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0

Background

This chapter introduces the key concepts considered in the rest of the dissertation,
and gives a brief overview of the research carried out.

0.1 Introduction

We begin by introducing the concept of optimization problem [Boyd and Vanden-
berghe, 2004a]. An optimization problem involves finding the best solution among
a set of candidate solutions.

Definition 1 (Optimization Problem) We define an optimization problem P as

argmin
σ∈S

f(σ)

where f is the objective function and S is the solution space.

Without loss of generality, a minimization setting can be assumed (otherwise con-
sider the problem with the inverse objective function −f). In addition, in this the-
sis, we only consider non-convex [Boyd and Vandenberghe, 2004a, Hiriart-Urruty
and Lemaréchal, 1996], optimization problems.
Depending on the properties of the solution space, optimization problems can be
classified into continuous and combinatorial problems. The solution space in con-
tinuous problems is a subset of Rn, and the solution space in combinatorial prob-
lems is a countable set. For instance, permutation based optimization problems
are optimization problems where the solution space is the set of all permutations
of a certain size n (n! permutations in total). Optimization problems can also be
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mixed, for example when the solution space has both continuous and discrete com-
ponents. In this thesis, we considered these three types of optimization problems,
and in the following, we give a few example problems that are also featured in the
thesis.

Examples

Discrete. The Traveling Salesman Problem [Flood, 1956] (TSP) is a well known
combinatorial optimization problem. Given a set of n cities and the distances
between each pair of cities, the goal of the TSP is to find the shortest route that
visits all the cities exactly once and returns to the initial city. The solution space
is the set of all possible routes.
Continuous. A neural network [Goodfellow et al., 2016] is a mathematical func-
tion that can be trained to map inputs into outputs with examples. The training
process of a neural network involves optimizing its performance in classification,
prediction, or other applications. Specifically, the optimization problem is to find
a set of weights and biases (continuous parameters) that minimize a previously
defined loss function.
Mixed. Optimizing a wind turbine involves finding a design with desirable proper-
ties, such as damage resistance, low mass and the amount of energy it can produce.
Zarketa-Astigarraga et al. [2023] proposed a wind turbine design problem with 6
continuous variables—corresponding to the length and the width of the blades of
the turbine, among other things—and a discrete variable representing the num-
ber of blades. The objective value is computed via simulation, and is equal to the
amount of energy that the wind turbine obtained in a specific set of environments.

0.1.1 Optimization Algorithm

Definition 2 (Optimization Algorithm) Let P be an optimization problem, and
f the objective function of optimization problem P. An optimization algorithm is
a procedure to find a solution σ that minimizes the objective value f(σ).

An optimization algorithm chooses a solution σ in a solution space S that mini-
mizes an objective function f . When we apply the optimization algorithm in an
optimization problem, the result is the best found solution σbest (an item from
the solution space S). The objective value of σbest varies depending on many
factors, including how much computation resources are used. Specifically, the op-
timization algorithm is executed until a stopping criterion halts the optimization
process, usually defined as a maximum runtime in seconds or a maximum number
of evaluated solution (denoted as tmax). We denote the objective value of the best
found solution as the Performance of an Optimization Algorithm:
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Definition 3 (Performance of an Optimization Algorithm) Let P be an optimiza-
tion problem, tmax a computation budget, f the objective function of an optimiza-
tion problem P. The performance of the Optimization Algorithm is defined as the
objective value we obtain when applying the optimization algorithm in the problem
P with the computation budget tmax as the stopping criterion.

In general, the performance of an optimization algorithm is not a deterministic
value, instead, a different result (σbest) might be observed each time it is executed
(although it depends on the type of optimization algorithm). There are different
factors that can make the results of an algorithm stochastic, such as the initial-
ization. This is the case for estimation of distribution algorithms [Larrañaga and
Lozano, 2001a] and gradient descent algorithms [Glorot and Bengio, 2010], for
example.
The Performance of an Optimization Algorithm A can be modeled as a random
variable, such that observing a sample of the random variable is the result of
applying the optimization algorithm to the problem. In practice, and for every
algorithm considered in this thesis, this randomness is usually generated by ran-
dom number generator. Setting an initial random seed is sufficient to guarantee
a deterministic result when applying the heuristic. The random seed needs to de-
termine both the initialization and the internal state of the heuristic. Tying the
randomness of an heuristic to the initial seed makes the results reproducible.

0.1.2 Taxonomy of Optimization Algorithms

There are many types of optimization algorithms, and they can be classified ac-
cording to several criteria. In the following, we go over these classifications and we
provide examples of each. We also state what type of algorithms are considered in
the rest of the thesis.

0.1.2.1 Exact & Heuristic

Firstly, we can classify optimization algorithms based on wether they are able
guarantee the optimality of the best found solution. Exact algorithms are able to
find the optimal solution σopt such that, for every other solution σ in the solution
space, f(σ) ≥ f(σopt) [Wolsey, 2020]. Exact solvers guarantee that every solution
in the search space is worse than the current best found solutions, which might
not be possible to do in a limited of time. In addition, exact algorithms often are
based on the special properties of the problems (for instance, the simplex algorithm
takes advantage of the convexity in linear programming problems [Bertsimas and
Tsitsiklis, 1997]).
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As an alternative, heuristic algorithms are designed to find a good solution in a
short period of time. Heuristic algorithms are usually considered on problems in
which an exact solver would take too long. However, they are unable to guarantee
the optimality of the solution. In this thesis, we only consider heuristic algorithms.

0.1.2.2 Constructive heuristics & Iterative heuristics

Constructive algorithms sequentially build a solution by combining solution com-
ponents. In contrast, iterative algorithms iteratively propose candidate solutions
to be evaluated. A heuristic algorithm is a procedure that proposes the next can-
didate solution to be evaluated, given the previously evaluated solutions and their
objective values. Therefore, iterative algorithms work with complete solutions. In
this thesis, we focus on iterative algorithms.

0.1.2.3 Gradient-based heuristics & Gradient-free heuristics (for
continuous problems)

The gradient is a vector defined for differentiable functions that points towards
the direction in the solution space with the steepest ascent. Gradient-based heuris-
tics take repeated steps in the direction of the steepest descent (opposite of the
gradient) and they require the objective function to be explicitly defined and dif-
ferentiable [Boyd and Vandenberghe, 2004b]. Gradient-free heuristics, on the other
hand, do not require the gradient to optimize, and are useful for problems in which
the gradient is unavailable. In this thesis, we considered both gradient-based and
gradient-free algorithms, although we primarily focused on the latter.

0.1.2.4 Deterministic heuristics & Stochastic heuristics

We use the term "stochastic heuristic" to refer to the fact that some heuristic
algorithms will produce a different result each time they are executed, even if
the same optimization problem and stopping criterion are considered. In contrast,
deterministic optimization algorithms obtain the same result every time they are
applied to the same problem. In this thesis, we consider only stochastic optimiza-
tion algorithms.

0.1.2.5 Examples

Exact. The Concorde TSP solver [Applegate et al., 2001] is one of the best exact
TSP solvers. This solver operates using the integer programming formulation of
the TSP, and is based on the branch and cut algorithm [Wolsey, 2020].
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Stochastic Iterative Heuristic. The 2-opt local search heuristic [Johnson and Mc-
Geoch, 1997] is a classical and intuitive heuristic for the TSP. Starting with a
random solution, the heuristic checks if the tour length would decrease by ex-
changing a pair of cities in the route. This is done for every possible city pair,
unless an exchange improves the previous route. If none of the exchanges improve
the tour, then the solution is reinitialized randomly.
Deterministic Constructive Heuristic. The nearest neighbor greedy constructive
heuristic for the Traveling Salesman Problem starts with a city and iteratively
adds the closest by city to the route, until all the cities have been visited [Goodman
and Hedetniemi, 1977].
Gradient-based Stochastic Iterative Heuristic The gradient descent algorithm is one
of the most simple gradient-based algorithm for continuous optimization problems.
It involves starting with a random initial solution and iteratively taking steps in the
direction of the steepest descent. A more complex version of this simple algorithm
is currently used in Deep Learning to train neural networks [Goodfellow et al.,
2016] for a variety of tasks such as classification and reinforcement learning.
Stochastic Iterative heuristic for direct policy learning The covariance matrix adap-
tation evolution strategies algorithm is an iterative stochastic optimization algo-
rithm for continuous optimization problems that, given a set of initial solutions,
samples new solutions from a distribution that is adjusted with the objective value
of the previous solutions. Heidrich-Meisner and Igel [2008] proposed using this op-
timization algorithm for direct policy search, and showed it to be more robust
than gradient-based approaches for the double pole balancing task Gomez et al.
[1999].

0.2 Motivation, objectives and overview

The principal objective of this thesis is to compare and improve stochastic iterative
heuristics. In this sense, we study these types of algorithms from different angles.

A. Chapter 1

In order to ensure a fair comparison between two different algorithms, it is nec-
essary to ensure that an equal amount of computational resources is allocated to
both. Two algorithms use the same amount of computational resources when they
have the same runtime in the same machine. Usually, this is achieved by executing
both algorithms on the same machine and setting a common maximum runtime
as stopping criterion.
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B. Probability type I error

Suppose the aim of the comparison is to determine whether a new algorithm is
better than a previously published one with certain guarantees. In that case, it
is essential to control the probability of falsely identifying the new algorithm as
performing better than the other one. This probability is known as the probability
of type I error in hypothesis testing, and it refers to the rejection of a true null
hypothesis (finding that the performance of the new algorithm is significantly
better than the other one when it is not the case). By controlling the probability
of type I error, we can ensure that the conclusions are based on reliable evidence,
and we can avoid erroneous conclusions.

C. Reproducibility in optimization

Even though reproducibility is easier in optimization and computer science—when
compared to other fields like psychology or biology—it is not always possible to
reproduce previous results and execute them in the same machine. For instance,
certain optimization algorithms are very costly to execute [Sharir et al., 2020]
(such as training the GTP-3 [Brown et al., 2020] language model). Furthermore,
as stated by Hutson [2018], many works do not include the code to reproduce the
experiments. These and other issues limit the reproducibility of the comparison
of algorithms, as it is not always possible to execute all the algorithms being
compared in the same machine.
Addressing this issue, Domínguez and Alba [2012] proposed adjusting the runtimes
of the algorithms by assigning a shorter CPU runtime to the algorithms executed
in machines with faster CPUs, thus making the execution of algorithms in differ-
ent machines comparable. To estimate the CPU capabilities of each machine, they
proposed using the dhrystone2 score Weicker [1988]. However, the methodology
introduced by Domínguez and Alba [2012] is limited in three ways. Firstly, there
is neither theoretical nor experimental justification for the prediction model of the
equivalent runtime. Secondly, their prediction model is fixed and cannot be ad-
justed control the probability of predicting a runtime that is longer than intended.
And thirdly, their methodology does not take into account the probability of pre-
dicting an equivalent runtime longer or shorter than the true equivalent runtime,
and thus, may introduce undesired biases to the comparison of the performance
of algorithms.
With this in mind, these are the contributions of Chapter 1:
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Contributions Chapter 1:
We develop a methodology to adjust the runtime to account for the difference
in machine speed. We propose a comparison method for algorithms executed
on different machines that can control the probability of observing a false
difference in the performance of the algorithms (due to the algorithms being
executed on different machines).

D. Chapter 2

Stochastic optimization algorithms obtain a different result each time they are
executed. As a consequence, simple statistics like the median or standard deviation
can sometimes not be enough to summarize the performance of an algorithm.
Relying on simple statistics like the mean and the variance may lead to erroneous
conclusions, as different datasets can still have the exact same statistics, but still
be very different distributions [Matejka and Fitzmaurice, 2017, F. J. Anscombe,
1973].
Showing that the performance of one of the algorithms stochastically domi-
nates [Quirk and Saposnik, 1962] the other one is enough to decide that one
of the algorithms is better than the other. However, this is a very strong require-
ment and it is often not fulfilled in practice. Therefore, going beyond summary
statistics and comparing the performances as random variables can often lead to
more insightful conclusions.
Existing methods considered for the comparison of two samples of the perfor-
mance of two algorithms have certain limitations. For instance, in null hypothesis
tests, the p-value does not give information about the magnitude of the differ-
ence [Benavoli et al., 2017, Calvo et al., 2019a]. In addition, rejecting the null
hypothesis does not always mean that there is evidence in favor of the alternative
hypothesis: it just means that the observed statistic (or a more extreme statis-
tic) is very unlikely when the null hypothesis is true. As an alternative [Benavoli
et al., 2017, Calvo et al., 2019a] to the limitations of null hypothesis test, Bayesian
analysis has been proposed in the context of algorithm performance comparison.
Bayesian analysis [Gelman, 2014, Bernardo and Smith, 2009] estimates the prob-
ability distribution of an hypothesis being true, conditioned to the observed data.
This probability can then be summarized in the simplex plot [Benavoli et al., 2017,
2014], through the probabilities of A > B, A = B or B > A, where A and B are
the performances of two algorithms respectively. However, the simplex plot also
has some limitations, for instance, this probabilities are once again summarizing
the comparison through summary statistics, disregarding the distribution of the
performances.
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This motivates to the second contribution of the thesis, which is addressed in
Chapter 2:

Contributions Chapter 2:
We illustrate with examples that comparing two samples with summary statis-
tics can be misleading. We propose eight desirable properties for random vari-
able measures in terms of suitability to compare two samples through stochastic
dominance. We propose a measure of stochastic dominance for random vari-
ables. We propose a graphical representation to compare two samples through
stochastic dominance with three desirable properties: i) it contains a graphical
decomposition of the probability of A > B and stochastic dominance, ii) unlike
statistical tests, it measures and distinguishes between a high uncertainty and
low magnitude in difference; and iii) it models the uncertainty of the estimate
through a 95% confidence band.

E. Chapter 3

Certain heuristics for permutation problems such as local search algorithms (like
the 2-opt heuristic for the TSP mentioned above [Johnson and McGeoch, 1997])
or estimation of distribution algorithms [Larrañaga and Lozano, 2001a], rely on
the definition of a solution (permutation) neighborhood. Intuitively, the neighbor-
hood of a permutation is the set of solutions that are close to that permutation,
i.e., the set of solutions that can be obtained when applying an operator (such as
exchanging the position of two elements in the permutation) to the solution [Schi-
avinotto and Stützle, 2007]. The concept of neighborhood is also closely related
to distances for permutations, such as the Ulam/Cayley distances [Ceberio et al.,
2015a] (the minimum number of inserts/exchanges required to transform a per-
mutation into another permutation). However, some distances for permutations
are not defined via an operator, e.g., the Hamming distance (the number of items
in a permutation that need to be replaced transform a permutation into another
permutation).
In this context, the performance of optimization algorithms that rely on opera-
tors/distances/neighborhoods for permutation problems (from now on denoted as
distances) is influenced by which distance is considered. Moreover, by studying
the changes on the objective function induced by the distance, it is possible to
improve optimization algorithms for permutation problems. For instance, Ceberio
et al. [2015b] discovered that certain solutions in the insert neighborhood [Schi-
avinotto and Stützle, 2007] in the Linear Ordering Problem [Martí and Reinelt,
2011] are guaranteed to not be local optima, reducing the size of the neighborhood
that needs to be evaluated by a local search procedure.
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Contributions Chapter 3:
We analyze and compare the properties of permutation distances on the ob-
jective function of the Quadratic Assignment Problem [Koopmans and Beck-
mann, 1957] (QAP), both theoretically and experimentally. We look at how the
Hamming distance induces more suitable neighborhoods for assignment type
problems, when compared with other distances for permutations. We also carry
out a comparison of estimation of distribution algorithms for the QAP.

F. Chapter 4

Problem analysis methods such as Fitness Landscape Analysis [Ochoa and Malan,
2019] and Local Optima Networks [Ochoa et al., 2014] can help us understand
optimization problems (or at the very least, gain some intuition). Analyzing opti-
mization problems can also help us choose the best algorithm for an optimization
problem, which is known as the algorithm selection problem [Rice, 1976]. It can
also be useful to choose wether to switch to another optimization algorithm during
the optimization process [Kostovska et al., 2022, Vermetten et al., 2023].
One of the limitations of the problem analysis methods in the literature is that
they are particular to a solution space. For example, local optima networks as-
sume a combinatorial optimization problem [Ochoa et al., 2014], or exploratory
landscape analysis [Mersmann et al., 2011a] assumes a continuous optimization
problem. A way to overcome this limitation is to study the transferability via
hyper-heuristics1 Burke et al. [2003], as proposed by Hong et al. [2018]. Transfer-
ability Hong et al. [2018] is defined as the loss of performance observed when a
hyper-heuristic is initially trained on one optimization problem and then applied to
a different problem, when compared to training and applying the hyper-heuristic
on the same problem. Hong et al. [2018] proposed measuring transferability as the
average objective value of the hyper-heuristic when training and testing on two
continuous optimization problems.

1 A hyper-heuristic is a methodology that focuses on selecting/designing heuristics to
solve a given problem. It operates at a higher level compared to traditional heuristics,
which typically apply heuristics to optimization problems directly Burke et al. [2003].
In this context, we refer to hyper-heuristic algorithms that "learn" to adapt to a
optimization problem after an initial training phase.
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Contributions Chapter 4:
We propose two multi-domain problem analysis method based on a multi-
domain hyper-heuristic framework. The introduced analysis methods are the
same regardless of the problem domain, and we show that they are able to
identify similar and different problems within a set of optimization problems,
both in the continuous and discrete domains. In addition, we improve Hong
et al. [2018]’s methodology in four key aspects. Firstly, by defining transfer-
ability with ranks instead of objective values, we can compare across different
problems (the magnitude of transferability is the same for every problem). Sec-
ondly, by repeating several measurements of transferability and computing the
average ranks, we can distinguish between noise and the actual difference in
performance (this is not possible with average objective values). Thirdly, we
experimentally show that the analysis carried out with our approach is corre-
lated with the properties of the optimization problems, which suggests that the
proposed technique is useful for finding similarities and differences in the prop-
erties of optimization problems. Finally, we show that our approach works in
both combinatorial and continuous domains, while Hong et al.’s approach Hong
et al. [2018] was only shown to work in the continuous domain.

G. Chapter 5

In optimization problems, and particularly in policy learning tasks involving eval-
uations in the physical world or costly simulations, lengthy evaluation times are
common. To address this limitation, it is possible to stop the evaluation early
when we suspect that the objective value is unlikely to improve. For example,
when learning to control a robot in a simulation, if the robot gets stuck (it does
not move) it is useful to stop the evaluation early [Le Goff et al., 2021]. However,
most early stopping methods in policy learning are problem specific (in the pre-
vious example, we need to be able to detect that the robot is not moving, which
might not be trivial).
General (using no domain specific knowledge) early stopping has been successfully
applied on Hyperparameter tuning [Jamieson and Talwalkar, 2016, Hutter et al.,
2019, Li et al., 2017, Falkner et al., 2018a]. In addition, Bongard [2011] proposed
a general early stopping method for policy learning, however, Bongard [2011]’s
method assumes a specific definition of the objective function, as well as the use
of a specific optimization algorithm.
We develop the following contributions in Chapter 5:
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Contributions Chapter 5:
We propose propose GESP: a general early stopping criterion for direct policy
search that does not require problem specific information and only takes into
account the objective function to stop the evaluations early. We compare gen-
eral early stopping with problem specific early stopping, and find it to perform
similarly, while being more general.
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0.3 Notation

In the following table, we summarize the most important terms and notation
considered in the thesis.

Concept Notation Explanation
Optimization

Problem P Defined in Definition 1.

Performance of an
Optimization

Algorithm
A Defined in Definition 3.

Computational
Resources t

Computational resources used so far
during the optimization of a problem.
It is measured in either seconds, simu-
lation steps or function evaluations.

Computational
Resources tmax

The stopping criterion (computation
budget) for the optimization algorithm.

Samples of the
Performance a1, a2,... Samples of the random variable A.

Solution σ
A candidate solution to an optimization
problem.

Best Solution σbest

The candidate solution with the best
objective value found so far during an
execution of an optimization algorithm.

Objective Function f
The objective function of an optimiza-
tion problem.

Objective Value f(σ) The result of evaluating a solution σ
with the objective function f .

Probability
Density of the
Performance

gA
The probability density function of the
random variable A.

Cumulative
distribution GA

The cumulative distribution of the ran-
dom variable A.

Table 0.1: A summary of the notation in the thesis.





1

On the Fair Comparison of Optimization
Algorithms in Different Machines

The computational resources used by an optimization algorithm can be under-
stood as the number of computational operations that are carried out. A higher
number of operations implies a higher number of function evaluations, which in
turn implies a better or equal objective value. Hence, a fair comparison of two
or more optimization algorithms requires the same computational resources to be
assigned to each algorithm.
When a maximum runtime is set as the stopping criterion, all algorithms need to be
executed in the same machine if they are to use the same resources. Unfortunately,
the implementation code of the algorithms is not always available, which means
that running the algorithms to be compared in the same machine is not always
possible. And even if they are available, some optimization algorithms might be
costly to run, such as training large neural-networks in the cloud. Consequently,
it is not always possible to execute all the algorithms in the same machine.
On the other hand, in the field of optimization, new optimization methods are
constantly being proposed. To demonstrate the effectiveness of a new algorithm,
a comparison is made against the state-of-the-art approaches. In order to assert
that the new algorithm surpasses the state-of-the-art, it is necessary to control
the probability of type I error, which refers to the probability of falsely asserting
that the new algorithm is better that the state-of-the-art, when in fact, it is not.
Executing the algorithms in different machines can increase this probability, as
the algorithms will not be compared with the same computational resources.
In order to avoid an increase of the probability of type I error in this setting, it
is crucial to ensure that the computational resources allocated to the new algo-
rithm are lower than or equal to the resources considered in the state-of-the-art-
approach. This control is necessary to provide robust evidence of the new methods’s
superiority over the existing approaches.



16 1 Comparing Optimization Algorithms in Different Hardware

More specifically, in this chapter, we introduce a methodology to compare the
performance of a new optimization algorithm B with a known algorithm A in
the literature if we only have the results (the objective values) and the runtime in
each instance of algorithm A. The proposed methodology has two parts. Firstly, we
propose a model that, given the runtime of an algorithm in a machine, estimates
the runtime of the same algorithm in another machine such that the slower machine
is compensated with extra runtime. Although this idea has already been explored
before [Domínguez and Alba, 2012], our model presents two improvements with
respect to previous work. Firstly, the prediction model can be adjusted so that the
probability of estimating a runtime longer than what it should be is arbitrarily low.
Secondly, we introduce an adaptation of the one-sided sign test that uses a modified
p-value and takes into account that probability. These two improvements allow the
proposed model to avoid increasing the probability of type I error associated with
executing algorithms A and B in different machines.
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1.1 Introduction

A different use of computational resources can lead to observing false differences
between the performance of optimization algorithms. Appendix 7.1.1 presents an
illustrative example. We say that two algorithms use the same amount of com-
putational resources when they both take the same time to complete in the same
machine. Usually, this is achieved by executing both algorithms on the same ma-
chine and setting a common maximum runtime as stopping criterion.
Over the last few decades, the computational capabilities of computers have sig-
nificantly increased [Nordhaus, 2007]. This means that code executed a decade
ago is expected to run faster on current hardware. Additionally, in some fields of
optimization such as natural language processing, good performing models like the
GTP-3 [Brown et al., 2020] are currently being trained with a lot of computational
power. Unfortunately, training these types of models is often economically unvi-
able for most researchers [Sharir et al., 2020]. Furthermore, as stated by Hutson
[2018], many works do not include the code to reproduce the experiments. These
and other issues limit the reproducibility of the comparison of algorithms, as it
is not always possible to execute all the algorithms being compared in the same
machine.
One way to overcome this limitation is to adjust the runtime of one of the algo-
rithms being compared such that the algorithm executed on the slower machine
is compensated with extra computational time. Let us now look at a practical
example. Let us imagine that a researcher reads a paper in which algorithm A is
executed in machine M1, taking time t1. Now, the researcher wants to compare
a new algorithm, B, with A, but has no access to algorithm A nor to machine
M1. Instead, the researcher only has access to machine M2 and algorithm B. In
this case, the researcher can execute algorithm B in machine M2 for time t2 and
compare the result with the known results of algorithm A. The runtime t2 needs
to be set in such a way that both algorithms are given the same computational
resources. To achieve this, t2 needs to be equal to the equivalent runtime: the
time it takes to replicate in machine M2 the exact optimization process that was
carried out in machine M1 (with algorithm A).
The exact equivalent runtime t2 can be obtained if the exact optimization process
that was carried out in machine M1 is replicated in machine M2. This implies
executing algorithm A in machine M2, which defeats the purpose of using an
equivalent runtime. Fortunately, an estimation of the equivalent runtime t̂2 can be
used instead. The estimation is carried out taking into account the computational
capabilities of machines M1 and M2, denoted as s1 and s2 in the rest of the
chapter. Table 1.1 offers a brief overview of the terms used in the chapter.
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A summary of the notation of the chapter

Name Notation Explaination

Optimization
algorithm A

A
The optimization algorithm that is not executed in
the comparison. Instead, already published results
of this algorithm are used in the comparison.

Optimization
algorithm B

B
The optimization algorithm that is executed to
obtain the results to be compared.

Machine M1 M1
The machine in which algorithm A was executed.
We have no access to this machine.

Machine M2 M2
The machine in which algorithm B is executed to
obtain the results used in the comparison.

The score of machine
M1

s1
A measure proportional to the computational
capability of machine M1.

The score of machine
M2

s2
A measure proportional to the computational
capability of machine M2.

The runtime of A in
machine M1

t1

The stopping criterion (in terms of maximum
runtime) that was used in the execution of
algorithm A in machine M1.

Equivalent runtime of
A in machine M2

t2

The time it takes to replicate in machine M2 the
exact optimization process (with algorithm A)
that took time t1 in machine M1.

Estimated equivalent
runtime of algorithm A
in machine M2

t̂2

An estimation of the equivalent runtime t2.
This value is used as the stopping criterion of
algorithm B, which is executed in machine M2.

Table 1.1: A summary of the concepts considered in the chapter.

A. Related work:

Domínguez and Alba [2012] proposed adjusting the runtimes of the algorithms
by assigning a shorter CPU runtime to the algorithms executed in machines with
faster CPUs, thus making the execution of algorithms in different machines com-
parable. To estimate the CPU capabilities of each machine, they proposed using
the dhrystone2 score [Weicker, 1988].
The methodology introduced by Dominguez et al. is limited in three ways. Firstly,
there is neither theoretical nor experimental justification for the prediction model
of the equivalent runtime. Secondly, their prediction model is fixed and cannot be
adjusted control the probability of type I error. And thirdly, their methodology
does not take into account the probability of predicting an equivalent runtime
longer or shorter than the true equivalent runtime, and thus, may introduce un-
desired biases to the comparison of the performance of algorithms. Without a
corrected statistical model, it is not possible to take into account this probability
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and control the probability of type I error. In the context of performance com-
parison of optimization algorithms (with null-hypothesis statistical tests), a type
I error is defined as finding a statistically significant difference in the performance
of the algorithms, when in reality, there is none. Making a type II error, on the
other hand, means not finding a statistically significant difference in the perfor-
mance of the algorithms, when in reality, the performances are different. In this
context, making a type II error is preferred to a type I error: falsely concluding
a nonexistent difference in the performance of the algorithms is worse than not
finding a statistically significant difference in the performance of the algorithms.
In fact, failing to reject the null hypothesis does not imply evidence in favor of the
null hypothesis. Instead, it only shows a lack of evidence against it. In the context
of algorithm benchmarking, failing to reject the null hypothesis does not mean
that the performance of the algorithms is the same. When the null hypothesis is
not rejected, the correct conclusion is that there is not enough evidence to show
a statistically significant difference between the performance of the algorithms.
Therefore, a type II error just means that additional experimentation is needed
to verify an existing difference in the performance of the algorithms, which is not
an erroneous conclusion in itself.

B. Proposed methodology:

Inspired by the work of Domínguez and Alba [2012], we propose a methodology
to statistically assess the difference in the performance of optimization algorithms
executed in different machines. Specifically, the proposed methodology can be
used to show that an algorithm B performs statistically significantly better than
another algorithm A, without executing A and, instead, using the available results
of A in terms of the objective function value and the runtime in each instance.
To that end, we propose a conservative methodology in which the probability of
giving algorithm B an unfairly longer time is kept in check by i) proposing a two-
parameter estimation1 of the equivalent runtime with an arbitrarily low probability
of estimating an unfairly longer runtime and ii) by modifying the one-sided sign
test [Conover, 1980] so that it takes this probability into account.
Alongside this chapter, we present a tutorial on how to apply the proposed method-
ology. This tutorial and the code of all the experimentation is available in our
GitHub repository2. Besides, we also give two examples of how the methodology

1 The estimation considered in this chapter is intentionally conservative and tends to
estimate shorter than equivalent runtimes. With this, we are able to keep the proba-
bility of type I error in check, while increasing the probability of type II error. In the
context of algorithm benchmarking, a type I error is worse than a type II error.

2 Repository available in https://github.com/EtorArza/RTDHW.

https://github.com/EtorArza/RTDHW
https://github.com/EtorArza/RTDHW
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is applied. It is noteworthy that applying the proposed methodology to compare
algorithms in different machines does not involve executing any additional code.
The rest of the chapter is organized as follows: The next section describes and moti-
vates a two-parameter model proposed to estimate the equivalent time. Section 1.3
presents the modifications made to the sign test to overcome the limitations in-
troduced by the execution of the algorithms in different machines. Afterward, in
Section 1.4 we introduce two examples in which we apply the proposed method-
ology. Finally, Section 1.6 concludes the chapter and proposes some research lines
for future investigation.

1.2 The estimation model of the equivalent runtime

Given i) an optimization algorithm, ii) a machine, iii) a problem instance, iv)
a stopping criterion and v) a random seed number, executing the optimization
algorithm will produce a specific sequence of computational instructions. This se-
quence is completely determined by these five parameters. We call this sequence
of instructions that is reproducible in any machine the optimization process. By
recording the optimization process carried out with these parameters, we can later
reproduce the exact optimization process in another machine. Notice that repro-
ducing the optimization process will take a different time in each machine, even
though the final result is the same (because the executed sequence of instructions
is the same). We say that the runtimes required to replicate the same optimization
process in different machines are equivalent.

Definition 4 (Optimization process)
Let M be a machine, A an optimization algorithm, i a problem instance, t1 a
stopping criterion, and r a positive integer (the seed for the random number gen-
erator). We define the optimization process ρ(M,A, i, t1, r) as the sequence of com-
putational instructions carried out when optimizing instance i with algorithm A
and seed r in machine M1 with stopping criterion t1.

The aim is to compare algorithm A executed in machine M1, with algorithm B,
executed in machine M2. A fair comparison can be carried out by estimating the
time it takes to replicate ρ(M1, A, i, t1, r) in machine M2 and using the estimated
value as the stopping criterion for algorithm B in machine M2. We will sometimes
denote the optimization process ρ(M1, A, i, t1, r) as ρ, for the sake of brevity.

Definition 5 (Runtime of an optimization process)
Let M be a machine and ρ an optimization process. We define the runtime of ρ in
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M , denoted as t(M,ρ), as the time it takes to carry out the optimization process
ρ in machine M .

Considering the above definitions, it follows that, t(M1, ρ) = t1.

Definition 6 (Equivalent runtime)
Let M1,M2 be two machines, ρ an optimization process and t(M1, ρ) and t(M2, ρ)
the times required to run ρ in M1 and M2 respectively. Then, we say that t(M2, ρ)
is the equivalent runtime of t(M1, ρ) for machine M2.

From here on, we will denote t(M2, ρ), the equivalent runtime of t1 = t(M1, ρ) in
machine M2, as t2. Given t1 (the runtime of optimization process ρ in a machine
M1), in the following, we will propose a model to estimate t2 (the equivalent
runtime in another machine M2).

Assumption 1 (Constant ratio of the runtime of two optimization processes)
Let ρ, ρ′ be two optimization processes. Then, we assume that:

t(M2, ρ)
t(M2, ρ′) ≈

t(M1, ρ)
t(M1, ρ′)

for any two machines M1 and M2.

We assume that the ratio of the runtime of two different optimization processes is
constant with respect to the machine in which it is measured. In Appendix 7.1.2,
we justify why this assumption is reasonable. This assumption is critical to the es-
timation model that will later be proposed. By using this assumption in the model,
a prediction error is introduced. Therefore, we will later propose a correction to
the model to control this prediction error.
Based on this assumption, we propose a model to estimate the equivalent runtime
of an optimization process in a machine, given its runtime in another machine, as
well as the scores1 (relative to the computational capabilities) of both machines.
Notice that in Assumption 1, we use a reference optimization process ρ′ to estimate
the equivalent runtime of the optimization process ρ. Any optimization process
ρ′ can be used as a reference. In the following, we will define an optimization
process ρ′ whose runtime we will be able to estimate with the scores s1 and s2 of
the machines. This will allow the estimation of the equivalent runtime t2 without
executing any reference optimization processes, as shown in Figure 1.1.

1 In this chapter, we denote an observed sample of the performance of an algorithm as
"score".
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Diagram of the estimation of the equivalent runtime

Fig. 1.1: Estimated equivalent runtime of ρ in machine M2 (the response variable
t̂(M2, ρ)). The estimation is carried out with three predictor variables: the machine
scores s1 and s2 and t(M1, ρ).

Let us now define the optimization process ρ′, whose runtime can be estimated.
Recall that an optimization process is just a sequence of computational instruc-
tions that can be reproduced in any machine. Aiming to obtain a more diverse
sequence of computational instructions, we define the optimization process ρ′ as
the computational instructions generated by consecutively executing 4 different
optimization algorithms in 16 problem instances. Each of the 64 executions in-
volves solving a permutation problem with an optimization algorithm, with a
stopping criterion of a maximum of 2 · 106 evaluations (see Appendix 7.1.3 for
details on the optimization problems and algorithms used).
The runtime of the optimization process ρ′ in a machine can be estimated with
its machine score. In this chapter, we measure the score of a machine (its compu-
tational capability) in terms of its PassMark single thread CPU score 1, although
adapting the proposed methodology to other benchmarks is also possible. The
advantage of using the PassMark score is that the PassMark website has a large
collection of CPUs with their scores. In Figure 1.2, we show the machine score
and runtime of ρ′ for each of the 8 machines considered in this chapter (the list of

1 The PassMark CPU score is one of the most popular CPU benchmark scores, with over
3500 CPUs listed on their website. We use the single thread score of this benchmark.
A higher value of the score is associated with a better relative performance of the
CPU. The PassMark scores change over time, as new CPUs and consumer demand
for computation evolves. The scores considered in this chapter can be looked up in
the file cpu_scores.md in our GitHub repo.

https://github.com/EtorArza/RTDHW/blob/master/cpu_scores.md
https://github.com/EtorArza/RTDHW/blob/master/cpu_scores.md
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PassMark single thread score and the runtime ρ′
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Fig. 1.2: The runtime of ρ′, the optimization process used as a reference to define
the regression model. Every point represents a different CPU, each with a different
machine score and runtime of ρ′ in this machine.

machines is available in Appendix 7.1.3). We see that the relationship between the
runtime of ρ′ and the machine score is linear. Every point in Figure 1.2 represents
a different machine.
Based on the figure shown, we infer that i) linear regression is suitable to model
the runtime of ρ′ with respect to the machine score, and ii) the machine score has
a good correlation with the runtime of ρ′. Note that using a linear estimation of
ρ′ has some limitations in its applicability that will be addressed in Section 1.5.
With this in mind, we define the estimation of the runtime in a machine:

Definition 7 (Prediction of the runtime of ρ′ in a machine)
Let Mj be a machine and sj its machine score. Then, the runtime of ρ′ in Mj is
modeled as

t(Mj , ρ
′) ≈ −0.62280sj + 2008

where sj is the score of machine Mj.

Considering together Assumption 1 and Definition 7, the equivalent runtime can
be estimated as:

t2 ≈ t̂2 = t1 ·
−0.62280s2 + 2008
−0.62280s1 + 2008 = t1 ·

3223.49− s2

3223.49− s1
(1.1)



24 1 Comparing Optimization Algorithms in Different Hardware

where s1 and s2 are the PassMark single thread scores of the CPUs on machines
M1,M2, respectively. Due to the approximation errors in Assumption 1 and Defi-
nition 7, the estimated equivalent runtime t̂2 = t̂(M2, ρ) will often differ from the
true equivalent runtime value t2 = t(M2, ρ). This means that when using the es-
timated equivalent runtime as the stopping criterion for algorithm B, sometimes,
the runtime will be longer or shorter than the runtime used by algorithm A.

1.2.1 Controlling the probability of predicting a runtime longer than
the true equivalent runtime

To statistically assess the uncertainty associated to the comparison of the perfor-
mance of algorithms A and B, in this methodology, we propose using a one-sided
statistical test. Under this test, the alternative hypothesis states that the perfor-
mance of algorithm B is better than the performance of algorithm A. As a result,
a type I error (erroneously finding a statistically significant difference in the per-
formance of A and B) can only be made when algorithm B performs better than
A.
When a shorter runtime is estimated, algorithm B has an “unfairly” shorter stop-
ping criterion for the optimization. This implies that the measured performance of
B will be worse than or equal to the performance that would have been measured
if the actual equivalent runtime were used. Consequently, taking into account the
one-sided nature of the test, estimating a lower than actual runtime will not in-
crease the probability of type I error (estimating a lower than actual runtime
can never help algorithm B perform better than algorithm A). It might, however,
increase the probability of type II error.
Making a type II error is better than making a type I error when comparing al-
gorithm performance, because it is better to miss evidence that can adequately
discriminate between two algorithms than to observe a false difference. For exam-
ple, let us assume that someone publishes algorithm A with a certain performance.
Another researcher proposes an algorithm B that is a variation of algorithm A. If
a type II error is made, then B is actually better than A, but the researcher is not
able to find enough evidence to support this, which is not in itself an erroneous
conclusion. However, in a type I error, algorithm B is actually worse or equal to A
but the researcher incorrectly identified algorithm B as the better algorithm, and
this can be more detrimental to scientific progress.
To avoid drawing erroneous conclusions, we present a modification to Equa-
tion (1.1) so that the probability of estimating a longer time than the actual
equivalent runtime stays under a percentage chosen by the user. We reformulate
the unbiased estimator shown in Equation (1.1) to reduce the probability of esti-
mating a runtime longer than the true equivalent runtime. The new biased estima-
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tor is defined by multiplying the unbiased estimator with a correction parameter
γ ∈ (0, 1]:

Definition 8 (estimation of the equivalent runtime in machine M2) Let ρ be an
optimization process, M1,M2 two machines and t1 the runtime of ρ in machine
M1. We compute t̂2, the estimate equivalent runtime of ρ for machine M2 as:

t2 = t(M2, ρ) ≈ t̂2 = t1 ·
3223.49− s2

3223.49− s1
· γ

By adjusting γ, the probability of estimating a longer runtime than the equivalent
runtime, P[t̂2 > t2], can be reduced. However, adjusting γ implies that on average,
a shorter runtime is predicted. With γ = 1.0, the original, unbiased estimator is
obtained. A lower value of γ is associated to a lower probability of estimating
a runtime longer than the true runtime. Specifically, the parameter γ is equal
to E[ t̂2t2 ]: how much shorter the estimated equivalent runtime is than the true
equivalent runtime on average. For example, when γ = 0.5, then the equivalent
runtime used will be half of the equivalent runtime predicted by the unbiased
estimator.
We estimated the relationship between γ and P[t̂2 > t2] and we show the result in
Figure 1.3. We computed this probability empirically in a cross validation setting.
The exact procedure carried out to generate this figure is available in the file
show_linear.py in our GitHub repository. In the following, we give additional
details on the process carried out to compute the relationship between γ and
P[t̂2 > t2] shown in the figure.
The pseudocode of the following process is shown in Algorithm 1. Given a value of
γ, we start by iterating over all the optimization processes and every possible pair
of CPUs (Lines 3-5) and we leave them out of the training data (Lines 6-7). Then,
we fit the linear regression in Definition 7 and Equation (1.1), but only with the
CPUs and optimization processes in the training data (Line 8). The runtime of
the left out optimization process in the machine with cpu1 is t1 (Line 11). Now, we
predict the equivalent runtime of the optimization process left out in the machine
with cpu2 with the formula t̂2 ← t1 · α−s2

α−s1
·γ, where α was fitted with the training

data (Line 12). Finally, we measure the proportion of times in which the predicted
equivalent runtime for the machine with cpu2, t̂2, was longer than the runtime of
the optimization process in that machine, t2.
Instead of considering the parameter γ, we can also think of the parameter pγ =
P[t̂2 > t2]. pγ is the probability of estimating a longer than equivalent runtime
associated to γ. It is probably more useful for the user to think of pγ , because
this is what is directly related to the increase of probability of making a type I
error in algorithm comparison: a lower pγ has an associated lower probability of

https://github.com/EtorArza/RTDHW/blob/master/processing_results/show_linear.py
https://github.com/EtorArza/RTDHW
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Algorithm 1: Compute the probability of estimating a runtime longer
than the true equivalent runtime given γ in a cross validation setting

Input:
cpu_list: The list of all the CPUs used to fit the linear regression.
process_list: The list of all the optimization processes.
γ: The correction coefficient.
Output:
P[t̂2 > t2]: The probability of estimating a runtime longer than the true
equivalent runtime for the given γ.

1 total ← 0
2 longer_runtime_predicted ← 0
3 forall test_process in process_list do
4 forall cpu1 in cpu_list do
5 forall cpu2 in cpu_list \ {cpu1} do
6 train_cpus ← cpu_list \ {cpu1, cpu2}
7 train_processes ← process_list \ {test_process}
8 fit the linear regression in Definition 7 and Equation (1.1) with the

cpu scores of train_cpus and the runtimes of the optimization
processes in train_processes when executed in train_cpus.

9 s1 ← cpu score of cpu1
10 s2 ← cpu score of cpu2
11 t1 ← runtime of test_process in the machine with cpu1
12 t̂2 ← t1 · α−s2

α−s1
· γ, where α was adjusted in Line 8.

13 total ← total +1
14 if t̂2 > t2 then
15 longer_runtime_predicted ← longer_runtime_predicted +1

16 return longer_runtime_predicted
total

predicting an unfairly longer equivalent runtime. To obtain an unbiased prediction
of the equivalent runtime, it is enough to consider the parameter pγ = 0.5.
To make the computation of the equivalent runtime convenient for the user, we
created a standalone (no dependencies) python script equivalent_runtime.py avail-
able in our GitHub repository. This script predicts the equivalent runtime with
the formula in Definition 8, but considering the parameter pγ instead of γ. To
achieve this, the γ associated to pγ is calculated first. Given pγ the desired prob-
ability of estimating a runtime longer than the true equivalent runtime, s1, s2 the
PassMark single thread score of machines M1,M2 respectively and t1 the runtime
in machine M1, we can use this script to estimate the equivalent runtime. For
example if pγ = 0.1, s1 = 1540, s2 = 1643 and t1 = 15.0, then we can get t̂2 with

python equivalent_runtime.py 0.1 1540 1643 15.0

https://github.com/EtorArza/RTDHW
https://github.com/EtorArza/RTDHW
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Estimated runtime and the correction parameter γ
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Fig. 1.3: The probability of estimating a runtime longer than the true equivalent
runtime with respect to γ.

>> 11.461295

Even though the proposed model has an arbitrarily low probability of estimating a
longer than actual equivalent runtime, this probability is not zero. In Section 1.3,
we will propose a modification of the sign test that takes into account this prob-
ability and avoids an increase in the probability type I error.

1.2.2 Validation

We have introduced a methodology to predict the equivalent runtime for single
thread optimization processes—a sequence of computer instructions that can be
replicated in different machines—based on the PassMark single thread score. In
the following, we experimentally validate that the proposed methodology works
as intended. To this end, we try to answer the following two questions: A) Is using
the equivalent runtime better (in the sense that it makes the comparison fairer)
than using the same runtime in two machines? And B) does the method still work
when considering other machines and optimization processes that were not present
when the prediction model was fitted?
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A. Predicting the equivalent runtime vs. using the same runtime

In this chapter, we proposed predicting the equivalent runtime with the PassMark
score. In the following, we show that it is better than just using the same runtime
in two machines. To do so, we compare the prediction error, measured as the ratio
with respect to the true equivalent runtime, when using the centered estimator in
Equation (1.1) of the equivalent runtime (t̂2 = t1 · 3223.49−s2

3223.49−s1
) vs. when estimating

it as the same runtime as in the other machine (t̂2 = t1).
We estimate the prediction error with these two methods for the 64 optimization
processes and 8 machines considered in the calibration of the linear regression
(see Appendix 7.1.3 for details). Once we have measured the ratio between the
estimated runtime and the true equivalent runtime, we apply the loss function
f(x) = abs(Log2(x)), obtaining the log deviation ratio. With this loss function, a
prediction that was three times the true equivalent runtime is assigned the same
loss as a prediction that was a third of the true equivalent runtime. In addition,
the log deviation ratio is easier to interpret: for example, a log deviation ratio of
0 means that the prediction was perfectly accurate, and a log deviation ratio of 1
denotes that the prediction was double or half the true value etc.
In Figure 1.4 we show the empirical distribution function of the log deviation
ratio for equivalent runtime and same runtime. The results clearly point out that
equivalent runtime, predicting the equivalent runtime with the centered estimator
in Equation (1.1), consistently produces a lower (better) error when compared to
using the same runtime in two machines same runtime.

B. Validation in other optimization processes and CPUs

Each time we predict the equivalent runtime with the centered estimator in Equa-
tion (1.1), we expect the prediction to be either higher or lower than the true
equivalent runtime. Controlling this prediction error is one of the key challenges
of the proposed methodology, and allows the user to predict an equivalent run-
time with a desired probability of being higher than the true equivalent runtime.
However, since we fitted this estimator with a set of optimization problems and
CPUs (described in detail in Appendix 7.1.3), we need to validate the prediction
with a different set of CPUs and optimization processes.
Validation CPUs and optimization processes: The four optimization processes for
the validation experiment are enumerated below. These four optimization pro-
cesses are very different from the optimization processes used to fit the estimator.

1. Find the first 106 prime numbers.
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Fig. 1.4: A comparison in estimation error of the predicted equivalent runtime
(Equivalent runtime) and simply using the same runtime in both machines (Same
runtime) with respect to the true equivalent runtime. The estimation error is
measured as the log deviation ratio of the prediction of the equivalent runtime
with respect to the true equivalent runtime. For example, a log deviation ratio of
0 means that the prediction was perfectly accurate, and a log deviation ratio of 1
denotes that the prediction was double or half the true value etc.

2. Finding magic squares [Dougherty, 2014].
3. Solving the knapsack problem [GeeksforGeeks, 2022].
4. Solving the N queens problem [GeeksforGeeks, 2022].

The CPUs of the machines considered in the validation experiment are listed
below:
CPU model name PassMark score
Intel(R) Xeon(R) CPU @ 2.20GHz 1383
Intel(R) Core(TM)2 Duo CPU P9600 @ 2.53GHz 1075
Intel(R) Xeon(R) CPU E5-2680 v3 @ 2.50GHz 1779
Intel(R) Xeon(R) Gold 6140 CPU @ 2.30GHz 1840
Intel(R) Core(TM) i5-5200U CPU @ 2.20GHz 1511

Now, we compare the log deviation ratio of the centered estimator (Equation (1.1))
both for the optimization processes and CPUs used to fit the estimator, and these
new validation optimization processes and CPUs. The empirical distribution func-
tion of the log deviation ratio is shown in Figure 1.5. The error obtained with the
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CPUs and optimization processes used to fit the estimator (from now on Train) is
a lot smoother than with the validation CPUs and optimization processes (from
now on Validation). However, this is to be expected because Train contains a
larger amount of both optimization processes and CPUs. In addition, notice that
for most of the x-axis, the error of Validation is lower (better) than the error of
Train. This can also be explained by the variance of the error Validation being
larger due to the smaller amount of CPUs and optimization processes.
In any case, both errors are very similar and close to each other, and this im-
plies that the proposed methodology is indeed applicable to different CPUs and
optimization processes.
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Fig. 1.5: A comparison in estimation error of the equivalent runtime with the
centered estimator. The estimation error for the optimization processes and CPUs
used to fit the estimator (Train), and these new validation optimization processes
and CPUs (Validation) is compared. The estimation error is measured as the log
deviation ratio of the prediction of the equivalent runtime with respect to the
true equivalent runtime. For example, a log deviation ratio of 0 means that the
prediction was perfectly accurate, and a log deviation ratio of 1 denotes that the
prediction was double or half the true value etc.
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1.3 Modifying the one-sided sign test

In the previous sections, we proposed an estimator of the equivalent runtime of
an algorithm in a machine. Specifically, we proposed a biased estimator with an
arbitrary probability of estimating a runtime longer than the true equivalent run-
time. By using this estimator, we can adjust the expected percentage of samples
of the performance of algorithm B computed with a runtime longer than the true
equivalent runtime. When a runtime longer than the true equivalent time is esti-
mated, the probability of making a type I error is higher than if the comparison
were carried out in the same machine. Therefore, in this section, we propose a
correction of the one-sided statistical test that takes into account the probability
of estimating a longer than the true equivalent time and its subsequent increase
in the probability type I error.
Given algorithms A,B, a one-sided hypothesis test in algorithm performance com-
parison is as follows1:

H0: The performance of algorithm B is worse than or equal to A.
H1: The performance of algorithm B is better than A.

We believe that the sign test [Conover, 1980] is a suitable hypothesis in the context
of this chapter and, in general, for comparing the performance of optimization
algorithms (see Appendix 7.1.4 for details). We limit the statistical test to the
one-sided sign test, with the alternative hypothesis being that the algorithm whose
equivalent runtime was estimated has a higher performance. In the following, we
propose a correction for the sign test that does not increase the probability of type
I error.

1.3.1 One-sided sign test

The sign test [Conover, 1980] is a special case of the binomial test, for p = 0.5.
In the context of algorithm performance comparison, the sign test statistically
assesses if the paired performance of two algorithms is the same or not. Performing
this statistical test involves first executing the optimization algorithms A and B in
the same machine, with the same stopping criterion, in a set of n problem instances
(i ∈ {1, ..., n}), obtaining the scores ai and bi for each algorithm-instance pair.

1 It is noteworthy that failing to reject H0 does not imply statistical evidence that H0
is true, instead it suggests a lack of evidence against H0. Therefore, in this case, it
would not be correct to conclude that “the algorithms compared perform the same
with a statistical significance of 1− α”.
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These scores depend on which random seed was chosen (this seed represents all the
non-deterministic parts of the algorithms, such as solution initialization). Thus,
the performance of an algorithm in an instance can also be seen as a random
variable that is completely determined, given a certain seed. We denote the random
variables that represent the performance of algorithms A and B in an instance i
as Ai and Bi, respectively.
The statistical test allows us to draw conclusions about the algorithms on a larger
set of problem instances based on the observed results in the set of n instances.
The sign test is based on these three assumptions [Conover, 1980]:

• Each of the sample pairs Ai, Bi are mutually independent of the rest of the
pairs.

• Any observable pair ai, bi can be compared, that is, we can say that ai < bi,
bi < ai or ai = bi.

• The pairs are internally consistent, or if P[Ai > Bi] > P[Ai < Bi] for one
pair, then the same is true for all pairs.

In the context of algorithm comparison, the most problematic assumption is the
first one. The reason is that in real-life benchmarks, some problem instances may
share similarities, which means that there is no complete independence among all
sample pairs Ai, Bi. The Mann-Whitney and the Wilcoxon signed rank test also
contain this first assumption [Conover, 1980]. However, in practice, this limitation
is usually ignored. This is why, in general, it is a good idea to use a set of benchmark
problems with many kinds of different instances. As future work, the proposed
methodology could be adapted to be applicable to multiple benchmark sets, where
the instances in each benchmark have similar properties.
From now on, without loss of generality1, we assume that the algorithms deal
with a minimization problem, (i.e., ai is better than bi ⇐⇒ ai < bi). We define
#{Ai < Bi} as a random variable that counts the number of cases2 that Ai < Bi
in n instances. Then, the following hypothesis test corresponds to the one-sided
sign test [Conover, 1980]:

H0 : P[Ai < Bi] ≥ P[Ai > Bi]
H1 : P[Ai < Bi] < P[Ai > Bi]

1 A maximization problem can be converted into a minimization problem by multiplying
the objective function with −1.

2 Without loss of generality, we can assume that ai ̸= bi, because samples in which
ai = bi are removed when performing the sign test [Conover, 1980].
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Under H0, the null distribution of #{Ai < Bi} is Bin(n, 0.5), where Bin(n, 0.5)
is the binomial distribution of size n and rate of success 0.5 [Conover, 1980]. The
p-value for this hypothesis test is

p(k) = P[#{Ai < Bi} ≤ k | H0] = P[Bin(n, 0.5) ≤ k] (1.2)

where k is substituted by the statistic of the sign test: the number of cases that ai <
bi in all i ∈ {1, ..., n} samples, denoted as #{ai < bi}. By definition [Wasserstein
and Lazar, 2016], the p-value can be interpreted as the probability of obtaining a
more extreme (lower) statistic than the observed, assuming H0 is true. If we reject
the null hypothesis when p(#{ai < bi}) ≤ α, then the probability of type I error
is less than or equal to α.

1.3.2 The corrected p-value

In practice, the statistic #{ai < bi} cannot be computed because the true equiv-
alent runtime t2 is unobservable. The equivalent runtime is approximated with t̂2
(see Definition 8). As a result, each bi is substituted with its corresponding b̂i,
which is computed by using t̂2 instead of t2 as the stopping criterion. This means
that the statistic #{ai < bi} is replaced by #{ai < b̂i}, which counts the number
of times that ai < b̂i (without loss of generality, minimization is assumed) is ob-
served. Therefore, we need to define the function to obtain the p-value associated
to the statistic #{ai < b̂i}:

p̂(k) = P[#{Ai < B̂i} ≤ k | H0] (1.3)

where the p-value is obtained by substituting k with the observed statistic #{ai <
b̂i}. The p-value is the probability of obtaining a statistic that is lower than or
equal to the observed when H0 is true.
Notice that if we reject the null hypothesis when p̂(#{ai < b̂i}) ≤ α, then the
probability of type I error is less than or equal to α. However, for this to hold, we
need to assume that b̂i < bi: a longer optimization time produces a lower or equal
objective value (in a minimization setting). In general, we assume that a longer
optimization time can only produce a lower or equal objective value.
Let pγ be the desired upper bound of the probability of predicting a runtime
longer than the true equivalent runtime for each instance i. Then, in more than
1 − pγ of cases, bi is obtained with a longer runtime than b̂i and therefore, the
probability of b̂i ≥ bi is greater than 1− pγ . When a small pγ is chosen, we expect
that #{ai < b̂i} is higher than or equal to #{ai < bi}, but it will not always be
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so. To overcome this limitation, we need to define a corrected p-value p̂c, an upper
bound of the actual p-value associated with statistic #{ai < b̂i}, that takes into
account the probability pγ = t̂2 > t2. Specifically, we define this upper bound as

p̂c(k) =
n∑
v=0

(1− P[Bin(n, pγ) < max(0, v − k)])P[Bin(n, 0.5) = v] (1.4)

such that

p̂c(k) > P[#{Ai < B̂i} ≤ k | H0] = p̂(k) (1.5)

is satisfied (we prove this inequality in Appendix 7.1.5), where H0 implies that
statistic #{Ai < Bi} follows the null distribution Bin(n, 0.5) [Conover, 1980].
Figure 1.6 shows p and p̂c side by side. Notice that p̂c is slightly higher, because
it needs to account for the probability that t̂2 > t2. The corrected p-value p̂c is
interesting because rejecting H0 when p̂c(#{ai < b̂i}) < α has also an associated
probability of type I error lower than α. The reason is that p̂c(#{ai < b̂i}) >
p̂(#{ai < b̂i}), and therefore, p̂c(#{ai < b̂i}) < α⇒ p̂(#{ai < b̂i}) < α.
To generate the corrected p-values conveniently, we created a standalone (only de-
pendencies in the standard library) python script corrected_p_value.py available
in our GitHub repository. This script uses an efficient and precise implementation
of Equation (1.4). To calculate the corrected p-value, we need the probability of
predicting a runtime longer than the true equivalent runtime pγ , the sample size
n, and the number of observations k in which algorithm A outperforms algorithm
B. For example if pγ = 0.1, n = 20, and k = 3, then we can get p̂c(3) with

python corrected_p_value.py 0.1 20 3
>> 0.043596000

1.4 Applying the methodology

In this section, we illustrate how to apply the proposed methodology with two
examples. The proposed methodology is very simple to use and does not require
any additional software. Further details and material are available in our GitHub
repository.

1.4.1 Example I

In this example, we will compare a simple random initialization local search pro-
cedure with a memetic search algorithm by Benlic and Hao [2015a] for the QAP.

https://github.com/EtorArza/RTDHW/blob/master/corrected_p_value.py
https://github.com/EtorArza/RTDHW
https://github.com/EtorArza/RTDHW
https://github.com/EtorArza/RTDHW
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Fig. 1.6: This figure shows the p-value and the corrected p-value p̂c for the sign
test with a sample size of n = 30 and pγ = 0.01. Under the null hypothesis H0, the
p-value represents the probability of #{ai < bi} ≤ k, while the corrected p-value
represents an upper bound of the probability of #{ai < b̂i} ≤ k. Under the null
hypothesis, #{ai < bi} follows a binomial distribution of size n and probability of
success 0.5.

Benlic and Hao [2015a] run the code sequentially, without any parallel or multi
threaded execution. Using the proposed methodology, we will statistically assess
the difference in the performance between these two algorithms, without having
to execute the code of the memetic algorithm. In this case, the memetic search
algorithm is algorithm A, because this is the algorithm of which we already have
the results, and the local search algorithm is algorithm B, because this is the al-
gorithm whose runtime is going to be estimated. For this experiment, we choose
a probability of predicting a longer than true equivalent runtime of pγ = 0.01.
Step 1: Obtaining the data
To apply the proposed methodology, we need to find certain information about
the execution of the memetic algorithm. The required data includes the list of
instances to be used in the experimental comparison, the average objective value
obtained by the memetic search algorithm, and the runtime of the memetic search
algorithm in each of the instances. The information extracted from the article by
Benlic and Hao [2015a] is listed in the first three columns of Table 1.2. Also, we
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need to find the CPU model of the machine in which the memetic search was run
(machine M1), which is "Intel Xeon E5440 2.83GHz" as specified in their article.
Finally, the machine score of this CPU, measured as PassMark single thread score,
is s1 = 1219 (as seen on the file cpu_scores.md in the GitHub repo).

Data obtained from the paper
by [Benlic and Hao, 2015a]

Data corresponding to the
execution of B in machine M2

instance runtime in objective estimated equivalent objective
seconds, t1 value, ai runtime, t̂2 value, b̂i

tai40a 486 3141222 313.68 3207604
tai50a 2520 4945266 1626.50 5042830
tai60a 4050 7216339 2614.02 7393900
tai80a 3948 13556691 2548.18 13840668
tai100a 2646 21137728 1707.82 21611122
tai50b 72 458821517 46.47 459986202
tai60b 312 608215054 201.37 609946393
tai80b 1878 818415043 1212.13 824799510
tai100b 816 1185996137 526.67 1195646366
tai150b 4686 499195981 3024.52 505187740
sko100a 1338 115534 863.59 153082
sko100b 390 152002 251.72 155218
sko100c 720 147862 464.71 149076
sko100d 1254 149584 809.37 150568
sko100e 714 149150 460.84 150638
sko100f 1380 149036 890.70 150006

Table 1.2: This table shows all the data in the first example. The first three
columns correspond to the QAP instances in which the memetic search algorithm
by Benlic and Hao [2015a] was tested, the runtime of the memetic search algorithm
in each instance, and the best objective value they obtained in each execution,
averaged in 10 executions per instance. The information in these three columns
was directly obtained from the paper by Benlic et al., without any additional
executions. The next two columns show the estimated equivalent runtimes and
the average objective value scores that the local search algorithm obtained with
this runtime as the stopping criterion. The local search algorithm was executed in
machine M2.

Step 2: Estimating the equivalent runtime
With the data already gathered, the next step is to estimate the equivalent run-
time of each instance for the machine in which the local search algorithm will
be executed (machine M2). Estimating the runtime requires the score s2 of this

https://github.com/EtorArza/RTDHW/blob/master/cpu_scores.md
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machine to be known. The CPU model of M2 is "Intel Celeron N4100", with a
PassMark single thread score of s2 = 1012. With this information, we are ready
to estimate the equivalent runtime t̂2 for each instance in machine M2. We run
the script

python equivalent_runtime.py 0.01 1219 1012 t_1

where t1 is substituted with the runtime of the memetic search algorithm in each
instance, listed in Table 1.2.
Step 3: Running the experiments
Now, we execute the local search algorithm in the instances listed in Table 1.2,
using the estimated runtimes t̂2 as the stopping criterion. This execution is carried
out in machine M2, and the best objective function values b̂i are listed in Table 1.2.
Following the procedure by Benlic et al., these best objective values are averaged
over 10 executions.
Step 4: Obtaining the corrected p-value
Once all the results have been computed, the next step is to compute the statis-
tic #{ai < b̂i}, which counts the number of times that ai < b̂i. In this case,
ai < b̂i happens 15 times, and therefore, k = #{ai < b̂i} = 15. Now we can com-
pute the corrected p-value of the one sided sign test. To do so, we use the script
corrected_p_value.py with the chosen pγ = 0.01, n = 15 and k = 15.

python corrected_p_value.py 0.1 15 15
>> 1.0000000

Step 5: Conclusion
Since the observed corrected p-value is not lower than the chosen α = 0.05, we
cannot reject H0. In this case, the conclusion is that with the amount of data
that we have and the chosen target probability of type I error of α = 0.05, we
can not say that the local search algorithm has a statistically significantly better
performance than the memetic search algorithm1.
It is important to note that, if we had considered the original runtimes t1 as
the stopping criterion for algorithm B in machine M2 (longer than the estimated
equivalent runtime t̂2), the local search would have had an unfairly longer runtime.
In other words, the comparison would have been biased towards the local search.

1 It would not be correct to conclude that the two algorithms perform (statistically
significantly) the same, or that the memetic search performs statistically significantly
better than the local search.

https://github.com/EtorArza/RTDHW/blob/master/corrected_p_value.py
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1.4.2 Example II

In this second example, we will compare the same simple random initialization
local search procedure with an estimation of distribution algorithm (EDA) for
the QAP [Arza et al., 2020]. The estimation of distribution algorithm (EDA)
was executed sequentially, without parallel or multi threaded execution. In this
case, the EDA is algorithm A, because this is the algorithm of which we already
have the results, and the local search algorithm is algorithm B, because this is the
algorithm whose runtime is estimated. For this experiment, we choose a probability
of predicting a longer than true equivalent runtime of pγ = 0.01.
Step 1: Obtaining the data
To apply the proposed methodology, we need to find certain information about
the execution of the EDA. The required data includes the list of instances to be
used in the comparison, the average objective value obtained by the EDA, and
the runtime used in each instance. The information extracted from the paper by
Arza et al. [2020] is listed in Table 1.3. In addition, we need to find the CPU
model of the machine in which the EDA search was run (machine M1), which is
"AMD Ryzen 7 1800X", as specified in the paper. Finally, the machine score of
this CPU, measured as PassMark single thread score is s1 = 2182, as seen on the
cpu_scores.md file.
Step 2: Estimating the equivalent runtime
With the data already gathered, the next step is to estimate the equivalent run-
time of each instance for the machine in which the local search algorithm will be
executed (machine M2). The CPU model of M2 is "Intel Celeron N4100" (the same
as in the previous example), with a PassMark single thread score of s2 = 1012.
To estimate the runtime for each instance, we run

python equivalent_runtime.py 0.01 2182 1012 t_1

where t1 is substituted with the runtime of the EDA algorithm in each instance,
listed in Table 1.3.
Step 3: Running the experiments
Now, we execute the local search algorithm in the instances listed in Table 1.3,
using the estimated runtimes t̂2 as the stopping criterion. This execution is carried
out on machine M2, and the best objective function values b̂i are listed in Table 1.3.
Following the procedure by Arza et al., these best objective values are averaged
over 20 executions.
Step 4: Obtaining the corrected p-value

https://github.com/EtorArza/RTDHW/blob/master/cpu_scores.md
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Data obtained from the paper
by [Arza et al., 2020]

Data corresponding to the
execution of B in machine M2

instance runtime in objective estimated equivalent objective
seconds, t1 value, ai runtime, t̂2 value, b̂i

bur26a 1.45 5432374 1.80 5426670
bur26b 1.45 3824798 1.80 3817852
bur26c 1.43 5427185 1.77 5426795
bur26d 1.44 3821474 1.78 3821239
nug17 0.44 1735 0.54 1734
nug18 0.51 1936 0.63 1936
nug20 0.68 2573 0.84 2570
nug21 0.77 2444 0.95 2444
tai10a 0.12 135028 0.14 135028
tai10b 0.12 1183760 0.14 1183760
tai12a 0.18 224730 0.22 224416
tai12b 0.19 39464925 0.23 39464925
tai15a 0.31 388910 0.38 388214
tai15b 0.31 51768918 0.38 51765268
tai20a 0.69 709409 0.85 703482
tai20b 0.68 122538448 0.84 122455319
tai40a 5.41 3194672 6.72 3227894
tai40b 5.41 644054927 6.72 637470334
tai60a 19.23 7367162 23.88 7461354
tai60b 19.21 611215466 23.86 611833935
tai80a 50.09 13792379 62.22 13942804
tai80b 50.1 836702973 62.23 830729983

Table 1.3: This table shows all the data in the second example. The first three
columns correspond to the QAP instances in which the EDA algorithm by Arza
et al. [2020] was tested, the runtime of the EDA in each instance, and the best
objective value they obtained in each execution, averaged in 10 executions per
instance. The information in these three columns was directly obtained from this
paper, without any additional executions. The next two columns show the esti-
mated equivalent runtimes and the average objective value scores that the local
search algorithm obtained with this runtime as the stopping criterion. The local
search algorithm was executed in machine M2.
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After the executions, the statistic k = #{ai < b̂i} is computed, which counts the
number of times that ai < b̂i. In this case, ai < b̂i happens 4 times, and therefore,
#{ai < b̂i} = 4. Now we compute the corrected p-value with with the chosen
pγ = 0.01, n = 17 and k = 4.

python corrected_p_value.py 0.01 17 4
>> 0.033192784

Step 5: Conclusion
The observed corrected p-value is lower than the chosen α = 0.05, and therefore
we reject H0. The conclusion is that with a probability of type I error of α = 0.05,
the performance of the local search procedure is statistically significantly better
than the performance of the EDA.
In this case, machine M1 is more powerful (in terms of computational capabilities)
than machine M2. If we had considered the original runtimes t1 as the stopping
criterion for algorithm B in machine M2 (shorter than the estimated equivalent
runtime t̂2), it would have been more difficult for the local search to perform better
than the EDA. In that case, H0 might not have been rejected.

1.5 Limitations, applicability and future work

Below, we discuss the limitations, applicability, and potential future developments
of the proposed methodology.

1.5.1 Multiple threads/cores

The purpose of the presented work is to compare two algorithms with the same
computational resources. One of the limitations of the presented model is that it
should only be applied with optimization processes that run on a single thread.
This is because the single thread PassMark score and the optimization process ρ′

(see Appendix 7.1.3) that were used to calibrate the linear regression in Defini-
tion 7 are also single threaded.
However, many of the optimization algorithms in the literature today are not sin-
gle threaded. For example, many problems involve linear algebra operations that
can benefit from a multi threaded speedup, and most consumer CPUs today have
at the very least two cores. Hence, the single thread PassMark score is not suit-
able for optimization algorithms that involve these types of operations. Although,
theoretically, it should always be possible to execute parallel code sequentially.
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The multi thread PassMark score does take into account the multi threaded nature
of the CPUs, and could therefore be used to re-calibrate the linear regression.
This re-calibration would also involve defining another optimization process ρ′

that makes use of the multi thread capabilities of the CPU, such as solving linear
problems or other processes that involve matrix multiplications.
There is, however, an additional limitation inherent to parallel executing algo-
rithms that makes their comparison in different machines difficult. Suppose we
have two algorithms that run in parallel and their maximum speedup is obtained
when executed in four cores, and additional threads/cores offer negligible improve-
ment. Now let us assume that we have two machines, M1 with four cores and M2
with sixteen. Let us also assume that the cores in these two machines are similar
in speed. Then, roughly speaking, we expect that the algorithm executed in ma-
chine M2 should have an equivalent runtime 4 times shorter. However, since the
two algorithms can only take advantage of the speedup provided by, at most, four
cores; the algorithm executed in machine M2 would have a huge disadvantage.
In general, it is difficult to know the maximum potential speedup of the execution
in parallel of an algorithm presented in the literature. This makes the prediction
of the equivalent runtime of parallel algorithms more challenging than for single
thread algorithms. Taking into account the additional difficulty associated to the
comparison of parallel algorithms, we think that the comparison of optimization
algorithms that run on single thread is a reasonable starting point. In future
work, it would be interesting to extend the proposed methodology for multi thread
algorithms.

1.5.2 CPU as the only bottleneck

The PassMark single thread score measures the computing capability of the CPU,
disregarding other components like the hard disk or the speed and the size of
the RAM memory. Therefore, the prediction of the equivalent runtime is only
applicable to optimization algorithms that are CPU intensive, or in other words,
optimization algorithms that have their execution speed limited by the CPU.
There are many optimization algorithms whose runtime is determined mainly
by the speed of the memory, instead of the CPU. Specially, when optimization
algorithms require large amounts of data to be loaded to memory repeatedly.
Conversely, when an optimization algorithm does not use too much memory, we
can expect its runtime to be more CPU dependent.
In addition, many optimization algorithms in machine learning today are executed
in GPUs and sometimes even on specialized hardware. Compared to CPU execu-
tion, GPU offers speedups when similar operations are applied to large amounts
of data. As in the multi core case, predicting the runtime of algorithms in GPUs

https://www.cpubenchmark.net/high_end_cpus.html
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is more challenging than in single threaded execution in CPU. GPUs themselves
have several processing cores and integrated memory that varies in size and speed
from model to model.
The proposed methodology could be adapted for algorithms whose runtime de-
pends on memory or GPU speed. In fact, PassMark has a benchmarks for RAM
and GPUs. Therefore, it could be possible to re-calibrate the linear regression
for either RAM or GPU dependent tasks. This re-calibration would also involve
defining another optimization process ρ′. Taking into account the additional dif-
ficulty associated to measuring the runtime of algorithms that depend on RAM
and GPU, we think that the comparison of optimization algorithms whose run-
time depends primarily on the CPU is a reasonable starting point for this chapter.
In future work, it could be interesting to adapt the methodology for algorithms
whose runtime depends on RAM or GPU.

1.5.3 Efficiency of the implementation

In addition to the limitations related to the hardware, the implementation of the
algorithms can also have an impact in the runtime. For instance, if the same
algorithm is implemented in both Python and C, the runtime in C is likely to
be shorter. But even within the same programming language, the runtime could
change depending on the compiler flags (i.e. the -O3 will probably outperform no
optimizations) or the configuration of the interpreter. In addition to the previous
factors, the implementation itself could also be more or less efficient, depending
on the skill of the programmer and the time it invests in designing efficient code.
Even though there are quite a few factors that depend on the implementation,
we argue that by implementing the code in the same programming language the
results should be comparable. In any case, even when the methodology proposed
in this chapter is not used, it is the responsibility of the researcher to make sure
that the comparison is fair in terms of the implementation. This limitation is not
inherent to the proposed methodology, but to the comparison of two algorithms
in general.

1.5.4 The variance in the PassMark single thread score

The PassMark single thread score is a score for CPUs that is correlated with their
single thread performance. However, the performance of CPUs is not the same
even within the same model. This is known as the silicon lottery, and is caused by
the manufacturing process of CPUs. In addition, the performance of the CPU will
also be limited by the cooling system used. With better cooling, we can expect a
better CPU performance.



1.5 Limitations, applicability and future work 43

The PassMark single thread score takes into account this variance, and the scores
are the averages of several users’ submitted results. Still, the cooling setup and
the silicon lottery of the researcher that wants to apply the proposed methodology
will inevitably introduce a variance to the predictions of the equivalent runtime.
The presented method models the probability of predicting an equivalent runtime
that is longer than the true equivalent runtime. And by doing so, it takes into
account this variance because the machines used in the calibration process of the
linear regression inevitably have different cooling systems and are also affected by
the silicon lottery.

1.5.5 Very high and low PassMark scores

Finally, there is a limitation regarding the chosen machine score: the PassMark
single thread score. In Section 1.2, we saw that a linear function is a suitable func-
tion to model the relationship between the machine score and the runtime of the
reference optimization process ρ′ (the definition of ρ′ is given in Appendix 7.1.3).
The reference optimization process ρ′ is used to calibrate the linear regression in
Definition 7 so that the equivalent runtime of other optimization processes ρ can
later be predicted based on this formula. The formula of the fitted linear regression
is t(Mj , ρ

′) ≈ −0.62280sj + 2008 where t(Mj , ρ
′) is the equivalent runtime of ρ′ in

machine Mj , and sj is the score of machine Mj . With this formula, a PassMark
single thread score higher than 3223 produces a negative estimated equivalent
runtime, which does not make sense. However, for the 8 machines used to fit the
data, as Figure 1.2 shows, the linear model seems to be suitable.
To overcome this limitation, we recommend applying the proposed methodology
only in machines with PassMark single thread scores in the interval (411, 2185).
These values correspond to the highest and lowest values used in the fitting of
the linear regression. More than 70% of the CPUs in the provided list (see the file
cpu_scores.md in the GitHub repo) have their PassMark score in this interval.
In addition, the CPUs that do not have their score in this interval are either
very new orvery old, which means that the proportion of the user base with the
PassMark single thread score in this interval is probably way higher than 70%.
As future work, and especially when more powerful processors are available, the
methodology can be updated to incorporate these new processors or even change
the machine score to other benchmark scores beyond the PassMark single thread
score.

https://github.com/EtorArza/RTDHW/blob/master/cpu_scores.md
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1.5.6 Assumptions of the corrected sign test

The corrected sign test is based on certain assumptions and should only be used
taking into account certain limitations that will be addressed in this section. First,
we will address the assumption related to the probability of predicting a runtime
longer than the true equivalent runtime. Let (t̂2 > t2)i be a random variable
that represents if the estimated equivalent runtime for algorithm A, instance i
in machine M2, is longer than the true equivalent runtime or not. The required
assumption is similar to assuming that t̂2 > t2 is mutually independent for each
instance i. Specifically, it is required1 that P[(t̂2 > t2)i|∩i ̸=j(t̂2 > t2)j ] < pγ .
One could argue that this assumption is false because (t̂2 > t2) depends on many
factors, such as the machines used in the experimentation. The same two machines
are used to compute all samples ai, bi suggesting that all (t̂2 > t2)i can never be
truly independent among each other. However, even though we can not ensure that
P[(t̂2 > t2)i|∩i̸=j(t̂2 > t2)j ] < pγ , by choosing a suitable correction coefficient γ,
in Section 1.2, we estimated that P[(t̂2 > t2)i] < pγ .
In addition to the previous assumption, the proposed methodology only considers
one side hypothesis testing. In this regard, it should only be applied to show a
statistically significantly superior performance of the algorithm whose equivalent
runtime was estimated (denoted as algorithm B in this chapter). The reason is
that algorithm B has a high probability of having a lower runtime, thus, it is easy
that B performs worse than A, while the opposite is difficult. Failing to reject H0
only indicates a lack of evidence against H0, and in our context, it only indicates
that there is not enough evidence to say that B performs better than A (it tells
us nothing about A performing better than B).

1.6 Conclusion

Usually, a fair comparison of optimization algorithms with a maximum runtime as
a common stopping criterion requires the algorithms to be executed in the same
machine. Unfortunately, it is not always possible to do this. An alternative is to
adjust the runtime of the algorithms relative to the speed of the machine in which
they are executed. In this chapter, we proposed a methodology to statistically
compare the performance of two optimization algorithms in two different machines,
when the results of one of the algorithms are already known and without having
to execute this algorithm again. The methodology ensures that the probability of
type I error does not increase due to the algorithms being executed in different

1 This assumption is required in the proof of Equation (1.5) in Appendix 7.1.5. Specif-
ically, it is used in Lemma 3.
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machines. To achieve this, first, the runtime of the executed algorithm is adjusted
based on the speed of the CPUs of both machines. Then, a modified one-sided sign
test is used so that the probability of using an unfairly longer runtime is taken
into account. We illustrate the application of the proposed methodology with two
examples.
Alongside this chapter, a tutorial with examples is presented in our GitHub repos-
itory. In addition, we offer two standalone scripts (also in the same repository):
one to estimate the equivalent runtime and another one to generate the corrected
p-values for the one sided statistical test. This will hopefully make it simple for
people to apply the proposed methodology.

Supplementary Material

Code to Reproduce the Results
The code to reproduce the results in this chapter are available in the GitHub
repository https://github.com/EtorArza/RTDHW.

Scripts to Apply the Methodology
The standalone scripts equivalent_runtime.py and corrected_p_value.py required
to apply the methodology are also available in the GitHub repository.

https://github.com/EtorArza/RTDHW
https://github.com/EtorArza/RTDHW
https://github.com/EtorArza/RTDHW
https://github.com/EtorArza/RTDHW/blob/master/equivalent_runtime.py
https://github.com/EtorArza/RTDHW/blob/master/corrected_p_value.py
https://github.com/EtorArza/RTDHW
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Comparing Two Optimization Algorithms
Through Stochastic Dominance

The performance of an stochastic optimization algorithm (the best objective value
observed) will vary in each execution, and thus can be modeled as a random
variable. Therefore, comparing the performance of two stochastic optimization
algorithms involves repeated executions, and the comparison can be carried out
via the averages or more sophisticated tools such as statistical null hypothesis
statistical tests. Existing methods considered for the comparison of two samples
of the performance of two algorithms have certain limitations.
For instance, in statistical null hypothesis tests, the p-value does not separate
between the effect size and the sample size [Benavoli et al., 2017, Calvo et al.,
2019a]. In short, statistical null hypothesis tests allow us to reach a yes-no type
conclusion, although a lot of information is lost. Bayesian analysis [Benavoli et al.,
2017, Calvo et al., 2019a] overcomes this limitation, but still disregard the "differ-
ent distributions same summary statistics" [Matejka and Fitzmaurice, 2017, F. J.
Anscombe, 1973] problem: two very different distributions can still have the same
Bayesian analysis result.
The stochastic dominance is a property for random variables. If the performance
of an optimization algorithm A stochastically dominates another algorithm’s per-
formance B, then this means that for all objective value v ∈ R, the probability
that A produces a value better than v is higher than for B. If this property holds,
then it is clear that algorithm A is better. Unfortunately, it is not always the case
that one of the algorithms stochastically dominates the other one. In such case, it
is necessary to consider other alternatives.
In this chapter, we propose framework to compare two samples of the performances
of two algorithms through the first order stochastic dominance. First, we introduce
a dominance measure for two random variables that quantifies the proportion in
which the cumulative distribution function of one of the random variables stochas-
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tically dominates the other one. In addition, based on this measure, we present a
graphical method that i) is directly estimated from observed samples, ii) includes a
confidence band that estimates the uncertainty, iii) visually shows the introduced
dominance measure and iv) can differentiate the effect size and the sample size.
With illustrative purposes, we re-evaluate the experimentation of an already
published work with the proposed methodology and we show that additional
conclusions—missed by the rest of the methods—can be inferred. Additionally,
the software package RVCompare was created as a convenient way of applying
and experimenting with the proposed framework.
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2.1 Introduction

The objective value returned by an optimization algorithm may be non-deterministic.
For example, in stochastic algorithms, the objective value returned depends on the
seed used in the random number generator. In these kinds of scenarios, we can
think of them as the observations of random variables with unknown distributions.
Based on these measurements, we sometimes need to choose the random variable
that takes the lowest (or largest) values1. The expected values of the random
variables—usually estimated as an average of several repeated observations—can
be used for this purpose. However, many statisticians have claimed that summa-
rizing data with simple statistics such as the average or the standard deviation is
misleading, as very different data can still have the same statistics [Matejka and
Fitzmaurice, 2017, Chatterjee and Firat, 2007].

Motivating example 1)

Let us first consider a real-world motivation. Suppose we need to choose the best
option between two stochastic gradient-based methods for optimizing the parame-
ters of a neural network. A neural network classifier trained with a gradient-based
method will produce different error rates [Goodfellow et al., 2016] each time it
is trained-tested, even if the same train-test dataset is used in each repeated
measurement. One of the reasons is that the learned classifier depends on the ini-
tialization of its weights (before applying a gradient-based optimizer), which are
often initialized randomly [Glorot and Bengio, 2010].
To illustrate the previous scenario, we trained and tested a neural network2 in the
MNIST dataset, and we compared the performance (the error rate on the test set)
of gradient-based optimizers in this data set: adam and RMSProp [Goodfellow
et al., 2016]. The error rate in the test set depends on the seed used to train
the neural network, and therefore, we can model the error rate of each of the
algorithms in this problem as a random variable. Figure 2.1 shows the kernel
density estimations of these random variables using the uniform kernel. As we
see in the figure, the error rate is not the same in each measurement and ranges
between 0.022 and 0.04. This shows that, in this context, it makes sense to model
the error rate as a random variable rather than a constant: a unique value cannot
represent the error rate without a significant amount of information loss.

1 Without loss of generality, minimization is assumed in this chapter.
2 We follow an example in the Keras [Chollet et al., 2015] library, and train the neural

network for one epoch.
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Fig. 2.1: Density estimates of the error rates produced by the optimizers adam and
RMSProp in the MNIST dataset. The sci-kit learn[Pedregosa et al., 2011] package
was used in the estimation.

Motivating example 2)

In the following, we present another example with synthetic data. Let us consider
the two random variables A and B shown in Figure 2.2. B has a lower expected
value than A, E[B] < E[A]. If we use the expected value as the only criterion,
then B takes lower values than A. However, notice that with a low but nonzero
probability, B will take very large values that are undesirable in the context of
minimization. Without loss of generality, in this chapter, we assume that lower
values are preferred.
An error with low variance is very important in an environment where reliability
is key, even if it means a slightly worse expected value. Some examples include
breast cancer detection [Cruz-Roa et al., 2017], or some reinforcement learning
tasks [François-Lavet et al., 2018, Mnih et al., 2013] like self-driving cars [Badue
et al., 2021].
In other circumstances, obtaining the lowest possible error can be more important
than reliability. One could argue that reliability is less important in sentiment anal-
ysis [Zhang et al., 2018], or in certain real-world optimization problems [Regnier-
Coudert et al., 2016], where obtaining the best possible solution is key. When
obtaining the best possible score is more important than reliability, it may even
be worth running an optimization algorithm several times and choosing the best
solution out of all the runs. In that case, A would also be preferred to B, as A has
a higher probability of taking a value lower than 0.01 (see Figure 2.2).

A. Related work

In these two examples, we have seen that summarizing and comparing random
variables with only the expected value can leave important information out (such
as which of the random variables can take lower values), especially when neither
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Fig. 2.2: The probability density of two random variables A and B, with prob-
ability density functions gA = 0.925 · gN (0.210325,0.002) + 0.075 · gN (0.010325,0.025)
and gB = 0.975 · gN (0.01875,0.002) + 0.025 · gN (0.06875,0.001) where N (ρ, σ) is the
normal distribution with mean ρ and standard deviation σ. Their expected values
are E[A] = 0.0205 and E[B] = 0.02 respectively.

random variable clearly takes lower values than the other one. Many works in the
literature use statistical null hypothesis tests [Conover, 1980, Mann and Whitney,
1947, Wilcoxon, 1945] to analyze observed samples and choose one of the random
variables accordingly. Nonetheless, as claimed by Benavoli et al. [2017], statistical
null hypothesis tests have their limitations too: when the null hypothesis is not
rejected—this will happen often when the random variables being compared take
similar values—, we get no information. Not only that but even when the null
hypothesis is rejected, it does not quantify the amount of evidence in favor of the
alternative hypothesis [Benavoli et al., 2017].

B. Contribution

In this chapter, we propose a graphical framework that compares two random vari-
ables using their associated cumulative distribution functions, in the context of
choosing the one that takes lower values. Specifically, we first propose 8 desirable
properties for dominance measures: functions that compare two random variables
in this context of stochastic dominance. From the measures in the literature, we
find that the probability that one of the random variables takes a lower value than
the other random variable satisfies most of these properties. In addition, we pro-
pose a new dominance measure, the dominance rate, that also satisfies most of
the properties and is related to the first-order stochastic dominance [Quirk and
Saposnik, 1962]. Then, we propose a graphical method that involves visually com-
paring the random variables through these two dominance measures. The graphical
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method, named cumulative difference-plot, can also be used to compare the quan-
tiles of the random variables, and it models the uncertainty associated with the
estimate. By re-evaluating the experimentation of a recently published paper with
the proposed methodology, we demonstrate that this new plot can be useful to
compare the performance of stochastic optimization algorithms, especially in the
case when the random variables take similar values.
Finally, an R package named RVCompare, available in CRAN, is distributed along-
side this chapter. With this package, the cumulative difference-plot can be conve-
niently computed. The source code of the package and the supplementary material
for the chapter are available at github.com/EtorArza.
The rest of the chapter is organized as follows: in the next section, we propose
eight desirable properties for dominance measures. Then, in Section 2.3, we study
two dominance measures that satisfy most of these properties. Section 2.4 intro-
duces a graphical method to compare random variables. In Section 2.5, we discuss
related methods in the literature and compare them to the proposed approach.
Section 2.6, evaluates the proposed graphical method and other alternatives in
an already published experimentation. In Section 2.7, we state the assumptions
and limitations of the proposed cumulative difference-plot. Finally, Section 2.8
concludes the chapter.

2.2 Desirable properties for dominance measures

2.2.1 Background

When we have two random variables and we need to choose the one that takes
the lowest values, we usually take i) the random variable with the lowest expected
value or ii) the random variable with the lowest median. The median [Conover,
1980] of a continuous random variable A, denoted as mA, is the value that satisfies
P(A < mA) = P(A > mA). In other words, if mA is the median of A, a sample of
A is as likely to be lower than mA as it is to be higher.
Interestingly enough, the median and the expected value have their strengths and
weaknesses when it comes to choosing the random variable that takes the lowest
values. In the following, we elaborate on this point with two particular cases of
study. The first case is shown in Figure 2.3, with two random variables A and B.
Each of the random variables is a mixture of two Gaussian distributions with the
same shape and similar weight in the mixture. It is clear that A tends to take
values lower than B, as the Gaussian distributions of A are centered in 0.05 and
0.07, while the Gaussian distributions of B are centered in 0.06 and 0.08. While
the expected values of A and B are aligned with this intuition, the medians are

https://github.com/EtorArza
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not; as E[A] < E[B] and mA > mB . However, the expected value does a poor
job of summarizing the bimodal shape of A or B: both of these random variables
usually take much higher or much lower values than their expected values.
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Fig. 2.3: Case 1. The probability density functions of A and B: gA = 0.489 ·
gN (0.05,0.00125) + 0.511 · gN (0.07,0.00125) and gB = 0.511 · gN (0.06,0.00125) + 0.489 ·
gN (0.08,0.00125) where gN (ρ,σ) is the density function of the normal distribution
with mean ρ and standard deviation σ.

The second case is shown in Figure 2.4. With a very high probability, A takes
lower values than B, even though B will rarely take really low values, which
might prove useful in some particular applications. In this case, mA < mB and
E[A] > E[B], hence, the comparison of the medians are aligned with the intuition
that A takes lower values than B, while the expected values are not. In the presence
of outliers [Carreño et al., 2020], the median is considered more robust than the
expected value [Rousseeuw and Hubert, 2011].
Notice that, in the second case, it is not trivial to choose betweenA andB, asB can
take lower values, but A is more likely to be lower than B. So, when can we claim
that one of them clearly takes lower values than the other? When the cumulative
distribution of A is higher than the cumulative distribution of B in the entire
domain of definition: in that case, A has a higher probability than B of taking
values lower than x, for all x in the domain of definition. This is known [Mann and
Whitney, 1947] as A being stochastically smaller than B. Depending on the field
of study, it can also be referred to as “A stochastically dominates B” [Quirk and
Saposnik, 1962, Schmid and Trede, 1996, Bennet, 2013]. The stochastic dominance
can be further relaxed, obtaining what is known as first-order stochastic dominance
in the literature [Quirk and Saposnik, 1962, Schmid and Trede, 1996], although,
for the sake of brevity, we will call it stochastic dominance throughout the chapter.



54 2 Comparing Two Optimization Algorithms Through Stochastic Dominance

0

100

200

Expected value Median

0.05 0.10 0.15 0.20
x

0

100

200

A

B

Fig. 2.4: Case 2. The probability density functions of A and B: gA =
gN (0.211325,0.002) and gB = 0.925 · gN (0.21875,0.002) + 0.075 · gN (0.04875,0.002) respec-
tively.

Definition 9 (Stochastic dominance) Let A and B be two continuous random
variables defined in a connected subset N ⊆ R. We say that A stochastically dom-
inates B, denoted as A ≻ B, when
i) GA(x) ≥ GB(x) for all x ∈ N
and
ii) There exists an x ∈ N such that GA(x) > GB(x).

where GA and GB are the cumulative distributions of A and B respectively.
For A not to stochastically dominate B (denoted as A ⊁ B), either condition i)
or ii) must be violated. Note that A ⊁ B is not equivalent to B ≻ A. The special
case that A ⊁ B and B ⊁ A at the same time is defined, it is said that A and B
cross [Bennet, 2013], and we denote it as A ≶ B. In the non trivial (A ̸= B) case
that A ≶ B, there exists two points σ1, σ2 ∈ N such that GA(x1) < GB(x1) and
GA(x2) > GB(x2): we cannot say, for all x ∈ N , that one of the random variables
has a higher probability of taking values lower than x.
Let us now see how the cumulative distributions can be used to compare random
variables in an example. In Figure 2.5a, the cumulative distributions of the random
variables described in Figure 2.3 are shown. We can see that GA(x) > GB(x) for
almost all x ∈ N . But there is at least a point x ∈ (0.06, 0.07) where GA(x) <
GB(x), hence, A ≶ B. The same happens in Case 2 shown in Figure 2.5b. As in
the previous case, A ≶ B, because even though GA(x) > GB(x) for almost all
x ∈ N (in which gA(x) ̸= 0 and gB(x) ̸= 0), for all x ∈ (0.05, 0.2), GA(x) < GB(x).
In the following, we will study how to quantify the difference between two random
variables, emphasizing the degree to which one of the random variables stochasti-
cally dominates the other.
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Fig. 2.5: The cumulative distributions of the two cases shown in Figures 2.3 and
2.4.

2.2.2 Desirable properties

There are many ways to compare two random variables, each with a different point
of view: some aim to find how dissimilar two random variables are (disregarding
which of them takes lower values), while other methods try to guess if one of the
random variables stochastically dominates the other one. In the context of this
chapter, we are interested in measures that, given two random variables, quantify
through the stochastic dominance how much one of the random variables tends to
take lower values than the other. We use the term dominance measure to refer to
functions that quantify the difference between two random variables following this
intuition. In this section, we define eight desirable properties for these dominance
measures, and we study the suitability of several measures from the literature.

Definition 10 Let A and B be two continuous random variables. We define a
dominance measure between two random variables as a function C that maps two
random variables into a real value C(A,B).

It is desirable that C(A,B) quantifies the stochastic dominance. Hence, we want
C(A,B) to be proportional to the portion of the support of A and B in which
GA(x) < GB(x). Formally, this intuitive idea can be represented as:

Property 1 C is defined in the [0, 1] interval, where:
i)

C(A,B) = 1 ⇐⇒ A ≻ B

ii)
C(A,B) = 0 ⇐⇒ B ≻ A
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iii)
C(A,B) ∈ (0, 1) ⇐⇒ B ≶ A

Proposition 1 If a dominance measure C satisfies Property 1 i) and ii), then it
also satisfies Property 1 iii).

Proof. By definition, B ≶ A iff A ⊁ B and B ⊁ A. Property 1 i) and ii) implies
that A ⊁ B and B ⊁ A iff C(A,B) ̸= 1 and C(A,B) ̸= 0. From Property 1 i) also
C(A,B) ∈ [0, 1], thus B ≶ A iff C(A,B) ∈ (0, 1).

Property 2 (Antisymmetry) C(A,B) and C(B,A) add up to 1.

C(A,B) = 1− C(B,A)

It is noteworthy that Property 1 ii) can be inferred from Property 1 i) and Prop-
erty 2.

Property 3 The inversion (under the sum) of the operands of C equals the in-
version of C:

C(−1 ·A,−1 ·B) = 1− C(A,B)

Property 4 When A and B are equal, C is symmetric.

A = B =⇒ C(A,B) = C(B,A)

Assuming Property 2 holds, we can rewrite the previous property as:

A = B =⇒ C(A,B) = 0.5.

Note that the opposite is not true:

C(A,B) = C(B,A) ⇏ A = B

Property 5 (Invariance to translation) Moving the domain of definition of A
and B by the same amount does not change C1.

for all λ ∈ R, C(A+ λ,B + λ) = C(A,B)

Property 6 (Invariance to scaling) Scaling both A and B by the same positive
amount does not change C.

for all λ > 0, C(λ ·A, λ ·B) = C(A,B)
1 We define A+ λ as the random variable that is sampled in two steps: first obtain an

observation from A and then add λ to this observation. We define λ · A in a similar
way.
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In the following lines, we give an intuition for Property 7. In Case 2, shown in
Figure 2.4, we saw that for all x ∈ (0.075, 0.2), GA(x) < GB(x). However, notice
that most of the mass of A and B is in the interval (0.2, 0.23), where GA(x) >
GB(x). This means that most of the observed points of A and B will be in that
interval. Therefore, it makes sense that GA(x) > GB(x) has a higher weight
than GA(x) < GB(x) in the computation C(A,B). In other words, the small
mass of B centered in 0.05 can only account for a small part of C(A,B). In
what follows, this is formalized as B being a mixture of two distributions, where
one of the distributions represents this small mass with a small weight in the
mixture. Property 7 states that the change in the computation of C produced by
the distribution of small weight in the mixture can be, at most, its weight in the
mixture.

Property 7 Let B = M[1−τ,τ ](B1, B2) be the mixture1 distribution of B1 and
B2 with weights 1 − τ and τ respectively and let A be another random variable.
Then,

|C(A,B)− C(A,B1)| ≤ τ
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Fig. 2.6: Case 3. The probability density functions of A and B: gA = gU(0.2,0.21)
and gB = 0.925 · gU(0.19,0.2) + 0.075 · gU(0.04,0.05) respectively, where U(0.2, 0.21) is
the uniform distribution in the interval (0.2, 0.21).

Property 8 explains that, under certain circumstances, C(A,B) is invariant to the
translation/dilatation of one of the random variables. Specifically, it states that
the distribution of one of the random variables (B) can change without affecting

1 The probability density function of M[1−τ,τ ](B1, B2) is defined as (1− τ) · gB1(x) +
τ · gB2(x). Note that τ ∈ [0, 1].
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the value of C(A,B) as long as the changed part does not overlap with the support
of the other random variable (A). Let us assume that the random variable B is
defined as mixture distribution M[1−ρ,ρ](B1, B2) where the supports of B2 and
A do not overlap, with ρ ∈ (0, 1). Property 8 states that a translation and/or
dilatation can be applied to B1, as long as: i) this transformation does not cause
an overlap of the supports of A and B2, and ii) partial transformations will also
not cause an overlap (hence the need for ξ1 and ξ2 in Property 8). In the following,
we formalize this property:

Property 8 Let B =M[1−ρ,ρ](B1, B2) be the mixture distribution of B1 and B2
with weights 1−ρ, and ρ, respectively and let A be another random variable with ρ ∈
(0, 1). Suppose that supp(B2)∩supp(A) = ∅. Let λ1 ∈ R+, λ2 ∈ R be two numbers
such that for all ξ1, ξ2 ∈ [0, 1], supp((1 + (λ1 − 1)ξ1) ·B2 + ξ2λ2) ∩ supp(A) = ∅.
Then,

C(A,B) = C(A,M[1−ρ,ρ](B1, λ1 ·B2 + λ2)

This property can be applied to the distributions in Case 3 shown in Figure 2.6. For
example, the probability mass in the interval (0.04, 0.05) could have been centered
in 0.1 or 0.15 instead of 0.045, without any changes to C(A,B). In addition to the
position, the shape of the mass can also be altered as long as its weight in the
mixture stays the same and does not overlap with A.
Unfortunately, it is impossible that a dominance measure satisfies Properties 1 and
7 at the same time. Intuitively, the problem is that, given the distributions A and
B = M[1−τ,τ ](B1, B2), it is possible that A ≻ B1 and at the same time B ≻ A
with τ < 0.51. We formalize and prove this claim in the following proposition:

Proposition 2 Let C be a dominance measure.
i) If C satisfies Property 1, then it fails to satisfy Property 7.
ii) If C satisfies Property 7, then it fails to satisfy Property 1.

Proof. A dominance measure only satisfies a property when that property is true
for every possible random variable. Consequently, to prove this proposition, it is
enough to find four random variables A,B,B1 and B2 where
i) B =M[0.1,0.9](B1, B2),
ii) A ≻ B1,
iii) B ≻ A.
If four random variables can be found that satisfy these three statements, then
with Property 1 we obtain that C(A,B1) = 1 and C(A,B) = 0. This contradicts

1 See https://etorarza.github.io/pages/2021-interactive-comparing-RV.html for an in-
teractive example that illustrates the above point.

https://etorarza.github.io/pages/2021-interactive-comparing-RV.html
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Property 7, because |C(A,B)− C(A,B1)| ≰ 0.1. The same is true the other way
around, Property 7 states that |C(A,B)− C(A,B1)| ≤ 0.1 and this contradicts
Property 1, with C(A,B1) < 1 or C(A,B) > 0.
A simple example in which this happens is for the random variables
A = U(0, 1),
B =M[0.9,0.1](U(0.1, 1),U(−0.5, 0)),
B1 = U(0.1, 1),
B2 = U(−0.5, 0).
The cumulative distribution functions of A, B and B1 are shown in Figure 2.7,
where it is clear that B ≻ A and A ≻ B1.
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Fig. 2.7: The cumulative distribution functions of A, B and B1.

In the following, we will briefly review several measures in the literature and,
specifically, which of the proposed properties they satisfy. Many measures describe
the difference between A and B, disregarding whether the difference in cumulative
density is positive or negative. Consequently, they cannot satisfy Property 1 (see
Appendix 7.2.1 for details). This is the case for f-divergences—including Kullback-
Leibler, Jensen-Shannon, the Hellinger distance and the total variation—and for
the Wasserstein distance. These measures also fail to satisfy several other proper-
ties (see a summary in Table 2.1).

2.3 Dominance measures

Most of the measures in the literature fail to satisfy the eight properties introduced
in Section 2.2.2. However, there is a dominance measure in the literature that
overcomes this limitation: the probability that A < B [Conover, 1980].
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Table 2.1: Which of the properties in Section 2.2.2 does each measure satisfy?

1 2 3 4 5 6 7 8
Kullback-Leibler divergence ✓ ✓ ✓ ✓

Jensen-Shannon divergence ✓ ✓ ✓ ✓

Total-Variation ✓ ✓ ✓ ✓ ✓

Hellinger distance ✓ ✓ ✓ ✓ ✓

Wasserstein distance ✓ ✓

CP : Probabitlity of A < B ✓ ✓ ✓ ✓ ✓ ✓ ✓

CD: Dominance rate of A over B ✓ ✓ ✓ ✓ ✓ ✓ ✓

A checkmark ✓ indicates that the measure satisfies the property.

2.3.1 CP : the probability of A < B

We can compare A and B with the probability that a value sampled from A is
smaller than a value sampled from B. When the random variables are exactly the
same, this probability is 0.5. Formally, given two continuous random variables A
and B defined in a connected set N ⊆ R, the probability that A < B is defined
as:

CP = P(A < B) =
∫
N

gB(x)GA(x)dx. (2.1)

One of the advantages of CP is its easy interpretation. In addition, CP is a well
behaved dominance measure, as it satisfies Properties 2, 3, 4, 5, 6, 7 and 8. It also
satisfies a weak version of Property 1:

CP(A,B) = 1 =⇒ A ≻ B =⇒ CP(A,B) ∈ (0.5, 1]

and

CP(A,B) = 0 =⇒ B ≻ A =⇒ CP(A,B) ∈ [0, 0.5).

Note that, when A ≻ B, CP(A,B) ̸= 1 is still possible, and this is why it does not
satisfy Property 1 entirely. For instance, when the probability densities of A and
B are two Gaussian distributions with the same variance and the mean of A is
lower, then A ≻ B but CP(A,B) < 1.
So far, we have seen that CP satisfies most of the properties. Unfortunately, since
it does not satisfy Property 1, not all cases of A ≻ B can be identified by CP .
We now propose a dominance measure that satisfies Property 1 and, thus, can be
used to identify cases in which A ≻ B.
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2.3.2 CD: dominance rate

Intuitively, the dominance rate is a dominance measure that quantifies the extent
to which A has a lower cumulative distribution function than B, normalized by
the portion of the probability densities with different cumulative distributions.

Definition 11 (Dominance density function) Let A and B be two continuous
random variables defined in a connected set N ⊆ R. We define the dominance
density function as follows:

DA,B(x) =


gA(x) · kA if GA(x) > GB(x)
−gB(x) · kB if GA(x) < GB(x)

0 otherwise.

where kA =
(∫

{x∈N | GA(x) ̸=GB(x)} gA(t)dt
)−1

is the normalization constant and
kB is defined likewise.

Note that the dominance density function is not correctly defined when
∫
N
|gA(x)−

gB(x)|dx = 0.

Definition 12 (Dominance rate) Let A and B be two continuous random vari-
ables defined in a connected set N ⊆ R. The dominance rate of A over B is defined
as

CD(A,B) =
{

0.5, if
∫
N
|gA(x)− gB(x)|dx = 0

0.5
∫
N
DA,B(t)dt+ 0.5, otherwise.

Basically, we are measuring the amount of mass of A in which GA(x) > GB(x) mi-
nus the amount of mass of B in which GA(x) < GB(x). This value is then normal-
ized so that all sections in which GA(x) = GB(x) are ignored, i.e.

∫
N
DA,B(t)dt =

EA[I[GA(x) > GB(x)]]
EA[I[GA(x) ̸= GB(x)]] −

EB [I[GA(x) < GB(x)]]
EB [I[GA(x) ̸= GB(x)]]

Finally, we apply the linear transformation l(x) = 0.5x − 0.5 ensuring the domi-
nance rate is defined in the interval [0, 1] (instead of [−1, 1]), required to comply
with Property 1.
From
i) CD(A,B) = 1 ⇐⇒ A ≻ B and
ii) CD(A,B) = 0 ⇐⇒ B ≻ A,
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we deduce that the dominance rate satisfies Property 1. Note that the previous
deduction is only possible when gA and gB are bounded, as this implies that GA
and GB are continuous. Specifically, it is enough to find a point in N in which
GA(x) > GB(x) to satisfy that

∫
x∈{t∈N | GA(t)>GB(t)} gA(x)dx > 0, and this point

is guaranteed to exist when A ≻ B because of the definition of the dominance.
The dominance rate is also a well behaved dominance measure, as it satisfies
Properties 1, 2, 3, 4, 5, 6 and 8.
We have seen that the dominance measures CP and CD satisfy most of the prop-
erties listed in Section 2.2.2. As we will see in the next section, their values are
related.

2.3.3 The relationship between CP and CD

In Section 2.2.1 we stated that CP = 1 is a stronger condition than CD = 1,
because CP(A,B) = 1 implies that for all x in N that GA(x) < 1, GB(x) = 0. On
the other hand, CD = 1 implies that A ≻ B (the two conditions in Definition 9),
which is weaker. In the diagram below, we show the values of CP and CD that imply
other values of CP and CD. Each arrow can be interpreted as an implication. The
implications are transitive: i.g. CD(A,B) = 1 implies CP(A,B) > 0.5.

CP(A,B) = 1

CD(A,B) = 1

CD(A,B) > 0.5CP(A,B) > 0.5

Fig. 2.8: Implications between the values of CP and CD.

2.3.4 Estimating CP and CD

In the previous sections, we have assumed that the random variables A and B are
known, but usually, we only have a few observed values from each random variable.
Therefore, it may be interesting to estimate CP and CD from the observed samples.
With this purpose, we propose the following empirical estimates of CP and CD.



2.4 Cumulative difference-plot 63

Definition 13 (estimation of CP) Let A and B be two continuous random vari-
ables and An = {a1, ..., an} and Bn = {b1, ..., bn} their n observations respectively.
We define the estimation of the probability that A < B as

C̃P(An, Bn) =
∑

i,k=1...n

sign(bk − ai)
2n2 + 1

2 .

This estimator is well known in the literature because it is the U statistic of the
Mann-Whitney test [Mann and Whitney, 1947].

Definition 14 (estimation of CD) Let A and B be two continuous random vari-
ables and An = {a1, ..., an} and Bn = {b1, ..., bn} their n observations respectively.
Let C2n = {cj}2n

j=1 be the list of all the sorted observations of An and Bn where
c1 is the smallest observation and c2n the largest. Suppose that ai ̸= bk for all
i, k = 1, ..., n. We define the estimation of the dominance rate as

C̃D(An, Bn) =
2n∑
j=1

I(ĜA(cj) > ĜB(cj) ∧ cj ∈ An)
2n −

2n∑
j=1

I(ĜA(cj) < ĜB(cj) ∧ cj ∈ Bn)
2n + 1

2 .

where I is the indicator function and ĜA(x) and ĜB(x) are the empirical distri-
butions estimated from An and Bn respectively.

For simplicity, this estimator of the dominance rate assumes there are no repeated
samples. However, it can be extended to take into account repeated values (see
Appendix 7.2.3).

2.4 Cumulative difference-plot

In this section, we propose a graphical method called cumulative difference-plot
that shows the estimations of CP and CD decomposed by quantiles: CP and CD can
be visually estimated from the difference plot. In addition, the proposed plot allows
a comparison of quantiles of the two random variables. The proposed approach also
models the uncertainty associated with the estimation of the cumulative difference-
plot from the data.
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2.4.1 Quantile random variables

From a practical point of view, it is unlikely that the probability densities of
the compared random variables A and B are known. Usually, we only have n
observations An = {a1, ..., an} and Bn = {b1, ..., bn} from each random variable.
The proposed cumulative difference-plot is based on two random variables YA and
YB that are defined with these observations. Specifically, we define the densities
of the two quantile random variables YA and YB as a mixture of several uniform
distributions in the interval [0, 1].

Fig. 2.9: An example of the probability density functions of YA and YB given the
observed samples An ∪Bn.

The uniform distributions in the quantile random variables are placed according
to their rank in An∪Bn. Assuming no repetitions, for each value k in An∪Bn, its
corresponding kernel is centered in rank(k)+0.5

2n where rank(k) is the ranking of k
in An ∪Bn. The kernels have a bandwidth of 1/4n, ensuring that the sum of the
densities of YA and YB is constant. If there are repeated values in An ∪Bn, their
corresponding kernel is placed at the middle of the previous and the next rank,
and the width of the kernel is increased proportionally with respect to the number
of repetitions. See Figure 2.9 for an example. In Appendix 7.2.2.1 we show how
to compute the probability densities of YA and YB step by step.
A more simple approach would be to estimate and define the quantile random
variables through the empirical cumulative distribution functions of the observed
samples of A and B. However, the quantile random variables defined through
uniform kernels have some interesting properties: they have the same CP and
CD as the kernel density estimations of A and B (shown in Appendix 7.2.2.2). In
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addition, gYA
(x)+gYB

(x) = 2 for all x ∈ [0, 1]. As we will later see, these properties
are essential for the interpretation of the cumulative difference-plot.

2.4.2 Confidence bands

The cumulative difference-plot is based on the cumulative distribution functions of
YA and YB , which are estimated from the observed samples. This means that we
need to model the uncertainty associated with the estimations. Confidence bands
are a suitable choice in this scenario: a confidence band is a region in which the
cumulative distribution is expected to be with a certain confidence. The size of the
band is determined by the number of samples and the desired level of confidence:
a high number of samples or a low level of confidence are associated with a small
band size. There is an extensive literature [Cheng and Iles, 1983, Steck, 1971,
Cheng and Lies, 1988, Wang et al., 2013, Faraway and Myoungshic Jhun, 1990,
Bickel and A. M. Krieger, 1989, Hall and Horowitz, 2013] on how to estimate the
confidence bands of cumulative distributions, and, in this chapter, we use a simple
bootstrap approach1.
To illustrate how to interpret the confidence bands of the cumulative distributions
of YA and YB , we will assume that we have observed n = 400 samples from
each random variable A and B from Case 2 (see Figure 2.4 in Section 2.2.1). We
show the 95% confidence bands of the cumulative distribution functions of YA
and YB in Figure 2.10. The estimated cumulative distribution functions of YA and
YB resemble the cumulative distribution functions of A and B from Figure 2.5b.
However, there are several relevant differences. In Figure 2.10, we observe that YA
and YB are defined in the interval [0, 1], while the cumulative distribution functions
of A and B are defined in the sample space. Each of the values in this interval
can be used to deduce the distribution with the lowest quantile: at x = 0.5, the
cumulative distribution function of YA is larger than the cumulative distribution
function of YB , hence, the median of A is lower than the median of B. In addition,
the sum of the density function of YA and YB is constant. As a result, unlike A

1 The bootstrapping [Efron and Tibshirani, 1993] method involves considering the ob-
served values as a population from which random samples with replacement are drawn.
These samples are then used to estimate the upper and lower pointwise confidence
intervals of the cumulative distribution of YA and YB . Since a pointwise estimation
of the confidence interval is used, we can expect that a portion proportional to α will
fall outside the confidence band.
Note that we are interested in having an overall confidence of 1 − α, thus, we want
that the cumulative distributions of YA and YB are inside their confidence bands at
the same time with this level of confidence [Goeman and Solari, 2014, Bauer, 1991].
This means that we have to use a higher confidence level for each band:

√
(1− α).
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Fig. 2.10: The confidence bands of the cumulative distributions of the quantile
random variables YA and YB corresponding to the distributions A and B in Case
2 (shown in Figure 2.4).

and B, the probability density functions of YA and YB do not have large areas
where the probability density is zero.

2.4.3 The cumulative difference-plot

In this section, we introduce a new graphical method designed to visually analyze
the dominance of A and B. Without loss of generality, a minimization1 setting is
assumed: lower values in A and B are preferred to higher values. It builds upon
the difference function defined as

diff: [0, 1] −→ [−1, 1]
x 7 −→ GYA

(x)−GYB
(x),

(2.2)

where GYA
(x) and GYB

(x) are the cumulative distribution functions of YA and
YB , respectively.

1 Note that if the random variables being compared take values in a maximization
setting (higher values are preferred), then the random variables need to be redefined
as the inverse with respect to the sum (this simply means the sampled values are
multiplied by −1) before generating the cumulative difference-plot. With this change,
the interpretation of the cumulative difference-plot is consistent and intuitive: for
either minimization or maximization, on the left side of the cumulative difference-
plot, the most desirable values that the random variables take are compared. If the
difference is positive on the left side of the cumulative difference-plot, then the best
values that A takes are better than the best values that B takes. Similarly, the worst
values are compared on the right side of the cumulative difference-plot: if the difference
is positive on this side, then the worst values of A are better than the worst values of
B.
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The cumulative difference-plot is the plot of the difference function (the difference
between the cumulative distributions of YA and YB), including a confidence band.
A positive value in the cumulative difference-plot can be interpreted as a quantile
in which the cumulative distribution function of A is larger than the cumulative
distribution function of B. Hence, if the difference is positive at 0.5, the median
of A is lower than the median of B (assuming minimization). In this sense, the
best values obtained by both random variables are compared on the left side, and
the worst values are compared on the right side.

2.4.3.1 CP and CD in the cumulative difference-plot

CP and CD can be directly obtained from the proposed plot. The integral of the
difference between YA and YB is CP − 0.5 (we prove this in Appendix 7.2.3). For-
mally, CP = 0.5 +

∫ 1
0 diff(x)dx. However, in practice, CP can be visually estimated

by adding 0.5 to the difference in the areas over and under 0. For the example
shown in Figure 2.11, CP = 0.5−Area1+Area2. The difference can only be in the
area highlighted in blue in the cumulative difference-plot. When the probability
that A < B is 1, the difference is at its maximum: in the cumulative difference-plot
we see a line from (x, f(x)) = (0, 0) to (0.5, 1) and from (0.5, 1) to (1, 0). Similarly,
when the probability that A < B is 0, the difference between YA and YB is equal
to the lowest possible values inside the light blue area.
By contrast, CD is represented in the plot as the total length in which the difference
is positive minus the total length in which the difference is negative. Specifically,

CD =

∫ 1
0 I[diff(x) > 0]− I[diff(x) < 0]dx

2 + 1
2∫ 1

0 I[diff(x) ̸= 0]dx
, (2.3)

where I is the indicator function (we prove this in Appendix 7.2.3). As an example,
CD is proportional to Length2− Length1 in Figure 2.11: it is higher than 0.5,
because Length2 > Length1. In this example, there is no need to divide by the
total length in which the difference is nonzero because the difference is zero in
only a limited number of points. In such cases, CD can also be estimated as the
total length in which diff(x) > 0. In the example in Figure 2.11, the estimation is
CD = Length2 ≈ 0.75. Note that Equation (2.3) is not correctly defined when YA
and YB are equal, but this is an easy case to identify, as the difference is constantly
0.
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Fig. 2.11: The areas and lengths in the cumulative difference-plot that can be used
to deduce CP and CD.
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Fig. 2.12: The cumulative difference-plot for Case 2: the difference between the
cumulative distribution functions of YA minus YB corresponding to the distribu-
tions A and B in Case 2 (shown in Figure 2.4).

2.4.3.2 Illustrative example

Figure 2.12 shows the cumulative difference-plot for the random variables A and
B from Case 2 (their densities were shown in Figure 2.4). First, we see that the
difference is both negative and positive, hence, neither random variable domi-
nates the other. The difference is negative when x = 0.05 or lower. This can be
interpreted as B having a smaller 5% quantile than A. The difference is positive
otherwise, thus we deduce from the cumulative difference-plot that the 25%, the
50% (the median), the 75% and 95% quantiles are smaller in A than in B. In other
words, the random variable B can take really low values with a small probability,
but apart from these really low values, A takes lower values than B. This is also
reflected by CD(A,B) > 0.75, as deduced from diff(x) > 0 for all x ∈ (0.25, 1).
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The difference is also near its maximum value, implying that its integral is high
and thus CP (the probability that A < B) is also near 1.

2.5 Related work

Statistical assessment of experimental results is a very studied research topic.
In this section, we locate our proposal in the field and focus on similarities and
differences with respect to other random variable comparison methods.

2.5.0.1 Visualizing densities

As mentioned in the introduction, it makes sense to model the performance of
stochastic optimization algorithms as random variables. Therefore, statistical tools
that compare random variables have become an increasingly important part of the
analysis of experimental data. Among these tools, visualization techniques such
as histograms or box-plots are usually applied before the rest of the methods.
The advantage of these methods is their simplicity. If one of the random variables
clearly takes lower values than the other, then these two methods effectively convey
this message simply and naturally. Unfortunately, when both random variables
have similar probability densities, these two methods might fail to represent the
random variables in a way that makes it easy to compare them (example shown
in Section 2.6.1).
The simplicity of these methods is also a drawback: for example, they give no infor-
mation about the uncertainty associated with the estimates. The histogram suffers
from the bin positioning bias [Thas, 2010, scikit-learn developers, 2021]. A kernel
density estimation with the uniform kernel—considered to be the moving window
equivalent of the histogram—overcomes this limitation [Thas, 2010], at the cost of
using a more complex model. Similarly, the box-plot has a “non-injectivity” prob-
lem: very different data can still have the same box-plot [Matejka and Fitzmaurice,
2017, Chatterjee and Firat, 2007]. The violin-plot is an extension of the box-plot
that overcomes the above limitation by combining the kernel density estimate of
the random variables with the traditional box-plot [Hintze and Nelson, 1998]. The
proposed cumulative difference-plot improves on these methods because it repre-
sents the data clearly, even when the two random variables being compared are
similar.
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2.5.0.2 Statistical null hypothesis tests

Statistical null hypothesis tests can be used to compare random variables without
having to visually represent them. In a very general way, carrying out a statistical
null hypothesis test involves the following: first, a null hypothesis is proposed. Un-
der certain assumptions, the null hypothesis implies that a given statistic obtained
from the data follows a known distribution. Then, assuming the null hypothesis is
true, the probability of obtaining data with a more extreme statistic value1 than
the observed [Conover, 1980] is computed. When the probability under the null
hypothesis of the observed statistic is lower than a predefined threshold, the null
hypothesis is rejected and the alternative hypothesis is accepted [Greenland et al.,
2016]. Usually, this threshold is set at an arbitrary but well established [Wasser-
stein and Lazar, 2016] p = 0.05, although recently, further reducing the threshold
to p = 0.005 has been proposed [Benjamin et al., 2018, Ioannidis, 2018].
In the context of comparing two random variables A and B, in general, we cannot
assume that a statistic obtained from the data follows a known distribution under
the null hypothesis. In this case, a non-parametric test [Conover, 1980] is a suitable
choice. Specifically, the Mann-Whitney test [Mann and Whitney, 1947] is a good
choice, as the samples observed from the random variables are i.i.d for each random
variable 2. With this test, the null hypothesis is that P(A > B) = P(B > A), and
a possible alternative hypothesis is that A ≻ B [Mann and Whitney, 1947].
Statistical null hypothesis tests have some limitations: for example, the p-value
does not separate between the effect size and the sample size [Benavoli et al., 2017,
Calvo et al., 2019a]. In addition, rejecting the null hypothesis does not always mean
that there is evidence in favor of the alternative hypothesis: it just means that
the observed statistic (or a more extreme statistic) is very unlikely when the null
hypothesis is true.
To show this, we generate 400 samples of the distributions A and B from Case
2 (density functions shown in Figure 2.4) and we apply the Mann-Whitney test,
rejecting the null hypothesis when p < 0.005. If we repeat this experiment 104

times (with different samples each time), the null hypothesis is rejected every
1 The definition of what data with a more extreme statistic value is not the same for

every statistical null hypothesis test, and it depends on the test being used.
2 For paired data, the Wilcoxon signed-rank test [Wilcoxon, 1945] or the sign

test [Conover, 1980] should be used. However, in the context of this chapter, the
samples observed from the random variables are not paired. In this chapter, we con-
sider the Mann-Withney test as it is probably the most well known non-parametric
test for unpaired data, although take into account that more modern alternatives have
been proposed [Ledwina and Wyłupek, 2012, Baumgartner et al., 1998, Biswas and
Ghosh, 2014].
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time1. However, A ⊁ B and B ⊁ A, implying that the alternative hypothesis is
not true. Note that the proposed cumulative difference-plot (shown in Figure 2.12)
avoids this problem because it correctly points out that neither random variable
dominates the other one, for the same case and with the same number of samples.

2.5.0.3 Bayesian analysis

As an alternative [Benavoli et al., 2017, Calvo et al., 2019a] to the limitations of
statistical null hypothesis tests, Bayesian analysis has been proposed. Bayesian
analysis [Gelman, 2014, Bernardo and Smith, 2009] estimates the probability that
a hypothesis is true, conditioned to the observed data. This estimation requires the
prior probabilities of the hypotheses and the data, but usually, they are assumed
to follow a distribution that gives equal probability to all hypotheses and data.
Recently a Bayesian version of the Wilcoxon signed-rank test [Benavoli et al.,
2017, 2014] has been proposed. In this chapter, we will consider the simplex-plot
of its posterior distribution. For convenience, in the rest of the chapter, we will
call it simplex-plot.
Once the posterior distribution is known, the probability that the difference be-
tween a sample from A and a sample from B is in the intervals (−∞,−r), [−r, r]
or (r,+∞) can be computed. These probabilities can be interpreted as the prob-
ability that A > B, A = B and B > A, where two samples a and b are considered
equal when |a − b|≤ r. Note that the simplex-plot is just a convenient represen-
tation of the posterior distribution, where ‘rope’ or range of practical equivalence
denotes hypothesis A = B (when the difference is in the interval [−r, r]).
We computed the simplex-plot (Figure 2.13) with the 400 samples of A and B
from Case 2 obtained in Section 2.4.2. Two samples were considered equal when
their difference is lower than r = 10−3, and we used the prior proposed by Benavoli
et al. [2017]. We can deduce from this figure that the hypothesis B > A is much
more likely than A = B or B > A.
The simplex plot summarizes the data through the probabilities of B > A, A = B
or B > A, but does not offer any additional information: we cannot deduce from
these probabilities in which intervals the values of a random variable are lower
than the other. In this sense, the cumulative difference-plot is a more detailed
comparative visualization. Specifically, the observation that the 1% lowest values
of A are lower than the 1% lowest values of B cannot be deduced from the simplex-
plot, while it is easy to see in the cumulative difference-plot. Also, the cumulative
difference-plot shows a comparison of the cumulative distributions through the
dominance rate, while the simplex-plot does not.

1 The source code to replicate this experiment is available in the file
mann_whitney_counter_example.R in our Github repository.

https://github.com/EtorArza/SupplementaryPaperRVCompare/blob/main/mann_whitney_counter_example.R
https://github.com/EtorArza/SupplementaryPaperRVCompare
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Fig. 2.13: The simplex-plot computed with the package scmamp [Calvo and
Santafé Rodrigo, 2016a] of the posterior distribution for Case 2.

2.5.0.4 Other plots in the interval [0, 1]

The probability-probability plot is defined as

PP : [0, 1]→ [0, 1]2 : p→ (p,GA(G−1
B (p))).

As proposed by Schmid and Trede [1996], it can be interpreted via the integral
of the non-negative part, which represents the amount of violation against the
hypothesis that A dominates B.
The quantile-quantile plot [Thas, 2010, Wilk and Gnanadesikan, 1968] is defined
as

QQ : [0, 1]→ N2 : p→ (G−1
A (p), G−1

B (p)),
and it is a natural way to visualize the differences in quantiles of A and B in N
(the domain of definition of the random variables).
The quantile-quantile plot also allows a comparison between quantiles, just like
the cumulative difference-plot. However, the cumulative difference-plot proposed
in this chapter is distinct from the two plots above in three aspects: i) the pro-
posed cumulative difference-plot is defined directly from the observed samples.
Because of its definition, it has a confidence band built-in, which allows the un-
certainty associated with the estimation to be directly interpreted within the plot.
ii) The proposed cumulative difference-plot contains several statistics simultane-
ously. Specifically, the estimated CD, CP and the comparison of the quantiles can
be visually interpreted. iii) The proposed plot is just the difference of two cumu-
lative distributions (GYA

and GYB
), and thus, unlike in the pp-plot and qq-plot

mentioned above, it can be defined without the need of the inverse function. The
random variables YA and YB have the same CD, CP as the kernel density estima-
tions of the original distributions, and therefore, we can think of the cumulative
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difference-plot as the difference between the cumulative distribution function of
two simpler versions of the original random variables.

2.6 Experimentation with the cumulative difference-plot

To illustrate the applicability of the proposed methodology, in the following, we
re-evaluate the experimentation of a recently published work. In a recent paper,
[Santucci et al., 2020] introduced a gradient-based optimizer for solving problems
defined in the space of permutations (from now on PL-GS). In their experimen-
tation, they compared it with an estimation of distribution algorithm [Larrañaga
and Lozano, 2001a] (from now on PL-EDA). These two algorithms were tested in a
set of 50 problem instances of the linear ordering problem [Schiavinotto and Stüt-
zle, 2004]. The performance of each algorithm in each instance was estimated with
the median relative deviation from the best-known objective value, with n = 20
repetitions. From now on, we call score to the relative deviation from the best-
known objective value and note that a low score is better than a high score, as it
means that the objective value found is closer to the best-known.
In the work by Santucci et al. [2020], when the score of one of the algorithms was
at least 10−4 higher than the other, it was considered that one of the algorithms
performed better than the other in that instance. [Santucci et al., 2020] concluded
that both algorithms performed equally in the instance N-t70n11xx, as the median
scores were exactly the same for both algorithms in this instance.
In the following, we take a closer look at the performance of PL-EDA and PL-
GS in this problem instance by comparing n = 103 measurements of the score
from each algorithm. We increase the sample size from n = 20 to n = 103 be-
cause the difference between the performance of the algorithms is small. With a
sample size of n = 20, the uncertainty is too high to come to any meaningful
conclusion (regardless of the statistical methodology considered). With this in-
creased sample size, we obtained more accurate estimates of the median scores—
PL-GS = 0.00407, EDA = 0.00433, lower is better—and PL-GS obtains a better
value by a difference higher than 10−4.

2.6.1 Step 1: Visualization

Figure 2.14 shows the histogram of the scores. It can be deduced from the figure
that neither algorithm clearly produces better scores. In particular, neither algo-
rithm dominates the other: PL-EDA has a longer tail both to the right and to
the left. Also, notice that the score of the algorithms is not normally distributed:
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PL-GS has a bimodal shape, and PL-EDA has a very long tail to the right (while
the tail to the left is shorter).
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Fig. 2.14: Histogram of the scores obtained in the instance N-t70n11xx. Lower is
better.

Figure 2.15 shows the box-plot and the violin-plot of the data. Both algorithms
have a similar median, but due to the high number of outliers [Carreño et al.,
2020], it is difficult to compare the scores of the algorithms with the box-plot. The
same happens with the violin-plot.
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Fig. 2.15: Box-plot and violin-plot of the scores obtained in the instance N-
t70n11xx. Lower is better.

2.6.2 Step 2: Comparing PL-GS with PL-EDA

Sometimes, visualization is enough to compare the performance of two algorithms:
if one of the algorithms always performs better than the other, there is no need for
further analysis. However, in this case, the three visualization methods considered
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(histogram, box-plot, and violin-plot) have not been able to summarize the scores
obtained with the algorithms in a way that enables an easy comparison. In the
following, we further study the scores of the algorithms with statistical tests, the
simplex-plot, and the cumulative difference-plot.

2.6.2.1 Mann-Whitney test

Applying the Mann-Whitney test we obtain a p-value of p = 0.035, lower than
the usually used 0.05 threshold. With p < 0.05, we reject the null hypothesis and
accept the alternate hypothesis: the random variable associated with the score of
PL-GS dominates PL-EDA. Note that neither rejecting the null hypothesis nor a
small p-value reflect the magnitude of the difference in score of the algorithms. In
addition, as stated when we studied the histogram, we known that it is unlikely
that PL-GS dominates PL-EDA.

2.6.2.2 Simplex-plot

We show the simplex-plot [Benavoli et al., 2017] of the scores in Figure 2.16.
Following the criterion by Santucci et al. [2020], we considered that two scores are
equal when they differ by less than r = 10−4. Unlike in the statistical test, one
can deduce the probability that one of the algorithms has a better score than the
other from simplex-plot: it is more likely that PL-GS takes a lower value than
PL-EDA. A closer position in the plot to PL-EDA indicates a higher probability
of measuring a higher score in PL-EDA than in PL-GS. Specifically, from the
simplex-plot shown in Figure 2.16, we can deduce that given two samples bgs and
aeda of the scores of PL-GS and PL-EDA respectively,

P(aeda < bgs) < P(bgs < aeda).

However, the difference in these probabilities is small. Also, the probability that
P(bgs = aeda) is low (no data points near ‘rope’).

2.6.2.3 Cumulative difference-plot

We show the 95% confidence cumulative difference-plot in Figure 2.17. From this
plot, we can deduce the following:

1. P(aeda < bgs) and P(bgs < aeda) have similar probabilities, as CP(PL-EDA,PL-GS) ≈
0.5. However, The area under diff(x) = 0 is a little larger than the area over
diff(x) = 0, hence P(aeda < bgs) is a little smaller than P(bgs < aeda).
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Fig. 2.16: Simplex-plot of PL-GS and PL-EDA in the instance N-t70n11xx. A
closer position in the plot to PL-EDA indicates a higher probability of measuring
a higher score in PL-EDA than in PL-GS. A low score is preferred to a high score.

2. Neither algorithm dominates the other one, and what is more, CD(PL-EDA,PL-GS) ≈
0.5.

3. The difference is positive when x < 0.3, and therefore, if we only consider the
best 30% values of both algorithms, PL-EDA dominates PL-GS.

4. The difference is negative when x > 0.98. In this case, we conclude that if
we only consider the worst 2% values of PL-EDA and PL-GS, then PL-GS
dominates PL-EDA.

5. These “worst” 2% values are much less likely than the “best” 30% values
mentioned in 3), as the estimated probability of these “best” and “worst”
values is 0.3 and 0.02 respectively.

6. The difference is negative at x = 0.5 and at x = 0.75. This can be interpreted
as PL-GS having a better median and a better 75% quantile.

Summarizing the above points, we conclude that the performance of the algorithms
is quite similar, and PL-EDA takes both better and worse scores than PL-GS.
The probability that PL-EDA takes these better values is much higher than the
probability that it takes worse values. Therefore, if we are in a setting in which
repeating the execution of the algorithms is reasonable, PL-EDA is a much better
algorithm. On the other hand, if it is critical to avoid really bad values, then PL-
GS would be preferred. With an increased number of samples, it might be possible
to better compare the algorithms (it would reduce the uncertainty associated with
the size of the confidence band).
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Fig. 2.17: The cumulative difference-plot of 95% confidence of the objective values
obtained by PL-EDA and PL-GS in the instance N-t70n11xx.

2.7 Assumptions and limitations

In the following, we briefly summarize the assumptions that the cumulative
difference-plot requires and comment on a few caveats.

2.7.1 Assumptions

Correctly using the proposed cumulative difference-plot requires that the following
three assumptions are satisfied. The first assumption is that all samples of both
A and B are i.i.d, consequently, it should not be used with paired data. This is
also an assumption made by the Mann-Whitney test.
The second assumption is that the values of the random variables represent a
minimization setting: lower values are preferred to higher values. To apply the
proposed method in a maximization setting, it is enough to redefine the objective
function by multiplying it by −1.
The third assumption is that A and B are continuous random variables defined
in a connected subset of R. This also implies that the cumulative distribution
functions of A and B are continuous and that their probability density functions
are bounded. Although having a bounded density means that there should never be
two identical samples—the probability of observing two independent equal samples
is 0 with a bounded density—, in reality, the proposed cumulative difference-
plot can deal with repeated samples. To do so, when defining the kernel density
estimations of YA and YB in Section 2.4, repeated samples were assigned the same
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rank. Then, the size of the uniform distributions was adjusted (with the γ function)
ensuring that the sum of the estimated densities of YA and YB remains constant
even in the case of repeated observations.

2.7.2 Limitations and future work

Just like with other methods, the number of samples determines in part the stabil-
ity of the results. With a small sample size, the confidence band of the cumulative
difference-plot will be larger. There are three reasons why a larger sample size
increases the stability of the plot: i) we are doing a kernel density estimation, and
a higher sample size [Danica and power, 2009] implies that the estimation is closer
to the real distribution, ii) the bootstrap method also requires several samples to
be meaningful [Chernick, 2011, Hall, 2013] and iii) the sample size needs to be
reasonable with respect to the quantiles being estimated. For example, it would
not make sense to use 10 samples to estimate a 1% quantile. In all of these cases,
however, determining what is a too small sample size is a highly debated question,
and is beyond the scope of this chapter. To be on the safe side, we recommend
using a sample size of at least n = 100. It is worth noting that this was arbitrar-
ily chosen, and a suitable sample size should be chosen depending on the desired
conclusions (for example, comparing small and big quantiles requires more data).
With n = 100 we ensure that the comparison of 1% quantiles in the cumulative
difference-plot is meaningful.
The most obvious limitation of the proposed approach is in its applicability: it
should only be used in case of doubt between two random variables, and when
none of the random variables dominates the other one. Otherwise, there are more
suitable alternatives such as Bayesian analysis [Calvo et al., 2019a, Benavoli et al.,
2014], or directly comparing box-plots. For instance, if we take 103 samples of A
and B and all samples of A are lower than all samples of B, then there is no need
for further statistical comparison, as the results speak for themselves.
The proposed approach assumes A and B are continuous random variables and
that all samples of both A and B are i.i.d, and consequently, it cannot be used
with paired data. As future work, the proposed methodology could be extended
for paired data and ordinal random variables. Also, the bootstrap method is the
slowest part of the cumulative difference-plot, especially as the number of samples
increases. To increase the computation speed, this slow part was written in C++
(the rest of the package was written in R [R Core Team, 2020]). However, its speed
can probably be further improved with a better implementation.
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2.8 Conclusion

In this chapter, we approached the problem of comparing the performance of two
optimization algorithms, in terms of which of them takes lower values. We pro-
posed eight desirable properties for dominance measures: functions that compare
random variables in the context of quantifying the dominance. We showed that,
at most, a dominance measure can only satisfy seven out of the eight. Among
the measures in the literature, we found out that the probability that one of the
random variables takes lower values than the other satisfies 7 of those properties.
However, it fails to satisfy Property 1, hence it cannot be used to determine when
one of the random variables stochastically dominates the other. To to complement
this, we introduced a new dominance measure: the dominance rate, which quanti-
fies how much higher one of the cumulative distribution function is than the other
and satisfies all properties except Property 7.
Based on the above, we proposed the cumulative difference-plot, a graphical visu-
alization that allows two random variables to be compared in terms of which of
them takes lower values. This cumulative difference-plot contains a comparison of
the quantiles, in addition to allowing a graphical estimation of the dominance rate
and the probability that one of the random variables takes lower values than the
others. It also models the uncertainty associated with the estimate through a con-
fidence band. Finally, in Section 2.6 we showed that the proposed methodology
is suitable to compare two random variables, especially when they take similar
values and other methods fail to give detailed and clear answers.

Supplementary Material

Code to Reproduce the Results
Alongside the chapter, we provide the code to generate the figures in this chapter
and replicate the experimentation. For instructions on how to install the depen-
dencies and replicate the results, refer to the README.md file in the GitHub
repo https://github.com/EtorArza/SupplementaryPaperRVCompare.

R Package RVCompare
Furthermore, we created the R RVCompare for a convenient application of the
methodology proposed in the chapter. Users can compute the CP and CD of two
distributions, given their probability density functions. Furthermore, it can be
used to produce the proposed cumulative difference-plot, given the observed data.
The package can be directly installed from CRAN and is also available in the
GitHub repo https://github.com/EtorArza/RVCompare.

https://github.com/EtorArza/SupplementaryPaperRVCompare
https://github.com/EtorArza/RVCompare
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Interactive Example
An interactive example is available at https://etorarza.github.io/pages/2021-
interactive-comparing-RV.html that demonstrates how Property 1 and Property 7
are mutually exclusive.

https://etorarza.github.io/pages/2021-interactive-comparing-RV.html
https://etorarza.github.io/pages/2021-interactive-comparing-RV.html
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Kernels of Mallows Models under the Hamming
Distance for solving the Quadratic Assignment
Problem

The Quadratic Assignment Problem (QAP) is a well-known permutation-based
combinatorial optimization problem with real applications in industrial and logis-
tical environments. Motivated by the challenge that this NP-hard problem repre-
sents, it has captured the attention of the optimization community for decades. As
a result, a large number of algorithms have been proposed to tackle this problem.
Among these, exact methods are only able to solve instances of size n < 40. To
overcome this limitation, many heuristic methods have been applied to the QAP.
In this chapter, we follow this direction by approaching the QAP through Estima-
tion of Distribution Algorithms (EDAs). Particularly, a non-parametric distance-
based exponential probabilistic model is used. We compare four distances for per-
mutations and show that the Hamming distance is the most suitable for the QAP.
We study the properties of the distances when applying the probabilistic model to
the objective function of the QAP. Particularly, we focus on the smoothness of the
objective function and the number of components changed. Based on this analysis,
we argue that the Hamming distance is a suitable distance for assignment type
problems in general.
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3.1 Introduction

The Quadratic Assignment Problem (QAP) [Koopmans and Beckmann, 1955] is
a well-known combinatorial optimization problem. Along with other problems,
such as the traveling salesman problem, the linear ordering problem and the flow-
shop scheduling problem, it belongs to the family of permutation-based problems
[Ceberio, 2014]. The QAP has been applied in many different environments over
the years, to name but a few notable examples, selecting optimal hospital layouts
[Hahn and Krarup, 2000], optimally placing components on circuit boards [Rabak
and Sichman, 2003], assigning gates at airports [Haghani and Chen, 1998], and
optimizing data transmission [Mittelmann and Salvagnin, 2015].

Algorithm 2: Estimation of Distribution Algorithm [Ceberio, 2014]
Parameters :
Ps: The size of the population used by the EDA.
M: The size of the set of selected solutions.
S: The number of new solutions generated at each iteration.

1 D0 ← initialize population of size Ps and evaluate the population
2 for t=1,2,... until stopping criterion is met do
3 Dsel

t−1 select M ≤ N from Dt−1 according to a selection criterion
4 pt(x) = p(x|Dsel

t−1)← estimate a probability distribution from Dsel
t−1

5 DS
t ← sample S individuals from pt(x) and evaluate the new individuals

6 Dt ← create a new population of size Ps from Dt−1 and DS
t

Sahni and Gonzalez [Sahni and Gonzalez, 1976] proved that the QAP is an NP-
hard optimization problem, and as such, no polynomial-time exact algorithm can
solve this problem unless P=NP. In this sense, until recently, only a few instances
of size up to 36 were solved using exact solution algorithms. In fact, and ex-
ceptionally, only some instances of size 64 and 128 have been solved by using a
combination of three strategies: reformulation to a suitable Mixed-Integer Linear
Programming, exploiting the sparsity and symmetry of some particular instances,
and a Branch and Bound algorithm (B&B) [Fischetti et al., 2012]. These strategies,
however, require the instance to be highly symmetric, and in general, this cannot
be guaranteed. Most of the exact methods for the QAP are based on the B&B
algorithm [Brixius and Anstreicher, 2004]. In order to overcome the high com-
putation cost required by these algorithms, Astreicher et al. [Anstreicher et al.,
2002] proposed a grid computing implementation of B&B. Under this technique,
this algorithm can be distributed over the internet, forming a computational grid,
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with the advantage of bringing down the costs and increasing the availability of
parallel computation power.
Unfortunately, despite the previous improvements, in the general case, it is still
computationally unfeasible to use exact algorithms for medium and large size in-
stances (n > 40). In response to this drawback, the community of combinatorial
optimization has proposed a variety of metaheuristic algorithms to tackle the QAP.
A few of these proposed methods include Genetic Algorithms [Drezner, 2003, Tate
and Smith, 1995], Tabu Search [Skorin-Kapov, 1990, James et al., 2009a], Simu-
lated Annealing [Mickey R. Wilhelm Ph.D. and Thomas L. Ward Ph.D., 1987],
Ant Colony Optimization [Gambardella et al., 1999], Memetic Algorithms [Merz
and Freisleben, 2000] and Particle Swarm Optimization Algorithms [Liu et al.,
2007].
Currently, three of the best performing approaches for the QAP are Coopera-
tive Parallel Tabu Search (CPTS) [James et al., 2009b], a Memetic Search al-
gorithm (MS) [Benlic and Hao, 2015b] and the Parallel Hyper-Heuristic on the
Grid (PHHG) [Dokeroglu and Cosar, 2016]. In particular, CPTS is based on the
successful robust tabu search implementation [Taillard, 1991]. This tabu search im-
plementation is simpler and is executed in parallel with a shared pool of solutions,
aiming to promote both the quality and the diversity of the solutions available
to each tabu search execution. Memetic search algorithms combine population
based algorithms with local search procedures. The MS implementation [Benlic
and Hao, 2015b] uses a uniform crossover operator, a breakout local search pro-
cedure (a local search procedure with perturbation mechanics to overcome local
optima) [Benlic and Hao, 2013], a fitness based replacement strategy, and an adap-
tive mutation strategy. Lastly, PHHG executes different metaheuristic algorithms
in parallel, and based on the performance of those algorithms, repeatedly executes
the most successful metaheuristics. Even though these three methods are very dif-
ferent from each other, they all share a property: they are highly complex hybrid
procedures.
Estimation of Distribution Algorithms (EDAs) [Larrañaga and Lozano, 2001b]
have also been used to solve the QAP. Zhang et al. presented an hybrid approach
of guided local search and a first marginal based EDA for the QAP [Zhang et al.,
2003]. Pradeepmon et al. [Pradeepmon et al., 2018] applied a hybrid EDA to
the keyboard layout problem, which is modeled as a QAP problem. Previous
EDA references use hybridization techniques to improve the performance of the
algorithms, nevertheless, the probability models used are simplistic and are not
suited to the characteristics of the QAP. In this chapter, we investigate probability
models specially suited to deal with the QAP, and introduce a new EDA proposal
based on these models.
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An Estimation of Distribution Algorithm (EDA) [Larrañaga and Lozano, 2001b]
is a population-based evolutionary algorithm (see Algorithm 2 for the general
pseudo-code of EDAs). Starting with an initial population (line 1), a subset of
the best solutions is selected (line 2). Subsequently, a probability model is learned
based on these selected permutations (line 4). Next, new solutions are sampled
from the probability model, and their objective value is computed (line 5). Finally,
the new solutions are combined with the selected solutions to create a new popu-
lation (line 6). This process is repeated until a stopping criterion is met, such as
exceeding a certain time constraint or a maximum number of iterations.
As reported frequently in the literature, the behavior of an EDA depends highly
on the probability model used in the learn-sample cycle, as this is the core com-
ponent of the algorithm. When considering permutation problems, EDAs can be
classified into three categories according to the probability domain of the model
used [Ceberio et al., 2012]. In the first group, we have EDAs that were designed
to solve problems on the combinatorial domain. Specifically, EDAs that were de-
signed for the set {(k1, ..., kn) ∈ Nn : ki ∈ {1, ..., n}i} (denoted as [n]n in this
chapter) can be adapted for the permutation space. This adaptation is based on
the idea that the solution space of the QAP is a subset of [n]n, defined by adding
the constraint ki ̸= kj . Specifically, the solution space of the QAP is the set of
every permutation of size n, denoted as Sn in this thesis. Therefore, given a set
of solutions from Sn, a probability model can be learned in [n]n. Consequently, in
order to obtain solutions that are in Sn, the sampling procedure must be adapted
to guarantee that the new samples are in Sn.
In the second group, we have EDAs that were originally designed to deal with
continuous domain problems. Next, in order to deal with permutations, these
EDAs use a mapping γ : Rn −→ Sn, such that, given a real vector v ∈ Rn, γ(v)
denotes the order of the items in v. EDAs for continuous problems transform each
permutation σi in the population into a real vector vi, making sure γ(vi) = σi
is satisfied for all the individuals in the population. Then, a probability model is
learned on Rn from these real vectors, and new real vectors are sampled from this
probability model. Finally, γ is applied to all the new real vectors, to obtain the
new solutions. One of the major drawbacks of these models, as stated by Bosman
et al. [Bosman and Thierens, 2001], are the overheads introduced by the sorting
of the real vectors, which can be costly in certain situations. Another limitation
of the models in this group comes from the large redundancy introduced by the
codification, since a permutation can be mapped by infinite real vectors [Ceberio
et al., 2012].
Finally, in the third group, we have the EDAs that use probability models that
define a probability distribution on Sn. Among these, we find probability models
based on order statistics, such as the Plackett-Luce [Plackett, 1975] and Bradley-
Terry [Hunter, 2004] models, or those that rely on distance-based distributions on
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Sn such as the Mallows Model (MM) [Mallows, 1957] and the generalized Mallows
Model (GMM) [Fligner and Verducci, 1986a]. For these EDAs, the solution space
of the problem is also the space onto which the probability distribution is defined,
making them a more natural choice. The MM is an exponential distribution that
can be seen as analogous to the normal distribution over the group Sn. Recently,
it has been shown that the distance-metric under which an MM is defined in-
fluences the performance of the EDA [Ceberio et al., 2015c]. In this sense, most
of the MMs presented in the literature are based on the Cayley, Kendall’s-τ and
Ulam distances. For example, Ceberio et al. have applied many variants of MM
based EDAs to different permutation problems, including Cayley based Kernels
of MM [Ceberio et al., 2015d] and Generalized MM [Ceberio et al., 2014a] on the
QAP. In addition, a MM variant for the bi-and tri-objective FSP was proposed by
Zangari et al. [Zangari et al., 2018]. In fact, Ceberio et al. obtained state-of-the-
art results in the FSP by hybridizing a MM EDA with a variable neighborhood
search [Ceberio et al., 2014b]. This illustrates the importance of developing effi-
cient and adequate probability models.
In addition to the three metrics mentioned above, there are other distance-metrics
on Sn that have not previously been considered in EDAs, such as the Hamming
distance-metric [Irurozki et al., 2016, 2019a]. The Hamming distance between two
permutations counts the number of point-wise disagreements and is a natural
choice for measuring the distance between assignments or matchings.
In this chapter, we take a step forward in the development of EDAs specific for
assignment type permutation problems by using probabilistic models based on
the Hamming distance. Specifically, the proposed probabilistic model is a Mal-
lows model-based kernel density that uses the Hamming distance. The goal of this
chapter is not to present a state-of-the-art algorithm. Instead, a methodological
contribution is made to the design of probabilistic models of EDAs for permu-
tations. Particularly, we show why the probability model used in the introduced
EDA is suitable for the QAP, one of the most popular assignment type permu-
tation problems. In addition, by studying the properties of the QAP, and based
on the experimentation results, we claim that the Hamming-based kernel density
probability model proposed in this chapter is suited to be used in EDAs for solving
assignment problems in the solution space of permutations of a certain size1.
Another relevant feature of the MM is that it is a unimodal model, and is cen-
tered at a given central permutation. The unimodality and symmetry properties
imposed by the MM can be too restrictive in certain contexts, not allowing mul-
timodal scenarios to be accurately modelled [Lebanon and Mao, 2008]. However,
the MM can be suitable as a building block in more complex models. An alter-

1 In order to take a step forward in the design of EDAs and avoid misinterpretations,
in this chapter, we will only consider EDAs in their base form (no hybridization).
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native that breaks these strong assumptions is the kernel density estimate using
Mallows kernels (KMMs). Instead of having a central permutation, KMMs spread
the probability mass by using a non-parametric averaging of MMs centered at each
solution. This allows the distribution to model probability distributions more ac-
curately over the space of permutations when the strong assumptions of the MM
are not fulfilled by the set of solutions.
Taking advantage of this flexibility, the EDA approach presented in this manuscript
implements a KMM under the Hamming distance. For the sake of analyzing the
performance of the proposed algorithm, we conduct three experiments. First, we
compare the proposed approach to other Hamming-based MM approaches. Then,
we see how it compares to other EDAs that use probability models specific to Sn
on the QAP. Finally, we show that Hamming KMM EDA is better than other
classical EDAs on the QAP. Specifically, conducted experiments show that the
proposed approach is better than other EDAs in the literature in terms of lower
Average Relative Deviation Percentage (ARDP). Moreover, the use of both Ker-
nels and Hamming seems to be necessary for the best possible performance.
The rest of the chapter is organized as follows: in the following section, we briefly
explain the QAP and the adequacy of the Hamming distance for this problem.
Next, in Section 3.3, we introduce the kernels of Mallows Models over the Hamming
distance. Then, in Section 3.4, we detail the proposed algorithm. Afterwards, in
Section 3.5 we present the experimentation, and Section 3.6 concludes the article.

3.2 The Quadratic Assignment Problem and the Hamming
distance

The Quadratic Assignment Problem (QAP) is the problem of optimally allocating
n facilities at n locations in order to minimize a cost function related to the flow
and the distance between every pair of facilities and pair of locations. In the QAP,
an instance is defined by two matrices D, H ∈ M

n×n
(R+), where Di,j is the distance

between locations i and j, and Hl,k is the flow between facilities l and k. The search
space of the QAP is the set of every permutation σ of size n, Sn. In this sense, in
the QAP, the aim is to find the permutation σ ∈ Sn that describes the optimal
assignment of facilities into locations, where σ(i) = j denotes that the jth facility
is assigned to the ith location.
When Koopmans and Beckmann [1955] introduced the QAP, they presented it as
a maximization problem. Given two cost matrices D, H ∈ M

n×n
and a profit matrix

A ∈ M
n×n

, the QAP was formulated as shown in Equation (3.1).
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max
σ∈Sn

n∑
i=1

Aσ(i),σ(j) −
n∑
i=1

n∑
j=1

Di,jHσ(i),σ(j) (3.1)

Later on, the lineal term
∑n
i=1 Aσ(i),σ(j) was dropped, since the complexity of the

problem lies within the quadratic term
∑n
j=1 Di,jHσ(i),σ(j), [Loiola et al., 2007].

min
σ∈Sn

n∑
i=1

n∑
j=1

Di,jHσ(i),σ(j) (3.2)

3.2.1 Distance-metrics

The MM relies on the definition of the distance for permutations, and three have
been primarily considered in the framework of EDAs: Cayley, Kendall’s-τ and
Ulam [Ceberio, 2014, Ceberio et al., 2015c, 2014b]. The Cayley distance measures
the minimum number of swaps needed to transform a permutation into another
one. The Kendall’s-τ distance measures the number of differently arranged pairs of
items between two permutations. Finally, the Ulam distance between permutations
σ and π is equal to the size of the permutations, n, minus the length of the longest
increasing subsequence in σπ−1. In addition to the previous distance-metrics, the
Hamming metric also been reported for the case of permutations. The Hamming
distance between two permutations, σ and π, counts the number of point-wise
disagreements they have.
As mentioned in the introduction, the distance employed in the MM critically
conditions the performance of the EDA when solving a given problem. Previous
work on this topic [Ceberio et al., 2015c, Jones and Forrest, 1995] demonstrated
that it is crucial to choose operators (distances, neighborhoods, mutations,...) that
better fit the characteristics of the problem. We carried out an experiment in or-
der to analyze the correlation between the distance at which two permutations
are and the number of components that differ in both permutations, where com-
ponent refers to each additive term Di,jHσ(i),σ(j) for i, j ∈ [n] in Equation (3.2).
Intuitively, it is preferable when a distance-metric structures solutions in the way
that close solutions differ in few components and far away solutions differ greatly
in number of different components. The experiment consists of the following: For
each of the considered four metrics, we choose two permutations at distance k
from each other. Then, we measured the maximum number of different compo-
nents they can have on a problem of size n = 20, independently of the instance.
Finally, we repeated this process several times with different permutations, at the
same distance k, in order to obtain the median and the interquartile range of the
values. The results are depicted in Figure 3.1.
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Fig. 3.1: The median, 25% and 75% percentiles of the maximum number of differ-
ent components that two solutions at a given distance can have in an instance of
size n = 20. The Hamming distance has the lowest number of different components
among the four distance-metrics studied. In addition, the Hamming distance has
the most consistent (almost constant) number of different components at a given
distance, followed by the Cayley and Kendall distances. The Ulam distance is the
worst distance in terms of number of different components.

As can be observed, the Hamming distance-metric shows the best results among
the considered distance-metrics. On the one hand, it presents the least number
of different components at each distance k. On the other hand, the number of
different components is the same for all the permutations at distance k (unlike the
rest of the metrics).
The experiment above demonstrated that, taking the definition of the QAP into
account, Hamming is the best option. However, considering specific instances of the
problem, for many different reasons, the previous conclusion might not hold. For
instance, some components could be identical, producing no change; or the change
of some components could be compensated by others. For that reason, in a new ex-
periment, we will analyze the objective function transition for each of the metrics
on specific instances of the problem. To that end, starting from a random permu-
tation, we run a local search algorithm1 to find a local optimum. Then, for each of
the four distance-metrics, (Hamming, Cayley, Kendall’s-τ and Ulam), the average
normalized difference in the objective value with respect to the local optimum is
computed for ∀k ∈ [14]. Specifically, defining σ0 as the local optimum, for each of
the metrics, we approximate the difference ψ−1

k

∑
σ∈Sn | d(σ0,σ)=k

abs(f(σ0)−f(σ))
f(σ0)

1 We used the best-first local search procedure, based on the exchange neighborhood.
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with the Monte Carlo sampling method using 50 repetitions, where ψk is the
number of permutations at distance k. In addition to the average, the variance is
also computed. The results are shown1 in Figure 3.2. The instance bur26a (a) has
special properties on the distance matrix D, which we believe makes the Kendall
distance have a smoother objective value transition. The instance tai36a (b), on
the other hand, does not have these properties, and thus, the Hamming distance
produces a smoother objective value transition in this case.

(a) bur26a (b) tai36a

Fig. 3.2: The results of the objective function value transition experiment for two
of the instances studied.

We observed that Hamming shows a smoother objective value transition than
Cayley and Ulam, and, most of the times, than Kendall’s-τ (in 4 out of 6 instances)
also. Considering the results of these two experiments, shown in Figure 3.1 and
Figure 3.2, it seems that the Hamming distance is the best choice among the
studied metrics for the QAP.

3.3 Distance-Based Probability Models

Probability models for permutations assign a probability value to each of the per-
mutations of n items. For the sake of applicability and computational efficiency,
these probability models are defined by a restricted number of parameters. The

1 For this experiment, 6 instances from the QAPLIB are considered. Figure 3.2 shows
the results obtained for two of them. The full results of the experimentation as well
as the source code of the proposed approach are available for the interested reader at
https://github.com/EtorArza/SupplementaryKMMHamming

https://github.com/EtorArza/SupplementaryKMMHamming
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Mallows Model (MM) [Mallows, 1957] is an exponential probabilistic model defined
over Sn. The MM is described by two parameters: the concentration parameter
ξ ∈ R+, and the location parameter, σ0 ∈ Sn [Irurozki et al., 2019a]. The location
parameter, also known as the central permutation, is the mode of the distribution.
For the rest of the permutations, their probability decreases exponentially with re-
spect to their distance from the central permutation. The speed of this exponential
decay is controlled by ξ. For instance, when ξ = 0, the distribution is equivalent to
the uniform distribution over Sn. Contrarily, when ξ → ∞, p(σ0) = 1. Formally,
the probability mass function is given as follows:

p(σ) = p(σ|σ0, ξ) = e−ξd(σ,σ0)

ψ(ξ) (3.3)

where d(·, ·) is a distance-metric on Sn and ψ(ξ) stands for the normalization
constant.

3.3.1 Factorization and sampling under the Hamming distance

In the following, we extend the presentation of the MM for the case of the Ham-
ming distance describing the factorization of the probability distribution induced
by the model and the procedure to sample the solutions [Irurozki et al., 2019a].
Under this factorization, a simple sampling procedure for the Hamming MM can
be defined. In addition, this decomposition allows a better understanding of the
dynamics of the proposed EDA. Defining K ≡ d(σ0, σ) as the Hamming distance
from the consensus to σ, we can think of K and σ as random variables defined in
{0} ∪ [n] and Sn respectively. From this point of view, K is dependent on σ, or in
other words, given σ, K is known. Considering this, we can decompose p(σ) as:

p(σ) = p(σ|K) p(K) (3.4)

where the first term of the factorization, p(σ|K), denotes the probability of σ given
the distance at which it is from the consensus, and the second term, p(K), defines
the probability of k = d(σ0, σ). The conditional probability distribution of the
first term of the factorization shown in Equation (3.4), p(σ|K), follows a uniform
distribution. This is easy to see, since the MM gives the same probability to all
permutations that are at the same distance k from the consensus. Conveniently, in
Sn, the number of permutations at Hamming distance k from a given permutation,
S(n, k), can be easily computed. This sequence is closely related to the number of
derangements of size k. A derangement is a permutation, σ, where every item σi is
different from its corresponding index i, hence, σ = (σ1, ..., σk) is a derangement of
size k iff σi ̸= i , ∀i ∈ [k]. For example, the permutation, τ = (τ1, τ2, τ3) = (3, 2, 1)
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is not a derangement, because τ2 = 2, while γ = (γ1, γ2, γ3) = (3, 1, 2) is a
derangement, because γi ̸= i , ∀i ∈ {1, 2, 3}.
In order to compute S(n, k), the following formula can be used:

S(n, k) =
(
n

k

)
D(k) (3.5)

where D(k) is the number of derangements of size k [Irurozki et al., 2016], which
is a known sequence [Sloane]. Specifically, the number of derangements D(k) can
be recursively computed in O(k) as follows:

D(k) =


1 k = 0
0 k = 1
(k − 1)(D(k − 1) +D(k − 2)) k > 1

Since we are interested in the first n+1 elements of the sequence, we must compute
D(k) for 0 ≤ k ≤ n, and that requires O(n) time. Therefore, it is easy to compute
the conditional probability p(σ|K = k) = S(n, k)−1 for any σ at distance k from
the consensus.
Now, we compute p(K), the second term of the decomposition of p(σ) in Equa-
tion (3.4). Considering the definition of p(K = k) ≡ p(d(σ0, σ) = k) we obtain:

p(K = k) =
∑

σ|d(σ0,σ)=k

p(σ) = S(n, k)p(σ) = S(n, k)e
−ξk

ψ(ξ) (3.6)

The previous equation can be computed in O(n) time for k ∈ {0}∪ [n], allowing a
simple two-step sampling procedure for the Hamming MM to be defined [Irurozki
et al., 2019a]. First, considering the probabilities p(K), randomly choose k, the
distance at which to sample. Secondly, choose a permutation σ at distance k from
the consensus σ0 uniformly at random. A detailed explanation of the sampling
procedure is shown later, in Section 3.4, in Algorithm 3.
The concentration parameter ξ controls where the probability of the permutations
is concentrated. For a high value of ξ, the probability mass is concentrated near the
consensus. Similarly, for a low value of ξ, the probability mass is concentrated far
away from the consensus. This is possible because a low ξ defines an almost uniform
distribution on Sn, and the number of permutations at Hamming distance k from
the consensus increases exponentially with k. Figure 3.3a shows p(σ) described in
Equation (3.3). For high values of ξ, p(K) has a higher probability in lower values
on k, and vice versa. In Figure 3.3b, we see that by using different values of ξ,
the probability mass of p(K) is concentrated at different distances. This is related
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with E[K] =
∑
k∈{0}∪[n] k p(K = k), the expectation of the distance. Given n,

the instance size, there exists a bijection that maps the expected distance E[K]
to the corresponding value of the concentration parameter ξ. When E[K] is low,
the probability of the solutions near the consensus is high, and, consequently, the
concentration parameter of the distribution, ξ, is high. As we will later see in
Section 3.4.2, by adjusting E[K] (and, consequently, its corresponding ξ) a simple
exploration-exploitation scheme can be defined.
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Fig. 3.3: The representations of p(σ) and p(K) on S20 for a Hamming-based MM,
considering permutations at Hamming distance k ∈ {0}∪ [20] from the consensus.
An instance of size n = 20 and different ξ values are considered.

3.3.2 Extending the Mallows Model

The Mallows Model is a unimodal distribution, and as such, it may be too rigid
for multimodal problems, limiting the performance of the EDA in certain situa-
tions. As a more flexible alternative, the Generalized Mallows Model was proposed
[Fligner and Verducci, 1986a] for the Hamming distance [Irurozki et al., 2019a].
Based on the decomposition property of some distances, the GMM has a unique
central parameter, just as the MM, but it also has several concentration parame-
ters, giving the model a higher flexibility.
Introduced in [Murphy and Martin, 2003], a multimodal alternative to the MM is
the Mixtures of Mallows Model (MMM). In this case, the population is considered
to be composed of m differently sized clusters. Given the central and concentra-
tion parameters for each cluster, σi and ξi, the probability mass distribution is
expressed as
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P (σ|σ, ξ) =
m∑
i=1

wi
e−ξid(σ,σi)

ψ(ξi)

where
∑m
i=1 wi = 1, w = {w1, ..., wm} and wi > 0. Usually, σ, ξ and w are

estimated using the Expectation Maximization algorithm [Awasthi et al., 2014]. An
extension of the MMM that considers several concentration parameters per central
permutation is the Mixtures of Generalized Mallows Model (MGMM) [Ceberio
et al., 2015e].
Taking the idea of mixture models to the limit, and by considering each solution
in the set as a cluster of equal weight, another even more flexible model can be
defined: Kernels of Mallows Model (KMM). Given a set of m permutations, the
KMM is the averaging of m MMs centered on these permutations. Therefore, we
say that KMM is a combination of several MM. Contrary to the GMM, the KMM is
an MM with the same concentration parameter but different central permutations.
This model breaks the strong unimodality assumption of the MM and the GMM.
Given the set of central permutations σ = {σ1, σ2, ..., σm}, the mass probability
distribution of KMM can be defined as follows:

P (σ|σ, ξ) = 1
m

m∑
i=1

e−ξd(σ,σi)

ψ(ξ)

where ψ(ξ) is the normalization constant.

3.4 Hamming Kernels of Mallows Model EDA

In this chapter, we approach the QAP with an MM-based EDA. Specifically,
Kernels of Mallows Model under the Hamming distance are used in the frame-
work of EDAs. To control the convergence of the algorithm, a simple yet effective
exploration-exploitation scheme is presented, based on ξ, the concentration pa-
rameter.

3.4.1 Learning and sampling

The learning of a model in an EDA usually refers to obtaining the maximum
likelihood estimators for the parameters of the selected probabilistic model. Since
the proposed EDA is based on Kernels of Mallows Model, a non-parametric model,
we do not need to estimate the central permutations. Instead, the selected set of
permutations is used as the set of central permutations σ = Dsel

t−1. In addition,
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the concentration parameter ξ is set by a simple exploration-exploitation, as we
extensively explain in the next section.
Once the model is defined, we need to know how to sample solutions from it. In
this case, the sampling procedure is based on the distances sampling algorithm
[Irurozki et al., 2016], as shown in Algorithm 3. It is a three-step procedure. First,
select a central permutation σ0 from the selected set of permutations σ uniformly
at random (line 1). Then, based on the probabilities obtained from Equation (3.6),
choose a distance k at which to sample (lines 2 and 3). Finally, a permutation at
Hamming distance k from σ0 is chosen uniformly at random (line 4).

Algorithm 3: Sampling algorithm of Hamming KMM
Input:
σ = {σ1, ..., σm}: The set of central permutations.
ξ: The concentration parameter.
Output:
σ: The sampled permutation.

1 σ0 ← choose uniformly at random from σ

2 compute
{
p(k) ∝ S(n, k)e−ξk | k ∈ [n] \ {1}

}
3 k ← randomly choose k with probability proportional to p(k) (0 is never chosen

to avoid sampling the consensus.)
4 σ ← choose k items from σ0 and derange them (shuffle them uniformly at

random, but making sure none of these k items remains in its original place)
5 return σ

3.4.2 Exploration-Exploitation scheme: updating ξ

The convergence of the EDA is controlled by a simple exploration-exploitation
scheme. The trade-off is balanced by the expectation of the distance, E[K], which
is transformed into its equivalent ξ at run-time. The advantages of using E[K]
instead of ξ are threefold. First, we believe E[K] is more intuitive than ξ, since
its interpretation is much easier. In addition, by using E[K], it is easier to take
into account the instance size n when increasing E[K]. Finally, E[K] is more corre-
lated with the transition of the objective function value than ξ. Figure 3.4 shows
the evolution of the expected difference in the objective function value and E[K]
with respect to the concentration parameter ξ for an instance of size n = 125
(tai125e01 from the Taixxeyy instances set [Drezner et al., 2005]). It can be seen
that the shape of E[K] resembles the normalized expected difference of the objec-
tive function. In fact, Figure 3.5 shows that the relationship between E[K] and
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the normalized objective function difference is almost lineal. This means that the
transition of the objective value can be more accurately controlled by E[K].
The starting and final values of E[K]t1, E[K]0 and E[K]tmax, respectively, are set
before the algorithm is executed. In this sense, E[K]0 is set to a high value. A
high value of E[K]t favors exploration, because the sampled solutions are expected
to be far away from the selected solutions. Therefore, the sampled solutions are
going to be very different from the selected solutions, forcing them to visit different
and unobserved areas of the solution space. At each iteration, the expectation of
the distance E[K] is decreased (E[K]t+1 < E[K]t). As the number of iterations
increases, the algorithm shifts from an exploration state to an exploitation state.
In this exploitation stage, the new solutions will be similar (they will be near each
other in the Hamming distance sense) to the known solutions.
An idea to update E[K]t would be to decrease it at a constant rate. How-
ever, we found that decreasing E[K]t at an exponential rate produces better re-
sults, as we will later discuss in Section 3.5. The stopping criteria for the algo-
rithm is given in terms of the maximum number of iterations, and the number
of solutions evaluated in each iteration is Ps/2, where Ps denotes the popula-
tion size of the EDA. Therefore, at each iteration t, the progress of the algo-
rithm p ∈ (0, 1) is defined as p = t/tmax. Then, given the intensity parameter
γ ∈ R+, this progress is transformed into an exponential progress with the func-
tion δ(p) = exp(−γp)−1

exp(−γ)−1 . Finally, the expectation at iteration t, E[K]t, is set to
E[K]t = E[K]tmax + δ(p)(E[K]0 − E[K]tmax). Figure 3.6 shows δ(p) for the esti-
mated optimal value of the parameter γ = 5.14.

3.4.3 Computational complexity and scalability

If n is the instance size and m the considered population size, the time com-
plexity of the sampling stage is O(mn) [Irurozki et al., 2016]. The total cost of
the algorithm, without considering the objective function evaluations, is O(mn)+
O(m log(m)). Considering a constant population size m, the cost of Hamming
KMM EDA is dominated by the cost of the evaluations, which is O(mn2). The
memory complexity of Hamming KMM EDA is O(mn).
Even though the theoretical computational complexity of Hamming KMM EDA
is reasonable (since it is dominated by the cost of the evaluations, O(m · n2)), a
detailed empirical analysis is recommended to study the scalability of the algo-
rithm. To this end, we conducted two experiments on the runtime of the proposed
algorithm. In short, we found out that the computational cost of the KMM is low
when compared to the cost of evaluating the solutions. What is more, by using a
efficient sampling method, the time complexity is in practice lower than O(m ·n2).

1 E[K]t denotes the expectation of the distance E[K] at iteration t.
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(a) Normalized expected absolute difference be-
tween local optima and solutions sampled using
the correspondent ξ.

(b) The expectation of d, E[K] with respect to ξ.

Fig. 3.4: Figure 3.4a shows the normalized expected difference of the objective
function value. This difference is measured between 100 random local optima and
solutions sampled using an MM centered on these local optima and concentration
parameter ξ. Specifically, for each of the considered local optima σ0, Figure 3.4a
shows lim

s→∞
s−1 ∑s

i=1
abs(f(σ0)−f(σi))

f(σ0) where σi is obtained by sampling from an
MM centered on σ0 and using the concentration parameter ξ for each i ∈ [s].
The instance tai125e01 was used to obtain this figure. Figure 3.4b shows the
expectation of d, E[K] as a function of ξ. Observe how the shape of E[K] resembles
the normalized expected difference of the objective function value.

Fig. 3.5: The normalized expected difference of the objective function value as a
function of E[K].
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Fig. 3.6: The progress after the exponential function δ is applied.

A. Experiment 1

In the first experiment, we computed the percentage of time spent evaluating the
objective function when using Hamming KMM to optimize Taixxa instances of
size n, with n ranging from 10 to 100. The stopping criterion was set to 1000 · n2

evaluations, and the rest of the parameters remain equal to those considered in the
experimental section. Results are depicted in Figure 3.7. As can be observed, as
the instance size increases, the percentage of time spent evaluating the objective
function also increases, up to 80% in instances of size 100. This means that the
runtime of Hamming KMM is indeed dominated by the evaluation of the objective
function, which is a positive feature, since it means that the runtime overhead of
the EDA is small in comparison to the cost of evaluating the solutions.

B. Experiment 2

In this second experiment, we empirically show that the cost of the Hamming
KMM EDA algorithm is at most O(n2) for a fixed population size of m = 972,
where n is the problem instance size. With this aim in mind, we run Hamming
KMM in instances obtained by cutting Tai256c, the largest instance available in
the QAPLIB [Burkard et al., 1997]. In this experiment, the stopping criterion
was set to 106 evaluations, and the rest of the parameters remain equal to those
considered in the experimental section. In Figure 3.8, the proportional time spent
on each function evaluation divided by n2 is shown. Specifically, runtime

E·n2 is shown,
where E is the number of evaluations used as stopping criterion (E = 106), and
runtime is the time it takes to optimize an instance of size n. Results point out that
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Fig. 3.7: Percentage of time spent on evaluating solutions when optimizing Taixxa
instances of size n, with 1000n2 as stopping criterion.

runtime
E·n2 decreases as n increases. This means that for a fixed stopping criterion

in terms of maximum evaluations and a fixed population size, the actual time
complexity of Hamming KMM is at most O(n2). In the following, we show how
this cost can be reduced even further.
Even though the cost of evaluating a candidate solution is O(n2), given two dif-
ferent permutations σa, σb ∈ Sn, if σb ∈ N (σa) and the objective function value
of σa is known, then the objective function value of σb can be updated in O(n)
time [Pardalos et al., 1994]. The proposition below defines the objective function
relationship that two solutions at Hamming distance two have.

Property 9 Suppose ∃i1, i2 ∈ [n]|σa(i) = σb(i) ∀i ∈ [n] \ {i1, i2}. Then,

f(σb) = f(σa) +
∑

k∈{i1,i2}

n−1∑
i=0

(
Di,kHσb(i),σb(k) +Dk,iHσb(k),σb(i)

)
−

∑
k∈{i1,i2}

n−1∑
i=0

(
Di,kHσa(i),σa(k) +Dk,iHσa(k),σa(i)

)
+

∑
k∈{i1,i2}

Dk,kHσa(k),σa(k) −Dk,kHσb(k),σb(k)
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Fig. 3.8: Runtime per evaluation divided by n2 of Hamming KMM when optimizing
Taixxc instances of size n, with 106 evaluations as stopping criterion.

This process can be repeated over and over again to compute the objective function
value of permutations at Hamming distance two or more, and if the permutations
are close enough, it is more efficient than directly computing f(σb). It is worth
noting that the proposed approach is based on MM kernels and we used the
Distances Sampling Algorithm as the sampling procedure [Irurozki et al., 2016].
Hence, we sample at a given distance of a known permutation. Therefore, this
efficient method to compute the objective function yields a considerable speedup
in the EDA, especially in the last iterations of the EDA, where the expected
distance from the central permutation to the sampled permutation E[K] is small.

3.5 Experimental study

In order to prove the validity of the proposed method, in this section, we present
an exhaustive analysis of the performance of the algorithm.
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3.5.1 General remarks

Some popular instances of the QAP have been employed to evaluate the per-
formance of the proposed approach (Hamming KMM EDA). In particular, 30
instances from the QAPLIB [Burkard et al., 1997] were used.
Before running the experiments, there are a number of parameters that need to be
set in the proposed approach. First, we have the starting E[K]0 and final E[K]max
values of E[K]. E[K]0 is set to n/2, where n is the instance size, and E[K]max is
set to 0.25. Setting E[K]0 to n/2 produces a distribution in which, on average, the
sampled permutations have half the items in the same position as the reference
permutation σ0. The chosen E[K]max value produces a similar distribution that
E[K]max → 0 would, but without numerical errors, it is thus the most exploitative
state possible. The other two parameters are Ps and γ. The parameter Ps is the
population size of the EDA, and γ measures the speed at which E[K] is decreased.
These two parameters are set using Bayesian optimization [Pedregosa et al., 2011]
with the instance tai31a (which is not among the benchmark instances considered).
The optimal values found for these parameters are 972 and 5.14 respectively. These
parameters are used in all the executions of Hamming KMM EDA.
All the algorithms considered in the experimentation are tested in the set of 30
instances. The stopping criterion is the same for all the considered algorithms and
instances: 1000n2 evaluations. The experimentation was conducted on a single
machine with an octa-core AMD Ryzen 7 1800X Processor, with 8Gb of RAM.
Hamming KMM was implemented in C++. The rest of the algorithms were im-
plemented in either Java or C++. In any case, since the number of evaluations
is used as the stopping criteria, it is not affected by the hardware nor the pro-
gramming language, and therefore, is easy to reproduce. As a reference, it takes
Hamming KMM about 107 seconds to perform 1000n2 evaluations in the largest
of the studied instances (tai100a) and 0.1 seconds in the smallest one (tai10a).
For each benchmark instance, the results are recorded as the Average Relative
Deviation Percentage, ARDP = | fbest−fav

fbest
|, where fbest is the best known value

and fav is the average of the best objective values obtained in each repetition. For
further statistical analysis, Bayesian Performance Analysis [Calvo et al., 2019b,
Calvo and Santafé Rodrigo, 2016b] (BPA) is carried out to study the uncertainty of
the results of each experiment1 Specifically, Placket-Luce is used as the probability
model, defined in Sn, in this case, corresponding to the rankings of the algorithms.
BPA considers probability distributions over probability distributions. In our case,
assuming a uniform prior distribution, the posterior distribution of the probability

1 In the file "comparison_between_BPA_and_NHST.pdf", available in the GitHub
repository, we justify the use of Bayesian performance analysis instead of other more
traditional hypothesis tests.

https://github.com/EtorArza/SupplementaryKMMHamming/blob/master/comparison_between_BPA_and_NHST.pdf
https://github.com/EtorArza/SupplementaryKMMHamming
https://github.com/EtorArza/SupplementaryKMMHamming
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of each algorithm being the best performing one (winning) is computed. The goal
of this analysis is to determine which algorithm performs the best for the set of
considered benchmark instances. The inference with the BPA approach is fairly
simple [Calvo et al., 2019b]. First the scores of the algorithms are transformed
from ARDP to their corresponding rankings on each of the test instances. Then,
a sample is produced from the posterior probability distribution of the weights of
the Plackett-Luce model (a probability model for rankings). And finally, based on
these sampled weights, the credible interval of 90% is computed for each algorithm.
This interval means that there is a 90% chance that the actual probability of the
algorithm being the highest ranking algorithm (being the winner) lies within the
interval.

3.5.2 Experiment 1: Kernels and the exponential E[K]

For the sake of measuring the contribution of each of the two main parts that
extend a Hamming Mallows Model EDA, (i) the use of kernels and (ii) the use
of an exponential increase of E[K], we compare the performance of the full model
with the simplified variants. The simplified models considered are: KMM with
linear increase of E[K], MM with exponential increase of E[K], both with one
missing part; MM with linear increase of E[K], missing both parts; and finally,
a simple Hamming MM in which the concentration parameter ξ is estimated at
each iteration. Figure 3.9 shows all the studied simplified models, ordered by their
complexity in terms of the number of free parameters. The average ARDP obtained
in all the instances for each of the models is also shown in this figure.
The same parameters are considered for all the EDAs, thus, the parameters esti-
mated with Bayesian optimization for the full model are used. The ARDP values
are recorded in Table 3.1.
The full model outperforms the rest of the models in 60% of the instances, while
the second best model, (KMM with linear increase), only outperforms the rest
of the models in 23.3% of the studied instances. It is worth noting that using
the kernels part is much more important than the exponential increase of E[K],
since, as seen in Figure 3.9, both kernel models have an average ARDP lower
than 1%, while the rest of the models have an ARDP over 10%. Additionally, the
exponential increase is detrimental for the MM, and it is only a positive addition
when we consider it alongside the kernels parts. This experiment indicates
that both the kernels and the exponential increase of E[K] are key parts
of the proposed model.
Figure 3.10 shows the credible interval of 90% calculated from the samples ob-
tained from the posterior distribution of the probability of each of the algorithms
being the best. As can be observed, both kernel-based algorithms (with exponen-
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Fig. 3.9: A diagram of the simplified models considered in this chapter. The vertical
axis is proportional the complexity level of the model in terms of the number of
free parameters. The average ARDP obtained in the studied instances is shown
for each model.

tial increase and linear increase) have a higher expected probability of being the
best than the rest, around 0.6 and 0.4 respectively.
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Fig. 3.10: Credible intervals of 90% and expected value of the estimated posterior
probability of each algorithm being the winner among those tested.
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Table 3.1: The results of the simplified models when compared with the full model.
The best performing algorithm is highlighted in bold.

Instance KMM Exponential KMM Linear MM Exponential MM Linear MM estimated ξ
bur26a 0.105 0.100 1.600 1.469 1.420
bur26b 0.182 0.165 1.596 1.534 1.335
bur26c 0.007 0.010 2.202 1.970 1.717
bur26d 0.007 0.007 2.342 2.147 1.930
nug17 0.179 0.110 9.919 9.371 8.655
nug18 0.326 0.409 10.415 10.332 9.798
nug20 0.125 0.175 11.008 10.911 10.381
nug21 0.271 0.197 14.475 13.515 12.806
tai10a 0.000 0.000 3.484 3.207 2.338
tai10b 0.000 0.000 2.814 2.653 1.524
tai12a 0.140 0.000 9.624 8.806 8.280
tai12b 0.000 0.000 4.924 4.974 4.635
tai15a 0.179 0.190 8.252 8.194 7.536
tai15b 0.007 0.007 0.910 1.020 0.822
tai20a 0.843 0.947 12.830 12.379 11.863
tai20b 0.068 0.123 9.349 9.089 9.165
tai25a 1.265 1.732 13.586 12.941 12.454
tai25b 0.025 0.041 30.511 27.680 21.286
tai30a 1.435 1.891 12.547 12.258 11.957
tai30b 0.189 0.075 34.105 29.592 23.616
tai35a 1.485 2.429 13.852 13.121 12.800
tai35b 0.476 0.526 30.253 27.398 24.357
tai40a 1.762 2.622 13.829 13.451 13.157
tai40b 1.068 0.299 37.258 34.402 33.339
tai60a 2.237 3.400 13.757 13.524 13.180
tai60b 0.493 0.647 33.766 32.900 33.237
tai80a 2.172 3.658 12.547 12.361 12.005
tai80b 2.235 2.707 33.004 32.617 32.004
tai100a 2.190 3.538 11.771 11.619 11.485
tai100b 1.142 1.404 30.624 30.156 31.466

3.5.3 Experiment 2: Comparing specific EDAs for permutation
problems

In this experiment, we compare Hamming KMM EDA to other specific EDAs for
permutation problems1 considered in the literature. We compare the performance
of the proposed approach with respect to other MM-based approaches. For exam-
ple, the MM has already been applied to permutation problems under the Cayley,
Kendall’s-τ and Ulam distances [Ceberio et al., 2015c]. Cayley and Kendall-based
KMMs [Ceberio et al., 2015f] and GMMs have also been studied. Additionally,
mixtures of GMMs (MGMMs) have also been applied to permutation-based prob-
lems under the Cayley and Kendall distances [Ceberio et al., 2015e]. Specifically,
in this last article, the MGMM with two clusters was found to outperform the
other MGMM approaches, and therefore, we will only consider MGMMs with two
clusters. In addition to MM EDAs, we compare the performance of the proposed
algorithm to a Plackett-Luce EDA [Ceberio et al., 2013].

1 Specific EDAs are those that estimate a probability distribution explicitly on Sn.



3.5 Experimental study 105

The ARDP value for all the instances is recorded in Table 3.2. We kept the pa-
rameters proposed by each author in the paper that the algorithm is proposed.

Table 3.2: The average ARPD results of Hamming KMM EDA and other EDA
approaches specific to Sn. The best performing algorithm is highlighted in bold.

Hamming Ulam Kendall Cayley Plackett-

Instance KMM MM MM KMM MGMM GMM MM KMM MGMM GMM Luce

bur26a 0.105 3.716 1.937 2.453 1.955 1.746 0.359 0.211 0.690 0.365 1.730
bur26b 0.182 4.052 2.008 2.353 1.998 1.461 0.482 0.305 0.603 0.465 1.680
bur26c 0.007 4.386 2.121 2.655 2.054 1.827 0.369 0.172 0.634 0.307 1.843
bur26d 0.007 4.756 2.352 2.872 2.233 1.882 0.370 0.168 0.695 0.355 1.890
nug17 0.179 9.434 9.174 12.535 9.284 7.771 4.706 2.154 6.680 3.147 7.188
nug18 0.326 17.601 8.881 12.746 10.306 8.316 4.689 2.948 6.161 3.684 7.850
nug20 0.125 11.391 9.603 11.961 8.541 7.759 5.195 1.844 2.977 3.214 10.895
nug21 0.271 13.934 12.252 12.613 12.137 10.738 5.722 2.695 7.859 3.380 13.659
tai10a 0.000 15.514 6.464 11.306 8.048 8.395 2.354 1.038 2.244 2.348 2.278
tai10b 0.000 25.309 7.025 15.845 7.506 6.327 1.032 1.440 1.475 2.324 2.835
tai12a 0.140 9.521 11.905 17.115 12.359 11.496 7.226 5.856 7.415 6.415 6.928
tai12b 0.000 6.043 11.716 21.591 13.287 11.565 5.046 3.551 8.264 6.414 6.757
tai15a 0.179 7.919 9.225 11.174 9.670 9.128 4.648 3.153 6.497 3.586 5.631
tai15b 0.007 0.975 1.279 1.536 1.224 0.997 0.528 0.369 0.749 0.411 0.743
tai20a 0.843 12.014 12.050 12.921 11.443 10.942 6.971 2.820 5.412 5.355 11.958
tai20b 0.068 7.494 13.348 32.965 12.735 12.788 5.112 5.322 2.345 2.646 6.912
tai25a 1.265 12.355 11.856 12.439 11.765 11.159 7.572 4.735 8.397 5.537 11.962
tai25b 0.025 16.446 24.200 56.513 30.102 22.254 6.071 5.456 10.529 4.692 20.214
tai30a 1.435 15.292 11.263 11.314 10.529 10.184 6.628 3.301 4.629 4.947 11.682
tai30b 0.189 49.972 29.100 45.465 27.863 21.636 9.282 7.843 10.025 11.077 22.984
tai35a 1.485 12.912 11.879 11.820 11.862 11.221 7.316 4.592 7.621 4.880 12.921
tai35b 0.476 20.097 24.583 36.410 29.819 21.667 7.083 5.976 9.532 5.346 25.320
tai40a 1.762 13.257 11.651 11.546 11.599 11.004 7.162 3.670 4.904 4.862 13.272
tai40b 1.068 28.524 30.422 44.129 33.423 25.576 10.729 8.421 6.970 8.703 33.436
tai60a 2.237 13.222 11.367 10.996 11.026 10.234 7.354 3.878 4.666 4.574 13.103
tai60b 0.493 34.853 33.144 40.119 33.344 24.317 7.112 5.491 5.897 5.238 32.017
tai80a 2.172 12.109 9.964 9.740 9.853 9.465 6.525 3.745 4.111 4.358 12.074
tai80b 2.235 32.741 31.416 33.977 30.511 26.626 6.674 5.295 6.053 5.792 32.458
tai100a 2.190 11.496 9.469 9.062 9.282 8.711 6.237 3.460 3.617 3.913 11.469
tai100b 1.142 31.929 25.849 31.703 29.561 22.020 5.469 4.603 4.888 4.982 31.116

Figure 3.11 shows the credible interval of 90% of the posterior distribution of the
probability of being the best algorithm for the EDAs specific to Sn. Considering
credible intervals of 90%, we can say the probability of Hamming KMM being
the highest ranked method is higher than 60%. From this analysis, it is clear that
Hamming KMM is the algorithm with the highest probability of being the best,
followed by Cayley KMM.
To sum up, we observe that KMM EDA obtains a lower ARDP for all the 30
benchmark instances considered. Therefore, the experimentation suggests
that using the proposed model is the best option among the specific
EDAs on Sn for the 30 instances considered in this chapter.
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Fig. 3.11: Credible intervals of 90% and expected value of the estimated posterior
probability of each algorithm being the winner among those tested.

3.5.4 Experiment 3: Classical EDAs

Finally, we compare Hamming KMM EDA to other classical EDAs for the QAP
in the literature. In the review paper on EDAs in permutation problems [Cebe-
rio et al., 2012], the performance of 13 classical EDAs was studied. Using a null-
hypothesis statistical testing, the authors found that there were no statistically sig-
nificant differences among the best performing six methods for the QAP. These six
methods are univariate marginal distribution algorithm (UMDA) [Larrañaga et al.,
2000], mutual information maximization for input clustering (MIMIC) [De Bonet
et al., 1997], estimation of Bayesian network algorithm (EBNA) [Bengoetxea et al.,
2002], edge histogram-based sampling algorithm (EHBSA) [Tsutsui et al., 2003]
and two variants of node histogram-based sampling algorithm (NHBSA) [Tsutsui
et al., 2006], namely NHBSAWT and NHBSAWO. In this experiment, we compare
Hamming KMM EDA to these other algorithms. Not limited to the previous al-
gorithms, a recent successful EDA, the Random Key EDA [Ayodele et al., 2016,
2017], was also incorporated to the study.
The parameters proposed by the EDAs review article [Ceberio et al., 2012] are
used for the methods compared in that article, and we use the parameters proposed
by the authors in the RK-EDA [Ayodele et al., 2016]. The ARDP results are shown
in Table 3.3.
Hamming KMM EDA obtains the best results in terms of a lower ARPD value
in 70% of the considered instances. The second most competitive approach is
NHBSAWT , which outperforms the rest of the methods in 20% of the considered
instances. In addition to obtaining the lowest ARPD, Hamming KMM EDA is also
the most consistent algorithm. For instance, while NHBSA obtains an ARPD over
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5% in one instance, the proposed approach obtains lower than 2.5% ARPD in all
instances. However, for the four bur26x instances considered, the node histogram-
based sampling algorithm (NHBSAWT ) is able to outperform Hamming KMM
EDA. These instances have special properties in the distance matrix D. Specifi-
cally, adjacent rows and columns are similar to each other. Although Hamming
KMM EDA is still the second best approach in these instances, we believe that
the Hamming distance is not particularly suited for these instances, as argued in
Section 3.2.1.

Table 3.3: The average ARPD results of Hamming KMM EDA and other EDA
approaches. The best performing algorithm is highlighted in bold.

Instance Hamming UMDA MIMIC EBNA EHBSAwt NHBSAwt NHBSAwo RK-EDA

bur26a 0.105 0.323 0.281 0.311 0.442 0.094 0.172 0.535
bur26b 0.182 0.327 0.306 0.387 0.304 0.095 0.238 0.475
bur26c 0.007 0.064 0.102 0.116 0.208 0.000 0.023 0.356
bur26d 0.007 0.063 0.146 0.073 0.021 0.000 0.029 0.213
nug17 0.179 2.760 2.200 2.673 1.386 0.202 1.247 2.991
nug18 0.326 2.979 3.114 2.663 2.073 0.332 1.917 2.684
nug20 0.125 3.070 3.459 2.926 2.023 0.479 1.374 2.907
nug21 0.271 2.022 2.806 1.989 3.199 0.254 1.214 3.868
tai10a 0.000 2.113 3.295 2.833 1.729 0.043 1.944 5.279
tai10b 0.000 0.807 2.282 0.837 0.000 0.000 0.461 6.617
tai12a 0.140 4.980 5.514 4.690 0.000 0.208 4.136 7.181
tai12b 0.000 4.100 3.706 3.125 0.000 0.055 1.184 10.605
tai15a 0.179 2.993 3.634 3.415 3.043 0.665 2.151 4.643
tai15b 0.007 0.250 0.406 0.419 0.373 0.000 0.163 8.724
tai20a 0.843 4.779 5.226 4.224 4.885 2.280 3.360 7.049
tai20b 0.068 3.530 4.450 3.840 1.956 0.270 4.220 4.176
tai25a 1.265 4.387 4.700 4.297 6.160 3.630 3.325 6.510
tai25b 0.025 2.740 3.462 2.728 1.366 0.099 0.824 9.949
tai30a 1.435 3.559 4.643 4.091 6.666 3.896 2.640 6.895
tai30b 0.189 6.502 10.143 6.621 1.332 0.765 10.801 16.502
tai35a 1.485 4.226 4.976 4.025 7.514 4.919 2.606 7.233
tai35b 0.476 4.087 6.355 3.453 2.744 1.162 3.723 7.972
tai40a 1.762 4.038 5.246 3.771 7.959 5.292 2.748 7.814
tai40b 1.068 5.732 8.221 5.932 4.486 2.418 5.334 9.287
tai60a 2.237 4.032 5.001 4.009 7.419 4.243 3.346 7.449
tai60b 0.493 1.188 5.309 2.558 8.177 0.836 3.379 7.347
tai80a 2.172 3.737 4.621 3.595 7.114 4.415 3.032 7.046
tai80b 2.235 4.387 5.491 5.276 12.488 2.340 3.290 8.640
tai100a 2.190 3.460 4.227 3.321 6.737 4.519 2.792 6.636
tai100b 1.142 2.025 4.672 2.353 11.416 1.214 2.469 5.602

Figure 3.12 shows the credible interval of 90% of the posterior distribution of
the probability of being the best algorithm for the EDA not specific to Sn. We
can say with high confidence that the probability of Hamming KMM being the
highest ranked method is above 50%. In contrast, the probability of the next best
performing method, NHBSAwt, being the best one is lower than 30%. The rest of
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the methods have a fairly lower performance, with probability below 0.3 of being
the highest ranking methods, considering credible intervals of 90%.
Taking into account this analysis, Hamming KMM has a higher chance
of being the highest ranked method than the rest of the EDA methods
tested.

Probability of winning for EDA approaches non-specific to Sn
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Fig. 3.12: Credible intervals of 90% and expected value of the estimated posterior
probability of each algorithm being the winner among those tested.

3.6 Conclusion & future work

In this chapter, we aimed to take a step forward in the development of EDAs for
permutation problems. We argued that the Hamming distance is suitable for the
QAP, as it produces the smoothest objective function transitions when compared
to other distance-metrics. Moreover, unlike for the rest of the distance, we saw
that the number of components changed on the objective function of the QAP
was constant for the Hamming distance. These two properties suggest that the
Hamming distance is suitable for the QAP. After analyzing the adequacy of the
Hamming distance for the QAP, we proposed an algorithm that implements a
Hamming-based Kernels of Mallows Models (KMMs) EDA. In order to analyze the
performance of the proposed approach, we compare it to other non-hybrid EDAs
presented in the literature. The conducted experimentation showed that, for the
QAP, (i) Hamming KMM EDA performs better than other classical EDAs, (ii) it
also performs better than other model based EDAs in the literature, and (iii) the
use of Kernels on a Hamming-based MM is the key to the successful performance
of the algorithm. Specifically, Hamming KMM EDA is able to outperform the rest



3.6 Conclusion & future work 109

of the methods in 56.7% of the studied instances. Not only that, but Hamming
KMM EDA is also more stable than the competitors in terms of maximum Average
Relative Deviation Percentage, with an value of less than 2.5% in the most difficult
instance for this algorithm.
The incorporation of Hamming-based KMMs to the EDA framework in a com-
petitive manner opens new research directions worth considering. For instance,
this method could potentially be applied to other permutation problems, and
even in non-permutation based combinatorial problems, if the solution space of
the problem can be encoded by vectors. Because the Hamming distance measures
the mismatches, regardless of the order, we believe that this method could be
especially successful in combinatorial problems where the order of the elements
in the vector is not as relevant as the absolute position of the items, such as the
graph-partitioning problem [Buluç et al., 2016] or the .

Supplementary Material

Code to Reproduce the Results
The code to reproduce the results in this chapter are available in the repository
https://github.com/EtorArza/SupplementaryKMMHamming.

On the Suitability of Bayesian Performance Analysis
We justify why Bayesian Performance Analysis is suitable for the experimentation
of this chapter in the document available at https://github.com/EtorArza/Supple
mentaryKMMHamming/blob/master/comparison_between_BPA_and_NHST.pdf.

https://github.com/EtorArza/SupplementaryKMMHamming
https://github.com/EtorArza/SupplementaryKMMHamming/blob/master/comparison_between_BPA_and_NHST.pdf
https://github.com/EtorArza/SupplementaryKMMHamming/blob/master/comparison_between_BPA_and_NHST.pdf
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Multi-domain problem analysis

Problem analysis methods such as Fitness Landscape Analysis [Ochoa and Malan,
2019] and Local Optima Networks [Ochoa et al., 2014] help us better understand
optimization problems. One application of these analysis methods is choosing the
right algorithm for an optimization problem, which is known as the algorithm
selection problem [Rice, 1976]. However, one of the limitations of the problem
analysis methods in the literature is that they are particular to a solution space.
For example, local optima networks assume a combinatorial optimization prob-
lem [Ochoa et al., 2014], or exploratory landscape analysis Mersmann et al. [2011a]
assumes a continuous optimization problem.
In this chapter, we propose two multi-domain problem analysis methods, applica-
ble to a wide range of optimization problems in both combinatorial and continu-
ous domains. The proposed methods analyze a set of optimization problems and
identify the differences and similarities in the properties of the optimization prob-
lems in the set. Given a methodology to adapt an optimization algorithm for one
problem, we define transferability as the performance of the learned optimization
algorithm when applied to a different problem. Similarly, we define the behaviour
of an optimization algorithm as how it performs optimization in a problem, given
that it has previously been “adapted” to solve a different optimization problem.
To measure transferability and the behaviour, we introduce a multi-domain hyper-
heuristic framework based on neural network controllers. The controller guides the
optimization process and can be adapted with a training process on an optimiza-
tion problem. The experimentation carried out on four problem sets demonstrates
that the proposed analysis methodology is useful for identifying differences and
similarities in the properties of optimization problems in both the continuous and
combinatorial domains.
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4.1 Introduction

Hyper-Heuristic algorithms automate the generation and selection of heuristic and
metaheuristic algorithms [Burke et al., 2013]. Classical proposals approached this
task by focusing on a certain optimization problem domain [Keller and Poli, 2008,
Grobler et al., 2010, Meignan et al., 2010, Burke et al., 2012, Martin et al., 2016,
Stanovov et al., 2022].
Great progress has been made in “cross-domain hyper-heuristics”, where the same
hyper-heuristic is be applied to different optimization problem domains [Sabar
et al., 2013, 2015]. In this context, HyFlex [Ochoa et al., 2012] introduced a popular
benchmark platform, proposing six types of combinatorial optimization problems
and a set of low-level heuristic algorithms. Nonetheless, the proposal is only appli-
cable to combinatorial type problems [Ochoa et al., 2012]. Revising the literature
in the continuous domain, some hyper-heuristics have been proposed [Cruz-Duarte
et al., 2020, Caraffini et al., 2019], although to a lesser extent [Pillay and Qu, 2018].
Some approaches in this domain have focused on algorithm selection [Jankovic and
Doerr, 2020], improving the parameter control of existing heuristics [Shala et al.,
2020], or the discovery of new variants of existing heuristics [Poli et al., 2005].
On the other hand, problem analysis methods such as Fitness Landscape Anal-
ysis [Ochoa and Malan, 2019] and Local Optima Networks [Ochoa et al., 2014]
help us better understand optimization problems. One application of these analy-
sis methods is choosing the right algorithm for an optimization problem, which is
known as the algorithm selection problem [Rice, 1976]. However, one of the limita-
tions of the problem analysis methods in the literature is that they are particular
to a solution space. For example, local optima networks assume a combinatorial
optimization problem [Ochoa et al., 2014], or exploratory landscape analysis Mers-
mann et al. [2011a] assumes a continuous optimization problem.
Contribution
In this chapter, we propose a multi-domain problem analysis method based on a
hyper-heuristic framework. Domain generality is achieved with two domain spe-
cific parts, the encoder and the decoder, that interact with the optimization prob-
lem, and need to be defined for the problem domain. This makes the rest of
the hyper-heuristic (the training procedure and the problem analysis methodol-
ogy) domain agnostic. To illustrate the multi-domain applicability of the problem
analysis method, we empirically show that the analysis carried out in both the
continuous and combinatorial domains is correlated with the properties of the
optimization problems themselves. Therefore, the proposed analysis methods are
more widely applicable than other approaches that might be domain-dependent,
such as fitness landscape analysis [Pitzer and Affenzeller, 2012] or local optima
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networks [Ochoa et al., 2014]. In addition, the hyper-heuristic framework can also
be used to generate or control optimization algorithms.
Organization
The rest of the chapter is organized as follows: the next section introduces the
multi-domain hyper-heuristic framework. Afterward, in Section 4.3 the proposed
optimization problem embedding methodology is described. Then, in Section 4.4,
we carry out an experimental study. Finally, Section 4.5 concludes the chapter
and gives research lines for future work.

4.2 Multi-Domain Hyper-Heuristic

The problem analysis method is based on the "adaptation" process of the hyper-
heuristic framework. Hence, before focusing on the analysis method, in the follow-
ing, we introduce the multi-domain hyper-heuristic framework.
The proposed hyper-heuristic framework is a population-based algorithm with a
neural network-based model, called the controller, that decides how the solutions
are modified at each iteration. The controller is a trainable model with three
interconnected parts, that together, modify solutions according to a previously
learned behavior. To achieve domain generality, the controller (see Figure 4.1
for a broader look) has two domain-specific parts that depend on the domain of
the problem being solved: an encoder and a decoder. These need to be specified
before applying the hyper-heuristic and their purpose is to give the hyperheuristic
framework domain generality.
The framework is applicable to any problem domain, given that an encoder/de-
coder pair can be defined for that domain. To showcase this domain generality,
in this chapter we implemented two encoder/decoder pairs, one pair for continu-
ous problems and another for permutation based problems. The proposed hyper-
heuristic is not a cross-domain approach [Pillay and Qu, 2018], in the sense that
it needs to be trained for a specific encoder/decoder pair. Instead, it is a multi-
domain approach in the sense that the training procedure and optimization loop
(shown in Figure 4.1) are the same regardless of the domain, as is the problem
analysis methodology (explained in detail in Section 4.3).
The hyper-heuristic starts with a set of solutions generated uniformly at random.
Then, at each iteration, the controller modifies each solution σi in the population
in three steps (see Figure4.1). First, the encoder gathers information about the
optimization state into a real-valued vector X ∈ Rp, which we call the feature
vector. The feature vector is a representation of the current state of the optimiza-
tion. Then the neural network maps this vector X into another vector Y ∈ [−1, 1]q
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Fig. 4.1: Diagram of the proposed hyper-heuristic framework.

that we call the response vector. Finally, based on the response vector, the decoder
modifies the solution σi. The decoder is an operator that, given a real valued vector
Y and a solution σi, returns a modified solution.
This process is repeated for each solution σi in the population. Then, if the stop-
ping criteria are met, the process is terminated and the best found solution is
reported. Otherwise, the process is repeated with the new population of solutions
replacing the old ones.
This hyper-heuristic framework is general and can be applied to different types of
optimization problems with different search spaces. In this sense, the decoder and
the encoder bridge the search space with the space in which the neural network
operates (the neural network φ is mapping with n real inputs and m real outputs).
The decoder/encoder pair is the only domain-specific component of the hyper-
heuristic, and it needs to be compatible with the search space of the optimization
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problem. If an encoder/decoder pair can be defined for a problem, then the hyper-
heuristic is applicable to that problem.
In order to apply the hyper-heuristic for the optimization of a problem, it needs
to be trained first. In this sense, we identify two different stages A) the training
stage and B) the application stage. In what follows, we carefully describe each of
these stages.

4.2.1 Training stage

The training of the hyper-heuristic involves training the neural network in the
controller. The neural network is trained in a reinforcement learning setting with
the Neuroevolution of Augmenting Topologies (NEAT) [Stanley and Miikkulainen,
2002] algorithm. Specifically, given an optimization problem, NEAT tries to find
the neural network design that maximizes a score obtained from the application
of the hyper-heuristic in the problem, with the neural network in the controller
(see Appendix 7.3.1 for additional details).
The training stage (Algorithm 4) starts with an initial random set of m neu-
ral networks (a single hidden layer neural networks with random weights) φ̄ =
{φ1, ..., φm} (line 1), and the score of the neural networks is computed as the
best objective function value they obtain when being used to optimize the given
optimization problem I (line 4). Several executions are averaged to obtain a more
certain estimation of the score of the neural network. Next, the most promising
neural networks are chosen and combined, creating new neural networks (line 5).
Finally, mutations are applied to the new neural networks and their performance
is once again tested, concluding the current generation. This process is repeated
until a stopping criterion is reached (line 2). The training stage concludes when
the best neural network in the last generation is returned (lines 7-8).

4.2.2 Application stage

Once the controller is trained, the trained hyper-heuristic can be applied to op-
timize other unseen instances of the same problem. In addition, it can also be
applied to different problems defined in the same domain.

4.2.3 Interface with the optimization problem

As mentioned before, the hyper-heuristic depends on a three-part neural network-
based model (controller) that decides how the solutions are to be modified at
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Algorithm 4: Training the neural network with NEAT [Stanley and
Miikkulainen, 2002]

Input:
I: The training optimization problem.
ttrain: The maximum training time.

1 φ̄ = (φ1, ..., φm) ← randomly initialize a set of neural networks
2 while t < ttrain do
3 for j = 1, ...,m do
4 gj ← optimize problem I with the hyper-heuristic, with the neural

network φj in the controller
5 φ̄← select, crossover and mutate the neural networks φ̄ based on the

computed scores gj

6 t ← elapsed_time
7 res ← φj ∈ φ̄ with the highest gj

8 return res

each iteration (the green square in Figure 4.1). Two of these parts are domain-
specific (the encoder and the decoder) to achieve domain generality. To validate
the proposed approach, in this chapter we considered four problem sets in two
different search spaces: the space of permutations of size n and Rn. Therefore, we
proposed two encoder/decoder pairs, one pair for each search space and we give a
brief overview of how they work in the following.

4.2.3.1 Continuous problems

The controller for continuous problems is based on the well-known particle swarm
optimization algorithm [Kennedy and Eberhart, 1995]. This is a population based
optimization algorithm for continuous problems, where each solution is updated
via a linear combination of three vectors. Specifically, each solution σi is moved
towards the best solution so far (denoted as σbest) and the best solution visited
by σi (denoted as σi,best). The move made in the last iteration is also used as a
reference movement for the next iteration. These three moves are represented by
three vectors, which are then added to σi.
Specifically, the modified solution σ′

i is obtained as

σ′
i = σi + ∆t,i (4.1)

and
∆t,i = y1 · r1 · (σi − σbest) + y2 · r2 · (σi − σi,best) + y3 ·∆t−1,i
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where ∆t−1,i is the ∆t,i of the previous iteration for solution σi and r1, r2 are two
random numbers sampled uniformly at random from the interval (0, 1).
Choosing the weights (y1, y2, y3) to use in this linear combination is still an open
problem [Engelbrecht and Cleghorn, 2020]. The proposed hyper-heuristic learns
how to choose these weights for each solution σi to be modified. This is done in
three steps, as shown in the green box in Figure 4.1.
In the first step (encoder), a real valued feature vector X = (x1, x2, ..., x10) is
produced with values in the interval (0, 1). These values represent the solution σi
and the state of the optimization procedure:

• x1, x2 indicate the absolute L1 distance from the current solution σi to the
best solution in the population and the average solution respectively.

• x3, x4, x5 describe the relative distance from the current solution to the closest,
best, or average solution respectively. First, the absolute distances are com-
puted for every solution in the population and then the relative distances are
set in the interval (0, 1) as a relative ranking of their absolute counterparts.

• x6 is the proportion of the computation budget used so far.
• x7 is proportional to the relative ranking of solutions in the population σi with

respect to the rest of the solutions. Since the solutions in the population are
sorted according to their objective value before X is computed, a value of i

q
is assigned to x4, where q is the population size and i is the relative ranking
of the objective value of σi with respect to the rest of the solutions in the
population.

• x8 is 1 if σi improved its best found solution and 0 otherwise.
• x9 is 1 if σi is the best-found solution so far and 0 otherwise.
• x10 is a random number in the interval (0, 1).

The second step involves feeding X into the neural network, and we get the re-
sponse vector Y = (y1, y2, y3). In the third step (decoding), σi is modified with
the update rule in Equation (4.1).

4.2.3.2 Permutation problems

The controller for permutation problems considered in this chapter is based on
local search and related techniques such as simulated annealing [van Laarhoven
and Aarts, 1987]. As with the continuous controller, the controller for permu-
tation problems modifies a solution σi in three steps. First, the feature vector
X = (x1, x2, ..., x8) is produced (encoder), containing information about the opti-
mization state.
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• x1, x2 and x3 indicate whether σi is a local optimum (1) or not (0), for each of
the three operators considered in this chapter: adjacent swap, exchange and
insert [Schiavinotto and Stützle, 2007].

• x4 is proportional to the relative ranking of solutions in the population σi with
respect to the rest of the solutions. Since the solutions in the population are
sorted according to their objective value before X is computed, a value of i

q
is assigned to x4, where q is the population size and i is the relative ranking
of the objective value of σi with respect to the rest of the solutions in the
population.

• x5 is set according to the computational budget spent so far.
• x6 is proportional to the relative ranking of the differences in the objective

value with respect to the previous solution in the population. In other words,
a value proportional to the ranking of f(σi−1)−f(σi), where σi is the solution
to be modified, and σi−1 is the solution that is next to σi in terms of relative
ranking.

• x7 and x8 are proportional to the Hamming and Spearman’s footrule [Dia-
conis and Graham, 1977] distances from σ to a median permutation σ0 that
satisfies σ0 = argminσ

∑q
i=1 d(σ, σi), where d is the Hamming and the Kendall

distance [Fligner and Verducci, 1986b] respectively, and σi is the permutation
to be modified. The Hamming median permutation can be obtained by solv-
ing a linear assignment problem [Irurozki et al., 2019b]. In the case of the
Kendall distance, the median permutation is approximated using the Borda
algorithm [Cook and Seiford, 1982, de Borda, 1781].

Then, in the second step, we feed X into the neural network, and we get the
response vector Y = (y1, y2, ..., y11). Finally, in the third step, σi is modified ac-
cording to the response vector. The decoder for permutation problems considered
in this chapter combines and parametrizes heuristic components commonly used in
the field of evolutionary computation such as simulated annealing [Glover, 1986],
local search, and variable neighborhood search [Mladenović and Hansen, 1997],
among others. In the following, we give a detailed explanation of this process.
Decoder for permutation problems
Algorithm 5 shows how the decoder combines and controls heuristic components
based on the output of the neural network to modify permutation σi. First, y1 de-
termines if solution σi should be randomly reinitialized or not (lines 1-3). Next, the
operator to be used is specified by the argmax of (y2, y3, y4), each value represent-
ing swap, exchange, and insert operators, respectively (line 4). Then, y5 chooses
between three heuristic options. If |y5|< 0.25 is satisfied, then the solution remains
unaltered (lines 5-6). If y5 < −0.25, then a local search iteration is applied with
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the chosen operator (lines 7-8). Finally, if y5 > 0.25 then σi is modified without
local search (lines 10-14).
In this case, a perturbation is applied to σi such that its distance to a reference
permutation is increased or decreased. If the modification decreases the objective
value, it is only accepted with a certain probability (line 10). The reference permu-
tation is specified by the last five values of the response (y7, y8, y9, y10, y11), each
value associated with a different reference permutation as shown in Table 4.1. The
reference permutation is chosen randomly, considering probabilities proportional
to the absolute value of the reference coefficients (line 11-12). The direction of the
modification is chosen according to the sign of the corresponding reference coef-
ficient, with a positive value representing a modification towards the reference,
and a negative value a modification away from the reference (line 13). Finally, the
modification is applied to the solution (line 14). We refer the interested reader to
Appendix 7.3.2 with additional details on exactly how the modification is applied
(line 14)

Table 4.1: Reference permutations available to the decoder

Reference index Reference permutation (σref)
Hamming median permutation. Already

ref = 7 computed when generating the feature
vector element x7.
Kendall median permutation. Already

ref = 8 computed when generating the feature
vector element x8.

ref = 9 Best solution that σi has visited
in past iterations.

ref = 10 Best known solution.
σi−1, which is the permutation

ref = 11 that is closest in objective value to
the solution being modified.

4.3 The hyper-heuristic framework as a tool to analyze
optimization problems

In this section, we will introduce two methods for analyzing a set of optimization
problems. The purpose of these methods is to identify similarities and differences
among optimization problems in a problem set. We will start with a brief overview
of the motivation, related works, and potential applications of these analysis meth-
ods.
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Algorithm 5: decode(σi,Y )
Input:
Y = (y1, ..., y10): Response for solution σi.
σi: The permutation to be modified.

1 if y1 > 0.25 then
2 return random permutation
3 end
4 operator ← argmax(y2, y3, y4) // Corresponding to the swap, exchange and

insert respectively
5 if |y5|< 0.25 then
6 return σi // No changes to solution σi

7 else if y5 < −0.25 then
8 return local_search_iteration(σ, operator)
9 else

10 prob_accept_worse ← y6+1
2

11 ref ← choose j ∈ {7, ..., 11} with prob. proportional to |yj |
12 σref ← select reference permutation as shown in Table 4.1
13 direction ← sign(yref )
14 return modify(σi, σref , direction, operator, prob_accept_worse)
15 end

4.3.1 Motivation and Applications

Analyzing a set of optimization problems has many applications, such as anomaly
detection for a sequence of optimization problems. Let’s assume that a local post
office needs to solve multiple combinatorial optimization problems (such as the ori-
enteering problem [Kobeaga et al., 2018] or the traveling salesman problem [Gold-
berg and Lingle, 1985]) each day to plan the routes for deliveries. A factory job
planner might also have to apply the flowshop scheduling problem [Gupta and
Stafford, 2006] on a regular or even dynamic basis if circumstances change [Li
et al., 2023]. In these examples, it would be useful to detect when a new problem
instance is very different from the rest. This might indicate that the optimization
algorithm currently being used is not appropriate for the new problem instance,
and new algorithms may need to be developed to solve the problem more effec-
tively. More importantly, it might also indicate a problem with the problem in-
stance data or another type of anomaly [Carreño et al., 2020] that requires further
investigation.
Analyzing the properties of optimization problems is also applicable to algorithm
selection [Janković and Doerr, 2019] and benchmark design. For instance, when
choosing a set of optimization problems for a benchmark, it might be desirable
that the properties of the optimization problems are balanced [Dreo et al., 2019].
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For example, if the benchmark has 20 problem instances, it would not make sense
to have 19 instances with similar properties and another completely different in-
stance. Real-world examples, including benchmarks for optimizing energy usage
in buildings [Wölfle et al., 2020] or car structural design [Kohira et al., 2018], show
that benchmark design is relevant beyond the optimization community.
Related works
There are many problem analysis methods in the literature, although, in gen-
eral, they are more domain-specific than the proposed approach. We argue that
the main advantage of the proposed problem analysis methods is that the analy-
sis procedures do not depend on the problem domain. This means that they are
more widely applicable than other analysis approaches that might be domain-
dependent, such as fitness landscape analysis [Pitzer and Affenzeller, 2012], local
optima networks [Ochoa et al., 2014], or exploratory landscape analysis [Mers-
mann et al., 2011b]. For instance, exploratory landscape analysis was designed for
combinatorial optimization problems [Smith-Miles, 2009] and has been adapted
to continuous problems with different approaches [Munoz et al., 2015]. However,
the same exploratory landscape analysis method is not applicable to both combi-
natorial and continuous optimization problems.
The analysis of a set of optimization problems via transferability has already
been studied. Hong et al. [2018] proposed measuring transferability as the average
objective value of the hyper-heuristic when training and testing on two continuous
optimization problems. Our experimental setup on transferability improves the
methodology of Hong et al. [2018] in four key aspects.
Firstly, by defining transferability with ranks instead of objective values, we can
compare across different problems (the magnitude of transferability is the same
for every problem). Secondly, by repeating several measurements of transferability
and computing the average ranks, we can distinguish between noise and the ac-
tual difference in performance (this is not possible with average objective values).
Thirdly, we experimentally show that the analysis carried out with our approach
is correlated with the properties of the optimization problems, which suggests
that the proposed technique is useful for finding similarities and differences in the
properties of optimization problems. Finally, we show that our approach works in
both combinatorial and continuous domains, while the approach by Hong et al.
[2018] was only shown to work in the continuous domain. See Appendix 7.3.5.1
for additional details on exactly how our approach overcomes the limitations of
the analysis proposed by Hong et al. [2018].
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4.3.2 Via the performance of the hyper-heuristic

The first method involves measuring the performance of the hyper-heuristic in the
problem set, and how it varies when applied to different problems in the set. In
this context, we define the transferability as the relative loss of performance of the
hyper-heuristic when it is trained on a problem (the train problem) and applied
in another problem (the test problem). By computing the transferability between
every pair of problems in a problem set, we can embed these problems into a k×k
real matrix, which we named transferability matrix.

4.3.2.1 Transferability matrix

Given a set of optimization problems P1, ...,Pk, the transferability from problem
Pi to problem Pj , denoted as Ti,j , is a real value in the interval [0, 1] that rep-
resents the relative performance of the hyper-heuristic in the test problem Pj ,
when it has been trained in problem Pi (a lower transferability indicates better
performance). This performance is relative to the performance observed when the
hyper-heuristic has been trained in another different problem Pi′ , and tested in
the same problem Pj .
More precisely, given a test problem Pj , we train the hyper-heuristic in all the
problems P1, ...,Pk, and set Ti,j = 0 for the training problem Pi that produced
the best performance in the test problem Pj , and Ti,j = 1 for the training problem
Pi that produced the worst performance (the rest of the problems get values in
between, proportionally to their ranking in performance). We repeat this process
for each test problem Pj , thus obtaining the transferability Ti,j between every
possible pair of problems. The transferability matrix is defined with the element
Ti,j in row i and column j. A more formal definition of the transferability is
available in Appendix 7.3.3.
In a second stage, we reorder the rows and columns in the transferability matrix.
The problems P1, ...,Pk in a given set are not ordered: the index i of a problem
Pi has no meaning. Consequently, we can reorder the problems such that prob-
lems with a similar transferability have a similar index. To do so, we reorder the
optimization problems such that the loss

k∑
j=1

√√√√k−1∑
i=1

(Ti,j − Ti+1,j)2 +
k∑
i=1

√√√√k−1∑
j=1

(Ti,j − Ti,j+1)2 (4.2)

is minimized. Minimizing this loss implies that adjacent columns and rows in the
transferability matrix are as similar as possible to each other.
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4.3.2.2 Interpretation

Figure 4.2 shows an example transferability matrix. If the transferability Ti,j is
low, the interpretation is “the performance of the hyper-heuristic on problem Pj

was relatively high when trained on problem Pi”. Now we can go a step further
by comparing several Ti,j to each other.
Let us assume that problems P1 and P2 are the same optimization problem.
Then, it is likely that T1,j ≈ T2,j and Ti,1 ≈ Ti,2. Consequently, P1 and P2 will
be placed close to each other in the transferability matrix. This suggests that
problems that are similar to each other from the point of view of the performance
of the hyper-heuristic will be placed next to each other in the matrix.
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Fig. 4.2: An example transferability matrix. A darker color implies a lower (better)
transferability.

4.3.3 Via the behavior of the hyper-heuristic

The second analysis method takes into account how the hyper-heuristic carries out
the optimization process. In this sense, the behavior of the trained hyper-heuristic
(how the lower-level heuristics are applied to each solution) is determined by the
outputs of the neural network (denoted as response vectors in this chapter). In fact,
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the set of all the response vectors generated when applying the hyper-heuristic in
an optimization problem allows us to replicate the optimization process carried
out. Therefore, it is possible to summarize the behavior of the hyper-heuristic by
averaging all the response vectors generated when applying the hyper-heuristic in
an optimization problem.
Given a set of optimization problems P1, ...,Pk, we want to identify the similari-
ties/differences of the problems by looking at the behavior of the hyper-heuristic
when trained and tested in these problems. To do so, first, we train the hyper-
heuristic in problem Pi and compute the average response R(Pi � Pj) generated
when applying the hyper-heuristic in problem Pj . We repeat this process for every
possible pair of optimization problems Pi,Pj ∈ {P1, ...,Pk}, and we obtain 10
samples for each possible pair.
Next, we fit a Linear Discriminant Analysis [Singh, 2020-08-18, 2020, Rao, 1948]
(LDA). In Appendix 7.3.6, we justify why fitting a LDA is suitable for this purpose.
The class to fit the LDA is the problem Pi used to train the hyper-heuristic.
Once the LDA is fitted, we compute the average response in each train problem

Pi:
∑

P∈{P1,...,Pk} R(Pi � P)
k

. Then, we project the average response in each
train problem into a 2D space. This generates an embedding of the optimization
problems in R2 (one point for each train problem Pi). We denote this embedding
as the LDA of a problem set.
Once the embedding has been computed, we can interpret it. The interpretation
is simple: the behavior of the hyper-heuristic is similar in two problems if they are
close to each other in the projected space.

4.4 Experimental study

The purpose of this experimental section is to validate the utility of the proposed
hyper-heuristic framework. The first part of the experimentation is devoted to, as
a baseline, show that the hyper-heuristic framework can improve existing heuris-
tics beyond a parameter search approach. Then, the second part focuses on the
application of the two optimization problem analysis methods described in the
previous section. We apply the two analysis methods and then we take a look
at how these analyses correlate with the properties of the optimization problems.
The code to reproduce the experiments is available in our GitHub repository at
https://github.com/EtorArza/TransfHH.

https://github.com/EtorArza/TransfHH
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4.4.1 Problem sets

The experimentation was carried out in four problem sets. In the first problem set
i), we considered twelve classical continuous optimization problems chosen from
the virtual library of simulation experiments [Surjanovic and Bingham]. Further-
more, in the second problem set ii), we used the continuous problem instance
generator from Rönkkönen et al. [2008] to experiment on optimization problems
with a different number of local optima. Regarding the combinatorial domain, in
the third problem set iii) four permutation problems were considered: the Traveling
Salesman Problem [Goldberg and Lingle, 1985], the Quadratic Assignment Prob-
lem [Koopmans and Beckmann, 1957], the Linear Ordering Problem [Schiavinotto
and Stützle, 2004] and the Permutation Flowshop Scheduling Problem [Gupta and
Stafford, 2006] and four instances of different sizes and benchmarks were chosen
for each problem (in total 16 instances). In the final problem set iv), we considered
different instance benchmarks from the Quadratic Assignment Problem. In this
section, we provide additional details on the four i) - iv) problem sets.

i) Twelve continuous optimization problems

These are the twelve continuous optimization problems that were considered in
this chapter, six (P1−P6) bowl-shaped and six with many local optima (P7−P12).

P1 Sphere,
∑d
i=1 x

2
i

P2 Rotated hyper-ellipsoid,
∑d
i=1

∑i
j=1 x

2
j

P3 Trid function,
∑d
i=1(xi − 1)2 +

∑d
i=1 xi · xi−1

P4 Log sphere,
∑d
i=1 log(xi)2

P5 Sum of powers,
∑d
i=1|xi|i

P6 Sum squares,
∑d
i=1 i · x2

i

P7 Langermann,
∑5
i=1 Gi exp(− 1

πFi,j) cos(πFi,j) where
G = {1, 2, 5, 2, 3}, Fi,j =

∑i
j=1(xj −Di,j|2)2, j|2 is

the reminder of j divided by 2 and

D =


3 5
5 2
2 1
1 4
7 9


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P8 Schwefel,
∑d
i=1 xi · sin(

√
|xi|)

P9 Rastrigin, 10d+
∑d
i=1

[
x2
i − 10 cos(2πxi)

]
P10 Levy,

sin2(πw1) +
∑d−1
i=1 (wi − 1)2[1 + 10 sin2(πwi + 1)]+

(wd − 1)2[1 + sin2(2πwd)], where wi = 1 + xi−1
4

P11 Griewank,
∑d
i=1

x2
i

4000 −
∏d
i=1 cos( xi√

i
) + 1

P12 Ackley,
−20 exp

(
1
5

√
1
d

∑d
i=1 x

2
i

)
− exp

(
1
d

∑d
i=1 cos(2πxi)

)
All of these functions (except for the log sphere function) were taken from the
Virtual Library of Simulation Experiments [Surjanovic and Bingham]. Also, note
that the version of the Langermann function considered in this chapter has been
modified to be suitable for any positive dimension d. We considered a dimension
size of 20 for every problem.
The search space for each problem was set according to the Virtual Library of
Simulation Experiments [Surjanovic and Bingham]. In addition, each time a prob-
lem was loaded, the search space was reduced by a random percentage between 0%
and 10%. So for example, the search space of P1 is [−5.12, 5.12]d as defined in the
Virtual Library of Simulation Experiments [Surjanovic and Bingham]. Therefore,
the reduced search space would be

[−5.12 + (5.12− (−5.12)) · δ1, 5.12− (5.12− (−5.12)) · δ2] =

[−5.12 + 10.24 · δ1, 5.12− 10.24 · δ2],

with δ1, δ2 chosen uniformly at random from the interval [0, 0.1]. This reduction
in the search space slightly moves the position of the optimal solution avoiding
any possible bias associated with the movement of the solutions in the direction
of the coordinate axes [Janson and Middendorf, 2007] or the center of the search
space [Monson and Seppi, 2005].
In Figure 4.3, we show the contour plot of the two dimension versions of these
functions, with the search space linearly transformed to [0, 1]d for easier visualiza-
tion.
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Fig. 4.3: The contour plots for optimization problems P1 - P12.
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ii) Continuous problem generator

In addition to classical continuous optimization algorithms, we considered an op-
timization problem generator that can produce optimization problems with a dif-
ferent number of local optima. Specifically, we considered the “quadratic family”
of the optimization problem generator by Rönkkönen et al. [2008] (see Figure 4.4
for two examples). Optimization problems with 1, 2, 4, 8, 16, 32, and 64 local
optima were generated.
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Fig. 4.4: Two random minimization problems with a different number of local
optima, obtained with the optimization problem generator by Rönkkönen et al.
[2008]. Both of them are two-dimensional problems, with the vertical axis as the
objective function.

iii) Four permutation-based optimization problems

For this problem set, we chose four well known optimization problems in the
literature: the Traveling Salesman Problem, the Permutation Flowshop Scheduling
Problem, the Linear Ordering Problem, and the Quadratic Assignment Problem.
In the following, we give additional details on the chosen problems.
Traveling Salesman Problem (TSP): Given a set of n cities, the goal of the
TSP [Goldberg and Lingle, 1985] is to find a path that connects all the cities
forming a single cycle while minimizing the length of the path. An instance of the
problem is defined by the matrix D = [di,j ]n×n containing the distances between
any two cities. Given a permutation σ, the objective function value is computed
as:

f(σ) = dσ(n),σ(1) +
n∑
i=2

dσ(i−1),σ(i)
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Permutation Flowshop Scheduling Problem (PFSP): Given a set of m machines
and n tasks, the Permutation Flowshop Scheduling Problem (PFSP) [Gupta and
Stafford, 2006] is the problem of optimally ordering the tasks so that a certain
criterion is minimized. An instance of PFSP is defined by a matrix P = [pi,j ]n×m,
containing the processing time of task i in machine j. Each of the n tasks has to
go through every machine j ∈ [m] in order, and each machine can only process
one task at a time. To compute the objective value of a solution f(σ) = cσ(n),m,
a recursive formula can be used:

cσ(i),j =


pσ(i),j i = j = 1
pσ(i),j + cσ(i−1),j i > 1, j = 1
pσ(i),j + cσ(i),j−1 i = 1, j > 1
pσ(i),j + max(cσ(i−1),j , cσ(i),j−1) i, j > 1

Linear Ordering Problem (LOP): Given an integer matrix B = [bi,j ]n×n, the goal
of the Linear Ordering Problem [Schiavinotto and Stützle, 2004] is to find a simul-
taneous permutation of both rows and columns so that the sum of the values above
the diagonal is maximized. The solutions can be encoded as permutations, so that
given a permutation σ, the i-th column and row are assigned σ(i)-th column and
row respectively. Formally, the objective function is defined as:

f(σ) =
n−1∑
i=1

n∑
j=i+1

bσ(i),σ(j)

Quadratic Assignment Problem (QAP): In the QAP [Koopmans and Beckmann,
1957], we are given a set of n facilities and n locations, along with the distance
between any two locations D = [di,j ]n×n, as well as the workflow between any
two facilities H = [hi,j ]n×n. The goal is to find an assignment σ (codified as
a permutation) of each of the facilities to one of the locations, such that the
objective function f(σ) =

∑n
i=1

∑n
j=1 di,jhσ(i),σ(j) is minimized.

Problem instances in permutation problems
Each permutation-based optimization problem has many problem instances [Elorza
et al., 2019]. A problem instance is a specific set of parameters that defines the
objective function of the optimization problem. The list of considered problem
instances is shown in Table 4.2.
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TSP QAP PFSP LOP
eil76 tai75e01 tai50_5_0 N-be75np_150cut
rat99 tai75e02 tai50_5_1 N-be75oi_150cut

kroA100 tai80a tai100_5_0 N-stabu3_150cut
kroB100 sko90 tai100_5_1 N-t65d11xx_150cut

eil101 sko100a tai50_10_0 N-t70f11xx_150cut
pr107 sko100b tai50_10_1 N-t75n11xx_150cut
ch130 tai100a tai20_20_0 N-tiw56r54_150cut
pr136 tai100b tai20_20_1 N-tiw56r72_150cut

Table 4.2: Lists the problem instances in problem set iii). Note that the LOP
instances were originally of size 150 and have been reduced to size 75.

iv) Instances of the QAP

In addition to different permutation-based optimization problems, we also consid-
ered different problem instance benchmarks within the same problem (the QAP).
A problem instance of the QAP is given by two square matrices: the flow matrix
H, and the distances matrix D. The goal of the QAP is to minimize the cost as-
sociated with the flow and the distance described in these two matrices. In order
to design a diverse experimentation setting, three types of QAP instances were
chosen from the QAPLIB (the online encyclopedia of QAP instances [Burkard
et al., 1997]), taixxA, sko and taixxB. According to the instance classification of
Stützle [2006], each of these belongs to a different type of instance class. In the
first class, taixxA instances have both matrices H and D generated uniformly
at random with values in the range [1,100] and are symmetric. In the second
class, sko instances [Skorin-Kapov, 1990] have the distance matrix D based on the
Manhattan (L1) distance. Finally, taixxB instances are asymmetric and randomly
generated [Burkard et al., 1997]. According to Stützle [2006], taixxB instances try
to resemble the structure of real life instances.
Multiple instances of the same type and size are desired to experiment with the
transferability and the response. However, it is difficult to find instances of the
same type and size for the QAP. To obtain multiple instances of the same size and
type, larger instances of the same type were cut, obtaining 7 instances of size 40
of the same type, with a total of 21 instances.1

1 The problem instances in the iv) problem set are available for download
at https://github.com/EtorArza/TransfHH/tree/master/src/experiments/permus/in
stances/transfer_qap_cut_instances.

https://github.com/EtorArza/TransfHH/tree/master/src/experiments/permus/instances/transfer_qap_cut_instances
https://github.com/EtorArza/TransfHH/tree/master/src/experiments/permus/instances/transfer_qap_cut_instances
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4.4.2 Hyperparameters

The experimentation hyperparameters are listed below. The purpose of this chap-
ter is not to maximize the objective value in each problem, instead, we want to
experiment on the hyper-heuristic as a framework that is applicable in different
domains. Following this idea, we thought it was desirable to use the same param-
eters for all problems.
Hyper-Heuristic parameters

• Population size: 8
• Stopping criterion: 400 evaluations

Training parameters (NEAT)

• Population size: 103 (default value [Dougherty, 2014])
• Stopping criteria: 4 days or 2000 generations (stop when either criterion is

met)

Testing parameters

• Executions averaged: 104

A parameter search was conducted to choose the population size of the Hyper-
Heuristic. A detailed justification for each of these parameters is available in the
appendix for the interested reader.

4.4.3 Comparison to classical parameter search

The goal of this experiment is to measure the capability of the hyper-heuristic of
improving an existing heuristic when compared to parameter tuning. To do so,
we compare the hyper-heuristic with the standard particle swarm optimization
(PSO) algorithm [Engelbrecht and Cleghorn, 2020] (see Section 4.2.3.1 for details).
Specifically, we compare three ways of adjusting the three parameters (y1,y2,y3).
Firstly, we try the Default parameter values

y1 = 0.729844, y2 = 1.49618, y3 = 1.49618.

Engelbrecht proposed these values as a rule of thumb in a tutorial on PSO [Engel-
brecht and Cleghorn, 2020] presented at the Genetic and Evolutionary Computa-
tion Conference 2020. Secondly, we adjust these three parameters in a Grid-Search
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approach for each problem. The parameter search was carried out in the interval
[−1.96, 1.96] with the parameter space discretized in 20 slices for each dimension,
for a total of 203 possible combinations. Finally, the Hyper-Heuristic is trained in
the problems and learns to adjust these three parameters during the optimization.
The average objective values are shown in Table 4.3. We apply the sign test pair-
wise 6 times to compare the three approaches to each other in the two problem
sets. We use the Holm-Bonferroni correction and we observe that the differences
are statistically significant at a familywise α = 0.05. This statistical analysis can
be reproduced in R with the code below:

p_values <- c(binom.test(0,12)$p.value,
binom.test(0,12)$p.value,
binom.test(1,12)$p.value,
binom.test(0,7)$p.value,
binom.test(0,7)$p.value,
binom.test(0,7)$p.value)
p.adjust(p_values, method = "holm")

The results point out that Grid-Search performs better than Default. In addition,
Hyper-Heuristic performs significantly better than both approaches. Hence, we
conclude the proposed hyper-heuristic was able to improve the PSO algorithm
beyond the parameter tuning approach.
We hypothesize that the hyper-heuristic has a better performance than the heuris-
tic because the search space of the hyper-heuristic is a superset of the search space
of the parameter search algorithm. In other words, if we limit the neural network
in the hyper-heuristic to having a constant output during the whole optimization
process, then the search space would be the same as in the parameter search ap-
proach. In this sense, unlike the parameter search approach, the hyper-heuristic
can deal with a wider range of behaviors that take into account the state of the
optimization.

4.4.4 Analyzing optimization problems

In Section 4.3 we introduced two different problem set analysis methods. The first
method (via the performance) analyzes the transferability of the hyper-heuristic:
how well it performs when trained and tested in different optimization problems
in the problem set. The second method (via the behaviour) takes into account how
the hyper-heuristic does optimization (how it controls the lower-level heuristics).
In this part of the experimentation we aim to showcase these two analysis methods.
We show that the results of both analyses are correlated with each other and with
the properties of the optimization problems.
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problem set i)

Problem index Default Grid-Search Hyper-Heuristic
P1 -6.01363 -3.23881 -2.30488
P2 -985.27378 -530.64685 -466.17630
P3 117.12492 119.66920 121.10483
P4 -0.80864 -0.55685 -0.37820
P5 -1.00574 -1.00143 -1.00097
P6 -177.81698 -86.25251 -71.58724
P7 0.01097 0.01600 0.02385
P8 3978.36547 4587.93669 4560.50831
P9 -140.67744 -83.16599 -64.85858
P10 -13.32011 -9.11814 -6.49914
P11 -21.64781 -12.11095 -7.94694
P12 10.70759 12.20933 13.47027

problem set ii)

Local optima Default Grid-Search Hyper-Heuristic
1 -0.99395 -0.69141 -0.48948
2 -1.44586 -1.05357 -0.81471
4 -1.29121 -0.92589 -0.65019
8 -1.30823 -0.88735 -0.59927
16 -2.02794 -1.41315 -0.99433
32 -5.44415 -3.90858 -2.44707
64 -7.84039 -5.14373 -3.82432

Table 4.3: Comparison of the heuristic and the hyper-heuristic in the problem sets
i) and ii). Higher is better (best value highlighted in bold).

We start the analysis with first method (via the performance).

4.4.4.1 Via the performance of the hyper-heuristic

In this first part, we apply the methodology proposed in Section 4.3.2 and analyze
the four problem sets via the performance of the hyper-heuristic.
Problem set i)
The transferability matrix for this problem set is shown in Figure 4.5. First,
observe that the values in the diagonal are very low (lower means better per-
formance). This is the expected result: the hyper-heuristic will obtain the best
possible objective value when it is trained and tested in the same problem.
Recall that, when generating the matrix, columns and rows are sorted together
such that adjacent columns and rows are as similar as possible to each other
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Fig. 4.5: Transferability matrix of problem set i).

(see Section 4.3.2 for a detailed explanation). Taking into account the similarities
among adjacent columns and rows in the matrix, we defined three problem clusters
(see Figure 4.6). We defined the first cluster as {P9,P10,P12}, the second cluster
as {P6,P11,P2,P1,P5} and the third as {P8,P4,P7,P3}. The hyper-heuristic
had a low transferability when trained and tested in the same problem for problems
in the first and third cluster (low values in the diagonal). When the hyper-heuristic
was trained in any of the the problems in the second cluster, the transferability
was decent in all the problems and it was not higher when trained and tested in
the same problem (medium values in rows 4-8 in the transferability matrix).
Now, observe that the problems within each cluster have similar properties that
are visible in their 2 dimension contour plots (contour plots shown in Figure 4.6).
Problems in the first cluster have many local optima that are “comparably good
to each other” in a large area of the search space, and have the global optimum in
the center of the search space. Problems in the second cluster, on the other hand,
have a strong quadratic component, and have the global optimum in the center of
the search space. Finally, problems in the third cluster have the global optima in
a corner of the search space.
In conclusion, the methodology proposed in Section 4.3.2 generated a transfer-
ability matrix for problem set i) that was very correlated with the properties of
the optimization problems.
Problem set ii)
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Fig. 4.6: The three problem set clusters for problem set i).

The transferability matrix for the second problem set is shown in Figure 4.7.
Unlike in problem set i), in this problem set there seem to be no differences in
transferability: it does not matter the number of local optima that the optimization
problems—generated with the by Rönkkönen et al. [2008] problem generator—
have regarding the performance and learning capability of the hyper-heuristic.
Consequently, the transferability is very similar in all problems.
In conclusion, the proposed methodology identified that there was no adaptation
to the number of local optima. We can deduce this from the figure as most of the
values are similar and are close to 0.5. Measuring the magnitude of the transfer-
ability (small in this case) is not trivial. Specifically, we were able to observe this
result because of the specific definition of the transferability considered: including
the averaging of repeated samples and the use of ranks instead of the objective
function directly (explained in detail in Appendix 7.3.5).
Problem set iii)
In Figure 4.8, we show the transferability matrix for the third iii) problem set.
In this problem set, we have four types of optimization problems (LOP, PFSP,
QAP, and TSP) and eight problems instances for each problem type. From now
on, “QAP” will be used to refer to any one of the QAPs in problem set iii) (LOPs,
PFSPs, and TSPs will be denoted in the same way). In addition, we will use
¬QAP to refer to any one of the problems in problem set iii) that are not QAPs
and PROB to refer to any one of the problems in problem set iii).
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Fig. 4.7: Transferability matrix of problem set ii).

First, observe that
1) TQAP,QAP < T¬ QAP,QAP and
2) TQAP,¬ QAP > TQAP,¬ QAP.
We deduce 1) from the last 8 columns and 2) from the last 8 rows in the transfer-
ability matrix (Figure 4.8). The interpretations are 1) the hyper-heuristic performs
better in QAPs when it is trained in QAPs and 2) the hyper-heuristic performs
worse in non-QAPs when it is trained in QAPs. The rest of the problems do not
satisfy an analogous version of 1) and 2). Therefore, the QAP is the problem that
is the most different from the rest of the problems, from the point of view of the
performance of the hyper-heuristic.
Now let us consider the order of the problems in the matrix. Notice that all
the QAPs and PFSPs are placed in adjacent rows/columns. However, some of
the TSPs and LOPs are mixed. This means that, from the point of view of the
performance of the considered hyper-heuristic, TSPs and LOPs are similar to each
other (in contrast with QAPs and PFSPs).
Ceberio et al. [2015a] also reached a similar conclusion in their work with multi-
start local search. Specifically, they found out that multi-start local search with
the insert neighborhood [Schiavinotto and Stützle, 2007] outperforms the other
two multi-start algorithms studied in the TSP and LOP, but not in the PFSP or
the QAP. Note that the hyper-heuristic considered in this chapter also uses the
insert operator and insert local search.
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Fig. 4.8: Transferability matrix of problem set iii).

In conclusion, the transferability matrix for problem set iii) was highly correlated
with the problem type. The analysis also pointed out that the performance of
the hyper-heuristic is more similar in TSPs and LOPs, which is consistent with
previous findings [Ceberio et al., 2015a].
Problem set iv)
In Figure 4.9, we show the transferability heatmap for problem set iv) problem
set. In this problem set, we study three QAP instance types: taixxA, taixxB and
sko. As we can see in the figure, there is a big difference between sko instances
and the rest (rows/columns 1-7). The difference in transferability between taixxA,
taixxB instances is not appreciable visually.
However, regarding the order, sko instances are all next to each other, while
taixxA and taixxB instances are also fairly separated from each other but problems
taixxB_14 and taixxA_5 are out of place. As described in Section 4.3.2, columns
and rows were jointly reordered such that the difference between adjacent rows/-



138 4 Multi-domain problem analysis

sk
o_

21
sk

o_
17

sk
o_

20
sk

o_
18

sk
o_

19
sk

o_
16

sk
o_

15
ta

ix
xB

_1
4

ta
ix

xA
_7

ta
ix

xA
_1

ta
ix

xA
_3

ta
ix

xA
_2

ta
ix

xA
_6

ta
ix

xA
_4

ta
ix

xB
_9

ta
ix

xB
_1

0
ta

ix
xB

_1
1

ta
ix

xB
_1

2
ta

ix
xB

_8
ta

ix
xB

_1
3

ta
ix

xA
_5

Test instance

sko_21
sko_17
sko_20
sko_18
sko_19
sko_16
sko_15

taixxB_14
taixxA_7
taixxA_1
taixxA_3
taixxA_2
taixxA_6
taixxA_4
taixxB_9

taixxB_10
taixxB_11
taixxB_12
taixxB_8

taixxB_13
taixxA_5

Tr
ai

ni
ng

 in
st

an
ce

0.0

0.2

0.4

0.6

0.8

1.0

Fig. 4.9: Transferability matrix of problem set iv).

columns is as small as possible (minimizing the loss function in Equation (4.2)).
Consequently, adjacent rows/columns are similar to each other are placed together.
This suggests that the transferability of taixxA and taixxB is actually different,
even though visually the transferability looks exactly the same.
In conclusion, the proposed analysis clearly indicates a difference between sko
instances and the rest, and also suggests a smaller difference between taixxA and
taixxB instances.

4.4.4.2 Via the behavior of the hyper-heuristic

In this second part, we analyze the optimization problems with the LDA of the
problem sets, generated via the behavior of the hyper-heuristic following the
methodology introduced in Section 4.4.4.2. The experimentation is carried out
in three out of the four problem sets. We skipped problem set ii) because, as we
saw in the previous part of the experimentation, the hyper-heuristic performs the



4.4 Experimental study 139

same in these optimization problems, hence looking at the behavior makes no
sense in this case.
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Fig. 4.10: The LDA for problem sets i), iii) and iv). The colors represent the
problem types/clusters within the problem sets. These were added after the LDA
was computed. If two optimization problems are close to each other in the LDA, the
interpretation is that the hyper-heuristic has a similar behavior—how it performs
optimization—in these two problems.

Problem set i)
Figure 4.10a shows the LDA of problem set i). We colored the data points after
generating the LDA based on the three problem clusters that we defined in the
previous section. This means that the cluster to which the instances belong where
not used to fit the LDA. As seen in the figure, these three clusters are linearly
separable. This means that for problem set i) there is a high correlation between
the two analysis methods carried out. The results validate the conclusions drawn in
the previous part of the experimentation (Section 4.4.4.1) on the same problem set:
both embeddings are correlated with the properties of the optimization problems.
Problem set iii)
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Figure 4.10b shows the LDA for problem set iii). Firstly, notice that all of the
QAPs are linearly separable from the rest. Also, most of the PFSPs are clustered
together, except for two of them. Finally, the LOPs and TSPs are mixed together,
although it seems that LOPs are somehow surrounding the TSPs.
In the transferability matrix for this problem set, we also observed that the QAP
problems were the most different from the rest of the problems and that LOP
and TSP problems were similar to each other. Hence, both analysis methodologies
point out this similarity between LOP and TSP problems.
Problem set iv)
Figure 4.10c shows the LDA for problem set iv). The three types of instances
are quite visibly separated from each other. It could be argued that taixxA and
taixxB are less separated from each other as they are located on the same vertical
axis, and sko instances are further away in the horizontal axis. Similarly, in the
transferability matrix of this problem set, sko instances were very dissimilar to
the rest, while taixxA and taixxB were comparatively less dissimilar to each other
regarding transferability.

4.5 Conclusion and future work

In this chapter, we proposed a multi-domain problem analysis method. Specifically,
we proposed two embeddings into the real space for a set of problems: one based on
the performance of the hyper-heuristic and another one based on its behavior. The
two methods are domain agnostic: they are not specific to the search space and
only require the evaluation of the objective function. In an experimental study on
four problem sets, we showed that the two analysis methods are useful to gain new
insight on a set of problems. We also showed that the embeddings are correlated
with the properties of the optimization problems.
The code to reproduce the experiments and apply the proposed methodology
is available in our GitHub repo at https://github.com/EtorArza/TransfHH. In
future work, it would be interesting to offer the proposed analysis methods in a
python library. This would make it as easier for practitioners to use the proposed
framework to analyze other optimization problems.

Supplementary Material

Code to Reproduce the Results and Apply the Methodology

https://github.com/EtorArza/TransfHH
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The code to reproduce the results in this chapter are available in the repository
https://github.com/EtorArza/TransfHH. This repository also contains a demo get
started with the proposed methodology.

https://github.com/EtorArza/TransfHH




5

Generalized Early Stopping in Evolutionary
Policy Learning

Evaluating solutions in optimization problems can be time-consuming, for in-
stance, when evaluating robots in the real world. During the evaluation process,
it is often possible to predict the poor quality of a solution without waiting for
its completion (for example when a two wheeled robot continuously spins on the
spot). In such cases, it makes sense to stop the evaluation of a solution early
to save computation time, which is known as early stopping. Note that it is not
always possible to stop the evaluation early, instead it depends on the objective
function. Certain computer simulations can be stopped mid evaluation, which is
why early stopping is a popular technique in policy learning.
However, most early stopping approaches in policy learning are problem specific
and need to be specifically designed for the task at hand. In this chapter, we pro-
pose an early stopping method for policy learning that only looks at the objective
value at each time step and requires no problem specific knowledge. The evalu-
ation of the current solution candidate is stopped when it performs worse than
the best found solution for a given episode length. We test the introduced stop-
ping criterion in five policy learning environments drawn from games, robotics and
classic control domains, and show that it can save up to 75% of the computation
time while obtaining solutions of a similar quality. We show that the proposed
general solution achieves time savings that are comparable to those attained by
problem-specific time-saving approaches.
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5.1 Introduction

Evolutionary algorithms (EAs) are increasingly being using in applications such as
computer games [De Souza, 2014, Hastings et al., 2009] and robotics [Hoffmann,
Sept./2001, Fleming and Purshouse, 2002] to learn control algorithms (policies),
as well as being applied to classic control tasks such as the benchmark suites avail-
able in OpenAi Gym [Brockman et al., 2016]. Often direct policy search algorithms
such as EAs or reinforcement learning based approaches require a large number
of evaluations: when these evaluations are costly in terms of time, this can result
in extremely long learning times, which can be prohibitive in the worst case. Un-
fortunately many applications of interest suffer from this problem. For example,
the protein folding problem [Dill et al., 2008] requires costly simulations, while
applications that involve a double optimization process are also considered very
computationally costly. This includes for example the joint optimization of robot
morphology and control [Le Goff et al., 2021, Hart and Le Goff, 2022] in simulation
(which typically use an outer loop to evolve body-plans and a nested inner-loop
to evolve control), nested combinatorial optimization problems[Wu et al., 2021,
Kobeaga et al., 2021] or hyperparameter optimization [de Souza et al., 2022].
Specifically in robotics, evaluations that need to be conducted directly on a physi-
cal robot to avoid any reality-gap tend to be very time-consuming, while repeating
lengthy evaluations also places considerable wear and tear on machinery, poten-
tially leading to unreliable objective-function values.
One approach to reducing the computational burden posed by expensive evalu-
ation functions is to use a surrogate model [Hwang and Martins, 2018, Ranftl
and von der Linden, 2021]. Surrogate models try to replace the costly objective
function with a cheaper alternative, that is usually less accurate but faster to
compute [Alizadeh et al., 2020]. This saves computation time because the number
of function evaluations of the costly objective functions is reduced. However, se-
lecting a suitable surrogate model can be challenging, typically involving the need
to determine an appropriate trade-off between size (i.e. how much information is
necessary to compute the surrogate model), the accuracy required, and computa-
tional effort (the time required for the surrogate modelling process itself) [Alizadeh
et al., 2020] which then influences the choice of surrogate model.
Instead of reducing the number of evaluations, it also possible to save computa-
tion time in these types of problems by stopping the evaluation of non promising
solutions early. With this approach, given a fixed time budget in which to conduct
evaluations which each have a maximum budget of n seconds, it is possible to
compute more evaluations than if every potential evaluation is run for exactly n
seconds. This is known as early stopping [Hutter et al., 2019, Li et al., 2017] or cap-
ping [de Souza et al., 2022, Hutter et al., 2009]. Several early stopping approaches
have been proposed for hyperparameter optimization, including irace [de Souza
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et al., 2022, López-Ibáñez et al., 2016], sequential halving [Karnin et al., 2013] and
hyperband [Li et al., 2017].
Early stopping has also been considered in the context of policy learning. For
example, when learning to control a robot in a simulation, if the robot gets stuck
(it does not move) it is useful to stop the evaluation early [Le Goff et al., 2021].
However, there are two limitations associated with these problem specific methods.
First, these approaches, in some cases, can fail to stop the evaluation even if it
is clear that additional time is not going to improve the objective value. For
example, when a two wheeled robot continuously spins on the spot, it would still
register as moving, but it is completely useless to continue evaluating. Secondly,
they require problem specific knowledge, such as detecting when the robot is not
moving, which might not always be trivial (for example when dealing with robots
in the real world).
The main contribution of this chapter is to show that generic early stopping is
applicable to direct policy search via evolutionary algorithms. Similar to early
stopping methods for hyperparameter optimization [Hutter et al., 2019, Li et al.,
2017, de Souza et al., 2022, Karnin et al., 2013] and unlike current early stopping
criteria for policy learning, the proposed approach only needs the objective value
to decide when to stop the evaluation of the robots. We demonstrate both the
efficacy and generality of the method in a wide-ranging experimental section in five
different direct policy search environments, showing that the proposed approach
significantly reduces the optimization time of policy learning algorithms in a wide
variety of control tasks.
The chapter is organized as follows. We first discuss some related work to position
the proposed method in the literature. In the next section, we provide a formal
definition of the problem and introduce the proposed early stopping method. In
Section 5.4 we present the five part experimental study on the applicability of the
proposed method in direct policy search tasks. Finally, Section 5.5 concludes the
article.

5.2 Related work

Many reinforcement learning environments in the literature use problem specific
early stopping methods to save computation time. One of the earliest examples is
probably the CartPole control problem [Barto et al., 1983]. In this problem, a cart
needs to balance a pole by moving left or right (see the animation on OpenAI’s
website). In the original implementation by Sutton [1984], the evaluation is usually
stopped after 105 steps (episode length), but is terminated early when the pole is
considered not balanced for 100 steps. In the modern version of the same problem

https://web.archive.org/web/20230324042842/https://www.gymlibrary.dev/_images/cart_pole.gif
https://web.archive.org/web/20230324042842/https://www.gymlibrary.dev/_images/cart_pole.gif
https://web.archive.org/web/20221231160811/http://incompleteideas.net/sutton/book/code/pole.c
https://web.archive.org/web/20221207031552/https://www.gymlibrary.dev/environments/classic_control/cart_pole/
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by OpenAI, the episode length is 500 and the evaluation is terminated early when
the pole is not considered balanced, or the cart has moved too much to one of the
sides.
Another more modern example with early stopping is the Ant control task in the
MuJoCo environment in OpenAI gym [Brockman et al., 2016]. In this task, the
control of an ant needs to be learned, such that the traveled distance is maximized,
while minimizing the energy expenditure and the contact force (see the animation).
In this task, the episode length is 1000 steps, but an evaluation is stopped early
if the vertical position of the torso is not in the interval [0.2, 1.0], or if there are
numerical errors in the simulator.
A limitation of the early stopping criteria of these and other policy learning tasks is
that they are highly problem specific. They need to be carefully designed, taking
into account the problem at hand. For example, in the previous ant example,
choosing to stop the evaluation based on the position of the torso is not trivial,
and requires understanding of what is a desirable position of the torso.
There has been plenty of work in early stopping based on the objective function
alone, but most of it has focused on hyperparameter optimization. Some of the
best known early stopping approaches for hyperparameter optimization are the
i-race algorithm [de Souza et al., 2022, López-Ibáñez et al., 2016], the sequential
halving algorithm [Hutter et al., 2019, Karnin et al., 2013] and hyperband [Li
et al., 2017, Falkner et al., 2018b]. Early stopping approaches work very well in
hyperparameter optimization because the evaluation of solutions can be paused
and resumed. Consequently, it is possible to evaluate a set of solutions simultane-
ously and compare their partial objective values with one other, discarding poorly
performing candidates before continuing the evaluations. This is not always pos-
sible in direct policy search tasks, especially those that run in the real-world. For
example, it would not make sense to pause the evaluation of a controller in a real-
world robot, evaluate a different controller in the same robot, and then resume
the previous evaluation. The same applies to simulation, where it is not trivial to
implement a way to save the state of the simulation and load it later.
More recently, de Souza et al. [2022] proposed an early stopping method that only
takes into account the objective function and does not assume that the evaluation
of solutions can be resumed. However, the approach was only tested in the context
of hyperparameter optimization.
By making certain assumptions on the objective function and considering 1 + λ
evolution strategies, Bongard [2011, 2010] proposed an early stopping mechanism
for multi-objective evolution of robots, based on the objective function. The ap-
proach involves stopping the evaluation of candidates once it is impossible for
them to beat the best found candidate in the current generation. This early stop-
ping approach has the very good property of not changing the final outcome while

https://web.archive.org/web/20221211213854/https://www.gymlibrary.dev/environments/mujoco/ant/
https://web.archive.org/web/20221214135341/https://www.gymlibrary.dev/_images/ant.gif
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still saving computation time. However, the applicability of Bongard’s method in
the general case is very limited, as it depends on both a specific definition of the
objective function and the use of the 1 + λ evolution strategies algorithm.1

In summary, the early stopping approaches that have been tested in policy learning
either require problem specific knowledge, or a specific definition of the objective
function and learning algorithm. This motivates our proposal which addresses
both these issues.

5.3 Generalized Early Stopping for Episodic Policy Learning
(GESP)

We propose a simple early stopping method for direct policy search tasks that
overcomes the limitations discussed in the previous section. The proposed method
is general and makes no assumptions about the optimization problem or the objec-
tive function or the learning algorithm. It uses the output of the objective function
without the need of problem specific information. Specifically, the proposed ap-
proach is applicable to the optimization problem defined as follows:

Definition 15 Given a maximum computation time budget tmax, f an objective
function and S a solution space, we define a optimization problem argmaxσ∈S f(σ)
with these four additional properties:

1. Computing the objective function of a solution f(σ) has a time cost T .
2. Instead of computing f(σ) exactly, it can be approximated for any lower time

cost t < T . We denote the approximation in time t as f [t](σ).
3. A solution σ has to be chosen as the best before the computation budget tmax

is spent. Only solutions evaluated for time T are eligible to be chosen as the
best.

4. Approximate evaluations cannot be resumed.2
1 The objective function to be maximized needs to be a combination of other sub-

objective functions in different sub-tasks, assuming that the sub-objective values are
always negative. With this objective function, it is not necessary to evaluate the so-
lution in every sub-task, as the objective value can only decrease with further eval-
uations. Consequently, once the objective value of a solution is lower than the best
candidate in the current population, the evaluation can be stopped, as it is guaranteed
that it will not outperform the best candidate. When considering this early stopping
criterion in combination with the use of the 1 + λ evolution strategies algorithm, the
same final solution is obtained while saving computation time.

2 For example, let σ1, σ2 be two solutions and t1, t2, t3 three time costs with t3 > t1.
Then evaluating f [t1](σ1), f [t2](σ2), f [t3](σ1) in that order has time cost t1 + t2 + t3,
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Assuming a maximization optimization problem, GESP involves stopping the eval-
uation of a solution at time step t > tgrace when certain conditions are met. Specif-
ically, we stop the evaluation of a solution σ at time step t if Equation (5.1) below
is satisfied.

max{f [t](σ), f [t− tgrace](σ)} < min{f [t](σbest), f [t− tgrace](σbest)} (5.1)

The grace period parameter tgrace is a parameter that establishes a minimum
time for which all candidates will be initially evaluated regardless of their objective
value. In addition, it determines the bonus evaluation time given to new candidate
solutions. The evaluation of the new candidate solution σ is stopped when its
objective value at time step t is worse than the objective value of the best solution
σbest at time t−tgrace. This gives new candidates tgrace extra time steps to achieve
the level of performance of the current best solution
In Algorithm 6 we show the pseudocode of GESP. First we initialize the reference
objective values to −∞ (lines 1-2). Then, starting with the first time step t = 1,
we evaluate the approximate objective function f [t](σ) at that time step (line 4).
Then, if t > tgrace and Equation (5.1) are satisfied (line 5), the objective function
of σ is approximated as f [t](σ) (line 6), σ is not evaluated in time step t + 1
and beyond, and the reference objective values are not updated. Otherwise, we
evaluate σ at time step t+ 1. Finally, if σ makes it to time step T and a new best
objective value is found f [T ](σi) > f [T ](σbest), we replace the reference objective
values with the new ones (lines 7-8).
Our approach is similar to de Souza et al. [2022]’s early stopping methods for hy-
perparameter optimization. de Souza et al. [2022]’s approach generates a stopping
criterion based on a set of already evaluated solutions, such that the evaluation
of new candidate solutions can be stopped early when they perform relatively
poorly. In contrast, our approach only requires the best found solution so far to
decide when to stop the evaluation of new candidates. Consequently, the proposed
approach can be applied once the first solution has been evaluated. In addition,
while de Souza et al. [2022]’s work was designed for hyperparameter optimization,
we show that our approach is applicable to direct policy search.

5.3.1 Applicability on direct policy search

Early stopping through the objective function alone usually assumes a monotone
increasing objective function, which is true for hyperparamter tuning. However,

but evaluating them in the order f [t1](σ1), f [t3](σ1), f [t2](σ2) has a lower time cost
of t3 + t2.
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Algorithm 6: Evaluate solution with early stopping
Input:
f [t](·): The approximation of the objective function with time t. f [T ](·) is the
objective function when no early stopping is considered.
σ: The solution to be evaluated.
tgrace: The grace period parameter.
T : The maximum evaluation time.

1 if f [t](σbest) = ϕ then
2 f [t](σbest)← −∞, ∀t = 0, ..., T
3 for t = 0, ..., T do
4 compute f [t](σi)
5 if t > tgrace and Equation (5.1) is satisfied then
6 return f [t](σi)
7 if f [T ](σ) > f [T ](σbest) then
8 f [t](σbest)← f [t](σ), ∀t = 0, ..., T
9 return f [T ](σ)

this assumption does not hold for direct policy search. Specifically, early stop-
ping without a monotone increasing objective function creates two issues: and we
propose two possible modifications of GESP to overcome them.
We motivate and explain these two issues with an example. Let us consider the
policy learning pendulum task. The reward in this task is inversely proportional
to the speed and the angle of the pendulum (assuming the angle at the upright
position is 0). The goal in this task is to maximize the sum of all the rewards in T
time steps, where the reward in each step is in the interval (0,−16.27). This means
that in each time step, the objective function can only be lower than in the previous
time step (the objective function is monotone decreasing). Consequently, if early
stopping is applied in this problem, the solutions that are stopped earlier will have
a better objective function than if they had been evaluated for the maximum time
T .
Issue (1) involves correctly reporting the best found solution. Unless we assume a
monotone increasing objective function, the best found solution might be a par-
tially evaluated solution. Consequently, if the issue is not addressed, the reported
objective value could potentially be better than the actual objective value. For
example, in the pendulum task, if a policy applies no torque then the pendulum
does not move and the evaluation is stopped early. This is a very poor policy, but
since it triggers the early stopping very quickly, it obtains a better objective value
than a policy that performs well and was evaluated for the entire episode. Hence,
without taking into account Issue (1), the best reported solution could be one that
immediately triggers the early stopping criterion. Overcoming this issue is simple

https://web.archive.org/web/20220903205443/https://www.gymlibrary.dev/environments/classic_control/pendulum/
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with Modification (1): do not update the best found solution unless the new best
solution has been evaluated for the maximum time T .
Issue (2) is not as critical as Issue (1), and is related to the credit assignment
during the optimization process. In monotone increasing problems (such as hyper-
parameter optimization), a poor solution that is early stopped might get a worse
than deserved objective value, as with additional evaluation time it might have
been able to increase its objective value. This is usually not considered a problem,
as it is not expected that the learning algorithm is impacted in a negative way.
Basically early stopping in this case favors solutions that quickly converge towards
good objective values over those that are slow to converge. However, in problems
with decreasing objective functions (such as the pendulum task), poor solutions
might be assigned an objective value (due to early stopping) that is in fact bet-
ter than the objective value that would have been obtained if the evaluation was
continued for the maximum evaluation time. This might pose a challenge for the
optimization algorithm. For example, in the pendulum task, if a policy applies
no torque then the pendulum does not move and the evaluation is stopped early.
This is a very poor policy, but since it triggers the early stopping very quickly, it
obtains a better objective value than a policy that is able to correctly balance the
pole and is evaluated for the entire episode. This is because in the pendulum task,
the reward is negative in each time step, and the total reward of the policy that
optimally balances the pole has many time steps with a negative reward (during
which the pole is being moved towards the balancing point). The learning algo-
rithm might therefore optimize the policy to trigger the early stopping as quickly
as possible, which is obviously undesirable.
It is possible to overcome Issue (2) by modifying the objective function. It is
enough to redefine the objective function such that it is monotone increasing.
To achieve this, we can add a constant value k to the objective function in each
time step, ensuring that the redefined objective function is monotone increasing.
For instance, in the pendulum policy learning task (with a reward in the interval
(0,−16.27) in each time step), it is sufficient to redefine the objective function as
fnew[t](σ) = f [t](σ)+ t ·16.28. By adding Modification (2), we also overcome Issue
(1).
However, as Issue (2) does not produce an incorrect result (it might only poten-
tially set back the optimization), we chose not to redefine the objective function
because we want GESP to be as non-invasive as possible. Thus, we propose GESP
as a plug and play method that is compatible with as many problems as possible
and requires no modifications in the objective function. Therefore, in the experi-
mentation of this chapter, we ignore Issue (2) and only consider Modification (1).
Even with only Modification (1), we show that GESP rarely decreases the per-
formance and significantly speeds up the search process in a wide variety of tasks

https://web.archive.org/web/20220903205443/https://www.gymlibrary.dev/environments/classic_control/pendulum/
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(despite Issue (2)), even in tasks with monotone decreasing objective functions
such as pendulum (Section 5.4.1).

5.4 Experimentation

To validate the proposed approach, we run several experiments in different direct
policy search tasks with different evolutionary learning algorithms to demonstrate
the benefit of using GESP. We chose different tasks with different learning algo-
rithms to show that GESP is applicable in different scenarios and across a range
of evolutionary algorithms. In some of these tasks, the original authors have pro-
posed a problem specific stopping criterion to save computation time, in which
case, we also compare GESP to the problem specific approach. The experimen-
tation is carried out in five different environments, each with different properties
and learning algorithms. Table 5.1 lists the environments considered.

Name Environment Learning
algorithm Task

classic
control Classic control CMA-ES

[Igel et al., 2006] cartpole and pendulum.

super
mario Super Mario

NEAT
[Stanley and

Miikkulainen, 2002]

Move the character “Mario” to the right
as much as possible.

mujoco Mujo-co CMA-ES
[Igel et al., 2006]

half cheetah, inverted double pendulum,
swimmer, ant, hopper and walker2d.

NIPES
explore

8 x 8 grid
with obstacles

NIPES
[Le Goff et al., 2020]

Move a robot with four wheels and two
sensors and visit as many squares pos-
sible in 30 seconds.

L-System
Based on

OpenAI gym

λ + µ ES with
L-System encoding
[Veenstra and Glette,

2020]

Learn the morphology and control of
virtual creatures and move to the right
as much as possible.

Table 5.1: Environments in the experimentation

Methodology

For each experiment, we record the best objective value found so far with re-
spect to the computation time (known as the attainment trajectory [Dreo and
López-Ibáñez, 2021]). Each experiment is repeated 30 times, and the median and
interquantile ranges are reported. When comparing two attainment trajectories,
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we perform a pointwise two sided Mann-Whitney test[Mann and Whitney, 1947,
Arza et al., 2022] with α = 0.01. The test is performed pointwise with no fam-
ilywise error correction [Korpela et al., 2014]. Hence, if H0 is true and the two
distributions are the same, on average, we expect to find a statistically signifi-
cantly difference in 1% of the length of the attainment trajectory, when in reality,
there is no difference [Härdle et al., 2004].1

5.4.1 Classic control tasks (classic control)

OpenAI Gym [Brockman et al., 2016] is a framework to study reinforcement learn-
ing. Among the environments available in OpenAI Gym, we have the classic control
tasks cart pole [Barto et al., 1983] and pendulum. In the garage framework, there
is an example script (also archived) that uses CMA-ES to learn the policy for the
cart pole task. The same learning algorithm was considered for pendulum. We set
the grace period parameter to 20% of the maximum time: tgrace = 0.2 · T .
The objective function in cart pole is the number of timesteps before it is ter-
minated because out of bounds or because the pole is no longer in the upright
position (the reward is 1 in every time step). Consequently, any approximation of
the objective function that has not yet been terminated is fcartpole[t](σ) = t. As
mentioned before, pendulum has a monotone decreasing objective function with a
reward in the interval (0,−16.27) in each time step. The policies are learned with
CMA-ES.
Let us first consider the cart pole experiment. Due to the definition of the objective
function, applying GESP has no effect in this case: the condition in Equation (5.1)
will never be satisfied, and no early stopping will happen. Consequently, we expect
that there is no difference experimentally. In fact, since applying GESP has no
effect, the null hypothesis is true for this task.
The result for the cart pole experiment shown in Figure 5.1a confirms this exper-
imentally. Visually, there is no difference between the two stopping criteria, also
suggested by the lack of statistical significant difference of the two sided Mann-
Whitney test at α = 0.01.
To confirm this hypothesis, we computed the ratio of solutions evaluated with
and without GESP. For instance, a ratio is 2 indicates that using GESP, twice as
many solutions are evaluated in the same amount of computation time. The ratio
of solutions evaluated for the cart-pole is 1, as shown in Figure 5.2, which means
that the same amount of solutions are being evaluated with or without GESP.

1 As with every hypothesis test (frequentist) approach, on average in this context means
if we were to repeat this same experiment many times [Conover, 1980].

https://web.archive.org/web/20220903205443/https://www.gymlibrary.dev/environments/classic_control/pendulum/
https://github.com/rlworkgroup/garage
https://github.com/rlworkgroup/garage/blob/2d594803636e341660cab0e81343abbe9a325353/src/garage/examples/np/cma_es_cartpole.py#L4
https://web.archive.org/web/20230529153930/https://github.com/rlworkgroup/garage/blob/2d594803636e341660cab0e81343abbe9a325353/src/garage/examples/np/cma_es_cartpole.py


5.4 Experimentation 153

The results for the pendulum task are shown in Figure 5.1b. With GESP, a sig-
nificant amount of time is saved in this task and a final higher objective value is
obtained. For instance, with GESP, the median time to reach an objective value
of -10 is less than 150 seconds using GESP, compared to more than 300 seconds
without.
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Fig. 5.1: The objective value of the agents with and without GESP with respect
to computation time (classic control).
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Fig. 5.2: Ratio of solutions evaluated with and without GESP in the same op-
timization time. A higher value indicates that GESP was able to evaluate more
solutions in the same time.
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5.4.2 Playing Super Mario (super mario)

Verma [2020] proposed learning to play the video game “Super Mario” released in
1985 with NEAT [Stanley and Miikkulainen, 2002]. In this popular video game, a
character Mario needs to move to the right without dying and reach the end of the
level. In Verma [2020]’s implementation, the objective function is the horizontal
distance that the character has moved.
A maximum episode length of 1000 steps is considered, although the episode also
ends if the character dies. Verma implemented an additional stopping criterion: if
the character does not move horizontally in 50 consecutive steps, then the episode
also ends. In the following, we compare this problem specific stopping criterion
with GESP, and we also consider no stopping criterion as a baseline. We set
tgrace = 50 for a fair comparison with Verma’s problem specific termination cri-
terion. We trained the algorithm in the levels 1-4, 2-1, 4-1, 4-2, 5-1, 6-2 and 6-4.
We show the results in Figure 5.3.
In general, the results demonstrate that there is no big difference in performance
between the problem specific method and GESP. In some of the levels, the prob-
lem specific approach performs better, but this difference disappears as the com-
putation time increases. Both methods are clearly better than using no stopping
criteria.
Curiously enough, in level 5-1, there is no difference between the results obtained
using either of the stopping methods and the baseline method that does not use
any stopping criterion. The reason is probably that in this level, it is hard to get
stuck: there are a large number of enemies and few obstacles. We hypothesize that
in this level, it is very easy to die, hence the execution is terminated regardless of
the other stopping criteria (and therefore GESP have no effect).
To validate this the hypothesis, we computed the ratio of solutions evaluated in
the same optimization time with and without GESP. We compute this ratio for
all of the super mario levels, and we show the result in Figure 5.4. As can be
seen in the figure, in level 5-1 the ratio is almost 1, indicating that GESP rarely
stops the evaluation of the agents early in this level. This finding validates the
previous hypothesis.

https://web.archive.org/web/20211027022543/https://www.mariowiki.com/World_5-1_(Super_Mario_Bros.)
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Fig. 5.3: The objective value of the agents with respect to computation time in su-
per mario with GESP, with the problem specific stopping criterion and without
additional stopping criterion.
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Fig. 5.4: Ratio of solutions evaluated with and without GESP in the same op-
timization time. A higher value indicates that GESP was able to evaluate more
solutions in the same time.

5.4.3 Tasks in the Mujoco environment (mujoco)

Mujoco is a high performance physics simulator. OpenAI Gym has some tasks
defined in this environment which have been extensively used in reinforcement
learning research. In this section of the experimentation, we experiment with the
tasks half cheetah, swimmer, ant, hopper, walker2d. In all of these tasks, the ob-
jective is to move the agent as far as possible from the initial position, while
minimizing energy use. We also consider the inverted double pendulum, in which
the objective is to keep a double pendulum balanced.
In all of these tasks, the policies are learned with CMA-ES [Igel et al., 2006] (with
the same algorithm that was considered in the classic control tasks in Section 5.4.1)
and we set the grace period parameter to 20% of the maximum time: tgrace =
0.2 · T .
The results are shown in Figure 5.5. In the inverted double pendulum, hopper
and walker2d tasks, applying GESP made no difference in the performance and
computation time. In the other three tasks, by using GESP we are able to get a
better objective value in the same amount of time, although the difference was
only statistically significant in ant (until 1600 seconds) and half cheetah tasks.
The tasks ant, hopper, walker2d and inverted double pendulum have problem spe-
cific stopping criterion that stop the evaluation when the state of the agent is
‘unhealthy’. The definition of "healthy agent" is different for each problem: for
example, in the ant task, an agent is considered healthy if all the state spaces

http://web.archive.org/web/20221006093330/https://www.gymlibrary.dev/environments/mujoco/
http://web.archive.org/web/20220903205441/https://www.gymlibrary.dev/environments/mujoco/ant/
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Fig. 5.5: The objective value of the agents with respect to computation time in
the mujoco tasks with and without GESP.
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are finite and the distance from the body of the ant to the floor is in the interval
[0.2, 1]. These additional stopping criteria are essential for the learned policy to
be realistic: we do not want a policy that tries to exploit the physics simulator’s
bugs. However, we hypothesize that these stopping criteria are already very good
at avoiding wasting time in undesirable states, and consequently, GESP has little
room for further improvement.
To validate this hypothesis, we repeated the experimentation for the tasks ant,
hopper and walker2d but this time without the terminate when unhealthy stopping
criterion enabled. We recorded the performance with respect to the optimization
time with GESP enabled and disabled. The results are shown in Figure 5.7. With
the terminate when unhealthy stopping criteria disabled, GESP is able to save a
lot of computation time in these three tasks, indicating that the method would
be useful if one did not have the in-depth understanding of the task required to
create problem-specific stopping criteria.
We show the ratio of extra evaluations computed with GESP in Figure 5.6. In
the case of hopper and walker2d, the ratio is almost 1, which means that GESP is
unable to save computation time in these two tasks. However, when we disable the
terminate when unhealthy stopping criterion, the ratio is a lot higher in these two
tasks, which suggests that GESP is able to early stop under-performing solutions.
These results suggest that the hypothesis above is true.
In conclusion, GESP was able to save computation time in some of the tasks in
this environment, and it is specially useful when there are no problem specific
stopping criteria available. However, it can also save computation time alongside
existing stopping criteria, although to a lesser extent (as was the case for the ant
task, shown in Figure 5.5d).
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solutions in the same time. A dashed line indicates that the results were obtained
with the terminate when unhealthy stopping criterion disabled.

5.4.4 NIPES within the ARE framework (NIPES explore)

Recent research in the field of Evolutionary Robotics has attempted to lay a
foundation for developing frameworks that enable the autonomous design and
evaluation of robots [Eiben et al., 2021]. In contrast to much previous work in
Evolutionary Robotics which typically focuses only on control, recent approaches
attempt to simultaneously evolve both body and control of a robot. For example,
joint optimisation of body and control is accomplished in the framework known
as ARE (Autonomous Robot Evolution) [Le Goff et al., 2021] using a nested
architecture which uses an EA in an outer loop to evolve a body design and a
learning algorithm within an inner loop to optimise its controller. Le Goff et al.
[2020] proposed a learning algorithm to learn the control policy of wheeled robots
in the inner loop dubbed NIPES for this purpose. The algorithm combines CMA-
ES [Igel et al., 2006] and novelty search [Lehman and Stanley, 2011] in order to
create a method that is a more sample and time efficient algorithm than CMA-ES
alone.
We evaluate GESP using two exploration tasks proposed by Le Goff et al. [2021]
in which a wheeled robot needs to explore an arena. The goal is for the robot



160 5 Generalized Early Stopping in Policy Learning

0.00 0.25 0.50 0.75 1.00 1.25 1.50
Optimization time in seconds 1e4

2800

2600

2400

2200

2000
Ob

je
ct

iv
e 

va
lu

e
Standard
GESP
p < 0.01

(a) ant

0 1000 2000 3000
Optimization time in seconds

500

1000

1500

2000

2500

Ob
je

ct
iv

e 
va

lu
e

(b) hopper

0 2000 4000 6000
Optimization time in seconds

500

1000

1500

2000

2500

3000

3500

Ob
je

ct
iv

e 
va

lu
e

(c) Walker2d

Fig. 5.7: The objective value of the agents in hopper with and without GESP with
respect to computation time, and without stopping the evaluation when the state
of the agent is unhealthy.

to explore as much of an arena as possible within 30 seconds. One arena has
multiple obstacles hindering exploration, while the other has a maze-like layout
that requires the robot to navigate along corridors. Each arena is divided into 64
squares (see Figure 5.8), and the objective function is the proportion of squares
visited.
We test NIPES with and without GESP in these two environments. We set the
grace period parameter tgrace = 0.2 · T to 20% of the maximum time (30 seconds
as in the work by Le Goff et al. [2021]). The results are shown in Figure 5.8.
In both environments (obstacles and hard race), GESP improves the objective
value found for the same optimization time, although the difference is not statis-
tically significant at α = 0.01. The magnitude of the difference is not observable
in the figure, and by looking at the ratio of number of evaluations with or without
GESP in Figure 5.9, we can see that GESP is able to evaluate between 40% and
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Fig. 5.8: The objective value of the agents with respect to computation time in
the NIPES explore experiments, with and without GESP. The black and red
horizontal lines represent that the difference is statistically significant at α = 0.01
and α = 0.05 with a pointwise two sided Mann-Whitney test.

70% more solutions in the same amount of time. This is less of a saving than in
scenarios previously described (e.g. Mujoco, Super-Mario and the classic control
environments). A higher number of repetitions (we use 30 repetitions in every ex-
periment of this chapter) might reveal a statistically significant difference, which
can also be observed at α = 0.05 (not shown in the figure).
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Fig. 5.9: Ratio of solutions evaluated with and without GESP in the same op-
timization time. A higher value indicates that GESP was able to evaluate more
solutions in the same time.
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5.4.5 Robotics, Evolution and Modularity (L-System)

Veenstra and Glette proposed a simulation framework to evolve the morphology
and control of 2D creatures [Veenstra and Glette, 2020] based on the OpenAI gym
bipedal walker environment. It is a gym environment for computationally cheap
morphology search [Veenstra and Glette, 2020]. Agents start at the horizontal
position 4.67 and need to move to the right to increase their horizontal position.
They propose a problem specific stopping criterion that terminates the evaluation
of the current agent if its position in time t is lower than or equal to 0.04 ·t. We set
the time grace parameter of GESP to tgrace = 130, which is what the amount of
frames it takes for the problem specific stopping criterion to terminate randomly
generated agents. It is similar to the amount of frames it takes to terminate a non
moving agent at 117 frames.
The results are shown in Figure 5.10a. The problem specific approach obtains a
better objective value than GESP and using no stopping criterion (from now on
“Standard”) for the first few hundred seconds. However, later on GESP takes over
and is better than the other two approaches until 13000 seconds.
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(b) Objective value when reevaluating

Fig. 5.10: The objective value of the agents in the task proposed Veenstra and
Glette [2020] (L-System). We compared GESP, the problem specific stopping
criterion, and no additional stopping criterion (Standard). The best found objec-
tive value is reported with respect to the total computation time. a) shows the
best objective value observed during training, and b) shows the objective value
of the best candidate in each generation when it is reevaluated with no stopping
criteria.

At the end of the training procedure, the problem specific stopping criterion ob-
tains a poorer objective value than the other two approaches. However, we suggest

https://github.com/FrankVeenstra/gym_rem2D
https://web.archive.org/web/20220903205524/https://www.gymlibrary.dev/environments/box2d/bipedal_walker/
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that this is an artifact of the specific problem-specific stopping criteria suggested
for this scenario: if the best agent produced with the problem specific stopping
criterion enabled is evaluated without any stopping criteria, it is possible that it
might in fact obtain a better performance value. On the other hand, GESP over-
comes this limitation, as only solutions evaluated for the entire episode length (for
time T ) are candidates for the best found solution (thanks to Modification (1)
introduced in Section 5.3.1).
To test whether this is the case, we repeated the experiments but reevaluating
the best candidate in each generation with all the stopping criteria disabled. The
results are shown in Figure 5.10b. While the performance with GESP and Standard
do not change with respect to the previous experiments, the same is not true for
the problem-specific stopping criterion: in this case the problem specific approach
reaches a high objective value (> 20) slightly faster than GESP and considerably
faster than with all the stopping criteria disabled.
The problem specific approach terminates some of the high performing agents
after a while, which explains why the objective value increases more slowly for the
problem specific approach without re-evaluation. Especially at the beginning of
the optimization, solutions get terminated very quickly, because early agents move
slowly. This makes the problem specific approach advantageous, because we waste
less time on agents that can barely move, but it also means that slow moving
agents that reach very far will not have a chance to be evaluated with time T .
GESP is different in that promising agents will have the chance to be evaluated
until time T , because the purpose is to maximize the observed objective value: we
are trying to solve the problem introduced in Definition 15.
The task in this framework is to move to the right as far as possible. However, by
using the problem specific stopping criterion, agents that move slower than 0.04 · t
will eventually be terminated. This means that the task to be solved changes to
move to the right as fast as possible.
For the purpose of the scenarios proposed in the chapter by Veenstra and Glette
[2020], we argue that the stopping criterion they proposed is still more suitable
than using no stopping criterion or using GESP. The point of their paper is to
compare different encoding methods, regardless of the stopping criteria. By adding
a problem specific stopping criterion, they significantly sped up the learning pro-
cess from about three hours of computation time to 30 minutes. With the problem
specific approach they are able to evaluate between 10 times and 100 times more
solutions in the same amount of time as shown in Figure 5.11. This also changed
the objective function from "move as far as possible" to "move as fast as possible",
however the comparison of encoding methods is also applicable to the modified
version of the objective function.
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Fig. 5.11: Ratio of solutions evaluated with and without GESP and the problem
specific stopping criterion in the same optimization time. A higher value indicates
that with GESP (or the problem specific criterion), it was possible to evaluate
more solutions in the same amount of time.

GESP could also have been considered as the stopping criterion in their study
instead of the problem specific approach. GESP reduces the computation time
to around 45 minutes, but unlike the problem specific approach, the objective
function does not change (it is still "move as far as possible").

5.4.6 Discussion and future work

In the previous section, we experimented with GESP in five different direct policy
search environments (see Table 5.2 for a summary of the experimentation). GESP
maintained or improved the performance of the candidate solutions trained for
the same amount of computation time in all the tasks considered in this chapter.
In general, the biggest improvement with GESP was observed when GESP early
stopped the evaluation of poorly performing candidates.
However, in some tasks, there was no improvement when applying GESP. When
other terminating criteria already stopped the evaluation, GESP produced no fur-
ther improvement. We observed this for level 5-1 in super mario and for walker2d
and hopper in mujoco, where GESP produced no effect on the performance.
We have shown that applying GESP to direct policy search is generally benefi-
cial. Firstly, in the experimentation carried out, GESP never made the results
worse: in the worst case, it made no difference. In addition, unlike problem spe-
cific approaches, it does not require problem specific knowledge and is simpler to
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speedup with GESP* Additional Conclusions
first half last half

classic
control 1 out of 2 1 out of 2

GESP has no effect in cartpole. GESP works in pendulum
even though it has a monotone decreasing objective func-
tion.

super
mario 6 out of 7 4 out of 7

GESP makes no improvement when the environment itself
stops the evaluation early (mario touches an enemy and
dies).

mujoco 2 out of 5 1 out of 5 GESP generates additional speedup when the problem
specific stopping criteria are disabled.

NIPES
explore 1 out of 2 1 out of 2 The speedup with GESP is small in magnitude.

L-System 1 out of 1 1 out of 1 Unlike the problem specific stopping criterion, GESP does
not change the definition of the objective function.

*Number of scenarios in which GESP obtained a statistically significantly better score in the
first/last half of the optimization process for the same amount of computation time.

Table 5.2: Summary of the experimental results.

implement than other approaches such as surrogate models. Moreover, it does not
change the objective function (unlike for example the problem specific stopping
criterion in L-System). This is useful if the purpose of introducing a early stop-
ping procedure is to save computation time, while solving the same policy learning
problem.
GESP has a parameter, tgrace, that we recommend setting to 0.2 · T (20% of the
maximum episode length), based on the experimental results in the previous sec-
tion. However, we did not tune this parameter, and other values of the parameter
might increase/reduce the amount of time saved. Further reduction of this pa-
rameter allows more time to be saved, but it also makes the learning algorithm
more greedy. If we set tgrace = 0, then any candidate solution will get discarded
as soon as it does worse than the best found solution in any time step. Inversely,
if we set tgrace to 100% of the maximum episode length, then no solutions will be
terminated early.
While our method is designed for direct policy search, it could also be interesting
to adapt it in the future to work with other policy learning methods in which a
reward is returned after each action. This is often found to be more sample efficient
than direct policy search. A possible adaptation would be to stop the evaluation
of the episode when the objective value is detected to be very low.
Finally, it remains to be seen whether the method can be applicable on tasks in
which there is a deceptive reward, i.e. when the reward may deceptively encourage
the agent to perform actions that prevent it from discovering the globally optimal
behaviour, leading to convergence to a local optimum. In such cases, a policy
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search algorithm must be able to select solutions with a low reward to be able to
eventually reach the best solutions. A good example of such task is maze-solving
(e.g. the hard maze used in the work of Lehman and Stanley [2011]) in which
reward is often measured as a Euclidean distance from the end-point. On such
tasks, early stopping methods (like GESP) are unlikely to work well as a poor
reward can lead to early termination.
Even though GESP is unlikely to work in policy learning with deceptive rewards
it might still be interesting to test it to gain more understanding with respect to
how the method might be adapted in future to cope with this kind of reward. In
addition, there are other potential changes that might improve the applicability of
GESP in these settings. For example, novelty search [Lehman and Stanley, 2011]
has shown promising results in problems with deceptive rewards, and GESP could
be adapted in this context such that candidate solutions that do not show novel
behaviour (and also have poor performance) are terminated early.

5.5 Conclusion

In this chapter, we introduced an early stopping method for optimization prob-
lems suitable to both increasing and decreasing objective functions, denoted as
GESP. The proposed method stops the evaluation of a solution when its perfor-
mance is unlikely to beat the best found solution so far. GESP is most useful for
optimization problems that have costly and lengthy function evaluations. GESP
stops the evaluation of the current solution when the objective value of the best
found solution is better for a given time step. Unlike problem specific early stop-
ping criteria, GESP is general and applicable to many problems: it does not use
domain specific knowledge.
In a wide ranging set of experiments, we showed that adding GESP as an addi-
tional stopping criterion usually saves a significant amount of computation time
in direct policy search tasks, and allows a better objective value to be found in
the same computation time. Moreover, GESP did not decrease the objective value
in any of the tested environments. We also compared GESP to problem specific
stopping criteria, and concluded that in general, GESP had a similar performance
to problem specific approaches while being more generally applicable.
Problem specific approaches can exploit domain knowledge, because the researcher
implementing them might have insight into when an agent is wasting time. This
often makes them very efficient. GESP, on the other hand, does not require do-
main knowledge and is applicable ‘out of the box’ to many problems. We argue
that GESP is a useful early stopping mechanism applicable to problems that have
no problem specific early stopping approaches. Moreover, it can also be introduced



5.5 Conclusion 167

in addition to problem specific approaches. We have evaluated the method in the
context of a number of classic control problems and in a robotics domain, however,
there are obvious opportunities to extend the approach to other domains which
have an expensive objective function, for example optimisation of production pro-
cesses [Chen et al., 2021].

Supplementary Material

Code to Reproduce the Results and Apply the Methodology
Code to reproduce all the experiments in the chapter is available in a GitHub
repository https://github.com/EtorArza/GESP together with a brief explanation
on how to apply the method.

https://github.com/EtorArza/GESP
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General Conclusions and Future Work

6.1 Conclusions

In this dissertation, we studied stochastic heuristic optimization algorithms for
non-convex optimization problems. We compared and analyzed optimization prob-
lems and optimization algorithms, emphasizing the stochastic nature and the use
of computational resources in the latter.
Chapter 1
The performance of an optimization algorithm, with a maximum runtime as stop-
ping criterion, is influenced by computational resources. The number of evaluated
solutions increases with the available computational resources. Hence, if a new
optimization algorithm is compared to another algorithm in the literature and the
algorithms are not executed in the same machine with the same runtime, it is pos-
sible that one of the algorithms is given additional computational resources. This
leads to an increased probability of falsely concluding that the new algorithm has
a better performance, when in fact this difference is only a consequence of the dif-
ference in computational resources. For statistical hypothesis testing, this involves
falsely rejecting the null hypothesis, when in fact it is true; and the probability of
making this mistake is known as the probability of type I error [Conover, 1980].
To address this problem, in Chapter 1, we proposed a procedure to compare two
algorithms executed in two different machines. The proposed method has two
parts. Firstly, we proposed a method to predict the runtime of an algorithm on a
CPU, and we use this model to adjust the runtime on one of the machines such
that the runtime of the algorithm executed in the slowest CPU is compensated
with extra computation time. Then, we proposed a correction of the one sided
sign test [Conover, 1980] that can keep the probability of type I error low even
when the optimization algorithms compared are executed in different machines.
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Chapter 2
The objective value of the best found solution of a stochastic heuristic optimiza-
tion algorithm will not be the same in each execution, and can thus be modeled
as a random variable, denoted as performance of an optimization algorithm in
this thesis. Comparing the performance of two optimization algorithms with only
summary statistics like the median and the standard deviation might leave out
important information.
While determining if (the performance) of one algorithms stochastically domi-
nates [Quirk and Saposnik, 1962, Álvarez-Esteban et al., 2016] another would be
ideal, this is often not possible in practice, as often neither algorithm dominates
the other one. Existing methods to compare two algorithms such as null hypothe-
sis statistical tests have limitations like being unable to provide information about
the magnitude of the difference [Benavoli et al., 2017].
In response to these limitations, in Chapter 2 we proposed a methodology to com-
pare the performance of two algorithms through stochastic dominance. Firstly,
we proposed eight desirable properties for measures that compare random vari-
ables and a new measure of stochastic dominance that we named dominance rate.
Then, we proposed a graphical representation with three interesting properties: i)
a graphical decomposition of the probability of A > B and the dominance rate,
ii) differentiation between high uncertainty and low magnitude in difference, and
iii) an estimation of the uncertainty via a 95% confidence band.
Chapter 3
Some optimization algorithms for permutation problems rely on distances/oper-
ators for permutations. Distances for permutations [Ceberio et al., 2015a] (e.g.
Ulam and Cayley), usually measure the minimum number of times that an opera-
tor (e.g. insert and exchange [Schiavinotto and Stützle, 2007]) needs to be applied
to transform a permutation into another permutation. The Hamming distance
measures the number of different items in two permutations [Irurozki et al., 2016],
and is not defined with an operator.
The performance of optimization algorithms that rely on distances for permu-
tation problems is influenced the choice of distance. In Chapter 3, we studied
and compared different distances for permutations and their relationship with the
objective function of the Quadratic Assignment Problem (QAP) [Koopmans and
Beckmann, 1957]. We carried out this comparison by i) measuring the changes
in the objective function of the QAP and ii) comparing the performance of Es-
timation of Distribution Algorithms Larrañaga and Lozano [2001a] with these
distances. In general, we argued that the Hamming distance is a suitable distance
for assignment type problems.
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Chapter 4
Problem analysis methods such as Fitness Landscape Analysis [Ochoa and Malan,
2019] and Local Optima Networks [Ochoa et al., 2014] analyze optimization prob-
lems and help us understand them. One of the limitations of the problem analysis
methods in the literature is that they are particular to a solution space. For exam-
ple, local optima networks assume a combinatorial optimization problem [Ochoa
et al., 2014], or exploratory landscape analysis [Mersmann et al., 2011a] assumes
a continuous optimization problem.
Hyper-heuristic algorithms select/design heuristics to solve a given optimization
problem. They operate at a higher level than heuristics, which typically apply
heuristics to optimization problems directly Burke et al. [2003]. Among Hyper-
heuristic algorithms, we find those that "learn" to adapt to a optimization problem
after an initial training phase (offline training).
Taking advantage of this "learning", it is possible to analyze a set of optimiza-
tion problems, through the study of the transferability: how well does the hyper-
heuristic perform, when it is trained in one problem and tested in another. Given
a set of optimization problems, it is possible to find the differences/similarities be-
tween the problems by measuring the transferability between every possible pair of
optimization problems. Hong et al. [2018] proposed this analysis by measuring the
transferability as the average objective value of the hyper-heuristic when training
and testing on two continuous optimization problems.
In Chapter 4, we proposed two multi-domain problem analysis method based on a
multi-domain hyper-heuristic framework. Unlike other problem analysis methods,
the proposed methods are applicable to different domains, and we show that they
are able to identify similar and different problems within a set of optimization
problems, both in the continuous and discrete domains. In addition, the proposed
approach improves Hong et al. [2018]’s methodology in four key aspects. Firstly,
by defining transferability with ranks instead of objective values, we can com-
pare across different problems (rank based transferability is comparable among
problems of different magnitude). Secondly, by repeating several measurements
of transferability and computing the average ranks, it is possible to distinguish
between noise and the actual difference in performance (this is not possible with
average objective values). Thirdly, we experimentally show that the analysis car-
ried out with our approach is correlated with the properties of the optimization
problems, which suggests that the proposed technique is useful for finding sim-
ilarities and differences in the properties of optimization problems. Finally, we
show that our approach works in both combinatorial and continuous domains,
while Hong et al.’s approach Hong et al. [2018] was only shown to work in the
continuous domain.
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Chapter 5
In optimization problems, long evaluation times are common in tasks like episodic
policy learning. Early stopping is a technique used to terminate evaluations early
when further improvements are unlikely. While many early stopping methods are
problem-specific on policy learning—for example stopping the evaluation of a
robot that got stuck requires determining when the robot is considered stuck—
some general approaches (those that do not require problem specific knowledge)
have been successful in problems like hyperparameter tuning. Bongard [2011] pro-
posed a general early stopping approach for policy learning, but his approach relies
on certain assumptions about the objective function and optimization algorithm.
In Chapter 5, we proposed an early stopping criterion for episodic policy learning
that overcomes these limitations. We adapted early stopping approaches from
hyperparameter optimization [de Souza et al., 2022] to episodic policy learning, by
carefully considering the properties of the objective functions that policy learning
tasks have. In an experimental section on five different environments, we showed
that the proposed early stopping approach rarely decreases performance and can
produce a speedup comparable to problem specific approaches, while being more
generally applicable.

6.2 Future Work

The co-optimization of design and control in robotics is an interesting problem,
where two stochastic optimization problems are nested one inside another. To
optimize the design of the robot, we need to evaluate the designs proposed by
an heuristic optimization algorithm, and in turn, evaluating a design requires its
controller to be optimized. An efficient alternative [Jelisavcic et al., 2017, Liao
et al., 2019, Sims, 1994] is to optimize the design and control together, although
this has certain limitations, such as the convergence of the design before the con-
troller [Lipson et al., 2016] and the requirement for controllers to be compatible
with every possible designs simultaneously [Le Goff et al., 2021]. Given a fixed
amount of time as stopping criterion, in the nested approach, the more we train a
controller of each design, the less designs we will be able to evaluate, as evaluating
a design involves fully training its controller.
It would be interesting to study how to allocate a fixed amount of computation
budget to maximize performance, considering the trade-off between number of
designs evaluated and number of controllers per design evaluated mentioned above.
It might be possible, for example, to evaluate additional controllers for the most
promising design found. In addition, it might be interesting to study the properties
of the designs when the amount of controllers evaluated per design is decreased.
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Accepted:
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putational and Graphical Statistics. (Q1 in Statistics and Probability)
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Appendices

7.1 Chapter 1

7.1.1 The importance of using the same resources in algorithm
comparison

It is essential to run the algorithms with the same computational resources to
carry out a fair comparison. To better illustrate this point, in the following lines,
a small experiment is presented. This experiment illustrates the increase in the
probability of type I error (the probability of erroneously concluding a difference
in performance, when in reality, there is none) with respect to the difference in ex-
ecution time. Specifically, we run a random search algorithm twice in each problem
instance1 and perform the one-sided sign test [Conover, 1980]2 (see Section 1.3.1
for an explanation of the sign test), on the set of results obtained. The significance
level is set to α = 0.05. Even though the random search algorithm is being com-
pared with itself, we increase the runtime of one of the executions by 8, 16, 32, or
64 percent. We repeat the steps above 1000 times to estimate the probability of
type I error (estimated as the probability of rejecting H0).
Figure 7.1 shows the estimated probability of type I error. Notice that the type
I error starts at 0.05, which is the expected result for a significance level of α =
0.05. However, the error shoots up dramatically when the difference in runtime
increases, more than doubling when the percentage of extra runtime reaches 32%.

1 A set of 16 permutation problem instances is considered, 4 instances of 4 problems. The
four permutation problems considered are the traveling salesman problem, the permu-
tation flowshop scheduling problem, the linear ordering problem, and the quadratic
assignment problem.

2 In 7.1.4, we explain why we limit the statistical analysis to the sign test in this chapter.
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Fig. 7.1: Increase in the probability type I error with respect to the difference in
runtime. Specifically, the probability of type I error in the one-sided sign test when
comparing two identical random search algorithms. One of the algorithms is given
extra runtime, according to the x-axis. The test is applied to a set of 16 problem
instances.

Therefore, a discrepancy in the runtime of the algorithms being compared, if high
enough, can lead to falsely concluding that the performance of the algorithms is
not the same. A fair comparison requires the same computational resources to be
assigned in the execution of each algorithm.

7.1.2 Justification of Assumption 1

The runtime of an optimization process (a sequence of computational instructions)
is different in each machine. However, even though it is different, there might be
a proportional relationship between the runtime of the same optimization process
in two different machines. This hypothesis is the basis of Assumption 1.
To experimentally study this assumption, we compute the correlation of the run-
time that several optimization processes have on two machines. Specifically, we
computed the correlation of 64 different optimization processes (see Appendix 7.1.3
for additional details on the optimization processes) for every possible pair of ma-
chines from the 8 different machines used in the experimentation. The average
Pearson’s correlation coefficient of the runtimes is 0.989987, which shows a strong
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linear [Zou et al., 2003] (not necessarily proportional) relationship between the
runtime of the same optimization process in two different machines.

Estimating the equivalent runtime
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Fig. 7.2: Estimation of the runtime of an optimization process ρ with one ρ′ or
two ρ′, ρ′′ reference optimization processes. The x-axis represents the runtime in
machine M1, while the y-axis is the runtime in machine M2. The runtime of the
optimization process ρ is estimated for machine M2.

Given two machines M1 and M2, the runtime of an optimization process can be
considered as a two-dimensional vector, where each of the dimensions represents
the runtime of the optimization process in each of the machines. Thus, knowing
the runtime t(s,M1) of an optimization process ρ in a machine M1, it is reasonable
to estimate the equivalent runtime of ρ in another machine M2, when the runtime
of two other optimization processes ρ′ and ρ′′ is known for both machines. In fact,
with such a high Pearson’s correlation coefficient, the runtimes of these optimiza-
tion processes (red crosses in Figure 7.2) will almost be aligned in a line [Zou et al.,
2003]. Therefore, the estimated runtime of ρ in machine M2 is defined as the value
that makes the runtime of the three optimization processes aligned. This is shown
by the orange line in Figure 7.2.
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Observe that this procedure requires the runtime of two optimization processes ρ′

and ρ′′ to be known in both machines M1,M2. However, by considering an addi-
tional hypothesis, we can reduce the requirement to only one optimization process
ρ′. This additional hypothesis is that the regression line has to cross the origin.
Intuitively, if an optimization process (sequence of computational instructions)
takes no time in a machine, it makes no sense that it takes a positive amount of
time in another machine. In addition, without this condition, it could be possible
to estimate a negative runtime, which is not properly defined.
In this setting, the estimated runtime for the optimization process ρ in machine
M2 is set so that the runtime of the optimization processes ρ and ρ′ and the
origin are in the same line. This is represented by the blue line in Figure 7.2. The
estimation of the runtime of the optimization process ρ in machine M2, shown in
the figure as a blue square, is given by the slope-intercept formula for the points
(0, 0) and (t(M1, ρ

′), t(M2, ρ
′)):

t(M2, ρ) ≈ t(M2, ρ
′)

t(M1, ρ′) t(M1, ρ) (7.1)

By rewriting Equation (7.1), we obtain that the ratio of two optimization processes
is (approximately) constant in different machines

t(M2, ρ)
t(M2, ρ′) ≈

t(M1, ρ)
t(M1, ρ′) (7.2)

which is exactly Assumption 1.

7.1.3 Optimization processes

In this chapter, we defined an optimization process as a sequence of computational
instructions that can be executed in any machine. Specifically, each of the opti-
mization processes described in this section consists of executing an optimization
algorithm in a problem instance for a maximum of 2 · 106 objective function eval-
uations. In total, we considered 64 optimization processes, executing 4 algorithms
in 16 problem instances. The optimization process ρ′ is the sequential execution
of these 64 optimization processes.
Problem instances: We solved four types of optimization problems (all of them
are permutation problems): the traveling salesman problem [Goldberg and Lin-
gle, 1985], the quadratic assignment problem [Koopmans and Beckmann, 1957],
the linear ordering problem [Ceberio et al., 2015g] and the permutation flowshop
scheduling problem [Gupta and Stafford, 2006]. For each of these four problem
types, we chose 4 problem instances, as listed in Table 7.1.
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Optimization algorithms: Each of the 16 problem instances was optimized with
four optimization algorithms. These optimization algorithms are random search
and local search with three different neighborhoods: swap, interchange, and in-
sert [Schiavinotto and Stützle, 2007, Ceberio et al., 2015a]. The local search is a
best-first or greedy approach that is randomly reinitialized when a local optimum
is found.
We define each of the 64 different optimization processes as running each of these
four optimization algorithms in each of the 16 problem instances.

Problem instances

instance name problem size
tai75e02 qap 75
sko100a qap 100
tai100a qap 100
tai100b qap 100
eil101 tsp 101
pr136 tsp 136
kroA200 tsp 200
kroB200 tsp 200
tai100_20_0 pfsp (100,20)
tai100_20_1 pfsp (100,20)
tai200_20_1 pfsp (200,20)
tai200_20_1 pfsp (200,20)
N-be75np_150 lop 150
N-stabu3_150 lop 150
N-t65d11xx_150 lop 150
N-t70f11xx_150 lop 150

Table 7.1: The list of 16 problem instances and their size.

Machines: The experimentation was carried out in a set of 8 different machines.
Table 7.2 lists the CPU models of these machines, as well as their single thread
PassMark CPU scores.

7.1.4 The sign test for algorithm performance comparison

When statistically assessing the comparison of the performance of optimization
algorithms, a classical way is to use non-parametric tests as the distribution of
the performance is usually unknown. In the literature, the Wilcoxon signed-rank
test, the Mann-Whitney test and the sign test [Conover, 1980] are often used to
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Machines

CPU model name PassMark score
Intel i5 470U 539
Intel Celeron N4100 1012
AMD A9 9420 with Radeon R5 1344
AMD FX 6300 1486
Intel i7 2760QM 1559
Intel i7 6700HQ (2.60GHz) 1921
Intel i7 7500U 1955
AMD Ryzen7 1800X 2185

Table 7.2: The list of 8 machines used in the experimentation and their speed
score, measured in terms of PassMark single thread score.

assess a statistically significant difference in the performance of two algorithms.
We argue that, in the context of optimization algorithm performance comparison,
it may be more suitable to use the sign test than the Wilcoxon signed-rank or the
Mann-Whitney test.
It turns out that the result of the Wilcoxon and the Mann-Whitney tests might
change when the objective function value of some of the problems is scaled (mul-
tiplied or divided by a positive constant). The reason is that they both take into
account the magnitude of the differences between the observations, and these dif-
ferences change with scaling. A usual solution is to consider the average relative
deviation percentage with respect to the optimum (or any other reference solution)
instead of the objective value, but this only changes the problem: now the results
of these tests change when the objective function value of some of the problems
is shifted (add or subtract a constant). In our opinion, the performance compar-
ison of two optimization algorithms should be invariant to these two alterations,
otherwise, problems that are on a higher scale (for example, when the dimension
of the problem is high), will have a larger impact on the result of the statistical
test. In addition, we believe that it is reasonable that all problem instances have
the same weight in the conclusion of the statistical test, which both the Wilcoxon
signed-rank and the Mann-Whitney test are unable to accomplish due to their
dependence on the magnitude of the differences.
An alternative is the sign test [Conover, 1980], which is invariant to the shifting
and scaling of the problems. In fact, the result of the sign test does not change
even if some of the problems are modified by composing the objective function
with any strictly increasing function. For this reason, and even though the sign
test is a less powerful alternative (higher probability of type II error), we believe it
is the most suitable hypothesis test for algorithm performance comparison when
the objective functions of all the problems are not directly comparable.
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7.1.5 Proof of Equation (1.5).

When performing the statistical analysis, a set of n problem instances is used
to compute the statistic and the p-value. The goal of the analysis is to draw
conclusions on a larger set of problem instances based on the observed sample of
size n. Given a problem instance, we can define the performance of an algorithm
in this instance.

Definition 16 (The performance of an algorithm in an instance)
Let M be a machine, t a stopping criterion in terms of maximum runtime, A an
optimization algorithm and i a problem instance. The performance of algorithm A
in an instance i, denoted A(M, t, i), is defined as a random variable whose outcome
is obtained by first sampling a random seed r and then optimizing instance i with
optimization algorithm A in machine M for time t. Given this random seed r, the
performance of an algorithm in an instance is deterministic.

In Section 1.2, we defined t1 as the stopping criterion for algorithm A in machine
M1, which is obviously the time it takes to carry out this optimization process in
machine M1. We also defined the equivalent runtime t2 as the time it takes to repli-
cate the exact same optimization process in machine M2 in Definition 6. Because
of this definition, A(M1, t1, i) and A(M2, t2, i) are the same random variables.
Therefore, it makes sense to denote A(M1, t1, i) and A(M2, t2, i) or B(M1, t1, i)
and B(M2, t2, i) as Ai or Bi, respectively. To ease the notation, we will also denote
B(M2, t̂2, i) as B̂i.
Finally, as discussed in Section 1.5.6, we assume that whether t̂2 < t2 is true or
not is independent for each instance i, and that P(t̂2 < t2) < pγ . Let us now prove
Equation (1.5).

Lemma 1 Let n be an integer, X and Y two random variables. Let X1, ..., Xn be
n independent random variables distributed as X. Let Y1, ..., Yn be n independent
random variables distributed as Y . Let vx and vy be two possible outcomes of the
random variables X and Y respectively, l ∈ {0, ..., n} be an integer and p ∈ (0, 1)
be a real number.
I) If P[Y = vy | X = vx] = 1, then

P[X = vx] ≤ P[Y = vy]

and
#{Xi = vx} ≤ #{Yi = vy}
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II) If P[Y = vy | X = vx] = 1 and P[X = vx | Y = vy] = 1 then

P[X = vx] = P[Y = vy]

III) If P[X = vx] < p then

P[#{Xi = vx} ≥ l] < P[Bin(n, p) ≥ l]

Lemma 2 Let i ∈ {1, .., n} be n problem instances and let A and B be two op-
timization algorithms. Let ai, bi and b̂i be the observed values of Ai, Bi and B̂i
respectively, ∀i ∈ {1, ..., n}. Let k and v ∈ {0, ..., n} be two integers. Suppose that
Ai ̸= Bi and Ai ̸= B̂i.
Then,

P[#{Ai < min(B̂i, Bi)} ≤ min(k, v) | #{Ai < Bi} = v] ≤

P[#{Ai > B̂i ∧Ai < Bi} ≥ max(0, v − k) | #{Ai < Bi} = v]

Proof.
#{Ai < min(B̂i, Bi)} ≤ min(k, v) =⇒

#{Ai < B̂i ∧Ai < Bi} ≤ min(k, v) =⇒

#{Ai < Bi} −#{Ai > B̂i ∧Ai < Bi} ≤ min(k, v) =⇒

Substituting #{Ai < Bi} = v,

v −min(k, v) ≤ #{Ai > B̂i ∧Ai < Bi} =⇒

Considering v −min(k, v) = max(0, v − k),

#{Ai > B̂i ∧Ai < Bi} ≥ max(0, v − k)

We have just shown that

#{Ai < min(B̂i, Bi)} ≤ min(k, v) =⇒ #{Ai > B̂i ∧Ai < Bi} ≥ max(0, v − k)

Which means that,
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P[#{Ai > B̂i∧Ai < Bi} ≥ max(0, v−k) | #{Ai < min(B̂i, Bi)} ≤ min(k, v)] = 1

Finally, we apply Lemma 1 I), obtaining

P[#{Ai < min(B̂i, Bi)} ≤ min(k, v) | #{Ai < Bi} = v] ≤

P[#{Ai > B̂i ∧Ai < Bi} ≥ max(0, v − k) | #{Ai < Bi} = v]

Lemma 3 Let i ∈ {1, .., n} be n problem instances and let A and B be two op-
timization algorithms. Let ai, bi and b̂i be the observed values of Ai, Bi and B̂i
respectively, ∀i ∈ {1, ..., n}. Let k and v ∈ {0, ..., n} be two integers. Suppose that
Ai ̸= Bi and Ai ̸= B̂i.
Then,

P[#{Ai < B̂i} ≤ k | #{Ai < Bi} = v] < P[Bin(n, pγ) ≥ max(0, v − k)]

Proof.
P[#{Ai < B̂i} ≤ k | #{Ai < Bi} = v] ≤

P[#{Ai < min(B̂i, Bi)} ≤ k | #{Ai < Bi} = v]

Now, observe that #{Ai < min(Bi, B̂i)} ≤ #{Ai < Bi} = v, which implies that

#{Ai < min(B̂i, Bi)} ≤ k ⇐⇒ #{Ai < min(B̂i, Bi)} ≤ min(k, v)

This means that

P[#{Ai < min(B̂i, Bi)} ≤ k | #{Ai < min(B̂i, Bi)} ≤ min(k, v)∧#{Ai < Bi} = v] = 1

and

P[#{Ai < min(B̂i, Bi)} ≤ min(k, v) | #{Ai < min(B̂i, Bi)} ≤ k∧#{Ai < Bi} = v] = 1

We apply Lemma 1 II), obtaining

P[#{Ai < min(B̂i, Bi)} ≤ k | #{Ai < Bi} = v] =

P[#{Ai < min(B̂i, Bi)} ≤ min(k, v) | #{Ai < Bi} = v]
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Applying Lemma 2, we obtain

P[#{Ai < min(B̂i, Bi)} ≤ min(k, v) | #{Ai < Bi} = v] ≤

P[#{Ai > B̂i ∧Ai < Bi} ≥ max(0, v − k) | #{Ai < Bi} = v]

Note that bi is the score obtained with the true equivalent runtime t2 as the
stopping criterion, while in the case of b̂i, the stopping criterion is the estimated
equivalent runtime t̂2. In a minimization context, b̂i < bi =⇒ t̂2 > t2, because a
better score can only be obtained with a longer runtime (a shorter runtime implies
an equal or worse performance). Let us consider the following implications:

ai > b̂i ∧ ai < bi =⇒ b̂i < bi =⇒ t̂2 > t2

We infer that
P[t̂2 > t2 | Ai > B̂i ∧Ai < Bi] = 1

Applying Lemma 1 I), we obtain

P[#{Ai > B̂i ∧Ai < Bi | #{Ai < Bi} = v} ≥ max(0, v − k)] ≤

P[#{t̂2 > t2 | #{Ai < Bi} = v} ≥ max(0, v − k)] =

P[#{t̂2 > t2} ≥ max(0, v − k)]

The estimated runtime t̂2 was computed with the equation in Definition 8 in
Section 1.2, with an estimated probability that t̂2 < t2 lower than 0.01. With this
information, we apply Lemma 1 III) taking into account that P[t̂2 > t2] < 0.01:

P[#{t̂2 > t2} ≥ max(0, v − k)] <

P[Bin(n, 0.01) ≥ max(0, v − k)]

Theorem 1 Let i ∈ {1, .., n} be n problem instances and let A and B be two
optimization algorithms. Let ai, bi and b̂i be the observed values of Ai, Bi and B̂i
respectively, ∀i ∈ {1, ..., n}. Let H0 be the null hypothesis under which the statistic
#{Ai < Bi} follows the null distribution Bin(n, 0.5). Suppose that Ai ̸= Bi and
Ai ̸= B̂i. Then,

P[#{Ai < B̂i} ≤ k | H0] ≤
n∑
v=0

(1− P[Bin(n, 0.01) < max(0, v − k)]) · P[Bin(n, 0.5) = v]
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Proof. Let X,C be a two random variables, where SC and SX are the sets of all
possible outcomes of C and X respectively. Consider the law of total probabil-
ity [Beyer, 1991]:

∀x ∈ SX , P[X = x] =
∑
c∈SC

P[C = c] · P[X = x | C = c]

Applying this formula, we obtain

P[#{Ai < B̂i} ≤ k | H0] =
n∑
v=0
P[#{Ai < B̂i} ≤ k | H0 ∧#{Ai < Bi} = v] · P[#{Ai < Bi} = v | H0]

Given that #{Ai < Bi} = v, we can say that #{Ai < B̂i} ≤ k is independent
of H0, because #{Ai < B̂i} is determined by how many times t̂2 > t2 resulted
in Ai < Bi ∧ Ai > B̂i and t̂2 < t2 resulted in Ai > Bi ∧ Ai < B̂i. Specifically,
H0 gives the prior probabilities of Ai > Bi, which are not relevant when we know
that #{Ai > Bi} = v. That gives us

n∑
v=0
P[#{Ai < B̂i} ≤ k | H0 ∧#{Ai < Bi} = v] · P[#{Ai < Bi} = v | H0] =

n∑
v=0
P[#{Ai < B̂i} ≤ k | #{Ai < Bi} = v] · P[#{Ai < Bi} = v | H0]

Applying Lemma 3 and considering thatH0 implies the null distributionBin(n, 0.5)
for the statistic #{Ai < Bi},

n∑
v=0
P[#{Ai < B̂i} ≤ k | #{Ai < Bi} = v] · P[#{Ai < Bi} = v | H0] <

n∑
v=0
P[Bin(n, 0.01) ≥ max(0, v − k)] · P[#{Ai < Bi} = v | H0] =

n∑
v=0
P[Bin(n, 0.01) ≥ max(0, v − k)] · P[Bin(n, 0.5) = v] =

n∑
v=0

(1− P[Bin(n, 0.01) < max(0, v − k)]) · P[Bin(n, 0.5) = v]
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7.2 Chapter 2

7.2.1 A literature review of measures

7.2.1.1 f-divergences

The f -divergence is a family of functions that can be used to measure the dif-
ference between two random variables. Given a strictly convex1 function f :
(0,+∞) → R with f(1) = 0, and two continuous random variables A and B,
the f -divergence [Liese and Vajda, 2006, Rényi et al., 1961] is defined as

Df (A,B) =
∫
R
gB(x)f

(
gA(x)
gB(x)

)
dx (7.3)

where gA and gB are the probability density functions of the random variables A
and B respectively. Since gB(x) can be 0, we assume [Polyanskiy and Wu, 2012]
that 0 · f(0/0) = 0 and 0 · f(a/0) = limx→0+ x · f(a/x). Notice that if gA and gB
are the same probability density functions, then Df (A,B) = 0.
Kullback–Leibler divergence: The Kullback–Leibler divergence [Kullback and Leibler,
1951] is a particular case of the f -divergence, for f(x) = x · ln(x). Given two ran-
dom variables A and B, DKL(A,B) can be interpreted [Papadopoulos, 2017] as
the amount of entropy increased by using gB to model data that follows the prob-
ability density function gA.
The Kullback–Leibler divergence is non-negative, and non symmetricDKL(A,B) ̸=
DKL(B,A), and therefore, it is not actually a distance [Goodfellow et al., 2016].
It will not satisfy Property (2), as it is not antisymmetric either. This also makes
the interpretation less intuitive. The Kullback–Leibler divergence is often used to
measure the difference between two random variables [Goodfellow et al., 2016], but
since DKL(A,B) ̸= DKL(B,A), it may be better to interpret the Kullback–Leibler
divergence as stated above [Papadopoulos, 2017].
In Figure 7.3, we show the probability density functions and cumulative distribu-
tion functions of four random variables A,B,C and D. Looking at their cumulative
distributions (Figure 7.3b), one can clearly see that A ≻ B, B ≶ C and B ≻ D.
However, as shown in Table 7.3, DKL(B,A) = DKL(B,C) = DKL(B,D) = 15.4
and DKL(A,B) = DKL(C,B) = DKL(C,D) = 6.2. This means that, given any
two random variables A and B, the Kullback-Leibler is not able to distinguish if
A ≻ B, B ≻ A or A ≶ B. We can interpret this as the Kullback–Leibler diver-
gence only caring about the difference between two random variables, and not if

1 A function f : (0,+∞) → R is strictly convex if for all t ∈ [0, 1], for all x1, x2 ∈
(0,+∞), f(tx1 + (1− t)x1) < tf(x1) + (1− t)f(x2)
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this difference is related to one of the random variables taking lower values than
the other. Hence, it cannot satisfy Property 1, even if we try to transform it to
be defined in the [0, 1] interval. We conclude that the Kullback–Leibler divergence
is not suitable to gain information regarding which of the random variables takes
lower values.
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(a) Probability density.
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Cumulative density function

(b) Cumulative distribution function.

Fig. 7.3: The probability density function and cumulative distribution of the four
random variables. The distances between these random variables are listed in
Table 7.3.

Jensen-Shannon divergence: The Jensen-Shannon divergence [Polyanskiy and Wu,
2012] is very similar to the Kullback-Leibler divergence, and is another the partic-
ular case of the f -divergence for f(x) = x · ln( 2x

x+1 ) + ln( 2
x+1 ). It is also known as

the symmetrized version of the Kullback–Leibler divergence [Polyanskiy and Wu,
2012], because

DJS(A,B) = DKL (A,XM) +DKL (B,XM)

where the probability density function of XM is gM(x) = 0.5(gA(x) + gB(x)).
Thus, we can interpret this divergence as the sum of the Kullback–Leibler diver-
gences of gA and gB with respect to the average probability density function gM.
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(b) Cumulative distribution function.

Fig. 7.4: The probability density function and cumulative distribution of four
other random variables. The Wasserstein distance between B and each of the
other random variables is 0.017.

The Jensen-Shannon divergence also fails to identify (see Table 7.3) the dominance
relationships between B and the rest of the random variables in Figure 7.3, thus,
it cannot satisfy Property 1. In addition, the Jensen-Shannon divergence also fails
to satisfy Properties 2 and 3. See Table 2.1 for a detailed list of the properties
that each measure satisfies.

Total variation: The total variation [Polyanskiy and Wu, 2012] is also a particular
f -divergence, for f(x) = 1

2 |x − 1|. Unlike the Kullback–Leibler divergence, the
total variation is symmetric. In fact, it is a properly defined distance [Polyanskiy
and Wu, 2012, Tsybakov, 2009]. In addition, it is defined between 0 and 1.
Given two random variables A,B, the total variation can also be defined as:
TV (A,B) = supC⊆R|PA(C)− PB(C)|,
where PA and PB are the probability distributions1 of A and B respectively. Since
the subset C that takes the supremum is C = {x ∈ R | gA(x) > gB(x)}[Devroye

1 Given the random variable A defined in R, its probability distribution, noted as PA, is
a mapping that, for all U ⊆ R that is measurable, A(U) = P(A ∈ U) [Vapnik, 1998].
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Kullback–Leibler Jensen-Shannon
RV2 RV2

A B C D A B C D
R

V
1

A 0.0 6.2 28.6 88.8

R
V

1

A 0.0 1.2 1.4 1.4
B 15.4 0.0 15.4 15.4 B 1.2 0.0 1.2 1.2
C 29.4 6.2 0.0 2.6 C 1.4 1.2 0.0 0.8
D 88.8 6.2 2.6 0.0 D 1.4 1.2 0.8 0.0

Total variation Hellinger
RV2 RV2

A B C D A B C D

R
V

1

A 0.000 0.934 0.999 1.000

R
V

1

A 0.00 1.28 1.41 1.41
B 0.934 0.000 0.934 0.934 B 1.28 0.00 1.28 1.28
C 0.999 0.934 0.000 0.818 C 1.41 1.28 0.00 0.99
D 1.000 0.934 0.818 0.000 D 1.41 1.28 0.99 0.00

Wasserstein CP

RV2 RV2
A B C D A B C D

R
V

1

A 0.000 0.06 0.03 0.12

R
V

1

A 0.50 0.95 0.92 0.99
B 0.06 0.00 0.04 0.06 B 0.05 0.50 0.54 0.95
C 0.03 0.04 0.000 0.083 C 0.08 0.46 0.50 0.91
D 0.12 0.06 0.083 0.000 D 0.01 0.05 0.09 0.50

CD

RV2
A B C D

R
V

1

A 0.50 1.00 1.00 1.00
B 0.00 0.50 0.59 1.00
C 0.00 0.41 0.50 1.00
D 0.00 0.00 0.00 0.50

Table 7.3: C(RV1,RV2) for the random variables A,B,C and D shown in Fig-
ure 7.3.

et al., 2020], we can interpret the total variation as the “size” of the difference
in the density functions in all points where gA is more likely than gB . Following
this intuition, when TV (A,B) = 1, gA and gB have disjoint supports [Polyanskiy
and Wu, 2012], and thus A and B are at their maximum difference with respect
to this metric. On the other hand, when TV (A,B) = 0 the random variables are
identical.
The Total-Variance also fails to identify (see Table 7.3) the dominance relation-
ships between B and the rest of the random variables in Figure 7.3.

Hellinger distance and the Bhattacharyya distance: The Hellinger distance is the
square root of the f -divergence for f(x) = (1 −

√
x)2 [Polyanskiy and Wu,
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2012]. It is related to the Bhattacharya coefficient, since DH(A,B) = 2(1 −
BhattCoef(A,B)) [Polyanskiy and Wu, 2012, Xi, 2017], where BhattCoef(A,B)
is the Bhattacharyya coefficient [Kailath, 1967, Bhattacharyya, 1943]. This co-
efficient is defined as BhattCoef(A,B) =

∫
R

√
gA(x)gB(x)dx, and has proven

useful on signal processing [Kailath, 1967]. Given two probability density func-
tions gA and gB , the Bhattacharyya coefficient can be interpreted as the integral
of the geometric mean of the probability density functions. The Bhattacharyya
coefficient is also related to the Bhattacharyya distance, as DBhatt(A,B) =
− ln(BhattCoef(A,B)).
The Hellinger distance and the Bhattacharyya distance also fail to identify (see
Table 7.3) the dominance relationships between B and the rest of the random
variables in Figure 7.3.

7.2.1.2 Wasserstein distance

The Wasserstein distance is another type of distance between probability random
variables. Given two continuous random variables A,B, the Wasserstein distance
(of order 1) is defined as [Schuhmacher, 2021, Panaretos and Zemel, 2019]

DW (A,B) =
∫
R
|GA(x)−GB(x)|dx

In Figure 7.4, we show a different set of four random variables A,B,C and D.
In this case, it is also clear that A ≻ B, B ≶ C and B ≻ D (Figure 7.4b),
but DW (B,A) = DW (B,C) = DW (B,D) = 0.017. Therefore, in this case, the
Wasserstein distance does not give any insights about the dominance between B
and the rest of the random variables, thus, it cannot satisfy Property 1 even with
a transformation. It also does not satisfy Properties 2, 3, 6, 7, 8.
However, with a small change, the Wasserstein distance can comply with Proper-
ties 2 and 3. This change also improves its correlation with the dominance, even
though it still does not comply with Property 1. We remove the absolute value,
such that the signed Wasserstein distance is defined as

DSW (A,B) =
∫
R
GA(x)−GB(x)dx.

For the random variables in Figure 7.4, the signed Wasserstein distance has dif-
ferent values: DSW (B,A) = 0.17, DSW (B,C) = 0 and DSW (B,D) = −0.017.
Notice that
A ≻ B =⇒ DSW (B,A) > 0 and B ≻ A =⇒ DSW (B,A) < 0,
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but unfortunately, when A ≶ B, DSW (B,A) could be positive or negative. This
implies that DSW (B,A) still can not determine if A ≻ B, B ≻ A, or A ≶ B.

7.2.1.3 Heuristic derivation of the first-order stochastic dominance

A measure similar to the Wasserstein distance has been proposed in the liter-
ature [Schmid and Trede, 1996] in the context of comparing random variables.
Specifically, this measure is part of the heuristic derivation of a distribution-
free statistical test for first-order stochastic dominance [Schmid and Trede, 1996].
Given two random variables A,B, this measure is defined as

CI(A,B) =
∫
R
max(0, GA(x)−GB(x))dGB(x).

Note that the values of I range between 0 and 0.5. When CI(A,B) = 0.5, we know
that A ≻ B. Unfortunately, when CI(A,B) ∈ (0, 0.5), it could be that A ≻ B or
A ⊁ B. Consequently, CI(A,B) cannot satisfy Property 1.

7.2.2 Quantile random variables

7.2.2.1 Computing the probability density functions of YA and YB

In Section 2.4.1 we introduced the quantile random variables YA and YB . We now
describe how to compute the probability density functions of gYA

and gYB
step

by step, with the pseudocode shown in Algorithm 7. We define a function r that
returns the position of an observation according to its rank in the sorted list of the
observation An∪Bn (lines 1–4). The ranks go from 0 (for the smallest observation)
to rmax (for the largest), where rmax is the number of unique observation in
An∪Bn minus 1. Repeated observations are assigned the same rank, and no ranks
are skipped: there is at least a value in An ∪Bn corresponding to each rank from
0 to rmax. For each observation in {a1, ..., an}, a uniform distribution defined in
the interval ( r(ai)+γ(r(ai)−1)

2n , r(ai)+γ(r(ai))
2n ) is added to the mixture (lines 10–19),

where γ(k) (lines 7–9) counts the number of ranks in An ∪Bn that are lower than
or equal to k (since the lowest rank is 0, γ(−1) = 0) . The kernel density estimation
for YB is defined similarly, but with the observations {b1, ..., bn} instead.

7.2.2.2 The quantile random variables have the same CP and CD as
the kernel density estimates of A and B.

In Section 2.4.1, we claimed that when a “small enough” uniform [scikit-learn
developers, 2021] kernel is used in the kernel density estimations of A and B,
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Algorithm 7: Kernel density estimation of YA and YB
Input:
An = {a1, ..., an}: The n observed samples of A.
Bn = {b1, ..., bn}: The n observed samples of B.

Output:
gYA : The probability density of YA.
gYB : The probability density of YB .

/* Compute the ranks of An ∪Bn. The lowest value has rank 0. Assign
the same rank to ties without skipping any rank. */

1 for i = 1,...,n do
2 r(ai)← rank of ai in An ∪Bn

3 r(bi)← rank of bi in An ∪Bn

4 R ← {r(a1), ..., r(an), r(b1), ..., r(bn)}
5 rmax ← max(R)
6 for k = -1,0,1,...,rmax do
7 γ(k)← the number of items in R lower than or equal to k

/* The probability density function of gYA is represented as a
mixture of n uniform distributions. gYA [s] is the probability
density of YA in the interval [ s

2n
, s+1

2n
). */

8 gYA ← array of zeros of length 2n
9 gYB ← array of zeros of length 2n

10 for c = a1, ..., an, b1, ..., bn do
11 Amult ← number of times that c is in An

12 Bmult ← number of times that c is in Bn

13 for mult = 1,...,(Amult +Bmult) do
14 gYA [γ(r(ai)− 1) +mult− 1]← (n ·Amult)−1

15 gYB [γ(r(bi)− 1) +mult− 1]← (n ·Bmult)−1

16 return gYA , gYB

these estimations will have the same CP and CD as the quantile random variables
YA and YB . Specifically, the size of the uniform kernels needs to be smaller than

min
i,j∈{1...n}|ai ̸=bj

2|ai − bj |, where An = {a1, ..., an} and Bn = {b1, ..., bn} are the n

observed samples of A and B respectively. As a result, the CP and CD of the kernel
density estimations will not change when the size of the kernels is reduced below
its initial size. This can be deduced from Property 8 in Section 2.2.2, which both
CP and CD satisfy.
The quantile random variables YA and YB can also be obtained by applying a
sequence of transformations to the kernel density estimations (with small uniform
kernels) of A and B. Three consecutive transformations are required, none of which
modify the CD and CP due to Property 8. The first transformation involves further
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reducing the size of the kernels to 1/(4n). Secondly, each kernel k is moved into the
position r(k)/(2n) +(4n)−1, where r(k) is the rank of the sample in k in An∪Bn.
In the case of ties, r assigns the same rank to all kernels and this same rank is the
average of the previous and the next rank. Since each of the possible positions are
at distance 1/(2n) from each other, this transformation will not change the CD
and CP . Finally, the length of the kernels is increased to mult/(4n), where mult is
the number of times that the sample defining the kernel is repeated in An ∪ Bn.
Note that this increase in the length will in no case cause an overlap of kernels.

7.2.3 CP and CD in the cumulative difference-plot

In this section, we mathematically prove and experimentally verify that the cumu-
lative difference-plot can be used to deduce CD and CP . First, we describe which
estimators are used when these dominance measures are visually estimated from
the cumulative difference-plot. Then, we show that these estimators converge to
CP and CD as the number of samples increases.

7.2.3.1 Estimating CP and CD from the cumulative difference-plot

Definition 17 (observations of random variables)
Let A be a continuous random variable. We define n observations of A as the
realizations of the i.i.d random variables {Ai}ni=1 that are distributed as A, denoted
as An = {ai}ni=1.

Definition 18 (estimation of CP)
Let A and B be two continuous random variables and An and Bn their n ob-

servations respectively. We define the estimation of the probability that A < B
as

C̃P(An, Bn) =
∑

i,k=1...n

sign(bk − ai)
2n2 + 1

2 .

Definition 19 (estimation of CD)
Let A and B be two continuous random variables and An and Bn their n obser-

vations respectively. Let {cj}2n
j=1 the sorted list of all the observations of An and

Bn where c1 is the smallest observation and c2n the largest. Let {cd}dmax

d=1 be the
sorted list of unique values in {cj}2n

j=1. We define the estimation of the dominance
rate as

C̃D(An, Bn) =

∑2n
j=1

ψ(cj)
2n + 1
2 · k−1

c
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kc =
∑2n

j=1
I[ψ(cj) ̸=0]
2n is the normalization constant and ψj is defined as

ψ(cd) =



0 if ĜA(cd−1) = ĜB(cd−1)
and ĜA(cd) = ĜB(cd)

1 if ĜA(cd−1) ≥ ĜB(cd−1)
and ĜA(cd) > ĜB(cd)

1 if ĜA(cd−1) > ĜB(cd−1)
and ĜA(cd) ≥ ĜB(cd)

−1 if ĜB(cd−1) ≥ ĜA(cd−1)
and ĜB(cd) > ĜA(cd)

−1 if ĜB(cd−1) > ĜA(cd−1)
and ĜB(cd) ≥ ĜA(cd)

1− 2γ(cd) if ĜB(cd−1) > ĜA(cd−1)
and ĜA(cd) > ĜB(cd)

2γ(cd)− 1 if ĜA(cd−1) > ĜB(cd−1)
and ĜB(cd) > ĜA(cd)

with γ(cd) = ĜB(cd−1)− ĜA(cd−1)
[Bn = cd]− [An = cd]

. Note that [An = cd] counts the number of

items in An equal to cd and ĜA is the empirical distribution [Steck, 1971] esti-
mated from An. To improve the readability, we abuse the notation and assume
that ĜA(c0) = 0.

We now show that these estimates can be directly computed from the cumula-
tive difference plot. First, we show that the estimation of CP from the cumu-
lative difference-plot is equivalent to the estimation in Definition 18. As men-
tioned in Section 2.4.3, the CP estimated from the cumulative difference-plot is
0.5+

∫ 1
0 diff(x)dx where diff is the difference function introduced in Equation (2.2).

Specifically, the difference function was defined as diff(x) = GYA
(x)−GYB

(x).

Lemma 4 Let A and B be two continuous random variables and An and Bn their
n observations respectively. Then,

∫ 1

0
diff(x)dx =

2n∑
j=1

GYA
( j

2n )−GYB
( j

2n )
2n
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Proof. Considering that the density functions of YA and YB are constant in each
interval [ j2n ,

j+1
2n ) for j = 0, ..., (2n− 1), we get that∫ j+1

2n
j

2n

diff(x)dx =
diff( j

2n ) + diff( j+1
2n )

4n =

GYA
( j

2n )−GYB
( j

2n ) +GYA
( j+1

2n )−GYB
( j+1

2n )
4n

Taking into account that GYA
(0) = GYB

(0) = 0 and GYA
(1) = GYB

(1) = 1,∫ 1
0 diff(x)dx =

∑2n−1
j=0

∫ j+1
2n

j
2n

diff(x)dx =

GYA
( 0

2n )−GYB
( 0

2n ) +GYA
( 2n

2n )−GYB
( 2n

2n )
4n +

∑2n−1
j=1

2 ·GYA
( j

2n )− 2 ·GYB
( j

2n )
4n =

∑2n−1
j=1

GYA
( j

2n )−GYB
( j

2n )
2n

Finally, since GYA
(1) = GYB

(1) = 1, we have that∑2n−1
j=1

GYA
( j

2n )−GYB
( j

2n )
2n =

∑2n
j=1

GYA
( j

2n )−GYB
( j

2n )
2n

Proposition 3 (CP estimated from the cumulative difference-plot)
s Let A and B be two random variables and An and Bn their n observations
respectively. Let diff be the difference function obtained from the samples An and
Bn as defined in Equation (2.2). Then,

C̃D(An, Bn) =
∫ 1

0
diff(x)dx+ 1

2

Proof. Given the observations An and Bn, we need to prove that∑
i,k=1...n

sign(bk − ai)
2n2 + 1

2 =
∫ 1

0 diff(x)dx+ 1
2

With Lemma 4, it is enough to prove that∑
i,k=1...n

sign(bk − ai)
2n2 =

∑2n
j=1

GYA
( j

2n )−GYB
( j

2n )
2n

Let C2n = {cj}2n
j=1 be the list of all the sorted observations of An and Bn where

c1 is the smallest observation and c2n the largest. Then, we have that
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GYA
( j2n ) =

[An < cj ] + [An = cj ][k ≤ j|ck = cj ]
[C2n = cj ]

n
and

GYB
( j2n ) =

[Bn < cj ] + [Bn = cj ][k ≤ j|ck = cj ]
[C2n = cj ]

n

where [An < cj ] counts the number of items in An lower than cj , and [k ≤ j|ck =
cj ] counts the number of items in C2n equal to cj but with a lower or equal position
in C2n. Therefore, we have that

2n∑
j=1

GYA
( j

2n )−GYB
( j

2n )
2n =

2n∑
j=1

[An < cj ] + [An = cj ][k ≤ j|ck = cj ]
[C2n = cj ]

− [Bn < cj ]−
[Bn = cj ][k ≤ j|ck = cj ]

[C2n = cj ]
2n2

2n∑
j=1

[An < cj ]− [Bn < cj ] + ([An = cj ]− [Bn = cj ])[k ≤ j|ck = cj ]
[C2n = cj ]

2n2 (7.4)

Now we group the terms in Equation (7.4) into dmax groups such that each group
contains all the terms with the same cj , and each group d contains [C2n = cd]
terms, with cj = cd.

2n∑
j=1

[An < cj ]− [Bn < cj ]
2n2 +

dmax∑
d=1

∑
cj

([An = cj ]− [Bn = cj ])[k ≤ j|ck = cj ]
[C2n = cj ]

2n2 =

2n∑
j=1

[An < cj ]− [Bn < cj ]
2n2 +

dmax∑
d=1

([An = cd]− [Bn = cd])(([C2n = cd] + 1) · [C2n = cd]/2)
[C2n = cd]

2n2 =

2n∑
j=1

[An < cj ]− [Bn < cj ]
2n2 +

dmax∑
d=1

([An = cd]− [Bn = cd])([C2n = cd] + 1)/2
2n2 =
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2n∑
j=1

[An < cj ]− [Bn < cj ]
2n2 +

dmax∑
d=1

([An = cd]− [Bn = cd])([C2n = cd])/2 + ([An = cd]− [Bn = cd])/2
2n2 =

2n∑
j=1

[An < cj ]− [Bn < cj ]
2n2 +

2n∑
j=1

([An = cj ]− [Bn = cj ])/2
2n2 +

dmax∑
d=1

([An = cd]− [Bn = cd])/2
2n2︸ ︷︷ ︸

=0

=

2n∑
j=1

[An < cj ]− [Bn < cj ]
2n2︸ ︷︷ ︸

first summand

+
2n∑
j=1

([An = cj ]− [Bn = cj ])/2
2n2︸ ︷︷ ︸

second summand

Focusing on the first summand, we have that

2n∑
j=1

[An < cj ]− [Bn < cj ]
2n2 =

∑2n
j=1[An < cj ]−

∑2n
j=1[Bn < cj ]

2n2 =∑2n
j=1

∑n
i=1[{ai} < cj ]−

∑2n
j=1

∑n
i=1[{bi} < cj ]

2n2 =∑n
k=1

∑n
i=1[{ai} < ak] +

∑n
k=1

∑n
i=1[{ai} < bk]

2n2 −∑n
k=1

∑n
i=1[{bi} < ak] +

∑n
k=1

∑n
i=1[{bi} < bk]

2n2 =∑n
k=1

∑n
i=1[{ai} < ak] + [{ai} < bk]− [{bi} < ak]− [{bi} < bk]

2n2 =∑n
k=1

∑n
i=1[{ai} < bk]− [{bi} < ak] + [{ai} < ak]− [{bi} < bk]

2n2 =∑n
k=1

∑n
i=1 sign(bk − ai) + [{ai} < ak]− [{bi} < bk]

2n2 =
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k=1

∑n
i=1 sign(bk − ai)

2n2 +
∑n
k=1[An < ak]− [Bn < bk]

2n2

From the second summand, we obtain

2n∑
j=1

([An = cj ]− [Bn = cj ])/2
2n2 =

n∑
k=1

([An = ak]− [Bn = ak] + [An = bk]− [Bn = bk])/2
2n2

Combining these summands,

2n∑
j=1

[An < cj ]− [Bn < cj ]
2n2 +

2n∑
j=1

([An = cj ]− [Bn = cj ])/2
2n2 =

∑n

k=1

∑n

i=1 sign(bk − ai)
2n2 +∑n

k=1[An < ak]− [Bn < bk]
2n2 +

∑n

k=1([An = ak]− [Bn = ak] + [An = bk]− [Bn = bk])/2
2n2 =

∑n

k=1

∑n

i=1 sign(bk − ai)
2n2 +∑n

k=1[An ≤ ak]− [Bn ≤ bk]
2n2 +

∑n

k=1(−[An = ak]− [Bn = ak] + [An = bk] + [Bn = bk])/2
2n2 =

∑n

k=1

∑n

i=1 sign(bk − ai)
2n2 +

∑n

k=1[An ≤ ak]− [Bn ≤ bk]
2n2 +

∑n

k=1(−[C2n = ak] + [C2n = bk])
4n2 =

∑n

k=1

∑n

i=1 sign(bk − ai)
2n2 +

n(n+ 1)/2 +
∑dmax

d=1
[An=cd]2−[An=cd]

2
2n2 −

n(n+ 1)/2 +
∑dmax

d=1
[Bn=cd]2−[Bn=cd]

2
2n2 +

∑n

k=1(−[C2n = ak] + [C2n = bk])
4n2 =

∑n

k=1

∑n

i=1 sign(bk − ai)
2n2 +

∑dmax

d=1
[An=cd]2−[An=cd]

2 −
∑dmax

d=1
[Bn=cd]2−[Bn=cd]

2
2n2 +∑n

k=1(−[C2n = ak] + [C2n = bk])
4n2 =

considering that
∑dmax

d=1
[Bn=cd]−[An=cd]

2 = 0, we simplify the previous equation to
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∑n

k=1

∑n

i=1 sign(bk − ai)
2n2 +

∑dmax

d=1
[An=cd]2−[Bn=cd]2

2
2n2 +

∑n

k=1(−[C2n = ak] + [C2n = bk])
4n2 =

∑n

k=1

∑n

i=1 sign(bk − ai)
2n2 +

∑dmax

d=1 [An = cd]2 − [Bn = cd]2

4n2 +
∑n

k=1(−[C2n = ak] + [C2n = bk])
4n2 =∑n

k=1

∑n

i=1 sign(bk − ai)
2n2 +

∑dmax

d=1 [An = cd]2 − [Bn = cd]2

4n2 +∑dmax

d=1 (−[C2n = cd][An = cd] + [C2n = cd][Bn = cd])
4n2 =∑n

k=1

∑n

i=1 sign(bk − ai)
2n2 +

∑dmax

d=1 [An = cd]2 − [Bn = cd]2

4n2 +∑dmax

d=1 [C2n = cd]([Bn = cd]− [An = cd])
4n2︸ ︷︷ ︸

third summand

=

We expand the third summand,

∑dmax

d=1 [C2n = cd]([Bn = cd]− [An = cd])
4n2 =

∑dmax

d=1 ([Bn = cd] + [An = cd])([Bn = cd]− [An = cd])
4n2 =

∑dmax

d=1 ([Bn = cd]2 − [An = cd]2)
4n2

Finally,

∑n
k=1

∑n
i=1 sign(bk − ai)

2n2 +
∑dmax

d=1 [An = cd]2 − [Bn = cd]2
4n2 +∑dmax

d=1 ([Bn = cd]2 − [An = cd]2)
4n2 =

∑n
k=1

∑n
i=1 sign(bk − ai)

2n2

Proposition 4 Let A and B be two random variables and An and Bn their n
observations respectively. The CD estimated from the cumulative difference-plot is
C̃D.
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Proof. In Section 2.4.3, we defined the CD estimated from the cumulative difference-
plot as

CD =

∫ 1
0 I[diff(x) > 0]− I[diff(x) < 0]dx

2 + 1
2∫ 1

0 I[diff(x) ̸= 0]dx
,

where I is the indicator function. This proposition claims that

∫ 1
0 I[diff(x) > 0]− I[diff(x) < 0]dx

2 + 1
2∫ 1

0 I[diff(x) ̸= 0]dx
=

∑2n
j=1

ψ(cj)
2n + 1
2 · k−1

c .

To prove it, we show that

i)
∫ 1

0 I[diff(x) > 0]− I[diff(x) < 0]dx =
∑2n
j=1

ψ(cj)
2n

and
ii)

∫ 1
0 I[diff(x) ̸= 0]dx = kc.

Let us focus our attention in i). We split the integral into 2n parts:

∫ 1

0
I[diff(x) > 0]− I[diff(x) < 0]dx =

2n∑
j=1

∫ j
2n

j−1
2n

I[diff(x) > 0]− I[diff(x) < 0]dx (7.5)

Let C2n = {cj}2n
j=1 be the list of all the sorted observations of An and Bn where

c1 is the smallest observation and c2n the largest and let {cd}dmax

d=1 be the sorted
list of unique values in C2n. We group the terms in the sum of Equation (7.5) into
dmax groups such that for every j in a group, cj = cd .

dmax∑
d=1

∑
j

∫ j
2n

j−1
2n

I[diff(x) > 0]− I[diff(x) < 0]dx

Now we join the integrals for every j in each group, such that the j of the integral
goes from jd↓ − 1 to jd↑ (if the sample cd is unique in C2n, then jd↓ = jd↑ = j).
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dmax∑
d=1

∫ jd↑
2n

jd↓−1
2n

I[diff(x) > 0]− I[diff(x) < 0]dx (7.6)

In the interval ( jd↓−1
2n ,

jd↑
2n ), diff evaluates to one of these four possibilities:

1. diff(x) = 0 for all x ∈ ( jd↓−1
2n ,

jd↑
2n )

2. diff(x) > 0 for all x ∈ ( jd↓−1
2n ,

jd↑
2n )

3. diff(x) < 0 for all x ∈ ( jd↓−1
2n ,

jd↑
2n )

4. diff(x) = 0 in one point in the interval ( jd↓−1
2n ,

jd↑
2n ) and diff(x) > 0 or diff(x) <

0 for every other x in the interval. However, we can safely ignore this point
as the value of the integral is invariant to the value of the function in sets of
zero measure.

By looking at the empirical distributions ĜA(x) and ĜB(x) estimated from An

and Bn respectively, we can guess which of these possibilities corresponds to each
interval. 

1) if ĜA(cd−1) = ĜB(cd−1)
and ĜA(cd) = ĜB(cd)

2) if ĜA(cd−1) ≥ ĜB(cd−1)
and ĜA(cd) > ĜB(cd)

2) if ĜA(cd−1) > ĜB(cd−1)
and ĜA(cd) ≥ ĜB(cd)

3) if ĜB(cd−1) ≥ ĜA(cd−1)
and ĜB(cd) > ĜA(cd)

3) if ĜB(cd−1) > ĜA(cd−1)
and ĜB(cd) ≥ ĜA(cd)

4) if ĜB(cd−1) > ĜA(cd−1)
and ĜA(cd) > ĜB(cd)

4) if ĜA(cd−1) > ĜB(cd−1)
and ĜB(cd) > ĜA(cd)

The value of the integral in Equation (7.6) corresponding to these possibilities are
the following:



7.2 Chapter 2 203

1. 0
2. [C2n = cd] · 1

2n

3. −[C2n = cd] · 1
2n

4. [C2n = cd] · (2 · ld − 1) · 1
2n

where [C2n = cd] counts the number of items in C2n equal to cd and ld is the
proportion in which diff(x) > 0 in the interval ( jd↓−1

2n ,
jd↑
2n ). For example, ld = 0.75

would represent that diff(x) > 0 in 75% of the total length of the interval, and
diff(x) < 0 in the other 25%.
With this, we can rewrite Equation (7.6) as

dmax∑
d=1

[C2n = cd] · ψ(cd) ·
1

2n =
2n∑
j=1

ψ(cj)
2n ,

where ψ is the function introduced in Definition 19.
Now, we only need to prove ii). Specifically, we need to show that

∫ 1

0
I[diff(x) ̸= 0]dx = kc.

We have that

∫ 1

0
I[diff(x) ̸= 0]dx =

dmax∑
d=1

∫ jd↑
2n

jd↓−1
2n

I[diff(x) ̸= 0]dx,

and

kc =
∑2n
j=1 I[ψ(cj) ̸= 0]

2n =
dmax∑
d=1

[C2n = cd]
I[ψ(cd) ̸= 0]

2n .

Finally, it is easy to see that

∫ jd↑
2n

jd↓−1
2n

I[diff(x) ̸= 0]dx = [C2n = cd]
I[ψ(cd) ̸= 0]

2n ,

because diff(x) = 0 in the interval ( jd↓−1
2n ,

jd↑
2n ) if and only if ψ(cd) = 0.
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7.2.3.2 Convergence of the estimators

Proposition 5 Let A and B be two continuous random variables and {ai}i∈N
and {bi}i∈N be two infinite sequences of their observations respectively. Let An
and Bn be the two finite subsequences that contain the first n elements of {ai}i∈N
and {bi}i∈N respectively. Then,

CP(A,B) = lim
n→∞

C̃P(An, Bn)

Proof. Let {Ps}s∈N be a sequence of estimators with every estimator is determined
randomly with the following procedure:
1) generate two random permutations σs and τs of size n.
2) define each estimation as

Ps(An, Bn) =
n∑
i=1

sign(bσs(i) − aτs(i))
2n + 1

2 .

It is easy to see that each Ps is an estimator of P(A < B) (since A, B
are continuous, we know that P(A = B) = 0). Now observe that the sequence{∑s

t=1 Pt(An, Bn)
s

}
n∈N

converges to C̃P(An, Bn) =
∑
i,k=1...n

sign(bk − ai)
2n2 + 1

2 ,

which means that C̃P(An, Bn) is also an estimator of P(A < B).

Unfortunately, the estimator C̃D will not always converge: CD fails to satisfy Prop-
erty 7, and this means that a a few points can still have a big impact in the
estimation of CD. Specifically, given the continuous random variables A and B
defined in N , C̃D will converge iff

∫
N
I[GA(x) = GB(x)] · (gA + gB)dx = 0.

Luckily, this lack of convergence is not a problem when the estimation of CD is
carried out visually in the cumulative difference-plot. Since the visual representa-
tion of the cumulative difference-plot involves rendering the plot with pixels, there
exists an small δ > 0 such that when |diff(x)|< δ, the difference is displayed as 0.
In practice, we do not even need to account for the case that diff(x) = 0. The
cumulative difference-plot models the uncertainty with a confidence band, and
when diff(x) = 0 is inside the confidence band, then so are diff(x) > 0 and
diff(x) < 0. If we assume that the difference is positive, negative or zero every
time that diff(x) = 0 is inside the confidence band, we obtain the estimations
C̃D

+
, C̃D

−
and C̃D

0
respectively. Now since C̃D

+
> C̃D

=
> C̃D

−
, the estimation of

CD with the highest part of the confidence band is an upper bound of CD. The
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same is true for the estimation with the lowest part of the confidence band: it is
a lower bound of CD.
Although C̃D does not converge to CD, for any ϵ > 0 we can find a δ small enough
such that the difference between C̃D

δ
and CD is smaller than ϵ. We formalize this

claim in Conjecture 1, and we leave the proof for future work.

Definition 20 (δ-estimation of CD)
Let A and B be two continuous random variables and An and Bn their n obser-

vations respectively. Let {cj}2n
j=1 the sorted list of all the observations of An and

Bn where c1 is the smallest observation and c2n the largest. Let {cd}dmax

d=1 be the
sorted list of unique values in {cj}2n

j=1.

We define the δ-estimation of CD, denoted as C̃D
δ
, as the same estimation as C̃D,

but assuming that the empirical distributions computed from An and Bn are equal
when |ĜA(x)− ĜB(x)|< δ.

The previous definition can also be based in the δ-difference, defined as diffδ(x) =
diff(x) when diff(x) ≥ δ, and diffδ(x) = 0 otherwise.

Conjecture 1 Let A and B be two continuous random variables and {ai}i∈N and
{bi}i∈N be two infinite sequences of their observations respectively. Let An and
Bn be the two finite subsequences that contain the first n elements of {ai}i∈N and
{bi}i∈N respectively. Then, for all ϵ > 0, there exists a δ > 0 such that∣∣∣CD(A,B)− lim

n→∞
C̃D

δ
(An, Bn)

∣∣∣ < ϵ

7.2.3.3 Experimental verification

In the following, we experimentally verify that the cumulative difference-plot can
be used to deduce CD and CP . To do so, we define six pairs of example random
variables and measure the CP and CD with three different methods: the definition
of CD and CP (Equation (2.1) and Definition 12), the estimators in Definitions 18
and 19 and from the cumulative difference-plot. The cumulative difference-plot has
a confidence band in addition to the estimation, and this confidence band allows
the lower and upper bounds of CD and CP to be computed.
The probability density functions of the six examples are shown in Figures 7.5
through 7.10. The probability density of these random variables is a mix of normal
distributions, the beta distribution, and the log-normal distribution.
The difference plot and the estimations were carried out with 5000 samples from
each random variable. The CP and CD values computed are shown in Figures 7.11
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and 7.12 respectively. In every case, the estimations with the three methods match,
except for CD in Example 4 (Figure 7.8). This is a deceptive example because, in
most of the probability mass of A and B, the cumulative distribution functions
are equal. Consequently, in this example, the estimator of CD introduced in Defi-
nition 19 is unstable: it is very likely that the estimated empirical distributions are
different even though the cumulative distribution functions are identical. Overcom-
ing this limitation involves choosing a small δ > 0, such that when the difference
between the empirical distributions is smaller than δ, they are considered equal.
We conclude that, in most cases, the three estimation methods (from densities,
using the estimators and with the cumulative difference-plot) yield a similar result,
which validates the statements in the previous section.
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Fig. 7.5: Probability density functions of Example 1
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Fig. 7.6: Probability density functions of Example 2
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Fig. 7.7: Probability density functions of Example 3
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Fig. 7.8: Probability density functions of Example 4

7.3 Chapter 4

7.3.1 Neuroevolution of Augmenting Topologies

In this chapter, the neural networks were trained with a reinforcement learning,
neuroevolution algorithm. More specifically, neuroevolution of augmenting topolo-
gies (NEAT) has been used1. Introduced by Stanley and Miikkulainen [2002],

1 The source code, along with all the experimentation is available at the GitHub
repository https://github.com/EtorArza/TransfHH. The neuroevolution algorithm
was taken from the accneat package, with a few minor changes made to it. Ac-
cneat is a fork of the implementation by Stanley and Miikkulainen [2002] with
some improvements, such as delete mutations and speed improvements, available at

https://github.com/EtorArza/TransfHH
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Fig. 7.9: Probability density functions of Example 5
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Fig. 7.10: Probability density functions of Example 6

NEAT is a genetic algorithm for neural networks that can evolve not only the
parameters (weights) of a neural network but also its structure.
NEAT is one of the most influential approaches in the field of neuroevolution to
date. In fact, before the introduction of NEAT, most of the neuroevolution tech-
niques without a fixed topology suffered from the competing conventions prob-
lem [Schaffer et al., 1992]. When two networks have similar functionality but are
entirely different, and thus, incompatible structures, we say that these two net-
works contain competing conventions. NEAT is a revolutionary neuroevolution
technique because it defined a new way to efficiently handle the competing con-
ventions problem through a novel speciation mechanism. Specifically, each time

https://github.com/sean-dougherty/accneat. The code provided alongside this chap-
ter also uses parts of other software projects, see the LICENCE file in the repository
for a comprehensive list.

https://github.com/sean-dougherty/accneat
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Fig. 7.11: The CP values obtained in the six examples with the three methods.
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Fig. 7.12: The CD values obtained in the six examples with the three methods.

NEAT introduces a new structure due to a mutation, this new structure is as-
signed a unique innovation number. Then, these innovation numbers are used to
1) select individuals that are sufficiently similar to each other for crossover and 2)
only perform crossover in the parts of the structure that have the same innovation
numbers.
While early studies on the subject suggest that fixed topology networks perform
worse than their counterparts [Stanley and Miikkulainen, 2004], there are new
promising alternatives that have been found to outperform NEAT even with a
fixed topology [Gomez et al., 2008, Pagliuca et al., 2018]. New trends in neuroevo-
lution include integrating the Covariance Matrix Adaptation metaheuristic to the
framework of neuroevolution [Moriguchi and Honiden, 2012], designing the archi-
tecture of deep neural networks with evolutionary algorithms [Sun et al., 2019,
Fernandes Junior and Yen, 2019] and HyperNeat [Stanley et al., 2009], in which
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a two dimension real function is learned that represents the weights of a neural
network, achieving a more compact representation that takes into account the po-
sition of the neural network links. In this chapter, the NEAT algorithm with node
and edge removal is used for two reasons: 1) NEAT is a simple yet well-tested
neuroevolution algorithm, and 2) the component removal allows the network to
adapt its size to the time consumed in the evaluation of the neural network.
To achieve this, one only needs to set a maximum runtime as the stopping criterion
for the hyper-heuristic solver during the training step and make sure the evalua-
tion time of the solutions is negligible with respect to the evaluation time of the
network. The preference towards smaller networks is achieved implicitly: smaller
networks are processed faster, and so the hyper-heuristic performs more function
evaluations in the same amount of time, possibly obtaining better performance.

7.3.2 Detailed explanation of the modify process

This appendix includes a complete explanation of how the function modify (line
14 in Algorithm 2 in the main manuscript) modifies a solution σi. Algorithm 8
shows the pseudo-code of how this modification is applied in detail. The modifica-
tion towards a reference (lines 2-3) tries to modify the permutation into another
permutation that is one unit of distance nearer the reference [Schiavinotto and
Stützle, 2007]. The distance is defined for each operator as the minimum number
of applications of that operator to transform one permutation into the other per-
mutation [Schiavinotto and Stützle, 2007]. A modification away from the reference
is defined similarly (line 5), but choosing the parameters of the operator such that
the distance between the reference permutation and the modified permutation is
increased by one unit. Finally, after the modification is applied (line 7), the ob-
jective value of the solution is measured, and a worse candidate is only accepted
with probability 1− prob_accept_worse (lines 8-10).
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Algorithm 8: modify(σi, σref , direction, operator, prob_accept_worse)
Input:
σi: The permutation to be modified.
σref : The reference permutation.
direction: Direction of the modification.
operator : Operator of the modification.
prob_accept_worse: Probability of accepting a worse solution.

1 if direction = 1 then
2 create a minimum length path from σi to σref , defined as the minimum

sequence of applications of operator to solution σi that are required to
obtain solution σref (As explained by Schiavinotto and Stützle [2007]).

3 operator_params ← parameters of the first operator in the minimum length
path

4 else if direction = −1 then
5 operator_params ← parameters of operator that, if applied to σi, would

increase the distance between σi and σref by one. The distance is defined
as the minimum required applications of operator to transform σi into σref .

6 end
7 σcand ← create candidate solution by applying operator once with parameters

operator_params to solution σi

8 if objective value σi is better than objective value σcand then
9 with probability (1 - prob_accept_worse)

10 σcand ← σi

11 end
12 return σcand

7.3.3 Transferability

In this appendix, we formally define the transferability and give additional details
on how to generate the embedding based on the performance of the hyper-heuristic.
For additional details, we refer the interested reader to the GitHub repository with
the source code.

7.3.4 Transferability matrix

We begin by introducing some notation to formally define this concept.

Notation 1 Controller trained in a problem
Let P1 be an optimization problem and φ a controller. We denote that φ was
trained in problem P1 as φ1.

https://github.com/EtorArza/TransfHH
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Definition 21 Performance of a controller
Let P1,P2 be two optimization problems and φ1 a controller trained in optimiza-
tion problem P1. We define the performance of φ1 on P2, as the result of opti-
mizing P2 with the proposed hyper-heuristic algorithm, using φ1 as the controller
and we denote it as φ1(P2).

Definition 22 Transferability
Let P1, ...,Pk be k maximization problems1 and φi, φj two controllers trained in
the problems Pi,Pj respectively. We define the transferability from problem Pi to
problem Pj, T (Pi � Pj), as the normalized rank in performance that the hyper-
heuristic guided by controller φ1 has in problem P2. Formally,

T (Pi � Pj) = ri,j
k − 1

where ri,j is the ranking (best to worst) of φi(Pj) in {φt(Pj)}t=1,...,k. In other
words, T (Pi � Pj) is assigned a rank proportional to how well controller φi does
on problem Pj with respect to the performance of the rest of the controllers in the
same problem. The transferability T (Pi � Pj) is 0 if φi is the controller with the
best performance in Pj and 1 if it is the worst performing.

Notation 2 Transferability Matrix
Let P1, ...,Pk be k maximization problems. We denote the transferability matrix
as T where each element Ti,j is T (Pi � Pj).

The transferability matrix can be further improved by reordering the problems in
problem set. Specifically, we reorder the optimization problems such that the loss

L =
k∑
j=1

√√√√k−1∑
i=1

(Ti,j − Ti+1,j)2 +
k∑
i=1

√√√√k−1∑
j=1

(Ti,j − Ti+1,j)2

is minimized. Minimizing this loss implies that adjacent columns and rows in the
transferability matrix are as similar as possible to each other.

7.3.5 Repeated measurements and noise

It is important to measure the transferability several times and average the results.
The reason is that it is very likely that stochastic optimization algorithms will

1 We assume that all problems considered are maximization problems. Specifically, min-
imization problems have been transformed into maximization problems by redefining
the problem as a maximization of the objective function when multiplied by −1.
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get different scores each time they are tested. Without this repetition step, it
is possible to observe transferability, when in reality, is just due to the random
nature of the optimization algorithms. This is better understood with the following
example.
Let us assume that the transferability of a random search algorithm is measured
in problem set i). Since the random search algorithm has no learning phase, the
score will be random each time. When we measure the transferability only once,
we get what is shown in Figure 7.13a. Notice that T3,2 = 0. From that, it would be
erroneous to conclude that the problem P3 is good at training the random search
algorithm for problem P2. In fact, T3,2 = 0 has the same probability as Ti,2 = 0,
for all i = 1, ..., 12.
On the other hand, if we average 10 repeated measures of the transferability,
we obtain the results shown in Figure 7.13b. In this figure, we see that most of
the values are near 0.5. The interpretation is that there was no transferability: it
does not matter which instance is used during the training step. In short, several
repeated measurements overcome the limitation of observing transferability in
stochastic algorithms when there should be none. For this reason, in the rest of
the chapter, we averaged 10 measurements of the transferability.

7.3.5.1 Related work

Hong et al. [Hong et al., 2018] proposed measuring the transferability as the aver-
age objective value of the hyper-heuristic when training and testing two problem
classes. Their experimental approach is different, as they study the transferability
among problem classes instead of transferability among problems. They use prob-
lem class to refer to an infinite set of optimization problems parameterized by one
or more real values (for example, f(x) = ax2, with the parameter a ∈ [1, 2]).
Our experimental setup on transferability improves the methodology of Hong et
al. [Hong et al., 2018] in four key aspects. Firstly, by defining the transferability
with ranks instead of objective values, we can compare the values across different
problems. When objective values are used directly, the differences are not compa-
rable1.
Secondly, by repeating several measurements of the transferability and computing
the average ranks, we can distinguish between noise and the actual difference in
performance (this is not possible with average objective values). Additional details
on repeated measurements are given in Appendix 7.3.5.

1 For example, let us assume we have the optimization problems f1(x) = x2 and f2(x) =
1010 · x2 both defined in the interval [0, 1]. Given two solutions, if the difference in
objective value is 0.5, in problem f1 it would be considered a bigger difference than
in problem f2.
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Fig. 7.13: The transferability of a random search algorithm with one measurement
(a) and with ten averaged measurements (b).

Thirdly, we experimentally show that the analysis carried out with our approach
is correlated with the properties of the optimization problems, which suggests
that the proposed technique is useful to find similarities and differences in the
properties of optimization problems. Finally, we show that our approach works
in both the combinatorial and continuous domains, while the approach of Hong
et al. [2018] was only shown to work in the continuous domain.
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7.3.6 Response

In the previous section, we proposed an embedding for a set of optimization prob-
lems via the performance of the hyper-heuristic. In this section, we propose another
embedding by focusing instead on the behavior of the hyper-heuristic.

7.3.6.1 Defining the response

The behavior of the hyper-heuristic, how it performs the optimization, is deter-
mined by every response Y (the output) of the neural network, generated during
the optimization: the decoder modifies each solution according to its corresponding
response Y . Therefore, it makes sense to summarize the behavior of the hyper-
heuristic in an optimization problem by averaging every response Y that the neural
network produces when solving the problem.

Definition 23 Response
Let P1,P2 be two problems. We define the response from P1 to P2, R(P1 � P2),
as the average of all response Y generated1when solving problem P2, with a neural
network obtained by training the hyper-heuristic in problem P1. The response can
be interpreted as a summary of the behavior of the hyper-heuristic when solving
problem P2 with a controller trained in problem P1.

The response is a random variable in the sense that two independent computations
of the response will not produce the same result. the response depends on two
factors that cannot be fixed or predicted, the first one a) is related to the training
stage, and the second b), is related to the testing stage. Firstly a), two executions
of the neuroevolution algorithm on the same problem will (almost) never produce
two identical neural networks. Secondly b), due to the probabilistic nature of
the hyper-heuristic, two executions on the same problem with the same neural
network are likely to diverge into a different final solution. This is in part due to
the random initialization of the population. Luckily, variability regarding b) is easy
to overcome by averaging the response of many executions of the hyper-heuristic
in the same test problem.

1 The response-hyper-heuristic behavior mapping is not always injective, and depends
on the implementation of the decoder. The decoder for permutation problems proposed
in this chapter is not injective. In other words: two controllers with different responses
may produce the same behavior in the decoder. A possible solution is to transform
the output so that injectivity is preserved. These transformations are simple functions,
such as the indicator function χ(0.25,1]. For more details on the exact functions used
to reduce the duplicity, we refer the interested reader to the source code provided.

https://github.com/EtorArza/TransfHH
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The variability introduced during training a) is determined by the random seed
used to train the neural network. Therefore, each observation of the response can
be notated as R(i, j, s) where i denotes the training problem, j denotes the test
problem, and s denotes the random seed. An observation of the response, hence,
averages several measurements of the response in the same test problem.
To find out what determines the variability in response, we measured the average
distance between two responses

||R(i1, j1, s1)−R(i2, j2, s2)||1

in these four cases:

1. i1 = i2, j1 ̸= j2 and s1 = s2

2. i1 = i2, j1 ̸= j2 and s1 ̸= s2

3. i1 ̸= i2, j1 = j2 and s1 ̸= s2

4. i1 ̸= i2, j1 ̸= j2 and s1 ̸= s2

for the four problem sets i) - iv) as defined in Section IV-A.
As seen in Table 7.4 case 1), the distance is really small when the same training
problem & training seed is used (even if tested in different problems). In addition,
the distance is much larger in the rest of the cases. The interpretation is that,
given the training problem i and the random seed s, the response of the hyper-
heuristic is determined (disregarding some small variability associated with the
test instance j).
Consequently, it makes sense to model the response as a function R(i, s) =
k−1 ∑k

j=1 R(i, j, s). For each problem i, we have 10 samples of the behavior of
the hyper-heuristic R(i, s) in that problem (one for each seed s). Notice that the
response modeled like this depends on the training problem. Now we want to see
if there is any correlation between the behavior of the hyper-heuristic and the
optimization problem used to train it, regardless of the training seed.
A naive approach to achieve this would be to average all the responses in one
problem R(i) = 10−1 ∑10

s=1 R(i, s) and embed every R(i) into R2 with principal
component analysis [Wold et al., 1987]. However, this can hide the differences
in behavior of the hyper-heuristics. A possible explanation is that R(i1, s1) and
R(i1, s2) are almost as different from each other as R(i2, s1) and R(i1, s2) (see
Table 7.4), with i1 ̸= i2 and s1 ̸= s2.
Linear Discriminant Analysis [Singh, 2020-08-18, 2020, Rao, 1948] (LDA) over-
comes this limitation. First, we fit the LDA with every R(i, s) and set i as the
class. The LDA will try to maximize the distance between every two R(i, s) with
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Average L1 distance between two responses

Case 1) 2) 3) 4)
Train problem same same different different
Test problem different different same different
Training seed same different
Problem set
i) 0.050 0.436 0.516 0.520
ii) 0.004 0.371 0.367 0.370
iii) 0.174 2.718 2.832 2.812
iv) 0.181 3.172 3.122 3.182

Table 7.4: Average distance between two responses trained in the same problem
(with or without the same seed) and tested in the same problem.

different i and minimize the distance between every two R(i, s) with the same i.
Once we have fitted the LDA, we project every R(i) in the embedded space.
Notice that the LDA takes into account which training problem was used to pro-
duce each R(i, s), but it gets no information about the properties of the training
problem i: every problem is equal for the LDA. This is an important point because
it means that a projection obtained from the LDA does not require this informa-
tion, and thus, it can be used in the clustering of unlabeled optimization problems
or even the classification of previously unseen optimization problems.

7.3.7 Choosing the hyperparameters

In this Appendix, we justify each of the hyperparameters of the hyper-heuristic
(shown in the box below).
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Hyper-Heuristic parameters

• Population size: 8
• Stopping criterion: 400 evaluations

Training parameters (NEAT)

• Population size: 103 (default value [Dougherty, 2014])
• Stopping criteria: 4 days or 2000 generations (stop when either criterion is

met)

Testing parameters

• Executions averaged: 104

Hyper-Heuristic parameters: Population size: 8
We conducted an experiment to choose a suitable population size. We trained
and tested the hyper-heuristic on the continuous problem P1

1, as well as on the
Quadratic Assignment Problem instance Tai60a from the QAPlib [Burkard et al.,
1997], with the hyper-heuristic’s population size set to 4, 8, 16, and 32. We repeated
the experiment 10 times and show the results in Figure 7.14 below.
In the continuous problem, the best performing population size was 32, which
is also the worst performing population size in the combinatorial problem. This
suggests that there is no one size fits all for the population size of the hyper-
heuristic, each problem might have a different optimal population size. We believe
that the purpose of this chapter is not to maximize the objective value in each
problem, instead, we want to experiment on the hyper-heuristic as a framework
that is applicable in different domains. Following this idea, we think it is desirable
to use the same parameters for all problems. A population size of 16 has the second
best performance in both problems, however, it has very bad performing outliers
in the combinatorial problem. Therefore, we choose a population size of 8, which
is the best performing population size for the combinatorial problem.

1 The objective function of problem P1 is f(x1, ..., x20) =
∑

x2
i as defined in Section IV-

A in the main manuscript
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(b) Permutation problem Tai60a

Fig. 7.14: Objective value of the hyper-heuristic when trained and tested in the
same problem. The experiment was repeated 10 times with different seeds. Higher
is better.

Hyper-Heuristic parameters: Stopping criterion: 400
A stopping criterion of 400 evaluations with a population size of 8 implies 50
generations, which we think is a reasonable amount. A higher number of evalua-
tions obviously has associated a better objective value (the performance can only
increase with additional evaluations), hence a parameter tuning makes no sense
with this parameter.
Note that a stopping criterion that is either too small or too large will create
problems in the problem analysis methodology. For example, if we use 8 as the
stopping criterion, the hyper-heuristic will only do one generation, which means
that the algorithm is basically random search (with a budget of 8 solutions). This
means that there is no learning to be done, and thus the problem analysis methods
will not work. Similarly, with an hypothetical stopping criterion of ∞ solutions,
even random search will find the optimal value, and the problem analysis will also
fail in this case, as no learning is necessary.
Based on the experimental results on the problem analysis methods, we can em-
pirically say that a stopping criterion of 400 works well.

Training parameters (NEAT): Population size: 103

This is the default value, which seems to work well. We think that using the default
value in this case is reasonable, as the goal of the chapter is not to maximize the
performance, but rather to introduce a hyper-heuristic framework.

Stopping criteria: 4 days or 2000 generations (stop when either criterion is met)
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This stopping criteria is associated to the maximum runtime of a job in our cluster.
We also use 2000 generations as a secondary stopping criterion to ensure that the
hyper-heuristic is not trained for more generations in problems with a more com-
putationally efficient objective function. As an example, P1 :

∑d
i=1 x

2
i evaluates

faster than P12 : −20 exp
(

1
5

√
1
d

∑d
i=1 x

2
i

)
− exp

(
1
d

∑d
i=1 cos(2πxi)

)
.

Testing parameters: Executions averaged: 104 :
The theoretical ideal parameter would be∞, which is (by definition) the expected
value. Many authors use as little as 20 samples when averaging the results, so if
anything, 104 would be overkill and is definitely enough. As a reference, Hong et
al. [Hong et al., 2018] use 50 samples in their analysis, which is likely enough as
well. We used 104 to be absolutely sure that there are no problems with too few
samples.
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