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Abstract: In the last decades, the effects of global warming combined with growing anthropogenic activities have caused 

a mismatch in the water supply-demand, resulting in a negative impact on numerous Mediterranean rivers 

regime and on the functionality of related ecosystem services. Thus, for water management and mitigation of 

the potential hazards, it is fundamental to efficiently map areal extents of river water surface. Synthetic 

Aperture Radar (SAR) is one of the satellite technologies applied for hydrological studies, but it has a spatial 

resolution which is limited for the study of rivers. On the other side, deep learning technology exhibits a high 

modelling potential with low spatial resolution data. In this paper, a method based on convolutional neural 

networks is applied to the SAR backscatter coefficient for detecting river water surface. Our experimental 

study focuses on the lower reach of Mijares river (Eastern Spain), covering a period from Apr 2019 to Sept 

2022. Results suggest that radar backscattering has high potential in modelling water river trends, contributing 

to the monitoring of the effects of climate change and impacts on related ecosystem services. To assess the 

effectiveness of the method, the output has been validated with the Normalized Difference Water Index 

(NDWI).

1 INTRODUCTION 

In hydrology, the ability to regularly assess the 

river water surface is of utmost importance for several 

purposes: water accountability, water allocation, 

flooding mitigation, and the reinforcement of the 

ecosystem services. In the literature, satellite based 

remote sensing has been used to monitor the areal 

extent of surface water bodies (Frappart et al., 2021; 

Botha et al., 2020). Most of the research focuses on 

studying flooding events (Carreño-Conde et al., 

2019; Quiròs and Gagnon, 2022; Tran et al., 2022), 

while the monitoring of the areal extent of river water 

surface is a more complex task, with fewer studies 

(Filippucci et al., 2022). Specifically, remote sensing 

data include different technologies, ranging from 

radar to multispectral. Radar data is not affected by 

weather conditions (e.g. clouds) while it is by 

vegetation. In particular, this is relevant for the 

monitoring of the extents of water in narrow river, 

given the limited number of water pixels. In contrast, 

the spatial resolution provided by multispectral 

satellites, especially for optical bands (such as 

Sentinel-2 used in this study), is higher than 

resolution of Sentinel-1 SAR data. For this reason, the 

Synthetic Aperture Radar (SAR) is less used to map 

the extent of river water surface respect to the optical 

data. 

On the other hand, there is a high potential in deep 

learning technology for its capabilities of mapping 

and image features identification (Ronneberger et al., 

2015), also applied to SAR data under low resolution 

conditions (Jiang et al., 2022; Orlandi et al., 2022). 

Specifically, the U-Net convolutional neural network 

has been recently experimented for the mapping of 

the extent of lake water surface. U-Net carries out the 

semantic segmentation task, partitioning the image 

into different regions, for corresponding classes (e.g. 



   

 

   

 

surface water, vegetation, and so on) (Ronneberger et 

al., 2015). In the context of image segmentation, U-

Net is equipped with a spatial attention mechanism, 

to highlight only the relevant parts of the image 

during training. As a result, the computational 

resources on the irrelevant part of the image are low, 

with better generalisation capability. 

In this paper, a U-Net architecture is used on the 

radar backscatter coefficient with the purpose of 

efficiently identifying and mapping areal extents of 

river water surface. Satellite multispectral data are 

used for validating the method. The paper is 

structured as follows. Section 2 discusses the case 

study, i.e., the area and the data sets achieved. Section 

3 covers the overall methods in terms of Multispectral 

data pre-processing, SAR data pre-processing, and U-

Net segmentation. Experimental results are discussed 

in Section 4. Finally, Section 4 draws also the 

conclusions.  

 

2 CASE STUDY 

2.1 Study area 

The study area (Figure 1) focuses on the last 20 

km of the Mijares river in Eastern Spain (Pompeu et 

al., 2021). Along the river path there are the Arenoso 

(93 Mm3), Sichar (49 Mm3) and Maria Cristina (18.4 

hm3) reservoirs, which support the agricultural needs 

and guarantee the water supply to the Sichar dam (0.2 

Mm3) downstream (Macian-Sorribes et al., 2015). In 

the lower reach of the Mijares river (Figure 1), the 

alluvial plain is characterized by meandering 

sequence of fine to coarse sediments, which grade to 

deltaic successions in the Almazora and Buriana 

plains. In the last decades, the region has experienced 

hotter seasons, a concentration of the total annual 

rainfall (MedECC, 2020), and an overall decrease of 

precipitation in the period 1980-2012 with respect to 

the period 1940-2012 in 3-7%. Overall, the area has 

available water resources of 335.7 hm3/year and a 

water demands of 268.23 hm3/year (Confederación 

Hidrográfica del Júcar, 2019). There are records 

historically significant torrential floods that could not 

be correctly gauged, which are only expected to rise 

given the increasingly unstable weather patterns 

forecasted for the watershed (Masson-Delmotte et al., 

2021). 

2.2 Datasets 

Our data sets consist of images acquired by 

Sentinel-2 and Sentinel-1A satellites, provided by the 

European Space Agency (ESA). Sentinel-2 is a 

Multispectral satellite, acquiring images in 13 bands. 

For this work, we used 36 Level-1C images (Table 1) 

covering a period from October 2019 to August 2022, 

considering all the 13 bands but also selecting 

particular bands, such as B3 and B8 (visible and near-

infrared, respectively) to build a river mask. Sentinel-

1A is a SAR satellite operating in the C-band. We 

used 104 Single Look Complex (SLC) images, 

acquired in Descending orbit and in Interferometric 

Wide swath beam mode (Table 1), covering the time 

period from April 2019 to September 2022. 

Table 1: SAR and Multispectral datasets. 

Satellite Sentinel-1A Sentinel-2 

Product Level Single Look 

Complex (SLC) 

Multispectral 

Instrument (MSI) - 

Level-1C 

Tiles - T31TBE, T30TYK 

Spatial 

Resolution (m) 
20  20 10  10 

Orbit Descending (path 

8, frame 458) 

- 

Acquisition 

mode 

Interferometric 

Wide swath (IW) 

- 

Revisit time 12 days - 

Polarization VV - 

3 METHODS 

3.1 Multispectral images pre-
processing 

To identify the areal extent of the river water 

surface the NDWI is computed, i.e., a satellite-

derived index utilizing visible and near-infrared 

wavelengths not affected by meteorological 

conditions (e.g. Tran et al., 2022). Specifically, 

NDWI has been computed on 36 Sentinel-2 images, 

using band 3 (visible) and 8 (near-infrared) through 

the following formula: 

𝑁𝐷𝑊𝐼 =  
𝐵3 −  𝐵8

𝐵3 +  𝐵8
 

(1) 

Then, based on the NDWI, a polygon of the areal 

extent of the water has been created for each image. 

This process has been also validated by comparing 

each polygon to all the 13 bands in the image. Thus, 

the final Water Surface Mask (WSM) has been 

created by comparing the 36 different water polygons 

generated. As a final step, in order to give to the U-

Net architecture some validation multispectral maps 

to train the network, the 36 different NDWI maps 

have been translated into binary images. Each pixel 



   

 

   

 

of a binary image is set to 0 outside the WSM, and 1 

to mark the presence of water within the final WSM, 

where the selection of the threshold water/non-water 

set to -0.1 (Figure 2) has been validated comparing 

with all the bands of the Multispectral images. The 

column on the right in Figure 2 shows the flow chart. 

3.2 SAR images pre-processing 

A series of 104 SAR images have been processed to 

obtain the backscatter coefficient from the raw radar 

images. Figure 2 left shows the workflow. First, the 

thermal noise removal has been applied, choosing the 

VV (Vertical-Vertical) polarization. This option was 

preferred, instead of VH polarization. Indeed, 

differently from other works focused on floodings 

events (Carreño-Conde et al., 2019; Tran et al., 

2022), in this research the general scarce presence of 

water requires a stronger backscatter value provided 

by VV polarization. The following step was the 

radiometric calibration. To achieve a radiometrically 

calibrated backscatter,  is set to 0, from the 

amplitudes stored in the SLC image. Subsequently, 

the azimuth debursting is carried out to merge all 

bursts using the TOPSAR-Deburst method, followed 

by the Multilook step with a window size of 11 in 

Range and Azimuth, respectively. Figure 3 shows 

three different filters that have been tested to remove 

the remaining speckle: Lee, IDAN and Lee Sigma. 

Differently from other works (e.g. Carreño-Conde et 

al., 2019), in this study, in terms of accuracy and 

better visual estimation of the presence of water, the 

Lee Sigma filter gives the best results, compared to 

both Lee which appears noisier and to IDAN that 

provides less details. Then, the image is projected 

from Slant Range onto Ground Range (SRGR). 

Finally, the Terrain-Correction geocoding has been 

applied using the Digital Elevation Model of the 

NASA Shuttle Radar Topography Mission 1 arcsec of 

30 m spatial resolution. 

3.3 SAR image semantic segmentation 

Overall, the task of detecting the river water surface 

is tackled as a SAR image segmentation task. 

Specifically, a 128×128-pixel SAR image is 

considered as an input. A particular Convolutional 

Neural Network, known as U-Net (Ronneberger et 

al., 2015) is used for the SAR image segmentation 

task. A U-Net consists of a contracting and an 

expanding path, to capture context and precise 

localization, respectively. A U-Net can be trained 

from very few images, outperforming the other 

approaches (Qin et al., 2020). 

Figure 4 shows two examples of image 

segmentation, after 100 training iterations (images a-

e), and after 30,000 training iterations (f-j) of the U-

Net. Specifically, image (a) and (f) are two examples 

of raw input. Second, the known WSM has been used 

to filter the initial raw input (b and g). Third, the 

reference truth data (c) and (h) are derived from the 

Multispectral images. Fourth, images (d) and (i) show 

the output provided by the U-Net. Finally, images (e) 

and (j) represent the binarized water/non-water 

outputs: pixel values larger or equal than 0.5 are set 

to 1, otherwise they are set to 0. 

 

 
Figure 2: SAR (left) and Multispectral (right) data pre-

processing. 

4 RESULTS AND DISCUSSION 

To carry out the proposed research, we have used an 

open-source implementation of the U-Net (Wang, 

2023). The generated source code has been made 

publicly available (Galatolo, 2023). Table 2 shows 

the U-Net hyperparameters settings, achieved via grid 

search. Figure 5 shows the cross-entropy loss against 

the iterations. In this image, it can be read that after 

computing 6000 iterations the system achieves good 

performances, about 0.013. Figure 6 shows the 

outputs of the U-Net, one performed on the SAR 

images and the other one obtained with Multispectral 

images, both representing the area in the image 

covered by the water, hereafter called as the 

“Normalized River Water Extent (NRWE)”.  



   

 

   

 

 

Figure 1: Study area (red rectangle) and river drainage network. 

 

Figure 3: Speckle-Filters, Lee (a), IDAN (b), Lee Sigma (c). 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 
(g) 

 
(h) 

 
(i) 

 
(j) 

Figure 4: samples after 100 training 

iterations (a-e), and after 30,000 

training iterations (f-j); raw input 

(a,f); water surface mask (b,g); 

multispectral bands (c,h); raw output 

(d,i); discretized output (e,j). 

 

 

The results obtained using SAR and optical 

images are promising. Indeed, there is a good 

similarity between SAR outputs and Optical water 

masks (Figure 4). Moreover, it can also be 

appreciated a similar seasonal trend in the NRWE 

over time. Finally, the Mean Absolute Error (MAE) 

between the SAR-based NRWE and Optical- based 

NRWE is 0.072. 

5 CONCLUSIONS 

In this paper we analysed the Mijares river 

(Eastern Spain) from April 2019 to September 2022. 

In particular, we focused on its lower reach that can 

be considered a challenging task given that this area 

is often drought prone and it has little detectable water 

for the most part of the year, yet it registers recurring 

floods. Differently from the majority of case studies 

in the literature using remote sensing to map flooding, 



   

 

   

 

wide rivers and large water surfaces, here we used a 

Convolutional Neural Network for detecting river 

water surfaces from SAR data, using Multispectral 

data as a ground truth. Specifically, a data pipeline for 

satellite data pre-processing is first presented, and 

then the U-Net architecture is parameterized and 

trained. The adopted approach, which provided 

promising early experimental results in the river 

water surfaces detection through radar backscatter, 

can be considered as a first step to further investigate 

the same satellite data sets over a longer period, with 

the final aim of monitoring the temporal variations 

and the effects of the climate change in a fragile 

ecosystem such as rivers. Lastly, to encourage 

scientific collaborations, the source code used for this 

work has been made publicly available (Galatolo, 

2023).  

Table 2: U-Net hyperparameters settings. 

Parameter Description Value(s) 

dim no. initial channels  8 

dim mults no. channels multipliers [1, 2, 4] 

blocks per 

stage 

no. convolutional operations 

per stage 

[2, 2, 2] 

self-attentions 

per stage 

no. self-attention blocks per 

stage 

[0, 0, 1] 

channels input channels 1 

resnet groups no. normalization groups  2 

consolidate 

upsample 

fmaps  

feature maps consolidation true 

weight 

standardize 

weight standardization false 

attention 

heads 

no. attention heads 2 

attention dim 

head 

size of attention head 16 

training 

window size  

window size of training 

samples  

128 

training batch 

size 

no. of samples per iteration 32 

learning rate amount of weight change in 

response to the error 

0.001 
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Figure 5: Cross-entropy loss against iterations. 

 

Figure 6: Normalized River Water Extent. 
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