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Abstract

The Finite Element Method (FEM) has become a foundational numerical tech-
nique in computational mechanics and civil engineering since its inception by
Courant in 1943 [56]. Originating from the Ritz method and variational calcu-
lus, the FEM was primarily employed to derive solutions for vibrational systems.
A distinctive strength of the FEM is its capability to represent mathematical
models through the weak variational formulation of Partial Differential Equa-
tions (PDEs), facilitating computational feasibility even in intricate geometries.
However, the search for accuracy often imposes a significant computational task.

In the FEM, adaptive methods have emerged to balance the accuracy of so-
lutions with computational costs. The h-adaptive FEM designs more efficient
meshes by reducing the mesh size h locally while keeping the polynomial order
of approximation p fixed (usually p = 1, 2). An alternative approach to the
h-adaptive FEM is the p-adaptive FEM, which locally enriches the polynomial
space p while keeping the mesh size h constant. By dynamically adapting h and
p, the hp-adaptive FEM achieves exponential convergence rates.

Adaptivity is crucial for obtaining accurate solutions. However, the traditional
focus on global norms, such as L2 or H1, might only sometimes serve the re-
quirements of specific applications. In engineering, controlling errors in specific
domains related to a particular Quantity of Interest (QoI) is often more criti-
cal than focusing on the overall solution. That motivated the development of
Goal-Oriented Adaptive (GOA) strategies.

In this dissertation, we develop automatic Goal-Oriented (GO) hp-adaptive
algorithms tailored for non-elliptic problems. These algorithms shine in terms
of robustness and simplicity in their implementation, attributes that make them
especially suitable for industrial applications. A key advantage of our methodolo-
gies is that they do not require computing reference solutions on globally refined
grids. Nevertheless, our approach is limited to anisotropic p and isotropic h
refinements.

We conduct multiple tests to validate our algorithms. We probe the conver-
gence behavior of our GO h- and p-adaptive algorithms using Helmholtz and
convection-diffusion equations in one-dimensional scenarios. We test our GO hp-
adaptive algorithms on Poisson, Helmholtz, and convection-diffusion equations in
two dimensions. We use a Helmholtz-like scenario for three-dimensional cases to
highlight the adaptability of our GO algorithms.
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Abstract

We also create efficient ways to build large databases ideal for training Deep
Neural Networks (DNNs) using hp Multi-Adaptive Goal-Oriented (MAGO) FEM.
As a result, we efficiently generate large databases, possibly containing hundreds
of thousands of synthetic datasets or measurements.
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Resumen

El método de elementos finitos (MEF) aproxima soluciones a ecuaciones diferen-
ciales parciales (EDPs). Basándose en el método de Ritz y el cálculo variacional,
Courant desarrolló el MEF en 1943 [56]. Desde entonces se ha convertido en
una técnica fundamental en la mecánica computacional y la ingenieŕıa civil que
se ha utilizado para resolver una amplia gama de problemas, incluyendo análisis
estructural, mecánica de fluidos y sistemas vibratorios.

Una fortaleza distintiva del MEF es su capacidad para representar modelos
matemáticos a través de la formulación variacional débil de las EDPs, facilitando
la viabilidad computacional incluso en geometŕıas intrincadas. Sin embargo, la
búsqueda de precisión a menudo impone una tarea computacional significativa.

Debido a los altos costos computacionales de ciertos problemas, han surgido
métodos adaptativos para equilibrar la precisión de las soluciones con los cos-
tos computacionales. El MEF adaptativo es un método numérico que permite
aproximar soluciones de forma más precisa con menor costo computacional. El
MEF adaptativo h diseña mallas más eficientes reduciendo el tamaño de malla
localmente mientras mantiene el orden del polinomio de aproximación p fijo (gen-
eralmente p = 1, 2). Una alternativa al MEF adaptativo h es el MEF adaptativo
p, que enriquece localmente el espacio de polinomios p manteniendo constante
el tamaño de malla h. Al combinar dinámicamente ambos métodos, el MEF
adaptativo hp logra tasas de convergencia exponenciales.

El enfoque tradicional de la adaptatividad en normas globales (L2 o H1) sólo
sirve para ciertas aplicaciones. En ingenieŕıa, controlar errores en dominios es-
pećıficos relacionados con una cantidad de interés es a menudo más cŕıtico que
controlar errores globales. Debido a esta necesidad, surge la adaptatividad ori-
entada a un objetivo espećıfico.

En este trabajo, desarrollamos algoritmos automáticos orientados a un obje-
tivo hp diseñados para problemas no eĺıpticos. Estos algoritmos se destacan en
términos de robustez y simplicidad en su implementación, atributos que los ha-
cen especialmente adecuados para aplicaciones industriales. Una ventaja clave
de nuestras metodoloǵıas es que no requieren calcular soluciones de referencia
en mallas globalmente refinadas. Sin embargo, nuestro enfoque se limita a refi-
namientos anisotrópicos p e isotrópicos h.

Los resultados numéricos 1D muestran la convergencia de nuestros algoritmos
orientados a un objetivo, tanto h como p, usando las ecuaciones de Helmholtz y
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convección-difusión. Además, los resultados numéricos en 2D muestran la con-
vergencia de los algoritmos hp usando las ecuaciones de Poisson, Helmholtz y
convección-difusión. También, probamos estos algoritmos hp en casos 3D con la
ecuación de Helmholtz para demostrar la versatilidad de nuestros algoritmos.

Finalmente, extendemos nuestros algoritmos orientados a un objetivo hp para
generar grandes bases de datos confiables e ideales para entrenar redes neuronales.
Como resultado, mostramos la generación eficiente de grandes bases de datos
potencialmente con cientos de miles de datos sintéticos.
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1. Introduction

1.1. Motivation

In recent years, the Finite Element Method (FEM) has gained significant popular-
ity as one of the most extensively utilized numerical techniques in computational
mechanics and civil engineering. The beginnings of the FEM can be traced back
to Courant’s pioneering work in 1943 [56], where he employed the Ritz method
of numerical analysis and the minimization of variational calculus to derive ap-
proximate solutions for vibration systems. However, the computational success
and widespread of the FEM can be attributed to the contributions of Turner et
al. in 1956 [187] and Clough in 1960 [49].

The FEM has revolutionized various knowledge areas, driven by its primary
application in structural mechanics [25, 27, 94, 165, 211]. Its significant impact
extends to disciplines such as earthquake engineering, transforming the under-
standing and practices in these fields [48, 51]. Furthermore, through continuous
research, the FEM application has expanded beyond structural mechanics. It
has applications in various disciplines, including fluid mechanics, thermal analy-
sis, and electrical engineering.

The popularity of the FEM can be attributed to its capability to represent
mathematical models through the weak variational formulation of Partial Dif-
ferential Equations (PDEs). This formulation enables decomposing the prob-
lem domain into finite elements, with a corresponding number of unknowns
called Degrees of Freedom (DoF). This decomposition makes it computation-
ally feasible to obtain accurate solutions even in complex geometries (see, e.g.,
[69, 98, 109, 212, 213, 214] among others). We refer to the interested reader seek-
ing a comprehensive mathematical foundation of the FEM to [33, 47, 127, 164].

Despite the significant advancements made in FEM over the past century [125],
the computational cost of achieving highly accurate solutions remains a challenge.
As the desired level of solution accuracy increases, the number of unknowns and
computational resources required also escalate, potentially resulting in computa-
tionally expensive calculations that may be prohibitive in practice.

The h-adaptive FEM addresses the computational costs of increasing solution
accuracy. The method designs more efficient meshes by locally reducing the mesh
size h while keeping the polynomial order of approximation p fixed (typically
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p = 1, 2). This dynamic adjustment of the mesh resolution through h-adaptivity
facilitates the acquisition of accurate solutions while mitigating computational
costs.

The classical h-adaptive FEM involves locally refining elements by reducing
their size h [18]. It has successfully achieved convergence rates regarding DoF
through mesh adaptation [133]. Pioneering works by Babuška and Rheinboldt
[15, 16, 17] have laid the foundation for this approach. However, it is essential to
note that this method has limitations in overcoming algebraic convergence rates,
resulting in slow convergence. Furthermore, the practical implementation of this
method may be constrained by limited computer resources, as the computational
demands can present significant challenges.

An alternative approach to the h-adaptive FEM is the p-adaptive FEM [19, 42,
71, 183], which locally enriches the polynomial space p while keeping the mesh size
h constant. This method proves to be more practical for problems with smooth
solutions, as it can achieve the same level of accuracy with a slightly refined
mesh. One of the key advantages of the p-adaptive FEM is that by increasing
the polynomial order of approximation p, it attains exponential convergence rates
while simultaneously reducing the number of Degrees of Freedom (nDoF) required
to achieve a desired level of accuracy.

Non-smooth problems are prevalent in computational mechanics, especially in
regions characterized by e.g. re-entrant corners and material interfaces, demand-
ing precise simulations for accurate results. To address this, a combined approach
of both adaptive techniques, namely the hp-adaptive FEM [87, 88], has emerged
as an efficient alternative. This approach enables a more precise mesh refinement
by adjusting the element size h near singularities and the polynomial approxi-
mation order p in regions with smooth solutions. By dynamically adapting both
h and p, the hp-adaptive FEM achieves exponential convergence rates, even in
the presence of singularities [14], thereby offering higher accuracy for the same
nDoF. To gain insight into the historical development of the FEM, it is valuable
to refer to the works of Babuška [13] and Oden [126].

1.2. Literature review

1.2.1. Advances in hp-adaptivity

Adaptivity entails the selective modification of specific subdomains approxima-
tions within the computational domain rather than uniformly altering the approx-
imation over the entire domain. By focusing on relevant subdomains, adaptivity
aims to optimize the accuracy and efficiency of the solution while minimizing
computational costs. This iterative process concentrates computational resources
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on regions where accuracy improvements are most crucial, resulting in improved
overall efficiency and accuracy of the solution.

Adaptivity is critical in optimizing computational resources, particularly when
they are limited. The primary objective is to achieve the highest level of accuracy
while minimizing the nDoF required. The critical components for successful mesh
adaptation include a posteriori error estimates [2, 3, 4] based on the computed
solution, local error indicators, and a strategy that utilizes these indicators to
adapt the mesh automatically [22]. Clough’s work [50] stands out as a pioneering
contribution to developing a fully automated computer program for FEM analy-
sis. Additionally, we shall mention Bank et al. [24] for their pioneering work in
developing a global mesh adaptive algorithm.

A wide range of h-adaptive algorithms are available, and here are a few no-
table examples. Deuflhard et al. [67] introduced the KASKADE code [75, 167],
which utilizes hierarchical finite element bases as proposed by Yserentant [204].
In addition to KASKADE, other notable codes for addressing nonlinear problems
include PLTMG, developed by Bank [23], and NFEARS [115, 116], developed by
Mesztenyi and collaborators, among them. We also encounter, the work of Kar-
niadakis et al. [101, 202, 206] in spectral/hp elements applied to incompressible
and compressible flow problems. This approach combines the h-adaptive FEM
with the desirable numerical properties of spectral methods. One of the complex-
ities of this method is the requirement of two compatible meshes, which adds a
challenge to the computational process.

In addition to h-adaptive algorithms, B. A. Szabó et al. [1, 73, 181, 182] em-
ployed a p-adaptive process and rely on a priori assumptions to design a mesh
that is adequately adapted to the exact solution. Moreover, in hp-adaptive algo-
rithms, G. W. Zumbusch [215] introduced an hp-adaptive algorithm based on the
adaptive multilevel code, KASKADE. Additionally, J. Schöberl [173] developed
a mesh generator capable of generating new meshes (re-meshing) to support the
hp-adaptive process.

The work of Demkowicz et al. [62, 64, 66], and its applications [7, 8, 37, 80,
81, 84, 139, 140, 141, 145, 147, 149], proposed a method that produces optimal
hp-meshes by minimizing the local projection error based on a reference solution.
However, this approach requires implementing a Projection-Based Interpolation
(PBI) and involves computationally expensive computations on a globally refined
(h
2
, p+1)-grid. In addition, ensuring continuity via the 1-irregularity rule leads

to complex implementations.
Other hp strategies in the field include the Texas three-step approach [128],

which involves alternating between h- and p-refinements. However, this method
often produces suboptimal results. Another strategy, proposed in [5], is based
on the local regularity of the exact solution. Its suitability for industrial applica-
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tions remains uncertain, and it shares this limitation with specific Discontinuous
Galerkin (DG) methods [10, 38, 39, 54, 63, 82, 83, 93, 154]. For a comprehensive
review and comparison of existing hp-adaptive strategies up to 2014, please refer
to [118].

Implementing high-order hp-meshes presents several challenges, particularly
regarding the occurrence of hanging nodes during local h-refinements [68, 179].
These nodes must be constrained to ensure solution continuity. However, manag-
ing the data structures necessary to handle hanging nodes is complex and involves
numerous technical difficulties. To simplify implementation, especially in higher
dimensions, researchers [62, 184], among others, limit their algorithms to the
1-irregularity rule, which allows for a maximum of one level of hanging nodes.

To address these challenges and reduce implementation complexity, Zander et
al. introduced a novel data structure in their work [207, 208, 210] that sup-
ports hp-discretizations and inherently eliminates hanging nodes. Their approach
utilizes hierarchical basis functions in h and p on a multi-level grid, employing
uniform refinements with many Dirichlet nodes to ensure continuity and enable
local refinements. Replacing global uniform refinements with isotropic refine-
ments over selected elements eliminates hanging nodes while simplifying existing
data structures for hp-refinements. Kopp et al. [104, 105] have extended these
data structures to arbitrary dimensions [105] and space-time discretizations [104],
expanding the approach’s applicability.

In 2020, Darrigrand et al. [59] proposed a new automatic hp-adaptive mesh-
refinement strategy for elliptic problems that build upon Zander’s data struc-
tures [207, 208, 210]. Their approach not only eliminates mesh irregularities
caused by hanging nodes but also avoids implementations of local projections
(e.g., PBI [66]) that require the maintenance of multiple grids in the data struc-
tures. This easy-to-implement hp-strategy consists of a general (user-defined)
refinement step followed by a specific mesh coarsening step. The method uses
quadrilateral elements and alternates between global h- or p-refinements with lo-
cal and quasi-optimal hp-unrefinements (similarly to [29, 40]). In particular, the
method eliminates basis functions with the lowest contributions to the solution
energy at each hp-unrefinement step.

The coarsening-based strategy described earlier provides a significant benefit.
It can address and rectify inevitable “mistakes” that may have occurred due
to undesired basis functions introduced during global refinements or in the pre-
asymptotic regime. Moreover, subsequent unrefinement iterations can further
enhance the results, improving upon any potential non-optimal results that may
have arisen due to the approximate quasi-orthogonality assumption of the basis
functions.

Due to the inherent complexity of the hp-adaptive algorithms, both convergence
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[59, 62, 161], and optimality are desirable properties. Optimality is obtaining the
best solution using limited DoF. Canuto et al. [40] have provided proof of
optimality in 1D and 2D problems, demonstrating the ability to achieve optimal
solutions within the given DoF constraints. On the other hand, convergence
measures how closely the computed solution approaches the exact solution of
the problem. For a comprehensive understanding of convergence theory in the
context of FEM, Ciarlet [46, 47] provides a valuable reference. We shall mention
specific algorithms that have provided convergence proofs [30, 36, 41, 58].

1.2.2. Advances in Goal-Oriented adaptivity

Adaptivity aims to maximize the efficiency of computational resources while
achieving the desired level of accuracy in the solution. The conventional approach
to adaptivity, which estimates the error in a global norm (e.g., L2 or H1), may
sometimes fail to align with the specific requirements of applications. The need
to control errors in specific Quantities of Interest (QoIs), rather than the over-
all energy of the solution, is common in many engineering applications. These
requirements have driven the development of Goal-Oriented Adaptive (GOA)
strategies.

The development of Goal-Oriented (GO) adaptivity, aimed at efficiently ap-
proximating specific Quantity of Interest (QoI) with reduced computational cost,
can be attributed to the pioneering works of Rannacher et al. [26, 162, 163].
Peraire and Patera [114, 137, 138, 152, 153, 172] further expanded upon these
foundational studies. These researchers focused on deriving a posteriori error
estimates that explicitly target the error in the QoIs.

Traditional approaches for representing the error in the QoI involve utilizing
the direct and adjoint solutions and the global bilinear form of the problem. This
representation is then partitioned into local and computable quantities, which are
used to guide local refinements (see, for example, [134]). In the context of goal-
oriented error estimation, Prudhomme and Oden [129, 130, 156, 157] developed
a procedure that employs global functions defined over the entire computational
domain to represent the error in the QoI. They also proposed a method to
estimate lower and upper bounds on the QoI error using global energy error
estimates, with the bounds determined by the sum of local indicators.

The convergence analysis of adaptive algorithms can be attributed to the early
works of Dörfler and Morin [70, 121]. Before 2006, most goal-oriented meth-
ods were not proven to converge, although there were two exceptions [57, 120].
However, significant progress has been made since then, with the development of
algorithms that exhibit exponential convergence rates for specific solution prop-
erties. For instance, Mommer [119] proposed an adaptive finite element method
for approximating functionals of the solution of symmetric elliptic second-order
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boundary value problems. In 2012, Pollock’s dissertation [155] presented a con-
vergence theory for a class of goal-oriented adaptive finite element algorithms,
including works on second-order non-symmetric [92] and semilinear [91] elliptic
equations. Moreover, Feischl [76] performed an abstract analysis of optimal GO
adaptivity. Numerical results demonstrating convergence have been provided by
Darrigrand et al. [60, 61] and Valseth et al. [189], offering insightful examples.

GO adaptivity has gained significant importance in various engineering ap-
plications, such as electromagnetics [142, 143, 144]. A noteworthy example is
the work in [178], where the authors devised a GOA strategy that eschews ex-
plicit error estimates for guiding hp-refinements. Instead, they employ a suitable
reference solution to recover an approximate error function, which provides a
substantially more accurate approximation than the one obtained on the coarse
mesh. In a related study [148], the authors further investigated the effectiveness
of the GO hp-adaptive strategy by employing analytical techniques such as the
Fourier transform and Bessel functions. Specifically, they focused on a problem
involving the radiation of a loop antenna wrapped around a metallic cylinder into
a conductive medium.

The application of GO adaptivity in structural problems has its roots in the
seminal works by Oden et al. [132] and Vemaganti et al. [197]. These pioneering
studies laid the foundation for the theory and methodologies of GO adaptivity
in modeling heterogeneous materials. Subsequent advancements in the field were
made by Oden et al. [131], who explored GO adaptivity in discrete lattice models,
and Romkes et al. [169], who investigated elastostatic problems of heterogeneous
materials with material properties expressed as functions of random variables. In
2012, Jhurani et al. [96, 97] introduced a framework for numerical homogenization
and GO adaptivity for non-linear lattice elasticity problems based on the Moore-
Penrose pseudo-inverse of element stiffness matrices. Furthermore, Panetier et al.
[135], Verdugo et al. [198], and Waeytens et al. [200] made notable contributions
to the application of GO adaptivity in the field of viscoelasticity. In the context
of linear viscoelasticity, the works of Chamoin et al. [45] and Ladevèze et al.
[107, 108] are worth mentioning, as they developed error bounds for outputs of
interest.

The application of GO adaptivity in the context of fluid-structure interactions
can be traced back to the pioneering research of Th. Dune [72]. Dune’s work
introduced an innovative Eulerian framework for modeling fluid-structure inter-
actions, which incorporated a posteriori GO error estimation as a fundamental
component of the methodology. In [86], authors developed a nonlinear GO error
estimation procedure tailored explicitly to analyze Navier-Stokes incompressible
fluid flows with structural interactions. During his Ph.D. dissertation, K. G. van
der Zee made significant contributions to fluid-structure interactions [190], fur-
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ther extending the understanding and application of GO adaptivity in this area.
One example of his contributions can be seen in [193], where authors developed
a GO error estimator tailored for finite-element discretizations of fluid-structure-
interaction problems. Their study focused on a model problem involving steady
Stokes flow in a 2D channel with a flexible section of the channel wall.

Moreover, valuable contributions were made in free-boundary problems, as
demonstrated in [194, 195]. Additionally, in [196], GO error estimation in the
context of free-boundary problems, where GO error estimation was applied using
isogeometric analysis, was explored. K. G. van der Zee and colleagues also made
other noteworthy contributions. In [192], they presented rigorous derivations of
exact linearized adjoints for a coupled fluid-structure problem. At the same time,
in [191], they developed a posteriori estimate of errors in the QoI for the nonlin-
ear system of evolution equations embodied in the Cahn-Hilliard model of binary
phase transition.

1.3. Main contributions of the dissertation

The present dissertation summarizes the main contributions as follows. First, we
extend the energy-based approach proposed by Darrigrand et al. [59] to the con-
text of h- and p-GOA algorithms. To achieve this, we combine the energy-based
approach with an alternative pseudo-dual operator for representing the error in
the QoI [60]. Our proposed approach is based on defining a new representation for
the residual error of the adjoint problem, which exhibits better properties than
the original bilinear form (e.g., positive definiteness). This new representation
has been successfully used in previous studies [61, 123] and allows us to compute
the error in the QoI in a way similar to classical approaches. As a result, we
obtain automatic GO h and p-adaptive algorithms for non-elliptic problems.

Second, we extend the energy-based-adaptive hp-strategy proposed by Darri-
grand [59] to non-elliptic equations. To achieve this, we provide an alternative
estimation of the energy contribution in terms of an inner product that depends
on the bilinear form of the problem. As a result, we obtain an automatic hp-
adaptive algorithm for non-elliptic problems.

Third, we extend Darrigrand’s strategy [59] to GOA approaches for both el-
liptic and non-elliptic problems. To achieve this, we use the adjoint problem to
construct an upper bound of the error representation expressed in terms of an
inner product that depends on the bilinear form of the problem. As a result,
we obtain an automatic GO hp-adaptive algorithm for elliptic and non-elliptic
problems.

Our algorithms exhibit robustness and straightforward implementation, mak-
ing them suitable for industrial applications. Notably, our approaches do not
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require the computation of reference solutions on very fine grids, unlike other
methods such as [66]. Our approach is limited to anisotropic p and isotropic h-
refinements. However, recent work by Zander et al. [209] has extended multi-level
data structures to support anisotropic h-refinements. To showcase the effective-
ness of our algorithms, we demonstrate the convergence of our h and p-adaptive
algorithms in 1D Helmholtz and convection-diffusion equations. Additionally,
we test and analyze our hp-adaptive algorithm in three different 2D problems
based on Poisson, Helmholtz, and convection-diffusion equations. Furthermore,
we provide numerical results for a 3D Helmholtz-like problem.

Although it is possible to construct suitable a posteriori error estimators [4, 26,
163] to enhance the refinement step of the algorithm, this possibility is outside
the scope of this dissertation.

Lastly, we extend Caro et al.’s [43] work to parametric PDEs. We develop an
efficient way to generate reliable databases containing hundreds of thousands of
synthetic data or measurements while minimizing computational costs for training
Deep Neural Networks (DNNs). Due to the limited capabilities of Deep Learning
(DL) techniques in solving PDEs, we approximate the forward operator. We
adopt a modified version of the GO hp-adaptive FEM strategy [43, 44], unlike
Hashemian et al.’s [90] study, which used a refined Isogeometric Analysis (IGA)
approach to create databases of up to 100,000 Earth models.

1.4. Outline

In this dissertation, we discuss the data structures presented by Zander et al.
[207, 208, 210] in Section 2.1 of Chapter 2. We also introduce the concept of
removable basis functions in Section 2.1.1, an essential idea in this dissertation.
In Chapter 3, we present the adaptive strategy and element-wise error indicators.
Our coarsening policy is introduced in Section 3.1, and we define the concept
of projectors in Section 3.2, which applies to a single finite element mesh. We
derive error indicators in Section 3.3, which guide the adaptivity for energy-norm
and GO adaptivity. The methodology is applied to both elliptic and non-elliptic
problems. Chapter 4 provides numerical results for 1D problems using the h-
and p-GOA algorithms proposed in this dissertation. We detail the proposed
algorithms in Section 4.1 and outline the error indicators used in our h- and p-
adaptive algorithms in Section 4.2. We present numerical results demonstrating
the convergence of the proposed h- and p-GOA algorithms for 1D Helmholtz and
convection-diffusion equations in Section 4.3. Finally, Section 4.4 summarizes the
numerical results presented in this chapter. Chapter 5 illustrates the performance
of our hp-adaptive algorithm numerically. We demonstrate the exponential con-
vergence behavior of the approach for various 2D problems. Specifically, Section
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5.1 showcases the numerical results for the 2D Poisson equation, while Section
5.2 displays the results for the 2D Helmholtz equation. Additionally, we provide
numerical results for the 2D convection-diffusion equation in Section 5.3. Finally,
Section 5.4 summarizes the numerical results presented in this chapter. In Chap-
ter 6, we present the numerical results for 3D problems. Section 6.1 showcases a
wave propagation problem and presents the energy norm and goal-oriented adap-
tivity results. Finally, Section 6.2 summarizes the numerical results presented
in this chapter. Chapter 7 examines the performance of our Multi-Adaptive
Goal-Oriented (MAGO) hp-strategy. Section 7.1 showcases the extension of the
hp-strategy for non-parametric PDEs to parametric PDEs. Moreover, we describe
the generation of databases in Section 7.2. Finally, Section 7.3 summarizes the
numerical results presented in this chapter. We use the 2D Helmholtz equation
to illustrate the effectiveness of our strategy. Chapter 8 summarizes the critical
accomplishments of this dissertation, while Chapter 9 presents the dissertation’s
concluding remarks and future work.
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Goal-Oriented hp-adaptivity for
non-parametric PDEs
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2. Multi-level hp-meshes

2.1. Data structures

Classical adaptive schemes involve refining a coarse mesh to obtain finer ones,
which can lead to the appearance of hanging nodes during local h or hp refine-
ments. These nodes must be constrained to ensure the global continuity of the
approximate solution. However, this requirement often creates significant imple-
mentation challenges (see, e.g., [160]).

In 1971, Mote proposed an alternative procedure by combining the finite ele-
ment Ritz method following the idea of refining by superposition (see, e.g., [122,
124]). This approach, nowadays known as superposition techniques, maintains an
initial base discretization unmodified and subsequently overlaps one (or several)
finer overlay mesh(es). Accordingly, the initial coarse grid captures the large-
scale characteristics of the solution while the overlaying mesh(es) reproduces the
small-scale features. In 2015, Zander et al. [208] took advantage of this superpo-
sition idea and proposed a data structure that enables local hp-mesh refinements
and unrefinements while efficiently handling the constrained hanging nodes that
naturally appear during local h-refinements (see, e.g., [64, 179]).

Following the data structures introduced in [208], we impose a massive number
of Dirichlet nodes throughout the overlay mesh(es), thus ensuring the continuity
of the solution by construction. Basically, in the overlay meshes, we only add
globally continuous basis functions (see Figure 2.1) rather than possibly discon-
tinuous shape functions (see, e.g., [59, 208]). That leads to a relatively simple
implementation where imposing the one-irregularity rule [66] is unnecessary. In
addition, to guarantee the linear independence of the basis functions, high-order
basis functions are only activated on those elements with no further refinements
in h (see Figure 2.1). Such elements without further refinements may be en-
countered even in the initial level of the mesh in the case of unrefined elements.
In particular, when performing an h-refinement, high-order basis functions are
transferred to the children. For further details, we refer the reader to [210].

11



2. Multi-level hp-meshes

Dirichlet nodes Active nodes Removable basis

level 0 (base)

level 1

level 2

Overlapped mesh
p = 3 p = 2p = 3 p = 3 p = 1 p = 1

Figure 2.1.: Illustration of a 1D multi-level hp-grid with hierarchical basis func-
tions and Dirichlet nodes. Removable basis functions are indicated
in red.

2.1.1. Removable basis functions in a multi-level hp-mesh

In 2020, Darrigrand et al. [59] proposed an easy-to-implement hp-adaptive strat-
egy for elliptic problems that exploited Zander’s data structures [210]. The main
idea of this work consists of incorporating a coarsening strategy that identifies
the basis functions that can be directly removed. Hence, we define these remov-
able basis functions as those we can eliminate from the discretization without
modifying any other basis function while preserving complete polynomial spaces.
Figure 2.1 shows the removable basis functions in red and the non-removable
basis functions in black.

For 2D and 3D problems, our current implementation defines the basis func-
tions as tensorial products of the 1D basis functions. Additionally, we incorporate
anisotropic p and isotropic h refinements. However, according to the recent work
of Zander et al. [209], it could be possible to extend these ideas to anisotropic
h-refinements. To find specific details about the discretization and the properties
of the genealogy tree (which are beyond the scope of this dissertation), we refer
the interested reader to [59]. For further details and the specifications about the
extension to 2D and 3D data structures, we refer to [210].
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3. Goal-Oriented coarsening
strategy

This chapter describes our adaptive strategy and the error indicators we use to
guide the hp-unrefinement steps. We begin by outlining our mesh generation and
coarsening policy algorithmically. Following that, we introduce projectors and
their role in a single finite element mesh, enabling us to simulate a second grid’s
presence while working with only one. Lastly, we derive the error indicators in
the coarsening steps for various strategies, including energy-norm, Goal-Oriented
(GO), and elliptic and non-elliptic problems.

3.1. Unrefinement policy

Adaptive Finite Element Methods (FEMs) aim to reduce computational costs
while ensuring low discretization errors. In this dissertation, we employ the adap-
tive algorithm introduced in [59]. This algorithm iterates through the following
steps for a given hp-grid:

1. Perform a user-defined mesh refinement. In our implementation, we alter-
nate between global and uniform h- and p = p+ 2-refinements.

2. Perform a (quasi)-optimal hp-coarsening step.

This procedure is illustrated in Algorithm 1. We emphasize that these repeated
uniform global refinements guarantee the convergence of the approach. In con-
trast, the coarsening step ensures nearly optimal convergence rates [29, 40].

Similarly to [59], the main ingredients of our hp-coarsening step (see Algo-
rithm 2) are:

1. To compute the solution on the current mesh.

2. For each element of the mesh:

a) To find the removable basis functions whose support contains the ele-
ment.

b) To calculate the contribution of the removable basis functions to the
solution.
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Algorithm 1: Adaptive process

Input: A given initial mesh
Output: A final hp-adapted mesh
while error above tolerance do

Perform a global and uniform (h or p) refinement;
Execute a (quasi)-optimal hp-coarsening step (Algorithm 2) to the
mesh;

Update error;

end

3. Remove the basis functions with small contributions.

The above process is repeated until no basis function is eliminated. Figure 3.1
illustrates the h-unrefinement policy. A given coarse mesh in Figure 3.1a is h-
refined globally in Figure 3.1b. Then, after an unrefinement process, we obtain
the adapted mesh displayed in Figure 3.1c.

(a) A initial (given) mesh. (b) An h-refined mesh. (c) An h-adapted mesh.

Figure 3.1.: Adaptive process illustrated over a square domain with a hole in the
middle (marked in gray).

The definition of the contributions of the removable basis functions to the
solution is problem-dependent. To provide representative quantities for energy-
norm-based and Goal-Oriented Adaptive (GOA) strategies over elliptic and non-
elliptic problems, we first introduce our projectors in a single finite element grid
context.
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Algorithm 2: hp-unrefinement policy

Input: A given mesh
Output: An hp-unrefined mesh
do

Compute the solution on the current mesh;
Compute the element-wise error indicators;
Unrefine the mesh by eliminating the removable basis functions with
low error indicators;

When no contributions are below a given tolerance, exit;

end ;

3.2. Projectors

For dimension d ∈ {1, 2, 3}, let Ω ⊂ Rd be an open bounded domain with a
Lipschitz-continuous boundary ∂Ω, and let H (Ω) be a Hilbert functional space
on Ω (simply denoted as H in the following). For a given continuous bilinear
form b defined on H × H, let us define our problem with the following abstract
variational formulation:

Find u ∈ H such that

b (u, ϕ) = f (ϕ) , ∀ϕ ∈ H, (3.1)

where f is a linear form. The discrete counterpart of this abstract variational
formulation reads as follows:

Find uF ∈ HF such that

b (uF , ϕF) = f (ϕF) , ∀ϕF ∈ HF , (3.2)

where HF := span {ϕ1, . . . , ϕnF} is a finite element discretization T of H, such
that HF ⊂ H, F = {ϕi}nF

i=1 is a set of basis functions ϕi, and nF = dim (HF).
Besides, uF corresponds to the Galerkin approximation of u in HF .

Some hp techniques handle a fine and a coarse mesh at the same time (see,
e.g., [62, 64]). In addition to the coding difficulties derived from this fact,
they typically need to define and implement projection operators (such as the
Projection-Based Interpolation (PBI)) to link both grids. One of the main char-
acteristics of our “painless” approach is continuously operating on a single mesh.
While it simplifies the implementation, it requires defining a simple projector
that simulates the presence of a coarse mesh without the trouble of handling one.
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For a given subset of basis functions S ⊂ F that generates the space HS ⊂ HF ,
we define our projection operator ΠS

F : HF −→ HS as

ΠS
FuF :=

∑
ϕi∈S

uiϕi, (3.3)

that is, we extract the coefficients of uF corresponding to the basis functions in
S, and we set the others to zero.

For any element K, we denote by RK the set of removable basis functions
(see Section 2.1.1) associated to K, by |RK | its cardinality, and by HRK

its
associated space. Additionally, we define the subset of essential basis functions
EK as EK := F \RK , while its associated space is denoted by HEK . These spaces
satisfy that HEK ⊂ HF , HRK

⊂ HF , and HF = HEK ∪HRK
, with HEK ∩HRK

= ∅.
As a consequence, we can express any uF ∈ HF , as:

uF = ΠEK
F uF + ΠRK

F uF . (3.4)

Since we consider a single mesh at a time, the solution uEK in EK associated
to eq. (3.2) is, in fact, never computed. Instead, we employ the projection of uF
into EK to approximate it when necessary.

3.3. Error indicators

Let ∥·∥e be the energy norm associated with the Hilbert space H. For elliptic
problems (given by symmetric and positive-definite bilinear forms), we define this
energy from the bilinear form of the problem b, that is, ∥·∥2e = b (·, ·). For each
non-elliptic problem, we shall define an alternative operator a not necessar-
ily the original bilinear form such that |b (ϕ, ψ)| ≤ |a (ϕ, ψ)| ∀ϕ, ψ ∈ H and
∥·∥2e = a (·, ·) is the energy norm of the problem (i.e., a defines an inner product).
We emphasize that the choice of these operators might highly influence the re-
sults of the adaptive process, which is usually an essential ingredient of adaptive
strategies.

With this in mind, our objective is to provide representative element-wise error
indicators that drive the hp-coarsening steps (see Algorithm 2). For that, we
consider isotropic and anisotropic indicators that are problem-dependent. In the
following subsections, we derive only the isotropic error estimators ηK ,∀K ∈ T
for a wide range of problems (see [59], for anisotropic indicators).

To select what basis functions to unrefine, we compute the error indicators’ av-
erage (per degree of freedom) for the removable basis functions. We subsequently
eliminate the removable basis function whose contribution is smaller than a per-
centage of this average. For further details and implementation technicalities,
see [59].
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3. Goal-Oriented coarsening strategy

In the following, we summarize the results from Darrigrand et al. [59] for elliptic
energy-norm-based adaptive problems from the energy-norm perspective. After
that, we extend these results to non-elliptic equations, and finally, we consider
GO adaptivity applied to elliptic and non-elliptic problems. We can obtain all
the proposed results by assuming (quasi)-b-orthogonality of the basis functions.
However, this assumption is strong and unneeded for the energy-based adaptivity,
and, therefore, we only employ it for GO adaptivity.

To do so, let us denote by “≲” the inequality that holds up to a constant; that
is, we represent a ≤ Cb by a ≲ b, with a, b, C ∈ R, and let us define the L2-inner
product of two possible complex and possibly vector-valued functions g1 and g2
as:

⟨g1, g2⟩L2(Ω) =

∫
Ω

(g∗1)T g2 dΩ, (3.5)

where gT is the transpose of g, while g∗1 represents the complex conjugate of g1.

3.3.1. Energy-norm based elliptic problems

For a given element K ∈ T , the objective is to quantify how much energy we
lose in the solution when removing a subset of basis functions of the set of re-
movable basis functions RK . Specifically, we want to compute ∥uF − uEK∥

2
e. If

this quantity is small, we guarantee that the energy of the removed set of basis
functions is insignificant. Therefore, the fine and the unrefined meshes would
provide comparable results.

Analogously to Cea’s lemma proof, we derive:

∥uF − uEK∥
2
e = b (uF − uEK , uF − uEK ) (3.6)

= b
(
uF − uEK , uF − ΠEK

F uF
)

+ b
(
uF − uEK ,Π

EK
F uF − uEK

)
(3.7)

≤ ∥uF − uEK∥e
∥∥uF − ΠEK

F uF
∥∥
e
, (3.8)

where we have used the b-orthogonality of uF − uEK with HEK and the Cauchy-
Schwarz inequality. Therefore,

∥uF − uEK∥e ≤
∥∥uF − ΠEK

F uF
∥∥
e

=
∥∥ΠRK

F uF
∥∥
e
. (3.9)

It is then natural to define the following element-wise error indicator:

ηK :=
∥∥ΠRK

F uF
∥∥2

e
, ∀K ∈ T . (3.10)

3.3.2. Extension to energy-based non-elliptic problems

Again, our purpose is to compute ∥uF − uEK∥
2
e to eliminate the removable basis

functions with a low contribution to the solution. For that, let us start with the
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3. Goal-Oriented coarsening strategy

triangular inequality, which provides that

∥uF − uEK∥e ≤
∥∥uF − ΠEK

F uF
∥∥
e

+
∥∥ΠEK

F uF − uEK
∥∥
e
. (3.11)

Let us assume now that b satisfies the discrete inf-sup condition:

∃ γ > 0, inf
ϕ∈HEK

sup
ψ∈HEK

b (ϕ, ψ)

∥ϕ∥e ∥ψ∥e
≥ γ. (3.12)

Then, using this inequality and the b-orthogonality of uF − uEK with respect to
HEK , we control the second term of eq. (3.11):

γ
∥∥ΠEK

F uF − uEK
∥∥
e
≤ sup

ψ∈HEK

b
(
ΠEK

F uF − uEK , ψ
)

∥ψ∥e
(3.13)

≤ sup
ψ∈HEK

b
(
ΠEK

F uF − uF , ψ
)

+ b (uF − uEK , ψ)

∥ψ∥e
(3.14)

≤ sup
ψ∈HEK

Mb

∥∥ΠEK
F uF − uF

∥∥
e
∥ψ∥e

∥ψ∥e
(3.15)

≤Mb

∥∥uF − ΠEK
F uF

∥∥
e
, (3.16)

where Mb is the continuity constant of b. Therefore,

∥uF − uEK∥
2
e ≲

∥∥uF − ΠEK
F uF

∥∥2

e
=

∥∥ΠRK
F uF

∥∥2

e
. (3.17)

Accordingly, we define the element-wise indicator as follows:

ηK :=
∥∥ΠRK

F uF
∥∥2

e
, ∀K ∈ T . (3.18)

The coarsening step will unrefine the elements that exhibit small ηK . Therefore,
eq. (3.17) ensures that the problem’s energy loss will be negligible when removing
these basis functions.

3.3.3. Extension to Goal-Oriented adaptivity

GOA techniques aim to approximate specific quantities of finite element solutions
rather than the global energy of the problem. These quantities with particular
engineering applications are often called influence functions or Quantities of In-
terest (QoIs). Thus, the objective is to produce a space HF with a minimum
dimension such that the error in the Quantity of Interest (QoI) is below a user-
prescribed tolerance. To control the error in the QoI, we introduce the following
adjoint problem [130, 156] associated to eq. (3.1):
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3. Goal-Oriented coarsening strategy

Find v ∈ H such that

b (ϕ, v) = l (ϕ) , ∀ϕ ∈ H, (3.19)

where l : H −→ R is a linear continuous form. Hence, the QoI of the solution uF
is denoted by l (uF). The discrete equivalent of this problem is given by:

Find vF ∈ HF such that

b (ϕF , vF) = l (ϕF) , ∀ϕF ∈ HF , (3.20)

where vF stands for the Galerkin approximation of the solution v to the adjoint
problem associated with the space HF . For the mathematical analysis, we also
consider the solution vEK in EK associated with eq. (3.20), although we never
compute it in practice.

For a given element K ∈ T , we want to quantify how much the QoI changes
when removing some basis functions from the set of removable basis functions
RK associated with K. That is, we need to control |l (uF) − l (uEK )| , ∀K ∈ T .

Since HEK ⊂ HF , Galerkin orthogonality ensures that

b (uF − uEK , ϕ) = 0, ∀ϕ ∈ HEK . (3.21)

Then,

l (uF) − l (uEK ) = b (uF − uEK , vF) = b (uF − uEK , vF − vEK ) . (3.22)

Using eq. (3.4) on vF , we have that:

l (uF) − l (uEK ) = b
(
uF − uEK ,Π

RK
F vF + ΠEK

F vF − vEK
)

(3.23)

= b
(
uF − uEK ,Π

RK
F vF

)
+ b

(
uF − uEK ,Π

EK
F vF − vEK

)
. (3.24)

Again, thanks to Galerkin orthogonality the second term vanishes. Then, ap-
plying eq. (3.4) on uF to the remaining term, we have that

l (uF) − l (uEK ) = b
(
ΠRK

F uF + ΠEK
F uF − uEK ,Π

RK
F vF

)
(3.25)

= b
(
ΠRK

F uF ,Π
RK
F vF

)
+ b

(
ΠEK

F uF − uEK ,Π
RK
F vF

)
. (3.26)

Additionally, if we assume that EK is (quasi) b-orthogonal to RK due to the
(quasi)-orthogonality assumption of the basis functions, then

b
(
ΠEK

F uF − uEK ,Π
RK
F vF

)
≃ 0, (3.27)
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3. Goal-Oriented coarsening strategy

and consequently,

|l (uF) − l (uEK )| ≃
∣∣b (ΠRK

F uF ,Π
RK
F vF

)∣∣ ≤ ∣∣a (ΠRK
F uF ,Π

RK
F vF

)∣∣ . (3.28)

Then, we define the element-wise indicators as

ηK :=
∣∣a (ΠRK

F uF ,Π
RK
F vF

)∣∣ , ∀K ∈ T . (3.29)

Here again, eq. (3.28) ensures that eliminating the basis functions associated
with small indicators during the coarsening process should have a limited effect
on the error of the QoI.
Remark : Since b is continuous on H with respect to the energy norm, we also

have

|l (uF) − l (uEK )| ≃
∣∣b (ΠRK

F uF ,Π
RK
F vF

)∣∣ ≲ ∥∥ΠRK
F uF

∥∥
e

∥∥ΠRK
F vF

∥∥
e
, (3.30)

and we could also define the element-wise indicators based on the above equation.
Notice that if we select l to be the source term in the adjoint problem defined
by eq. (3.19), with eq. (3.30) we recover the element-wise indicators derived pre-
viously in eqs. (3.10) and (3.18). However, in the forthcoming numerical results,
we employ the estimators based on eq. (3.29).

3.3.4. Error indicators using a pseudo-dual operator

The adjoint problem is often employed in the literature to guide GO refinements
(see, e.g., [130, 156]). In addition, for the case of indefinite or non-symmetric
problems, we further need to introduce an inner product (symmetric and positive
definite form) to guide the refinements.

To overcome this issue, we first define ΠEK
F vF as a projection of the dual solution

vF into a given subset of essential basis functions EK . Such projections can be
trivially implemented in the context of the multi-level data structures proposed
in Zander et al. [207, 208, 210]; but not when using traditional data structures
like those described in [62, 64, 65]. Then, we introduce a pseudo-dual bilinear
form b̂, in this case, defined by the 1D Laplace operator (although it is possible
to select other symmetric positive definite bilinear forms) to solve the following
residual-based pseudo-dual problem:

Find ε̃ such that

b̂ (ϕF , ε̃) = l (ϕF) − b
(
ϕF ,Π

EK
F vF

)
, ∀ϕ ∈ H. (3.31)
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3. Goal-Oriented coarsening strategy

In previous work, Romkes et al. [168] introduced an elliptic error representation.
Later, Darrigrand et al. [60] utilized this concept in traditional data structures.
However, their approach required dealing with two grids (fine and coarse) and PBI
operators [62, 64, 66], which made implementation and mathematical analysis
highly complex. In contrast, we define problem (3.31) using a simpler approach.
We use the projection of vF into EK , denoted as ΠEK

F vF .
Thus, we define ηK as the error indicator associated with the element K as

follows
ηK :=

∣∣∣b̂ (ΠRK
F uF , ε̃

)∣∣∣ , ∀K ∈ T , (3.32)

i.e., we define the operator a (·, ·) simply as a (·, ·) = b̂ (·, ·).
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4. 1D Numerical results for
Goal-Oriented h- and
p-adaptivity

This chapter describes our h- and p-adaptive strategies tailored to address 1D
problems governed by Helmholtz and convection-diffusion equations. These adap-
tive algorithms offer a distinctive approach, focusing on minimizing the error in
a specific Quantity of Interest (QoI) rather than the global error. We will com-
prehensively describe our adaptive algorithms, elaborating on the error indica-
tors utilized throughout this chapter. Our approach incorporates a pseudo-dual
operator given by eq. (3.31), which proves advantageous for non-elliptic Goal-
Oriented (GO) problems. The numerical results were published in Caro et al.
[44].

The h- and p-adaptive algorithms proposed in this chapter follow the next
refinement pattern: first, we perform a global and uniform h- or p-refinement (for
the h- and p-adaptive versions, respectively). Then, we perform a coarsening step,
removing some basis functions. This procedure is illustrated in Algorithm 1, and
it was already introduced in [59] in the context of energy-norm adaptivity. The
critical part is the coarsening step we depict in Algorithm 2. The critical step here
is the computation of the element-wise error indicators described in section 3.3.
In particular, we employ the eq. (3.32) to compute the error indicators utilized
throughout this chapter.

To illustrate the performance of our adaptive strategies, we consider two prob-
lems governed by Helmholtz and convection-diffusion equations. We provide the
evolution of the relative error in the QoI for h- and p-adaptivity and different val-
ues of the Partial Differential Equation (PDE) parameters. To define the relative
error in the QoI, we compute l (u) on a globally refined mesh. Then, we define
the relative error in a QoI in percentage as follows:

eQoI
rel :=

|l (u) − l (uTc)|
|l (u)|

· 100, (4.1)

where u is the solution in a fine grid, while uTc is the solution associated with a
coarser unrefined mesh. In some cases where the exact solution is available, we
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4. 1D Numerical results for Goal-Oriented h- and p-adaptivity

will replace the fine grid solution u with the exact solution, and we will directly
compute eQoI

rel .

4.1. Helmholtz Goal-Oriented problem

Let us consider the following wave propagation problem:

Find u such that,

−u′′ − k2u = 1(0, 25) in (0, 1) , (4.2)

u (0) = 0, (4.3)

u′ (1) = 0. (4.4)

We define the QoI as l (u) = 5 ·
∫ 4

5
3
5

u dx. Figures 4.1 and 4.2 show the evolution of

eQoI
rel by using h- and p-adaptivity, respectively. Note that the larger the number

of Degrees of Freedom (nDoF) per wavelength, the faster eQoI
rel decreases. For

example, in Figure 4.1, for k = 7·2π, 10 Degrees of Freedom (DoF) per wavelength
are sufficient to enter into the so-called asymptotic regime. In contrast, for k =
28·2π, we need to consider at least 40 DoF per wavelength. In Figure 4.2, we select
the initial mesh size such that the nDoF per wavelength is at least 3. This way,
we satisfy the Nyquist rate. Both Figures 4.1 and 4.2 show optimal convergence
rates in both h- and p-adaptivity. As a curiosity, we observe that the curves in
Figure 4.1 are parallel, while the ones in Figure 4.2 coincide. That occurs due to
dispersion (pollution) error, which quickly disappears with the p-method.

Figure 4.3 shows the solutions for the case k = 7 · 2π. We also provide the
corresponding h- and p-adaptive meshes. For the p-adaptive mesh, we show the
mesh obtained in the 6th iteration, containing high approximation orders. To
visualize the h-adaptive mesh, we display the mesh obtained in the 5th iteration.
During this iteration, the refinements are denser in areas where the solution
changes rapidly or exhibits sharp gradients. As a result, the element sizes in
these regions are smaller than in other areas.
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Figure 4.1.: Evolution of eQoI
rel using h-adaptivity. Initial mesh size h = 1
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4. 1D Numerical results for Goal-Oriented h- and p-adaptivity
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Figure 4.3.: Solutions with k = 7 · 2π problem after the h-adaptive process.

25



4. 1D Numerical results for Goal-Oriented h- and p-adaptivity

4.2. Convection-diffusion Goal-Oriented problem

Let us consider the boundary value problem associated with steady convective-
diffusive transport:

Find u such that,

−εu′′ + σ · u′ = 1(0,1) in (0, 1) , (4.5)

u (0) = u (1) = 0,

with σ = 1, and 0 < ε ≪ 1 the diffusive coefficient. We define the QoI as
l (u) = 5 ·

∫ 1
4
5
∇u dx.

30 100 400 900
10−14

10−10

10−6

10−2

102

nDoF

R
el

at
iv

e
er

ro
r

in
th

e
Q

oI
(%

)

ε = 10−3 ε = 10−4

ε = 10−5

Figure 4.4.: Evolution of eQoI
rel using h-adaptivity. Initial mesh size h = 1

30
and

uniform p = 1.

We present the evolution of eQoI
rel with both h- and p-adaptivity in Figures 4.4

and 4.5, respectively. We achieve optimal convergence rates; but a smaller diffu-
sive coefficient ε requires more nDoF to achieve these rates. To avoid potential
rounding errors, we limit the order for p refinements not to exceed p = 19, as
observed in Figure 4.5.

In the case ε = 10−3, the solutions are displayed in Figure 4.6. We have also
included the meshes and solutions corresponding to the 8th iteration for the h-
and p-adaptive cases. We show the h-adaptive mesh obtained during the 8th
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Figure 4.6.: Solutions with ε = 10−3 problem after the h-adaptive process.

iteration for visualization purposes. In this iteration, refinements are denser in
areas where the solution rapidly changes or sharp gradients exist. As a result,
the element sizes in regions with boundary layers are smaller than in other areas,
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while the polynomial orders p reach the value p = 15.
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5. 2D Numerical results for
hp-adaptivity

This chapter provides an overview of the performance of our hp-adaptive strat-
egy for a wide range of problems. We solve 2D elliptic and non-elliptic prob-
lems based on Poisson, Helmholtz, and convection-diffusion equations exhibit-
ing multiple singularities. For each example, we first display the results as-
sociated with the energy-norm adaptivity, followed by Goal-Oriented Adaptive
(GOA) results. For all the experiments, we consider the Hilbert space H =
{u ∈ H1 (Ω) |u = 0 on ΓD} , where Ω is the computational domain, and display
the final adapted h- and hp-meshes and the convergence curves for hp-adaptivity
and h-adaptivity with uniform p = 1 and p = 2. All the experiments start with
a coarse mesh that is conforming to the materials and the source.

We refer to u as the solution in a fine grid, while uTc is the solution associated
with a coarser unrefined mesh. In energy-norm adaptivity, we define the relative
error in percentage as:

eenergyrel :=
∥u− uTc∥H

∥u∥H
· 100. (5.1)

Our easy-to-implement approach only stores one grid at a time rather than main-
taining several grids. Thus, we estimate the following lower bound of the error
eenergyrel as follows:

ẽ energy
rel :=

|∥u∥H − ∥uTc∥H|
∥u∥H

· 100 ≤ eenergyrel . (5.2)

If the exact solution is available, we replace u with the exact solution to compute
eenergyrel directly.

For the GOA problems, we define our Quantity of Interest (QoI) as

l (ϕ) =
1

|Ωl|
⟨1Ωl

, ϕ⟩L2(Ω) , ∀ϕ ∈ H, (5.3)

where |Ωl| defines the area or volume of Ωl and 1Ωl
is a function equal to one if

x ∈ Ωl, and zero otherwise. The subdomain Ωl can be either a portion of the
domain or a boundary region.
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5. 2D Numerical results for hp-adaptivity

5.1. Singular Poisson example

We consider the following elliptic problem based on the Poisson equation.

Find u such that

−∆u = 1Ωf
in Ω, (5.4)

u = 0 on ∂Ω, (5.5)

where Ω =
(
(0, 1) ×

(
1
4
, 3
4

))
∪
((

1
4
, 3
4

)
× (0, 1)

)
⊂ R2 and Ωf =

(
1
4
, 1
2

)2 ⊂ Ω.

Following the definition of eq. (5.3) for the QoI, we select Ωl =
(
1
2
, 3
4

)2 ⊂ Ω.
Figure 5.1 shows the domain Ω of this elliptic problem. For elliptic problems in
energy-norm adaptivity, we refer the interested reader to [59]. For Goal-Oriented
(GO) adaptivity, Figures 5.2a and 5.2b show the solutions of the direct and
adjoint problems, respectively.

We define the operators b (·, ·) and a (·, ·) associated with the above problem as
follows:

b (·, ·) := ⟨∇· ,∇·⟩L2(Ω) , (5.6)

and a (·, ·) = b (·, ·).
Figure 5.3 shows the final h- and hp-adapted meshes and the evolution of eQoI

rel .
The first uniform mesh is composed of twelve root elements: given an initial 4×4
grid over a square domain, we have removed the four corner elements. The grid
adapts to the four localized reentrant corners of the domain. The hp-adaptive
strategy performs h-refinements near these singularities and p-refinement as we
move away from them, as physically expected. We also observe heavy refine-
ments around the central point of the domain. That is the only point where the
right-hand sides of the direct and adjoint problems are discontinuous; therefore,
solutions of the direct and adjoint problems simultaneously exhibit low regular-
ity (only H2). Consequently, some refinements there are expected. Convergence
rates of the proposed hp-adaptive strategy are quasi-optimal (see Figure 5.3d).
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Ω

ΓD
0 1

1

Figure 5.1.: Our singular Poisson example is defined over the domain Ω. The
Dirichlet boundary is denoted by ΓD. The source function is sup-
ported on Ωf , and the QoI l (ϕ) is supported on Ωl.
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(b) Solution to the adjoint problem.

Figure 5.2.: Direct and adjoint solutions of our singular Poisson example.
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Figure 5.3.: Final h- and hp-adapted meshes for our singular Poisson example.
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5.2. Wave propagation problem

We consider the following non-elliptic problem based on Helmholtz’s equation.

Find u such that,

−∆u− k2u = 1Ωf
in Ω, (5.7)

u = 0 on ΓD, (5.8)

∇u · n⃗ = 0 on ΓN , (5.9)

where Ω = (0, 1)2 \
(
1
4
, 3
4

)2 ⊂ R2, Ωf =
(
0, 1

4

)2 ⊂ Ω, and k = (8 · 2π, 2π).
The complex-valued k indicates the medium is lossy. ΓD and ΓN stand for the
parts of the boundary ∂Ω where we impose homogeneous Dirichlet and Neumann

boundary conditions, respectively. From eq. (5.3), we define Ωl =
(
3
4
, 1
)2 ⊂ Ω.

Figure 5.4 shows the domain of this hyperbolic (non-elliptic) problem.

Ωf

Ωl

ΓD

ΓN

Ω

Figure 5.4.: Our wave propagation example is defined over the domain Ω with
a hole in the middle (marked in gray). The Dirichlet boundary is
denoted by ΓD, while the Neumann boundary condition is denoted
by ΓN . The source function is supported on Ωf , and the QoI l (ϕ) is
supported on Ωl.

5.2.1. Energy-norm adaptivity

For GO adaptivity, Figures 5.5a and 5.5b show the solutions to the direct and
adjoint problems, respectively. Figure 5.6 shows the final h- and hp-adapted
meshes and Figure 5.7 shows the evolution of ẽ energy

rel and eQoI
rel . The initial uniform
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mesh is composed of twelve root elements. We perform a double h-hierarchical
refinement on the initial mesh to obtain a fine mesh to start the adaptivity.
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(a) Solution to the direct problem.
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(b) Solution to the adjoint problem.

Figure 5.5.: Absolute value of the direct and adjoint solutions of our wave prop-
agation example in a lossy medium.

For the h-adapted case, we observe heavy refinements around the source; how-
ever, almost no refinement occurs near the QoI. That happens due to the lossy
nature of the problem. As a result, we observe a proper energy-norm conver-
gence, as shown in Figure 5.7a, but a poor convergence behavior in the QoI, as
demonstrated in Figure 5.7b.

When implementing the hp-adaptive strategy, the refinements tend to be denser
around the source than in the vicinity of the QoI. However, some non-trivial
refinements still occur around the QoI. Despite this, the relative error in the QoI,
denoted as eQoI

rel , still converges to a level of 10−3% with just 20k unknowns.
We define the operators b (·, ·) and a (·, ·) associated with the above problem as

follows:

b (·, ·) := ⟨∇· ,∇·⟩L2(Ω) − k2 ⟨· , ·⟩L2(Ω) , a (·, ·) :=
∣∣∣⟨∇· ,∇·⟩L2(Ω)

∣∣∣ +
∣∣k2∣∣ ∣∣∣⟨· , ·⟩L2(Ω)

∣∣∣ .
(5.10)

Once more, ∥·∥2e = a (·, ·) defines our energy norm and |b (ϕ, ψ)| ≤ |a (ϕ, ψ)| , ∀ϕ, ψ ∈
H.
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(a) Final hp-adapted mesh with polynomial
orders in the x-direction.
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(b) Final hp-adapted mesh with polynomial
orders in the y-direction.
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(c) Final h-adapted mesh, p = 1.

Figure 5.6.: Final h- and hp-adapted meshes for our wave propagation example
in a lossy medium.
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(a) Evolution of ẽ energy
rel in the process.
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Figure 5.7.: Energy-norm adaptivity. Evolution of ẽ energy
rel and eQoI

rel in our wave
propagation example in a lossy medium.
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(a) Evolution of goal-oriented adaptivity.
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(b) Evolution of energy-norm adaptivity.

Figure 5.8.: Convergence history of eQoI
rel and ẽ energy

rel for the energy-norm and GO
hp-adaptive strategies.
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5.2.2. Goal-Oriented adaptivity

Figure 5.9 shows the final h- and hp-adapted meshes and the evolution of eQoI
rel .

The initial mesh is uniform and composed of twelve root elements. As in the
energy-norm adaptivity, we perform a double h-hierarchical refinement on the
initial mesh to obtain a fine mesh to start the adaptivity. We observe heavy
h-refinements around four localized singularities at the interior corners of the
domain. In addition, we recover exponential convergence rates for the h- and
for the hp-adaptive versions. As a result, we construct a hp-adapted mesh with
20k unknowns that delivers a relative error in the QoI of 10−6% (three orders of
magnitude better than in Figure 5.7b).

To better illustrate this idea, Figure 5.8 compares the evolution of eQoI
rel and

ẽ energy
rel when executing the energy-norm and the GO hp-adaptive strategies in our

wave propagation example in a lossy medium. Figure 6.4a shows a relative error
in the QoI three orders of magnitude better when performing GO adaptivity than
considering energy-norm adaptivity. Figure 6.4b shows that the ẽ energy

rel rapidly
converges when employing energy-norm adaptivity, while with the hp-adaptive
GO strategy, the rapid initial convergence stagnates at the level of 10−6%. As
expected, this situation is also noticeable in terms of h-adaptivity (see Figures 5.7
and 5.9d).
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(a) Final hp-adapted mesh with polynomial
orders in the x-direction.
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(b) Final hp-adapted mesh with polynomial
orders in the y-direction.
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(c) Final h-adapted mesh, p = 1.
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(d) Evolution of eQoI
rel in the process.

Figure 5.9.: Final h- and hp-adapted meshes for our singular GO wave propaga-
tion example in a lossy medium and the evolution of eQoI

rel .
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5.3. Convection-dominated diffusion problem

5.3.1. Convection-dominated diffusion: example 1

We consider the following non-elliptic problem based on the convection-dominated
diffusion equation.

Find u such that,

−ε∆u+ σ · ∇u = f in Ω, (5.11)

u = 0 on ∂Ω.

The selection of a suitable norm to measure the error in problems based on
eq. (5.11) is an open research subject. For instance, authors of [77, 78] use
the standard energy norm, in [79] a balanced norm, and in [180, 199] different
norms from the previous ones. In here, we define the operators b (·, ·) and a (·, ·)
associated with the above problem as follows:

b (·, ·) := ε ⟨∇· ,∇·⟩L2(Ω) + ⟨σ∇· , ·⟩L2(Ω) , a (·, ·) := (ε+ C) ⟨∇· ,∇·⟩L2(Ω) ,

(5.12)

where ∥·∥2e = a (·, ·) is our energy norm and C ∈ R+. We select this definition
of a (·, ·) by bounding from above the convective term of b (·, ·) using a mesh-
independent constant C for the Poincaré inequality that also includes the effect
of σ 1 2.

5.3.1.1. Energy-norm adaptivity

For this example, we consider ε = 10−3 as the diffusive coefficient, σ = (3, 1)T,
and Ω = (0, 1)2. The load function f is a linear continuos form on H and it is
selected so that the solution u is of the form:

u (x, y) = e
ε

x(x−1) cosh
(

500
(1

2
+ σ−1 (x,−y)

))−2

. (5.13)

Figure 5.10 shows the solution of this convection-dominated diffusion example.
The initial uniform mesh is composed of thirty-six root elements. Figure 5.11

1It is essential to consider a mesh-independent norm a (·, ·)1/2 since we approximate some
errors by computing the difference of the norm of two approximated solutions evaluated on
different grids.

2The actual value of the constant C is unneeded in practice since we compute relative error
indicators; in our case, we select (C + ε) = 1.
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shows the final energy-norm h- and hp-adapted meshes and the evolution of erel.
As expected, we observe heavy h-refinements around the line that characterizes
the solution. In the hp-adapted case, we also observe an increase in the polynomial
order in some of the elements near this characteristic line. We also observe
exponential convergence rates (see Figure 5.11d).
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−1.4 · 10−4 0.5 1

Value of the solution

Figure 5.10.: Solution of the convection-dominated diffusion example 1.

5.3.2. Convection-dominated diffusion: example 2

We now consider a more challenging setting with advection skew to the mesh. We
solve a similar problem to the one depicted in Figure 9.3 of [55] (see Figure 5.12).
Our convection-dominated diffusion problem is governed by eq. (5.11) on the
domain Ω = (0, 1)2, with ε = 10−4, σ = (cos θ, sin θ)T, θ = arctan(2), and zero
Dirichlet boundary conditions, as depicted in Figure 5.12a.

We define our source term f (with support in Ωf and illustrated in Figure 5.12b)
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(a) Final hp-adapted mesh with polynomial
orders in the x-direction.
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(b) Final hp-adapted mesh with polynomial
orders in the y-direction.
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(c) Final h-adapted mesh, p = 1.
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(d) Evolution of eenergyrel in the process.

Figure 5.11.: Final h- and hp-adapted meshes for our first convection-dominated
diffusion example and the evolution of eenergyrel .
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as:

f (x, y) =


(1 − 4x)2 , if 0 ≤ x ≤ 0.25, 0.25 ≤ y ≤ 0.5,

(1 − 4y)2 , if 0.25 ≤ x ≤ 1, 0 ≤ y ≤ 0.25,

1 + 16xy (−3 + 4x+ 4y) , if 0 ≤ x ≤ 0.25, 0 ≤ y ≤ 0.25,

0, otherwise.

(5.14)
Both the problem of Figure 9.3 of [55] and our problem share a strong boundary
layer along the top and right boundaries of the domain. In addition, our problem
incorporates (a) a source discontinuity on the edge 0 ≤ x ≤ 0.25, y = 0.5 that
is visible in Figure 5.12b, and (b) a strong boundary layer for the adjoint prob-
lem along the bottom border of the domain. Thus, our example exhibits strong
gradients of different (unknown) intensities in various areas of the domain, which
makes it ideal for assessing the performance of our proposed hp-adaptive algo-
rithm. The initial uniform mesh consists of 4× 4 root elements for both adaptive
strategies.

Ωl

u = 0

Ω

Ωf

(a) Problem setting.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x

y

0 0.5 1
Value of the source

(b) Illustration of f in eq. (5.11).

Figure 5.12.: Problem description for our second convection-dominated diffusion
with advection skew to the mesh.
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Figure 5.13.: Numerical solution of the convection-dominated diffusion example
2 for energy-norm adaptivity.

5.3.2.1. Energy-norm adaptivity

Figure 5.13 displays the final solution of the convection-dominated diffusion ex-
ample 2 for the energy-norm adaptivity. Figure 5.14 shows the final energy-
norm h- and hp-adapted meshes and the evolution of the relative error when
using energy-norm adaptivity. As expected, h and hp meshes exhibit strong h-
refinements towards the two boundary layers on the top and right sides of the
domain. In addition, the hp-adaptivity is also able to capture both the advection
propagation direction and the source discontinuity.

Figures 5.15 and 5.16 illustrate the evolution of the energy-based adaptive
process by displaying at different iterations several solutions to the problem (left
panels) and their corresponding hp-adaptive meshes (right panels). These meshes
only display the polynomial orders in the x-direction, but analogous results are
obtained for the y-direction. We accentuate the capability of the proposed algo-
rithm to eliminate Degrees of Freedom (DoF) previously introduced during the
pre-asymptotic regime due to spurious oscillations. For instance, at iteration 7
(Figure 5.15b), high polynomial orders p are set on the center-right part of the do-
main to capture the numerical artifacts exhibited by the solution (Figure 5.15a).
Once we better solve the problem, the numerical pollution starts to vanish (Fig-
ure 5.15c), and consequently, some previously introduced high-order elements are
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(a) Final hp-adapted mesh with polynomial
orders in the x-direction.
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(b) Final hp-adapted mesh with polynomial
orders in the y-direction.
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(c) Final h-adapted mesh, p = 1.
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(d) Evolution of ẽ energy
rel in the process.

Figure 5.14.: Final h- and hp-adapted meshes for our second convection-
dominated diffusion example and the evolution of ẽ energy

rel .
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p-unrefined (see Figure 5.15d) on the elements near the center of the domain and
close to the right boundary layer.

We also highlight the gradual behavior of the adaptive process: at the be-
ginning, the refinements are mostly introduced to capture the boundary layers
(Figure 5.15d). Once the boundary layers are properly resolved (Figure 5.16b),
the algorithm refines to catch better the direction of propagation of the convec-
tion part of the problem. The adaptive process is almost finished at this point,
and the error is of the order of 10−4%. The final refinements are devoted to im-
proving the solution nearby the source discontinuity, and accordingly, we begin
to observe more refinements towards this region (see Figure 5.16d). The final
meshes (iteration 27) correspond to Figures 5.14a and 5.14b.

5.3.2.2. Goal-Oriented adaptivity

We select the domain of the QoI (illustrated in Figure 5.12a) to be Ωl =
(
3
4
, 1
)2 ⊂

Ω. Figure 5.17 displays the solutions to the forward and adjoint problems asso-
ciated with the second example. As expected, we observe (a) higher resolution
at the QoI upper-right part of the domain , and (b) spurious numerical oscil-
lations in the forward problem far from the region of interest where the QoI is
defined (compared to the energy-norm solution depicted in Figure 5.13).

Figure 5.18 displays the final h- and hp-adapted meshes and the evolution of
eQoI
rel . In contrast to the energy-norm adaptivity, where the refinements were more

oriented towards the top and right boundary, here, the adjoint problem (Fig-
ure 5.17b) highly drives the refinements for both h- and hp-strategies, and hence,
we observe further refinements on the boundary layers of the adjoint problem.
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(a) Solution at iteration 7.
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(b) hp-adapted mesh at iteration 7.
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(c) Solution at iteration 10.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x

y

1 2 3 4 5 6 7 8 9 10 11
Order of approximation

(d) hp-adapted mesh at iteration 10.

Figure 5.15.: Numerical solutions and hp-adapted meshes (polynomial orders in
the x-direction) at iterations 7 and 10.
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(a) Solution at iteration 17.
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(b) hp-adapted mesh at iteration 17.
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(c) Solution at iteration 21.
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(d) hp-adapted mesh at iteration 21.

Figure 5.16.: Numerical solutions and hp-adapted meshes (polynomial orders in
the x-direction) at iterations 17 and 21.
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(a) Solution to the direct problem.
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(b) Solution to the adjoint problem.

Figure 5.17.: Direct and adjoint numerical solutions of the convection-dominated
diffusion problem for GO adaptivity.
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(a) Final hp-adapted mesh with polynomial
orders in the x-direction.
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(b) Final hp-adapted mesh with polynomial
orders in the y-direction.
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(c) Final h-adapted mesh, p = 1.
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(d) Evolution of eQoI
rel in the process.

Figure 5.18.: Final h- and hp-adapted meshes for our second convection-
dominated diffusion example and the evolution of eQoI

rel .
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hp-adaptivity

6.1. Wave propagation problem

Let us consider the following non-elliptic problem based on heterogeneous Helmholtz’s
equation.

Find u such that,

−∇ · (σ∇u) − k2u = 1Ωf
in Ω, (6.1)

u = 0 on ΓD, (6.2)

∇u · n⃗ = 0 on ΓN , (6.3)

where Ω = (0, 1)3 ⊂ R3, Ωf =
(
0, 1

4

)3 ⊂ Ω, and k = (4 · 2π, 2π). ΓD and ΓN
stand for the parts of the boundary ∂Ω where we impose homogeneous Dirichlet
and Neumann boundary conditions, respectively. We impose Dirichlet boundary
conditions on the 3 faces whose intersection is (0, 0, 0) and Neumann boundary
on the 3 faces whose intersection is (1, 1, 1).

ΓD := ([0, 1] × [0, 1] × {0}) ∪ ([0, 1] × {0} × [0, 1]) ∪ ({0} × [0, 1] × [0, 1]) , (6.4)

ΓN := ((0, 1) × (0, 1) × {1}) ∪ ((0, 1) × {1} × (0, 1)) ∪ ({1} × (0, 1) × (0, 1)) .
(6.5)

Here,

σ (x) =


1 if x ∈ Ω1 =

{
0 < x < 1, 0 < y < 1

2
, 0 < z < 1

}
,

103 if x ∈ Ω2 =
{

1
2
< x < 1, 1

2
< y < 1, 0 < z < 1

2

}
,

10 if x ∈ Ω3 =
{

1
2
< x < 1, 1

2
< y < 1, 1

2
< z < 1

}
,

10−2 if x ∈ Ω4 =
{

0 < x < 1
2
, 1
2
< y < 1, 0 < z < 1

}
.

We define the operators b (·, ·) and a (·, ·) associated with the above problem as
follows:

b (·, ·) := ⟨∇· , σ∇·⟩L2(Ω) − k2 ⟨· , ·⟩L2(Ω) , a (·, ·) :=
∣∣∣⟨∇· , σ∇·⟩L2(Ω)

∣∣∣ +
∣∣k2∣∣ ∣∣∣⟨· , ·⟩L2(Ω)

∣∣∣ .
(6.6)
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Once again, ∥·∥2e = a (·, ·) is our energy norm and |b (ϕ, ψ)| ≤ |a (ϕ, ψ)| , ∀ϕ, ψ ∈
H.

Figure 6.1 displays the different materials in the domain. Following the defini-

tion of eq. (5.3), we select Ωl =
(
3
4
, 1
)3 ⊂ Ω. For Goal-Oriented (GO) adaptivity,

Figures 6.2a and 6.2b show the solutions of the direct and adjoint problems,
respectively.

0.01 1 10 1000
Diffusivity of the materials

Figure 6.1.: Diffusive coefficient values for the different materials in the domain.

6.1.1. Energy-norm adaptivity

Figure 6.3 displays the final hp-adapted meshes for our 3D wave propagation
example in a lossy medium using energy-norm adaptivity. The initial uniform
mesh is composed of sixty-four root elements. As expected, we observe heavy
h-refinements near different materials’ interfaces. Figure 6.4 shows the corre-
sponding convergence curves. As in the 2D case, the energy-norm hp-adaptivity
provides proper convergence results in terms of energy. However, the conver-
gence of the energy-norm adaptivity in terms of the error in the Quantity of
Interest (QoI) is slow, especially in the pre-asymptotic regime.

6.1.2. Goal-Oriented adaptivity

Figure 6.5 displays the final hp-adapted meshes for our 3D wave propagation ex-
ample in a lossy medium using GO adaptivity. The initial uniform mesh is com-
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0 2.1 4.19

·10−3

Direct solution

(a) Solution to the direct problem.

0 8.65 · 10−2 0.17
Adjoint solution

(b) Solution to the adjoint problem.

Figure 6.2.: Absolute value of the direct and adjoint solutions of our 3D wave
propagation example in a lossy medium.

posed of sixty-four root elements. As expected, we observe heavy h-refinements
near different materials’ interfaces. When using GO adaptivity, the evolution of
the error in the QoI exhibits much better behavior, while the energy convergence
becomes suboptimal, as expected.

As computational problems grow in complexity and scale, they pose significant
challenges to our computational capabilities. Developing parallel computational
strategies for finite element discretization schemes [21, 150] solves these chal-
lenges. By distributing tasks and computations across multiple processors or
computational nodes, these strategies can address complex engineering problems,
increasing computational capacity and improving efficiency.

This dissertation follows an algorithm [99] that distributes the computational
domain among participating processes. It subdivides the domain into sub-domains
of relatively equal computational cost and assigns them to different processes,
thus optimizing resource utilization. As the algorithm progresses, dynamic re-
balancing techniques are employed to redistribute tasks, ensuring optimal load
distribution across processes. Introducing adaptivity creates the challenge of
balancing computational workload—techniques such as limiting refinements and
process aggregation address this. Additionally, communication efficiency is sup-
ported by aggregating data into larger sets, minimizing the frequency and latency
of data transfers.
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1 2 3 4 5 6 7 8 9 10 11
Order of approximation

(a) Final hp-adapted mesh with polynomial
orders p in the x-direction.

1 2 3 4 5 6 7 8 9 10 11
Order of approximation

(b) Final hp-adapted mesh with polynomial
orders p in the y-direction.

1 2 3 4 5 6 7 8 9 10 11
Order of approximation

(c) Final hp-adapted mesh with polynomial
orders p in the z-direction.

Figure 6.3.: Energy-norm adaptivity. Final hp-adapted meshes for our 3D wave
propagation example in a lossy medium.
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(a) Evolution of goal-oriented adaptivity.
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(b) Evolution of energy-norm adaptivity.

Figure 6.4.: Convergence history of eQoI
rel and ẽ energy

rel for the energy-norm and GO
hp-adaptive strategies.
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1 2 3 4 5 6 7 8 9
Order of approximation

(a) Final hp-adapted mesh with polynomial
orders p in the x-direction.

1 2 3 4 5 6 7 8 9
Order of approximation

(b) Final hp-adapted mesh with polynomial
orders p in the y-direction.
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(c) Final hp-adapted mesh with polynomial
orders p in the z-direction.

Figure 6.5.: GO adaptivity. Final hp-adapted meshes for our 3D wave propaga-
tion example in a lossy medium.
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Part II.

Goal-Oriented hp-adaptivity for
parametric PDEs.
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7. Database generation for DL
inversion

Deep Learning (DL) [85], a branch of Machine Learning (ML) [117], aims to
emulate human learning by utilizing artificial Neural Networks (NNs) with mul-
tiple interconnected nodes. Recent studies have showcased the potential of DL
to address complex challenges, such as solving parametric, high-dimensional, and
fractional Partial Differential Equations (PDEs) [9, 74, 89, 103, 136, 188]. A
comprehensive resource is the review by LeCun et al. [111].

The rise of ML and DL techniques has significantly impacted computational
geophysics. Researchers have explored the use of DL algorithms in domains such
as exploration geophysics, earthquake studies, and remote sensing [11, 31, 32, 95,
110]. DL has even found applications in geosteering [205]. The convergence of
DL and geophysics is noticeable in Inverse Problem (IP), where solving forward
problems becomes computationally challenging. Notably, Puzyrev et al.’s work
in electromagnetic inversion is remarkable [158, 159]. Similarly, Shahriari et al.
[174, 175] have significantly contributed to geosteering through DL-driven inverse
approaches.

The DL-assisted solution of IPs holds excellent promise. It involves two main
approaches: constructing the inverse operator and evaluating it for different mea-
surements. This technique necessitates a comprehensive data set, often called the
ground truth, generated by solving forward problems numerous times for various
models [6, 20, 176] governed by PDEs. Despite its potential, solving IPs using DL
presents its challenges [12, 106, 203], such as the non-convexity of loss functions
and the requirement of basic quadrature rules for Deep Neural Networks (DNNs),
as illustrated in previous studies [102, 166].

Although the integration of DL and the Finite Element Method (FEM) [34, 35,
151, 185] aims to reduce computational costs, the non-convexity of loss functions
and the need for data augmentation remain challenges, as Jungiewicz et al. [100]
and Shorten et al. [177] suggested. DL techniques continue to evolve rapidly.
However, they have not superseded classical numerical methods like the FEM
[28, 113, 170, 171, 201], which have demonstrated their robustness and efficiency
over decades [112].

Despite the recent success of DL techniques in tackling complex problems, a sig-
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nificant challenge in training a DNN to mimic the forward solver accurately lies in
the need for a vast and reliable dataset. This dataset typically consists of pairs of
model parameters and corresponding solutions of the forward problem governed
by a PDE. However, obtaining such a dataset through accurate forward problem
solutions can be computationally expensive. We propose a Multi-Adaptive Goal-
Oriented (MAGO) strategy to address the computational costs and dataset re-
quirements. The primary goal of MAGO is to generate reliable massive databases
with reduced computational expenses. This strategy builds upon our previously
developed Goal-Oriented Adaptive (GOA) approach for non-parametric PDEs
(see Part I of this dissertation). The database generation process consists of two
main stages: first, we construct a sufficiently accurate hp-FEM discretization for
a wide range of samples, and then, we solve a massive number of FEM problems
using this adapted mesh to generate the required data. The key to this approach
is employing a single hp-adapted mesh throughout the entire data generation
phase.

Generating a database of multiple sample model parameters using a GOA strat-
egy presents several challenges. First, the computational cost of generating each
adaptive mesh is high, requiring solving multiple forward problems. Second, even
automatic algorithms often necessitate some user interaction, such as generating
suitable initial meshes, making repeating for each sample impractical. Managing
and saving many meshes, one for each sample, can lead to significant implemen-
tation complexity. As a result, this straightforward approach may not be optimal
and requires an extension to handle multiple samples simultaneously.

In this chapter, we propose extending a well-established hp-FEM adaptive
strategy [43, 44], which has demonstrated remarkable success in handling non-
parametric PDEs. As widely recognized, hp-FEM adaptive methods are renowned
for their exceptional accuracy and the ability to achieve exponential convergence
rates while effectively minimizing computational costs. Therefore, hp-FEM auto-
matic adaptive strategies are well-suited for tackling challenging problems, includ-
ing parametric PDEs or situations where a priori information about the solution
is unavailable.

The main innovation of our approach is that it only requires a few samples
to develop a single hp-adaptive FEM. This single hp-adaptive FEM can provide
highly accurate solutions for many model parameters, even those different from
the original ones. We base our approach on a single hp-adaptive FEM and ex-
pand on the hp-adaptive strategy we developed earlier, as detailed in Part I of
this dissertation and as summarized in Algorithm 3. Our proposed strategy can
achieve a robust, fast, and computationally efficient alternative while ensuring
high accuracy.
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Algorithm 3: Goal-Oriented hp-adaptive mesh process

Input: PDE, initial finite element mesh, model parameters, definition of
the Quantity of Interest (QoI)

Output: A final hp-adapted mesh

while error in the QoI exceeds a certain threshold do
Perform a global refinement (user-defined);

while the average error indicators are above the threshold do
Solve the forward problem using eq. (7.2);
Solve the adjoint problem using eq. (7.4);
Calculate error indicators using eq. (7.7);
Remove basis functions with low error indicators to unrefine the
mesh;

end

Update error in the QoI;

end

7.1. A Goal-Oriented strategy for parametric PDEs

When dealing with the solution of parametric PDEs, we consider S different
samples of model parameters. Each sample is denoted as mi = {σ1, . . . , σP},
where P represents the number of parameters involved in each sample. Collecting
all samples can be represented as M = {m1, . . . ,mS}. As illustrated in Figure
7.1, this contains S diverse samples of model parameters, with P = 4 in this
specific case.

σS3 σS4

σS1 σS2

mS

σ2
3 σ2

4

σ2
1 σ2

2

m2

σ1
3 σ1

4

σ1
1 σ1

2

m1 · · ·

Figure 7.1.: Representation of S different samples.

7.1.1. Variational abstract formulations

In the context of numerically solving the PDEs, we consider that 0 < σmin
i ≤

σmax
i <∞ and bm corresponds to the bilinear form that characterizes the problem
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related to the model m. This bilinear form is continuous on H × H and defines
an inner product on H. Then, we define the forward direct problem in terms of
the following general abstract variational formulation:

Find um ∈ H such that

bm (um, ϕ) = fm (ϕ) , ∀ϕ ∈ H, (7.1)

where fm is an element of the dual space H′ defined by a linear form.
To discretize the abstract variational problem, we use T to represent a finite

element mesh. We define HF as the subspace of H spanned by the basis functions
{ϕ1, . . . , ϕnF}, where F = {ϕi}nF

i=1. Here, nF represents the dimension of the
subspace HF . The basis functions ϕi form a set to construct the finite element
approximation. This way, we can obtain uF , corresponding to the Galerkin ap-
proximation of u within the subspace HF . Then, the discrete counterpart of this
abstract variational formulation reads as follows:

Find umF ∈ HF such that

bm (umF , ϕF) = fm (ϕF) , ∀ϕF ∈ HF . (7.2)

To lead the adaptive process of GOA strategies, we consider the associated
adjoint problem to eq. (3.2), which reads as follows:

Find vm ∈ H such that

bm (ϕ, vm) = lm (ϕ) , ∀ϕ ∈ H, (7.3)

where lm is a linear continuous form. The discrete equivalent of this problem is
given by:

Find vmF ∈ HF such that

bm (ϕF , v
m
F ) = lm (ϕF) , ∀ϕF ∈ HF . (7.4)

7.1.2. Element-wise indicators

We aim to quantify the change in the QoI when we remove certain basis functions
from the set of removable basis functions RK associated with an element K ∈ T .
Specifically, we are interested in controlling

∣∣l (umF ) − l
(
umEK

)∣∣ , ∀K ∈ T .
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Since we are dealing with a single mesh, we do not directly compute the solution
umEK associated with eq. (3.2) on EK . Instead, we approximate it by projecting
umF into EK . This projection is performed using the projection operator defined
in Section 3.2, which simulates the presence of a second grid without explicitly
implementing it. Given a subset of basis functions S ⊂ F that generates a space
HS ⊂ HF , the projection operator ΠS

F maps HF to HS and is defined as follows:

ΠS
Fu

m
F :=

∑
ϕi∈S

umi ϕi. (7.5)

Using Section 3.3, we find that∣∣l (umF ) − l
(
umEK

)∣∣ ≃ ∣∣b (ΠRK
F umF ,Π

RK
F vmF

)∣∣ ≤ ∣∣a (ΠRK
F umF ,Π

RK
F vmF

)∣∣ , (7.6)

where a is an alternative operator not necessarily the original bilinear form
such that |b (ϕ, ψ)| ≤ |a (ϕ, ψ)| ∀ϕ, ψ ∈ H and ∥·∥2e = a (·, ·) is the energy norm of
the problem (i.e., a defines an inner product).

The basis functions associated with small values in eq. (7.6) are expected to
have limited impact on the solution umF ; thus, eliminating them should not signif-
icantly affect the error in the QoI. Therefore, we define the isotropic element-wise
indicators ηK ,∀K ∈ T , as follows:

ηK :=
∣∣a (ΠRK

F umF ,Π
RK
F vmF

)∣∣ , ∀K ∈ T , (7.7)

and subsequently remove those basis functions with small indicators. For details
on anisotropic indicators, implementation technicalities, and further information,
we refer the interested reader to [43, 59].

7.1.3. A Multi-Adaptive Goal-Oriented strategy

Now, let us explore the concept of MAGO. In this approach, we have S forward
and adjoint problems, with each sample associated with a specific QoI denoted
as lmi , where i = 1, . . . , S. Our main goal is to construct a single final hp-mesh,
optimizing its size to be as small as possible while ensuring accurate computation
of the QoI for all the samples in a single GOA process. To achieve this, we solve
the S forward discrete problems given by:

Find umi
F ∈ HF such that

bmi (umi
F , ϕF) = fmi (ϕF) , ∀ϕF ∈ HF . (7.8)

Similarly, the discrete abstract variational formulation for solving the S associated
adjoint discrete problems is as follows:
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Find vmi
F ∈ HF such that

bmi (ϕF , v
mi
F ) = lmi (ϕF) , ∀ϕF ∈ HF , (7.9)

where i = 1, . . . , S, indicating that we solve the S forward and adjoint discrete
problems.

Following the approach outlined in Section 3.3, our next step is to determine
the basis functions inside the set of removable basis functions, denoted as RK ,
that do not significantly affect the error in the QoI when eliminating them. Then,
assuming that our discretization T computes all the Quantities of Interest (QoIs)
efficiently, from eq. (7.7) we have that for each sample i = 1, . . . , S:∣∣l (umi

F ) − l
(
umi
EK

)∣∣ ≃ ∣∣b (ΠRK
F umi

F ,ΠRK
F vmi

F
)∣∣ ≤ ∣∣a (ΠRK

F umi
F ,ΠRK

F vmi
F

)∣∣ . (7.10)

In this expression, we control the error in each sample individually. However, we
need an indicator that combines all the samples simultaneously since the objective
is to perform a single GOA procedure. To do so, we define an element-wise error
indicator ηK for each element K as follows:

ηK =
∥∥a (ΠRK

F umi
F ,ΠRK

F vmi
F

)∥∥
lp
. (7.11)

Using the lp norm, we combine the individual errors from all S samples into
one. Thus, by removing the basis functions with small combined contributions,
we ensure that the error in all the QoIs remains unaltered. It is worth mentioning
that the choice of the norm in eq. (7.11) is up to the user and may depend on
the specific application.

We propose the MAGO strategy in Algorithm 4, which utilizes a sequence of
mesh refinements and coarsening, following a similar concept as in Section 3.1.
However, in the MAGO approach, we aim to provide sufficiently accurate solu-
tions for all the samples. Therefore, we iterate the adaptive process until the error
in the worst-case scenario is below a user-prescribed tolerance. The termination
criterion is defined by ensuring that the errors in the QoI between a fine mesh F
and a coarser mesh C are below a specified tolerance TOL for all the samples:

max
i, {mi}Si=1

{
|l (umi

F ) − l (umi
C )|

|l (umi
F )|

}
< TOL. (7.12)

It is important to note that the successive global refinements guarantee the
convergence of this procedure for one or more samples, while the coarsening
stages ensure almost optimal convergence rates [29, 40]. By combining these
adaptive steps, the MAGO approach efficiently constructs a single hp-mesh that
accurately captures the QoIs for all the samples simultaneously.
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Algorithm 4: Multi-Adaptive Goal-Oriented adaptive process

Input: PDE, initial finite element mesh, S samples of model
parameters, definition of the QoI

Output: A final hp-adapted mesh

while eq. (7.12) is not satisfied do
Perform a global refinement (user-defined);

while error indicators above threshold do
for each sample mi where i = 1 to S do

Solve the forward problem for sample mi using eq. (7.8);
Solve the adjoint problem for sample mi using eq. (7.9);
Calculate error indicators for the i-th sample using eq. (7.7);

end
Compute the error indicators using eq. (7.11), which combines
those from all samples into a single measure;

Remove basis functions with low error indicators to unrefine the
mesh;

end

Update error in the QoI;

end
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7.2. Generation of databases

We refer to the two main stages of the database production process as the Adap-
tive and Generation processes. In the Adaptive process, which is the initial stage,
we construct a highly accurate hp-grid, referred to as the adapted mesh, capable
of accommodating an arbitrary number of samples (SA). Subsequently, in the
Generation process, we employ this adapted mesh to solve multiple FEM prob-
lems, generating the required data. This approach’s key aspect is using a single
hp-FEM, i.e., the adapted mesh, throughout the entire Generation process.

To elaborate further, we begin by generating a reduced number of samples
of model parameters (SA) that parametrize the PDE of the problem. We then
construct the adapted mesh, ensuring it satisfies eq. (7.12), where the maximum
error for all the SA samples falls below a user-prescribed tolerance. The central
concept behind this approach is the anticipation of achieving low errors when em-
ploying the adapted mesh with samples different from those used in the adaptive
process. In the subsequent Generation process, we solve one FEM problem for
each sample in SG, which represents a set of additional samples we consider. This
process allows us to obtain accurate synthetic data or measurements database.
The overall process can be summarized as follows:

1. Adaptive process:

a) Generate SA samples of model parameters to be used in the Adaptive
process.

b) Construct the adapted grid by employing the hp-FEM following the
guidelines described in Section 7.1.

2. Generation process:

a) Generate SG additional samples of model parameters specifically for
the Generation process.

b) For each sample in SG, solve a FEM problem using the adapted mesh,
which was specifically designed during the Adaptive process to deliver
highly accurate solutions for a wide range of model parameters.

By following this approach, we can efficiently generate a reliable database of
accurate synthetic data or measurements using a single adapted mesh for multiple
samples, thereby reducing computational expenses and maintaining high accuracy
across various scenarios.

7.2.1. Computational costs of MAGO

The GOA strategy, elaborated upon in Part I of this dissertation and presented
in Algorithm 3, comprises a series of refining and coarsening steps. We use a
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direct solver to solve each FEM problem, contributing to the computational cost
of building the hp-mesh. The total cost is given by:

CGOA =
NrIter∑
i=1

NrCoarse∑
j=1

[
Cas

(
N ij

)
+ Can

(
N ij

)
+ Cfa

(
N ij

)
+ 2Cso

(
N ij

)
+ Ces

(
N ij

) ]
. (7.13)

Each component of the cost corresponds to specific operations: Cas for assembling
the matrix, Can for the analysis part of the direct solver, Cfa for factorization, Cso

for solving the linear system of equations after factorization (i.e., backward elimi-
nation), and Ces for computing the error estimators. Additionally, N ij represents
the number of Degrees of Freedom (nDoF) of the meshes at each iteration i of
the adaptive process and each coarsening step j associated with each iteration
i. Notably, the factor of 2 in the Cso term accounts for solving both the forward
and adjoint problems. Since we use a direct solver, the extra cost for solving the
adjoint problem associated with the forward problem reduces to only backward
and forward substitutions.

The costs related to the finest grid with Nf Degrees of Freedom (DoF) dominate
those associated with the coarser grids. Consequently, we can approximate Equa-
tion (7.13) by:

CGOA (Nf) ≈ Cas (Nf) + Can (Nf) + Cfa (Nf) + 2Cso (Nf) + Ces (Nf) . (7.14)

Thus, the approximate costs of generating a database of SG samples with the
Single-Adaptive Goal-Oriented (SAGO) and the MAGO approaches are as fol-
lows:

SAGO approach: We approximate the computational cost CSAGO of generating
one GOA mesh for each of the SG samples by:

CSAGO =

SG∑
i=1

CGOA
(
N

(i)
f

)
. (7.15)

MAGO approach: The cost CMAGO of generating the database with the MAGO
strategy is the sum of the costs of constructing the adapted mesh CA plus the
cost of actually generating the data CG, that is, CMAGO = CA + CG.
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We approximate the cost of the Adaptive process with SA samples by:

CA = SAC
GOA (Nmago

f ) , (7.16)

where Nmago
f represents the nDoF in the fine mesh adapted using the MAGO

strategy.
After generating the adapted coarse mesh of size Nmago

c , we proceed to generate
the data. The approximate cost of the Generation process is then given by:

CG = SG

[
Cas (Nmago

c ) + Can (Nmago
c ) + Cfa (Nmago

c ) + 2Cso (Nmago
c )

]
. (7.17)

In our MAGO approach, all samples share the same discretization, which con-
forms with the material parameters of the PDE. This design allows us to precom-
pute and reuse certain information across different samples. As detailed in the
following subsection, we perform precomputations for the integrals of the global
matrices and the analysis part of the direct solver of equations, thereby reducing
the assembling and analysis processes to a single occurrence. Considering that
the cost of computing the estimators is comparable to the cost of assembling
[146], we obtain the following approximations:

CA = 2Cas (Nmago
f ) + Can (Nmago

f ) + SA

[
Cfa (Nmago

f ) + 2Cso (Nmago
f )

]
, (7.18)

and

CG = Cas (Nmago
c ) + Can (Nmago

c ) + SG

[
Cfa (Nmago

c ) + 2Cso (Nmago
c )

]
. (7.19)

Compared to the SAGO approach, the costs associated with assembling, analy-
sis, and estimation occur only once due to the precomputations, contributing to
improved efficiency and reduced computational overhead.

Factorization costs dominate other aspects in traditional C0-continuous FEM
problems when using a direct solver. It scales as (see, e.g., [52, 53]):

O
(
N (1+(d−1)/2)

)
, (7.20)

where d = 1, 2, 3 represents the dimension of the problem and N denotes the
nDoF. The final approximate costs for the SAGO and MAGO approaches are as
follows:

CSAGO ≈
SG∑
i=1

Cfa

(
N i

f

)
≈ SG

[
Cfa (N sago

f )

]
, (7.21)
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where N sago
f represents an average value (using eq. (7.20)) of the nDoF of the SG

fine grids, and

CMAGO = SA

[
Cfa (Nmago

f )

]
+ SG

[
Cfa (Nmago

c )

]
. (7.22)

While SA ≪ SG, the relationship between Nmago
f , Nmago

c , and N sago
f is not

generalizable. This relationship depends on various factors, including the ini-
tial mesh configuration, the refinement and coarsening criteria, the convergence
behavior of the solution, and the problem’s complexity. In some instances, invest-
ing resources in building a sufficiently good adapted mesh with only a fraction
of samples is reasonable. The gains in the Generation part of the strategy will
likely compensate for this computational effort, considering the specific problem.
Consequently, we expect that CMAGO < CSAGO. However, it is essential to note
that the number of samples SA and the mesh size significantly impact the accu-
racy of the generated data. Thus, a tradeoff exists between accuracy and the cost
of obtaining the adapted mesh.

7.2.2. Precomputations of the global matrices

In many adaptive FEM implementations, the integrals associated with the bilin-
ear form and error indicators are calculated element by element. However, when
dealing with many material samples S (possibly reaching hundreds of thousands),
computing all these integrals for each sample becomes computationally expensive.
To overcome this challenge, we take advantage of our materials being piecewise
constant and conforming to discretization. We perform a clever optimization by
precomputing and storing the integrals for an arbitrary unitary sample, where
material properties are assumed to equal one. Once these integrals are precom-
puted, we can reuse this information across all samples instead of recalculating
the integrals for each sample. This technique significantly accelerates the inte-
gration process and reduces the computational cost of handling many material
samples.

The bilinear form in the problem may consist of multiple terms, denoted as:

bmi (·, ·) =

Mb∑
j=1

bmi
j (·, ·), (7.23)

where Mb represents the number of terms in the bilinear form.
For each material sample mi, we compute the contributions associated with

each element K as follows:[
bmi (·, ·)

]
K

=

Mb∑
j=1

mj
i (K)

[
b1j (·, ·)

]
K
, (7.24)
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Algorithm 5: Precomputation of element-wise matrices

Input: Given variational formulation
Output: Pre-computed element-wise unitary matrices

for Each term in the bilinear form (j = 1, . . . ,Mb) do
for Each element in the finite element discretization (K ∈ T ) do

Compute and store the element-wise unitary matrix
[
b1j (·, ·)

]
K

;

end

end

Algorithm 6: Precomputation: assembling the global matrices

Input: Variational formulation of the problem, S samples,
pre-computed matrices

Output: Assembled global matrices for all samples

for Each sample mi (i = 1, . . . , S) do
for Each term in the bilinear form (j = 1, . . . ,Mb) do

for Each element in the finite element discretization (K ∈ T ) do
Initialize the element-wise matrix to zero: [bmi (·, ·)]K = 0;
Load the pre-computed element-wise unitary matrix[
b1j (·, ·)

]
K

(see Algorithm 5);

Load the material property of the element (mj
i (K));

Update the value of the element matrix
[bmi (·, ·)]K = [bmi (·, ·)]K +mj

i (K)
[
b1j (·, ·)

]
K

;
Assemble the global matrix by inserting [bmi (·, ·)]K into
bmi (·, ·);

end

end
We obtain the fully assembled matrix associated with the i-th
sample.

end
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where mj
i (K) represents the scalar material property associated with the K-

th element of the i-th material sample and the j-th term of the bilinear form.
Additionally,

[
b1j (·, ·)

]
K

corresponds to the j-th unitary element-wise bilinear

term (sub-matrix) associated with the element K. Specifically, mj
i (K) = 1 for

the bilinear terms independent of the material properties.
To optimize the computation process, we pre-compute and store all the uni-

tary integrals in
[
b1j (·, ·)

]
K

for all elements in the discretization, K ∈ T , and for
j = 1, . . . ,Mb. This way, we only need to compute these integrals once and then
load the pre-computed unitary sub-matrices for each of the S samples. By mul-
tiplying them with the corresponding material property for each element, we can
efficiently assemble the global bilinear matrices and compute the error indicators
as scalar products according to eq. (7.10). The overall process is summarized
using the following algorithms: Algorithm 5 shows how we compute and store
the unitary element-wise matrices; Algorithms 6 and 7 explain how we construct
the global matrices and compute the error indicators, respectively, utilizing the
pre-computed information.

Algorithm 7: Precomputation: computation of the error indicators

Input: Error indicator, variational formulation of the error, S samples,
pre-computed matrices, forward and adjoint solutions

Output: Error indicator for all samples at the same time

for Each sample mi (i = 1, . . . , S) do
for Each term in the bilinear form (j = 1, . . . ,Mb) do

for Each element in the finite element discretization (K ∈ T ) do
Initialize the element-wise matrix to zero: [ami (·, ·)]K = 0;
Load the pre-computed element-wise unitary matrix[
a1j (·, ·)

]
K

from Algorithm 5;

Load the material property of the element as mj
i (K);

Update the element matrix as
[ami (·, ·)]K = [ami (·, ·)]K +mj

i (K)
[
a1j (·, ·)

]
K

;

end

end
Compute the error indicators for the i-th sample using eq. (7.7);

end
Compute a single error indicator considering all the samples according to
eq. (7.11);

Notably, the precomputation of global matrices can be utilized in both the
Adaptive and Generation parts, enhancing the efficiency of the adaptive FEM.
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7.3. Numerical results

This section demonstrates the performance of the MAGO approach in generating
large databases for various problems. It highlights the method’s capability to
adaptively construct meshes and compute the QoI across a broad spectrum of
sample configurations. The primary objective is to design an optimized single
hp-mesh, whose size is as small as possible, to efficiently determine the QoI for
all samples. These QoI are denoted as l (umi) for i = 1, . . . , S.

7.3.1. Definitions

We categorize the numerical results into three categories based on the purpose
they serve:

1. To demonstrate the quasi-exponential convergence of the MAGO strategy,
showcasing how the MAGO approach achieves rapid convergence in adap-
tive mesh generation.

2. To verify the accuracy of the produced measurements, assess the precision
of the computed QoI values obtained using the MAGO approach.

3. To highlight the numerical advantages of the MAGO approach, quantifying
its benefits in terms of computational efficiency and mesh size reduction.

The problems considered include 2D scenarios involving Poisson and Helmholtz
equations. The Hilbert space H chosen for all problems is defined as H =
{u ∈ H1 (Ω) |u = 0 on ΓD}, where ΓD denotes the boundary with Dirichlet bound-
ary conditions. The mesh is designed specifically for all scenarios’ materials,
sources, and desired QoI.

7.3.1.1. Convergence of the MAGO adaptivity

We investigate the convergence behavior of the MAGO approach by varying the
number of samples SA used to construct adapted meshes. This follows the pro-
cedure detailed in Item 1 of Section 7.2. We present visualizations of the final
adapted hp-meshes for various cases and introduce quasi-exponential convergence
curves, showcasing the effectiveness of the MAGO strategy.

To calculate convergence, we calculate two relative errors in the QoI concerning
the nDoF during the adaptive processes: the maximum relative error emax

rel and
the mean relative error emean

rel .
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These errors are computed among the SA samples, where the value of SA varies
based on specific examples. The maximum relative error is given by:

emax
rel = max

i=1,...,S

∣∣∣∣ l (umi) − l (umi
T )

l (umi)

∣∣∣∣ · 100. (7.25)

The mean relative error is:

emean
rel =

1

S

S∑
i=1

∣∣∣∣ l (umi) − l (umi
T )

l (umi)

∣∣∣∣ · 100. (7.26)

In these equations, umi and umi
T represent the solutions linked to a given model

mi on a fine and a coarser mesh, respectively. The maximum relative error
highlights the worst-case error among samples, whereas the mean relative error
offers an average accuracy overview. The maximum, mean, and traditional (erel)
relative errors are identical for a single sample.

7.3.1.2. Computational costs of generating the database

Equations (7.21) and (7.22) provide an approximate estimation of the computa-
tional costs for the SAGO and MAGO approaches, respectively, where the cost
is influenced by the nDoF, as articulated in Equation (7.20). Consequently, we
approximate the computational cost CSAGO of generating one GOA mesh for each
of the SG samples by:

CSAGO ≈
SG∑
i=1

(
N sago

f(i)

)(1+(d−1)/2)

. (7.27)

In addition, we provide an approximate estimation of the computational costs for
the MAGO by:

CMAGO ≈
SA∑
i=1

(
Nmago

f(i)

)(1+(d−1)/2)

+

SG∑
i=1

(
N sago

c(i)

)(1+(d−1)/2)

. (7.28)

While we may omit certain additional costs for clarity, it is essential to highlight
that generating the database using the MAGO approach yields significant savings,
as detailed in Section 7.2.

7.3.1.3. Generating model parameter samples

We generate all model parameter samples randomly. Specifically, we use a uni-
form distribution over the interval [−1, 3] to derive the values of log10 (mi). Con-
sequently, the values of σi can vary by up to four orders of magnitude, ranging
from 10−1 to 103.
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7.3.2. Wave propagation example

We consider the following non-elliptic problem based on Helmholtz’s equation.

Find u such that

−∇ · (∇u) − jσ(x) u = 1 in Ω, (7.29)

u = 0 on ∂Ω. (7.30)

7.3.2.1. Example: wave propagation problem

We employ a 5 × 5 grid for numerical computations, encompassing a square
computational domain, Ω = [0, 1]2. Within this domain, we distinguish two
regions, Ωf and Ωl, which symbolize the source and the QoI, respectively. These

regions are defined within Ω as Ωf =
(

1
20
, 3
20

)2
and Ωl =

(
17
20
, 19
20

)2
, with the

origin situated at the bottom-left corner of the domain. Figure 7.2 shows the
computational domain Ω, its boundary ∂Ω (subject to Dirichlet conditions), and
the locations of Ωl and Ωf . In this depiction, Ωl defines the region of the QoI
function l (ϕ), whereas Ωf is the region for the source function.

Ω

Ωf

Ωl

∂Ω

Figure 7.2.: Our grid-based domain example is defined over the domain Ω. The
Dirichlet boundary condition is denoted by ∂Ω. The source function
is supported on Ωf , and the QoI l(ϕ) is supported on Ωl.

Figures 7.3a and 7.3b show the absolute values of forward and adjoint numerical
solutions on a logarithmic scale.
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(a) Solution to the direct problem.
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(b) Solution to the adjoint problem.

Figure 7.3.: Absolute value of the solutions of our wave propagation example.

7.3.2.2. Wave propagation: convergence

Figure 7.4 presents the numerical results for the wave propagation example using
just a single sample for the adaptive process, consistent with the GOA approach
as referenced in [43, 44]. This wave propagation final hp-adapted grids are shown
in Figures 7.4a and 7.4b. The material coefficient distribution across the domain
is depicted in Figure 7.4c. We observe significant p-refinements alongside the h-
refinements towards the material discontinuities expected for this equation. The
quasi-optimal exponential convergence graph for this scenario, along with the
progress of emax

rel and emean
rel , can be found in Figure 7.4d. For a comprehensive

understanding of the adaptive process’s performance, we also examined varying
SA counts. Results corresponding to SA values of 5, 10, 100, and 1000 are detailed
in Figures 7.5 to 7.8.

MAGO’s adaptive strategy exhibits a quasi-optimal convergence rate, showing
consistent behavior across the three norms chosen for error indicator combination
(l1, l2, and l∞), which are represented by red, blue, and grey lines, respectively.
This process aligns with the traditional GOA approach for a single sample, leading
us to depict only a single curve. However, as the number of samples increases,
maintaining precision for all on a single hp grid becomes more challenging.
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(b) Final hp-adapted mesh with polyno-
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(c) Values for the materials in the domain.
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(d) Evolution of emax
rel in the process.

Figure 7.4.: hp-adapted meshes for our 1-sample wave propagation.
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(a) Final hp-adapted mesh with polyno-
mial orders p in the x-direction.
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(b) Final hp-adapted mesh with polyno-
mial orders p in the y-direction.
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Figure 7.5.: hp-adapted meshes for our 5-sample wave propagation.
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(a) Final hp-adapted mesh with polyno-
mial orders p in the x-direction.
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(b) Final hp-adapted mesh with polyno-
mial orders p in the y-direction.
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Figure 7.6.: hp-adapted meshes for our 10-sample wave propagation.

76



7. Database generation for DL inversion

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x

y

1 2 3 4 5 6 7 8 9 10 11
Order of approximation

(a) Final hp-adapted mesh with polyno-
mial orders p in the x-direction.
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(b) Final hp-adapted mesh with polyno-
mial orders p in the y-direction.
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Figure 7.7.: hp-adapted meshes for our 100-sample wave propagation.
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(a) Final hp-adapted mesh with polyno-
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(b) Final hp-adapted mesh with polyno-
mial orders p in the y-direction.
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Figure 7.8.: hp-adapted meshes for our 1000-sample wave propagation.
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7.3.2.3. Wave propagation: accuracy

To showcase the efficiency of the MAGO approach, we present statistical proper-
ties of errors via standard box plots. These plots offer a detailed depiction of the
error distribution. Tukey [186] introduced these box plots in 1977 to provide a
robust data representation. The box plots visually represent how the maximum
relative error in the QoI varies with different numbers of training samples for the
adaptive process.

As shown in Figure 7.9, the box plots represent various values of SA in the
MAGO process. We consider the adaptive grids when they reach a maximum
relative error, emax

rel that drops below 10−5. Every number over each upper whisker
represents the nDoF in each hp grid with the maximum relative error reduced
to under 10−5. The trend suggests that as the number of training samples for
the adaptive process increases, the maximum relative error in the QoI tends to
decrease or remain stable. The variation in relative errors becomes more confined
with increasing training samples, as indicated by the tightening spread of the box
plots.
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Figure 7.9.: Box plots for different adaptive grids with a threshold maximum
relative error set at 10−5.

7.3.2.4. Wave propagation: computational costs

We estimate the computational cost based on the factorization cost, which consti-
tutes the most resource-intensive part of data generation and a significant expense
in many FEM codes. In Tables 7.1 and 7.2, we approximate the computational
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expenses in terms of Floating Point Operations (FLOPs) associated with database
generation using the SAGO and MAGO approaches. We compute CSAGO using
Equation (7.27). The maximum relative error is constrained to be under 10−5.

We observe that the MAGO approach is more cost-effective for solving problems
in this case, as CMAGO < CSAGO. The median values of the maximum relative
error are below 10−6, indicating a significantly higher accuracy by one order
of magnitude in the results, and demonstrated in Figure 7.9. This increased
accuracy is achieved at a reduced cost, making the MAGO approach particularly
suitable for solving challenging problems.

Number of DoF CSAGO

SG

N sago
f 105 107 109 1011

41259 8.4238 · 1011 8.4238 · 1013 8.4238 · 1015 8.4238 · 1017

Table 7.1.: The computational cost based on the factorization cost of generating
the database using the SAGO strategy.

Number of DoF CMAGO

SG

SA Nmago
c Nmago

f 105 107 109 1011

5 15440 52351 1.9191 · 1011 1.9185 · 1013 1.9185 · 1015 1.9185 · 1017

10 16867 57171 2.1919 · 1011 2.1906 · 1013 2.1906 · 1015 2.1906 · 1017

100 15870 53661 2.0117 · 1011 1.9994 · 1013 1.9992 · 1015 1.9992 · 1017

1000 17477 60381 2.4588 · 1011 2.3120 · 1013 2.3105 · 1015 2.3105 · 1017

Table 7.2.: The computational cost based on the factorization cost of generating
the database using the MAGO strategy.

80



7. Database generation for DL inversion

7.3.3. Poisson example

We consider the following elliptic problem based on the Poisson equation.

Find u such that

−∇ · (σ (x) ∇u) = 1 in Ω, (7.31)

u = 0 on ∂Ω. (7.32)

7.3.3.1. Example: cross-shaped domain Poisson problem

We address a Poisson problem over a domain Ω in a two-dimensional space,
represented on a 5 × 5 grid. The domain Ω resembles a cross and is defined by
Ω =

(
[0, 1] ×

[
1
5
, 4
5

])
∪
([

1
5
, 4
5

]
× [0, 1]

)
. Please refer to Figure 7.10 to visualize

the domain. Within this domain, there are two notable regions: Ωf , the source
area, and Ωl, the QoI area. Both Ωf and Ωl are subregions within Ω. Specifically,
Ωf is the square defined by x ∈

[
1
5
, 2
5

]
and y ∈

[
1
5
, 2
5

]
, and Ωl is the square with

x ∈
[
3
5
, 4
5

]
and y ∈

[
3
5
, 4
5

]
. The origin of the coordinate system is the bottom-left

corner of the domain.
Figures 7.11a and 7.11b showcase the absolute values of forward and adjoint

numerical solutions, respectively, on a logarithmic scale.

Ω

Ωf

Ωl

∂Ω

Figure 7.10.: Computational domain Ω, where homogeneous Dirichlet boundary
conditions are imposed on ∂Ω. Additionally, we define Ωl as the
support of the QoI l(ϕ), and Ωf as the support of the source func-
tion.
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(b) Solution to the adjoint problem.

Figure 7.11.: Absolute value of the solutions of our cross-shaped domain Poisson
example.
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7.3.3.2. Cross-shaped domain Poisson: convergence

We present the numerical results for our MAGO process with one sample in
Figure 7.12, and for SA equal to 5, 10, 50, and 100 in Figures 7.13 to 7.16, re-
spectively. The convergence is quasi-optimal, and the three norms (l1, l2, and
l∞) yield similar results as in previous examples. Predictably, regions with signif-
icant material coefficient fluctuations witness more substantial mesh refinement,
resulting in more compact mesh elements (denoted as h) near intersections of
multiple materials. In addition, Figure 7.12c represents the material properties.
The quasi-optimal exponential convergence graph for this scenario, along with
the progress of emax

rel and emean
rel , can be found in Figure 7.12d.
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(a) Final hp-adapted mesh with polyno-
mial orders p in the x-direction.
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(b) Final hp-adapted mesh with polyno-
mial orders p in the y-direction.
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(c) Values for the materials in the domain.
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(d) Evolution of emax
rel in the process.

Figure 7.12.: hp-adapted meshes for our 1-sample cross-shaped domain example.

84



7. Database generation for DL inversion

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x

y

1 2 3 4 5 6 7 8 9 10 11
Order of approximation

(a) Final hp-adapted mesh with polyno-
mial orders p in the x-direction.
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(b) Final hp-adapted mesh with polyno-
mial orders p in the y-direction.
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(c) Evolution of emax
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Figure 7.13.: hp-adapted meshes for our 5-sample cross-shaped domain example.
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(a) Final hp-adapted mesh with polyno-
mial orders p in the x-direction.
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(b) Final hp-adapted mesh with polyno-
mial orders p in the y-direction.
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Figure 7.14.: hp-adapted meshes for our 10-sample cross-shaped domain example.
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(a) Final hp-adapted mesh with polyno-
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(b) Final hp-adapted mesh with polyno-
mial orders p in the y-direction.
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Figure 7.15.: hp-adapted meshes for our 50-sample cross-shaped domain example.
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(a) Final hp-adapted mesh with polyno-
mial orders p in the x-direction.
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(b) Final hp-adapted mesh with polyno-
mial orders p in the y-direction.

101 102 103 104 105

100

101

102

Number of DoFs, N (log scale)

M
ax

re
la

ti
ve

er
ro

r
in

%
(l

og
sc

al
e) l∞ l1 l2

(c) Evolution of emax
rel in the process.

101 102 103 104 105

10−1

100

101

Number of DoFs, N (log scale)

M
ea

n
re

la
ti

ve
er

ro
r

in
%

(l
og

sc
al

e) l∞ l1 l2

(d) Evolution of emean
rel in the process.

Figure 7.16.: hp-adapted meshes for our 100-sample cross-shaped domain exam-
ple.
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7.3.3.3. Cross-shaped domain Poisson: accuracy

Figure 7.17 displays a series of box plots corresponding to different adaptive
grids. The x-axis denotes the number of samples (SA) used during the MAGO
process to formulate the final hp grid. We stop every MAGO adaptation once the
maximum relative error (emax

rel ) is reduced to under 1.0%. Every number over each
upper whisker represents the nDoF in each hp grid with the maximum relative
error reduced to under 1.0%. The general trend suggests that as the number of
training samples for the adaptive process increases, the maximum relative error
in the QoI tends to decrease. The spread of relative errors becomes greater
with more training samples. However, the median error values do not change
dramatically after fifty training samples, suggesting decreasing returns in error
reduction with additional samples.
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Figure 7.17.: Box plots for different adaptive grids with a threshold maximum
relative error set at 1.0%.

7.3.3.4. Cross-shaped domain Poisson: computational costs

In Tables 7.3 and 7.4, we approximate the computational expenses in terms of
FLOPs associated with database generation using the SAGO and MAGO ap-
proaches. We compute CSAGO using Equation (7.27). The maximum relative
error is constrained to be under 1.0%.

While solving problems using the SAGO approach appears to be cost-effective,
it is essential to acknowledge a limitation, as CSAGO < CMAGO.
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Number of DoF CSAGO

SG

N sago
f 105 107 109 1011

23494 5.1131 · 1011 5.1131 · 1013 5.1131 · 1015 5.1131 · 1017

Table 7.3.: The computational cost based on the factorization cost of generating
the database using the SAGO strategy.

Number of DoF CMAGO

SG

SA Nmago
c Nmago

f 105 107 109 1011

5 8975 77651 8.5134 · 1010 8.5027 · 1012 8.5026 · 1014 8.5026 · 1016

10 31382 362543 5.5811 · 1011 5.5595 · 1013 5.5593 · 1015 5.5593 · 1017

50 55774 637779 1.3427 · 1012 1.3174 · 1014 1.3172 · 1016 1.3172 · 1018

100 66108 734061 1.7626 · 1012 1.7004 · 1014 1.6997 · 1016 1.6997 · 1018

Table 7.4.: The computational cost based on the factorization cost of generating
the database using the MAGO strategy.

7.3.3.5. Example: grid-based domain Poisson problem

We use a 5 × 5 grid to represent the material properties within a computational
domain defined in Section 7.3.2.1. Figure 7.2 displays this domain. Figures 7.18a
and 7.18b display the absolute values of the forward and adjoint numerical solu-
tions, respectively, on a logarithmic scale.

7.3.3.6. Grid-based domain Poisson: convergence

Figure 7.19 displays the computational outcomes for the grid-based domain Pois-
son example when employing one sample for its adaptive routine, corresponding
to the GOA approach described in [43, 44]. Figures 7.19a and 7.19b show the final
hp-adapted mesh for this example, whereas Figure 7.19c maps out the domain’s
material coefficient layout. As anticipated, areas with pronounced material coef-
ficient disparities require from intense refinements. Consequently, mesh sizes, de-
noted by h, are finer at junctures where diverse materials intersect. Figure 7.19d
shows a quasi-exponential convergence pattern. As depicted in Figure 7.19d, it
distinctly illustrates that an increased number of samples in the adaptive process
(SA) leads to improved convergence behavior. For instance, Figures 7.20 to 7.23
encapsulate findings when SA is assigned values of 5, 10, 50, and 100.
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(b) Solution to the adjoint problem.

Figure 7.18.: Absolute value of the solutions of our Poisson example.

Drawing from the observations, MAGO’s adaptive strategy showcases a quasi-
optimal convergence rate. As samples for the adaptive routine increase, ensuring
precision on a unified hp grid for all samples grows complex. Hence, while we
observe quasi-optimal convergence rates consistently, the relative errors are am-
plified as SA rises.
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(a) Final hp-adapted mesh with polyno-
mial orders p in the x-direction.
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(b) Final hp-adapted mesh with polyno-
mial orders p in the y-direction.
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Figure 7.19.: hp-adapted meshes for our 1-sample grid-based domain example.
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(a) Final hp-adapted mesh with polyno-
mial orders p in the x-direction.
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(b) Final hp-adapted mesh with polyno-
mial orders p in the y-direction.
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Figure 7.20.: hp-adapted meshes for our 5-sample grid-based domain example.
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(a) Final hp-adapted mesh with polyno-
mial orders p in the x-direction.
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(b) Final hp-adapted mesh with polyno-
mial orders p in the y-direction.
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Figure 7.21.: hp-adapted meshes for our 10-sample grid-based domain example.
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(a) Final hp-adapted mesh with polyno-
mial orders p in the x-direction.
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(b) Final hp-adapted mesh with polyno-
mial orders p in the y-direction.
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Figure 7.22.: hp-adapted meshes for our 50-sample grid-based domain example.
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(a) Final hp-adapted mesh with polyno-
mial orders p in the x-direction.
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(b) Final hp-adapted mesh with polyno-
mial orders p in the y-direction.
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Figure 7.23.: hp-adapted meshes for our 100-sample grid-based domain example.
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7.3.3.7. Grid-based domain Poisson: accuracy

Figure 7.24 displays a series of box plots corresponding to different adaptive
grids. The x-axis denotes the number of samples (SA) used during the MAGO
process to formulate the final hp grid. We stop every MAGO adaptation once the
maximum relative error (emax

rel ) is reduced to under 1.0%. Every number over each
upper whisker represents the nDoF in each hp grid with the maximum relative
error reduced to under 1.0%. The general trend suggests that as the number of
training samples for the adaptive process increases, the maximum relative error
in the QoI tends to decrease. The spread of relative errors becomes greater
with more training samples. However, the median error values do not change
dramatically after fifty training samples, suggesting decreasing returns in error
reduction with additional samples.
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Figure 7.24.: Box plots for different adaptive grids with a threshold maximum
relative error set at 1.0%

7.3.3.8. Grid-based domain Poisson: computational costs

In Tables 7.5 and 7.6, we approximate the computational expenses in terms of
FLOPs associated with database generation using the SAGO and MAGO ap-
proaches. We compute CSAGO using Equation (7.27). The maximum relative
error is constrained to be under 1.0%.

While solving problems using the SAGO approach appears to be cost-effective,
it is essential to acknowledge a limitation, as CSAGO < CMAGO.
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Number of DoF CSAGO

SG

N sago
f 105 107 109 1011

28428 6.4888 · 1011 6.4888 · 1013 6.4888 · 1015 6.4888 · 1017

Table 7.5.: The computational cost based on the factorization cost of generating
the database using the SAGO strategy.

Number of DoF CMAGO

SG

A Nmago
c Nmago

f 105 107 109 1011

5 18777 186161 2.5770 · 1011 2.5730 · 1013 2.5730 · 1015 2.5730 · 1017

10 38407 428635 7.5550 · 1011 7.5272 · 1013 7.5269 · 1015 7.5269 · 1017

50 73487 769965 2.0259 · 1012 1.9925 · 1014 1.9921 · 1016 1.9921 · 1018

100 81573 831627 2.4056 · 1012 2.3306 · 1014 2.3298 · 1016 2.3298 · 1018

Table 7.6.: The computational cost based on the factorization cost of generating
the database using the MAGO strategy.
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8. Main Achievements

8.1. Peer-reviewed Publications

2023 F. V. Caro, V. Darrigrand, J. Alvarez-Aramberri, and D. Pardo. A Multi-
Adaptive-Goal-Oriented Strategy to Generate Massive Databases of Para-
metric PDEs. To be submitted to Computer Methods in Applied Mechanics
and Engineering in October 2023.

2022 F. V. Caro, V. Darrigrand, J. Alvarez-Aramberri, E. Alberdi, and D. Pardo.
A painless multi-level automatic goal-oriented hp-adaptive coarsening strat-
egy for elliptic and non-elliptic problems. Computer Methods in Applied
Mechanics and Engineering, 401:115641, 2022. Impact Factor: 7.2, Quar-
tile: Q1, Scimago Ranking.
https://doi.org/10.1016/j.cma.2022.115641

2022 F. V. Caro, V. Darrigrand, J. Alvarez-Aramberri, E. A. Celaya, and D.
Pardo. 1D Painless Multi-level Automatic Goal-Oriented h and p Adaptive
Strategies Using a Pseudo-Dual Operator. In Computational Science – ICCS
2022, pages 347–357, 2022.
https://doi.org/10.1007/978-3-031-08754-7_43

8.2. International Conferences

2023 F. V. Caro, V. Darrigrand, J. Alvarez-Aramberri, and D. Pardo. Gen-
eration of Massive Databases for Deep Learning Inversion Using A Goal-
Oriented hp-Adaptive Strategy.
XI International Conference on Adaptive Modeling and Simulation, Gothen-
burg, Sweden, [June 19-21, 2023].

2022 F. V. Caro, V. Darrigrand, J. Alvarez-Aramberri, E. Alberdi, and D.
Pardo. A Painless Automatic hp-Adaptive Coarsening Strategy For Non-
SPD problems: A Goal-Oriented Approach.
15th World Congress on Computational Mechanics and 8th Asian Pacific
Congress on Computational Mechanics, Yokohama, Japan, [July 31 - Au-
gust 5, 2022].
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Strategies using a Pseudo-Dual Operator.
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Kingdom, [June 21-23, 2022].

2022 F. V. Caro, V. Darrigrand, J. Alvarez-Aramberri, E. Alberdi, and D.
Pardo. Goal-Oriented hp-Adaptive Finite Element Methods: A Painless
Multilevel Automatic Coarsening Strategy For Non-SPD Problems.
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Engineering, Oslo, Norway, [June 5-9, 2022].

2021 F. V. Caro, V. Darrigrand, E. Alberdi, and D. Pardo. A Painless Goal-
Oriented hp-Adaptive Strategy for Indefinite Problems.
16th U.S. National Congress on Computational Mechanics, Chicago, U.S.A,
[July 25-29, 2021].

2021 F. V. Caro, V. Darrigrand, E. Alberdi, and D. Pardo. Goal-Oriented hp-
Adaptive Finite Element Methods: A Painless Multi-level Automatic Coars-
ening Strategy.
10th International Conference on Adaptive Modeling and Simulation, Gothen-
burg, Sweden, [June 21-23, 2021]. https://doi.org/10.23967/admos.

2021.044.

2021 F. V. Caro, V. Darrigrand, E. Alberdi, and D. Pardo. Painless Multi-level
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XVI Congreso de Matemática Aplicada, Gijón, Spain, [June 14-18, 2021].

8.3. Seminars

2022 F. V. Caro, V. Darrigrand, J. Alvarez-Aramberri, E. Alberdi, and D.
Pardo. A Boundary Value Problem: A Painless Multi-Level hp-Adaptive
Case.
Centro Universitario de Ciencias Exactas e Ingenieŕıas, Universidad de
Guadalajara, Guadalajara, México, [March 9, 2022].
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8. Main Achievements

8.4. Research Stays

2023 AGH University of Science and Technology, Krakow (Poland)
Supervisor: Maciej Paszynski
Date: 2 February 2023 - 31 March 2023 (58 days)

2021 CNRS-IRIT-ENSEEIHT, Toulouse (France)
Supervisor: Vincent Darrigrand
Date: 24 September 2021 - 25 November 2021 (61 days)

2020 CNRS-IRIT-ENSEEIHT, Toulouse (France)
Supervisor: Vincent Darrigrand
Date: 1 November 2020 - 4 December 2020 (34 days)

8.5. Implemented software

In this dissertation, I used the FEM library from the MathMode group1. The
group initially designed this library to address elliptic problems using an energy-
based-adaptive hp-strategy withH1-conforming discretizations. The library, writ-
ten in Fortran90, supports solving problems in 1D, 2D (using quadrilateral ele-
ments), and 3D (using hexahedral elements).

I contributed to the software in two significant ways. First, I expanded the
energy-based-adaptive hp-strategy to a Goal-Oriented (GO) hp-adaptive algo-
rithm that now handles both elliptic and non-elliptic problems. In this effort,
I collaborated with Dr. Vincent Darrigrand and Dr. Julen Alvarez-Aramberri
to introduce an upper bound of the error representation expressed through an
inner product depending on the problem’s bilinear form. Furthermore, we col-
laborated to enhance the adaptive hp-strategy to fit the Multi-Adaptive Goal-
Oriented (MAGO) framework for solving parametric Partial Differential Equa-
tions (PDEs). Our method seeks to produce reliable synthetic data or measure-
ments, which experts can utilize for solving Inverse Problems (IPs) or training
Neural Networks (NNs). We implemented this using piecewise-constant materials
that align with the discretization. Instead of computing integrals for each sample,
which would be time-consuming, we precomputed and saved the integrals for a
unitary sample only once, optimizing the stiffness matrix computation process.

1https://www.mathmode.science/home
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9. Conclusions and Future Work

9.1. Conclusions

This dissertation mainly focuses on expanding an energy-based hp-adaptive al-
gorithm previously limited to elliptic problems to both elliptic and non-elliptic
problems under a Goal-Oriented (GO) framework.

Chapter 4 proposes h- and p-Goal-Oriented Adaptive (GOA) strategies suitable
for both elliptic and potentially non-elliptic problems. These strategies use hier-
archical basis functions to handle the hanging nodes, first performing a global and
uniform refinement and then a coarsening step to remove certain basis functions.
To determine which basis functions to remove, we employ an unconventional sym-
metric and positive definite bilinear form that quantifies the error in the Quantity
of Interest (QoI). We test these algorithms on 1D Helmholtz and convection-
diffusion problems by applying the Laplace operator’s pseudo-dual problem. The
numerical results show a linear convergence rate for the h scenarios and a quasi-
exponential rate for the p scenarios.

Chapter 5 introduces an automatic adaptive mesh-generation strategy alter-
nating between refinement and quasi-optimal hp-unrefinement procedures. Iden-
tifying which basis functions to remove efficiently presents a challenge. To ad-
dress this, we extend a coarsening strategy previously tailored for energy-norm
adaptivity to address non-elliptic problems and GOA strategies. Precisely, we
consider the relevance of each basis function to the solution using an inner prod-
uct associated with the problem’s bilinear form. Based on these evaluations, each
coarsening step eliminates certain basis functions. The algorithm’s design sim-
plifies implementation using hierarchical data structures that avoid the conven-
tional 1-irregularity rule, which usually deals with hanging nodes. Our numerical
results, which include 2D problems such as Poisson, Helmholtz, and convection-
dominated equations, validate the algorithm’s robustness and fast convergence.
The resulting algorithm is easy to implement, and due to its robustness and rapid
convergence, it shows potential for easy adaptation to industrial scenarios. Chap-
ter 6 highlights the strengths of our algorithm, showcasing its performance on a
3D heterogeneous Helmholtz equation-based problem.

In Chapter 7, we introduce the Multi-Adaptive Goal-Oriented (MAGO) strat-
egy to address the computational costs and dataset requirements associated with
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accurately training a Deep Neural Network (DNN) to mimic the forward solver.
Building upon our previously developed GOA approach for non-parametric Partial
Differential Equations (PDEs), MAGO demonstrates promising results in effi-
ciently generating a single hp-mesh. This optimized mesh ensures accurate com-
putation of the QoI for multiple samples within a single GOA process. By com-
bining the individual errors from all samples using l1, l2, and l∞ norms, the
MAGO approach provides sufficiently accurate solutions for all scenarios, includ-
ing wave propagation examples with both h-refinements towards material discon-
tinuities and strong p-refinements. The accuracy assessment of MAGO ’s adaptiv-
ity through box plots indicates that a more significant number of samples involved
in the adaptive process (SA) leads to improved hp-grid results. Consequently, the
statistical properties associated with the maximum relative error decrease as SA

increases. The results underscore the robustness, speed, and computational effi-
ciency of MAGO as an alternative for generating reliable databases while ensuring
high accuracy. Furthermore, the computational costs in terms of Floating Point
Operations (FLOPs) of the Single-Adaptive Goal-Oriented (SAGO) and MAGO
strategies, based on factorization, are detailed in Tables 7.1 and 7.2, respectively.
Notably, the MAGO approach demonstrates its effectiveness in problem-solving
within this context, as evidenced by CMAGO < CSAGO. This observation under-
scores that the MAGO approach attains a higher level of accuracy while simulta-
neously reducing costs, rendering it a particularly suitable choice for addressing
challenging problems.

9.2. Future Work

In this dissertation, we identify potential paths for future research. One signif-
icant avenue is the extension of algorithms to address multi-physics problems,
notably H(curl) and H(div). Enhanced parallelization and factorization tech-
niques can reduce future computational resource requirements. Moreover, it is
crucial to validate the efficacy of our algorithms in real-world scenarios such as
Magnetotellurics, Controlled Sources, and Logging While Drilling.

Furthermore, our approach to generating expansive databases, explicitly de-
signed for DNN training, can be improved. By integrating our strategy with
Machine Learning (ML) methodologies, we can expedite and improve the DNN
training processes. An in-depth analysis of the impact of the nature and distribu-
tion of various random samples on Deep Learning (DL) inversion could provide
critical insights for optimization.
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[83] S. Giani, D. Schötzau, and L. Zhu. An a-posteriori error estimate for hp-
adaptive DG methods for convection–diffusion problems on anisotropically
refined meshes. Computers & Mathematics with Applications, 67(4):869–
887, 2014. High-order Finite Element Approximation for Partial Differential
Equations. (cited in page(s) 4)
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[182] B. A. Szabó. The p- and h-p versions of the finite element method in
solid mechanics. Computer Methods in Applied Mechanics and Engineering,
80(1):185–195, 1990. (cited in page(s) 3)
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