
Title: Computational Thinking in Pre-University Blended Learning Classrooms

Authors: Xabier Basogain

Escuela Superior de Ingeniería

The Basque Country University (EHU)

Bilbao, Spain

xabier.basogain@ehu.eus

Miguel Ángel. Olabe

Escuela Superior de Ingeniería

The Basque Country University (EHU)

Bilbao, Spain

miguelangel.olabe@ehu.eus

Juan Carlos Olabe

Electrical & Computer Engineering

Christian Brothers University, (CBU)

Memphis, TN, USA

jolabe@cbu.edu

Mauricio Javier Rico Lugo

Instituto Colombiano de Aprendizaje (INCAP)

Bogotá, Colombia

mauricio.rico@incap.edu.co

This is the accepted manuscript of the article that appeared in final form in Computers in Human Behavior 80 ; 412-419 (2018), which has been
published in final form at https://doi.org/10.1016/j.chb.2017.04.058. © 2017 Elsevier under CC BY-NC-ND license (http://creativecommons.org/
licenses/by-nc-nd/4.0/)

Computational Thinking in Pre-University Blended

Learning Classrooms

Abstract—This article describes the implementation of various

core elements of Computational Thinking in the classrooms of

schools of Latin America and USA in two specific courses: PC-01

and ECE130. These courses were designed for students of primary

and secondary education, as well as for students of high school as

part of a dual enrollment program with a local university. Both

courses introduce the core "concepts" and "processes" of

Computational Thinking aided by the Scratch and Alice visual

programming environments. The courses are designed to be

facilitated by the classroom teacher with the support of a learning

platform. This platform is supported by Moodle and it is configured

to provide innovative pedagogical strategies based on emerging

educational technologies. The first part of the article includes a

comprehensive reflection on the concepts integrated under the term

‘Computational Thinking.’ This is followed by a discussion on the

potential benefits of using a virtual learning environment in order to

incorporate Computational Thinking in the classroom. The article

includes a detailed description of syllabi and assessments (tests and

peer to peer projects) of both courses, and it concludes with a

comprehensive description of the impact of these courses on the

educational institutions, teachers and students, of the Dominican

Republic and USA, where the courses were implemented.

Keywords— Computational Thinking; Learning Technologies;

Scratch; Alice; Educational Technology.

1. Introduction

After a period of transition in which the fundamental ideas

promoted by Computational Thinking (CT) were studied and

analyzed by all constituencies of public and private education,

it appears that a substantial consensus is being forged which

can shape future decisions and policies in K-12 education

(Hubwieser, Armoni, Giannakos and Mittermeir, 2014). One

important consequence of this confluence of ideas is the

definition of a K-12 curricula with the integration of the core

ideas of CT, out of which the particular classroom paradigms

will be developed. In addition, it is universally agreed that

programming, in its various forms, is an absolutely necessary

mechanism for the implementation of fundamental concepts of

CT as well as the best practices of CT education.

Programming provides the three mechanisms that a language

requires for the creation of complex systems: set of primitives;

means of combination; and abstraction. Unlike natural

languages, which by design are semi-structured and provide

limited ability of multilevel abstraction, programming

languages have been designed to fulfil the core ideas of CT. A

mind equipped with the mechanisms of well-designed object

oriented programming languages is prepared to house the

principles of CT and is prepared to developed CT ideas.
The formal study of computational skills in primary and

secondary schools has been recognized by many institutions
and administrations. For example England, beginning during
the academic year 2014-15, formally incorporated the study of
computational thinking and computer programming as part of
the curriculum of primary and secondary education, as
described in the national curriculum of England: Study of
Computer Program (Department for Education England,
2013).

The governments of the developed world see CT as the
cornerstone of a technological society, and the governments of
the developing world see CT as their best chance to close the
gap of their education systems.

The Code.org organization (Code.org, 2012) promotes the
idea that all students should have the opportunity to learn
programming. This initiative has the support of important
public figures of Microsoft, Facebook and the world of
technology in general.

Programming environments such as Scratch, ScratchJr and
Alice among others, play an essential role in this process.
These programming environments allow the creation of
programs that could be described as games or stories, or
combination of interactive stories and games. Scratch,
ScratchJr, and other graphic programming environments were
designed specifically to address the developmental and
learning needs of children (ages 5-7), and youth adults (ages
8-15), (Flannery, Silverman, Kazakoff, Bers, Bontá &
Resnick, 2013; Resnick, Maloney, Monroy-Hernández, Rusk,
Eastmond, Brennan & Kafai, 2009); Sáez López, González &
Cano, 2016).

Alice (Alice, 2017) is a graphical programming language
and environment integrated within a three dimensional world.
It is an object oriented programming environment, where in
addition to programming with graphic interlocking blocks, the
programmer has immediate access to the java code that it is
been created behind the scenes. Because Alice hides from the

user the syntactical complexity of java, and because it is
integrated within a 3D environment, it provides young
students an ideal environment to learn the fundamental
programming concepts in the motivating context of creating
movies and video games (Zhang, Liu, Ordónez de Pablos &
She, 2014). These movies and games, in addition to providing
a perfect platform to students to express their interest and
creative ideas (Denner, Werner & Ortiz, 2012), offer a rich
object oriented world where human cognitive primitives
(objects with properties, behaviors and interfaces with other
objects) optimally develop the fundamentals of CT and object
oriented programming. This type of environment is proving to
be ideal for CT paradigm development and at the same time
allows students to develop their own creative ideas and
collaborate with other members of a team (Zhang, Ordónez de
Pablos & Zhu, 2012).

1.1.Computational Thinking

The history of Computational Thinking, as it is the case in

many fundamental developments in science, reflects the

convergence of multiple ideas, often from different areas of

study (cognitive sciences, linguistics, psychology, computer

science), that after being developed in isolation, found a

synergetic effect when applied to the area of education, and in

particular the processes involving generative languages for the

creation of novel methods as well as complex systems.

 Some of the pioneer thinkers in this field include Papert,

Wing and Wolfram. One of the earliest references to CT is

contained in (Papert, 1996) where Papert describes the value

of applying human cognitive primitives to object oriented

problems, by noticing the relationships between the

components of a complex system. Other similar references can

be found in (Vee, 2013; Wolfram, 2016) where there are direct

references to the fundamental ideas of dividing a complex task

into a set of simpler tasks.

We can find some specific descriptions regarding the core

elements of CT in the work that ISTE1 and CSTA2, in

collaboration with industry and K-12 education, have

developed in order to address the needs of the educators that

will eventually integrate this discipline in the classrooms.

Some of the characteristics (Sykora, 2014) include: 1)

Formulating problems in a way that enables us to use a

computer and other tools to help solve them, 2) Logically

organizing and analyzing data, 3) Representing data through

abstractions such as models and simulations, 4) Automating

solutions through algorithmic thinking (a series of ordered

steps), 5) Identifying, analyzing, and implementing possible

solutions with the goal of achieving the most efficient and

effective combination of steps and resources, 6) Generalizing

and transferring this problem solving process to a wide variety

of problems.

The field of CT is still in its infancy; even if the overall

goals and core principles are defined, two important tasks

should be the object of research in the near future. One goal is

1 The International Society for Technology in Education (ISTE)
2 The Computer Science Teachers Association (CSTA)

to discover the uncharted world of cognitive processes that the

human mind can sustain, provided the required tools.

Cognitive science has dramatically altered the model for

which the educational model of the past was designed. We

know now (Pinker, 1995; Pinker, 1999; Kahneman, 2003;

Kahneman, 2011) better than before what the limits of the

mind are. The task ahead is to discover the computational

resources, primitives, of the mind, in order to harvest their

power. The second task is to develop a set of experiences that

will allow students acquire these tools, engage in these

cognitive processes, and produce rich and innovative

results. The educational system, K-12 and beyond, is based on

curriculum with pervasive use of descriptive languages and

Type-A problems (Olabe, Basogain, Olabe, Maíz & Castaño,

2014). The new curriculum will be designed for the use of

generative languages (object oriented languages) and Type-B

problems. This task will require the collaborative effort of all

fields participating in CT.

One educational system where some of these practical

steps of integrating CT in the classroom is taking place is that

of England in the United Kingdom. In England the national

curriculum in CT addresses the objectives to educate their

students to be able to: “1) understand and apply the

fundamental principles and concepts of computer science,

including abstraction, logic, algorithms and data

representation; 2) analyze problems in computational terms,

and have repeated practical experience of writing computer

programs in order to solve such problems; 3) evaluate and

apply information technology, including new or unfamiliar

technologies, analytically to solve problems; and 4) be

responsible, competent, confident and creative users of

information and communication technology,” (Department for

Education England, 2013).

In the United States the prevalent path for pre-university

students to participate in CT activities and curriculum is the

Advanced Placement Computer Science courses. These

courses are offered in high schools, and upon graduation

students receive college credit for introductory computer

science courses. Some recent developments (Berkeley, 2017;

Harvard, 2017) are expanding the enrollment of CT courses to

university students of other fields. In coordination with these

projects, high schools are offering courses in CT, such as

ECE130, detailed in this paper, with the goal to provide dual-

enrollment and university credit to students intending to study

in fields such as the humanities, the arts, social sciences or

business.

1.2. Blended Learning

The Virtual Learning Environments (VLEs) offer benefits
to teachers and students. Teachers encourage collaboration
and communication in the classroom, and they can customize
and differentiate progress in the classroom. Students also
benefit from the VLEs by learning to work with their peers on
projects, and developing collaborative skills and problem
solving.

The VLEs also present some drawbacks including, among
others, the intrinsic difficulty of the use of technology, the
lack of technical and pedagogical support for the teachers, and
the requirement of a formal decision and economic investment
on the part of the educational institution. There are also some
misconceptions regarding VLEs when they are considered as
an alternative to traditional classes, or that they are exclusively
a modality of online education (Paddick, 2014).

VLEs have been deployed at all levels of education with
different stages of implementation. In higher education, the
implementation is extensive, while in secondary education it
has been limited to providing the technological infrastructure,
and in primary education, with very few exceptions, it is
almost non-existing (Johannesen, 2013).

This environment is beginning to change as a result of

several developments: a) public and private schools are

discovering the educational value of this new type of learning

that includes multimedia, evaluation, monitoring, and

collaboration; b) from a technical point of view, there is an

evolution into VLEs that are easier to use and are adapted to

the needs of students, and are easier to install and maintain

locally or in the cloud; and c) the MOOC (Massive Open

Online Courses) phenomenon (Breslow, Pritchard, DeBoer,

Stump, Ho & Seaton, 2013; Vila, Andrés & Guerrero, 2014)

and its variations (COOC, NOOC, SPOC) have revolutionized

the way we use technology in distance and blended education

(Benfield, Roberts & Francis 2006; Bruff, Fisher, McEwen &

Smith, 2013).

The integration of CT in classrooms around the world will

require the collaboration of efforts from diverse fields of

academia, industry and government. It will also require the

development of appropriate curricular materials and the

training of teachers that will participate with their students in

this major transformation of the educational system that was

practically unchanged for generations. In this paper we

describe some of the developments implemented in pilot

projects, in primary and secondary education, as well as in

pre-university education, that address important challenges in

this transformation. In particular, we propose the use of a VLE

such as Moodle as the technological platform to deploy

innovative pedagogical strategies.

Moodle is open source and its functionalities are driven by

the global community. It has been adopted by a significant

segment of school systems around the world, and it presents

continuous innovations and updates. It is powerful and secure,

and provides developers and users an environment where it is

possible to create effective online experiences for learning and

teaching where collaboration is fomented and privacy is

secured. Moodle is available in over 100 languages and has

been tested and adopted by institutions of all sizes, economic

backgrounds and geographic locations from around the world.

It also supports the socially responsible collaboration between

rich and poor communities via the Voluntary Service Overseas

that stimulates global training opportunities.

The courses described in this paper have a common

structure with the following core elements: 1) Video: a set of

4-6 video tutorials (3-5 minutes each) in which the concepts of

the session are introduced, 2) Practice: Scratch or Alice

project templates to allow the student the exploration of the

project presented during the video tutorial. If necessary, the

video tutorial would be revisited to achieve a complete

understanding of the session, 3) Auto Test: Self-evaluation (5

minutes) by the student to determine the degree of acquired

knowledge (it can be repeated as many times as necessary), 4)

P2P (Peer-to-Peer) Task performed by the student to solve a

problem by creating a Scratch or Alice project. The projects

are evaluated by fellow students using a common rubric, 5)

Test: Evaluative test (5 minutes) which measures the degree of

knowledge acquired by the student (2 attempts), and 6)

Explore and Discover: Scratch or Alice projects where

students expand their knowledge discovering and exploring

new ways to use Scratch blocks or Alice tools.

The methodology of the course is based on a learner

centered paradigm. This implies that the tasks of the student

include: a) following a series of short video lessons, b) taking

interactive quizzes, c) assessing and being assessed through

testing and Peer-to-Peer (P2P) and d) participating in online

forums with classmates and teachers (Glance, Forsey & Riley,

2013).
These courses emphasize the experience of student

learning. They highlight three important aspects of the design
of the course: a) Multimedia content and Activity Scratch or
Alice; b) Auto-test; and c) Tasks-P2P. The "concepts" and
core "processes" of computational thinking that have
developed in the course (College Board, 2016) are evaluated
through the Test and P2P activities.

The design of the courses presented in this paper is based
on a blended structure: the objective is to benefit from the
qualities of the local teacher in the classroom (deep knowledge
of each student, their learning styles and preferences, the
optimal class dynamic, etc.) and to benefit from the services
provided by the VLE (design and delivery of curriculum with
multimedia, individual monitoring of the progress of each
student, assessment and peer to peer evaluations, portfolio
management, etc.).

Blended learning, with its substantial resources, is
specially designed for differentiated instruction. To implement
this type of selective instruction is necessary the creation of
custom-designed instruction for each student: the first step is
to assess the actual progress of each student, and then the
optimal set of activities and assessments are programmed. It
would be impossible for a teacher, given the limitations of
time and effort, to attend to the individual needs and interests,
abilities and learning styles of each student.

This ability to dynamically create several online options of
classroom training for each student increases their ability to
learn. It also improves the student satisfaction and
participation in the class.

The use of blended learning, with its ability to
continuously monitor the progress of each individual student,
allows the pacing of new materials and assignments. And in
cases where for health reasons the student is absent, blended
systems are a friendly ally that helps keep track of past
accomplishments and future tasks, providing guidance and
planning where earlier options included only repeating the
course.

The self-pacing features that blended systems offer have
the effect of increasing the completion rate of students as
compared with primarily e-learning environments, often
affected by student lack of participation. Because the students
in blended systems notice the immediate feedback of their
progress they come to view their learning as a new continuous
process and not a set of separate learning and disconnected
events, which in turn increases the commitment and
motivation of students, and their learning in the classroom.

2. PC-01 Course

2.1. Content

Our research team has focused its teaching and research

activities of the last decade in the area of technology and e-

learning education. The team was able to analyze, experiment

with, and implement systematic studies of courses offered in

these platforms (Olabe, Basogain & Olabe, 2016).
The team has designed and implemented the course 'PC-

01: Introduction to Computational Thinking' with the

following characteristics: a) immediate implementation in the

school; b) simple access to the contents and tools by the

teacher and students; c) basic introduction to concepts and

processes in Computational Thinking; and d) efficient and

sustainable use of educational technology.

The course has been developed in the learning platform

“Egelapi” (https://egelapi.ehu.eus/), which is a VLE system

based on Moodle (2.5.4). The course uses the Scratch 2.0

software as the programming language environment (online

editor and Scratch 2 Offline editor).

The course includes the study of the following elements of

Computational Thinking: 1) Computational thinking and

expression (how to read and write in a formal language in

order to solve problems). 2) Abstraction (how to communicate

complex ideas simply, and logically break down problems). 3)

Integration of multimedia content (text, images, sound, data,

graphics). 4) Development of objects and functional blocks

(objects, programs). 5) Interactive programs (events and event

management). 6) Fundamental programming concepts

(decisions, loops, variables, functions, sequential and parallel

execution).
The course is organized into 10 sessions, each lasting two

hours. The sessions are named according to the families of
Scratch blocks being studied: Movement, Appearance, Sound,
Pencil, Event, Control, Sensor, Operators, Data and More
Blocks. Table 1 lists the collection of units implemented in the
course PC-01.

Table 1. PC-01 Curriculum: Unit-level Content

Unit Title

Unit 1 Movement
Unit 2 Appearance
Unit 3 Sound
Unit 4 Pencil
Unit 5 Event
Unit 6 Control
Unit 7 Sensor
Unit 8 Operators
Unit 9 Data
Unit 10 More Blocks

In addition, a Session 0 (it is called Initial Session) was
created to familiarize the student with the learning platform
Moodle and the programming language Scratch.

2.2. Assesments

The course PC-01 is based on a continuous student
assessment and feedback and the creation of a student
portfolio of projects and core concepts mastered. It includes a
total of 10 tests, based on multiple choice questions of
concepts, which are presented in text format, and
programming paradigms and structures that contain
programming scripts the student must analyze and identify.

The construction of the student portfolio is implemented

with the cumulative collection of projects created as part of

the P2P projects. These projects document the abilities

acquired by the students, including the programming

paradigms and the corresponding core ideas of CT. Table 2

lists the collection of 10 P2P projects implemented in the

course PC-01.
Table 2. PC-01: List of P2P Projects

Project CT Core Ideas

P2P 1 Design of a project to draw three
triangles on the stage.

Sequence of instructions
and repetition control.

P2P 2 Design of a project where the
protagonist narrates a short personal story.

Use of costumes and text
messages associated to a
sprite.

P2P 3 Design of a project with 4 protagonists
playing different sounds.

Use of multiple sprites
(objects) and play sound
procedures.

P2P 4 Design of a project where the
protagonist draws on the stage images of
creative art with lines and curves of multiple
colors.

Controlling the pen
resource of the sprite
including the color and
position.

P2P 5 Design of a project to allow the user to
draw on the stage with a pen of multiple
colors.

Use of Events and Event
handlers with simple
control loops.

P2P 6 Design of a project to implement a
clock with a moving hand associated with
multiple sound and graphic effects.

Control structures and
introduction to
multithread programming.

P2P 7 Design of a project with sprites ball,
beetle, crab and beach ball interacting with
each other using sensors of the environment.

Sensors that report
information on the
environment (keys
pressed, asked question
on the stage stored
values, etc.).

P2P 8 Design of a project where a penguin
exhibits mathematical talents.

Use of numerical and text
operators, arithmetic,
random, concatenation.

P2P 9 Design of a project to control the speed
and color of a spacecraft by using variables.

Simple data manipulation
(setting and changing
variable content.)

P2P 10 Design of a project for the creation of
new, user-defined programming blocks. The
new blocks will allow the complex drawing of
geometric patterns with variable parameters.

User designed blocks
More Block: Custom
blocks to abstract the
functionality of scripts and
make programming a
modular task.

Figures 1 and 2 illustrate multiple choice questions
presented to students during self-assessment and test sessions,
including text-based conceptual questions and graphical script
programming questions.

Fig. 1. Text-based conceptual question in Scratch. Fig. 2. Graphical Scratch script programming question.

The following figures illustrate solutions implemented by students in two P2P projects. Figure 3 illustrates the combination of
a continuous script that controls the position of the drawing pen (controlled by the user via the mouse) and the parallel scripts,
triggered by the keyboard, that allow the change of color and shape of the marks. Multiple event handlers provide these features
in a parallel programming paradigm.

Fig. 3. Solution of P2P 5.

Figure 4 illustrates the use of multithreading programming to allow the user to control the velocity and appearance of a
spacecraft by using variables. This project illustrates the powerful paradigm of decomposition of a complex task into simpler
goals, each implemented with a custom script.

Fig. 4. Solution of P2P 9.

Students participating in the course PC-01 have
successfully achieved the academic goals set in the project, as
illustrated by their performance in the tests and the creation of
their individual projects. In addition, students express a
sentiment of satisfaction by their participation in activities
they consider motivating and where they can express their
different creative interests.

3. Course ECE130

3.1. Content

In addition to the course PC-01 (and other related courses,

which are designed for students aged 10-15) our team also

focused in the needs and challenges of the introduction of CT

in the classroom of pre-university age students.

For this project we benefited from two especial

characteristics that are preeminently present in the educational

system of the United States. One is the ability of students in

high school to earn college credit while in high school by

taking Advance Placement courses (College Board, 2017) or

by enrolling in dual-enrollment courses that offer credit both

in the high school at the university level. The second is the

increasing demand on computer literacy courses required in

universities as part of the GER’s (general requirement

courses) of all students.

The University of one of the authors of this paper (CBU,

2017) has participated for many years with several high

schools in dual-enrollment programs. In 2009 the course
ECE130 (Introduction to Computational Thinking and

Programming) was designed to introduce junior and senior

students of high schools to the fundamental ideas of

Computational Thinking while studying the core foundations

of programming.

The course was designed as an introduction to object

oriented programming using graphics in the creation of 3D

movies, games and interactive applications. Alice was selected

as the programming environment given the special features

that it offered to the novice programmer. Very importantly,

Alice eliminates all syntactical errors by using a menu driven

interface that allows students to securely implement Java code

while completely eliminating the demanding learning curve

that most Java programming courses require. In addition,

Alice is integrated into a 3D world where all objects represent

familiar entities in everyday life: people, animals, vehicles,

plants, houses, etc. This feature allows students to

immediately assimilate object-oriented principles by

association with state values, procedures and functions of real

life objects, and their immersion in movies, games or

interactive applications that imitate life systems and events.

The course is structured in twelve units that are listed on

Table 3. Each unit includes a set of core ideas and principles

that are illustrated via simple 3D projects that incrementally

increase in complexity. The units include a set of video

tutorials that students study and later master by replicating

themselves in Alice the new learned ideas in the form of 3D

projects. The process of studying the video tutorials and

practicing in Alice is iterative and culminates when the student

understands the process, and masters the implementation of

the new ideas.

Table 3. ECE130 curriculum. Unit-level Content

Unit Title

Unit 1 Introduction to object-oriented programming & software
development

Unit 2 Program Design and Implementation
Unit 3 Algorithmic implementation
Unit 4 Abstraction and Optimization
Unit 5 Built-in Functions and Expressions
Unit 6 Classes and Objects, Messages and Methods, and

Parameters
Unit 7 Interactive Programs, Events and Event Handling
Unit 8 Selection Structures
Unit 9 Boolean Functions
Unit 10 Repetition and Loop Control
Unit 11 Repetition and Recursion
Unit 12 Lists and List Processing

3.2. Assesments

After this initial mastery phase, the student needs to

complete an open ended project in which the new ideas are

integrated. These projects always take the form of a movie, a

game or an interactive application. A comprehensive rubric is

provided as a guide for the student. This rubric will later be

used to Peer assess the work of other students.

The weekly assessment is implemented with three separate

tools: self-assessment, test, and Peer to Peer Assessment. The

self-assessment is a tool that allows students to review a

comprehensive checklist of core ideas, new vocabulary,

formal programming rules and regulations that need to be

mastered before proceeding further. The tests are independent

assessments that document the progress of students and certify

the achievement required for a successful completion of the

course.

The Peer to Peer assessments address several student skills

in the process of acquiring the status of a Computational

Thinker. One developed quality is the ability of read code, to

interpret knowledge represented in the form of programming

code, and to assess its complexity and quality. By assessing

the work of others, and comparing the assessments with the

rubric assessments, the student develops expertise in the skill

of reading, interpreting and evaluating the quality of written

code.

A second skill developed by the Peer to Peer assessments

transforms the traditional passive role of the student in which

his or her work is evaluated by the teacher into an active role

in which the student is given the privilege and the

responsibility of evaluating the work of others. This important

responsibility conveys the implicit message that educating the

student means making the student an expert: an expert that can

create quality work, and an expert that can appreciate and

evaluate the work of others. Rarely in traditional education is a

student expected to be able to reliably assess the work of

others, and rarely in traditional education is a student trained,

week by week, in the demanding and important task of been

an expert with the skill to reliably assess the work of others.

Table 4 includes a list of the ten P2P projects of the course

ECE130.

Table 4. ECE130: List of P2P Projects.

Project CT Core Ideas

P2P 1 Design of a project with 4 Scenes and 2
Sub-scenes. Leader object defines action to
be implemented.

Top-down design and
bottom up
implementation.
Decomposition.

P2P 2 Design of a project using Class level
Methods. Use of Markers to identify physical
locations.

Objects contain behaviors
that can be expanded with
new Class Methods.

P2P 3 Design of a project using user-defined
functions. Functions will obtain information
directly form the environment and pass it to
the main program.

Objects can determine
useful information from
the environment through
the use of user-defined
functions.

P2P 4 Design of a project with Class Methods
and Functions that use Parameters.

Class methods and
functions provide
adaptive behavior through
the use of parameters.

P2P 5 Design of a project with the use of
control structures for individual and collective
segments of code.

Control structures add
versatility to the code of
individual objects and
collections of objects.

P2P 6 Design of a project with nested groups
of control structures for individual objects
and collections of objects.

Complex topologies of
nested control structures
add functionalities to
languages.

P2P 7 Design of a project with data structures
including one and two dimensional arrays of
objects.

Data Structures allow the
manipulation of families
of objects efficiently and
dynamically.

P2P 8 Design of Project using Random
strategies for the control of Arrays.

The use of Random
functions allows the
resolution of problems
through trial and error
strategies.

P2P 9 Design of an interactive project by
interfacing with objects through events and
event handlers.

Events and event handlers
allow the implementation
of dynamic systems.

P2P 10 Design of a comprehensive project
including all the core elements of the course.

Complex dynamic
systems, using arrays of
objects and interfacing
with the external world
can be implemented in
modular form.

Figures 5 and 6 illustrate examples of multiple choice
questions that students answer in their weekly self-assessment
assignments or in the more formal test sessions. These
questions include a combination of text based conceptual
questions or the analysis and evaluation of graphical
programming scripts in Alice.

Fig. 5. Text-based conceptual question in Alice.

Fig. 6. Graphical Alice script programming question.

The following figures illustrate the programming environment in Alice with some student programming examples. Figure 7
shows a partial view of a program that is structured into six scene methods, showing and interactive dialog between a fortune
reader and a group of students, where random complete sentences are created.

Fig. 7. Random Sentence Generation Scene in Alice.

 Figure 8 shows a set of three arrays of animals programmed to perform actions individually within each array, in unison for
each array, and in coordination with other arrays.

Fig. 8. Programming Object Arrays in Alice.

The programming environment of Alice provides students
recently introduced to the world of programming a selected set
of tools that, given their simplicity, are easy to learn and
manipulate, and at the same time allow the rapid prototyping
of fairly complex programs with a multiplicity of interacting
objects.

4. Discussion

The integration of Computational Thinking curriculum and
activities in the educational system will require the
transformation in some fundamental ways of the relationship
between schools and society, the role of the teacher in the
classroom, and the students’ experience during their period of
education. We now discuss some of the events involved in this
transformation and the impact on institutions, teachers and
students.

4.1. Impact on Educational Institutions

The final structure of the courses described includes a
software set of resources that are easy to install in a VLE and
that offer a comprehensive set of educational services in the
area of Computational Thinking for primary and secondary
students.

The course curriculum provides educational institutions
with a specific and avant-garde proposal of "concepts" and
"processes" in the area of computational thinking that can be
easily introduced in primary and secondary education and high
school. The courses are taught in a blended format in the
computer laboratory and with the support of the school VLE
system.

Currently, the course PC-01 is hosted in a virtual
classroom EDUCANDO online (http://aula.educando.edu.do),
which is the portal under the supervision of the Department of
Computer Education of the Ministry of Education of the
Dominican Republic (MINERD).

These types of academic initiatives provide institutions a
platform to experiment with offerings of extracurricular
activities where students and parents can evaluate the costs
and benefits of participating in new academic fields, such as
Computational Thinking, which are not readily available in
traditional school offerings. In addition, educational
institutions participating with these types of courses can
incrementally incorporate new technologies in their academic
structures and project to society an image of a state of the art
institution.

The VLE platform serves as the central academic
repository of all students’ resources, activities and projects
allowing the administrators to evaluate in an integral form all
schools associated with the project (Sancho Gil & Padilla
Petry, 2016). At the same time the VLE environment provides

means for sharing resources among the schools, backup
installations, deployment of institutional badges, and other
centralized services.

These services are made possible by features present in
Moodle, and other environments, that automatically generate
reports on students’ activity, participation, and learning goals
achievement in wide set of learning analytics. Some of these
features are part of the standard distribution of Moodle, and
other more specialized services are provided by third-party
plugins which are available in the plugins directory
(Moodleplugins, 2017).

The availability of Learning Analytics is fundamental in
the process of improving the learning outcomes of an
educational institution. These analytics directly provide
feedback and information not only to students and teachers but
to administrators and decision makers as well.

An example of higher level learning analytics is the course
overview. This tool allows to rank multiple courses by
activity, participation and other criteria. This type of
comparative analysis is of relevance for medium and large size
institutions in determining the efficiency of different policies
and strategies, and it would be almost impossible to
implement with traditional mechanisms.

4.2. Impact of Teachers and Teaching Loads

One of the fundamental changes in education with the

assistance of VLE environments is the creation of the
collaborative mode of education, where students receive their
knowledge from both the local teacher, present in the
classroom, and the multimedia based knowledge embedded in
the VLE. For example, to offer Computational Thinking
courses in an institution, it is not necessary for the local,
classroom teacher, to be an expert in the field. What it is
important is that the teacher be knowledgeable in the use of
the VLE. The content of the course, assessments, projects and
other academic tasks are provided by what we could call the
“Guest Teacher” through the VLE environment. The local
teacher implements tasks of classroom leader, motivator, and
moment by moment director of activities.

The teachers in these courses have a set of resources and
services that facilitate the delivery and monitoring of an
introductory course in Computational Thinking. The teachers
have access to collections of video tutorials, self-tests, tests
and P2P projects covering the scope of the course curriculum.
Before starting the course the teachers receive training on
methodology and course content.

To fully assist the local teacher, a comprehensive guide

has been created describing the structure and operation of the

main parts of the course. This documentation includes a

description of the topics studied in the course, the pedagogical

resources available, how the course is organized into modular

sessions, and how these sessions need to be presented to the

students. In the areas of assessment, both individual

assessment and Peer to Peer evaluation, the documentation

provides guidelines for teacher and students on the optimal use

of these resources. Because Peer to Peer evaluation is in

general a new tool for most institutions, special emphasis is

dedicated in the description of the three phases of evaluation,

the criteria for grading the submitted work, and how the final

grades are obtained. Finally, a comprehensive index includes

the available resources (video tutorials, practice projects, self-

tests, tests, and the solutions to the Peer to Peer projects.)
Teachers also find a number of integrated analytics

learning tools in the VLE (Moodle) that allow them to
implement collective and individual student progress
assessments of "concepts" and "process" in computational
thinking (Singh, 2015).
 In these courses we have installed a new block called
Progress Bar that provides a graphic representation of the
activities completed by the students in reference to all the
activities in the course. This tool provides an ideal feedback to
students, allowing them to see with a color coded system the
activities as well as the resources completed and those yet to
complete.

The structure of the Progress Bar is tailored by the teacher
who has the ability to include from all preexisting resources
those appropriate to monitor. Then, the analysis can be made
under different criteria: completed, approaching deadlines, etc.
This allows teachers to have on a single page a comprehensive
summary of the complete progress of all students in the class.
This in turn allows to evaluate the general progress of the
course, the identification of isolated cases, as well as the early
detection of at-risk students. The often selected activities
included in the Progress Bar are: Self-assessment, Assessment,
and Peer to Peer Evaluation.
 The following figures (Figures 9, 10 and 11) illustrate
some of the features VLE environments offer in order to
provide more timely feedback to students and teachers, to
recognize and reward student achievement, and facilitate
mechanical and time consuming tasks in class management.
Figure 9 illustrates the access to Progress Bar for both students
and teachers.

Fig. 9. Access to the Progress Bar

Similarly, the teacher has access to the records of total and
partial scores of students. The management tools allow the
grouping of tasks into different collections in order to obtain
relevant information on the completion and progress of the
course (see Figure 10).

Fig. 10. Progess Bar: teacher’s tool

An important time saving tool for teacher is the automatic
calculation of grades. Because these courses are designed with
a continuous evaluation of the progress of the students, as well
as the creation of their portfolio by means of their
programming projects, each student generates a vast number
of individual assessment values. The overall grades illustrated
in Figure 11 are obtained automatically from all the individual
assessments according to a rubric that weighs the different
aspects of the course. For example, the criteria for each
session may include a final grade that is obtained as a
combination of 50% of the test, 40% of the P2P assessed
value, and 10% P2P grading task.

Fig. 11. Grades of students

4.3. Impact on Students

The courses described in this paper are characterized by
the fact that the students construct their own knowledge
following the pedagogical theory of constructionism. This
pedagogical theory proposed by Seymour Papert (Papert,
1991) proposes that students build their knowledge through
the construction of an 'artifact' that motivates them. For the
construction of an 'artifact' the courses use the programming
environments Scratch or Alice and their digital editor. Each
course unit contains two sections, called Practice and P2P.

In the Practice section students experiment in their
programming environment with the conceptual contents
developed by the teacher in the video tutorials; in the P2P
section, the students must design and build a project to solve a

situation or a proposed problem. Then, they build a solution to
the problem using the contents and concepts learned in the
unit.

One aim of the courses is for students to learn the
principles of a computer programming language. In these
courses the students use Scratch or Alice as a tool that allows
them to communicate and create ideas to solve problems
(Disessa, 2000).

The implementation of a Scratch or Alice project that
solves a problem requires the development of higher cognitive
functions of the mind. These functions include categorization,
decision making, abstraction, insight, problem solving,
planning and execution.

The second part of the P2P tasks, the assessment of
programming projects of 3-5 fellow students, according to a
specific rubric, is implemented anonymously, and it promotes
as well the development of higher cognitive functions. The
students are required to play the role of evaluators, and in turn
deepen their knowledge in order to evaluate Scratch or Alice
projects created by other students.

The VLE environment of the course allows the student not
only to play the role of evaluator but also to collaborate with
peers giving and receiving feedback, indicating errors,
solutions and possible improvements.

In addition to being exposed to other Scratch or Alice
projects, these activities open for the student the opportunity
to learn and be inspired by new solutions for future problems
(Lu & Law, 2012).

The experience of the students in these hybrid courses also
allows them to become familiar with the tools and
methodologies of the VLE environment. As students of a VLE
system they have experienced different aspects of this form of
learning: multimedia format content, collaboration
mechanisms, self-assessment and evaluation mechanisms,
progress in their knowledge and grades. The courses offer a
badge (see Figure 9, in top of the Progress Bar), a prize or
medal to recognize accomplishments and provide students
with a reward that acknowledges their achievement in
Computational Thinking (Seliskar, 2014).

In the immediate future these students will see their own
knowledge progress through the use of tools and services of
educational online platforms offering massive MOOC courses.
Lifelong learning will require students the use of VLE
environments similar to the environment experienced by the
student in these courses (Attwell & Hughes, 2010).

4.4. Participants & Results

During the last several years, the courses described in this
article have been implemented in classrooms of high schools
in the United States (continuous evaluation during the
academic years from 2009 until 2016) and in secondary
schools in the Dominican Republic (Study-1: April-June 2016,
and Study-2: December-2016/March-2017).

Study-1: Dominican Republic: The PC-01 project was
implemented during a six month period. The first part
included the design, implementation and fine tuning of the
Learning Management Platform "Egelapi". The course was
later replicated on the platform EDUCANDO online of the
Ministry of Education (MINEDU). In this platform,

classrooms for ten schools in the area of Santo Domingo were
created.

The second part of the project involved the delivery of the
course in 4 schools. Previously, the teachers of the schools
were trained to facilitate the course. The course is taught by
the teacher to her students in person in the classroom with the
support of the learning platform. The 4 schools began the
course after the Easter holidays. The schools have taught the
course according to their own schedules and time availability.
The duration of the course varied, and lasted between 6 and 10
weeks. Each classroom assigned 10 students, with an average
of 8 active students.

The outcomes of the course were assessed using the
portfolio of each student and the number of successful tests.
These parameters indicate a high degree of success. Other
course results were obtained from personal interviews with
students and teachers, and they indicate a high degree of
satisfaction on the part of the course participants (some
testimonials: 'easy', 'funny', 'entertaining', 'learn more', 'create')
(Basogain, Olabe, Olabe, Ramírez, Del Rosario & Garcia,
2016).

The second study in the Dominican Republic included 21
schools distributed across the country in the areas of Santo
Domingo, Pedro de Macorís, San Juan de Maguan, San
Francisco de Macorís y Puerto Plata. Each participating school
included 1, 2 or three groups of students, with students of
primary and secondary education with ages ranging from 10 to
15. Table 5 lists the participant’s schools.

Table 5. Participating Schools in the PC-01 project in RD.

School Name

1 Coronel Rafael Tomas Fernández Domínguez
2 Damián David Ortiz A , B
3 Dr. José Francisco Peña Gómez
4 Básica Cañada Grande A,B,C
5 Carmen García García
6 María Altagracia Paula
7 Nery Cueto De Delma
8 Primaria Francia Margarita Ayala
9 Primaria Juan Pablo Duarte
10 Primaria Padre Sillas
11 Sor Leonor Gibb
12 General Antonio Duverge
13 Liceo JE José Joaquín Pérez
14 Manuel María Castillo
15 Padre Brea
16 Profesora Jacoba Carpio
17 Sergia María Mateo A, B
18 Vicente Aquilino Santos
19 Lic. Vespertino Gregorio Luperón
20 Básico Padre Eulalio A. Arias – Pax
21 Fidel Ferrer

With the conclusion of one study and the beginning of a

new one, the lessons learned are incorporated to introduce

improvements in those areas identified as priority. In

particular, special effort has been dedicated to the

implementation of the Peer to Peer project and assessments,

and the activation of the different phases: submission,

assessment, grading, and closing. These tasks were supported

with informative video tutorials and training session via

Skype.

An important class management tool offered by VLE’s is

the ability to process and analyze the numerical data of the

students’ level of learning and achievement. In particular, in

the course PC-01 we have analyzed: 1) the number of self-

assessment and test attempts by the students; and 2) the

corresponding grades obtained in those attempts. It is relevant

to note that students may attempt the self-assessment as many

times as they wish, without direct impact in their grades. The

tests, however, can only be attempted twice, with the best

grade being recorded. To illustrate the results obtained in this

study, we include the following two figures (Figures 12 and

13) which show the results of two particular Moodle

classrooms (named PC10 and PC12) located in the cities of

Las Matas de Farfán and San Pedro Macorís.
Figure 12 shows the total number of attempts in self-

assessments and tests in these classrooms. One can observe
the general descending tendency throughout the ten weekly
sessions of the course. This seems to indicate that students
initially choose to practice for longer periods of time when the
subject is still new and unknown. And as the course advances,
students experience an increased confidence on their skills and
knowledge, and therefore feel less need to complete additional
attempts. There is a visible difference between both
classrooms, but the difference is more quantitative than
qualitative.

Fig. 12. Attemps of Self-Assessment and Test of PC-01 Course.

Figure 13 shows the grades obtained both in the self-
assessments and in the tests. One can observe a general
tendency of obtaining better grades on the tests than on the
self-assessments through all 10 weekly sessions of the course.
This seems to indicate that the students gradually reinforced
their knowledge on core fundamentals as they accumulated
experience and time on these fundamentals with the passage of
time, attempted assessments and effort dedicated to project
designs.

Fig. 13. Grades in Self-Assessment and Test of PC-01 Course.

These graphics seem to indicate other effects as well: a)

There seems to be a different work attitude in the two

classrooms, with one consistently working more than the

other; b) also, some sessions, for example session-5, can be

identified as more problematic given a substantial drop in the

average grade.

The numerical values of these graphics are included on

Table 6 (values on a 100 point scale).

Table 6. Numerical values of Grades

Autotest Test

Grade Attemps Grade Attemps

PC12A 54,75 21,75 62,75 14,13

PC10A 85,9 17,3 94,4 12,5

The course ECE130 is traditionally offered to several high

schools in the Memphis, TN area, and includes Christian

Brothers HS, White Station HS. St. Georges HS, Overton HS,

Saint Benedict HS, Central HS and Briarcrest HS. Each high

school participates with one or two sections of students in

their Junior or Senior year, with ages 16 to 18.

Because the teaching schedule of ECE130 is fairly intense

(one hour of lecture per day, five days a week) with the

corresponding daily homework, special effort is dedicated to

guarantee that assignments are completed before the deadline.

High school students in US are expected to travel with

frequency to participate in sport and cultural activities

sponsored by various associations, and therefore the online

format of these courses is ideally designed for flexible

scheduling of class work.
 Given the open environment in which these courses are

offered, special effort is dedicated to guarantee that a large set
of randomized tests and assessments are available to prevent
the possible data sharing among students.

Throughout the years the course ECE130 has experienced
an increase in the complexity of the Peer to Peer projects as
students adapt ever more rapidly to new technologies and
evaluation methods using computers.

4.5. Conclusions and future directions

In this paper we present two courses on Computational
Thinking for primary, secondary education and high school.
These courses introduce the "concepts" and "processes" of
computation in a hybrid format of classroom and online
education.

The area of knowledge of Computational Thinking is
experiencing a significant expansion in the private and public
education sectors both in the developed world and in the
developing world. Students trained in Computational Thinking
are significantly better prepared for the daily tasks and the
professional work that awaits them in their immediate future.

The area of educational technology is also experiencing a
breakthrough in new services and resources for the training of
students. The MOOC phenomenon is revolutionizing the
world of education and training. Many students, who for
various reasons could not access education, today can benefit
from quality training and success.

In addition, educational computing offers us every day
new products and educational tools that facilitate the task of
teaching those materials that until now could not be included
in the school curriculum.

These courses represent real examples of synergy between
computer science and educational technology. The courses use
the educational potential of VLEs systems to train primary,
secondary and high school students in the new curriculum
subject of computational thinking. The courses exploit the
analytical tools of learning and they allow the teacher to
successfully perform the tasks of teaching, monitoring and
grading the students. On their part, the students have a
learning experience in a constructionist environment of
collaboration and are able to monitor and track their own
progress.

The course PC-01 has been scheduled to be taught in ten
public schools in Santo Domingo and its surrounding areas
during the third term of the academic year 2015-16. The
results of the course have been evaluated with the goal of
improving it before making its deployment in public schools
across the Dominican Republic.

This experience of designing and implementing an
introductory course of computational thinking in primary and
secondary education is a pioneer step by a university research
group that closely works with a technical team of the
department of educational computing at the Ministry of
Education of the Dominican Republic.

The work and effort dedicated by both teams is part of the
tasks of cooperation between the scientific community and the
educational community for improvement of the education of
our young students.

The course PC-01 is made available to any educational
initiative that aims to introduce Computational Thinking in
primary and secondary schools in the around the world.
Educational institutions interested in implementing the PC-01
course may contact via email the authors of the article.

High school students of the US that complete college-

credit courses, such as ECE130, during their education,

already begin their university careers with fewer credits to

complete. In addition, an increasing number of universities

include in their General Requirement Courses for graduation a

course in Introduction to Programming or Computational

Thinking.

At the same time, institutions that offer dual enrollment

courses, such as CBU, create permanent partnerships with

High Schools, thereby establishing academic pipelines that

supply steady source of students enrolling in their university

programs. Probably the major forces behind dual-enrollment

partnerships involve the prestige of HS offering college

courses and the supply of students enrolling in universities.
PC-01 in Colombia: A new project of the course PC-01

has been created between the University of the Basque
Country and the Corporation for the National Academic
Network for Advance Technology (RENATA) in Colombia
via an agreement of collaboration with the title “Introduction
of Computational Thinking in the Schools of Bogota and
Colombia”. In addition, the Ministry of Information
Technologies and Communications (MINTIC) of Colombia
has joined the collaboration agreement, providing resources
for the implementation of the project in 10 schools distributed
across the country (see Table 7).

Table 7. Colombian Schools participating in the PC-01 Project.

School Name

 1 Juan Hurtado, Belén de Umbria – Risaralda
 2 Pedro Uribe Mejía, Santa Rosa - Risaralda
 3 Cadena Las Playas, Apartadó - Antioquía
 4 24 de Mayo, Cerete - Córdoba
 5 Antonio Nariño, Moniquira - Boyacá
 6 Niño de Jesús de Praga, Girón - Santander
 7 San Rafael, Soledad-Atlántico
 8 Augusto Medina, Ibagué - Tolima
 9 Nuestra Señora de Guadalupe, Dosquebradas - Risalda
 10 INEM, Pereira - Risaralda

This project in Colombia is being developed during the
second semester of the academic year 2016-17, and it is
supported by a Moodle-based platform (Renata, 2017), and it
is illustrated in Figure 14.

Fig. 14. Platform PC-01 in Colombia

The course ECE130 also is part of an expansion program
in order to provide services to a larger group of High Schools
in Memphis and surrounded areas, as well as High Schools
traditionally linked to CBU in Nashville, Chicago, St. Louis
and New Orleans. This expansion project is part of a
university wide project of K-12 STEM outreach.

References

Alice, (2017). An Educational Software that teaches students computer
programming in a 3D environment. Retrieved from:
http://www.alice.org

Attwell, G., & Hughes, J. (2010). Pedagogic approaches to using technology
for learning: Literature review.

Barbour, M., Brown, R., Waters, L. H., Hoey, R., Hunt, J. L., Kennedy, K., &
Trimm, T. (2011). Online and Blended Learning: A Survey of Policy and
Practice from K-12 Schools around the World. International Association
for K-12 Online Learning.

Basogain, X., Olabe, M. A., Olabe, J. C., Ramírez, R., Del Rosario, M. and
Garcia, J. (2016). PC-01: Introduction to Computational Thinking.
Educational Technology in Primary and Secondary Education. 2016
International Symposium on Computers in Education (SIIE). pp. 1-5.
http://dx.doi.org/10.1109/SIIE.2016.7751816

Benfield, G., Roberts, G., & Francis, R. (2006). The undergraduate experience
of blended e-learning: a review of UK literature and practice. London:
Higher Education Academy.

Berkeley, (2017). The Beauty and Joy of Computing. Retrieved from:
http://bjc.berkeley.edu/

Breslow, L., Pritchard, D. E., DeBoer, J., Stump, G. S., Ho, A. D., & Seaton, D. T.
(2013). Studying learning in the worldwide classroom: Research into
edX's first MOOC. Research & Practice in Assessment, 8.

Bruff, D. O., Fisher, D. H., McEwen, K. E., & Smith, B. E. (2013). Wrapping a
MOOC: Student perceptions of an experiment in blended learning.
Journal of Online Learning and Teaching, 9(2), 187.

CBU, (2017). Christian Brothers University. (2017). Retrieved from:
https://www.cbu.edu/

Code.org, (2012). Anybody can learn. Retrieved from: http://code.org

College Board, (2016). AP Computer Science Principles. Course and Exam
Description. Retrieved from: https://secure-
media.collegeboard.org/digitalServices/pdf/ap/ap-computer-science-
principles-course-and-exam-description.pdf

College Board, (2017). AP Courses. Retrieved from:
https://apstudent.collegeboard.org/apcourse

Denner, J., Werner, L., & Ortiz, E. (2012). Computer games created by middle
school girls: Can they be used to measure understanding of computer
science concepts? Computers & Education, 58, 240–249.

Department for Education England, (2013). “National curriculum in England:
computing programmes of study - key stages 1 and 2”. Ref: DFE-00171-
2013. Retrieved from:
https://www.gov.uk/government/publications/national-curriculum-in-
england-computing-programmes-of-study

Disessa, A. (2000). Changing minds: Computers, learning, and literacy.
Cambridge: MIT Press.

Ertmer, P.A., Ottenbreit-Leftwich, A.T., Sadik, O., Sendurur, E., & Sendurur, P.
(2012). Teacher beliefs and technology integration practices: A critical
relationship. Computers & Education, 59, 423-435.

Flannery, L. P., Silverman, B., Kazakoff, E. R., Bers, M.U., Bontá, P., & Resnick,
M.(2013). Designing scratchjr: Support for early childhood learning
through computer programming. In Proceedings of the 12th
International Conference on Interaction Design and Children ACM. pp. 1-
10.

Glance, D. G., Forsey, M. & Riley, M. (2013). The pedagogical foundations of
massive open online courses. First Monday, 18 (5). Retrieved from:
http://firstmonday.org/ojs/index.php/fm/article/view/4350/3673. doi:
10.5210/fm.v18i5.4350

Grover, S., Pea, R., & Cooper, S. (2015). Designing for deeper learning in a
blended computer science course for middle school students. Computer
Science Education, 25(2), 199-237. doi:
10.1080/08993408.2015.1033142

Harvard, (2017). CS50: Introduction to Computer Science. Retrieved from:
https://cs50.harvard.edu/

Hubwieser. P., Armoni, M., Giannakos, M. N., & Mittermeir,R. T. (2014).
Perspectives and visions of computer science education in primary and

secondary (k-12) schools. Transactions on Computing Education,
14(2):7:1{7:9

Johannesen, M. (2013). The role of virtual learning environments in a primary
school context: An analysis of inscription of assessment practices. British
Journal of Educational Technology, 44: 302–313. doi: 10.1111/j.1467-
8535.2012.01296.x

Kahneman, D. (2003). Maps of Bounded Rationality: Psychology for
Behavioral Economics. The American Economic Review, vol. 93 no. 5, pp.
1449-1475. doi: 10.1257/000282803322655392

Kahneman, D. (2011). Thinking, fast and slow. Macmillan.

Kalelioğlu, F. (2014). A new way of teaching programming skills to K-12
students: Code.org. Computers in Human Behavior, Volume 52,Pages
200-210, ISSN 0747-5632, http://dx.doi.org/10.1016/j.chb.2015.05.047.

Lu, J., & Law, N. W. Y. (2012). Understanding collaborative learning behavior
from Moodle log data. Interactive Learning Environments, 20(5), 451-
466.

Mannila, L., Dagiene, V., Demo, B., Grgurina, N., Mirolo, C., Rolandsson, L. &
Settle, A. (2014). Computational Thinking in K-9 Education. In ITiCSE '14
Proceedings of the 2014 conference on Innovation & technology in
computer science education. (pp. 1-29). doi: 10.1145/2713609.2713610

Moodleplugins, (2017). Moodle plugins. Retrieved from:
https://moodle.org/plugins/

Olabe, J.C., Basogain, X., Olabe, M.A, Maíz, I. & Castaño, C. (2014). Solving
Math and Science Problems in the Real World with a Computational
Mind. Journal of New Approaches in Educational Research, vol.3 no. 2,
pp. 75-82. doi: 10.7821/naer.3.2.75-82

Olabe, J. C., Basogain, X. & Olabe, M. A. (2016). Developing New Educational
Frontiers through Breakthroughs in Cognitive Computation and New
Dimensions in Pedagogical Technology. International Journal of Social
Science and Humanity, vol. 6, no. 11, pp. 813-820.
doi:10.18178/ijssh.2016.V6.755

Paddick, R. (2014). As easy as VLE. Education Technology. Retrieved from:
http://edtechnology.co.uk/Article/as_easy_as_vle

Papert, S. (1991). Situating constructionism. In I. Harel & S. Papert (Eds.),
Constructionism. 1-11. Norwood, NJ: Ablex

Papert, S. (1996). An exploration in the space of mathematics educations.
International Journal of Computers for Mathematical Learning,
1(1):95{123,1996.

Pinker, S. (1995). The language instinct: The new science of language and
mind. Penguin UK, vol. 7529.

Pinker, S. (1999). How the mind works. Annals of the New York Academy of
Sciences, 882.1, pp.119-127.

Renata, (2017). Red Nacional Académica de Tecnología Avanzada, Aula
Virtual - Curso PC-01. Retrieved from: http://168.227.244.48/moodle/

Resnick, M., Maloney, J., Monroy-Hernández, A., Rusk, N., Eastmond, E.,
Brennan, K., & Kafai, Y. (2009). Scratch: programming for all.
Communications of the ACM, 52(11), 60-67.

Sáez López, J.M., González, M.R. & Cano, E.V. (2016). Visual programming
languages integrated across the curriculum in elementary school: A two
year case study using “scratch” in five schools. Computers & Education,
doi: 10.1016/j.compedu.2016.03.003.

Sancho Gil, J., & Padilla Petry, P. (2016). Promoting digital competence in
secondary education: are schools there? Insights from a case study.
Journal Of New Approaches In Educational Research, 5(1), 57-63.
doi:10.7821/naer.2016.1.157

Seliskar, H. V. (2014). Using Badges in the Classroom to Motivate Learning.
Faculty Focus. Magna Publications. Retrieved from:
http://www.facultyfocus.com/articles/teaching-with-technology-
articles/using-badges-classroom-motivate-learning/

Singh, J. (2015). Learning Analytics tools available in Moodle. Retrieved from:
http://www.moodleworld.com/learning-analytics-tools-available-in-
moodle-moodleresearch-moodleworld/

Sykora, C. (2014). Computational thinking. Operational Definition of
Computational Thinking for K–12 Education. ISTE website.
https://www.iste.org/explore/articleDetail?articleid=152

Vee, A. (2013). Understanding computer programming as a literacy. Literacy
in Composition Studies, 1(2):42{64,2013.

Vila, R. R., Andrés, S. M., & Guerrero, C. S. (2014). Evaluación de la calidad
pedagógica de los MOOC. Profesorado: Revista de curriculum y
formación del profesorado, 18(1), 27-41.

Wolfram, S. (2016). How to Teach Computational Thinking. Blog Stephen
Wolfram. Retrieved from:
http://blog.stephenwolfram.com/2016/09/how-to-teach-computational-
thinking/

Zhang, J. X., Liu, L., Ordónez de Pablos, P., & She, J. (2014). The auxiliary role
of information technology in teaching: Enhancing programming course
using Alice. International Journal of Engineering Education, 30(3), 560–
565.

Zhang, J. X., Ordónez de Pablos, P., & Zhu, H. (2012). The impact of second
life on team learning outcomes from the perspective of IT capabilities.
International Journal of Engineering Education, 28(6), 1388–1392.

Acknowledgment

The authors would like to express their gratitude to the members of Department of
Computer Education of the Ministry of Education of the Dominican Republic
(MINERD) for their collaboration, and to the members of RENATA and Ministry of
Communications and Technologies (MINTIC) of Colombia.
This work was supported in part by the Research Development Grants of the University

Basque System (2016-18), Department of Education, Universities and Research –

Basque Government, Spain

Acknowledgements

