w/x and w4, with
shared markers such as COL7A1, MMP16, LRRC15 and POSTN. w4 is also similar to C1, so probably C3
is more related to C1 than C2.

TNMD, expressed by all C populations–Ahlers et al., 2022 classifies it as a DS marker–, reduces the
amount of BGN (biglycan), COMP and FN1 (fibronectin). Therefore, C3 may be, at least ECM-wise, a
spatially complementary population to C1 and C2, with a separate ECM niche (Lin et al., 2017).

Despite being a "mixture" of C1 and C2, C3 expresses certain genes more than the other two popula-
tions. Some of these genes, such as MMP11, BGN, or POSTN, are tightly related to the functioning of
the ECM. BGN is an SLRP that binds collagens I and VI, chondroitin and dermatan sulfate (Roughley
et al., 1989; Schönherr et al., 1995); and POSTN, localised around the HF, binds several components,
including collagen I, fibronectin and tenascin C (Yamaguchi, 2014). Interestingly, Deng et al., 2021 ob-
served a POSTN+ population in keloid samples, which increases collagen production (Zhang et al.,
2014); and the authors show that blockade of POSTN function led to a decrease in collagen produc-
tion. Therefore, C3 might be probably related to ECM homeostasis of HF cells.

Regarding its location, one of the few exclusive markers expressed by C3 is KLK4, a member of the
kallikrein serine proteases family. It does not have a clearly defined function, although it may partic-
ipate in certain immune interactions (Filippou et al., 2020), androgens may regulate its expression
in certain cancers (Korkmaz et al., 2001), and may also regulate the degradation of ECM components
(Obiezu et al., 2006). Regarding its location, KLK4 has been found in IRS, but also in ORS, SG and
eccrine glands; similar to other KLKs such as KLK6/10/11 (Komatsu et al., 2003), which are described
in the literature but are not expressed in our analysis.

Based on the expression of these markers, the population C3 may be involved in both the secretion of
HF-specific ECM, as well as in its degradation, based on the expression of specific metalloproteases
and kallikreins.

12.2.1.4 C5

Similar to C3, C5 function is not a cell type categorised based on bibliographic records. Moreover, the
fact that, compared to the rest of C axis populations, has comparatively fewer cells, indicates that
it is probably a cell population not present in all HF stages, or that it represents a specific cell type
with a reduced number of cells, like stem cells.

Looking at the PAGA graphs in human, C5 shares a higher transcriptomic similarity with C1 DS com-
pared to C2 DP, coexpressing genes such as CDH11, INHBA, KRT17, LEF1, MME, SOX18. However, it also
shares specific key genes with C2 DP population–CRABP1, PTK7, DAAM2, CYP26B1–. Regarding mouse-
human similarity, C5 is transcriptomically more similar to w1/w2 populations, with shared genes such
as BMP7, INHBA, LEF1, SOX18, WNT5A; mostly expressed by C1.

Some of these markers, apart from being associated by similarity, are reported to be expressed by
DP cells, like WNT5A (Lim et al., 2012), CRABP1 (Collins et al., 2008), TPD52 (Rubin et al., 2004), CXCR4
(Zheng et al., 2022), LEF1 (Sun et al., 2022), or SOX18 (Villani et al., 2017). Another relevant marker,
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RSPO3, has been described in DP cells to induce proliferation of HF stem cells and DS (Hagner et al.,
2020). In fact, considering that some of these markers are also expressed in other parts of the HF,
like LEF1 in DS, WNT5A in IRS (Lim et al., 2012), CXCR4 in ORS (Zheng et al., 2022), KRT17 in ORS and SG
(Antonini et al., 2013) and MME in bulge DS (Morisaki et al., 2013), it is possible that the expression
of certain DP markers in additional cell types is due to C5 population being part of these cell types.

Despite differences and similarities with other HF populations, C5 expresses a few exclusive markers,
such as TPD52, KRT9, WNT5A. There are other markers which do not have a clear role, either in general
or in HF, such as LMO3, LUZP2 or PKP4. This last one is expressed in desmosomal plaques (Berika et
al., 2014).

Similarly to C1, C5 shows a high and, at the same time, diffuse Wnt activity. For instance, APCDD1
and NKD1 expression is linked to negative Wnt signalling (Angonin et al., 2013; Mazzoni et al., 2017),
whereas DAAM2 is an activator (Lee et al., 2012a), and RSPO3 and DKK2 are canonical Wnt activators
and inhibitors respectively (Ahn et al., 2011; Szenker-Ravi et al., 2018). Lastly, WNT5A is a non-canonical
Wnt ligand (Romanowska et al., 2009), which can be expressed by SOX18–another marker of C5–
(Villani et al., 2017), and WNT5A induces the expression of KRT9 (Rinn et al., 2008); all 3 markers
are expressed by C5. Surprisingly, KRT9 is a classical palmoplantar keratin (Fu et al., 2014), with no
bibliographic records indicating its expression if HF and other skin appendages.

Similar to C1, there are certain markers involved in cell cycle regulation, directly or indirectly, such
as IRF1, which regulates CDKN1A (Dornan et al., 2004); as well as in HF cycle, like MME, which shows
increased activity in anagen (Morisaki et al., 2013), or CXCR4 which, besides its classic CXCL12 receptor
involved in chemotaxis, delays the transition from telogen to anagen (Zheng et al., 2022).

Another function of C5, not described previously in C1 or C2, is TGF-β signalling. Two of the markers
of C5 are BMP7, a key ligand of the non-canonical TGF-β pathway (Meng et al., 2016); and INHBA, a
common TGF-β inhibitor that binds to the ligand and inhibits receptor coupling (Ferdous et al., 2007).
It is possible that both genes act synergistically to promote only non-canonical TGF-β signalling.

Although it might not be its main function, C5 expresses S100B and SLC5A3, two key genes in neuro-
genesis and vasculogenesis. S100B, also expressed by D1/D2, is a classical neuron marker, although
it is also present in melanocytes, adipocytes, DCs and lymphocytes (Donato et al., 2009). S100B has
been found to participate in neuron myelinisation (Fujiwara et al., 2014), neurite growth, (Donato et
al., 2009), satellite cell activation (Sorci, 2013) and production of iNOS and VEGF by endothelial cells
(Donato et al., 2009). On the other hand, SLC5A3, an inositol-Na+ transporter expressed in nerve,
pancreas, lung and muscle (Ma et al., 2012); besides being a key cellular and intercellular osmolarity
regulator (Pizzagalli et al., 2020), it forms complexes with other channels in nerve and blood vessels
to sense neuronal excitability (Dai et al., 2016) and vessel contractibility (Barrese et al., 2020).

Lastly, an interesting remark about C5 population is the expression of certain B axis markers, like
CD74 (B3), IER1 (B1) and IRF1 (B1 and B3). The functions of these genes will be discussed later but, at
first sight, it is possible that either the C5 population carries some level of immune response or these
genes have additional functions apart from the ones exerted by immune cells and immune-related
fibroblasts.

Therefore, based on transcriptomic similarity, markers and putative functions, there are several hy-
potheses regarding the cell type that C5 population could be assigned to. It is possible that C5
represents a population that shares its location with the DS, but also lies within the DP environ-
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ment. Firstly, C5 cells could either be matrix cells adjacent to DP, implicated in HF proliferation, or
precortex cells, implicated in differentiation. However, both cell types have a marked expression of
KRT15 o KRT6 (Geyfman et al., 2014), which are not specifically expressed within the fibroblast cells
in our analysis. Secondly, C5 cells could also be dermal cup cells, that is, DS cells located below
the dermal papilla. Hagner et al., 2020 analyse dermal cup cells in mice and show that these cells
express specifically Epha3, Hic1, Igfbp2 and Tnnt1, Mcam1 and Pcp4 come of which are expressed by
E1 or C1 sparsely–Epha3, Igfbp2, Tnnt1–and the rest of genes do not show any expression pattern.
This effect is already expected due to the gene expression differences that are commonly observed
across species. Lastly, C5 population is a candidate of telogenic DP or DS cells. Considering that the
HF cycle is asynchronous in humans and the fact that around 5% of HF cells are found to telogen
(Serrano-Falcón et al., 2013), the reduced amount of C5 cells may be an indicator. Additionally, de-
spite telogen being popularly considered as an inactive HF state, in reality, telogen DP is very active
and necessary to maintain the club hair properly (Geyfman et al., 2014). The main drawback to this
assumption is that C5 population expresses both pro-anagenic and pro-telogenic markers, and the
number of markers expressed is reduced, which decreases the conclusiveness of the results.

12.2.1.5 Consistency of C axis populations

Results from this analysis, as well as other studies that characterise HF cells using scRNAseq (Cho-
vatiya et al., 2021; Wu et al., 2022) show that the HF is an incredibly heterogeneous structure and,
focusing on fibroblasts, this analysis shows that, besides DP and DS cells, other new fibroblastic
populations are relevant for HF biology, and are yet to be characterised. Even more, the character-
isation of DP and DS, at least based on single-cell and other studies, is yet to be 100% defined as
well.

In fact, not only differences between human and mouse markers are to blame, but also the differ-
ences across studies. For instance, the comparison of DS and DP populations described by Shin et
al., 2020 and Joost et al., 2020 performed in Table 13 shows that the overlap of markers is still ex-
tremely small. For instance, we see that CTS1 from Shin et al., 2020 is more similar to DS2 from Joost
et al., 2020, although the Jaccard index is only 11.11% (10 shared out of 99 compared between both
datasets); and CTS2 is more similar to DS1, but the similarity to DS2 cannot be discarded–with Jac-
card indexes of 12.36 (11/89) and 7.53 (7/93)–. Regarding DP populations, the only "relevant" overlap
is between aDP and DP3–Jaccard index of 12.36 (11/89)–.

The same effect occurs comparing Shin et al., 2020 or Joost et al., 2020 markers to the merged
populations from this analysis. Both tDP and aDP populations reported by Joost et al., 2020 match
w1 and w2 indistinctively, and DS1 and DS2 populations match w3 and w4. However, the differences
between w1/w2 and w3/w4 populations, despite being highly similar, are consistent across datasets,
which implies that the characterisation of individual datasets may not be consistent and that, at
least in mouse, annotation of w axis does not reflect differences between anagen and telogen states.
However, considering the small number of cells within Joost et al., 2020 population, it is possible
that anagen/telogen differentiation was not relevant enough to be considered for the marker-to-
population algorithm. If further studies including more anagen/telogen cells are introduced in the
analysis, probably new w populations reflecting this heterogeneity will appear.

A similar phenomenon can be described for the mouse population w5. This mouse population, char-
acterised by its increased expression of cell cycle markers–e.g. Mki67, Cdk1, Cdkn3–is described by
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Shin et al., 2020 as HF dermal stem cells (hfDSCs). However, although this population is reported to
exist in human HF (Wu et al., 2022), based on the expression of Col17a1 and Krt15, it is not located
within the fibroblasts clusters. Therefore, it is possible that hfDSCs do not share the same lineage in
both organisms.

With all this in mind, even a proper mouse HF fibroblast characterisation may not lead to new human
populations, firstly, due to the fundamental limitations between human-mouse comparisons; and
secondly, due to the fact that, even within the same organism, fundamental differences between
mRNA and protein levels arise. Tsutsui et al., 2021 comment that several genes, including Col4a1, Tnc
or Smoc1 show significative differences between expression levels of mRNA and protein. They state
that these differences may be due to posttranslational mechanisms or due to protein expression by
adjacent populations affecting the measurement levels.

This last effect is also sound in human samples. In fact, many of the fibroblast markers are also ex-
pressed by many cell types, including keratinocytes, endothelial cells, perivascular cells and immune
cells; so the putative fibroblast functions inferred during this discussion section may be affected by
additional interactions with adjacent populations.

12.2.2 A axis

12.2.2.1 A2

A2 population is one of the key archetypes of the A axis, together with A1, and shows both a differen-
tiated marker profile and location. A2 population is highly likely to be associated with the papillary
dermis, based on the results from Section 10.5, which we will extend on this section.

ecm and ecm modulation A2 population shows a rich expression of collagens that are known
to be bound to DEJ structures, located in BM around vessels or other structures, or are located in
the papillary dermis. The most relevant collagens in this aspect are the following: (1) COL7A1 is a
component of the anchoring fibrils in the BM, which bind collagen I and III fibres (Barbieri et al.,
2014); (2) COL6A1/2/3, which can be found in the DEJ, but also around blood vessels, reticular dermis
and hypodermis (Sabatelli et al., 2011; Theocharidis et al., 2017), in DEJ it assembles anchor cells to
the ECM (Kaur et al., 2015); similarly, (3) COL6A5 is located in the papillary area, and attaches several
growth factors and MMPs (Freise et al., 2009); (4) COL13A1 and COL18A1 are also found in the DEJ, as
well as in vascular and epithelial BMs (Bonnet et al., 2017; Pehrsson et al., 2019; Peltonen et al., 1999);
(5) COL4A2/4 is similarly found in the lamina densa of BMs (Barbieri et al., 2014). There are three
additional collagens: COL14A1 and COL21A1 FACIT collagens; and transmembrane COL23A1, which is
mainly located in epithelia (Kehlet et al., 2019b). Interestingly, some collagens, like COL14A1 or COL6A5,
are also found in reticular dermis (Nauroy et al., 2017; Theocharidis et al., 2017). This may be because
these genes are also expressed by other populations that are likely to be reticular–e.g. COL14A1 is also
expressed by A1 and A3, and COL6A5 is also expressed by B3–or because this population, aside from
being located in the papillary area and DEJ, is also necessary for proper endothelial BM functioning,
regardless of the location of the blood vessels.

Other relevant ECM components expressed by A2 are COMP, which binds collagens I, II, IX, XII and XIV
(Agarwal et al., 2012; Farina et al., 2006); and POSTN, which binds collagen I, fibronectin and tenascin
C, and is also found at the DEJ (Yamaguchi, 2014). Specifically with collagens XII and XIV, COMP acts
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as a bridge between these collagens located in the anchoring plaques and collagen I, to stabilise
the structure (Agarwal et al., 2012). Regarding POSTN, it is interesting to recall that it binds tenascin
C, expressed by A2, C and B populations, in contraposition to tenascin XB, expressed by A1/A3/A4
populations.

Besides ECM components, A2 population also expresses a large array of ECM modulatory molecules,
that are known to either bind ECM components (1) without knowing their function, (2) to change the
properties of the ECM, or (3) to have a secondary function not involved with ECM modification. For
instance, APCDD1 acts like PCOLCE, expressed by A1, which cleaves pro-collagen molecules into their
active form, and also binds BMP1, another similar procollagen proteinase, to enhance its activity
(Baicu et al., 2012); and LOXL2, a member of the lysyl oxidase family, crosslinks collagen chains to
make them more resistant to insults (Sarrias et al., 2004). Interestingly, APCDD1 is reported to be
expressed by reticular dermis too (Solé-Boldo et al., 2020), possibly due to being expressed by C2
and C5 populations. On the other hand, ADAMTS9 and MMP11 are known to degrade, respectively
CSPG such as ACAN or VCAN (Kelwick et al., 2015), collagens IV, V, IX, X, XI, vitronectin, fibronectin and
laminins, as well as activate several proMMPs (Kahari et al., 1997).

Additionally, A2 population also expresses (1) CD44, a pleiotropic molecule involved in fibrosis and
TGF-β signalling, immune activation and cell proliferation, which binds HA, fibronectin, proteogly-
cans, and collagens I, IV and XIV (Bennett et al., 1995; Fujimoto et al., 2001; Ishii et al., 1993; Jalkanen
et al., 1992; Kawashima et al., 2000). It may maintain the levels of collagen I, N-cadherin and fi-
bronectin in homeostasis (Tsuneki et al., 2015) and wounding, avoiding its accumulation (Govindaraju
et al., 2019).(2) TGFBI, which codifies a multidomain protein that may bind integrin αvβ3, fibronectin,
vitronectin, collagens–including XII–, fibrinogen and VWF (Runager et al., 2013; Ruoslahti et al., 1987).
(3) F13A1, the A subunit of the coagulation factor XIII, binds fibrin, fibronectin, vitronectin, collagen
VI, and other ECM components, crosslinking them (Muszbek et al., 2011).

Lastly, ANTXR1 can bind collagen VI (Nanda et al., 2004), and might be a link between ECM and
cytoskeleton, necessary for ECM-sensing and migration (Gu et al., 2010). A similar function may be
exerted by sarcoglycans SGCA and SGCG–commonly expressed by muscle, and also expressed by
A1/A3–, which act as a link between the cytoskeleton and the ECM (Noguchi et al., 1995).

nerve and vascular The A2 population, together with other populations like C3, or D axis, ex-
presses several markers related to nerve and/or blood vessel physiology. For instance, KCNQ3, which
encodes a potassium channel protein (Singh, 2003), is observed at the endings of the lanceolate com-
plex in mice (Schütze et al., 2016). Similarly, SEMA5A is observed to act both as an attractor and a
repulsor in neural guidance (Hilario et al., 2009); and probably also in vasculogenesis (Purohit et al.,
2014). TGFBI, besides binding ECM components, is shown to have antiangiogenic properties (Son et
al., 2013); similarly to EDN3, an endothelial cell vasoconstrictor (Perrine, 2007). Interestingly, EDN3
was shown to induce pigmentation in melanocyte in vitro (Garcia et al., 2008), and hair plucking led
to melanocytic stem cell activation via EDN3/EDNRB activation (Li et al., 2017).

hf Despite several genes expressed by A2 showing evidence that it may be expressed in the papil-
lary dermis, certain exclusive markers show that the presence of A2 population may be also extended
to HF. We previously mentioned the expression of COL7A1 and COL13A1, related to DEJ and BMs. Ad-
ditionally, these collagens are located at the BMs surrounding DP and ORS (Tsutsui et al., 2021). We
also mentioned KCNQ3, a K+ channel observed at the endings of the lanceolate complex, which
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surrounds and innervates the HF. Additionally, TNFRSF19, which in humans is located at the stratum
basale, also marks IFE and infundibulum in mice HFs in telogen and hair bulb in anagen. EDN3 is also
expressed by DP cells in mouse, although not in human (Hagner et al., 2020). WNT11 is expressed
in DS and ORS cells (Lim et al., 2012). Lastly, FGFR2–which binds FGF7 and FGF10 expressed by B4–is
observed to be expressed by keratinocytes, SG (Katoh, 2009) and, in mouse HF, by matrix cells near
DP (Rosenquist et al., 1996).

wnt and tgf-β signalling Linking to the putative association of the A2 population with HF,
another classical pathway involved with HF homeostasis and hair cycle is Wnt signalling. A2 expresses
more than 10 Wnt-related markers, which are also expressed by HF populations, mainly C2, C3 and
C5. Although this evidence of Wnt signalling by A2 does not directly imply that A2 fibroblasts have
to belong in HF, it is highly likely that Wnt signalling is not only focused on HF cells but also by
surrounding populations–including A2, B4, or D axis–by paracrine signalling.

Among the Wnt pathway markers, we observe a minority of markers related to canonical signaling,
specifically RSPO1/3/4 canonical activators (Szenker-Ravi et al., 2018) and DAAM2 potentiator, which
aggregates Fzr/Axin/Dvl complexes (Lee et al., 2012a, 2015). The rest of the markers are involved
with non-canonical signalling, either by (1) inhibition of canonical signalling by AXIN2, a member of
APC|Axin|GSK3β complex that inhibits canonical Wnt through β-catenin inhibition (Jho et al., 2002);
DKK2/3, PTK7 and TNFRSF19, which sequester LRP5/6 co-receptors and promote their internalisation
(Ahn et al., 2011; Lhoumeau et al., 2011); and NKD1/2, inhibitors of the translocation of β-catenin to
the nucleus (Angonin et al., 2013; Zhao et al., 2015); (2) direct Wnt inhibition by WIF1, which sequesters
several Wnt ligands (Angonin et al., 2013), or (3) non-canonical markers, like WNT11 and PTK7.

Interestingly, although the vast majority of markers are either (1) inhibitors of the canonical path-
way, (2) general Wnt inhibitors, or (3) ligand or co-receptors of either the canonical or non-canonical
pathways, we do not see any receptor being expressed by A2 population. Therefore, although some
markers are located in the cell membrane, the lack of proper receptors may imply that A2 is a can-
didate to be a paracrine Wnt canonical inhibitor.

Regarding TGF-β signalling, A2 only expresses two related markers, also expressed by C populations:
MFAP2, which sequesters TGF-β1 in the ECM microfibrils (Weinbaum et al., 2008), and NOG, a BMP7
inhibitor (Blazquez-Medela et al., 2019).

immune and lipid signalling The A2 population also shows the expression of certain markers
involved in side, but relevant functions, including immune, and lipid metabolism.

We have previously mentioned the expression of FGFR2, which binds B4-expressed FGF7 and FGF10.
The binding of these two factors induces the synthesis of IL-1α (Melnik et al., 2008). IL-1α is highly
relevant, acting synergistically with TNFα and also acting in a positive feedback loop to activate NF-
kB signalling (Laberge et al., 2015). Another gene, CLEC2A, is involved in NK cell-mediated cytotoxicity
by binding to its receptor (Steinle et al., 2009). ANTXR1 is a transmembrane protein that, besides
from binding collagen VI (Nanda et al., 2004), may have an immunosuppressive role, modulating M2
polarisation and T cell exhaustion (Huang et al., 2020).

Another interesting protein that binds the immune with lipid signalling is OSBP2. As we will see in
B axis signalling, oxysterols–cholesterol-derived molecules–are relevant to mediate oxidative stress
and inflammatory processes (Gargiulo et al., 2016), but also in physiological aspects of cholesterol



236 discussion about fibroblast heterogeneity

metabolism and membrane homeostasis (Liu et al., 2020a). In that sense, OSBP2 may bind oxysterols
and be related in the regulation of their synthesis and toxicity (Gargiulo et al., 2016).

Other two genes related to lipid signalling are PTGS1 and AHRR. PTGS1 is involved in the synthesis of
thromboxanes from arachidonic acid, such as TXA2 or PGI2, involved in homeostatic and inflamma-
tory functions (Heide et al., 2006). AHRR, on the other hand, is a TF that binds a wide list of ligands,
which includes eicosanoids, bilirubin, indoles, as well as external pollutants and dietary ligands; and
is related to the transcription of (1) several metabolism-related genes, including many members of
the CYP450 family; (2) endocrine disruptors, and (3) proinflammatory factors such as IL-1β, TNFα, IL8,
MMP1 or TNFSF13B (Larigot et al., 2022; Vogel et al., 2017).

Lastly, A2 population also expresses two genes involved in vitamin A transport and metabolism: TTR,
which binds RBPs to co-transport retinol into the cells, and CYP26B1, which degrades all-trans retinoic
acid by hydroxylation (Isoherranen et al., 2019). In HF, retinoic acid contributes to the refractory
telogen phase, and CYP26B1 may take part in the modulation of this step (Hovland et al., 2020).

12.2.2.2 A1/A3

In this section, we will discuss the main functions of A1 markers. However, we remind that many
of these markers are also shared by A3 and A4. Thus, these populations, although not explicitly
mentioned, may also be active in some of these functions.

ecm and ecm modulation A1 is one of the key fibroblast subpopulations due to its collagen and
ECM component-producing capacity. The most important collagen genes expressed by this popula-
tion are COL1A2 and COL3A1, the main chains from collagens I and III, the most abundant collagens in
dermis (Henriksen et al., 2019; Nielsen et al., 2019a). Interestingly, although collagen III is said to be
more predominant in the papillary dermis (Barbieri et al., 2014; Stunova et al., 2018), A2 population
does not express it, so it is likely, and also expected, that either A1/A3/A4 or C axis populations, fulfil
this task in the papillary dermis. The other two relevant collagens in skin are COL12A1 and COL14A1,
which belong to the FACIT family. These collagens show interruptions in their chains that allow the
interaction and binding of other collagens, GAG chains, DCN, COMP, TNC and other ECM components
(Mortensen et al., 2019b). Interestingly, and similarly to collagen III, COL12A1 is more expressed in the
papillary dermis (Nauroy et al., 2017), but it is not expressed by A2.

Compared to other populations, like A2 or C axis, which express a wide range of collagens, A1 only
expresses the aforementioned 4 collagens. Even nucleating collagens, relevant for the proper struc-
ture of the ECM, are not expressed by A1. However, despite that, these are the most abundant, and
therefore, functionally relevant collagen components of the ECM.

Besides collagens, the A1 population also expresses other relevant ECM components like the SLRPs
PODN, DCN and OGN, which bind fibronectin and other elements (Winnemöller et al., 1991). DCN also
regulates the expression of collagenases (Huttenlocher et al., 1996), which play an active part in
ECM regulation. Other two relevant ECM components are HSPG2 and TNXB. HSPG2–perlecan–, binds
a large array of targets such as laminin, collagen IV, V, VI, XI, elastin and FBLN2; and also binds lipids
with an LDLR-like domain, as well as Wnt morphogens (Hayes et al., 2022). TNXB, on the other hand,
interacts with type I, III, V, XII and XIV collagens, as well as decorin and integrins, and is antagonistic
to the location of TNC, mainly in the papillary dermis and HF (Lethias et al., 2006).
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Other proteins belonging to the matrisome, and with high binding capacity are WISP1/2 and MFAP5.
WISP proteins contain several domains, including IGFBP, von Willebrand type C repeats, thrombospondin
type 1 repeat and cysteine knot motif. WISP1 in particular has been observed to bind DCN and BGN
(Desnoyers et al., 2001). WISP2 is known to inhibit the binding of fibrinogen to integrin receptors
(Janjanam et al., 2021). Additionally, it is upregulated in hypertrophic scars (Chaudet et al., 2020) and
is involved in PPARG activation in adipocytes. PPARG despite its clasical role in lipid metabolism,
suppresses the expression of TNFα, IL-1β and IL6 as well as MMP9 in many immune cells (Jiang et al.,
1998), an activity shared by certain A1 markers such as PI16, or SLPI. Lastly, MFAP5 is a key component
in the organisation of elastic fibres by interacting with fibrillin-1/2 (Penner et al., 2002).

Certain genes are involved in the maintenance, protection and maturation of the ECM fibres. One
of these genes is CA12, a carbonic anhydrase that catalyses the production of HCO3− and H+, thus
regulating pH and CO2 homeostasis (Supuran, 2008). This anhydrase is also present in eccrine sweat
glands, regulating Cl− levels (Na et al., 2019). The other two families of ECM regulators are LOX and
PCOLCE. LOX family, composed of LOX and LOXL1–although LOXL2 is expressed by A2 and C axis–is
necessary to crosslink collagen and elastin chains–LOXL1 favours elastin (Liu et al., 2004)–a process
necessary for the stabilisation of the ECM. However, excessive activity of LOX may be related to
stiffened ECM in ageing (Langton et al., 2012). On the other hand, PCOLCE and PCOLCE2 are necessary
to cleave pro-collagen molecules, activating them and allowing them to polymerise into the final
helical fibres (Steiglitz et al., 2002; Takahara et al., 1994).

Another aspect of ECM homeostasis is not only its synthesis but also its degradation. ECM degra-
dation is carried out by MMPs, like MMP2, which can degrade collagens I, IV, V, VII, X, XI, fibronectin,
elastin, laminin, vitronectin and activate proMMPs (Cabral-Pacheco et al., 2020); and CTSK, a cathep-
sin that activates MMP9 (Christensen et al., 2015), decreases COL1A1 expression (Soundararajan et al.,
2021) and catabolises collagens and elastin (Kondo et al., 2022).

This effect is primarily reverted by TIMPs, such as TIMP2 or TIMP3, which inhibit different MMPs and
ADAMs (Cabral-Pacheco et al., 2020). Interestingly, another inhibitor of MMP2 is PI16, a peptidase that
is activated under ECM stress or inflammation (Hazell et al., 2016). PI16 also cleaves B2-produced RAR-
RES2 into chemerin, which binds to CMKLR1 (E1) to exert its functions, including immunomodulation,
adipogenesis and angiogenesis (Regn et al., 2016).

A similar function is exerted by SLPI, an inhibitor of serine proteases, to control that ECM is not
over-degraded (Nugteren et al., 2021). It is also an inhibitor of monocyte-produced MMP1 and MMP9
(Zhang et al., 1997) and inhibits the activity of IL-1β (Zakrzewicz et al., 2019). DPP4 is a pleiotropic
dipeptidase that may regulate CXCL12, MMP1, and MMP3 levels (Ospelt et al., 2010) and its binding
to certain ECM components may activate or inhibit fibroblast proliferation. For instance, binding to
fibronectin induces mobilisation (Cheng et al., 2003), whereas binding to glypican 3 leads to DPP4
inhibition and reduced cell proliferation (Davoodi et al., 2007). Moreover, DPP4 is often complexed
with ADA, also expressed by A1, which may show an antifibrotic potential (Fernández et al., 2013) and
regulates the collagen production (Marucci et al., 2022).

DPP4 has been used in several studies as a marker for different fibroblasts, even with contradictory
findings. For instance, Philippeos et al., 2018 used Cd26/Dpp4 to isolate papillary cells, and Korosec
et al., 2019 also stated its presence in the papillary dermis. On the other hand, Dpp4 is a clear marker
of z1/z2 populations from adventitia cells, as stated by Joost et al., 2020; and Tabib et al., 2018 located
an SFRP2+DPP4+ population throughout the dermis.
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This anti-inflammatory potential from SLPI and DPP4-ADA is also shared by markers involved in the
negative regulation of the complement pathway. A1, among other populations, expresses CD55, which
inhibits the complement by binding to C4 and C3b fragments and inhibiting the creation of C2aC4b
and C3bBb complex respectively (Dho et al., 2018). Additionally, CLU directly inhibits the formation
of the MAC (Shinjyo et al., 2021); and DCN, aside from its SLRP component function, binds to C1q to
inhibit the initiation of the classical pathway (Krumdieck et al., 1992).

Related to immune signalling, with a possible role in immune regulation, are the chemokine recep-
tors ACKR3 and ACKR4. These receptors bind, respectively, CXCL12–which binds CXCR4–and CCL19/CCL21–
CCL19 binds CCR7–, ligands produced not only by immune cells but also by B2/B3 populations. Both
ACKRs act as scavenger receptors for these chemokines. One of the proposed and studied functions
of this scavenging is to create a gradient that favours immune cell migration (Berahovich et al., 2013;
Donà et al., 2013). For instance, in lymphatic vessels, ACKR4 is expressed in afferent lymphatic col-
lectors. There, T cells migrate by adhesion from CCL21+ lymphatic capillaries into CCL21dimACKR4+

collectors, where they lift and go with the lymph flow (Friess et al., 2022). However, considering the
additional functions of other immune-related markers, ACKR3 and ACKR4 may also simply just scav-
enge these chemokines from the ECM to avoid unnecessary immune infiltration.

Two last markers that may be related to immune and vascular function are AGTR1 and CD248. AGTR1
is a receptor for angiotensin II, a potent vasoconstrictor (Barnes et al., 2005; Bergsma et al., 1992).
However, in cardiac fibroblasts, AGTR1 was observed to regulate fibroblast proliferation and collagen
expression (Tadevosyan et al., 2017). On the other hand, CD248–endosialin–is a transmembrane gly-
coprotein related to stromal cell proliferation and microvascularisation during tissue remodelling
(Wu et al., 2021), and may also act as a receptor of CCL17–expressed by macrophages–to induce col-
lagen expression in fibrotic environments (Pai et al., 2020). It should be noted that the two genes
show a secondary function related to proliferation, in line with the ECM production function of these
fibroblast populations.

metabolism Fibroblasts are not only in charge of synthesising ECM but are also active scavengers
of hormones, xenobiotics and other small molecules that may be necessary for paracrine or en-
docrine signalling, or which are harmful to the environment.

SLC47A2 is a H+/organic cation antiporter expressed in the kidney for excretion of toxic endo or
exocompounds (Yonezawa et al., 2011). In skin, it may have a role in skin drug absorption (Alriquet
et al., 2015). Among the molecules that it transports there are endogenous molecules such as creati-
nine, guanidine or thiamine, and exogenous molecules such as tetraethylammonium–TEA, a potent
channel inhibitor–, acyclovir, ganciclovir, paraquat, metformin or DAPI (Avsar, 2022; Yonezawa et al.,
2011).

CES1 metabolises a wide range of molecules–heroin, cocain, etc.–into their active forms; and also
converts monoacylglycerides to free fatty acids and glycerol, and cholesterol ester to free cholesterol
(Markey, 2010). Similarly, MGST1 belongs to the MAPEG family, involved in eicosanoid and glutathione
metabolism, and catalyses the reduction of many reactive intermediates and drugs, and aids them
to be further metabolised (Morgenstern et al., 2011).

Belonging the CYP450 family, the A1 population also expresses CYP4B1, a member that oxidises a
large set of substrates, including fatty acids, arachidonic acid and cholesterol, which is activated by
hypoxia, androgens, and other factors (Röder et al., 2023). Lastly, we have HPGD, a member of the
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alcohol dehydrogenases which, similar to CYP4B1, metabolises a wide range of prostaglandins, mainly
to regulate their levels (Yan et al., 2004), (Cho et al., 2006). For instance, it degrades the IL1-derived
proinflammatory cytokine PGE2 (Arai et al., 2014). It also activates resolvins, enzymes that promote
restoration of normal cellular function following the inflammation (Arita et al., 2006). The functions
of some of these metabolic genes–e.g. CYP4B1, MGST1–are compatible with the immunoregulatory
function of this fibroblast population.

wnt and tgf-β signalling Wnt signalling is partially present in A1 population, with the ex-
pression of FZD6, a receptor of canonical and non-canonical signalling (Corda et al., 2017); LGR5,
a co-receptor of RSPOs to sequester ZNFR3 and allow Wnt binding to the receptor; and CTHRC1, a
pleiotropic protein that binds FZRs and induces their activation (Mei et al., 2020). On the other hand,
we also observe the expression of DKK1, a canonical Wnt inhibitor (Ahn et al., 2011), and WIF1, a Wnt
regulator that sequesters Wnt ligands in the ECM (Gajos-Michniewicz et al., 2020).

Contrary to the possible non-canonical Wnt signalling in this population, genes involved in TGF-β
signalling expressed by A1 show a marked inhibitory effect, in line with the anti-fibrotic potential
from DPP4 and ADA. This effect could be contrary to the proliferative effect of AGTR1 and CD248,
although this effect could be pro-fibrogenic and thus compatible with ADA and DPP4, or could not
be active in this fibroblast population.

CTHRC1 expression does not only control Wnt signalling but also attenuates TGF-β pathway by in-
duction of proteasomal degradation of Smad2/3 complex (Myngbay et al., 2021). CILP shows a similar
inhibition mechanism by impeding the phosphorilation of Smad2/3, and also by binding to TGFBR
(Liu et al., 2020b). Similarly, SLPI has an additional function of suppressing TGF-β (Ashcroft et al.,
2000).

This effect is mainly associated with canonical TGF-β signalling. Regarding non-canonical pathways,
we see that A1 expressed GDF10/15, which act similarly to BMP proteins (Wang et al., 2021b). However,
the A3 population expresses SOSTDC3, an antagonist of BMP protein (Faraahi et al., 2019), which may
counteract GDF proteins.

12.2.2.3 A4

In this section, we will refer to the markers of A4 and their main functions. However, most of these
markers are already described in A1 so that we will focus on the new markers. Regarding these
markers, most of them are only more expressed in the A4 population that in the A1 population, and
only a few of them are exclusive of this population. Thus, newly attributed functions in A4 may also
likely be performed by the A1 population.

ecm and ecm modulation Most ECM components expressed by A4 have already been described:
COL1A2, COL3A1, COL12A1, DCN, and MFAP5. There are additional elements expressed that are relevant
for the ECM, such as EFEMP1, a matrisome protein containing several EGF-like repeats and a fibulin-
type C-terminal domain (Sun et al., 1998); or PRG4, a proteoglycan usually found in cartilage due to
its high viscosity, which binds to hyaluronan and fibronectin (Eguiluz et al., 2015; Rhee et al., 2005).

Three additional genes are related to the synthesis of elastic fibres and microfibrils: FBN1, ELN and
EMILIN2. FBN1–fibrillin 1–, is a glicoprotein that constitutes a structural component of microfibrils
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(Lee et al., 2004). These fibres can be associated with elastic fibres and elastin-independent networks
(Jensen et al., 2016), and can also bind other matrisome proteins, including BMPs or LTBPs, playing
an indirect role in TGF-β response (Jensen et al., 2016). ELN–elastin–is one of the key components
of elastic fibres, which also needs the binding of GAGs, fibrillin, heparan sulfate and other ECM
components (Gheduzzi et al., 2005). Elastin, being more than 1000 times more flexible than collagen,
is key to the flexibility of the ECM (Kristensen et al., 2016). Lastly, EMILIN2 is another component of
the microfibrils, which binds fibrillin to other structures (Doliana et al., 2001; Schiavinato et al., 2016).

In order for fibroblasts to secrete ECM and, more generally, move alongside the ECM, they express
certain markers involved in cellular motility. Some of these markers, like SGCA/G are also key markers
of the rest of A axis populations. In this case, A1 and A4 express additional markers related to sensing
and motility: PIEZO2, DBN1 and TPPP3. PIEZO2, a mechanosensory channel located in Merkel cells (Wu
et al., 2017), could potentially sense variations of pressure and tension in ECM to modify its structure.
DBN1 and TPPP3 bind to F-actin in growth cones and filopodia and to microtubules, respectively
(Butkevich et al., 2015; Vincze et al., 2006)

Finally, regarding ECM modulators, all the genes expressed by A4 have already been described for
A1.

metabolism Metabolism of complex molecules is a hallmark of A1 population. In the A4 popula-
tion, in addition to MGST1 and HPGD, two more genes are expressed: PLA2G2A and PTGIS. PLA2G2A
is a phospholipase that transforms different phospholipids into arachidonic acid, which can later
be transformed into eicosanoids by enzymes like HPGD. Another enzyme is PTGIS, which transforms
PGG2 into PGI2–prostacyclin–, which is involved in the regulation of HF regeneration. In fact, higher
levels of PGI2 and related to androgenic alopecia (Chovarda et al., 2021), and minoxidil inhibits the
action of PGI2 (Messenger et al., 2004). Thus, A1 and A4 fibroblasts are active members of arachidonic
acid metabolism due to the expression of MGST1, CYP4B1, HPGD, PLA2G2A and PITGIS.

wnt signalling Compared to A1, TGF-β signalling is not present as the expression of specific
markers, whereas Wnt signalling is apparent. Besides the expression of CTHRC1 and DKK1 regulators,
A4 population also expresses APCDD1L, which is predicted to be involved in the negative regulation
of Wnt pathway (Otsuki, 2005); SFRP4, which acts similarly by sequestering Wnt ligands; and Wnt
canonical ligands WNT2 and WNT10B. WNT2 may promote fibre deposition by fibroblasts (Cai et al.,
2017), and WNT10B has been studied in the context of DP proliferation and maintenance (Ouji et al.,
2012).

vasculature Although A1 population was indirectly related to vascular homeostasis with the
expression of genes such as AGTR1 of CD248, the A4 population may show a greater implication in this
matter. PGI2, synthesised by PTGIS, has been shown to activate PPARD and induce VEGF production
(Wang et al., 2013). Another relevant marker is MGP, a protein with affinity for Ca2+ cations, which,
aside from decalcifying elastic fibres, is also necessary to avoid the calcification of vascular cells.

Two other markers largely studied in the vasculature and cell migration context are SEMA3C and
SEMA3E, belonging to the semaphorin family. SEMA3C binds NRP1 (A1/A4), NRP2 (D and C) and Plexin
D1 molecules, and shows a mixed angiogenic profile, which is pro or antiangiogenic dependent on
the tumour type (Neufeld et al., 2008). Similarly, SEMA3E binds Plexin D1 only, with a similar mixed
profile (Neufeld et al., 2008).
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immune response Although certain genes with some links to immune signalling have been dis-
cussed for A1 population–complement inhibitors CD55 and CLU–a large set of similar markers is
expressed by the A4 population.

One of the mentioned markers, SLPI, aside from its preotease function associated with ECM, also
regulates immune signalling by inhibiting NF-kB and TLR signalling (Greene et al., 2004; Nugteren
et al., 2021), and also inhibits the maturation of IL-1β (Zakrzewicz et al., 2019) and IL6 (Zakrzewicz et al.,
2019). PRG4 proteoglycan expression can also target to immune-related CD44. Binding of PRG4 to CD44
internalises it and targets the inflammasome, reducing IL1β expression, and affecting TLR-mediated
cascades, including NF-kB (Richendrfer et al., 2020). Similarly, DPP4 may truncate T chemoattractant
CXCL12–produced by B2/B3–into an inactive form that only binds ACKR3, and not CXCR4 (Elmansi et
al., 2022).

Four additional molecules with pleiotropic functions involved in immune signalling are C1QTNF3,
PDPN, HSD3B7 and MGP. (1) C1QTFN3 inhibits IL1 and TNFα (Guo et al., 2020); but also TLR4, IL6, VCAM1,
ICAM1, and E/P selectins (Schmid et al., 2021); (2) PDPN may favour the motility of NK cells, neutrophils
and DCs (Kerrigan et al., 2009; Seymour et al., 2016; Sobanov et al., 2001), and a subset of PDPN+

cells form a reticular network near lymph nodes was observed to facilitate leukocyte migration and
antigen presentation via CCL19, CCL21 and IL7 (Fletcher et al., 2015); (3) HSD3B7 participates in the
degradation of the proinflammatory molecule 7α,25-dihydroxycholesterol–oxysterol–synthesised by
CH25H and CYP7B1 from cholesterol by B2/B3 fibroblasts; and (4) MGP has additionally been involved
in the downregulation of TNFα, IL-1β and NF-kB; as well as inhibition of Ca2+-dependent inflamma-
tory processes (Viegas et al., 2017).

Lastly, there are two markers that are related with T cells: CD70 and TRAC. CD70 is a cytokine that
belongs to the TNF ligand family. It induces the proliferation of costimulated T cells, enhances the
generation of cytolytic T cells, and contributes to T cell activation. For instance, in the skin, LCs
present CD70 to augment CD8+ T cell presence in the epidermis (Polak et al., 2012). On the other
hand, TRAC encodes part of the TCR molecule, which binds to MHC molecules and activates the
adaptive immune response in the T cell (Brownlie et al., 2013). The presence of TRAC in fibroblasts
is surprising since the presence of the TCR is restricted to T cells, and its expression in fibroblasts
has been recorded in the literature. Interestingly, TRAC only encodes the α subunit of the receptor,
and since the β subunit is not expressed in fibroblasts, it is likely that TRAC is constitutively express
without exerting a relevant function, or that it exerts an unknown function in the A4 population.

12.2.3 B axis

12.2.3.1 B1

B1, together with B2, is one of the initially discovered immune-related fibroblast populations. There
is a marked difference between B1 and B2 markers and therefore, it is likely that immune response
in the dermis, as with many other organs, requires different types of responses.

B1 shares some relevant markers with the z1 population, including CCL2, CXCL2, FOSL1, IL6, or GCH1.
Interestingly, this mouse population also shares relevant markers with A4 population, such as CD248,
DPP4, EMILIN2, NPR1, PTGIS, SEMA3C/E, SFRP4 and WNT2. Thus, the z1 population, due to its restricted
location in mice, may serve the double function of these two populations to act as an ECM-producing
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and immune-related fibroblast. This is not surprising considering the array of immune-related mark-
ers expressed by the A4 population.

immediate early genes Immediate Early Genes are genes that are transcribed within minutes
after stimulation in response to both intrinsic and extrinsic signals. Many of these responses involve
cell differentiation, signalling related to the immune system and stress response (Bahrami et al.,
2016). Identification of IEGs tends to be complex and depends on the system of study. However,
some "universal" lists of these genes have been obtained for mammalian cells (Tullai et al., 2007),
which were used during this analysis.

Among the immune populations, B1 is the one expressing more IEGs (8) compared to others like
B2/B3 (4), which B1 also expresses. These genes are IER3, JUNB, SLC2A3, TNFAIP3, ZFP36, IL6, FOSL1,
and NFKBIA. Some of these genes, like FOSL1 and JUN belong to the AP-1 TF complex, which binds
JUN family proteins (Baines et al., 2017). Some of these markers belong to the acute phase immune
response, which involves the production of cytokines secreted to attract the innate immune response,
among other roles. These markers are discussed below.

acute phase chemoattraction (chemokines) There is a family of chemoattractants expressed
by B1, and to a lesser extent by B3: CXCL1, CXCL2 and CXCL3. All of these CXCLs bind to CXCR2, and
the most studied one is CXCL1. This chemokine, and probably CXCL2 and CXCL3 as well, binds to hep-
aran, dermatan and chondroitin sulfate GAGs to function, after being liberated by MMPs (Wang et al.,
2003). Also, GAGs seem necessary for full activation of CXCR2 as well (Wang et al., 2003). CXCL1 has a
marked angiogenic potential (Murphy, 2007), which may facilitate the chemoattraction of eosinophils,
basophils, macrophages, immature DCs and naïve T cells; and neutrophils, towards which shows the
most chemoattractant activity (Bautista-Hernandez et al., 2017; Murphy, 2007). CXCL2 and CXCL3 both
act similarly to CXCL1 (Murphy, 2007), although we note that binding of CXCL2 to ACKR1 in blood
vessels is necessary for neutrophils to perform diapedesis (Girbl et al., 2018).

Another factor necessary for immune cell chemotaxis is ICAM1, expressed by endothelial cells to
induce leukocyte trafficking (Bui et al., 2020). Although this effect is studied in endothelial cells, a
similar process may be necessary in fibroblasts to facilitate leukocyte motility within the ECM. For
instance, certain HF fibroblasts express ICAM1 to attract perifollicular macrophages, which seem
necessary for proper HF functioning since ICAM1 KO mice suffer from hair regression (Müller-Röver
et al., 2000).

ICAM1 expression is induced by NFKB1, one of the effector members of the NF-kB pathway, highly ac-
tive in immune processes, and also expressed by B1. Key chemoattractant targets induced by NFKB1
are ICAM1 and VCAM1 adhesion molecules, MMPs, COX2/PTGS2 and NOS2 (iNOS), these last two genes
involved in angiogenesis (Liu et al., 2017). Additionally, NFKB1 expression has been observed to cor-
relate with M1 (pro-inflammatory) macrophage polarisation and neutrophil recruitment (Liu et al.,
2017). Interestingly, B1 primarily also expresses NFKBIA the IkBa inhibitor. This protein sequesters
NFKB1 in the cytoplasm until a pro-inflammatory signal–e.g., TNFs, TCR–targets it for degradation
and liberates NFKB1 (Yu et al., 2020). Therefore, the B1 population seems to be the first to react by
being prepared to activate NF-kB signalling whenever a stimulatory signal is triggered.

acute phase cytokines Another key aspect of immune response is the production of cytokines
that can mediate the inflammatory response. The cytokines produced by the B1 population, or in-
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duced by genes expressed by it, are mainly acute phase cytokines, that is, cytokines that induce the
chemotaxis of innate immune cells, during early immune responses.

Most of these cytokines, like IL-1β, IL6, TNFα, TGFβ, are induced by many genes expressed by B1,
including NFKB1, IL32, TNFSF14, CD44, and FOSL1 (Alsaleh et al., 2010; He et al., 2022; Liu et al., 2017;
Pierer et al., 2007). Unsurprisingly, these genes were also expressed as primary chemoattractants.
Interestingly, one of the target chemokine genes, IL6, is also expressed by B1. Its expression is induced
by LPS and other external agents that bind TLRs, as well as IL1, TNFα, TGFβ and other factors. In fact,
as an IEG, it is one of the most readily inducible cytokines and activates the differentiation of B
cells to plasma cells, peripheral T cells–Th2, Th17, Treg–, as well as ECM remodelling–production of
collagen and GAGs–and fibrosis (Duncan et al., 1991; Paquet et al., 1996; West, 2019). It also induces
the secretion of more IL6, as well as different chemokines (CCL2, CCL11) and adhesion molecules
(ICAM-1, VCAM-1), which mediate its chemotactic properties (West, 2019).

ecm regulation One family of target genes of NF-kB signalling are MMPs. ECM plays a key role
in immune response, which is observed by the expression of other genes whose targets are also
ECM regulatory components. For instance, CD44–previously mentioned in A2 population to maintain
collagen and fibronectin levels and to bind many ECM molecules–plays an active role in immune
activation too. For instance, low molecular weight hyaluronic acid mediates CD44-induced IL6, CXCL1
and CXCL2 expression in fibroblasts (Vistejnova et al., 2014). Another member involved in ECM pro-
duction under immune responses is FOSL1 which, besides regulating Th17 commitment (Shetty et al.,
2022), induces the expression of TGFB1, FN1, VIM and MMP1/9/14 (Sobolev et al., 2022).

Some of these MMPs, like MMP1 and MMP3 are also expressed by B1 population. MMP1 degrades
mostly collagen III, but also I, II and BM collagen IV, as well as aggrecan and entactin (Cabral-Pacheco
et al., 2020). It also activates proMMP2 (Kahari et al., 1997). MMP3 can degrade collagens IV, V, IX, X, and
XI, aggrecan, vitronectin, fibronectin and laminins; and also activates proMMPs 1, 8, 9, and 13 (Cabral-
Pacheco et al., 2020), (Kahari et al., 1997). Similarly, ADAMTS4 metalloprotease is also expressed and
can degrade CSPGs such as aggregan or versican (Kelwick et al., 2015).

The last member of the ECM regulators is TNFSF14, a member of the lymphotoxin system, a network
of LR pairs expressed by T cells activated during viral infection (Dostert et al., 2019). TNFSF14 induced
the expression of MMP9 and IL6 in synovial fibroblasts in rheumatoid arthritis (Pierer et al., 2007),
which are also expressed in the skin.

tgf-β signalling Pro-inflammatory immune signalling goes unsurprisingly hand in hand with
the pro-fibrotic TGF-β pathway. However, contrary to expected association, pro-inflammatory sig-
nalling induces an antifibrotic response, as observed by B1 markers. In fact, this signalling is not
only unique to the B1 population but also to B2/B3 populations, with shared and independent mark-
ers.

One of the previously mentioned markers, CXCL1, is also related to TGF-β signalling. It is observed
that TGF-β reduces its expression (Fang et al., 2015); although the inverse might not be true, since
CXCR2 KO mice resulted in decreased TGF-β1 and collagen I expression (Zhang et al., 2020a), and
this reduction might be a result of indirect processes. Another previously mentioned marker is CD44,
which is observed to act as a negative regulator of TGF-β and PDGFRB (Porsch et al., 2014).
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Lastly, B1 expresses PPP1R15A, which belongs to a family of regulatory phosphatases expressed under
stress conditions. PPP1R15A is recruited to prevent the excessive phosphorylation of the translation
initiation factor eIF-2A/EIF2S1. This, in turn, reverses the shut-off of protein synthesis that is initiated
by stress-inducible kinases and facilitates the recovery of cells from stress (Choy et al., 2015; San-
tos et al., 2016). Additionally, PP1R15A down-regulates the TGF-β signalling pathway by promoting
the dephosphorylation of TGFB1 (Santos et al., 2016), and also by recruiting Smad7 inhibitor and by
dephosphorylating TGFBR (Shi et al., 2004).

other functions B1 expresses additional markers with mixed functions that are not directly
classified into the previous categories. One example of a marker is PTGS2 (COX2), mentioned to be
induced by NFKB1. In fact, PTGS2 is induced by upstream IL1 and IL6. PTGS2 belongs to the family
of arachidonic acid metabolism and is involved in the synthesis of PGE2, related to fever and pain
signalling, as well as other immune signalling processes (Heide et al., 2006).

Another marker is GCH1, the rate-limiting enzyme in the synthesis of tetrahydrobiopterin (BH4)
(Zhang et al., 2007), a cofactor necessary for NOSs and tyrosine hydroxylase–e.g., to make compounds
such as dopamine–(Lewthwaite et al., 2015). Additionally, BH4 is a potent, diffusable antioxidant that
resists oxidative stress and enables cancer cell survival (Kraft et al., 2019).

A similar oxidative stress protector is SOD2, a protective enzyme against ROS that transforms su-
peroxide from the mitochondrial electron transport chain into H2O2 and O2 (Pias et al., 2003). In
skin–and presumably other tissues–SOD2 is necessary for age-related damage protection and, in
fact, SOD2 expression decreases with age (Treiber et al., 2012); and SOD2 deficiency promotes aged
phenotype in mice (Weyemi et al., 2012). However, despite its protective role, SOD2 is necessary for an
active innate response. Lack of SOD2 impairs IFN-I and cytokine production, as well as dysregulation
of NF-kB; all of which are related to active ROS production (Wang et al., 2017). Additionally, at least
in lung cancers, SOD2 expression is associated with MMP upregulation (Yi et al., 2017).

12.2.3.2 B2/B3

B2 and B3 populations are what would traditionally be understood as adaptive response immune
fibroblasts, that is, their main function is to attract immune cells focused on the adaptive response
against specific antigens, or becoming cells that produce responses against such antigens for future
infections. This response is usually preceded by the innate/acute inflammatory response although
both responses may coexist and be complementary.

Comparing it with mouse populations, B2 shares the highest homology with the y4 population, based
on the co-expression of some of the following markers: APOE, C3, IL33, MGP, SLCO2B1, and TNFSF13B;
most of which have defined functions that will be discussed throughout this section. Similarly to
the B1 population, B2 also expresses IEGs such as JUNB, ZFP36, and TNFAIP; as well as more specific
IEGs such as SLC2A3 and CCL2. For instance, SLC2A3–a.k.a. GLUT3–is a monosaccharide transporter,
including glucose and galactose, to supply the cell with metabolic precursors for glycolysis (Deng
et al., 2015; Seatter et al., 1998).

complement B2/B3 populations and, to some extent B4, expressed key components of the com-
plement pathway, namely C3, C6 and C7. C3 is a cornerstone of the classical and alternative pathways;
and can initiate the alternative cascade on its own. It activates into C3a anaphylatoxin and C3b, which
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binds to C2a and C4b to activate C5. (Rutkowski et al., 2010). C5 is also activated by CTSH, produced
by B2/B3 (Bhakdi et al., 2004). Additionally, C3 can also be an immune primer: it is observed that in
the synovial space, C3 exposure primes fibroblasts for future immune responses, which may lead to
chronic inflammation (Afzali et al., 2021).

The other two members of the complement cascade expressed by dermal fibroblasts are C6 and C7.
These proteins, together with the end-of-cascade protein C5b, as well as C8 and C9 form the MAC
(Rutkowski et al., 2010). Interestingly, some components, like the pore protein C9, are not expressed
by these fibroblasts. In fact, C9–and other complement terminal proteins–is produced by monocytes
and mature DCs as well as hepatocytes (Lubbers et al., 2017), a target suppressed by hepatitis C virus
to impair MAC formation and hinder immune response in the host (Kim et al., 2013a).

Therefore, B2/B3 fibroblasts express complement cascade initiators and some terminal components
as part of the innate response, but a proper response is reliant on C9-expressing immune popula-
tions.

chemoattractant One of the main functions of B2/B3 populations is the chemotaxis of adaptive
and innate immune cells. A clear marker is CCL19, a chemoattractant of CCR7+ cells, such as DCs, B
cells, NK cells and several types of T cells (Laufer et al., 2019; Ohl et al., 2004; Reif et al., 2002;
Robbiani et al., 2000). In APCs, it is observed that migration occurs after CCR7 phosphorylation and
internalisation (Anderson et al., 2015; Tian et al., 2013). Moreover, CCL19-induced chemoattraction is
also observed in certain tumours, which favours T CD8+ infiltration and antitumorigenic response
(Cheng et al., 2018c).

Another member of the CCL family expressed by B2/B3 is CCL2, which binds CCR2 and CCR4, expressed
by bone-marrow-derived monocytes (Craig et al., 2006; Vanbervliet et al., 2002). Together with CCL5 it
is involved in epidermal-to-dermal migration of LCs after injury (Ouwehand et al., 2010). Additionally
CCL2 is also expressed as a regenerative signal in the context of HF. It was observed that hair plucking
led to the release of CCL2 to recruit macrophages that help in adjacent hair creation by activation
of regenerative signals (Chen et al., 2015b; Rahmani et al., 2020).

Two additional expressed chemokines are CX3CL1 and CXCL12. CX3CL1 binds CX3CR1 to attract T cells,
NK cells, monocytes and DCs (Johnson et al., 2013; Limatola et al., 2014). In fact, during wound healing,
CX3CL1 leads to the promotion of macrophage and fibroblast accumulation (Ishida et al., 2008); and
in atopic dermatitis, it induces the retention of T cells in the skin (Staumont-Salle et al., 2014). In-
terestingly, CX3CL1 promotes leukocyte attachment in physiological conditions in its anchored form,
whereas cleavage by ADAMTS10 and ADAMTS17 in inflammatory conditions leads to its soluble form,
which increases its activity (Thelen et al., 2016). Regarding CXCL12, it binds CXCR4 expressed by T cells
and Langerhans cells (Bautista-Hernandez et al., 2017; Ouwehand et al., 2008).

B2/B3 populations also produce several chemotactic interleukins, namely, IL15, IL32, IL33 and IL34; of
which IL15 works as a chemokine. IL15 shows roles in innate and adaptive responses, mainly activating
B, T and NK cells (Lodolce et al., 2002), and also induces the production of IL8 and CCL2–in mono-
cytes and fibroblasts–to attract neutrophils and monocytes (Badolato et al., 1997). IL32 has been
observed to switch between pro- and anti-inflammatory programs (Heinhuis et al., 2015) and, in the
pro-inflammatory program, it induces expression of pro-inflammatory IL1β, IL18 and TNFα cytokines
(Alsaleh et al., 2010).
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A relevant chemokine that has been previously mentioned is RARRES2, that binds CMKLR1 in the con-
text of angiogenesis. Additionally, RARRES2 shows pro- and anti-inflammatory properties depend-
ing on cleavage by proteases (Mattern et al., 2014). For instance, it was observed to enhance the
chemotaxis of immature DCs and monocytes but also reduce the recruitment of neutrophils and
macrophages into inflamed tissues (Cash et al., 2008; Luangsay et al., 2009).

Other relevant molecules for proper immune response are adhesion molecules. B2/B3 populations
express ICAM1, ICAM2 and VCAM1. ICAM2 works similarly to ICAM1, commented on B1 population sec-
tion, although it may be necessary for neutrophil crawling between endothelial cells during dia-
pedesis (Halai et al., 2013). Additionally, and related to this previous role, CXCL2 regulates endothelial
barrier function and permeability (Amsellem et al., 2014). Regarding VCAM1, it is usually expressed
in endothelial cells after cytokine stimulation–i.e. IL1, TNFα, IL4, IL3–, which promotes the adhesion
of lymphocytes, monocytes, eosinophils and basophils (Broide et al., 2014; Mantovani et al., 1998). In
other contexts, like muscle, VCAM1 is necessary for satellite cells to communicate with other satellite
cells as well as immune cells and may affect myofibril growth (Choo et al., 2017). Therefore, adhesion
molecules may also be used by B axis fibroblasts to gather other fibroblasts into the inflammation
site.

Lastly, HAS2 may also work as an indirect chemoattractant, since large hyaluronic chains are neces-
sary for protection against stressors and tissue repair, but also for proper leukocyte homing (Suss-
mann et al., 2004), possibly by binding chemoattractants like CXCL1 in the ECM.

immunomodulation Immunomodulation refers to the processes of induction of changes in the
immune cells, either to secrete specific factors, to repress or activate them, or to induce their mat-
uration. All B axis populations show a certain degree of immunomodulation, although B2/B3 show
the greatest capacity.

Some of the most relevant immunomodulators are the members of the MHC, necessary for the
activation of T cells. B2/B3 fibroblasts, and B1 to a lesser extent, express HLA-B and HLA-F, belonging
to the MHC-I family; and HLA-DRB, associated with the MHC-II family. HLA-B and HLA-F present both
autoantigens and exogenous antigens produced after infection to T CD8+ cells (Neefjes et al., 2011);
and HLA-B is constitutively expressed in all cells, whereas HLA-F expression is restricted to B cells
and activated lymphocytes (Ishitani et al., 2003). Compared to the rest of the members of the MHC-I
family, HLA-B loads the peptide and transports it to the membrane quicker, and shows a broader
range of adaptability to peptides (Neefjes et al., 1988; Peh et al., 1998), which justifies its increased
expression in immune fibroblasts. Additionally, HLA-F can act as a regulator by binding to activating
and inhibitory receptors in NK and T cells (Lin et al., 2019a). On the other hand, HLA-DRB1 is expressed
mainly in APCs and captures exogenous antigens to process them and present their peptides to CD4+
T cells (Neefjes et al., 2011). Therefore, fibroblasts may also act as APCs.

Additionally, these fibroblasts also express CD74, a molecule that serves two main functions. On the
one hand, it is an intermediary element of the MHC-II antigen protein. A specific segment of CD74,
the class II–associated li chain peptide (CLIP), binds to the MHC-II antigen binding site and prevents
its premature binding to antigenic peptides (Rosenzweig, 2018). On the other hand, CD74 can also
be expressed as a surface receptor, where it forms a dimer with CD44 to activate NF-kB and related
pathways and induce the expression of IL6, TNFα, TLR4 and the antiapoptotic protein Bcl-2 (Williams
et al., 2022).
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One key molecule for immune maturation is CD40. CD40 interacts with CD40L, expressed as a surface
receptor in several immune types, such as DCs or T cells, inducing their maturation (Smith, 2005). For
instance, activation in macrophages leads to the expression of TNF surface receptor expression, and
activation in B cells leads to their differentiation into plasma cells (Kawabe et al., 1994). A protein
similar to CD40 is TNFSF13B, which actually belongs to the same family, and is also expressed by
B2/B3 (So et al., 2013). The binding of TNFRSF13B to a TRAF subfamily receptor induces DC activation
and B cell maturation (Rickert et al., 2011).

A second family of proteins involved are the immunomodulatory interleukins IL15, IL33 and IL34–
which were also chemotactic–; and the soluble form of IL11 receptor, IL11RA. IL11RA binds gp130, a
transmembrane protein associated with IL6 receptors, and induces IL11 signalling, even on cells with
no IL11 receptor (Lamertz et al., 2018; Lokau et al., 2016). IL11RA is involved in the activation of several
downstream pathways, including MAPK, JAK-STAT, NF-kB or Akt (Balakrishnan et al., 2013). IL15 acts as
an activator of adaptive responses, especially T, B and NK cells (Lodolce et al., 2002). In T cells, this
process is also mediated by suppression of apoptosis, which enhances its function (Malamut et al.,
2010). Regarding IL33, it is stored in the nucleus and released during injury, working as an alarmin
(Haraldsen et al., 2009) that is activated by tryptases and chymases released by other immune cells,
like mast cells (Eissmann et al., 2020). IL33 activates T, NK, DC and mast cells, as well as basophils,
eosinophils and macrophages to produce other cytokines and chemokines (Bonilla et al., 2012; Moro
et al., 2009; Pecaric-Petkovic et al., 2009; Price et al., 2010). Lastly, IL34 induces the differentiation of
monocytes and macrophages through binding to CSF1R (Lin et al., 2008) and SDC1 (Segaliny et al.,
2015).

A similar macrophage activator is CSF1, which also binds CSF1R and regulates macrophage differen-
tiation. However, its range of action is systemic, compared to IL34, which is focused on the central
nervous system and skin (Greter et al., 2012; Nakamichi et al., 2013). Other macrophage activators are
SLCO2B1 and C3. Interestingly, C3 is secreted in blood vessels by adventitial fibroblasts in vesicles
containing other components and induces macrophage reprogramming (Kumar et al., 2021).

Another set of markers indirectly related to immune processes are CH25H and CYP7B1. Both proteins
are related in the production and metabolisation of oxysterols, a family of lipids related to choles-
terol that is highly reactive and induces cytotoxic and pro-apoptotic responses by interfering with
membrane lipids (Olkkonen et al., 2012). Additionally, oxysterol itself and metabolising enzymes in-
directly are highly related to immune function. CYP7B1 expression is induced by innate cells and is
related to the regulation of immunoglobulins by B cells (Dulos et al., 2005) and, together with CH25H
the activation of macrophages and DCs (Olkkonen et al., 2012). Also, 25-hydroxycholesterol, a product
of CH25H, is involved in the induction of TNF and IL6, and dermal Tγδ17 cells require it for homing in
that area (Frascoli et al., 2023).

Other markers related to the immune signalling mediated by lipids are APOE and APOC1. Aside from
their traditional role in cholesterol and lipid transport and metabolism, these apolipoproteins show
a relevant immune activity. For instance, Fuior et al., 2019 reported a significant effect of APOC1 in
immune modulatory processes, and APOE is observed to suppress T cell proliferation, neutrophil
activation, and regulate macrophage function (Zhang et al., 2010). Additionally, it is likely that the
lipid transport function associated with the lipoproteins APOC1–present in VLDL and HDL–and APOE–
present in VLDL and IDL–is necessary for the synthesis and metabolism of oxysterols by CH25H and
CYP7B1.
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Lastly, two additional markers show an immunomodulatory function: IRF1 and SOCS3. On the one
hand, IRF1 TF is associated with the expression genes related to (1) IFN signalling (IFNA/B, TNFSF10,
ZBP1), (2) regulation of cell cycle and proliferation (TP53, CDKN1A), (3) antibacterial response and
angiogenesis (NOS2), (4) apoptosis (CASP1/7/8), (5) immune response (IL12/15/17, PTGS2), and (6) MHC
expression (B2M, PSME1, CIITA) (Bowie et al., 2008; Dornan et al., 2004; Gao et al., 2009; Huang et al.,
2009; Oshima et al., 2004; Park et al., 2007; Su et al., 2007). SOCS3, on the other hand, is expressed as
a response to the binding of pro-inflammatory molecules–e.g. IL6, IL12, LPS, TNFα or IFNs–inhibiting
the effector pathways activated by these molecules by binding to several cascade elements, like
STATs or IL6R-bound JAK (Carow et al., 2014; Yin et al., 2015). Activation of SOCS3 may serve a double
purpose: first, it may reduce the overall immune response and act as a negative feedback regulator;
and may also reduce the innate, acute response to favour a secondary, adaptive response.

tgf-β signalling Like B1, B2/B3 populations are related to the negative regulation of TGF-β
signalling. There are 6 genes expressed by these populations involved in this pathway: IL11RA, IL33,
ACHE, PPP1R15A, SOCS3 and HAS2.

It has been observed that IL11 may induce IL33 expression in fibroblasts (Widjaja et al., 2022), and
restrain them from switching to a myofibroblastic state (Gatti et al., 2021). However, IL11 by itself
may show the potential to be either responsive to TGF-β signalling (Schafer et al., 2017) and also
antifibrotic, at least in endothelial cells (Allanki et al., 2021). ACHE, acetylcholinesterase, has been
shown to be indirectly related to TGF-β response inhibition (Stegemann et al., 2020).

Interestingly, regarding SOCS3, TGF-β induces the suppression of this gene in fibroblasts (Dees et
al., 2020). Although the contrary phenomenon–SOCS3 inhibiting TGF-β signalling–has not been de-
scribed, it is highly likely that it might be true. Lastly, it is observed that HAS2 expression in myofi-
broblasts is increased, which also increases CD44 ECM levels and results in fibrosis (Li et al., 2011).
However, in this scenario, HAS2 expression is already linked to the myofibroblastic state, so we can-
not directly assume that HAS2 is pro-fibrotic.

vasculature and ecm modulation Vasculature and ECM modulation are necessary processes
during immune responses, and although a bit diffuse, the expression of certain genes by B2/B3
populations may be involved in some of these processes.

One of the genes implicated is ACHE, acetylcholinesterase. This enzyme traditionally hydrolyses
the acetylcholine neurotransmitter in neuromuscular junctions and cholinergic synapses. However,
acetylcholine is also necessary for vasodilation–it is involved in NO production–, and thus ACHE may
modulate blood pressure (Amezcua et al., 1988). In fact, this process is used for the migration of
ACHE+ T cells (Fujii et al., 2017). Additionally, it is also highly likely that ACHE is involved in other
functions due to the upregulation of acetylcholine-mediated response in several skin diseases like
scleroderma and atopic dermatitis (Stegemann et al., 2020). Similarly, IGFBP7, a ligand of IGF recep-
tors, is observed to diminish angiogenesis by diminishing the activity of COX2 and PGE2 secretion,
which affects VEGF production (Tamura et al., 2009).

Regarding ECM modulation, 3 genes are putatively responsible for this activity: COL6A5, CTSH and
MGP. COL6A5 may be indirectly associated with ECM modulation since it attaches certain MMPs, in-
cluding inflammatory MMP1 and MMP9 (Freise et al., 2009). Interestingly, this gene is expressed by
B3 population as well as A2, which may indicate that it possesses a certain immunogenic degree.
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CTSH, a cystein protease from the same family as CTSK expressed by A1/A4, is known for degrading
lysosomal proteins. However, it also degrades the ECM for lymphocyte infiltration (Li et al., 2010).
Lastly, MGP, which has already been mentioned to be involved in ECM and blood vessel decalcifica-
tion, may be relevant for immune infiltration. Calcified ECM may be more complicated for immune
cells to traverse, and therefore, its decalcification may facilitate this process.

12.2.3.3 B4

B4 is the last of the immune populations. It shows a clear, distinct, transcriptomic profile with markers
such as PPARG, FGF10, MYOC or ITM2A. Interestingly, no immune population in mice was sufficiently
matched to this population, probably indicating a unique function in humans. This population shows
a diverse range of actions, including immunomodulatory actions, ECM and fibrosis response, lipid
and compound metabolism, stress protection, vascular homeostasis, and, interestingly, it shows a
relationship with HF.

immune function Regarding immune function, B4 shows a mixed profile, with a predominance
for immunomodulation and pro-regeneratory signals. One of its key markers, FGF7, for instance, is
observed to participate in reparatory processes in gut inflammation, as well as the reduction of apop-
tosis, and neurite reparation (Chen et al., 2017; Marega et al., 2021); and the similar family marker
FGF10, induces the chemotaxis of immune cells in lung by secretion of IL33 to activate repairing pro-
cesses (Marega et al., 2021). However, in skin, besides its alarmin and chemotactic function described
in B2/B3 fibroblasts, it may have a pro-inflammatory role by inducing IL-1 secretion by keratinocytes,
and vice-versa (Russo et al., 2020). A similar function is observed for IGF1, which is observed to induce
M2 polarisation in macrophages, related to anti-inflammatory and pro-regenerative signals (Yunna
et al., 2020).

Regarding negative immunomodulation, several genes are involved. Two of the most relevant mark-
ers of B4 are ITM2A and PPARG. ITM2A is involved in contributing to T helper response (Kirchner et al.,
1999; Tai et al., 2014), and is also involved in the induction of PD-L1, an immunosuppressive ligand
(Zhang et al., 2021b; Zhou et al., 2019). On the other hand, PPARG, a widely studied adipose tissue
TF, is known to suppress the expression of TNF, IL1B, IL6, MMP9 innate response genes (Jiang et al.,
1998), and Th1-related IL12, CD80, CXCL10 and RANTES (Nencioni et al., 2002; Szatmari et al., 2004). It
is also involved in the upregulation of lipid transport and metabolism genes such as CD36 (involved
in the uptake of oxLDL), FABP4 or CD1d, involved in the presentation of lipids to T cells (Chawla et al.,
2001; Szatmari et al., 2006; Tontonoz et al., 1998). Thus, its immune profile might be mixed, restricting
acute and innate responses, and regulating more adaptative ones.

Other two markers involved in immune response downregulation are SLPI and MGP, mentioned in A4
and A1 populations. SLPI inhibits the maturation of IL-1β (Zakrzewicz et al., 2019), and reduces the ex-
pression of IL6 in mouse adipocytes (Adapala et al., 2011). Similarly, MGP contains several Glu residues
that can be carboxylated by vitamin K, attracting Ca2+ cations (Bashir et al., 2015; O’Shaughnessy et
al., 2018) that confer them the ability to downregulate TNF, IL1B and NF-kB genes, as well as inhibi-
tion of Ca2+-dependent inflammatory processes (Viegas et al., 2017). Lastly, the immune maturation
molecule CD40 is not only expressed by B2/B3 fibroblasts, but also by B4 fibroblasts.

Besides immunomodulatory functions, B4 population is also observed to express certain chemoat-
tractant molecules such as CXCL12, which attracts T cells in general (Bautista-Hernandez et al., 2017),
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although it has higher attractive activity for T regs (Lin et al., 2009) and Langerhans cells (Ouwehand
et al., 2008).

Lastly, regarding the complement system, B4 population expresses the components also expressed
by B2/B3–C3, C6, C7–but it also actively expresses CFH, the inhibitor of the C3bBb convertase (Jozsi,
2017).

hf Interestingly, and contrary to B2/B3, B4 population expresses 10 genes involved in HF home-
ostasis, or expressed in this skin appendage. Some of these markers are EFEMP1, expressed in the
bulge area (Takahashi et al., 2020); WNT11 ligand is expressed in the dermal condensate at E14.5, and
is expressed in adult HF DP and ORS (Lim et al., 2012); HSPG2 is located in the BM adjacent to DP
(Tsutsui et al., 2021); IGF1 is expressed by DP cells (Panchaprateep et al., 2014); FGF10 is located in DP
and ORS (Zhang et al., 2018); and MGST1 is a marker of mature sebocytes (Kobayashi et al., 2019).

Additionally, IGF1 may be expressed in the HF regeneration context, since lower levels of IGF1 are
correlated with androgenic alopecia (Panchaprateep et al., 2014), similarly to FGF7/10, which also
induce new HF cycles by up-regulation of β-catenin (Greco et al., 2009; Zhang et al., 2018). Similarly
to FGFs, MYOC also intervenes in Wnt signalling as it interacts with FZDs, SFRPs and WIF, inhibiting
their function, and activating Wnt pathway (Kwon et al., 2009).

The last two markers are PLA2G2A and PPARG. PLA2G2A overexpression is related to adnexal hyper-
plasia, which results in alopecia (Grass et al., 1996), and PPARG is involved in HF morphogenesis and
maturation, and its downregulation induces a delay in HF cycles (Islam et al., 2018).

ecm B4 population is actively involved in secreting factors that bind several ECM components. For
instance, (1) HSPG2 perlecan binds heparan and chondroitin sulfate GAGs, laminins, collagens IV, V,
VI, XI, elastin and FBLN2. It also binds, lipid with a LDLR-like domain, as well as Wnt morphogens
(Hayes et al., 2022); (2) PODN podocan binds collagen I (Shimizu-Hirota et al., 2004); (3) FGF7/10 bind
to HSPG (Marega et al., 2021), and may bind TNC (Jones et al., 2021), and (4) MGP binds elastic fibres.

Lastly, although it is not an ECM-component binder, SLPI is involved in ECM homeostasis. SLPI is
an inhibitor of serine proteases–such as trypsin and cathepsin–, and MMP1/9 produced by immune
cells (Nugteren et al., 2021; Zhang et al., 1997). Therefore, as done by A1/A4, it may regulate and avoid
excess ECM degradation.

fibrosis/regeneration B4 population, similar to the rest of the immune fibroblasts, and in line
with findings from previous markers from B4 and the rest of B populations, shows a pro-regenerative
and antifibrotic response. ADA, apart from being necessary for immune signalling, is observed to
regulate collagen production (Marucci et al., 2022) and may have an antifibrotic potential (Fernández
et al., 2013). Similarly, SLPI suppresses TGF-β (Ashcroft et al., 2000); IGF1 shows modulation of ACTA
expression in vitro (Culley et al., 2021); and GPX3 is involved in cardiac fibroblast regulation into a
pro-regenerative fate under stress conditions (Li et al., 2022a).

Interestingly, this population also expresses GDF10, a TGF-β ligand from the BMP7 family. Therefore it
is likely that this population has either a reduced TGF-β signalling or it is linked with non-canonical
signalling.
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protection against stress B4 is a highly active population, and due to this activity and the
involvement with other immune populations, on last relevant function is derived from the expression
of "protective" markers. Similar to B1, which expressed SOD2 to reduce H2O2, B4 expresses GPX3, an
extracellular enzyme that reduces H2O2, hydroxyperoxides and other oxidised species (Brigelius-
Flohé, 2006; Maiorino et al., 1995), and its expression is upregulated by PPARG (Chung et al., 2009;
Reddy et al., 2018). Similarly, B4 fibroblasts express MGST1, a metabolic enzyme involved in eicosanoid
and glutathione metabolism. This factor, glutathione, is a highly active component against oxidative
stress too (Pompella et al., 2003). Additionally, B4 expresses two markers with an associated chaperon
function: MYOC and ITM2A. MYOC is a modulator of the actin cytoskeleton, but it also acts as a
chaperone against ER stress (Anderssohn et al., 2011); and ITM2A contains a BRICHOS domain that is
known to act probably as a chaperone in different scenarios (Hedlund et al., 2009). Lastly, APOD is
observed to have a protective action against oxidative stress preventing lipid oxidation in different
organisms (Ganfornina et al., 2008).

12.2.4 D axis

12.2.4.1 D1

D1 population is, together with D2 and E1, a small population that was previously unidentified but
with very particular markers. Human-mouse comparisons revealed that D1 was transcriptomically
similar to either y5 or v1 populations. However, at a closer examination, more genes from D1-y5 are
selected markers based on their function. Some of these markers are ABCA8, APOD, COL8A1, SOX9,
TGFBI, and VIT; of which SOX9 is exclusively expressed by D1. There are other markers expressed
exclusively by D1, such as the similar SOX gene, SOX8, BAMBI, CDH19, FMO2, or ATP1A2. Some of their
functions will be mentioned later.

The most relevant functions of the D1 population, and D2, to a lesser extent, are related to the
expression of nerve and blood vessel markers that are either expressed by or observed in these
structures or whose function is associated with the activities performed by these cells.

nerve function The D1 population expresses several markers that are also markers of other cell
populations. For instance, (1) ABCA8 is highly expressed by oligodendrocytes and may play a role in
sphingomyelin production (Kim et al., 2013b), (2) SOX8 TF is involved in the development of astrocyte,
oligodendrocyte and Schwann cell precursors (Hutton et al., 2009; Stolt et al., 2004; Takouda et al.,
2021), and also plays a role in sphingomyelin production (Turnescu et al., 2017), (3) CDH19 cadherin is
expressed by Schwann cell precursors (Kim et al., 2020b), (4) S100B is also a marker of Schwann cells,
although it is expressed in melanocytes, chondrocytes, adipocytes and immune cells (Donato et al.,
2009); (5) PIEZO2 is a mechanosensory Ca2+ channel involved in propriocepcion (Woo et al., 2015),
located in Merkel cells and afferent terminals (Wu et al., 2017); and (6) COL28A1, although not being
related with a clear neural function, it is almost-exclusively detected by terminally-differentiated
Schwann cells and Merkel cells (Grimal et al., 2010).

Some of these and other D1 markers have additional relevant functions in neural environments. For
instance, ATP1A2 is a Na+/K+ channel that osmoregulates the cation gradients for proper neuronal
excitability in nerves and muscles (Friedrich et al., 2016); OGN and VIT, usually involved in fibroblast
proliferation, participate in neural development and neurite growth (Deckx et al., 2016; Whittaker
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et al., 2002); and SCN7A, another Na+ channel that acts jointly with ATP1A2 in glial cells (Dolivo et al.,
2021), acts as a Na+ concentration regulator in homeostasis and TEWL-related injuries (Watanabe
et al., 2000). In this case, coactivation of ATP1A2 to compensate Na+ influx leads to the hydrolysis
of ATP and the production of lactate. This, together with an increase in endothelin ligands induced
by SCN7A, leads to compensatory neural responses like an increase in water intake in the ECM or an
increase in blood pressure (Dolivo et al., 2021).

vasculature Jointly with neural functioning, and as we have observed with SCN7A, D1 population
expresses more than 10 markers with a direct or indirect function related to vasculature.

Three interesting markers are COL15A2 and COL8A1/2, which are shown to be expressed at the BM
of microvessels or at proliferating vessels (Manon-Jensen et al., 2019a; Sutmuller et al., 1997). EFNA1
and NRP2, also expressed by D2, act as ligands of receptors of several pathways involved in neural
and vascular neogenesis (Hao et al., 2020; Islam et al., 2022). In fact, NRP2 is involved in vascular
permeability and lymphangiogenesis as well (Favier et al., 2006; Harman et al., 2020; Yuan et al.,
2002). In a similar fashion, BAMBI and TGFBI, related to TGF-β signalling, are also indirectly related
to these responses (Guillot et al., 2012), although TGFBI specifically shows antiangiogenic potential
(Son et al., 2013).

Other members that act by inducing the secretion of pro-angiogenic factors are IGFBP7, which secrets
PGE2, which in turn induces angiogenesis (Tamura et al., 2009); NFKB1 and S100B, which are involved
in the secretion of iNOS (Donato et al., 2009; Liu et al., 2017); or EPHX1 and CYP4B1 which metabolise
multiple substrates involved in angiogenic responses (Gautheron et al., 2020; Tang et al., 2010b).
Lastly, both D1, D2 and E1 populations express the kallikrein KLK1, responsible for the production
of bradykinin (Bellis et al., 2020), a vasoactive substance involved in blood vessel dilation by the
production of NO and prostacyclin, as well as derived inflammatory processes (Pinheiro et al., 2022).

immune B axis is the principal immune axis. However, there are certain markers that are related
to this family of responses specifically expressed by D1. Some markers, like NFKB1 and SOD2, already
described in B1, or CCL2, CFH, RARRES or SOCS3, also expressed by B axis population, showcase the
putative function of D1 in immune roles; although due to the pleiotropism of some of these genes,
their functions in this population could be different.

Specific to D1 are three additional markers: C2orf40/ECRG4, CYP4B1 and ATP1A2. ATP1A2, aside from its
function in nerve, is also observed to modulate LPS responses by NF-kB signalling (Leite et al., 2020);
a similar activation mechanism of C2orf40, which also activates IFN-I mediated signalling (Moriguchi
et al., 2016) and neutrophil recruitment (Dorschner et al., 2020). Lastly, CYP4B1 is upregulated by pro-
inflammatory cytokines (Smerdova et al., 2014), so downstream effects of this activation may also be
immune-related.

tgf-β Regarding TGF-β signalling, D1 also expresses BMP7 and INHBA, a combination postulated
for C5 population to inhibit canonical signalling and activate the BMP-mediated alternative pathway.
In addition, D1 expresses GDF10, which acts as BMP7.

In a similar fashion to HF populations, TGFB-β signalling in D1 is complex, with additional expres-
sion of markers such as PPP1R15A, which recruits Smad7 to inhibit TGF-β (Shi et al., 2004) and BAMBI,
which is also inhibitory, by binding TGFBRI/TGFBRII complex (Huang et al., 2012a). On the other hand,
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SCN7A expression linked to increased acidity in ECM–from sensing TEWL after injury–is related to
latent TGF-β activation (La et al., 2016). In a similar fashion, SOX9 TF may lead to fibrosis by induc-
tion of ACTA2, collagens and LOXL2 (Gajjala et al., 2021; Scharf et al., 2019); and is related with hfSC
niche reestablishment by TGF-β signalling (Berndt, 2014). This stemness state, although regulated by
NOTCH in specific environments–e.g. gastric cancer–, and not TGF-β signalling, may be induced by
SPON2 (Badarinath et al., 2022).

wnt Wnt signalling, similar to C axis populations, is active in D axis populations. In D1, it is proba-
ble that inhibitory signalling is more dominant, with the expression of DKK3–sequesters LRP5/6 (Ahn
et al., 2011)–, SFRP4–binds Wnt ligands and inhibits their action (Liang et al., 2019)–, SHISA3–impedes
the translocation of Wnt receptors to the membrane (Furushima et al., 2007; Hedge et al., 2008)– or
NDRG2–activates GSK-3β, which signals β-catenin degradation (Lee et al., 2022)–. Thus, the expres-
sion of FZD2 non-canonical receptor (Gujral et al., 2014) may not be sufficient for this signalling.

collagens and ecm regulation Interestingly, D1–and D2 to some extent–shows increased
expression of 5 collagen genes: COL8A1/2, found in proliferating vessels (Sutmuller et al., 1997);
microvessel-associated COL15A1; and nucleating COL9A3 and COL28A1, found around Merkel and
Schwann cells (Grimal et al., 2010). Another related ECM component related to collagen is DCN, not
only expressed by A axis, but also by D1.

Additionally, D1 population expresses CYP4B1, which is related to POSTN expression (Zhao et al., 2013);
or VIT–vitrin–, acting similar to COCH in cell adhesion and neural development (Whittaker et al.,
2002). It also expresses several genes whose expression products bind or regulate multiple ECM
components, such as TGFBI, which binds integrin αvβ3, fibronectin, vitronectin, collagens, fibrinogen
and VWF (Ruoslahti et al., 1987); EGFR, which binds AREG, TGF-α, or EREG (Harris, 2003; Normanno
et al., 2006), and other ligands like TNC, DCN, or laminin-332 (Iyer et al., 2007; Santra et al., 2002;
Schenk et al., 2003); and ANGPTL7, which is associated with a diminished expression of FN1, COL1A1,
COL4A1, COL5A1, MYOC and VCAN, and an increased expression of MMP1 (Comes et al., 2010), in line
with a pro-inflammatory profile.

Although it is complex to establish a clear function of these genes in the context of the D1 population,
it is possible that this type of fibroblast transforms "classical" ECM microenvironments into more
specialised environments necessary for the correct development of HF, nerve or blood vessels.

vitamin a and lipid metabolism Regarding lipid and retinol metabolism, three related genes
are expressed by D1: ALDH1A3, which transforms retinaldehyde into retinoic acid (Kedishvili, 2013);
and two lipoprotein-related markers: APOD and LDLR. APOD, despite belonging to the apolipoprotein
family, is also highly related to RBPs in function (Munussami et al., 2018); thus, it may be the agent
transporting retinol into D1 fibroblasts. Lastly, LDLR, which binds VLDL and LDL in plasma (Go et al.,
2012), may be related to lipid metabolism; or, considering the adipose tissue surrounding anagen
HFs, may be an active component in the communication with hypodermis.

fmos Lastly, the family of flavin mono-oxygenases (FMOs), is highly expressed by B4, D1 and D2
populations; and in the case of D1, is the only population expressing all of the members expressed
in the samples from the analysis: FMO1, FMO2 and FMO3. In general terms, each FMO metabolites,
generally using FAD or NADPH as cofactors, a wide range of molecules including triethylamine and
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other secondary and tertiary amines, thiols and other xenobiotics (Hisamuddin et al., 2007). Although
FMOs activity has been linked with fibroblast activation (Yu et al., 2022) and cardiovascular disease
(Schugar et al., 2015; Shih et al., 2019; Warrier et al., 2015), specific functions of these enzymes are yet
unknown.

12.2.4.2 D2

D2 is the second population from the D axis. Although both populations differ in certain markers and
possibly in some of their functions, their transcriptomic similarity is extremely high, and the most
relevant genes are expressed in both populations. Regarding mouse-human comparisons, D2 shows
a clear similarity to v1 population, with exclusive markers, such as AQP3, CAV1/2, ITGA6, ITGB4, KRT19,
which are all exclusively expressed by D2. Additionally, D2 also expresses other exclusive markers,
including DACT1, ADAMTSL5, AQP3, GFRA2 and NGFR, many of which will be discussed throughout this
section.

nerve and vasculature Similar to D1, D2 population seems to be associated with nerve and
blood vessel microenvironments. Regarding nerve markers, population D2 shows the expression of
already mentioned D1 markers such as ABCA8, S100B, and VIT; but it also expresses specific markers.
For instance, (1) GFRA2, a member of glial cell-derived neurotrophic factor (GDFN), is necessary for
neurotransmitter release of several neuron types (Airaksinen et al., 2002); (2) KRT19 and (3) NGFR are
expressed in Merkel cells–as well as fibroblasts, mast cells and rete-ridge keratinocytes–(Botchkarev
et al., 2006; Michel et al., 1996), and NGFR is necessary for Schwann cell cone formation (Cragnolini
et al., 2008); and (4) SLC22A3, a channel involved in neurotransmitter transportation (Amphoux et al.,
2006), which may be necessary for the regulation of osmolality in the neuron vicinity (Vialou et al.,
2004).

Regarding vascular markers, D2 population also expresses D1 markers NRP2 and EFNA1; as well as
CAVIN2, which will be discused later, and SEMA3C, which binds NRP2 and shows a mixed angiogenic
profile (Jiao et al., 2021; Karpus et al., 2019; Neufeld et al., 2008; Valiulytė et al., 2019).

immune D2 population expresses many immunogenic markers, but many of these have already
been mentioned in previous populations: CLU (complement inhibitor, A1/A4), CCL2 (B3), SOCS3 (B3),
ITM2A (B4) and C2orf40 (D1). The only relevant new marker is CCL13, a pleiotropic chemokine that
(1) binds CCR1/2/3/5 and induces chemotaxis of different immune cells, including Th and NK cells,
mast cells, basophils, eosinophils and monocyte/macrophages (Mendez-Enriquez et al., 2013); (2)
upregulates TLR2/3/4/5 expression and induces DC maturation (Mendez-Enriquez et al., 2013); and
(3) its expression is related to CD40 and MHC-II expression, involved in adaptive responses (Chiu
et al., 2004).

Although D axis populations show some expression of regulatory immune modulators such as SOCS3,
CLU and ITM2A, the expression of several chemokines and other markers indicate that their immune
activity is not negligible.

hf and ecm redulation D2 population also shows a wide range of markers associated with ECM
and HF in homeostasis and other conditions.
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Some markers that were mentioned to be expressed surrounding nerves, blood vessels and other
structures have been shown to mark HF areas such as KRT19, which marks ORS in the bulge area
(Michel et al., 1996); SLC22A3, located in HF, and SG–and may be associated with sebum production–
(Takechi et al., 2021); ADAMTSL5, also located in ORS (Higgins et al., 2011); GFRA2, expressed in ORS,
IRS, DP and CTS in anagen, although its CTS expression is maintained throughout the HF cycle (Adly
et al., 2008); and NGFR, expressed in DP.

In fact, some markers, like NGFR, are also associated with the HF cycle or balding processes. For
instance, NGFR is expressed in the anagen-to-catagen transition (Botchkarev et al., 2000; Enshell-
Seijffers et al., 2010); FGF7, which signals the induction of new hair cycles (Geyfman et al., 2014; Greco
et al., 2009); CCL13, whose immune function, if exacerbated, is associated with T cell accumulation
in alopecia areata (Wang et al., 2021a); and PTGDS, which is highly expressed in androgenic alopecia
(Garza et al., 2012).

Regarding ECM regulation, the D2 population expresses three different ADAMTSL members: ADAMTSL3,
ADAMTSL4, ADAMTSL5. Their main function is the binding of fibrillin-1 (Sengle et al., 2012), and reg-
ulating its biogenesis (Gabriel et al., 2012), although each member has specific functions as well.
Additionally, D2 also expresses TGFBI and VIT, which have been mentioned in D1.

wnt signalling Similar to D1, D2 population expresses several genes involved in these two
pathways. Regarding Wnt signalling, apart from the already mentioned NDRG2 and SFRP4, it expresses
DKK3, CAV1 and DACT1, all three represorst of Wnt signalling–canonical or overall–(Ahn et al., 2011;
Esposito et al., 2021; Galbiati et al., 2000; Gao et al., 2022); and DAAM1, which activates PCP non-
canonical pathway (Lai et al., 2009).

lipid metabolism While the D1 population expressed genes related to cholesterol and general
compound metabolism; markers expressed by D2 are slightly more related to eicosanoid metabolism.
For instance, EPHX1 metabolises the oxidation of the endocannabinoid 2-AG into arachidonic acid
(Nithipatikom et al., 2014); CYP4B1 CYP450 monooxygenase catalyses arachidonic acid oxidation; and
PTGDS catalyses the conversion og PGH2 to PGD2 (Zhou et al., 2010).

caveolins Caveolins are a family of scaffolding proteins associated with caveolae formation.
Caveolae are membrane invaginations of lipid rafts that endocytose and are generally involved in
signal transduction (Anderson, 1998). D2 population specifically expresses three caveolae-related
markers: CAV1 and CAV2 caveolins, and CAVIN2–Caveolae Associated Protein 2–. Generally, although
CAV1 is able to produce caveolae on its own (Scherer et al., 1997), caveolae are usually created by the
interaction of these three proteins (Mora et al., 1999). In some scenarios CAV1 and CAV2 may have
antagonistic functions (Almeida, 2017).

The functions of these genes are diverse and context-specific. For instance, CAV1 is related to TGFBR1
sequestering from membrane rafts into caveolae to reduce TGF-β signalling (Hwangbo et al., 2015);
may also sequester β-catetin to regulate Wnt signalling (Galbiati et al., 2000; Gao et al., 2022); may
be related to immune responses by inducing T-cell proliferation (Ohnuma et al., 2007), favours neu-
trophil extravasation (Marmon et al., 2009) or ICAM1-mediated leucocyte adhesion (Bouzin et al.,
2007). CAV2 may be related to keratinocyte proliferation upon KGF action (Gassmann et al., 2000),
may also act like CAV1 in TGF-β signalling (Xie et al., 2011), or may be involved in lipid metabolism and
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receptor trafficking (Sowa, 2011). Lastly, CAVIN2 may control angiogenesis by regulating eNOS activity
(Boopathy et al., 2017) and may also inhibit TNF-mediated NF-kB signalling (Annabi et al., 2017).

The immune profile associated with the expression of caveolin-related genes is in favour of a mature,
adaptive response, in line with the immune markers presented in this section.

integrins Lastly, an interesting heterodimer expressed by D1 principally is the integrin α6β4,
formed by the expression of ITGA6 and ITGB4. Similar to caveolae, the functions of this integrin
dimer are diverse, but may be extremely relevant for this fibroblast population.

ITGA6 by itself is found to serve several functions. In mouse HF, ITGA6 is located at the BM surrounding
DP and ORS (Tsutsui et al., 2021); and it was observed that HF ITGA6+ cells were able to generate hair
shaft, ORS and IRS in vitro and in vivo (Yang et al., 2014; Yang et al., 2020). This activity is not specific to
HF, as ITGA6+ populations tend to show stem potential across tissues (Yu et al., 2012). Additionally,
it participates in Langerhans cell migration from the epidermis into the dermis and lymph nodes
(Varlet et al., 1991) and may act as an ECM mechanosensor to induce myofibroblast activation under
specific circumstances (Chen et al., 2016). This effect is mediated in keratinocytes by EGFR binding
to integrin α6β4. Under ECM stiffening, EGF bioavailability increases, activating EGFR and inducing
migration and cell activation (Kleiser et al., 2020).

Regarding the heterodimer, it binds several ECM and BM members, including laminins 332 and 511, and
colocalises with BM collagen IV, as well as other integrins, in DEJ and HF and SG BM (Blok et al., 2015;
d'Ovidio et al., 2007). Additionally, integrin α6β4 is tightly related to cell migration, both by playing a
key role in the formation and stabilisation of hemidesmosomes–together with CD151 and COL17–, as
well as its disassembly and translocation to lamellipodia (Walko et al., 2015; Wilhelmsen et al., 2006).
Another relevant function is the maturation of the microvasculature by playing a suppressive role in
angiogenesis (Hiran et al., 2003).

12.2.5 E1

Population E1 function, similar to D1 and D2, cannot be assigned based on belonging to any of the
"big" axes. Additionally, there is no clear relationship between E1 and any mouse population. Looking
at the combined PAGA graphs from Figure 45, we see that this population shares transcriptomic
similarity with B4, D1 and C3 populations. Firstly, all three populations are directly or indirectly linked
to HF, so it is also likely that this population will be too. Analysis of markers for this population
reveals that, similarly to B4 or D axis, this population has a wide diversity of functions, including TGF-
β and Wnt pathways, vasculature and neural regulation, proliferation, ECM, and immune signalling.
Even more, due to the reduced, but diverse, number of markers,there is no function with a clear
predominance, which reinforces the versatility of this population.

proliferation and cell migration One of the gene families relevant to E1 population is the
insulin growth factor (IGF) signalling pathway, with the expression of IGFBP2 and IGF1, which are
associated with cell proliferation. IGFBP2 may act by binding IGF1 or IGF2 (Shin et al., 2017). By binding
to IGFs, it modulates their availability in the ECM. After proteolytic cleavage, IGFs may bind their
receptors (Boughanem et al., 2021). Its functions are related to angiogenesis and cell proliferation
in general (Boughanem et al., 2021). This is related to its implication in energy metabolism; since its
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expression is increased after fasting, insulin suppresses it, and it is a target of PPARA (Shin et al.,
2017). Similarly, IGF1 binds integrins αvβ3 and α6β4 to form a ternary complex with IGFR1 (Fujita
et al., 2012; Saegusa et al., 2009) or with insulin receptor. In both cases, it strongly activates the Akt
pathway, which stimulates growth and proliferation and inhibits apoptosis (Juin et al., 1999; Peruzzi
et al., 1999). Interestingly, keratinocytes express IGF1R, while fibroblasts express IGF1; thus IGF1 in
keratinocytes may work by paracrine modulation (Rudman et al., 1997).

Another proliferative marker is SPON2. It activates STAT3 signalling in cancer stem cells to reinforce
their stemness state (Badarinath et al., 2022), and also upregulated NOTCH signalling in gastric cancer
(Kang et al., 2020). This activation may be targeted to other cells, like macrophages, where SPON2
activation leads to its chemotaxis (Li et al., 2020a).

Lastly, the E1 population expresses two markers related to migration: PTN and GMFG. PTN binds to
several receptors, including PTPRZ1, ALK, SDC3, ITGAvB3, and NRP1 to induce cell migration (Papadim-
itriou et al., 2022). GMFG is a protein commonly found in T and B cells, neurons and cancer cells; and
is located in the filopodia, pseudopodia, or other prolongations used in the movement of the cell
(Deretic et al., 2021; Lippert et al., 2012; Liu et al., 2022).

hf E1 population shows the expression of 4 markers linked to HF structure and homeostasis. Two
of these markers, IGF1 and IGFBP2, have already been mentioned before and are detected in DP and
DS respectively (Hagner et al., 2020; Panchaprateep et al., 2014). IGF1 is presumed to be linked to
HF renovation. In fact, lower levels of IGF1 and IGFBP2 are observed in androgenic alopecia patients
(Panchaprateep et al., 2014). Similarly, PGF–placental growth factor–is also involved in maintaining
HF growth (Hu et al., 2022; Yoon et al., 2014). Lastly, LFNG, a fucosyltransferase present in the Golgi
apparatus that adds an N-acetylglucosamine to the fucose of the NOTCH1 receptor, reducing its
activity (Barco Barrantes et al., 1999; Shimizu et al., 2001). NOTCH signalling is necessary for HF cells
to maintain cell differentiation (Nowell et al., 2013). Therefore, NOTCH inhibition may be related to
HF cycle, in line with some of these other markers.

immune Several previously described markers are also expressed by E1 fibroblasts, namely MGP
and ITM2A from B4, and ACKR3 from A1/A4. All these markers show a direct suppressive role in the im-
mune system or in the clearance of immune products from the ECM. This population expresses two
additional markers, CMKLR1 and TNFRSF21. CMKLR1 is the receptor for chemerin/RARRES2, predomi-
nantly expressed by B2 and B4 populations, and shown to have pro- and antiinflammatory functions;
and TNFRSF21 is a proapoptotic TNF receptor (Dostert et al., 2019) that may decrease T cell and B
cell proliferation (Liu et al., 2001; Schmidt et al., 2002), although it may also be necessary for their
migration to the central nervous system (Schmidt et al., 2002). Therefore E1 population may show an
immunomodulatory function, as transcriptomically similar populations like B4.

ecm E1 population expresses 4 ECM-related markers: the MMP6 metalloproteinase, which can de-
grade collagen III, fibronectin and laminin (Cabral-Pacheco et al., 2020), and TIMP3 to counteract
MMPs functions. Additionally, it expresses two collagens, COL15A1 and COL26A1: COL15A1 has already
been mentioned as a non-fibrillar collagen that is located at the BM of microvessels (Manon-Jensen
et al., 2019a), nerves, adipocytes (Saarela et al., 1998), and HFs (Hagg et al., 1997); and COL26A1, specific
of E1 population, is not sufficiently studied to have a clearly assigned function.
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neurovascular E1 population, similar to D1 and D2, expresses genes related to neural and vascu-
lar development. Regarding the neural-related markers SCN7A and SLC22A3, already commented on
D-axis populations, are also expressed by the E1 population. This population specifically expresses
NTRK3, a member of the neurotrophin receptor family, involved in different proliferation and differen-
tiation pathways (Ruiz-Cordero et al., 2020). In adults, they are usually expressed in the peripheral
and central nervous system and are thought to maintain the regular neuron balance (Hechtman,
2022). In skin, it is expressed in the placode morphogenesis, specifically in Merkel cell precursors
(Jenkins et al., 2019).

Regarding vascular markers, most of them are specific to E1 population, and act via VEGF signalling.
For instance, PTN acts as a competitor of VEGFA to bind VEGFR2, showing pro-angiogenic potential
(Koutsioumpa et al., 2015); PGF binds VEGFR1 and may act synergistically with VEGF (Chang et al., 2012;
Odorisio et al., 2006). Similarly, PDGFD is shown to increase the expression of VEGFA, as well as FGF1,
INHBA and IL11 (Kim et al., 2015), thus it has a marked pleiotropic potential. Lastly, one of the many
functions of IGFBP2 is also related to proliferation and angiogenesis (Boughanem et al., 2021).

wnt and tgf-β signalling It comes as no surprise that, as with other functions shared with
D1, D2, B4 and other populations, E1 expresses markers related with Wnt and TGF-β signalling.

Regarding TGF-β signalling, there is a mixture of activatory–SLC22A3, EGR2–and inhibitory/modulatory–
LTBP2, IGFBP2–signalling. Moreover, both activatory and inhibitory cases are, in some cases circum-
stantial. For instance, EGR2 is observed to be induced by TGF-β in SSc fibroblasts (Fang et al., 2011),
and SLC22A3 could be indirectly related to TGFB1 increased expression (Vollmar et al., 2019). Thus we
cannot ensure that activatory signalling is clear in this population. Regarding IGFBP2, it was observed
to decrease αSMA expression via TGFB1 inhibition (Park et al., 2015), but due to its pleiotropism, this
function may not be active in dermal fibroblasts.

12.3 conclusion on fibroblast heterogeneity and roles in skin

The results and conclusion derived from this thesis clearly show that fibroblasts are far from "ECM-
producers" and instead show clearly how they interact with all the cell types within and surrounding
the stroma, and how this translates into a large array of functions, many of them categorised into
the interaction with immune cells, vasculature, nerves and related cell types.

A axis populations are clearly the main "ECM producers", with the expression of a large set of ECM
components and their corresponding regulators. This expression is discriminated by their spatial
location, with reticular and papillary fibroblasts expressing specific sets of genes related to adapted
to the area.

For instance, A2 population, which could be termed as the "secretory papillary fibroblasts", secrete
collagens, proteoglycans and other components bound to the DEJ and other structures surrounded
by BMs–e.g., COL4A2/4, COL6A1/2/3, COL13A1 COL18A1, COMP, POSTN–. In contraposition, A1/A3/A4 fi-
broblasts, which could be termed as "secretory reticular fibroblasts", secrete entirely different ECM
components associated with providing structure and strength to the dermis–i.e. COL1A2, COL3A1,
COL12A1, PODN, DCN–. Two interesting contraposed components are TNXB, expressed by A1/A3/A4,
and TNC, by A2; which also have contraposed functions: TNXB is more associated with the restriction
of cell motility, whereas TNC favours it. Moreover, A4, in addition to these genes, also expresses elas-
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tic fibre-associated genes such as ELN, FBN1 and EMILIN2; and thus could be coined as the "secretory
elastic fibre fibroblast". Interestingly, similar to the TNC/TNXB binomium, two microfibril-associated
markers, MFAP5/MFAP2 are similarly expressed by reticular and papillary fibroblasts respectively.

Of note, several of the ECM-related markers, such as MFAP2, COL7A1, COL6A1/2/3, COMP, TNC, or POSTN
are also expressed by HF-related populations from the C axis. This showcases that papillary fibrob-
lasts are in close contact with HF structures, either by being located near the IFE, or other surrounding
HF areas.

ECM production is related to ECM regulation, and in this matter, A2 differs from A1/A3/A4 too. Three
main families of ECM-regulation components are necessary for proper ECM regulation: (1) pro-collagen
cutting enzymes, (2) collagen and fibre maturation enzymes and (3) ECM-degradation enzymes. Both
families of fibroblasts express all three families, but their components differ. PCOLCE and PCOLCE2
pro-collagenases are expressed by reticular fibroblasts, in contraposition to APCDD1 by papillary
fibroblasts; LOX, LOXL1 and P4HA2 fibre maturation enzymes are expressed by reticular fibroblasts,
whereas LOXL2 is expressed by papillary fibroblasts; and, in order to degrade the ECM, reticular fi-
broblasts express MMP2, whereas papillary fibroblasts express MMP2.

Part of their ability to produce and regulate the ECM is linked to their ability to sense the stiffness and
traverse the ECM. This ability is liked to several markers. A1 and A4 populations express PIEZO2, DBN1
and TPPP3, the last two of them bound to F-actin and found in the terminal protrusions; A1/A3 and A2
populations express SGCA/G sarcoglycans; and A2 exclusively expresses ANTXR2, which interestingly
binds papillary collagen VI.

Despite their relevance in ECM production and regulation, stating that A axis populations only pro-
duce ECM would be a mistake since they also take an active role in immune signalling, nerve and vas-
cular activity, and the metabolism of several compounds. For instance, immune response regulation,
which is highly relevant in fibroblasts, predominantly from B axis, is also important in A axis, primarily
on reticular fibroblasts. There are several strategies to this immunomodulation, like (1) inhibition of
pro-inflammatory cytokines–IL-1β, IL6–or other components–MMP1/9–by SLPI, C1QTNF3 or DPP4; (2)
complement inhibition by CD55, CLU and DCN; (3) clearance of proinflammatory chemokines from the
ECM by truncation of chemokines (by DPP4) to only bind ACKRs expressed by these fibroblasts–e.g.,
ACKR3/4–to be scavenged and degraded; or by (4) degradation of immunogenic products like oxys-
terols by HSD3B7. The main reason for the immunomodulation might be to preserve the ECM integrity
against the action of B axis fibroblasts or other pro-inflammatory or immune-related insults.

Regarding A3 population, most of the markers have been expressed by either A1 or A2. Therefore, it
is possible that this population acts as a "bridge", not only transcriptomically but also in its physical
location in the dermis, between the A2-populated papillary dermis, and A1-populated reticular der-
mis. Although few genes are markers of A3, the expression of CES1 and SLC47A2, jointly with MGST1,
may confer this population a potential to metabolise endogenous and exogenous substances that
may be harmful in the ECM. Lastly, it is apparent that A4 population, despite being closely related to
A1, serves a complementary function, with increased expression of vascular-related markers–AGTR1,
CD248, SEMA3C/E, NRP1, MGP–. Including these and other relevant functions, the A4 population is
likely to be a "specialised" A1 population that may be necessary for vascular structure.

Initial analyses of single-cell data revealed one immune-related fibroblast population (Solé-Boldo
et al., 2020; Tabib et al., 2018; Vorstandlechner et al., 2020) which, compared to the traditional knowl-
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edge of no fibroblasts exerting that specific function, it was considered as an advance. This analysis
expands on this knowledge, revealing 4 fibroblast populations with a direct relationship with im-
mune function exist, which can be simplified to 3 archetypal populations with clearly differentiated
functions: B1, B2/B3 and B4.

B1 population is majorly associated with an innate and acute response, and could in fact be termed as
the "acute immune response fibroblast", based on the expression of (1) immediate early genes, which
activate the expression of necessary target genes; (2) acute phase cytokines and chemokines, such as
IL6, most of which are necessary to attract innate cells such as neutrophils and monocytes, but also
other APCs, and NK and T cells; and (3) ECM degradation proteins, mainly matrix metalloproteinases
and members of the ADAM family.

B2 and B3 populations also participate in primary responses but are active in secondary and adaptive
responses as well, and could be termed as "adaptive immune response fibroblast". This occurs either
by (1) the expression of specialised immune cell chemoattractants, like CCL19, CSF1, IL34, CXCL12; (2)
other components like adhesion molecules, that make the effect of chemoattractants feasible, or
(3) by the expression of cytokines or other ligands, such as HLAs, TNFRSF13 or CD40, that induce cell
maturation.

Lastly, B4 may play a triple role. First, the expression of anti-fibrotic, pro-regulatory and protective
factors, as well as anti-inflammatory and immunomodulatory signals, clearly shows that it is involved
in the regulation of the immune response by several mechanisms, including the (1) direct response
against damages to the ECM or other cell types, and also (2) by direct modulation of pro-inflammatory
signals, inhibiting them. It is interesting to notice also that the inhibition is particularly apparent for
the innate response, but not so for the adaptive one, likely because of the link between certain
adaptive responses to pro-regenerative environments. Lastly, (3) it is highly likely to act not only
on the ECM as a whole but also on HF, probably acting as the "immune population of HF", or the
"immune regulator within HF". In any case, more analyses of cell type location must be performed to
see whether the realm of action of this population is restricted to HF, or if it is extended to other areas
in the dermis. Therefore, the B4 population could be termed as the "immunoregulatory fibroblast"
or the "HF-associated immune fibroblast".

Interestingly, the hallmark function of B4 of protection against stress is also present in B1, possibly
to protect itself and its surroundings from the increased expression of IEGs, increased production
of ROS, and production of other cytotoxic components that may be necessary during the primary
response.

An additional complementary function of B axis fibroblasts, and A axis to some extent, is the an-
tifibrotic response by intervening in multiple parts of the TGF-β pathway like (1) reducing the ex-
pression of TGF-β–by CXCL1–, (2) inactivating the TGFBR–by PPP1R15A–or (3) other direct or indirect
mechanisms that avoid the transformation of fibroblasts to a myofibroblastic state–by IL11–.

Regarding the C axis, the vast number of studies with specific markers shows that at least the two
archetypal populations, C1 and C2, belong to the HF. Specifically, C1 can be coined as "dermal sheath"
and C2 as "dermal papilla", based on the expression of established markers in single-cell literature,
as well as other sources. Both populations are actively secreting and modifying ECM components,
most of which are linkers of collagens, SLRPs and other components. In fact, components expressed
by these populations, like ACAN, F13A1, COL11A1, or COL24A1, which are associated to cartilage-like or
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calcified structures, shows that the ECM in HF, and specifically in DP, is different from the ECM found
in the different dermal layers. Therefore, it is likely that the proliferation of these HF populations is
highly dependent on this specific composition.

Unexpectedly, both populations are highly involved in HF cycle regulation, mainly based on the acti-
vation and repression of specific Wnt elements, which translated into a prolongation of anagen and
shortening of telogen phases, although with some nuances. Although the specifics may be interest-
ing for further studies, this analysis replicates the plethora of research performed on the relevance
of Wnt pathway, among others, in the correct functioning of HF.

C3 and C5 populations are also associated with HF, and share transcriptomic similarities with C1, and
to some extent with C2. C3 is clearly involved not only in the production of specialised ECM, as C1/C2,
but also in its modulation and degradation, with markers like tenomodulin or kallikrein 4. Therefore,
we could coin it as "HF ECM regulatory fibroblast", although the lack of clear markers may hinder
determining its proper functions.

C5, in contrast to C3, shows a wider variety of functions, like Wnt and non-canonical TGF-β signalling,
vascular and neural modulation and putative immune functions. It also expresses some striking
markers, like KRT9, a palmoplantar keratin that is likely to be expressed in other skin structures,
yet to be studied. Due to the lack of studies to compare the location of its markers, studying this
population could be of relevance to bridge the single-cell knowledge to in situ biological applica-
tions. Regarding its putative functions, the most probable one could be involved with it being DP or
DS in telogen phase. However, this is a big assumption without clear proofs and therefore further
supporting evidence is necessary.

The three last interesting populations are D1, D2 and E1 which, despite being very similar and con-
sisting of a relatively small proportion of fibroblasts, they display an incredibly diverse range of
functions, being active in neural- and vascular-related processes, immune signalling, TGF-β and
Wnt signalling. The high correspondence between mouse and human populations may indicate that
these populations, despite not being mayor or associated with main axes, seem to be relevant for
both organisms.

Despite their similarities, we do observe certain aspects that make these two populations different.
For instance, D1 has an increased expression in neural-related genes (11 vs 8) and even more in
vascular-related genes (11 vs 4); whereas D2 has a more apparent expression genes reported to be
located in, or interacting with, HF (8). Additionally, each population has certain specific gene families
that are more relevant to each of the populations, like collagens and FMO genes for D1 population,
and lipid metabolism, caveolae-related genes, or ITGA4B6 complex-associated genes for D2.

This putative separation of functions may imply that both D axes populations seem to be relevant
for skin appendage homeostasis, probably by interaction with vasculature, nerve endings–e.g. the
lanceolate complex, other sensory terminals–, and even the APM (Martino et al., 2020). Due to the
increased number of genes associated with HF, D2 may be more linked to HF functioning, or maybe a
population directly associated with HF structures such as ORS or hair bulge; whereas the increased
number of nerve- and vascular-associated genes may confer D1 a secondary role to these supporting
structures around the HF.
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Focusing on the nerve aspect of the D axis populations, specially of D1 but also of D2, is the increased
number of markers linked to that structure may be a sign of not only association to nerve, but even
to be part of nerve structures, like endoneural and epineural fibroblasts.

In classical literature on these fibroblasts, such as Richard et al., 2012, 2014, common fibroblast
and/or perivascular markers are used, including CD34, NG2, PDGFRB or NES; which are not sufficiently
specific to discriminate any fibroblast population from this analysis. A recent paper published by
(Chen et al., 2021a) uses single-cell to determine the heterogeneity of peripheral nerve cells and
differentiates epineural fibroblasts, expressing Sfrp2, Dpt, Pcolce2, Adamts5, Sfrp4, Prrx1, Comp, Ly6c1,
from endoneural fibroblasts, which express Sox9, Osr2, Wif1, Cdkn2a/b, Abca9, Plxdc1, Apod. A more in
depth analysis on DEGs of these populations reveals that endoneural fibroblast express a large set of
markers that are also markers of D1 population, as well as D2: Apod, Col15a1, Crispld2, Abca9, Angptl7,
Matn2, Sox9 and Gfra1, among others. Interestingly, looking at the markers of perineural fibroblasts,
some of them are A or C ECM or ECM modulatory markers–Pi16, Bgn, Aspn, Gpx3, or Col14a1–and others
are more expressed in A4 population–Clec3b, Pcolce2, Ccdc80, Sfrp4, Fbln1, Cd248, Gpx3, Sema3c–.

Therefore, D1 fibroblasts–and A4 possibly–are likely to be these nerve fibroblast populations. As
such, we could term D1 as "endoneural fibroblasts". On the other hand, the D2 population, despite
its relevance of HF markers, we cannot ascertain a clear function. Thus, we coin the term "appendage
multimodal fibroblast".

Lastly, E1 population due to the reduced number of relevant markers, and its diffuse set of functions,
cannot be easily classified. The expression of IGF-related genes as well as other markers involved in
proliferation, could be helpful to title this population as "proliferative multimodal fibroblast".
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Table 13: Comparison of Shin 2020 and Joost 2020 DP and DS populations For each pair of clusters between
Joost et al., 2020 and Shin et al., 2020, the top 50 genes were selected (based on Supplementary
Material from each paper) and the Jaccard index was calculated. The overlapping markers for each
compared pair are also shown.

Shin /
Joost

DS1 DS2 tDP aDP

CTS1 4.17 | Ly6a, Rnase4, Eln,
Plpp3

11.11 | Mgp, Mfap5,
Igfbp7, Igfbp4, Dpep1,
Pmepa1, Tagln, Ntn1,
Omd, Acta2

3.3 | S100a6, Lgals3,
Aspn

1.01 | Corin

CTS2 12.36 | Col1a1, Mylk,
Col5a2, Ramp1, Dcn,
Sparc, Tnmd, Postn,
Col6a1, Col1a2, Col5a1

7.53 | Col12a1, Col11a1,
Igfbp2, Tagln, Cryab,
Cdc42ep3, Acta2

1.01 | Fbn2

DP1 1.01 | Prss12 5.62 | Crabp1, Col23a1,
Notum, Tppp3, Bmp4

6.38 | Rspo4, Sfrp1,
Rspo3, Thsd7a, Mgst1,
Emb

DP2 1.41 | Malat1 1.3 | Sostdc1

DP3 2.17 | Crabp1, Pappa2 12.36 | Inhba, Chodl,
Sfrp1, Rspo3, Ptprz1,
Rspo2, Ebf1, Sostdc1,
Tmem176b, Mgst1,
Steap1

DP4 1.45 | Prss12 3.23 | Col23a1, Bmp4 1.45 | Tmem176b
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G E N E R A L D I S C U S S I O N

Single-cell methods, specially scRNAseq, have opened a new approach to the study of cell and tissue
heterogeneity. In this work, we have virtually recapitulated all dermal fibroblast heterogeneity into
15 human and 17 mouse populations, each of them classified with a set of robust markers, and
in the case of human fibroblasts, with putative functions within the homeostatic skin. With these
populations and their respective markers, we can extrapolate putative functions in other organs,
tissues or even conditions, to shed some light on how gene pleiotropism shapes cell heterogeneity.

One of the hallmarks in fibroblast studies is the determination of pan-tissue fibroblasts, that is,
which specific fibroblasts have a shared transcriptomic profile across all tissues, or determining
which is that shared profile. Buechler et al., 2021 recently determined two main populations in their
pan-organ study, present both in mouse and human organs: a PI16+ fibroblast, which is the main
producer of the stromal ECM, and a COL15A1+ fibroblast associated with BMs. In fact, collagen XV has
been classically studied as one of the collagens secreted by fibroblasts to attach them to the BM,
and thanks to their uncommonly large number of GAG binding sites, it links several CS and HS chains
to keep a porous network underlying the BM (Bretaud et al., 2020).

Looking at the fibroblast populations described in the analysis, PI16+/Pi16+ and COL15A1+/Col15a1+
populations exist in both organisms. In humans, PI16 is expressed by A1, A3 and A4 populations, the
"canonical" reticular ECM producers; whereas COL15A1 is expressed by B4, C1, D1 and E1 populations,
which are mainly involved in structures that have BM, or which interact with structures that have
them, such as blood vessels and nerves. In mice, Pi16 is expressed by x1, y2, y3, z1 and z2 fibrob-
lasts, which correlate with ECM-producing A1/A3/A4 human populations from different layers; and
Col15a1, which is expressed by y2, y4, y5, w2 and x1 populations, some of them–y5, w2–linked to
human COL15A1+ populations.

Nerves also harbor several fibroblast types, divided into endoneural and perineural fibroblasts.
These types, mentioned in Section 12.3 of the Discussion, and which have beeen studied using scR-
NAseq by (Chen et al., 2021b), replicates this Pi16/Col15a1 "universality": the perineurial fibroblasts
are Pi16+ and express a list of ECM-related markers such as Dpt, Pcolce2, Fbln1, Fbln5, Col14a1, Bgn,
Aspn, Lox and Loxl1; whereas endoneurial fibroblasts are Col15a1+ and express Lama3, Angptl7, Pdpn,
components of the BM itself or which bind to the BM (Kaji et al., 2012; Pozzi et al., 2017).
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Another scenario where fibroblasts are of relevance is in the context of highly prevalent and studied
diseases, such as cancer and fibrotic illnesses.

Regarding cancer, cancer-associated fibroblasts (CAFs) are one of the key components of the tumour
stroma. They are extensively studied as helpers in the development of a proper tumour microenvi-
ronment related to its malignancy, even before it is converted into a malignant tumour (Lockwood
et al., 2003). Although research in CAFs shows a vast set of types, two main axes are widely described:
ACTA2hiIL6lo myofibroblastic CAFs (myCAFs) which adopt a more pro-fibrotic profile, and are proba-
bly involved as a host response against tumour progression; and ACTA2loIL6hi immune CAFs (iCAFs),
which may be more tumour-promoting by the expression of specific chemokines related to the ma-
lignancy (Han et al., 2020).

Despite the heterogeneity of CAFs, different bibliographic records using single-cell methods have
already been published to study the heterogeneity in different tumours and organisms. One recent
paper published by (Elyada et al., 2019) performed a cross-species single-cell analysis on iCAFs and
myCAFs in pancreatic cancer, revealing specific markers of each population. Interestingly, there is
no clear association between human dermal fibroblast population markers and CAF markers. For
instance, myCAFs are governed by markers expressed by C axis populations–INHBA– , CALD1, BGN,
ACTA2, POSTN, GRP, MMP11, EDNRA–some of those, specifically ACTA2 and POSTN are more upregu-
lated in fibrotic processes. On the other hand, iCAF markers are expressed by B axis populations,
as well as other axes, principally A axis. Traditional B markers like CD74, APOE, SOD2, PNRC1, CXCL1
or CXCL2 showcase the partial immune profile of iCAFs, although A axis markers like FBLN2, CCDC80,
FSTL1, ADH1B, CPE, HAS1, FBLN1, MFAP5, CRABP2 and PPIC may support the additional role of these
CAFs maintaining the tumour microenvironment.

The second, and most relevant scenario studied in fibroblast-related diseases is fibrosis. Dermal
fibrosis or skin inflammatory diseases related to fibrosis have been widely studied, and several
single-cell datasets have already been published, with a variety of results. For instance, Deng et al.,
2021 discovered one population in keloid expressing POSTN, COL11A1 and ACTA2. Clearly, this popu-
lation refers to DS in human samples, which is also described by Gao et al., 2021 to be increased in
psoriasis.

On the other hand, other authors report the overexpression of certain markers that are not exclu-
sive of one fibroblast population, or expansion of more than one population at the same time. For
instance, Gur et al., 2022 observed an upregulation COL1A1, COL3A1 and COL5A1, expressed by A and
C axes, which goes in line with traditional studies where increased collagen expression is reported;
but also C axis-predominant BGN and POSTN. GPX3, and MGST1, genes expressed to protect against
stress, and markers or A4 and B4 populations in general, were also upregulated. Additionally, two
MYOC+–B4 marker–populations were found to be present in SSc samples, one of them specific to
the disease. Therefore, in this scenario, not only are markers of C1 specific to fibrosis but markers of
A1, A4 and B4 populations are also relevant.

Similar findings are reported by Vorstandlechner et al., 2021, who discovered an exclusive cluster in
samples of scarring tissue that expresses COL1A1, COL3A1, COL5A1/2 and BGN, as in Gur et al., 2022, but
also COL14A1, FN1 and PCOLCE, mainly expressed by A1/A3 populations, and BGN and OGN, expressed
by C axis populations.
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Lastly, Tabib et al., 2021 and Buechler et al., 2021 discovered enriched populations with specific mark-
ers, PRSS23–expressed by C2, A4 and E1–and LRRC15–expressed mainly in C axis–respectively. The
PRRS23+ population also expressed other relevant markers like TNC–expressed by A2, C3 and B3–,
ADAM12–C1 and C3–, SFRP4–A4 and D–, COL10A1–A1–, and FNDC1–A2, A4 and C1–. Therefore, these two
studies show that C and A4 populations may be highly involved in the development of fibrosis.

Therefore, looking at the heterogeneity of the markers and their respective populations, it is clear
that there is not a clear fibroblast population that differentiates into myofibroblast and is responsible
for the fibrotic process. Thus, we consider certain hypotheses that could explain the combined action
of more than one fibroblast population.

Firstly, we recall that A axis populations express a vast array of markers such as ADA, DPP4, CILP,
CTHRC1, SOSTDC1 or SLPI, showing a marked antifibrotic potential. Therefore, it is likely that either
A1/A4 are not myofibroblasts precursors per se or that, in order to acquire this myofibroblastic po-
tential, the antifibrotic signature is inhibited. It is likely that, due to the abundance of axis C markers,
axis C populations, and especially the C1 DS population, are the precursors of the myofibroblasts
in the dermis. In this scenario, despite A1/A3/A4 populations being the main ECM producers, COL1A1
and COL3A1 expression may be induced as an activation step during myofibroblastic differentiation.

A second hypothesis is that although most of the papers studying dermal fibrosis focus on fibrosis
as a whole, the underlying diseases are different. Therefore, it is possible that the probability of one
population being pro-fibrotic can be context-dependent, and thus more studies are necessary to
unravel disease-specific patterns. This hypothesis can be partially contested in cases where more
than one pro-fibrotic population is expanded, like in Gur et al., 2022.

Lastly, it is possible that in contexts where more than one pro-fibrotic population arises, there are, in
fact, different myofibroblasts, each one executing independent functions, as with dermal fibroblasts
in homeostasis. This effect has already been studied in pro-inflammatory contexts. A cross-tissue
study in four pro-inflammatory diseases–rheumatoid arthritis, inflammatory bowel disease, intersti-
tial lung disease, and Sjögren’s syndrome–using scRNAseq revealed two main fibroblast clusters ex-
panded in all inflamed tissues (Korsunsky et al., 2022). The clusters were (1) CXCL10+CCL19+ immune-
interacting fibroblasts, which could be similar to the B2/B3 population, and (2) SPARC+COL3A1+,
which could be similar to A1/A3/A4 or C1 fibroblasts. The authors state that both populations serve
specific roles, (1) being involved in the T cell, and (2) perivascular niches respectively. In a similar fash-
ion, each fibroblast population contributing to the myofibroblastic populations could serve specific
functions in that environment. For instance, C axis populations could be involved in the vasculature,
or in promoting ECM deposition by A1/A4-derived myofibroblasts, and B4-derived myofibroblasts
could be the regulators of the immune response, or the fibrotic process by itself.

The analysis of pro-fibrotic fibroblasts is one example showing the relevance of requiring previous
knowledge of fibroblasts in homeostasis to make informed decisions about the fibroblasts affected
or involved in disease. However, even when implementing diverse datasets to obtain that informa-
tion, the analysis from this thesis suffers from certain limitations that have to be studied and future
work that can be done to address some of these issues and to improve the quality of the analysis.

We see that the relevance to making informed decisions about the fibroblasts being affected by dis-
ease requires previous knowledge of fibroblasts in homeostasis. However, even when implementing
diverse datasets to obtain that information, this analysis suffers from some limitations that have to
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be studied, and future work that can be done to improve the quality of the analysis and the impact
of the work in general.

Firstly, one big assumption of this study is that the selected cells during the scRNAseq analysis
are indeed fibroblasts. All cells are selected based on a specific gene signature, including COL1A1,
PDGFRA, LUM and DCN, which are already reported fibroblast markers in different scRNAseq studies.
However, it has already been mentioned in section 2.2 of the Introduction that fibroblast definition
exclusively on markers may limit the characterisation by excluding putative fibroblasts and includ-
ing non-fibroblastic cells. It is true, however, that during the selection of major skin cell types–e.g.
keratinocytes, endothelial cells, perivascular cells, etc.–, in which UMAP and clustering are used, all
cells within the cluster assigned as "fibroblasts" tend to appear together instead of being scattered
in different clusters, which might be an indicator of similarity and cohesion in major functions.

It could also be argued that certain fibroblast types, especially minor or "bridge" types, could be a
result of doublets of other populations, or simply other cell types that have been co-isolated during
the library preparation step. For instance, immune types B1 and B2 could be specific immune cell
types being bound to fibroblasts. However, we believe that the core transcriptome of all populations
being replicated in several datasets with several sample preparation protocols is strong a sign of
these populations being their own and not a result of an artefact during library preparation.

Another limitation of this study is the lack of proper DS/DP characterisation in all hair cycle stages.
The majority of HF cells analysed in human and mouse samples are captured during the anagen state,
and thus cells in the catagen or telogen stages are shadowed by those in the anagen state. Therefore,
it is likely that mouse and human fibroblast heterogeneity only reflects the partial heterogeneity of
fibroblasts. Although it is true that Joost et al., 2020 provide samples in telogen state, the number of
cells is not sufficiently high, at least compared to other datasets like Boothby et al., 2021; Shin et al.,
2020; Shook et al., 2020 for the unbiased algorithm to recognise them as different entities. Therefore,
further studies in human and mouse samples enriched for HFs in non-anagenic stages should be
necessary to ensure full capture of HF fibroblast heterogeneity.

Fibroblast populations, and other key cell types in countless publications, are partially defined based
on their presence in the UMAPs and other 2D DR methods, as shown in Figures 42 and 48. Although
these methods are useful to have a first glance of the cell type heterogeneity and "structure" in a
sample, they suffer from several distortions that may give the illusion of different cell types being
similar because of their closeness in the UMAP, and vice-versa (Chari et al., 2021). In fact, we do
observe that, depending on the dataset, certain populations like B4 and E1 appear to be extremely
close, when in fact they are different axes.

To avoid falling into believing cluster similarity as a reality, we performed additional analyses, like
PAGA, to ensure that population-population similarities were in hand with observations based on
UMAPs, and also performed the population robustness analysis to check that obtained populations
were not an artefact of the marker-to-population algorithm. In future iterations of the analysis, we
will implement a similar robustness analysis in the population-to-marker algorithm to ensure that
the whole pipeline is robust. Additionally, we could complement UMAP and PAGA with other DR
methods like t-SNE, PHATE or FA2, and also by plotting different results of UMAP with other hyper-
parameters. However, due to the large number of datasets involved, the implementation of several
methods may become impractical, and the result will probably remain unchanged.
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Focusing on Chapter 12 where we discussed the putative fibroblast functions based on robust mark-
ers, there are several technical and biological limitations to this process. The main limitation is the
bias in the process of marker selection. Due to the large sets of genes and their expression diver-
sity across datasets, but also the lack of a proper metric to state the relevance of each marker in a
fast way, the use of the A ∼ B > C notation as a semiquantitative option is good to meet that need
but is created based on a biased view on the UMAP and dot plot of the expression of each gene.
This method ends up being inconsistent if multiple genes are assessed in a row, since the criteria to
assign a population as more or less relevant to the expression of the gene is not completely accurate.

Secondly, several studies, especially the ones regarding cytokine signalling, were performed on cell
lines, where experimental conditions can be variable, and false positives may occur (Viswanathan et
al., 2021). Even in more "robust" cases studied in humans or in animal models, many of the conditions
studied were not in skin or in homeostasis. For instance, markers associated with TGF-β signalling
could be studied in cardiac myofibroblasts, or markers associated with vasculature could be studied
in tumour angiogenesis. Therefore, the reported function of a marker can be exclusive of the system
of study, and its extrapolation into dermal fibroblasts may result in the attribution of a false function.

Additionally, many of the selected markers are highly pleiotropic, and only some, or even none of
their functions could be actually specific to dermal fibroblasts in homeostasis. Therefore, there is an
implicit bias in the selection of markers and assignment of their individual functions to a collective
function determined by several markers in each fibroblast population. In order to reduce this bias,
and also the bias associated to the A ∼ B > C notation, a specific function was assigned to a fibroblast
if at least three or four markers with a similar function were reported.

This analysis can be also strengthened by performing validatory experiments of the retrieved popu-
lation markers using immunofluorescence assays, similar to the ones performed for fibroblast axes
in Figure 36. Considering that (1) most markers expressed by fibroblasts are also expressed by other
non-fibroblastic populations, (2) many relevant fibroblast population-specific markers are not exclu-
sive of a population and (3) protein expression does not correlate with RNA transcription levels, a
specific approach to this characterisation should be performed. To address (1), at least one putative
fibroblast marker, like PDGFRA, should colocalise with the rest of the markers. To perform the anal-
ysis, ideally, 4 channels should be used: one channel for a fibroblast marker, two channels for two
markers that are expected to be coexpressed by the same population, and one marker of a similar
population, to assess that there is no colocalisation of markers and, thus, they represent separate
populations. Although arduous and idealised, this procedure would guarantee that the populations
described robustly by scRNAseq are, in fact, real.

A second type of analysis that could be performed to gain more insight about the location of the
fibroblasts is single-cell spatial sequencing. Between the two families of spatial sequencing, that
is, (1) methods based on high-plex RNA imaging and (2) spatial barcoding, the most suitable ones
would be the high-plex RNA imaging methods. The main drawback of spatial barcoding methods
is their low resolution which, for fibroblasts specifically, has been observed to be insufficient to
recognise different types (Thrane et al., 2023). Therefore, the best strategy to follow would be to use
sets of markers specific to each fibroblast population, as well as markers of other structures–HF,
SG, keratinocytes, endothelial and perivascular cells, nerves, etc.–to determine their identity and
location.
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Domcke et al., 2023 recently commented on the different forms in which cells can be classified. Within
the 6 different forms, the most common two are the "wet" approach in which cell types are defined
by their biological function and morphological features, and the "single", molecular approach, in
which arbitrarily large transcriptomic differences between samples, or cells, are used to justify the
presence of different cell types, in a similar fashion to the use of operational taxonomical units
to differentiate microbial species. The main drawback of the "single" approach exposed by Domcke
et al., 2023 is the methods’ sensitivity and, more importantly, the inter-dataset heterogeneity. The
advantage of the analysis developed during this thesis is that it overcomes this main drawback and,
if it were validated through the previously proposed methods, it could describe the cell types in both
the "wet" and the "single" approach, which thus imply a complete dermal fibroblast annotation.

Nonetheless, despite the limitation of this analysis and the foreseeable work, we believe that it
already serves a big purpose: providing an unbiased atlas of fibroblast heterogeneity in homeostatic
conditions. We believe this purpose to be paramount for the proper characterisation of diseased
samples. Although in many datasets, diseased samples are collected and processed jointly with
control samples, the intra-dataset variability, as well as any other confounding variables affecting
the control dataset may provide biased results.

This effect can be overcome both with proper ground truth samples and by acknowledging the scal-
ability issues from large-scale sequencing studies. As Lähnemann et al., 2020 mentions, and as we
criticised in the reanalysis of Reynolds et al., 2021 described in Chapter 11, single-cell methods result
in high-throughput results that are usually difficult to analyse. Whereas the throughput of exper-
imental methodologies continues to scale, the scalability of computational frameworks does not
follow the same trend, and the time and ability to perform an in-depth analysis required to under-
stand such complex data become a bottleneck that is usually subjected to the fast paces of academic
publishing.

Therefore, even if computational resources were on par with the amount of data generated, several
other factors may lead to an over publication of false positives that then the scientific community
builds subsequent research on, including overlooked bad data quality, lack of insight during the
analysis and absence of understanding of the central assumptions under single-cell datasets and
methods, many of them due to the lack of human and time resources to perform such analyses.
In fact, the current scientific publication system, and in general, the biased competitivity of the
academia leads to this false positive bias (Smaldino et al., 2016). Therefore, more effort should be
allocated to performing robust analyses of existing datasets, instead of producing new large atlases
without a prior research question.

In that sense, we believe the atlas of dermal fibroblasts to serve several purposes. First, it will cater
to the researchers working on dermal fibroblasts to compare the populations obtained during their
analysis with the ones already described from our study, either to ensure that fibroblast heterogene-
ity in control datasets is replicated and also to understand the differences in markers and popula-
tions of non-control samples. Second, and probably the most important one, this analysis already
reveals one key aspect of the research about dermal fibroblasts, as well as other fibroblasts: the
dogmatic concept of fibroblast as a cell type producing ECM in the surrounding stroma is extremely
limited, and the fibroblast should be understood not only as a cell type, but a family of cells with
extremely diverse functions revolved around maintaining the structure and general homeostasis of
the stromal space and the cells and structures that lay within it.
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C O N C LU S I O N S

1. Human and mouse dermal fibroblasts have been characterised using a semi-supervised, robust
algorithm. Human fibroblasts are divided into 15 populations grouped in 5 major axes (A-E), and
mouse fibroblasts are divided into 17 populations grouped in 5 major axes (v-z).

2. Analysis of robust markers shows that fibroblasts from each human axis are separated by func-
tion: A axis is related to the production and regulation of ECM; B axis is related to immune
surveillance, chemotaxis, maturation and regulation; C axis is related to specialised hair fol-
licle populations; and D and E axes are involved in multiple supportive functions to other
fibroblasts.

3. Comparison with previous literature shows that major mouse fibroblast axes (x-z) are sepa-
rated not by function but by location in the skin layers: fibroblasts from x axis are located
mainly above the hypodermal adipocyte layer, fibroblasts from y axis are located within the hy-
podermis, and fibroblasts from z axis are located below the panniculus carnosus. Fibroblasts
from axes v and w are likely to be associated with dermal adnexa.

4. Human and mouse characterisation is highly robust and encompasses virtually all fibroblast
heterogeneity within the dermal skin. Thus, with certain exceptions like fibroblasts from telo-
genic hair follicles, hypodermis or other adnexa, it is highly unlikely that new fibroblast popu-
lations will be discovered after the addition of newer datasets.

5. Mouse-human fibroblast marker comparison reveals vague similarities across axes, although
detailed analysis using robust markers shows that only specific populations have an acceptable
similarity, possibly due to the function vs location differentiation. These populations are mainly
within ECM-producing and hair follicle-associated axes (A, C). Immune-related axis, B, shows
almost no relevant similarities with mouse counterparts.

6. Individual datasets are highly heterogeneous and, thus, a combination of a large number of
them is necessary to overcome the interdataset heterogeneity and obtain a robust characteri-
sation of populations. Additionally, analysis of individual datasets alone may lead to a biased
characterisation due to inherent dataset biases.
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Table S2: Genes associated with ECM. The list of genes is divided into the following categories: Collagens,
Small Leucin Repeat Proteoglycans (SLRPs), elastic fibres and other elements.

Collagens

COL1A2 A1 ∼ A3 ∼ A4 >
C1 ∼ C2 ∼ C3

Collagen I α chain 2. Main fibrillar collagen in dermis. Composed of three helices ex-
pressed by COL1A1, COL1A2 and COL1A3 (Henriksen et al., 2019).

COL3A1 A1 ∼ A3 ∼ A4 ∼

C1 ∼ C3 > C2
Collagen III α chain 1. Fibrillar collagen abundant in the dermis, and usually found to-
gether with collagen I (Nielsen et al., 2019a).

COL4A2/4 A2 ∼ B ∼ C > D Collagen IV α chains 2/4. Component of the lamina densa in the BM (Barbieri et al., 2014).
It provides a network of fibrils to scaffold other elements like laminin 332.

COL5A1/2 C3 > C1 ∼ A2 >
A3 ∼ A4

Collagen V α chains 1/2. Nucleating collagen essential for fibrillation of type I and III col-
lagens (Leeming et al., 2019). It is predominantly found in the papillary dermis (Nauroy
et al., 2017) and around HFs (Chanoki et al., 1988).

COL6A1/2/3 A2 > C1 ∼ C3 >
A3

Collagen VI α chains 1/2/3. The trimer is formed by combining A1/A2/A3 chains. It is
found between the BM and the ECM and is a target of a vast array of ligands. In the
DEJ, it assembles anchor cells to the ECM through interaction with integrins (Kaur et al.,
2015).

COL6A5 A2 > B3 Collagen VI α chain 5. It may form a trimer with A1 and A2 chains. In the dermis, α5
chain is mainly located in the papillary area, intertwined with other collagen fibres al-
though α1-3 can also be found around blood vessels (Sabatelli et al., 2011), in reticular
dermis and hypodermis (Theocharidis et al., 2017). This collagen attaches KGF, PDGF
and MMP1/2/3/8/9, among other elements (Freise et al., 2009).

COL7A1 C1 ∼ A2 ∼ C3 Collagen VII α chain 1. Component of the anchoring fibrils in the BM, which bind collagen
I and III fibres (Barbieri et al., 2014). Its N-terminal domains also bind collagen IV and
laminins 5/6 (Mortensen et al., 2019a). In mouse HF, it is located at the BM surrounding
DP and ORS (Tsutsui et al., 2021).

COL8A1/2 D1 > A1 ∼ D2 Collagen VIII α chains 1/2. Non-fibrillar collagen found in the cornea. It is found in prolif-
erating vessels in other organs, forming a hexagonal lattice structure (Sutmuller et al.,
1997).

COL9A3 D1 > D2 Collagen IX α chain 3. Nucleating collagen, predominantly found in the reticular der-
mis (Nauroy et al., 2017). It stabilises the collagen network by binding matrillin and
proteoglycans, through which it controls the fibre diameter. It is commonly found in
cartilaginous chondrocytes (He et al., 2019).

COL11A1 C1 > C3 Collagen XI α chain 1. Minor fibrillar collagen that regulates collagen I and II fibrilloge-
nesis as nucleating point. It is usually found in tendons and cartilage (Luo et al., 2019;
Sun et al., 2020). KO of COL11A1 in HF decreased adipogenic and chondrogenic differ-
entiation capacity, while the upregulation of COL11A1 was associated with increased
differentiation capacity and improved wound healing (Ahlers et al., 2022).

COL12A1 C1 > A1 ∼ A4 ∼

A3
Collagen XII α chain 1. FACIT collagen. It binds GAG chains and interacts with decorin,
COMP, fibromodulin and tenascin. It stabilises the collagen I fibrils and prevents their
crosslinking (Mortensen et al., 2019b) It is more abundant in the papillary dermis (Nau-
roy et al., 2017) but is also expressed in the reticular dermis (Marinkovich et al., 1992),
and around HFs (Sasaki et al., 1996).
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COL13A1 A2 Collagen XIII α chain 1. Non-fibrillar transmembrane collagen that binds to fibronectin,
perlecan, vitronectin, type IV collagen and α1β1 integrin (Siebuhr et al., 2019). In
fibroblasts, it is bound to focal adhesions (Hägg et al., 2001) and collocalises with E-
cadherin, suggesting a role within the adherens junction (Theocharidis et al., 2017). It
is found at the DEJ and surrounding blood vessels and nerves (Peltonen et al., 1999).
In mouse HF, it is almost exclusively located in the interface BM between the DP and
the hair gem above the DP (Tsutsui et al., 2021).

COL14A1 A3 > A1 ∼ A2 Collagen XIV α chain 1. FACIT collagen. It is more abundant in the reticular dermis (Nau-
roy et al., 2017).

COL15A1 E1 ∼ C1 ∼ B4 ∼

D1
Collagen XV α chain 1. Non-fibrillar collagen that contains several noncollagenous inter-
ruptions, GAGs and chondroitin sulfate chains, that is located at the BM of microvessels
(Manon-Jensen et al., 2019a), nerves, adipocytes (Saarela et al., 1998), and HFs (Hagg
et al., 1997).

COL18A1 A2 Collagen XVIII α chain 1. Non-fibrillar collagen with GAGs and heparan sulfate chains
(Halfter et al., 1998). It contains a C-terminal endostatin function, thereby inhibiting
angiogenesis. It is usually found in vascular and epithelial BMs (Pehrsson et al., 2019).
It is also abundant in the DEJ (Bonnet et al., 2017).

COL21A1 C1 > A2 Collagen XXI α chain 1. FACIT collagen associated with other fibrillar collagens, serving
as a bridge. It may play a role in blood vessel assembly (Kehlet et al., 2019a).

COL23A1 A2 Collagen XXIII α chain 1. Transmembrane collagen present in several tissues. It is located
in different epithelia, but its function is unknown (Kehlet et al., 2019b).

COL24A1 C2 Collagen XXIV α chain 1. Fibrillar collagen with two collagenous and three non-
collagenous domains. It is highly expressed in bone, although it is not specific (Nielsen
et al., 2019b). It has been observed in mouse skin during development (Koch et al.,
2003).

COL26A1 E1 Collagen XXVI α chain 1. It contains several collagenous domains and three non-
collagenous domains. It is mainly found in testes and ovaries (Manon-Jensen et al.,
2019b).

COL28A1 D1 Collagen XXVIIIα chain 1. It has been detected around terminally-differentiated Schwann
cells and Merkel cells (Grimal et al., 2010).

SLRPs

ASPN C2 > C1 ∼ C3 >
C5

Asporin. It belongs to the SLRP family, although it is not a proteoglycan. It binds col-
lagen (competing with DCN) and calcium, promoting ECM mineralisation (Kalamajski
et al., 2009) In keloids, it prevented the 3D remodelling of the collagen mesh (Liu et al.,
2021b).

BGN C3 > A3 > C5 Biglycan. Belongs to the SLRP family. It contains two GAG chains, either chondroitin or
dermatan sulfate (Roughley et al., 1989). They interact with different collagens (I, VI)
via their protein or the GAGs (Johnstone et al., 1987; Schönherr et al., 1995).

DCN A1 ∼ A4 > A3 >
B4 ∼ D1

Decorin. It contains SLRPs and binds to collagen I fibrils and a large set of targets:
fibronectin (Winnemöller et al., 1991), vitronectin to regulate collagenase expression
(Huttenlocher et al., 1996).

FMOD C2 > rest Fibromodulin. Member of SLRP family. It has four keratan sulfate chains linked in the
protein. It binds collagen I and inhibits collagen I and III fibrillogenesis in vitro.

PODN A1 ∼ B4 > rest Podocan. Belongs to the SLRP family. Similar to other members, it increases hydration
and viscoelasticity. It inhibits smooth muscle cell migration (Hutter et al., 2013). It also
binds collagen I (Shimizu-Hirota et al., 2004).
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POSTN C3 > C1 > A2 Periostin. It contains several domains that bind to collagen I, fibronectin and tenascin
C to facilitate ECM formation. Its been observed to localise at the DEJ, papillary dermis
and around HFs (Yamaguchi, 2014).

OGN C2 ∼ D1 > A1 ∼

A4 ∼ C3 ∼ C1
Osteoglycin. Belongs to the SLRP family. It is widely expressed in the skin and may be
involved in fibroblast proliferation. In neural cells, it may induce neurite growth (Deckx
et al., 2016).

PRG4 A4 > A1 Proteoglycan 4. It is classically studied as a lubricant molecule, which binds to hyaluro-
nan and fibronectin, preventing attachment of cells to surfaces, especially in cartilage
areas (Eguiluz et al., 2015; Rhee et al., 2005). Binding to CD44 internalizes it and targets
the inflammasome, reducing IL1/8β expression. It also affects TLR-mediated cascades
(e.g. NF-kB), showing antiinflammatory potential (Richendrfer et al., 2020). In oral fi-
broblasts, TGF-β induced PRG4 expression in vitro (Stähli et al., 2016). On the other
hand, PRG4 reduced α-SMA expression in synoviocytes, showing antifibrotic potential
(Qadri et al., 2020).

Elastic fibers

ELN A3 ∼ C3 > A4 ∼

A1
Elastin. It is one of the components of the elastic fibres, which completes after the
binding of GAGs, fibrillin, heparan sulfate and othe ECM components (Gheduzzi et al.,
2005). It is ∼1000 times more flexible than collagen; and its degradation releases
several DAMPs.

EMILIN2 A4 > A1 Elastin microfibril interfacer 2. They are bound to microfibrils in different organs by
binding to fibrillin (Doliana et al., 2001; Schiavinato et al., 2016). It also binds to pro-
apoptotic receptors, inducing cell death (Mongiat et al., 2010).

FBN1 A4 ∼ A1 Fibrillin-1. Glicoprotein that serves as a structural component of calcium-binding mi-
crofibrils (Lee et al., 2004). These fibres can be associated with elastic fibers and
elastin-independent networks (Jensen et al., 2016). It can also interact with BMPs or
LTBPs to regulate TGF-β signalling, or other cell surface proteins and proteoglycans
(Jensen et al., 2016). SSc patients show a decrease in FBN1 (Wipff et al., 2010). Philippeos
et al., 2018 observe an increase of Fbn1 in Dlk1+Sca1+ pre-adipocytes.

MFAP2 C1 ∼ C3 > A2 ∼

C2
Microfibrillar-associated protein 2. Microfibril-associated glycoprotein that does not bind
integrins (Gibson et al., 1999). It interacts with TGF-β and sequesters it into the mi-
crofibrils (Weinbaum et al., 2008).

MFAP5 A4 ∼ A1 > C1 >
A3 ∼ D2

Microfibrillar-associated protein 5. Microfibril-associated glicoprotein that binds α5β3

integrin (Gibson et al., 1999). It is a key component in the organisation of elastic fibres
by interacting with fibrillin-1/2 (Penner et al., 2002).

Other proteins

ACAN C1 > C3 Aggrecan. Large proteoglycan with a hyaluronan core and chondroitin and keratan sul-
fate branch chains. It withstands high-pressure loads and is usually associated with
cartilage (Roughley et al., 2014)

COCH C2 Cochlin. ECM glycoprotein (Hynes et al., 2011). It is abundant in the cochlea and the
eye and may play a role in cell adhesion and mechanosensation (Picciani et al., 2007;
Robertson et al., 1997). No established function has been determined in the skin.

COMP A2 > C3 > A1 ∼

A3
Cartilage oligomeric matrix protein. It contains five glycoprotein subunits which bind dif-
ferent collagens (I, II, IX) (Farina et al., 2006). It is also found to bind XII and XIV col-
lagens at the anchoring plaques, where it attaches mainly collagen I fibrils into the
vicinity of the anchoring plaques to stabilise the DEJ structure (Agarwal et al., 2012).
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DPT T1 ∼ C3 > C2 >
B2 ∼ B3

Dermatopontin. It is found to hold membranes in the intercellular junction. It binds to
integrins and modulates the size and arrangement of collagen fibrils (Okamoto et al.,
2006).

EFEMP1 B4 > A4 ∼ B2 EGF-containing fibulin-like extracellular matrix protein 1. It contains several EGF-like re-
peats and a fibulin-type C-terminal domain (Sun et al., 1998). (Solé-Boldo et al., 2020)
describe this marker within the pro-inflammatory population. It was also localised to
the bulge area in HFs, according to Takahashi et al., 2020.

HSPG2 B4 ∼ A1 > rest Perlecan. The core protein binds three GAGs (heparan sulfate or chondroitin sulfate).
It binds to a number of ECM and matrisome components such as laminin, collagen
IV, V, VI, XI, elastin and FBLN2. It also binds lipids with an LDLR-like domain and Wnt
morphogens. It promotes angiogenesis by binding to VEGF and VEGFR2 (Hayes et al.,
2022). In mouse HF, it is located within a mesh-like deposition within the BM adjacent
to the DP (Tsutsui et al., 2021).

MXRA5 C2 > C1 ∼ E1 >
C5

Matrix Remodeling Associated 5. MXRA5 is reported as a secreted glycoprotein, and it
containes seven leucine-rich repeats and 12 immunoglobulin-like C2-type domains
related to perlecan. TGF-β upregulated its expression; thus it may show a putative
role in fibrosis (Poveda et al., 2016). It contributes to EMT in pancreatic cancer, and
increases vimentin expression (Peng et al., 2023).

NPNT C? Nephronectin. Deposited by the HF BM bulge, also located in the DEJ, with putative
integrin binding activity (Fujiwara et al., 2011).

PDPN A1 ∼ A3 ∼ A4 >
A2 > B1 ∼B3

Podoplanin. Mucin-type transmembrane protein. It binds to CLEC2 in platelets, which
increases aggregation, and in immune cells (NK cells, neutrophils and DCs), which
increases motility (Kerrigan et al., 2009; Seymour et al., 2016; Sobanov et al., 2001).
PDPN+ cells have been found throughout the dermis, although with a higher presence
in papillary dermis (Korosec et al., 2019). A subset of PDPN+ cells form a reticular
network near lymph nodes to facilitate leukocyte migration and antigen presentation
via CCL19, CCL21 and IL7 (Fletcher et al., 2015).

SDC1 C3 > C2 ∼ C5 >
C1

Syndecan-1. Transmembrane heparan sulfate proteoglycan. It shows many interactions,
including collagens, fibrin, tenascin, fibrillin, vitronectin; MMPs, ADAMTSs and other
proteases; integrins, BMPs, Wnt morphogens, PDGF, VEGF, TGF-β, ApoB/E, cytokines,
and complement proteins (Stepp et al., 2015). Thus, the number of functions is very
diverse and includes neuron guidance, ECM organisation, wound healing, etc. (Stepp
et al., 2015).

TNC A2 ∼ B3 ∼ C3 >
B2 ∼ C2

Tenascin C. Glycoprotein with several domains that, after binding fibronectin, upreg-
ulate MMP expression (Tremble et al., 1994). It also binds integrins, perlecan, PDGF,
TGF-β, and includes a large range of functions, mainly cell division and motility (Gib-
lin et al., 2014). It favours Treg migration, proliferation and immunotolerance (Rüegg
et al., 1989).

TNXB A1 ∼ A4 > A3 Tenascin XB. It interacts with type I, III, V, XII and XIV collagens, as well as decorin,
integrins, etc. It has been observed to have opposite locations and functions to TNC.
It modulates cell adhesion, may restrict keratinocyte and fibroblast movement, and
may induce cell differentiation (Valcourt et al., 2015).

VIT D1 ∼ D2 > B4 ∼

A2
Vitrin. It is similar to COCH and may be associated with cell adhesion and neural de-
velopment (Whittaker et al., 2002).
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Table S3: Genes associated with ECM modulation. The list of genes is divided into the following categories:
MMPs and TIMPs, and other elements.

MMPs and TIMPs

MMP1 B1 Matrix metallopeptidase 1. It can degrade collagens III > I, II, VIII, aggrecan and entactin
(Cabral-Pacheco et al., 2020). It also activates MMP-2 (Kahari et al., 1997).

MMP2 A1 > A4 ∼ A3 >
A2 > C3

Matrix metallopeptidase 2. It can degrade collagens I, IV, V, VII, X, XI, fibronectin, elastin,
laminin, and vitronectin. It also activates proMMP 9 and 13 (Cabral-Pacheco et al.,
2020).

MMP3 B1 Matrix metallopeptidase 3. It can degrade collagens IV > V, IX, X, XI, aggrecan, vitronectin,
fibronectin and laminin. It also activates proMMP 1, 8, 9 and 13 (Cabral-Pacheco et al.,
2020; Kahari et al., 1997).

MMP11 C3 > C1 ∼ A2 Matrix metallopeptidase 11. Acts like MMP3.

MMP16 E1 ∼ C3 > C2 ∼

C5
Matrix metallopeptidase 16. It can degrade collagen III mainly, fibronectin and laminin.
It also activates proMMP 2 and 13 (Cabral-Pacheco et al., 2020).

MMP27 A1 ∼ A3 ∼ A4 Matrix metallopeptidase 27. It may not be secreted, and its functions are unknown
(Cominelli et al., 2014).

TIMP1 B4 ∼ E1 > B3 ∼

A4 > rest
Tissue inhibitor of metalloproteinases 1. It inhibits MMPs 1, 2, 3, 7, 8, 9; as well as ADAM 10
(Cabral-Pacheco et al., 2020). It is shown to mediate angiogenesis through interaction
with β1 integrin and CD63 (Jung et al., 2006; Toricelli et al., 2013). Acts as a key mod-
ulator of inflammatory processes (Schoeps et al., 2022). It increased photoprotection
against UVB, by inhibiting TNFα and other pro-inflammatory processes (Yokose et al.,
2012).

TIMP2 A1 ∼ A4 ∼ C2 >
C3 ∼ A2 ∼ A3

Tissue inhibitor of metalloproteinases 2. It inhibits MMPs 1, 2, 3, 7, 8, 9, and 14; although
MMP3 and 7 inhibition are weaker than TIMP1. It also binds ProMMP-2 and certain
integrins (Cabral-Pacheco et al., 2020).

TIMP3 E1 > A1 ∼ A4 ∼

B4
Tissue inhibitor of metalloproteinases 3. It inhibits MMPs 1, 2, 3, 7, 8, and 9; as well as ADAM
10 and 17. It also binds ProMMP-2/9 and VEGFR2 (Cabral-Pacheco et al., 2020).

ADAM

ADAMTS4 B1 > B3 > B2 ADAM metallopeptidase With thrombospondin Type 1 Motif 4. Degrades chondroitin sulfate
proteoglycans such as ACAN or VCAN (Kelwick et al., 2015).

ADAMTS9 C1 ∼ A2 > C2 ∼

C3 ∼ C5
ADAM metallopeptidase With thrombospondin Type 1 Motif 9. Degrades chondroitin sulfate
proteoglycans such as ACAN or VCAN (Kelwick et al., 2015).

ADAMTS18 C1 ADAM metallopeptidase with thrombospondin Type 1 Motif 18. Located in the dermal papilla
(Hagner et al., 2020). No clear function has been elucidated yet, but loss of function of
this gene is related to bone, hematological, central nervous system and eye diseases.
Suppression of this gene is also observed in several tumours; thus, it may act as a
tumour supressor gene (Wei, 2014).

ADAMTSL1 A ADAMTS like 1. It lacks MMP and disintegrin domains of ADAMTS proteins but contains
other domains. Therefore, like all other ADAMTSLs, it lacks ADAMTS catalytic capability.
It may play a role in the skin, but it is not known (Hirohata et al., 2002).

ADAMTSL3 D2 > B4 ADAMTS like 3. It binds fibrillin-1 fibers (Sengle et al., 2012).

ADAMTSL4 D2 > rest ADAMTS like 4. It binds fibrillin-1 and accelarates its biogenesis (Gabriel et al., 2012).
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ADAMTSL5 D2 ADAMTS like 5. Besides binding fibrillin-1, it also binds fibrillin-2. It has an NTR module
that is present in SFRPs, C3, PCOLCEs and TIMPs (Bader et al., 2012). It is observed in
ORS in HFs (Higgins et al., 2011). In melanocytes, it acts as an autoantigen in psoriasis
(Bergen et al., 2020).

Other proteins

AEBP1 A1 > A3 ∼ C3 >
A4

AE binding protein 1. Belongs to the carboxypeptidase A family. It regulates adipogenesis
and smooth muscle differentiation and may be involved in wound healing and bad
prognosis of certain cancers (Liu et al., 2018; Majdalawieh et al., 2010; Ohno et al.,
1996).

ANGPTL7 D1 Angiopoietin like 7. It diminished the expression of FN1, COL1A1, COL4A1, COL5A1, MYOC
and VCAN and increased the expression of MMP1 (Comes et al., 2010).

ANTXR1 A2 > rest ANTXR Cell Adhesion Molecule 1. It is a type I transmembrane protein and a tumour-
specific endothelial marker of myofibroblastic CAFs and other cancers (Huang et al.,
2020; Kieffer et al., 2020). It can bind collagen VI (Nanda et al., 2004), and lack of it
leads to the accumulation of collagens II and VI (Besschetnova et al., 2015). It also
acts on the cytoskeleton by binding it to the ECM, and it is actively involved in wound
healing (Gu et al., 2010).

CD44 A2 ∼ A3 ∼ B1 >
A4 ∼ B3 > rest

Cluster of Differentiation 44. - Also expressed on immune cells. It binds to hyaluronan
chains and enhances T cell migration in vitro (Bertheim et al., 1994). It binds, apart from
HA, fibronectin, proteoglycans, HB-GFs (like EGFR (D2)), and collagens I, IV and XIV (Ben-
nett et al., 1995; Fujimoto et al., 2001; Ishii et al., 1993; Jalkanen et al., 1992; Kawashima et
al., 2000). It is implicated in cell proliferation, migration, invasion and differentiation.
It may maintain the levels of collagen I, N-cadherin and fibronectin in homeostasis
(Tsuneki et al., 2015) and wounding, avoiding its accumulation (Govindaraju et al., 2019).
It shows a high binding affinity to hyaluronic acid types, and most of its functions are
mediated by their weight. For instance, low molecular weight hyaluronic acid mediates
CD44-induced IL6, CXCL1 and CXCL2 expression in fibroblasts (Vistejnova et al., 2014). It
acts as a negative regulator of TGF-B and PDGFRB (Porsch et al., 2014). It regulates
αSMA (ACTA2) gene expression through several pathways, including p38 (Wang et al.,
2019).

CHADL C2 Chondroadherin like. It binds collagen in vitro, inhibits its fibrillogenesis, and KO in-
creases collagen II and ACAN deposition (Tillgren et al., 2015).

CHST15 C2 Carbohydrate sulfotransferase 15. Transmembrane sulfotransferase that acts on specific
chondroitin sulfate residues may influence the storage of certain proteases in mast
cells and may affect osteoblast differentiation (Mizumoto et al., 2021). It also reduces
the presence of chondroitin sulfate proteoglycans (Kai et al., 2017).

CTSK A1 ∼ C2 > A3 ∼

A4 ∼ C3
Cathepsin K. Decreases COL1A1 expression (Soundararajan et al., 2021), and catabolises
elastin and collagen (Kondo et al., 2022). It also activates MMP-9 in certain environ-
ments (Christensen et al., 2015).

HAS2 B3 > A2 ∼ B1 Hyaluronan synthase 2. It synthesises large hyaluronic acid chains necessary for tissue
repair, and leukocyte homing (Sussmann et al., 2004), and protect against stressors
(Wang et al., 2014). In myofibroblasts, HAS2 expression is increased, which increases
CD44 ECM levels and results in fibrosis (Li et al., 2011).

KLK1 D1 ∼ E1 > D2 Kallikrein 1. Activates kininogen-1 and MMP2, and MMP9. Kininogen-1 is activated into
bradykinin, a strong vasodilator (Nauroy et al., 2020).
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LOX A1 > A3 ∼ A4 ∼

C1
Lysyl oxidase. Crosslinks collagen and elastin chains, which is necessary for stabilisation
and maturation of ECM (Csiszar, 2001), although it is also related to ECM stiffness in
ageing (Langton et al., 2012).

LOXL1 A1 ∼ A3 ∼ A4 LOX like 1. Acts like LOX, although it may have a more relevant function in elastin
crosslinking (Liu et al., 2004).

LOXL2 C3 ∼ A2 > C1 ∼

C5
LOX like 2. Acts like LOX, but it also contains several SRCR domains that may be related
to the innate immune system (Sarrias et al., 2004)

LOXL4 A LOX like 4. Acts like LOXL2.

P3H2 C2 Propyl 3-hydroxylase 2. This enzyme catalyses the 3-hydroxylation of collagen proline
residues. It has a high affinity to collagen IV, and lesser to collagen I (Tiainen et al.,
2008).

P4HA2 A Propyl 4-hydroxylase subunit α 2. This is a key enzyme in collagen synthesis by catalysing
the 4-hydroxylation of proline residues (Wilhelm et al., 2023).

P4HA3 C3 Propyl 4-hydroxylase subunit α 3. Acts like P4HA3.

PCOLCE A1 ∼ A3 ∼ A4 >
rest

Procollagen C-Endopeptidase Enhancer.Binds to the pro-collagen form of collagen dur-
ing its synthesis and may induce the cleavage of the pro-peptide by activating BMP1
(Takahara et al., 1994). Overexpression of PCOLCE is a general feature and marker of
fibrosis (Lagoutte et al., 2021).

PCOLCE2 A4 > A1 ∼ A3 Procollagen C-Endopeptidase Enhancer 2. Acts like PCOLCE in the cleavage of pro-collagen
I and II forms (Steiglitz et al., 2002). In adipocytes, it regulates HDL uptake (Xu et al.,
2021a).

SPARC C1 > C3 ∼ A3 ∼

A1 ∼ A4 > A2
Secreted protein acidic and cystein rich. Also known as osteonectin. Widely studied in
bone, where it absorbs Ca2+ and binds it to collagen, PDGF and other ligands (Termine
et al., 1981). In skin, it also promotes the production of collagens IV and VII and their
accumulation in the DEJ (Nakamura et al., 2022).

TGFBI D1 ∼ D2 > A2 Transforming growth factor β induced. This protein contains several domains and an RGD
motif that binds integrin αvβ3, fibronectin, vitronectin, collagens, fibrinogen and VWF
(Ruoslahti et al., 1987). It has been shown to have antiangiogenic properties (Son et al.,
2013). It has been shown to bind collagen XII (Runager et al., 2013).

WISP1 C3 ∼ A1 WNT-inducible-signalling pathway protein 1. This protein contains several domains, in-
cluding IGFBP, von Willebrand type C repeats, thrombospondin type 1 repeat and cys-
teine knot motif. WISP1 has been observed to bind DCN and BGN (Desnoyers et al., 2001)
and acts as a pro-mitogenic and pro-survival factor (Venkatachalam et al., 2009).

WISP2 A1 > A4 ∼ A3 >
B4

WNT-inducible-signalling pathway protein 2. With a similar domain structure as WISP1,
WISP2 inhibits the binding of fibrinogen to integrin receptors (Janjanam et al., 2021). It
also is related to preadipocyte commitment and PPARG activation (Hammarstedt et al.,
2013) and is upregulated in hypertrophic scars (Chaudet et al., 2020).

Table S4: Genes associated with complement pathway.
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C3 B2 ∼ B3 > B4 > A1 Complement C3. It is a member of classical and alternative pathways. It activates into C3a
anaphylatoxin and C3b, which binds to C2a and C4b to activate C5. C5 splits into C5a and
C5b. C5b, together with C6, C7, C8 and several C9 units, form the membrane attack com-
plex (MAC) (Rutkowski et al., 2010). In synovial fibroblasts, C3 exposure within the cell
primes them for future immune responses, which may lead to chronic inflammation
(Afzali et al., 2021). Adventitial fibroblasts may release vesicles containing several com-
ponents, including C3, which induces inflammatory reprogramming in macrophages
(Kumar et al., 2021).

C6 B2 ∼ B4 > B3 Complement C6. It is a member of the MAC, which causes cell lysis (Rutkowski et al.,
2010).

C7 B2 ∼ B4 > B1 ∼ B3 Complement C7. It is a member of the MAC, which causes cell lysis (Rutkowski et al.,
2010).

CD55/DAF A4 ∼ A1 Decay-accelerating factor. It recognises C4b and C3b fragments. Binding to C4 prevents
the creation of C2aC4b (classical pathway C3 convertase). Binding to C3b prevents the
creation of C3bBb (alternative pathway C3 convertase). Both convertases activate C3;
thus, Cd55 reduces the formation of the MAC indirectly (Dho et al., 2018).

CFD A1 ∼ A4 ∼ B4 > A3 Complement factor D. Cleaves CFB into Ba and Bb. Bb binds to C3b to create the C3bBb C3
convertase (alternate pathway) (Rutkowski et al., 2010). Thus, it favours the formation
of the MAC.

CFH B4 ∼ D1 > A1 ∼ A3 ∼

B2
Complement factor H. It inhibits the C3bBb convertase, stopping the amplification loop
(Jozsi, 2017). It also interacts with receptors like ITGAM, mediating the adhesion of
human neutrophils and enhancing their activity (Losse et al., 2009).

CLU A4 ∼ A1 > B3 ∼B2
∼D2 > rest

Clusterin. Inhibits MAC formation (Shinjyo et al., 2021)

DCN A1 ∼ A4 > A3 > B4 ∼

D1
Decorin. Can bind C1q and inhibit the complement system (Krumdieck et al., 1992).

Table S5: Genes associated with cytokine signalling]. The list of genes is divided into the following categories:
CCL - CXCL - CX3C - CXCR cytokines, ACKRs, interleukins, TNFs, and other elements.

CCL - CXCL - CX3C - CXCR

CCL2 B3 ∼ B1 ∼ D1 >
D2

C-C Motif Chemokine Ligand 2. Powerful chemoattractant from bone-marrow-derived
monocytes. (Vanbervliet et al., 2002), by binding to CCR2 or CCR4 (Craig et al., 2006). It
is also required with CCL5 for epidermal-to-dermal migration of LCs after injury (Ouwe-
hand et al., 2010). Hair plucking led to the release of CCL2 to recruit macrophages which
help adjacent hair creation by activation of regenerative signals (Chen et al., 2015b).
Among those signals are the activation of HFSCs by TNFα and by Notch signalling
from Treg cells (Rahmani et al., 2020). IL6 induces CCL2 expression in fibroblasts and
participates in their survival (Liu et al., 2007).
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CCL13 D2 > D1 C-C Motif Chemokine Ligand 13. Binds to CCR1/2/3/5 and induces chemotaxis of different
immune cells, including Th and NK cells, mast cells, basophils, eosinophils and mono-
cyte/macrophages (Mendez-Enriquez et al., 2013). It plays a role in innate immunity by
upregulating TLR2/3/4/5, and also in adaptive responses by inducing DC maturation
and activation (Mendez-Enriquez et al., 2013). Its expression may be related to CD40
and MHC-II expression (Chiu et al., 2004). CCL13 overexpression in alopecia areata leads
accumulation of T cells surrounding the HF (Wang et al., 2021a).

CCL19 B3 > B2 C-C Motif Chemokine Ligand 19.It is a chemoattractant of CCR7+ cells, such as DCs, B
cells, NK cells and several types of T cells (Laufer et al., 2019; Ohl et al., 2004; Reif
et al., 2002; Robbiani et al., 2000) It induces migration, cytokine production and cell
growth and differentiation by activation of several pathways, including PI3K, JAK-STAT
or Ras/Raf/Erk (Yan et al., 2019) In APCs, CCR7 phosphorylation and internalisation
leads to APC migration (Anderson et al., 2015; Tian et al., 2013) In certain tumours, stro-
mal cells expressing CCL19 are responsible for T CD8+ infiltration and antitumorigenic
response (Cheng et al., 2018b).

CX3CL1 B3 > B2 C-X3-C Motif Chemokine Ligand 1. It is a chemoattractant of T cells, NK cells, mono-
cytes and DCs via CX3CR1; expressed by neural, muscle and immune cells (Johnson
et al., 2013; Limatola et al., 2014). It exists in an anchored form, which promotes leuko-
cyte attachment in physiological conditions, and in a soluble form after cleavage by
ADAM10/17, in inflammatory conditions (Thelen et al., 2016). IL1β and IFNγ costimu-
lated CX3CL1 expression in lung fibroblasts in vitro and may have a role in pulmonary
fibrosis (Isozaki et al., 2011). CX3CL1 expression is also observed in wound healing by
promoting macrophage and fibroblast accumulation (Ishida et al., 2008); and in atopic
dermatitis, by retaining T cells in the skin (Staumont-Salle et al., 2014).

CXCL1 B1 > B3 C-X-C Motif Chemokine Ligand 1. Binds to CXCR2 and acts different cell types–e.g.
eosinophils, basophils, macrophages, immature DC and naïve T cells–having the most
chemoattractant activity towards neutrophils (Bautista-Hernandez et al., 2017; Mur-
phy, 2007). It also has a marked angiogenic potential, being implicated in tumorige-
nesis (melanoma cells selectively express CXCL1) (Murphy, 2007). Interestingly, TGF-β
reduces its expression, although the inverse might not be true, since CXCR2 KO mice re-
sulted in decreased TGF-β1 and collagen I expression (Zhang et al., 2020b) Its binding
to GAGs–heparan, dermatan and chondroitin sulfate–is essential. CXCL1 is attached to
GAGs and is liberated by MMPs, and GAGs seem to be necessary to fully activate CXCR2
(Wang et al., 2003). CXCL1 may polimerise in vivo. In fact, homodimerisation may be
necessary for full CXCL1 activity (Sawant et al., 2020).

CXCL2 B1 > B3 C-X-C Motif Chemokine Ligand 2. Acts similarly to CXCL1 by binding to CXCR2 (Murphy,
2007). CXCL2 bound to ACKR1 may be necessary for neutrophils to perform diapedesis;
CXCL1 is also necessary but not sufficient (Girbl et al., 2018). CXCL2 also binds to GAGs
and exists in dimeric form (Sawant et al., 2020).

CXCL3 B1 > B3 C-X-C Motif Chemokine Ligand 3. Acts similarly to CXCL1 by binding to CXCR2 (Murphy,
2007).
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CXCL12 B2 ∼ B4 > B3 C-X-C Motif Chemokine Ligand 12. Attracts exogenous immune cells such as T cells
(Bautista-Hernandez et al., 2017), and endogenous Langerhans cells from the epider-
mis into the dermis (Ouwehand et al., 2008). It binds PKM2, an enzyme-producing
pyruvate at the end of the glycolysis pathway. Activation of CXCR4 or ACKR3 reduces
its oligomeric form, enhancing glycolysis and pentose phosphate pathway (Luker et
al., 2022) In keloid scars, overexpression of CXCL12 led to TGF-β-induced suppression
of DPP4, and CXCR4-mediated immune infiltration (Chen et al., 2021b). Truncation by
DPP4 leads to an “inactive” form that only binds to ACKR3 and may inactivate CXCR4
(Elmansi et al., 2022)

CXCR4 C5 > D C-X-C Motif Chemokine Receptor 4. It binds CXCL12 and induces β-arrestin-mediated sig-
nalling (Lipfert et al., 2013). It may form a complex with ACKR3 since blockade of either
receptor leads to a complete loss of CXCL12-dependent response (Lipfert et al., 2013)
Its function is related to stem/progenitor cell migration (Chen et al., 2015b) It was
expressed in epithelial cells and eosinophils infiltrating skin after burning. Blocking
CXCR4 led to a reduction of eosinophil accumulation in the dermis (Avniel et al., 2006)
In HF, it is expressed in DP and ORS cells. Overexpression of CXCL12 from dermal fi-
broblasts led to a delayed telogen-to-anagen transition (Zheng et al., 2022).

ACKR

ACKR3 A1 ∼ A4 ∼ E1 Atypical Chemokine Receptor 3. It binds CXCL12 with higher affinity than CXCR4 (Meyrath et
al., 2020). It “scavenges” CXCL12 by binding it to the receptor, internalising the complex,
degrading CXCL12 and resurfacing ACKR3. This establishes a CXCL12 gradient used for
cell type migration (Berahovich et al., 2013; Donà et al., 2013). It is involved in monocyte
differentiation via JNK and p38 pathways (Ma et al., 2013) Its function is more related
to stem/progenitor survival (Chen et al., 2015a).

ACKR4 A1 ∼ A2 ∼ A3 Atypical Chemokine Receptor 4. Acts as a scavenger receptor for CCL19 and CCL21
chemokines, creating a gradient favouring immune migration within lymph nodes
(Bryce et al., 2016). In lymphatic vessels, it is expressed in afferent lymphatic collectors.
T cells migrate by adhesion from CCL21+ lymphatic capillaries into CCL21dimACKR4+

collectors, where they lift and go with the lymph flow (Friess et al., 2022). In myocardial
infarction, ACKR4 expression lead to IL6-mediated EMT (Zhang et al., 2021a).

Interleukins

IL11RA B2 ∼ B3 > B4 Interleukin 11 Receptor Subunit Alpha. Soluble form of the receptor that binds IL11, which
binds to gp130 (a transmembrane protein associated with IL6 receptor family) and in-
duces IL11 signalling, even on cells with no IL11 receptor (Lamertz et al., 2018; Lokau
et al., 2016). It is involved in the activation of several downstream pathways, including
MAPK, JAK-STAT, NF-kB or Akt (Balakrishnan et al., 2013). May be involved in fibrosis
since IL11 is identified as TGF-β responsive (Schafer et al., 2017); although in other
models IL11 signalling led to an antifibrotic response by endothelial cells (Allanki et
al., 2021). In rheumatoid arthritis, IL11 signalling led to fibroblast infiltration, as well
as IL8 and VEGF expression, which induced endothelial migration and angiogenesis
(Elshabrawy et al., 2018). Interestingly, IL6 is expressed in DP cells and IL11RA in the IRS
and ORS; and balding may be related IL11RA/IL6-mediated anagen-to-catagen transi-
tion (Yu et al., 2007).

IL15RA B ∼ A1 ∼ A3 Interleukin 15 Receptor Subunit Alpha. Mediates IL15-related signalling by binding IL15 and
presenting it to the effector cell (Jakobisiak et al., 2011).
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IL6 B1 Interleukin 6.Interleukin expressed at basal levels by many cells. Its expression is in-
duced by LPS and other external agents that bind TLRs, as well as IL1, TNFα, TGFβ and
other factors. The induction is mediated by STAT, NF-kB and other pathways. (Paquet
et al., 1996; West, 2019). For instance, after epidermal injury, keratinocytes synthesis
IL1α, which induces IL6 and IL8 production in fibroblasts (Boxman et al., 1996). It is
one of the most readily inducible cytokines and activates the differentiation of B cells
to plasma cells, peripheral T cells–Th2, Th17, Treg–, as well as ECM remodelling–the ex-
pression of collagen, GAGs–and fibrosis (Duncan et al., 1991; Paquet et al., 1996; West,
2019). It also induces the secretion of more IL6, as well as different chemokines (CCL2,
CCL11) and adhesion molecules (ICAM-1, VCAM-1) (West, 2019). It is also associated with
immediate response in acute infections (septic shock), inflammation and bacterial in-
fections (Paquet et al., 1996). IL6 expression is necessary for cutaneous wound healing
in mice (Gallucci et al., 2000).

IL15 B3 > B Interleukin 15. Pleiotropic cytokine with roles in innate and adaptive responses, mainly
activating B, T and NK cells (Lodolce et al., 2002). It also suppresses T cell apoptosis,
thus enhancing its function (Malamut et al., 2010). It also induces the production of
IL8 and CCL2 in monocytes to attract neutrophils and monocytes to the infection site
(Badolato et al., 1997). IL15 is observed to be overexpressed in atopic dermatitis, mainly
in fibroblasts, macrophages and DCs (Karlen et al., 2020).

IL32 B3 ∼ B1 > B2 ∼

A2
Interleukin 32. Pleiotropic cytokine with up to 9 isoforms (Gautam et al., 2021), and pre-
dominantly expressed intracellularly (Kim et al., 2005). Its role is not completely known,
but it has been observed to switch between pro- and anti-inflammatory programs
(Heinhuis et al., 2015); create an antimicrobial environment by upregulation of micro-
bidical peptides (Montoya et al., 2014); or induce expression of pro-inflammatory IL1β,
IL18 and TNFα cytokines (Alsaleh et al., 2010). Aberrant expression of IL32 has been
linked to autoimmune diseases such as rheumatoid arthritis, IBS and type 1 diabetes
(Albuquerque et al., 2021) and skin diseases like hidradenitis suppurativa (Thomi et
al., 2017) or atopic dermatitis (Chang et al., 2022). It may be related to cholesterol
metabolism in liver cells due to the correlative expression of ABCA1 and ABCG1 trans-
porters, as well as LXRα nuclear receptor (Damen et al., 2018).

IL33 B2 ∼ B3 > B4 >
B1

Interleukin 33. Constitutively expressed by cells exposed to the environment (lung, skin,
etc.) (Moussion et al., 2008), it is stored in the nucleus and released passively dur-
ing injury, thus working as an “alarmin” that alerts the immune system after injury
(Haraldsen et al., 2009). IL33 activates T, NK, DC and mast cells, as well as basophils,
eosinophils and macrophages (Bonilla et al., 2012; Moro et al., 2009; Pecaric-Petkovic et
al., 2009; Price et al., 2010). Activated mast cells release chymases and tryptases, which
activate the rest of the immune cells directly or indirectly by cleaving IL33 into its ac-
tive form (Eissmann et al., 2020). Pro-inflammatory IL11 may induce IL33 expression in
fibroblasts (Widjaja et al., 2022), and restrain them from switching to a myofibroblastic
state (Gatti et al., 2021).

IL34 B2 ∼ B3 Interleukin 34. Promotes the growth differentiation of monocytes and macrophages
through binding to CSF1R (Lin et al., 2008), and to a lesser extent, to syndecan 1 (Se-
galiny et al., 2015). In the skin, it may be related to LC homeostasis and self-renewal
(Wang et al., 2015a), and protection from bacterial infections (Lin et al., 2019b).

TNFs
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CD70 A1 ∼ A4 . It is usually found in activated T and B cells (Borst et al., 2005). In APCs, it binds
CD27 in T and B cells and induces their activation and differentiation (Han et al., 2016).
For instance, in the skin, LCs present CD70 to augment CD8+ T cell presence in the
epidermis (Polak et al., 2012). CD70+ CAFs stimulated the migration and frequency of
Tregs in vitro (Jacobs et al., 2018).

TNFRSF19 A2 TNF Receptor Superfamily Member 19. Target gene of Wnt/β-catenin pathway, it interacts
with Lgr5 to inhibit Wnt signalling in intestinal stem cells (Fafilek et al., 2013) and may
act via NF-kB signalling (Pispa et al., 2008). In mice, it marks the IFE and infundibulum
cells in telogenic HF and hair bulb in anagen; in humans, it marks the basal epidermis
(Kretzschmar et al., 2021). In cancer cells, it inhibits TGF-β by associating with TGFBR
(Deng et al., 2018).

TNFRSF21 A2 ∼ E1 > B2 TNF Receptor Superfamily Member 21. Proapoptotic TNF receptor (Dostert et al., 2019). It
is implicated in axonal pruning via caspase 6 (Nikolaev et al., 2009). May decrease T
cell and B cell proliferation (Liu et al., 2001; Schmidt et al., 2002), although it may also
be necessary for their migration to the central nervous system (Schmidt et al., 2002).

TNFSF13B B2 ∼ B3 TNF Superfamily Member 13b. Binds to a TRAF subfamily receptor, which activates the
non-canonical NF-kB pathway and belongs to the same family as CD40/CD40L (So
et al., 2013). It is expressed by several immune cells, such as activated DCs, and it is
critical for B-cell maturation (Rickert et al., 2011)

TNFSF14 B1 TNF Superfamily Member 14. Member of the lymphotoxin system, a network of LR pairs
expressed by T cell activated during viral infection (Dostert et al., 2019). It is expressed
by myeloid cells and immature DCs, where it is associated with DC maturation (Albarbar
et al., 2015), and can be induced on activated T cells to regulate their proliferation and
differentiation (Wang et al., 2001) TNFSF14 induced the expression of MMP9 and IL6 in
synovial fibroblasts in rheumatoid arthritis (Pierer et al., 2007)

Other

RARRES2 B2 ∼ B4 > D2 >
E1 ∼ A1 ∼ A3 >
B1 ∼ D1

Retinoic Acid Receptor Responder 2. Predominantly expressed in adipocyte and immune
cells (Bozaoglu et al., 2007; Goralski et al., 2007), binding to CMKLR1 may induce adipo-
genesis and angiogenesis (Henau et al., 2016). Regarding the immunogenic potential,
it shows pro- and anti-inflammatory properties depending on cleavage by proteases
(Mattern et al., 2014) For instance, it was observed to enhance chemotaxis of immature
DCs and monocytes but also reduce the recruitment of neutrophils, and macrophages
info inflamed tissues (Cash et al., 2008; Luangsay et al., 2009) It may have a link with
insulin resistance (Takahashi et al., 2008), high-fat diet-induced neuroinflammation
(Yun et al., 2022), and food intake and metabolism in general (Tavolaro et al., 2015).
However, its negative or positive effects on metabolic diseases may depend on its
functions in acute versus chronic scenarios (Helfer et al., 2016), and most findings are
controversial (Helfer et al., 2018). It may be involved in early psoriatic lesions (Albanesi
et al., 2008), although it may be downregulated in advance stage psoriasis by IL17 and
IL22 (Banas et al., 2015).

CMKLR1 E1 > A2 Chemerin Chemokine-Like Receptor 1. Receptor of adipokine chemerin/RARRES2 and
omega-3 fatty acid derived molecule resolvin E1 (Arita et al., 2005; Wittamer et al.,
2003).
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CSF1 B3 > B > rest Colony Stimulating Factor 1. Similar to IL34, binds CSF1R and regulates macrophage differ-
entiation. However, its range of action is systemic, compared to IL34, which is focused
on the central nervous system–maintenance of microglia–and the skin (Greter et al.,
2012; Nakamichi et al., 2013). Produced by wound fibroblasts to fortify the immune
response (Bautista-Hernandez et al., 2017). Its absence significantly delays wound clo-
sure (Li et al., 2016). During UV-induced damage, LC regeneration depended on CSF1-
expressing infiltrated neutrophils (Wang et al., 2015b).

MDK C3 > C1 > C2 ∼

C5
Midkine. Cytokine and growth factor that binds to proteoglycan and non-proteoglycan
receptors–including α4/6 and several β integrins, LRP, NOTCH2 or N-syndecan– (Kuro-
sawa et al., 2001; Muramatsu et al., 2000) and regulates cell proliferation, adhesion,
survival, differentiation and inflammatory response (Kurosawa et al., 2001; Muramatsu
et al., 2004; Stoica et al., 2002; Weckbach et al., 2014). It is also implicated in cancer
progression (Filippou et al., 2019). In the immune response, it recruits neutrophils and
macrophages (Weckbach et al., 2014) and then contributes to vessel regeneration by
endothelial cell migration (Horiba et al., 2000) and angiogenesis through VEGFA ex-
pression induction (Hao et al., 2013). This latter effect is also induced in the hypoxic
environment (Weckbach et al., 2012). In the skin, it may be involved in the synthesis
stimulation of collagens I and III, TGFB1 and MMP2 (Yamada et al., 1997). Localised in
the DP (Rendl et al., 2005) and assumed to be expressed in ORS (Woo et al., 2022) and
sebaceous glands (Iwashita et al., 1999), it may induce autocrine signalling (Rezza et al.,
2016), and has been reported to induce proliferation and migration of HF cells (Rendl
et al., 2005).

SOCS3 B3 > B1 > B2 ∼

B4 > D2 ∼ D1 ∼

A2

Suppressor Of Cytokine Signaling 3. It is expressed as a response to the binding of pro-
inflammatory molecules–e.g. IL6, IL12, LPS, TNFα or IFNs–inhibiting the effector path-
ways activated by these molecules (Carow et al., 2014; Yin et al., 2015). For instance,
it binds JAK bound to IL6 receptor, or STATs, inhibiting its action (Yin et al., 2015). De-
spite acting as an immunomodulator, several pathologies have been found to show
increased levels of SOCS3, such as IBD, rheumatoid arthritis, allergic diseases or atopic
dermatitis; as a developed resistance to this inhibition (Horiuchi et al., 2006; Yin et al.,
2015). Basal keratinocyte and HF SOCS3 expression may also be necessary for skin
wound repair (Linke et al., 2010). Besides its immunomodulatory role, it also binds
leptin and insulin receptors, and similar increases in SOCS3 have been associated
with resistance and weight gain (Pedroso et al., 2018). TGF-β induces the suppression
of SOCS3 to ensure its fibrotic potential in fibroblasts (Dees et al., 2020). Similarly,
IL6 signalling may evade inhibition by activating ERK1/2 instead of STAT3 in dermal
fibroblasts in vitro (Luckett-Chastain et al., 2012).

VCAM1 B3 > B2 Vascular Cell Adhesion Molecule 1. Usually expressed by endothelial cells after cytokine
stimulation–i.e. IL1, TNFα, IL4, IL3–, which promotes the adhesion of lymphocytes,
monocytes, eosinophils and basophils (Broide et al., 2014; Mantovani et al., 1998). Func-
tions of VCAM1 in other contexts are understudied. In muscle, it is observed that VCAM1
is necessary for satellite cells to communicate with other satellite cells and immune
cells and may affect myofibril growth (Choo et al., 2017). In post-infarction hearts, its
expression is correlated with increased lymphangiogenesis (Iwamiya et al., 2020).



292 supplementary tables

Table S6: Genes associated with Wnt pathway. The list of genes is divided into the following categories: Com-
ponent of canonical signalling, component of non-canonical signalling, component of canonical and
non-canonical signalling, positive modulator, negative modulator and ambivalent modulator.

Component of canonical signalling

APCDD1 A2 > C2 ∼ C5 APC down-regulated 1. Acts like PCOLCE but may also bind heparin and has a less dis-
persed expression. It also binds BMP1, another procollagen proteinase, enhancing its
activity (Baicu et al., 2012).

FZD1 C2 > C3 Frizzled 1. Receptor of Wnt proteins in the canonical pathway, activated by WNT3A, WNT3
and WNT1; and probably not by WNT4, WNT5A, WNT5B, WNT6, WNT7A or WNT7B (Gazit
et al., 1999).

WNT2 A4 > E1 Wingless type 2. Canonical Wnt ligand. It may promote ECM fibre deposition in fibrob-
lasts and may contribute to keloids with an aberrant expression (Cai et al., 2017).

WNT10B A4 Wingless type 10B. Canonical Wnt ligand. Like Wnt10a, it may promote DP proliferation
and maintenance in vitro (Ouji et al., 2012). It is expressed in the dermal condensate
at E14.5, and is necessary for HF generation and homeostasis (Chen et al., 2012). It also
inhibits adipose tissue development (Longo et al., 2004).

Component of non-canonical signalling

DAAM1 D2 > D1 > rest Disheveled-associated activator of morphogenesis 1. It is a planar cell polarity Wnt pathway
member by forming a complex with DVL, which activates cytoskeletal remodelling via
activation of RhoA and Cdc42 (Lai et al., 2009).

DAAM2 C2 ∼ A2 > C5 Disheveled-associated activator of morphogenesis 2. Potentiates Wnt signalling by creating
Fzr/Axin/Dvl protein aggregates (Lee et al., 2012a, 2015). It is also a regulator of actin
nucleation and elongation, filopodia formation and podocyte migration (Schneider et
al., 2020).

FZD2 D1 > C1 Frizzled 2. Receptor of Wnt, with possible functions in the non-canonical pathway. It
binds WNT5 and may regulate EMT and metastasis in certain contexts (Gujral et al.,
2014).

PTK7 A2 ∼ C2 ∼ C3 >
C5

Tyrosine-protein kinase-like 7. Ptk7 acts as a co-receptor in the non-canonical PCP Wnt
pathway. It also binds LRPs and suppresses canonical Wnt signalling (Lhoumeau et al.,
2011).

WNT5A C5 Wingless type 5A. Non-canonical Wnt ligand. It is expressed in the dermal condensate at
E14.5, and is necessary for HF generation and homeostasis (Chen et al., 2012). It is also
expressed in keratinocytes and DP cells, contributing to their dedifferentiation, and in
psoriatic epidermis, probably lowering the threshold to IFN response (Romanowska
et al., 2009). In dermal fibroblasts, binding to Fzd3 promotes their adhesion (Kawasaki
et al., 2007). It is expressed in DP and IRS cells (Lim et al., 2012).

WNT10A C2 Wingless type 10A. Non-canonical Wnt ligand. It is expressed in the dermal condensate
at E14.5, and is necessary for HF generation and homeostasis (Chen et al., 2012). Con-
cretely, it is expressed in anagen DP and IRS and not in telogen (Reddy et al., 2001),
(Lim et al., 2012). It also plays a key role in wound closure in mice (Wang et al., 2018a).

WNT11 A2 > B4 Wingless type 11. Non-canonical Wnt ligand. It is expressed in the dermal condensate
at E14.5, and is necessary for HF generation and homeostasis (Chen et al., 2012). It is
expressed in DS and ORS cells (Lim et al., 2012).



supplementary tables 293

Component of canonical and non-canonical signalling

CTHRC1 A1 ∼ A4 > A3 >
C3

Collagen triple helix repeat containing 1. Binds Wnt5A and ROR1/2 as well as FZRs, induc-
ing canonical and noncanonical Wnt activation (Mei et al., 2020). Elevated levels also
attenuate the TGF-β pathway by induction of proteasomal degradation of Smad2/3
complex (Myngbay et al., 2021).

FZD6 A1 Frizzled 6. Receptor of Wnt that may bind WNT4 (Lyons et al., 2004), shown to regulate
mostly non-canonical pathways, but sometimes canonical pathways too (Corda et al.,
2017).

FZD7 E1 > rest Frizzled 7. Acts like PCOLCE, but may also bind heparin and has a less dispersed ex-
pression (Steiglitz et al., 2002). It also binds BMP1, another procollagen proteinase,
enhancing its activity (Baicu et al., 2012).

Positive modulator

LGR4 C1 > A Leucin-rich repeat-containing G-protein coupled receptor 4. It is a regulator of the
Wnt pathway. It binds RSPOs and forms a complex with ZNFR3, a Wnt repressor.
LGR4/RSPO/ZNFR3 complex thus keeps ZNFR3 sequestered and allows Wnt pathway
activation to occur (Ruffner et al., 2012).

LGR5 A1 > A4 Leucin-rich repeat-containing G-protein coupled receptor 5. Acts like LGR4.

MYOC B4 Myociclin. It is a modulator of the actin cytoskeleton, expressed thoroughly across skin
organs, and may act as a chaperon against cellular stressors (Anderssohn et al., 2011).
Its function in the trabecular network is relevant since mutations in the gene lead to
glaucoma (Borras, 2014). MYOC interacts with FZDs, SFRPs and WIF1, and may activate
the Wnt pathway to modulate the actin cytoskeleton (Kwon et al., 2009).

RSPO1 A2 > A3 ∼ B3 R-spondin 1. Activator of the canonical Wnt signalling pathway by acting as a ligand for
LGR4-6 receptors and forming a complex with RNF43 and ZNRF3, which suppress Wnt
signalling (Szenker-Ravi et al., 2018).

RSPO3 C5 > A2 R-spondin 3. Acts like RSPO1 as an indirect Wnt activator. Together with RSPO2, it is
involved in HF dermal stem cell proliferation Hagner et al., 2020. Its expression is also
upregulated in mouse DP (Tsutsui et al., 2021).

RSPO4 C2 > C3 ∼ A2 R-spondin 4. Acts like RSPO1 as an indirect Wnt activator.

Negative modulator

APCDD1L A4 APC down-regulated like 1. It is predicted to be involved in the negative regulation of the
Wnt pathway (Otsuki, 2005).

AXIN2 A2 > C2 Axin 2. It is a member of the APC|Axin|GSK3β complex that inhibits canonical Wnt
through β-catenin inhibition. Concretely, β-catenin induces AXIN2 transcription, thus
being a self-regulatory component of the pathway (Jho et al., 2002).

DACT1 D2 Disheveled binding antagonist of β-catenin 1. It represses canonical Wnt signalling by sta-
bilising CTNNB1 (β-catenin gene), promoting its membrane localisation and inhibiting
GSK3. DACT1 is induced by TGF-β (Esposito et al., 2021)

DKK1 A4 ∼ A1 Dickkopf 1. Inhibits canonical Wnt signalling by sequestering LRP5/6 and Wnt and pro-
moting its internalisation (Ahn et al., 2011).

DKK2 C2 > C3 ∼ C5 ∼

A2 > rest
Dickkopf 2. Acts like DKK1 as a Wnt repressor.

DKK3 C1 > A2 ∼ D1 ∼

D2 > E1
Dickkopf 3. Acts like DKK1 as a Wnt repressor.
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NKD1 C5 > A2 Naked cuticle 1. It is a Wnt inhibitor which acts by either binding Dvl, thus impeding the
necessary GSK3 inhibition for β-catenin translocation; or by binding to β-catenin and
impeding its translocation to the nucleus (Angonin et al., 2013).

NKD2 A2 > B3 ∼ C3 Naked cuticle 2. Acts similarly to NKD1 (Zhao et al., 2015).

NOTUM C2? Notum, Palmotoleoyl-protein carboxylesterase. NOTUM is a Wnt inhibitor. It hydrolyses the
palmitoleoyl residue of the protein, which induces its multimerisation (Zhang et al.,
2015).

SFRP1 E1 ∼ C2 > C5 >
C1 ∼ C3

Secreted frizzled related protein 1. It binds several Wnt ligands and induces Wnt sig-
nalling suppression; and can also act as a suppressor by directly binding β-catenin
(Baharudin et al., 2020).

SHISA3 D1 > D2 Shisa Family Member 3. Located at the ER, it inhibits Wnt and FGF pathways by hindering
the transportation of the receptors to the surface (Furushima et al., 2007; Hedge et al.,
2008). Its functions are yet to be studied, although it is observed to possibly suppress
tumorigenesis (Chen et al., 2014). In HF, it may be expressed during telogen and anagen
to support Shh signalling (Laron et al., 2018).

WIF1 A2 ∼ A3 > A1 ∼

C5
WNT inhibitory factor 1. Binds Wnt ligands and sequesters them, impeding their binding
to the receptors (Gajos-Michniewicz et al., 2020).

Ambivalent modulator

CAV1 D1 ∼ D2 > rest Caveolin 1. Encodes a scaffolding protein of the caveolae, small invaginations in the
cell membrane involved in signal transduction, lipid metabolism (Vargas et al., 2002),
as well as inducing T-cell proliferation, neutrophil extravasation and leucocyte ad-
hesion (Bouzin et al., 2007; Marmon et al., 2009; Ohnuma et al., 2007). May regulate
Wnt-mediated signalling by sequestering β-catenin into caveolae (Galbiati et al., 2000;
Gao et al., 2022; Zhang et al., 2020a).

SFRP4 D1 ∼ D2 > A4 Secreted frizzled related protein 4. Acts similarly to SFRP1 binding Wnt ligands. However, in
some contexts like cancer, it is observed that it facilitates the association of β-catenin
with TCF4, which induces gene expression (Liang et al., 2019).

Table S7: Genes associated with TGF-β pathway. The list of genes is divided into the following categories:
Positive modulator and negative/ambivalent modulator.

Positive modulator

BMP7 C5 > D1 Bone morphogenic protein 7. Activates secondary TGF-β signalling by binding to its re-
ceptor and inducing Smad1/5 phosphorylation (Meng et al., 2016).

DPT T1 ∼ C3 > C2 >
B2 ∼ B3

Dermatopontin. Enhances TGFB1 activity via interaction with decorin (Okamoto et al.,
1999).

GDF10 B4 > A1 ∼ D1 Growth differentiation factor 10. It belongs to the BMP family–it was previously termed
BMP3b–. Acts as BMP7.

Negative / ambivalent modulator

ADAMTSL3 D2 > B4 ADAMTS like 3. It regulates collagen deposition and myofibroblast differentiation in
heart by inhibition of TGF-β signalling (Rypdal et al., 2022).
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ASPN C2 > C1 ∼ C3 >
C5

Asporin. Inhibits TGF-β by binding to the BMP receptor (Tomoeda et al., 2008) as well
as to TGFBR (Kizawa et al., 2005), although in other studies, TGF-β activation by several
mechanisms are observed (Li et al., 2019).

BAMBI D1 BMP and activin membrane bound inhibitor. Binds to TGF-β receptor I and impedes the
formation of TGFBRI + RII active receptor complex (Huang et al., 2012a). It thus regu-
lates angiogenesis and endothelial homeostasis, and gene KOs show aberrant vascular
endothelium (Guillot et al., 2012).

CAV1 D1 ∼ D2 > rest Caveolin 1. Encodes a scaffolding protein of the caveolae, small invaginations in the cell
membrane involved in signal transduction, lipid metabolism (Vargas et al., 2002), as
well as inducing T-cell proliferation, neutrophil extravasation and leucocyte adhesion
(Bouzin et al., 2007; Marmon et al., 2009; Ohnuma et al., 2007). It negatively regulates
TGFβ signalling by sequestering TGBFR1 from membrane rafts into caveolae (Hwangbo
et al., 2015).

CAV2 D2 > rest Caveolin 2. It needs CAV1 presence to form caveolae and might stabilise it, although
CAV1 alone can build them (Mora et al., 1999; Scherer et al., 1997). Although acting com-
plementarily, CAV2 might antagonise CAV1 in certain processes such as angiogenesis
or regulation of inflammatory processes (Almeida, 2017). Additionally, like CAV1, it acts
as a negative regulator of TGF-β signalling (Xie et al., 2011).

CILP A4 > A1 Cartilage intermediate layer protein. May inhibit Smad2/3 phosphorylation by binding to
TGF-β, and also may inhibit the pathway by binding to TGFBR (Liu et al., 2020b)

CTSK A1 ∼ C2 > A3 ∼

A4 ∼ C3
Cathepsin K. Decreases TGFB2 expression (Soundararajan et al., 2021).

DCN A1 ∼ A4 > A3 >
B4 ∼ D1

Decorin. Inhibitor of TGF-β. Binds to TGF-β and prevents binding to its receptor (Fer-
dous et al., 2007). In specific conditions, it releases TGF-β, which leads to its activation
(Bierbaum et al., 2017).

FMOD C2 > rest Fibromodullin. It regulates TGF-βeta activities by sequestering TGF-βeta into the extra-
cellular matrix.(Zheng et al., 2014)

GDF15 A1 Growth differentiation factor 15. Ligand of the TGF-β family activates SMAD signalling and
other TGF-β-related pathways such as ERK, AKT or PLC (Wang et al., 2021b). It is widely
expressed and may be induced by endogenous or exogenous stress signals, showing
protective activity in different organs.

HTRA1 C3 ∼ C2 > C1 ∼

A4 ∼ A1 ∼ A3
HtrA serine peptidase 1. Inhibits TGF-β pathway by cleavage of TGFB1 (Launay et al., 2008;
Shiga et al., 2011).

INHBA C5 > D1 ∼ C1 ∼

C3
Inhibin subunit β A. Inhibitor of TGF-β. Binds to TGF-β and prevents binding to its
receptor (Ferdous et al., 2007). In specific conditions, it releases TGF-β, which leads to
its activation (Bierbaum et al., 2017).

LTBP2 C3 > C1 ∼ C2 ∼

E1
Late TGFβ binding protein 2. Belongs to the LTBP family. It sequesters TGF-β1 dimer in
the ECM. Upon cleavage of LTBP2, the dimer is released and activates the signalling
cascade.

MFAP2 C1 ∼ C3 > A2 ∼

C2
Microfibril associated protein 2. Interacts with TGF-β and sequesters it into the microfib-
rils (Weinbaum et al., 2008).

NOG A2 ∼ C Noggin. It inhibits several BMPs, including BMP7 (Blazquez-Medela et al., 2019).

PPP1R15A B1 ∼ B3 ∼ D1 ∼
D2

Protein phosphatase 1 regulatory subunit 15A. May inhibit TGF-β pathway by recruiting
Smad7 and dephosphorylating TGF-βR (Shi et al., 2004). Its deletion induces lung fi-
brosis in mice (Monkley et al., 2021).
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SLPI A1 ∼ A4 > B4 Secretory Leukocyte Peptidase Inhibitor. Inhibitor of serine proteases (trypsin, cathepsin,
elastase, etc.) from neutrophil and other immune cells is highly expressed in mucous
secretions (Nugteren et al., 2021) It may inhibit the production of MMP1 and MMP9
by monocytes (Zhang et al., 1997) and may inhibit the expression of IL1β and IL6 in
leukocytes in different tissues (Zakrzewicz et al., 2019). In skin, it promotes wound
healing via protease inhibition and suppression of TGF-β (Ashcroft et al., 2000)

SOSTDC1 A3 Sclerostic domain containing 1. Antagonist of BMP proteins (Faraahi et al., 2019) also
induces reduced TGF-β1 responsiveness (Badshah et al., 2019).

TNC A2 ∼ B3 ∼ C3 >
B2 ∼ C2

Tenascin C. Induced by TGF-β signalling (Jinnin et al., 2004), might regulate the availabil-
ity of TGF-β1 dimer by binding to its latent form and liberating the active homodimer
(Aubert et al., 2021).

TNXB A1 ∼ A4 > A3 Tenascin XB. It may bind LTBP and, after protease cleaving, LTBP bound to part of TNXB
binds TGFBR, therefore modulating TGF-β response to ECM signals (Valcourt et al.,
2015).

Table S8: Genes associated with lipid metabolism. The list of genes is divided into the following categories:
Cholesterol and lipoproteins, eicosanoids and other lipids.

Cholesterol and lipoproteins

ABCA8 D1 > B4 > C2 ∼

D2
ATP binding cassette subfamily A member 8. ABC transporter that regulates cholesterol
efflux and plays a role in sphingomyelin production in oligodendrocytes (Kim et al.,
2013b).

APOC1 B4 ∼ B2 Apolipoprotein C1. It is present in VLDL and HDL, depending on the fasting condition. It
inhibits the binding of LDL and VLDL to their receptors. It inhibits CETP, which trans-
forms HDL into VLDL. It has also been involved in immune modulatory processes (Fuior
et al., 2019). In macrophages, APOC1 may induce M2 polarisation (Ren et al., 2022).

APOD D1 > B4 | E1 Apolipoprotein D. It has low similarity to other apolipoproteins but has high homology
to RBPs. Also, APOD activates LCAT, an enzyme in HDL that transports peripheral choles-
terol to the liver (PMID: 2373967). It may show protective action against oxidative stress
preventing lipid oxidation in different organisms (Ganfornina et al., 2008; Muffat et al.,
2008), although in humans, it has been shown to accumulate in Alzheimer’s disease,
atherosclerosis and aged skin (Takaya et al., 2023).

APOE B2 > B3 | B4 >
B1

Apolipoprotein E. Apolipoprotein that binds to liver and peripheral cell receptors for
catabolism of VLDL and IDL into higher density lipoproteins (Marcel et al., 1983). Dif-
ferent protein versions (E2/3/4) are related to risk and protective factors of immune
responses and pathologies like Alzheimer’s disease (Husain et al., 2021). In fibroblasts,
APOE is upregulated in apoptosis and starvation-induced growth arrest (QUINN et al.,
2004). In pancreatic cancer, it induced CXCL1 expression, promoting immune suppres-
sion (Kemp et al., 2021). It may also suppress T cell proliferation, and neutrophil acti-
vation, and regulate macrophage function (Zhang et al., 2010).

CES1 A3 > A1 Carboxylesterase 1. It metabolises many molecules (heroin, cocaine, etc.) into their ac-
tive forms. In lipid metabolism, it converts monoacylglycerides to free fatty acids and
glycerol; or transforms cholesterol ester to free cholesterol (Markey, 2010).
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CH25H B3 > B1 ∼ B2 Cholesterol 25-hydroxylase. Transforms cholesterol into 25-hydroxycholesterol, which
regulates cholesterol homeostasis, and is also involved in inflammatory and immune
responses (induction of TNF and IL6), as well as showing antiviral properties (Zhao et
al., 2020). In dermis, special Tγδ17 cells require 25-hydroxycholesterol for homing in
that area (Frascoli et al., 2023). 25-hydroxycholesterol inhibits the expression of pro-IL-
1β under pro IL-1β signals such as IFN ot LPS, possibly acting as a negative feedback
(Reboldi et al., 2014).

CYP4B1 A1 > B4 ∼ D2 Cytochrome P450 family 4 subfamily B member 1. P450 family member that oxidises a large
set of substrates, including fatty acids, arachidonic acid and cholesterol. Hypoxia, an-
drogens, and other factors activate it (Röder et al., 2023). Retinoic acid induces syn-
thesis of inflammatory eicosanoids in cornea (Ashkar et al., 2004). This synthesis may
induce VEGF-derived angiogenesis (Seta et al., 2007).

CYP7B1 B3 ∼ B2 > B1 Cytochrome P450 family 7 subfamily B member 1. P450 family member that hydroxylates
oxysterols and steroids, including 25/27-OH-cholesterol (Stiles et al., 2009). Proinflam-
matory stimuli from innate immune cells (M0) induce CYP7B1 expression and may regu-
late immunoglobulin production from B cells (Dulos et al., 2005). Together with CH25H,
it converts cholesterol to oxysterols, highly reactive molecules that induce cytotoxic
and pro-apoptotic responses (by interfering with membrane lipids), as well as acti-
vation of macrophages and dendritic cells (Olkkonen et al., 2012) It may regulate the
levels of cortisol and other glucocorticoids (Hennebert et al., 2007).

HSD3B7 A4 > A1 Hydroxy-Delta-5-Steroid Dehydrogenase, 3 Beta- And Steroid Delta-Isomerase 7. It is involved
in the synthesis of bile acids and other hormonal steroids from cholesterol (Schwarz et
al., 2000). It participates in degrading 7α,25-dihydroxycholesterol produced by CH25H
and CYP7B1. This molecule binds EBI2, which controls B cell location and responses;
thus HSD3B7 may modulate this effect (Yi et al., 2012).

LDLR D1 > rest Low Density Lipoprotein Receptor. It binds VLDL and LDL in plasma and transports it via
endocytosis (Go et al., 2012). This process is also mediated by lipoprotein receptor-
related protein (LRPs) (Go et al., 2012).

PCSK9 C2 Proprotein Convertase Subtilisin/Kexin Type 9. It binds LDLR, VLDLR and APOE receptors
and mediates their degradation, which may increase LDL plasma levels (Ruscica et
al., 2019), leading to vascular inflammation from oxidised LDLs, reduced interferon
response, and reduced activation of MHC-I in T CD8+ cells. It also promotes lysoso-
mal degradation of MHC-I (Seidah et al., 2021) and may induce pro-inflammatory re-
sponses in macrophages (Ricci et al., 2018). PCSK9 may be involved in keratinocyte
hyper-proliferation in psoriasis-like inflammation (Luan et al., 2019).

Eicosanoids

CES1 A3 > A1 Carboxylesterase 1. It blocks PGD2 glyceryl ester in monocytes/macrophages, enhancing
its anti-inflammatory effects (Scheaffer et al., 2020).

DPEP1 C1 Dipeptidase 1. Catalises the conversion of several molecules and dipeptides, includ-
ing leukotriene D4 into leukotriene E4 (Lee et al., 1983), or glutathione degradation
byproduct cystidyl-bis-glycine. It also acts as a receptor for neutrophil recruitment
(Choudhury et al., 2019). Described as a DS and DS cup marker by Ahlers et al., 2022;
Tabib et al., 2021 together with COL11A1, it is highly upregulated as with other factors
in myofibroblasts (Valenzi et al., 2019).
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HPGD A1 > rest 15-Hydroxyprostaglandin Dehydrogenase. Belongs to the alcohol dehydrogenase family
and metabolises a wide range of prostaglandins, mainly to regulate their levels (Cho et
al., 2006; Yan et al., 2004). For instance, it degrades PGE2, an IL-1 derived prostaglandin
(produced by PTGS2), regulating its pro-inflammatory action (Arai et al., 2014). It also
converts resolvins, which promote restoration of normal cellular function following
the inflammation, to regulate ther action (Arita et al., 2006).

IGFBP7 B2 ∼ D1 > B3 ∼

B4 > B1 ∼ E1
Insulin Like Growth Factor Binding Protein 7. It belongs to the IGFBP family and binds IGF-
I/II with low affinity. It inhibits BRAF signalling and induces senescence and apoptosis
(Wajapeyee et al., 2008). It may induce the formation of new HFs by activation of BMP
and β-catenin signalling (Lee et al., 2012b). It diminished PTGS2 (COX2) activity and
PGE2 secretion, which affects VEGF production and angiogenesis (Tamura et al., 2009).

MGST1 A1 ∼ B4 > A3 ∼

A4
Microsomal Glutathione S-Transferase 1. It is involved in the prostaglandin E2 (PGE2) syn-
thesis pathway, induced by pro-inflammatory factors such as IL-1β (Jakobsson et al.,
1999). It also shows some peroxidase activity, which may protect from oxidative stress
(Morgenstern et al., 2011), and may explain the higher presence of MGST1 in certain
stem cells in aged individuals (Prall et al., 2007; Tsitsipatis et al., 2022). Interestingly,
Mgst1 is a marker of mouse SGs (Joost et al., 2016).

PLA2G2A B4 ∼ A4 > A1 ∼

B1
Phospholipase A2 Group IIA. Member of the phospholipase family, it performs several
functions. Related to lipid metabolism, it transforms phospholipids into arachidonic
acid, the precursor of various signalling molecules, including prostaglandins (Sato et
al., 2016). This isoform is secreted and may play a role in antibacterial protection or
atherosclerosis (Murakami et al., 2011). Expression of PLA2G2A in transgenic mice pro-
duced adnexal hyperplasia and hyperkeratosis, resulting in alopecia, which may indi-
cate some role of this enzyme in HF homeostasis (Grass et al., 1996). Other isoforms
like 2D, 2E and 2F are widely involved in dermal homeostasis (Murakami et al., 2018)

PTGDS D1 > B2 ∼ B3 >
A2 ∼ C2 ∼ D2

Prostaglandin D2 Synthase. Catalyses the conversion of PGH2 to PGD2, a prostaglandin
involved in smooth muscle contraction/relaxation and a potent platelet aggregation
inhibitor (Zhou et al., 2010). It is involved in various CNS functions and may have an
anti-apoptotic role in oligodendrocytes (Zhou et al., 2010). Regarding HF function, PT-
GDS was observed to inhibit wound-induced HF neogenesis (Nelson et al., 2013) and
was highly expressed in androgenic alopecia (Garza et al., 2012); by the union of PGD2
to Gpr44 receptor. PGD2 is also observed to facilitate mast-cell maturation (Taketomi
et al., 2013).

PTGFR C2 > rest Prostaglandin F Receptor. Receptor of prostaglandin F2-α. In hair, it may be regulated
by Wnt3 (Shin et al., 2010). It initiates the luteolysis of the corpus luteum and is also
expressed in endometrium (Gao et al., 2018).

PTGIS A4 > A1 ∼ A2 ∼

A3
Prostaglandin I2 Synthase. It transforms prostaglandin G2 into prostaglandin I2 (prosta-
cyclin). It induces VEGF production by activating PPARD (Kamio et al., 2008; Wang et
al., 2013). It reduced fibroblast contractibility by suppressing fibronectin (Kamio et al.,
2007; Kohyama et al., 2002) and/or collagen I (Larsson-Callerfelt et al., 2013). PGI2 may
also be involved in hair regeneration regulation since high levels were increased in
bald scalps compared to hairy ones (Chovarda et al., 2021), and minoxidil is observed
to inhibit prostacyclin (Messenger et al., 2004).

PTGS1 A2 Prostaglandin-Endoperoxide Synthase 1. Synthesises several prostaglandins and throm-
boxanes from arachidonic acid, which act in homeostatic processes, such as platelet
function (TXA2) or stomach lining production (PGI2). It is widely expressed in most
tissues (Heide et al., 2006).
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PTGS2 B1 Prostaglandin-Endoperoxide Synthase 2. Induced by pro-inflammatory mediators such as
IL1 or IL6, it transforms arachidonic acid into PGE2, which is involved in fever and pain
signalling, among others (Heide et al., 2006). Due to its proangiogenic and antiapop-
totic nature, its overexpression has been observed in certain tumours (Maturu et al.,
2017). Increased levels are found in UV-damaged skin fibroblasts (Surowiak et al., 2014).

Other lipids

CTSH B3 > B2 Cathepsin H. Cysteine protease that degrades lysosomal proteins. It degrades the
ECM together with MMPs, for lymphocyte infiltration (Li et al., 2010). Together with
cholesteryl esterase may activate C5 protein (Bhakdi et al., 2004). In KO, filaggrin ex-
pression was reduced, and epidermal barrier was impaired. Macrophage and mast cell
infiltration was observed (Naeem et al., 2017).

CYP1B1 D1 > C2 Cytochrome P450 Family 1 Subfamily B Member 1. Enzyme of the cytochrome P450 family.
Pro-inflammatory cytokines upregulate it (Smerdova et al., 2014) and after UV-B expo-
sure (Villard et al., 2002). It oxidises a wide range of substrates and induces several
effects, such as angiogenesis under stress (Palenski et al., 2013; Tang et al., 2010b); or
mediation of POSTN to regulate the trabecular meshwork in retina (Zhao et al., 2013).

Table S9: Genes associated with Vitamin A metabolism.

ALDH1A3 D1 > D2 Aldehyde Dehydrogenase 1 Family Member A3. It transforms retinaldehyde to retinoic acid,
the active form of binding RXR-RAR TFs (Kedishvili, 2013).

CRABP1 C2 > C5 Cellular Retinoic Acid Binding Protein 1. It is similar to RBPs and transports retinoic acid
into the nucleus. It competes with FABP5 in the binding of the molecule. While FABP5
promotes cell survival and proliferation, CRABP1 is more associated with apoptosis
and growth arrest (Michalik et al., 2007).

CYP26B1 A2 > C5 ∼ C2 Cytochrome P450 Family 26 Subfamily B Member 1. It degrades all-trans retinoic acid by hy-
droxylation (Isoherranen et al., 2019). This degradation reduces retinoic acid-mediated
mast cell activation by fibroblasts (Kurashima et al., 2014). In HF, retinoic acid con-
tributes to the refractory telogen phase, and CYP26B1 may take part in the modulation
of this step (Hovland et al., 2020). It has also been observed that CYP26B1 retinoic acid
level modulation is essential for HF morphogenesis (Okano et al., 2012).

RBP4 C1 Retinol Binding Protein 4. It carries retinol in the blood and hydrophilic environments
into their target cells, where it binds the STRA6 transporter and is interiorised (Stein-
hoff et al., 2021).

RBP5 B2 ∼ B3 Retinol Binding Protein 5. May act like RBP4.

TTR A2 Transthyretin. It associates with RBPs to transport retinol into the cells (Steinhoff et al.,
2021).
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S U P P L E M E N TA RY F I G U R E S

Figure S1: UMAP plots of all human skin datasets from secondary analysis. Colours of populations are not
shared across datasets.
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Figure S2: Full PAGA graph of human dermal populations. Colours of populations are shared across datasets.
Thicker lines indicate a greater connectivity between nodes.
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Figure S3: UMAP plots of all mouse skin datasets from secondary analysis. Colours of populations are not
shared across datasets.
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Figure S4: Full PAGA graph of mouse dermal populations. Colours of populations are shared across datasets.
Thicker lines indicate a greater connectivity between nodes.
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Figure S5: Violinplot of robustness score in human datasets. Each violin represents the distribution of robust-
ness scores per dataset and population, across the representative cells. Boxes inside the violins
represent the quartiles of the distribution, center bar represents the median, and whiskers extend
to Q1 - 1.5 * IQR and Q3 + 1.5 * IQR.
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Figure S6: Violinplot of robustness score in mouse datasets. Each violin represents the distribution of robust-
ness scores per dataset and population, across the representative cells. Boxes inside the violins
represent the quartiles of the distribution, center bar represents the median, and whiskers extend
to Q1 - 1.5 * IQR and Q3 + 1.5 * IQR.
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Figure S7: Adjacency matrix of robust cluster assignation in human datasets. Each row-column combination
is the proportion of times the row cluster is assigned to the column cluster, considering all cells
within the row clusters, and all the iterations.
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Figure S8: Adjacency matrix of robust cluster assignation in mouse datasets. Each row-column combination
is the proportion of times the row cluster is assigned to the column cluster, considering all cells
within the row clusters, and all the iterations.
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