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Abstract

Modern manufacturing is challenged by the dynamic demands of the
global market, necessitating flexibility, adaptability, and digitalization in
manufacturing systems. In fact, it is evolving towards the manufacture
of products with shorter life cycles, mass customization, high quality and
shorter, cost-effective delivery.

To address these needs, current production systems leverage the devel-
opment of various technologies that have converged over the last decade
in what is known as the fourth industrial revolution, or Industry 4.0.
In this context, hierarchical control systems are giving way to heter-
archical systems that allow great adaptability to changes. These new
control systems consist of highly distributed and self-organized modules
represented as individual Cyber-Physical Systems (CPSs) with social ca-
pabilities, comprising both physical and virtual components. Among the
different physical assets found in a manufacturing system, a crucial com-
ponent of the future factory is the Mobile Manipulator Robot (MMR),
replacing traditional conveyor belts and enabling quick and efficient re-
configurability of production and increased flexibility.

In this context, this doctoral thesis focuses on solving two of the main
challenges of flexible manufacturing systems in the field of MMRs, which
constitute its main objective and are translated into the two main con-
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tributions of this thesis. On the one hand, to offer a generic framework
that facilitates the development of specific robotic applications in differ-
ent fields, allowing the easy integration of the different robotic skills. On
the other hand, to provide this solution with the necessary socialisation
capabilities to be able to interact intelligently with other robots or any
other asset in a smart factory.

As a solution to the first challenge, this PhD thesis proposes Robot-
framework, a generic control architecture for MMRs that helps to inte-
grate the necessary navigation, manipulation or perception abilities for
the execution of a robot’s tasks. The modular design of the architecture,
the implementation of skills through the pluginlibs concept and the the
integration with high-level decision systems in a standardised way (guided
by meta-model and plan format), lead to faster and simplified develop-
ment of new robotic applications. The architecture is based on ROS,
providing a generic and standardized approach for working with differ-
ent hardware and software and includes generic real-time data collection
tools, diagnosis and error handling modules, and user-friendly interfaces.
Realistic use cases corresponding to applications that are part of Eu-
ropean projects, such as industrial aileron inspection (CRO-INSPECT
project) and pest inspection and treatment (Greenpatrol project), vali-
date the generalisability and efficiency of the architecture, and demon-
strate its potential for future applications.

It is worth noting that the versatility of Robotframework goes beyond in-
dustrial applications, so it is also applicable to a variety of non-industrial
scenarios. However, Robotframework alone does not provide the nec-
essary social capabilities for the integration of MMRs in the connected
factories of the future.

In order to improve the socialisation capabilities of MMRs, the sec-



ond challenge, this doctoral thesis proposes the integration of Robot-
framework in a decentralized flexible manufacturing system following the
precepts of the RAMI reference architecture, which proposes the vir-
tualisation of assets as a set of functionalities offered in the form of
services. To this end, RAMI identifies the concept of an I4.0 component
consisting of an asset and its corresponding Asset Administration Shell
(AAS). This work focuses on the MMR asset and its AAS which is in
charge of offering the rest of the entities of the manufacturing system
(machines, intelligent product, operators...) both the manufacturing ser-
vices (mainly related to transport tasks) and information about its status
stored in models (battery status, location...).

The proposal is validated through a series of incremental use cases rep-
resenting real plant situations. It begins with a use case based solely on
a simulation in ROS, serving to define and evaluate mechanisms of dis-
tributed decision-making between machines and robots. The second use
case presents a real scenario with machines (controlled by PLCs simu-
lated in CODESYS), and robots represented by Kobukis, communicating
through the industrial OPC UA standard. In this case, robots perform
material replenishment and transportation of finished parts on-demand.
The third and final use case proposes a methodology to integrate Robot-
framework with RAMI concepts (based on JADE), abstracting the social
capabilities from control functionalities and promoting a more organized
and coherent approach to interaction among various agents in the smart
factory.





Resumen

La industria manufacturera moderna se enfrenta al reto de las cambiantes
exigencias de un mercado global que demanda flexibilidad, adaptabilidad
y digitalización en los sistemas de fabricación. De hecho, se evoluciona
hacia la fabricación de productos con ciclos de vida más cortos, una
masiva personalización, gran calidad y tiempos de entrega más cortos y
rentables.

Para hacer frente a estas necesidades, los sistemas de producción ac-
tuales aprovechan el desarrollo de diferentes tecnologías que han con-
vergido, durante la última década, en la llamada cuarta revolución in-
dustrial, conocida como la Industria 4.0. En este contexto, los sistemas
de control jerárquicos están dando paso a sistemas heterárquicos que
permiten una gran adaptabilidad a los cambios. Estos nuevos sistemas
de control están formados por módulos altamente distribuidos y auto-
organizados, representados como Sistemas Ciberfísicos (Cyber-Physical
Systems, CPSs) individuales con capacidades sociales, que constan de
una parte física y otra virtual. De entre los diferentes activos físicos que
se pueden encontrar en un sistema de fabricación, un componente esen-
cial de la fábrica del futuro es el Robot Móvil de Manipulación (Mobile
Manipulator Robot, MMR), que sustituye a las cintas transportadoras
tradicionales, permitiendo una reconfigurabilidad rápida y eficiente de la
producción y una mayor flexibilidad.
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En este contexto la presente tesis doctoral se centra en dar solución
a dos de los principales retos de los sistemas de fabricación flexibles en el
ámbito de los MMRs, que constituyen su objetivo principal y se traducen
en las dos principales contribuciones de esta tesis. Por un lado, ofrecer
un framework genérico que facilite el desarrollo de aplicaciones robóti-
cas concretas de diferentes ámbitos, permitiendo la fácil integración de
las diferentes habilidades necesarias para la ejecución de las tareas cor-
respondientes, cuya implementación es totalmente dependiente de los
controladores de bajo nivel del robot utilizado. Por otro lado, dotar a
dicha solución de las capacidades de socialización necesarias para poder
interactuar de forma inteligente con otros robots o cualquier otro activo
de una fábrica inteligente.

Como solución al primer reto, esta tesis doctoral propone Robotframe-
work, una arquitectura de control genérica para MMRs que ayuda a
integrar las habilidades necesarias para la ejecución de las tareas de un
robot. Pueden ser habilidades comunes, como determinadas tareas de
navegación, o habilidades más específicas, como el caso de tareas de
manipulación o percepción, que demandan un alto nivel de destreza y
precisión. Estas habilidades, encapsuladas en módulos, se integran con
con los sistemas de decisión de alto nivel de forma estandarizada, con-
duciendo a un desarrollo más rápido y simplificado de nuevas aplicaciones
robóticas. La arquitectura se basa en ROS, proporcionando un enfoque
genérico y estandarizado para trabajar con diferentes elementos hardware
y software.
El diseño modular de la arquitectura, la implementación de habilidades
mediante el concepto de pluginlibs y la propuesta de unas directrices
para la generación de los planes del robot (en forma de meta-modelo
y formato del plan) son los pilares sobre los que se construye Robot-
framework. Casos de uso realistas correspondientes a aplicaciones que



forman parte de proyectos europeos, como la inspección industrial de
alerones (proyecto CRO-INSPECT) y la inspección y tratamiento de pla-
gas (proyecto Greenpatrol), validan la generalización y eficacia de la
arquitectura, y demuestran su potencial para futuras aplicaciones.

Cabe destacar que la versatilidad de Robotframework va más allá de
las aplicaciones industriales, por lo que también es aplicable a diversos
escenarios no industriales. Sin embargo, Robotframework por sí solo no
proporciona las capacidades sociales necesarias para la integración de los
MMR en las fábricas conectadas del futuro.

Con el fin de mejorar las capacidades de socialización de los MMR, el
segundo reto, esta tesis doctoral propone la integración de Robotframe-
work en un sistema de fabricación flexible y descentralizado siguiendo los
preceptos de la arquitectura de referencia RAMI, que propone la virtu-
alización de activos como un conjunto de funcionalidades ofrecidas en
forma de servicios. Para ello, RAMI identifica el concepto de componente
I4.0 consistente en un activo y su correspondiente Asset Administration
Shell (AAS). Este trabajo se centra en el activo MMR y su AAS que
se encarga de ofrecer al resto de entidades del sistema de fabricación
(máquinas, producto inteligente, operarios...) tanto los servicios de fab-
ricación (principalmente relacionados con tareas de transporte) como in-
formación sobre su estado almacenada en modelos (estado de la batería,
ubicación...).

La propuesta se valida a través de una serie de casos de uso incrementales
que representan situaciones reales de planta. Comienza con un caso de
uso basado únicamente en una simulación en ROS, que sirve para definir
y evaluar mecanismos de toma de decisiones distribuidas entre máquinas
y robots. El segundo caso de uso presenta un escenario real con máquinas
(controladas por PLCs simulados en CODESYS) y robots representados



por Kobukis que se comunican a través del estándar industrial OPC UA.
En este caso, los robots realizan la reposición de material y el trans-
porte de piezas acabadas bajo demanda. El tercer y último caso de uso
propone una metodología para integrar Robotframework con conceptos
RAMI (basado en JADE), abstrayendo las capacidades sociales de las
funcionalidades de control y promoviendo un enfoque más organizado y
coherente de la interacción entre varios agentes en la fábrica inteligente.
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1 Introduction

1.1 Motivation

Modern manufacturing is constantly changing in order to adapt to the
fluctuations of the current global and competitive market demands. More-
over, products evolve or get obsolete rapidly, making difficult to foresee
the sales and leading to an on demand production model. Products
require shorter life cycles, which means lower delivery-times, mass cus-

1



Chapter 1. Introduction

tomization and high quality, all at reduced costs. These challenges are
transforming the way production systems are designed and deployed. In-
telligent and customizable manufacturing systems are needed, capable of
ensuring efficient management of manufacturing resources, and adapting
their production to demand and plant incidents dynamically.

The need to meet these demands has led to a new industrial paradigm
usually identified as the Fourth Industrial Revolution or Industry 4.0
(I4.0) [5] which can be defined as "the advent of cyber-physical systems
involving entirely new capabilities for people and machines" [6], where a
cyber-physical system (CPS) is a horizontally and/or vertically connected
factory entity consisting of a physical and a virtual part. Numerous gov-
ernment institutions and business organizations have considered the I4.0
paradigm as a key factor in their industrial development strategies. This
has given rise to initiatives such as Plattform Industrie 4.0 in Germany
and Industry IoT Consortium (IIC) in the USA, to name the most cited
ones. Their common denominator is a coordinated effort between gov-
ernment, industry and academia to support innovation in manufacturing
processes, based on the total interconnection between different manu-
facturing assets in a technological context of big data capturing and pro-
cessing. In this sense, all initiatives are working on the standardization
of their reference architectures (e.g., RAMI 4.0 in the case of Plattform
Industrie 4.0 and IIRA in the case of IIC) and on the analysis of their
confluence. However, standardization and correlation of reference archi-
tectures is often a slow process. While moving in this direction, it is
important to provide the industry with supporting elements that allow
to move forward in the digital transformation. This circumstance raises
the following questions regarding this issue:

• RQ1: What are the challenges that companies must face in order
to address the transition to Industry 4.0?
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• RQ2: What are the paradigms that can contribute to facilitate
the transition to Industry 4.0?

The smart factory concept can be built on a CPS network to create a
flexible and autonomous manufacturing grid [7, 8]. The abstraction or
virtualization of manufacturing assets in terms of their functionalities,
provided as network services, is a necessary condition for materializing
the CPS concept. This is the approach followed by RAMI 4.0, which
defines the concept of the I4.0 Component as a participant of an I4.0
System consisting of an asset and its Asset Administration Shell (AAS).
In turn, the AAS is defined as a virtual representation of the I4.0 Com-
ponent in the I4.0 System, i.e., a management interface that exposes the
information submodels and the manufacturing operations of the asset.
Since reference architectures aim to identify the concepts and technolo-
gies to be used in the design and development of Industry 4.0 compliant
solutions, it is important to understand how they approach I4.0 paradigm.
This leads to the following question:

• RQ3: What are the key concepts considered by the main reference
architectures in the interpretation of Industry 4.0?

Within the great diversity of physical assets that can be introduced in
a factory, Mobile Manipulator Robots (MMRs) play a fundamental role
to achieve the flexibility and autonomy attributed to a CPS network or
an I4.0 System. Replacing the traditional fixed conveyor belts by MMRs
enables the quick reconfigurability of the factory layout, increasing its
flexibility and scalability [9, 10]. Thus, innovative CPS or I4.0 Compo-
nents based on mobile robotic solutions that provide flexible navigation
and manipulation strategies can help automating the transportation in
the factory. Research in this context has been mainly focused on robotic
frameworks (RFs) that facilitate information ontologies, algorithms for
performing specific tasks, libraries for component integration and tools
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for development and simulation support, among others. The industrial
mobile manipulation task can be solved by combining three main func-
tionalities: 1) navigation, to transport loads from one point to another;
2) manipulation, to perform pick-place or dexterity tasks; and 3) per-
ception, to avoid obstacles on the way or recognize specific targets for
manipulation. Although RFs usually provide modules that can be inte-
grated and extended for different applications, combining the different
robotic skills is an error prone work that requires experience in many
robotic fields, usually deriving on domain specific solutions that are not
reusable in different contexts. Thus, every time a new project starts, the
state machine that embeds the logic of the robotic applications, the rela-
tionship between the different robotic modules, or the user interfaces to
externally interact with them, must be usually built from scratch. These
issues bring up the following questions:

• RQ4: What are the requirements for the design and development
of MMRs in the context of Industry 4.0?

• RQ5: What information models and functionalities should RFs
provide to meet those requirements?

• RQ6: How could these information models and functionalities be
organized in architectural terms?

Once the single MMR operation is achieved, its integration within a more
complex system, such as a CPS network or an I4.0 System, should be
considered. New trends in the digitalization of manufacturing systems
(such as high connectivity, service orientation and data analytics, among
others) caused production control paradigms to evolve from hierarchi-
cal control systems that assume a fixed and deterministic context, to
heterarchical topologies that show greater adaptability to changes [11].
However, several authors have reported that purely distributed systems
present performance problems [12, 13]. The solution to this involves
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the development of hybrid solutions that combine the benefits of cen-
tralized systems and distributed systems [14]. But even hybrid control
approaches in distributed and changing environments do not focus on
the interaction that arises between multi-robot systems and other man-
ufacturing assets. In this sense, the literature reflects that the main RFs
lack the necessary socialisation features to support the rich interaction
between robotic and non-robotic assets. In addition to this problem,
there is the need to provide distributed intelligence to robots so that
they can resolve conflicts collaboratively (e.g., negotiation and decision
making) to generate standardized, quality information that can be con-
sumed by analytical applications at higher levels of the control hierarchy,
and to develop new skills as services in a standardized way, so they can
be used by other management or manufacturing entities in the factory.
In order to address these issues, this work explores already proven and
reliable paradigms and technologies, such as OPC Unified Architecture
(OPC UA) and Multi-Agent Systems (MAS), that have showed a great
potential to develop: 1) distributed manufacturing control systems with
autonomy and intelligence capabilities; 2) an agile and fast adaptation
to the environment changes; 3) an increased robustness against distur-
bances; and 4) an easier integration of new manufacturing resources and
legacy systems. For this, the following questions are considered:

• RQ7: What are the requirements and methodologies for the inte-
gration of multi-MMR systems in smart factories?

• RQ8: Which paradigms and technologies fit those requirements
and methodologies?

• RQ9: How can an integration architecture fit into the single MMR
architecture?

This scenario and the research questions that have been derived from it,
serve as a framework for the development of this thesis.
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1.2 Goals
The main objective of this work is to develop a generic architecture for
autonomous MMRs that facilitates the integration of different robotic
skills, and provides MMRs with socialization capabilities that allow them
to interact with other manufacturing assets in a smart factory. To achieve
this general goal, the following partial goals are proposed:

• O.1. Analyse the initiatives and roadmaps that are being proposed
in the most prominent industrialized countries to carry out the
digitalization process of the factory (RQ1-RQ3).

• O.2. As for the generic architecture for autonomous MMRs:

– O.2.1. Define the MMR tasks through industrial use cases
and establish the main requirements for a single MMR (RQ4).

– O.2.2. Develop a generic robot architecture that, based on
the single-robot requirements, considers complex MMR func-
tionalities, and provides reusable high-level robot manage-
ment, monitoring and diagnosis tools (RQ5, RQ6).

– O.2.3. Validate the proposed architecture with single-MMR
realistic use cases, in both industrial environments and non-
industrial ones (RQ4-RQ6).

• O.3. Regarding the integration of the proposed generic MMR
architecture within a smart manufacturing system:

– O.3.1. Identify the heterogeneous production entities that
take part in a distributed manufacturing control system (RQ7).

– O.3.2. Define the communication mechanisms to enable the
interaction among robots and with other intelligent manufac-
turing entities (RQ7, RQ8).
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– O.3.3. Define a decentralized architecture to integrate MMR
services within the flexible manufacturing system (RQ9).

1.3 Phases
This thesis covers the results of six years of research work (2017-2023),
performed on a part-time basis, on MMRs in the field of Industry 4.0.
This work was framed in different projects, both industrial and academic,
performed at the Technische Hochschule Nürnberg, the University of the
Basque Country (UPV/EHU), and Tekniker research center dedicated
to technological and industrial research. This trajectory has allowed the
development, optimization and validation of this work.

Technische Hochschule George Simon Ohm
The participation period in the Technische Hochschule George Simon
Ohm in Nuremberg, Germany, overlaps the first years of the thesis, from
2017 to 2018. This phase allowed to delimit the current knowledge re-
lated to the problem domain, to outline the research questions, and to
identify the possible implications of this research for practice. This made
it possible to address the first objective of the thesis (O.1). The main
activities performed during this period constitute an important legacy
for this thesis, specifically: developing an Autonomous Transport Vehicle
(ATV) for Bosch GmbH, and playing the team leader role of a newly built
RoboCup@Work team. Both projects envision an autonomous MMR
performing logistic tasks on a industrial scenario requiring specific navi-
gation, manipulation and perception skills that showed certain common
aspects in different applications. Thus, this phase comprised the search,
review and analysis of the scientific literature and engineering solutions
regarding the specific topics of the problem domain, as well as the links
among them. As a result, this period provided a glimpse of the difficul-
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ties and the work that remained to be done, to develop robotic skills in a
standardized and reusable manner, and to integrate a multi-MMR fleet
into a factory by decentralizing the control at plant level.

University of the Basque Country (UPV/EHU)
With this previous experience, in 2017 the thesis was formally regis-
tered within the Doctoral Program in Control Engineering, Automation
and Robotics of the University of the Basque Country, and drawn on
the experience of the Systems Control and Integration research group
(GCIS, for its acronym in Spanish), focused on the use of distributed
intelligence technologies for the management of manufacturing systems
in accordance with the Industry 4.0 paradigm. This made it possible to
address the third objective of the thesis (O.3). As a result, a multi-layer
approach for the integration of MMRs as I4.0 Components was proposed
in response to that objective and published in [15]. The purpose of this
approach is to ease MMR integration into a manufacturing system and
provide I4.0 Components in a factory with access to MMR-related ser-
vices, i.e., manufacturing services that provide MMR-related functionali-
ties. This phase benefited from the involvement in the Smart Distributed
Architecture for Enabling the Fog-in-the-Loop in i4.0 research project
(SMARTFOG, reference RTI2018-096116-B-I00), financed by Ministe-
rio de Ciencia, Innovación y Universidades (MCIU), Agencia Estatal de
Investigación (AEI), Fondo Europeo de Desarrollo Regional (FEDER),
Unión Europea (UE).

Tekniker
From 2019 onwards, the thesis was developed at Tekniker technology
research center, which offered the chance to collaborate on the develop-
ment of a generic robotic framework for multipurpose use cases. This
experience combined with the previously collected one at the Technische
Hochschule Nürnberg, made it possible to address the second objec-
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tive of the thesis (O.2). The Department of Autonomous Intelligent
Systems in Tekniker is strongly engaged with the setup of a neutral ex-
perimentation infrastructure for intelligent automation applications for
collaborative robotics. This workspace offers robotised mechanisms to
implement fully manual assembly processes as collaborative assembly
processes, with the robot performing the majority of the work, and the
human operator helping out with specifically difficult subtasks. These
efforts are being conducted in different European projects. The AUTO-
WARE [16] project is rooted in the ICT Innovation for Manufacturing
SMEs (I4MS2), an initiative to enhance the digital transformation of the
European manufacturing sector. Tekniker provides the mobile platform
working on a neutral experimentation environment to evaluate heteroge-
neous communication and networking architecture supporting connectiv-
ity and data management in CPSs. The A4Blue [17] project proposes the
development and evaluation of a new generation of sustainable, adaptive
workplaces. Dealing with evolving requirements of manufacturing pro-
cesses, flexible and efficient automation mechanisms are introduced to
optimize human-machine interaction by personalized and context-aware
assistance capabilities. Finally, other European projects such as Cro-
Inspect and Greenpatrol have been used to develop and validate some
of the contributions of this thesis. As a result, the generic robot ar-
chitecture Robotframework was contributed and reported in [18]. The
purpose of this architecture is to ease the integration and extension of
MMR functionalities to create high-level and reusable robot management
services.

The aforementioned research phases offered different benefits. From a
scientific point of view, they gave the opportunity to deal in depth with
the MMR research strand and to get into the Industry 4.0 paradigm. In
addition, the experimental part of this thesis extends the body of studies
about MMRs towards industrial applications. From an applied point of
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view, they gave the opportunity to include various relevant case stud-
ies that provided real implementation and feedback about the proposed
architectures and the problems examined. This was essential to under-
stand some of the limitations of the present work. From the diffusion
of research point of view, they allowed to gradually improve the qual-
ity, quantity and range of the publications derived from it. The findings
have been presented in various international peer-reviewed conferences
and published in several JCR peer-reviewed scientific journals. Finally,
from a social point of view, this work allowed the author to greatly ex-
pand his network of scientific contacts. This fact will hopefully allow the
author to collaborate and participate in different national and interna-
tional research projects and events in the future.

1.4 Structure
Chapter 2
Once the motivation and objectives of the research work have been de-
fined, in the second chapter - State of the Art - different approaches that
try to solve the demands of MMRs and their integration in flexible man-
ufacturing control systems in the context of Industry 4.0 are reviewed. In
this chapter, first, the evolution of manufacturing paradigms is described;
Second, the growth of robotic applications during the last decade is pre-
sented, analysing its influence on different domains; third, the trend of
flexible manufacturing and the latest efforts to integrate MMRs in the
factories of the future are analysed.

Chapter 3
Here, the state of the technology is reviewed, focusing on robotic frame-
works for mobile manipuators, multi-agent frameworks for distributed
industrial applications, and industrial communication standards. After
detecting the weaknesses and strengths of these frameworks standalone,
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the benefits obtained by integrating them together are analysed and the
most suitable technological frameworks are presented.

Chapter 4
Using the information provided in Chapters 2 and 3, this chapter analyses
relevant industrial MMRs in order to detect similarities in their hardware
and software modules and to define generic framework requirements for
single robot use cases. Then, the development of a generic robot ar-
chitecture for MMRs, the so-called Robotframework, is presented and
evaluated through an industrial inspection use case and a more generic
agriculture use case.

Chapter 5
Introduces the entities of a distributed manufacturing system represented
by physical resources such as MMRs, machines or edge computing de-
vices, and application resources such as production management, mon-
itoring activities or smart production orders. Here, multi-agent frame-
works and industrial standards are used to develop distributed task allo-
cation and traceability mechanisms, and to integrate the previously pre-
sented single-robot architecture within a distributed multi-robot flexible
manufacturing. To evaluate the distributed task allocation mechanisms,
simulated and on-field use cases will be presented, where robots trans-
port products from one machine to another, and replenish the machines
with new raw material.

Chapter 6
Finally, the conclusions and contributions of this work are summarized,
and future work is presented.
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2 State of the Art

This chapter is devoted to the analysis of the literature related to the
main objective of this thesis: the design of a generic architecture for
autonomous MMRs that allows their integration in flexible manufacturing
systems in the context of Industry 4.0. As a result, it is expected to obtain
a better knowledge of the state of the art in this field, and to identify the
gaps and limitations of the solutions proposed in the current literature
with respect to that objective. The volume and variety of related works
makes it essential to consider limiting and organizing the state-of-the-
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art in order to facilitate the review process. For this purpose, research
context has been divided into three blocks:

• Section 2.1 describes the evolution of manufacturing paradigms.
To that end, the main ongoing reference architectures and inter-
national roadmaps proposed by globally relevant institutions over
the last decade are reviewed, since they provide the conceptual and
normative framework for Industry 4.0.

• Section 2.2 describes the growth of robotic applications during the
last decade, analyzing its influence on different domains. The de-
sign of a MMR requires efficient and reliable procedures to describe
the vital aspects of its development by means of RFs that provide
tools to develop generic robotic skills, standardized interfaces to
provide robotic services, and models to support correctness of the
robotic applications. Thus, this section presents an analysis of
works oriented to the design and/or development of robotic con-
trol systems for transportation and manipulation.

• Section 2.3 focuses on the domain of flexible manufacturing, and
describes the latest efforts to integrate MMRs in the factory in
order to achieve interoperability between those and the rest of
the participants in a factory. Thus, this section analyses how to
integrate manufacturing assets into Industry 4.0, but particularized
for the case of an MMR. The generality of possible solutions is a
key aspect in addressing this issue, so the main characteristics of
the distributed nature of the current manufacturing systems and
the available technologies for this purpose are considered.

This chapter concludes with a corollary including the main requirements
for a set of MMRs in a smart factory.

14



2.1. Industry 4.0: a planned (r)evolution

2.1 Industry 4.0: a planned (r)evolution

Industrial revolutions constitute great social transformations derived from
technological advances that have marked clear milestones in the scientific
development of humanity. Over the last 250 years, the world has experi-
enced three industrial revolutions [5]. The first industrial revolution took
place between the 18th and 19th centuries, and involved the mechaniza-
tion of tasks, mainly through the use of steam-powered machinery, which
resulted in the rise of the factory system. At the end of the 19th century
and the beginning of the 20th century, the second industrial revolution
took place, where new advances related mainly to electricity and fossil
fuels, and methods for manufacturing standardized and interchangeable
parts, led to the appearance of factories capable of mass production. In
the second half of the 20th century, the advent of electronics and infor-
mation technology made it possible to automate production lines, leading
to what is known as the third industrial revolution [19]. This revolution
resulted in the era of high-level automation in production thanks to two
major inventions: Programmable Logic Controllers (PLCs) and robots.

Nowadays, the entire scientific community and society in general ac-
cepts and recognizes these three industrial revolutions have taken place
to date. However, defining a set of events as an industrial revolution is
relatively easy with the perspective given by history: once the transfor-
mation of the economy and society becomes manifest and consolidated,
it is easy to go the other way around to find the root causes. However,
it is much more difficult to identify a revolution from a present perspec-
tive, since it is necessary to predict the future, imagining the level of
rupture necessary in social and economic structures to make it a reality.
In this sense, industry is undergoing a profound and dizzying transforma-
tion that has led to a torrent of initiatives and technological advances
that many institutions have agreed to identify as the fourth industrial
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revolution [20]. This paradigm lies mainly in the distribution of intelli-
gence in systems, understood as the capacity of the entities that make
them up to interact by interpreting information, and making decisions
to achieve their objectives. The transversality of this paradigm allows
its application in multiple fields, e.g., smart cities, smart grids or smart
factories.

2.1.1 Reference architectures for Industry 4.0
For the first time in history, there has been the possibility to anticipate
the industrial transformation that is to come and identify the associ-
ated change vectors. This has allowed governments and institutions of
the major industrialized economies to prepare for a new paradigm and
present their strategies to meet the challenges of the new industrial rev-
olution.

Reference Architectural Model Industrie 4.0 (RAMI4.0)
The first of these strategies saw the light at the 2011 Hannover Fair,
where the German government presented its Industrie 4.0 initiative [21].
This initiative stated the obsolescence of current production models and
placed the irruption of the fourth industrial revolution in the imminent
future. In order for German industry to adjust to the future manu-
facturing paradigm, the Industrie 4.0 initiative proposes the intelligent
interaction of humans, machines and processes through the integration
of CPSs and the Internet of Things (IoT) [22] to reach flexible and prod-
uct oriented manufacturing [23]. To that end, a reference framework
is needed to identify each entity of the system and provide a common
language among them. Thus, in 2015, Plattform Industrie 4.0 presents
the Reference Architectural Model Industrie 4.0 (RAMI 4.0) [24].

RAMI 4.0 is a service-oriented architecture that provides a structured
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description of a manufacturing system in the context of Industry 4.0
(hereafter referred to as I4.0 System). It presents a cubic model that
provides a framework for a common understanding among the entities of
an I4.0 System with respect to three axes:

• Layers axis: It describes the six functional levels into which manu-
facturing systems for Industry 4.0 can be divided. In each of these
layers, service definitions abstractly describe the functionality pro-
vided to a layer N by a layer N-1.

– Business layer: It orchestrates the high-level services to de-
termine the status of the processes at a factory level.

– Functional layer: It provides a definition of the high-level ser-
vices offered by an asset and manages their access remotely.

– Information layer: It acquires, processes and adapts the data
from assets while ensuring its integrity and persistence.

– Communication layer: It establishes architectural styles, mes-
sage patterns and data formats to ensure interoperability.

– Integration layer: It offers low-level services that enable ac-
cess to the data and functionalities of the asset.

– Asset layer: It represents the physical or logical entities with
value for a company, including human beings.

• Life Cycle Value Stream axis: Supported by IEC 62890 [25], it
describes the operational status of the product, differentiating be-
tween product type and product instance:

– Product type: A product in development stage constitutes a
product type.

– Product instance: A manufactured product constitutes an
instance of a product type.
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• Hierarchy Levels axis: It adopts some of the factory hierarchy levels
of ISA 95 [26] and ISA 88 [27] (such as Enterprise, Work centers,
Stations and Control device), while adding additional levels to
make the factory hierarchy consistent with Industry 4.0 [28]:

– Connected world : It represents a group of companies collab-
orating above the Enterprise level.

– Field device: It represents devices that are directly involved
in the manufacturing process below the Control device level.

– Product: It represents the product in the factory hierarchy.

Together with this cubic model, RAMI 4.0 also introduces the I4.0 Com-
ponent as a participant of a manufacturing system [29]. An I4.0 Com-
ponent consists of an asset (physical part) and an Asset Administration
Shell or AAS (virtual part). I4.0 Components are service-oriented: the
AAS provides the asset an interface through which service requests from
other I4.0 Components are channeled. Within the AAS, service requests
are handled by a Component Manager that manages the AAS submodels
(also called Manifest), made up by the set of properties that describe
the data and functionalities of the asset. Services provided by a I4.0
component can be grouped into two categories as seen in Figure 2.1:

• Submodel Services: They provide access to the information sub-
models of an I4.0 component without interacting with the asset.

• Asset Related Services: They involve an interaction with the asset
to execute some functionality or operation, or to manage its state.

Services provided by I4.0 Components can be combined to compose man-
ufacturing applications that are offered to other components, resulting
in Application Relevant Services [30].
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Figure 2.1. I4.0 Component representing a Robot-asset and its Asset
Administration Shell (AAS) with respect to the RAMI layers.

However, I4.0 Systems also require Infrastructure Services to manage I4.0
Components and support them in the execution of Application Relevant
Services. Infrastructure Services are classified into two categories:

• AAS Services: they manage the information and functionalities
(i.e., Application Relevant Services) of the I4.0 Components, and
can, therefore, be performed by the AASs themselves (e.g., to
manage AAS-related information or to control the access to Ap-
plication Relevant Services)

• AAS Infrastructure Services: they manage the AASs in the system
as a whole (e.g., to register and create them, or to make them
reachable to each other). These services cannot be performed by
the AASs themselves. Instead, they are offered by platforms in
charge of managing the I4.0 Systems.

Industrial Internet Reference Architecture (IIRA)
The next initiative, in terms of both age and relevance, is Industry IoT
Consortium (IIC) [31], which was constituted as a non-profit consortium
in 2014 among industry, academia and the U.S. Government around the
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Industrial Internet concept promoted by the General Electric in 2012 [32].
This concept promotes the application of ICT into industry to enable in-
terconnected and intelligent systems capable of processing and analyzing
large amounts of data. In 2015, the IIC released the Industrial Internet
Reference Architecture (IIRA) to guide the development of those inter-
connected and intelligent systems.

IIRA is based on the ISO/IEC/IEEE 42010 standard on description of
architectures in systems engineering [33], which organizes software ar-
chitectures in Viewpoints. These Viewpoints frame the description and
analysis of specific problems, named Concerns, in the system. These
Concerns can refer to any relevant aspect of the system. System partici-
pants, or Stakeholders, may show interest in different Concerns, and, by
extension, in different Viewpoints of the system [34]. Specifically, IIRA
is structured in four Viewpoints:

• Business Viewpoint: It deals with Concerns at the enterprise level
(e.g., calculation of maintenance costs and expected benefits) and
identifying the capabilities of the system to meet those objectives.
Stakeholders interested in this Viewpoint are typically business de-
cision makers, product managers and system engineers.

• Usage Viewpoint: It addresses Concerns related to basic manufac-
turing services that provide functionality that can be combined to
provide the system capabilities identified in the Business Viewpoint.
Stakeholders interested in this Viewpoint are typically system en-
gineers and product managers.

• Functional Viewpoint: Its main Concern is related to functional
components of the IIoT system (i.e., their structure, and interfaces
both with other system components and with external elements).
Stakeholders interested in this Viewpoint are typically system and
component architects, developers and integrators.
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• Implementation Viewpoint: It focuses on Concerns involved in the
implementation of the functional components of the system (e.g.,
the selection of technologies and devices). Stakeholders interested
in this Viewpoint are typically system and component architects,
developers and integrators, and system operators.

Cooperation has been established between Plattform Industrie 4.0 and
IIC. In 2017, a comparative analysis between RAMI 4.0 and IIRA [35] led
to the conclusion that a relationship can be established between the lay-
ers defined in the Layers axis of RAMI 4.0 and the domains considered by
IIRA in its Functional Viewpoint. In 2020, both organizations published
a new joint paper comparing the IIC understanding of the Digital Twin
(DT) with the AAS concept of RAMI 4.0 [36]. It was concluded that
the AAS provides full support for the key requirements of DTs described
and characterized by the IIC.

Intelligent Manufacturing System Architecture (IMSA)
& Industrial Value chain Reference Architecture (IVRA)
Similarly, 2015 saw the appearance of the China Manufacturing 2025 [37]
and the Japanese Industrial Value Chain initiative [38]. Both pose their
own reference architectures: Intelligent Manufacturing System Architec-
ture (IMSA) in the chinese case and Industrial Value chain Reference
Architecture (IVRA) in the Japanese case. Both architecture references
are strongly influenced by the RAMI 4.0 and IIRA:

• IMSA is clearly influenced by RAMI [39], as it proposes a cubic
model organized in three dimensions : Life Cycle, representing
the chain of activities that add value to a product from design to
commissioning; System Hirarchy, which takes its four lower levels
(Equipment, Control, Workshop and Enterprise) from IEC 62264
standard [26] and adds the Cooperation level at the top of the hier-
archy to illustrate the collaboration between companies throughout
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the life cycle of a product; and Inteligent Functions, which are or-
ganized in five levels (new business patterns, information fusion,
interconnection, system integration and resources).

• IVRA introduces the concept of the Smart Manufacturing Unit
(SMU), which defines any participant in a manufacturing system
from three viewpoints: Asset View, which shows the assets that are
valuable to the company; Activity View, which covers the activities
performed by the assets comprising the SMUs; and Management
View, which focuses on the different management areas that can
be worked on to optimize the performance of a SMU.

2.1.2 Confluence of Industry 4.0 roadmaps
Despite the fact that some of the aforementioned initiatives were launched
almost a decade ago, the degree of adoption of the precepts of the
Fourth Industrial Revolution by many companies is remaining moder-
ate or nonexistent [40]. The lack of technical content and the apparent
vagueness with which these initiatives have been disseminated have been
the subject of debate, assessing the balance between the actual degree
of contribution of the proposal and its lack of support for the benefits it
theoretically reports [41]. However, this has not prevented Industrie 4.0
from being adopted as a reference initiative at the European level (Facto-
ries of the Future [42]), with replicas at state [43] and regional [44] levels.
The same happens to Industrial Internet at state level (Manufacturing
USA [45]). Although each roadmap has a special emphasis on certain
characteristics related to their local situation, all of them show broadly
similar characteristics. The following is a summary of the common char-
acteristics of German [21, 46, 47], European [48, 49] and American [45]
roadmaps relevant to this thesis:

• Adaptable Production: Continuous reduction of product and in-
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novation cycles requires an adaptable manufacturing that permits
the quick reconfigurability of production capacities and capabili-
ties. Modular plug and play components can allow a quick, in-
expensive and reliable expansion, reconfiguration and reusability,
enabling last-minute changes, and permitting a flexible response
to disruptions and failures on behalf of suppliers.

• Self Organizing Adaptive Logistics: The transportation of goods,
from the factory material supply to the delivery of the product to
a client, are needed to be managed by self-learning systems that
react flexibly to system failures and customer priorities. This will
enable shorter delivery times, lower inventories, and improve the
use of the available infrastructure.

• Data Collection: IT platforms collect data from production sys-
tems, logistics or delivered products, and use them as raw material
for data mining processes. This way, both products and produc-
tion processes could be optimized, which, in turn, could lead to
the creation of new products.

• Operator Support in Production: This feature includes the use
of technology to help the humans to perform a better work, and
physical assistance by using equipment for hazardous or monotonous
tasks. This context-related assistance can provide support in anal-
ysis and decision-making during diagnosis. These aspects will allow
the operator to focus on value-added tasks, while benefiting from
technological support for repetitive or hazardous tasks.

• Smart Product Development for Smart Production: Virtual
products allow for new types of teamwork in engineering processes
and automation of engineering activities. This involves methods
and tools for modeling, simulating and forecasting the behaviour
of production processes. As a result, it is expected that producers,
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system suppliers and customers will work together to define re-
quirements and coordinate functionalities, providing for additional
benefits in subsequent process and value-added steps.

• Model Driven Engineering: Models and standard methodolo-
gies are basic prerequisites to bring together the different groups
engaged in the development of the smart product, reducing the
risks through early detection of errors or early verification of the
demands placed on the system. Explanatory models that describe
interactions and behaviours in the real world can be useful for val-
idation purposes during the development and design stages.

• Traceability: The information provided by IEC 62264 and IEC
61512 standards does not have attributes to represent the state of
the manufacturing system at all times. Full traceability of products
or factory components life-cycle is needed to record the evolution
of the current manufacturing process (i.e., when and where opera-
tions are performed on the product), which might not conform to
the original planning in case of unforeseen events. To that end, it
is necessary to extend the Process model, as well as the Operations
definition model and the Operations Schedule model.

• Standardization: Standardized, multi-vendor and modularized
production systems are needed as sample references for Industry
4.0 [50]. On the one hand, this will permit the interoperability of
vendor-specific hardware and software, enabling the plug-and-play
connectivity of components with the same functionality. On the
other hand, it requires the definition of standard communication
interfaces such as RFID and OPC UA, web server technologies us-
ing the REST architectural style, and common data formats such
as JSON and XML.
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2.2 Evolution of autonomous mobile
manipulator robots

The interest in mobile manipulation applications has grown remarkably
during the last years in multiple domains: industrial manufacturing logis-
tics, inspection or assembly, precision agriculture, exploration or rescue,
healthcare or domestic assistance. Robots offer efficient solutions for
industrial tasks with minimal interaction (e.g, inspection) or with com-
plex interaction (e.g., material transportation). This flexibility, offered
by the redundancy of different robot skills and capabilities, needs to
be accurately orchestrated to ensure enhanced performance. Therefore,
decision-support methodologies and frameworks are required for success-
ful mobile manipulation in (semi-)autonomous working scenarios. Due
to the extensive literature available on this subject, this work focuses
on wheeled mobile manipulators, with special attention to its industrial
applications.

2.2.1 Application domains
This subsection presents the main aspects related to MMRs and the
common denominator of the technologies that enable their practical use.
These aspects are organized by the improvements in the main application
areas in which the MMRs have acquired a key role.

Healthcare
The usefulness of mobile manipulator service and assistance robots is
quite apparent at home and hospital environments, where safe human
collaboration is a very important aspect [51]. Robots can be used to
transport and administrate medication [52, 53], assist elder or disable pa-
tients [54, 55], or provide therapeutic assistance in hospitals [56]. They
can also be used at home for cleaning [57], cooking [58] or organizing li-
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brary shelves [59]. The dynamic and continuously changing environments
in which robots have to work hinder the navigation and safety pick and
place operations tasks as demonstrated in [60–63]. These uncertainties
need to be reflected in the robot’s behaviour as discussed and studied in
[55, 64].

Precision Agriculture
Digital farming is considered a key aspect that must be addressed to
increase the production and the efficiency of farming in order to provide
food for the exponentially growing human population [65–67]. Sensors,
robotics and data analysis for automatically maintaining and monitor-
ing greenhouses can help to the transformation of farms into intelligent
systems, making cropping system smarter and, thus, enhancing the agri-
cultural productivity. In this sense, research has been focused on two
main areas: weed inspection and fruit and vegetables harvesting.

Weed inspection is mostly represented by outdoor robots for weed de-
tection and spraying: the Graph Weeds Net [68] formulates multi-scale
graph representations for weed classification using deep learning tech-
niques; the RHEA project is centered on both agriculture and forestry
[69]; the BoniRob project is dedicated to multipurpose farming [70]; the
CROPS project is focused on precision spraying in vineyards [71]. The
navigation of these outdoor robots is largely based on the use of satellite
localization systems. However, the signal used by these systems is much
weaker and imprecise in indoor environments, making them less suitable
for greenhouses [72].

The unstructured environments with constantly growing plants have led
most of the harvesting robots found in greenhouses to use rails to nav-
igate them [73–76]. With the aim of avoiding the setup of additional
and expensive infrastructure in the greenhouse, latest robotic solutions
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have proven to successfully use Galileo satellites combined with Inertial
Measurement Units (IMU), odometry and Light Detection and Ranging
(LiDAR) sensors to provide a more flexible autonomous navigation in
greenhouses [77].

The use of fixed paths, such as rails, for navigation in greenhouses has
lead to decoupling navigation from manipulation and inspection tasks.
This has resulted in overlooking the navigation functionalities while de-
veloping the CROPS robot framework [78], where the control architec-
ture covers only the fruit localization and arm control functionalities.
FroboMind [79], another interesting open source control architecture,
demonstrates that a common and reusable architecture, tailored to pre-
cision agriculture robots, significantly decreases the development time
and resources due to efficient reuse of existing work across projects. In
this sense, BoniRob [70] may be considered outdated as it does not in-
tegrate the state-of-the-art accepted navigation_stack for navigation or
MoveIt! for manipulation.

Exploration and Rescue
Other application areas with mobile manipulators working on unstruc-
tured environments are exploration and rescue in catastrophic areas (e.g.,
in an earthquake [80, 81]), nuclear examination [82] or underground sce-
narios [83, 84]. The surroundings in these contexts are frequently poorly
mapped, with significant uncertainty, resulting on challenging navigation
and dexterity controls [85–87].

Competitions
MMRs are also an important part of several robotic competitions, be-
ing probably RoboCup the most popular one [88]. Established in 1997,
RoboCup Federation is an international scientific initiative that aims
to advance the state of the art in robotics. RoboCup, as an event
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where mobile robots compete to face different state-of-the-art research
challenges, is organized in different categories: home assistive [89, 90],
rescue [91, 92], soccer [93, 94], logistics [95, 96] and industrial [97,
98]. Both RoboCup@Work [99] and its counterpart European Robotics
League [100] push the idea of a mobile platform integrated with an in-
dustrial arm that autonomously schedules a series of picking and delivery
orders, planned by a high-level Manufacturing Execution System (MES).

Industry
Nowadays, robotic systems are common elements throughout the entire
manufacturing plant. Its implementation in the industry is in constant
growth, being a technological key for the Industry 4.0 [101]. Among the
different application scenarios, logistics, manufacturing and assembly are
the areas that benefit most from the application of robotic systems in in-
dustry, since they offer the required flexibility and scalability to integrate
modular production and assembly lines [102]. Among the various projects
and initiatives in this area, the following should be highlighted: Kitting-
bot [103] helps the car manufacturing with collaborative autonomous
kitting robots; in TAPAS [104], a mobile robot with a torque-controlled
manipulator fetches and transports a rotor to a working station, where it
receives help in dealing with real-world uncertainties from an intelligent
sensor assistant [105]. Other examples focus on human assistive robot
co-workers such as [106], where the cobot is used in screwdriving tasks
by means of a skill-based approach.

Logistics
Although it has its own entity as a domain, logistics can be considered
transversal and, therefore, with applicability in the previous domains.
During the last decade, several commercial solutions for autonomous
transportation systems have been developed. The first prototypes used
to have movement limitations as they followed magnetic bands, lines
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or QR codes on the floor. In addition, aside from the time and cost of
implementing and maintaining these approaches, robots may have to stop
and take a different path, when possible, if an object or operator gets in
their way. Newer autonomous transport vehicles, which are usually based
on LiDAR sensors to perceive their environment and self localization, can
freely navigate without the need of expensive modifications in the working
environment. Some examples are given below:

• Amazon robotics, former KIVA [10], which may be the most re-
markable autonomous ground vehicle. Successfully implemented
in different companies, it is capable of lifting and carrying shelving
units in warehouses. The localization has been historically based
on QR code markers on the floor and cameras facing them. The
multi-robot management is based on a hierarchical traffic-light like
control. However, the new prototipe, Proteus, claims to be fully
autonomous without the need of any environmental marker.

• KARIS [107, 108], developed at the Karlsruhe Institute of Tech-
nology, is an extension of a flexconveyor system [109]. Its goal is
to partially replace the current rigid and inflexible roller conveyors
and conveyor belts. The localization is based on LiDAR scanners
which allow it to drive freely on the factory environment, without
the need of additional infrastructure.

• Adept’s Lynx OEM, available to developers for custom applica-
tions and payloads, uses a LiDAR scanner-based localization with
optional sensing systems to improve the obstacle avoidance. The
upper section can be replaced depending on the use case and the
material to be transported [110].

• Multishuttle Move (MSM) [9], fusion of conventional shuttle and
automated guided vehicle (AGV), uses two LiDAR scanners and
dead-reckoning for the global navigation, and a rail-guided system
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in the racking system for load handling. It requires a specific layout
of the supermarket area based on a racking system.

• Bosch ActiveShuttle, started under the name Autobod as a co-
operation between the company and the Technische Hochschule
Nürnberg [111]. The ActiveShuttle Management System presents
a partially centralized system for multi-robot coordination.

Many start-ups have also appeared fighting for their own place in this
growing market. Companies such as Evocortex [112], for heavy load
transportation with an own patented localization system, or Symovo
[113], for low load cargo and intra-logistics in small and medium-sized
enterprises, offer custom solutions to new or established companies to
build their own distributed transportation logistics. Other companies
rolling ahead that are developing and offering autonomous transport ve-
hicle solutions are: Omron Adept Technology [114], the TUG of Aethon
Robotics [115], IAM Robotics [116], Locus Robotics [117], Mobile Indus-
trial Robots (MIR) [118], Fetch Robotics [119], Magazino’s TORU and
SOTO [120] and Arculu’s AMR arculee [121]. Despite being all excellent
transportation systems, these are proprietary commercial solutions and
therefore not accessible to the public domain.

2.2.2 Research gaps
The analysis of the different application domains of MMRs makes it clear
that they are going to play an important role in the close future, not only
in the industrial area, but also in many other fields as seen above. Despite
working in more or less structured scenarios and pursuing heterogeneous
goals, all the different MMR types share a bunch off common abilities
and requirements such as localization, perception of their working envi-
ronment, navigation and some kind of manipulation skills. Many works
are focused on a single objective, either a novel control algorithm or
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the integration of specific elements. They are also normally focused on
the context of the application and, thus, usually generate ad-hoc solu-
tions difficult to extrapolate to other use cases. For this reason, more
generic architectures are needed to simplify the integration of the dif-
ferent abilities seamlessly, allowing to execute low-level commands but
also high-level plans in a standardized way. These architectures should
promote the modularization, reusability and scalability of components,
while promoting the use of the latest standard technologies and data
information that helps with the digitization.

Recent reviews on system architectures and applications for mobile ma-
nipulator robots [122, 123] show that current research is mainly focused
on low-level controls for localization, navigation or dexterity tasks, and
not that much on the interoperability and reusability of these control and
robotic skills. In addition, these reviews remark the need of generic rules
to define single robot skills that are reusable, robust to non-deterministic
events, and intuitive to non-expert users under a wider context than the
proposed use case. Encapsulating robot tasks into skills was initially pre-
sented in [124] and proposed as a skill based control architecture with
parameterized robot abilities in [125–127].

To design the skills, two main opposite approaches have been followed:
bottom-up approach, which focuses on the control and aims at captur-
ing the continuous aspects of a task [128, 129]; and top-down approach,
which focuses on the semantic coordination level, while usually abstract-
ing the low level control [130–132]. The latter seems to be suitable
for creating generic architectures controllable in a more standardize way.
However, after defining and developing these skills for specific contexts,
there is still a need to reuse and coordinate them in a wider spectrum
applications. For these robot skills to become useful, heterogeneous do-
main application users, who may not be robotics experts, must be able
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to instruct them to perform a variety of tasks. With this goal in mind,
CoSTAR [133] developed a robust task plan creator for collaborative
robots based on behavior trees. Other works in this context are: the
proposal made in [134] and validated on simulated humanoid robot plat-
form; the task programming framework proposed in [135], with powerful
logging, debugging and profiling capabilities in the context of space mis-
sions and terrestrial applications; the Affordance Template task descrip-
tion language presented in [136], to provide high-level augmented reality
capabilities to facilitate human-in-the-loop simulation; the ROS Com-
mander (ROSCo) [137], which enables expert users to construct, share
and deploy robot behaviors for home robots; AutoRobot [138, 139], that
offers a series of reusable packages, templates and tools to help with
the integration of new agents within their framework; ALLIANCE [140],
a fully distributed framework that delivers abstract function units to fa-
cilitate robot behaviour description, and fault-tolerant multi-robot task
allocation. An interesting observation is that all these proposals have
been built on top of the Robot Operating System (ROS).

In summary, there is a wide range of MMRs that possess diverse abilities
but encounter similar challenges. With the increasing demand for this
type of robots in the market, numerous robotic platforms and start-ups
have emerged, aiming to provide on-demand solutions. However, despite
ongoing efforts to develop a comprehensive and standardized framework
that facilitates integration and the reuse of various skills, a universally
accepted solution is yet to be established. Moreover, most of the ex-
isting solutions mainly focus on single robot applications, neglecting the
crucial aspect of integrating them into a multi-robot industrial ecosys-
tem, that requires seamless communication with other non-robotic com-
ponents. Consequently, autonomous transportation systems face new
scientific challenges when operating in real industrial environments with
heterogeneous sensors and actuators. One of the notable research gaps
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lies in the field of multi-robot socialization, decentralized multi-robot task
allocation, and their integration with other non-robotic Cyber-Physical
Production Systems (CPPSs), as demonstrated below.

2.3 Integration of multi-robot systems
in a smart factory

The Smart Factory proposes the transition from traditional automation,
where a MES centrally governs all the devices in the factory, to manu-
facturing systems with distributed intelligence that provide a degree of
total interconnection. This encompasses a technological development in
different areas that include process simulation, unit traceability, predic-
tive maintenance, supply chain integration, product design optimization
and intelligent manufacturing, among others. Specifically, the concept of
intelligent manufacturing focuses on the development of manufacturing
systems capable of dynamically adapting their production to demand,
responding to any change derived from incidents in the plant or modifi-
cations in the manufacturing plan.

Multi-Robot Systems (MRSs) is a robotics field that studies the co-
operation between a set of robots that collaborate or compete in order
to perform a task. Its application generally considers problems that need
more than one robot to be solved, or even problems that may be resolved
with a single robot, but where benefits are obtained through the cooper-
ation of a group of robots as a team. The underlying hypothesis is that
MRSs can enable the fulfillment of current market demands, by provid-
ing plants with the necessary flexibility to manage production through
real-time decision making. Providing architectures, methodologies and
resources as a standardized basis for the integration of a MRS in a smart
factory can simplify the design and implementation process of manufac-
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turing applications, boosting the adoption of Industry 4.0 solutions in
the real settings.

2.3.1 Smart factory beyond Industry 4.0
initiatives

The scientific community’s interest in the development of flexible and
fully connected systems existed long before the emergence of Industry
4.0 initiatives [13, 141]. However, despite the proliferation of work in
academia proposing advanced manufacturing solutions based on refer-
ence architectures [142] or proprietary developments [143], the barriers
detected by the authors at the beginning of the century [144] and to-
day [145] remain stable: the investment cost required to implement plant
transformation, the lack of professionals with experience in the necessary
technologies, or the lack of design methodologies, among other causes,
continue to hinder the adoption of these principles by the industry.

The emergence of initiatives such as Plattform Industrie 4.0 have sought
to reduce this gap by proposing reference architectures based on stan-
dards. The authors in [146] compile all the standards that can be applied
to ensure the different characteristics that are presupposed to CPS. The
authors in [147] defend that the basis for the industry to adopt these new
manufacturing systems is that they are smart and sustainable, providing
a literature review that remarks that safety is an aspect little worked in
the current literature.

The proliferation of similar concepts (Smart Manufacturing, Industry
4.0, Intelligent Manufacturing, etc.) has been identified as a source
of noise and confusion that prevents the definition of clear objectives
and progress. In this sense, different authors have reviewed these con-
cepts, as well as the main reference architectures, with the intention of
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unifying the characteristics that they should present, the technologies
that enable their development, and the pending challenges to be solved
in advanced manufacturing systems [46, 148, 149]. In their conclusions,
some of these works point out that reference architectures are incom-
plete in some aspects and only provide a starting point, although they are
fundamental because of the foundation they provide through standards.

Although ad-hoc architectures are still being presented today [12, 143],
some authors have started to develop their architectures based on ref-
erence models, mainly RAMI 4.0, from different approaches: the archi-
tecture presented in [150] was developed by adopting the features of
different European projects; the works in [151] and [142] developed two
architectures from scratch based on RAMI 4.0; a previously designed
advanced manufacturing system was adapted in [152] to make it com-
patible with RAMI 4.0. The limitations that can be attributed to these
works are twofold: on the one hand, some of these works present super-
ficial approaches, where the procedures followed to adapt to the RAMI
4.0 architecture are not described in detail, apart from the mention of
a series of technologies; on the other hand, the adoption of the RAMI
4.0 architecture by these works is partial, because the proposed solutions
focus on developing and detailing the operation of one of the axes of the
cubic model in particular.

There is a certain consensus in considering the distribution of intelli-
gence as a common procedure for adopting the most important concepts
of the reference architectures. Thus, there have been significant efforts
to shift manufacturing control structures from centralized, hierarchical
or modified hierarchical architectures towards heterarchical architectures
where the information flow is absolutely horizontal, as a result of the
direct communication between entities in the same level. However, de-
spite their apparent high flexibility and adaptability against disturbances,
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fully distributed decision-making based on the limited information han-
dled by system entities makes heterarchical control systems prone to
myopic behavior, because entities have a limited view of the system
progress towards its overall objective [153]. Empirical evidence suggests
that a hybrid approach, based on a compromise between centralized and
distributed control, can improve the control of myopic behavior while
maintaining flexibility [154]. In this sense, the authors in [155] propose
a distributed system in which the agents are monitored by a system su-
pervisor who ensures that the overall objectives are met, and who only
yields control in case of disturbances. In the same vein, the CASOA
architecture [156] has a lower layer based on multi-agent systems and an
upper layer in the cloud, linked through a specific agent, to optimize the
manufacturing plan. As a final example, in the hybrid system presented
in [157], the centralized part depends on two agents: the system agent,
which centralizes communications, and the directory agent, which ex-
poses system information.

Finally, in [148] it is emphasized that the full development of a CPS
requires the principles of service-oriented architectures (SOA). [158] also
identify the combination of SOA with holonic systems as the ideal solu-
tion for the control of advanced manufacturing systems. In this regard,
one of the main initiatives for the adoption of SOA principles in manu-
facturing systems is the European Arrowhead project [159]. This project
presents a framework for the interaction of cloud-based systems. Other
efforts include the concept of Cyber-Physical Manufacturing Services
(CPMS) [160], consisting of the implementation of CPS using SOA to
provide a framework for modeling these entities.
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2.3.2 Integration of assets in Industry 4.0
The integration of manufacturing assets has been studied in the context
of holonic systems [161, 162] and, more recently, in the context of CPS
[163, 164] and I4.0 Components [165]. Some works are aimed at solving
specific integration problems and, thus, propose specific implementations
for particular case studies [166, 167]. Others, although not specific, focus
on a concrete type of asset. In this regard, two types of assets attract
most of the attention of researchers: PLCs and robots.

• PLC integration approaches differ on the standards used to per-
form the integration: some are based on IEC 61131-3 [168–170],
whereas others are based on IEC 61499 [171, 172]. These works
also present differences on where to deploy the AAS: inside the
PLC [170] or on an external node [168, 172].

• ROS is commonly used to integrate robots [15, 173]. However,
while some researchers use ROS as middleware between the asset
and its corresponding AAS [15], others propose to use ROS for the
interactions between AASs, choosing the most suitable communi-
cation protocol to interact with each asset [173].

In other works, the focus is not on the type of asset to be integrated,
but on which technologies to use for this purpose. In this regard, two
approaches stand out above the rest: OPC UA and the industrial agent
paradigm.

• The use of OPC UA is promoted in different documents published
by Plattform Industrie 4.0. The authors in [174] propose the use
of OPC UA for communication between the asset and the AAS,
and a combination of AutomationML and OPC UA supported by
the IEC 62769 standard for communications between AASs. The
proposal in [165] presents a three-layer architecture (field assets,
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edge AAS deployment, and cloud AAS management) where OPC
UA is used to integrate manufacturing assets and to implement
their AASs.

• Industrial agents naturally extend MAS with asset integration ca-
pabilities and practices [175]. In the agent-based AAS proposed in
[176] functionalities are coded as microservices, including an agent-
based AAS interface (to interact with other agent-based AASs)
and an asset interface (to interact with the asset). The authors in
[177] proposed an agent-based solution to establish standard in-
terfaces based on the use of the ISO 9506 Manufacturing Message
Specification international standard.

OPC UA allows transferring different types of data structures with ease,
but does not innately offer the autonomy and decision-making capabili-
ties inherent to agents. Thus, a large number of authors agree on the use
of MAS over OPC UA as a technological resource for deploying indus-
trial agents due to their ability to provide flexibility, reactivity, adaptabil-
ity and distributed intelligence [178–180]. MAS have been widely used
for the development of flexible manufacturing systems with distributed
intelligence throughout the last two decades, presenting some reference
architectures such as PROSA [162], [161] and, more recently, CASOA
[156] or the agent-based architecture proposed by [142]. Most of these
proposals are fundamentally based on two agents: product agent (PA)
and resource agent (RA) [181–183].

Despite the clear benefits that this technology could bring into produc-
tion environments, the utilization of MAS technologies in manufacturing
is not yet established. Studies about the maturity and utilization of MAS
technologies [184] demonstrate that the maturity level for industrial use
cases is still low. Despite having developed many prototypes to study the
potential of the technology there are only a few real implementations.
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The authors in [144] introduce several of these works and summarizes
the barriers for the current implementation in production processes of
the technology.

• Integration of assets: Although MAS naturally stand out for ad-
dressing asset integration, they still depend on the characteristics
of the technology used for this purpose. Besides, industrial con-
trollers rarely include support for running MAS platforms, although
this situation is changing with the emergence of open controllers
that bundle a software PLC and an operating system where agents
can be deployed.

• Convergence with standards: The Foundation for Intelligent
Physical Agents (FIPA) standard does not support full interoper-
ability in real-time, distributed control, diagnostics or production
management. Additionally, its Agent Communication Language
(ACL) contemplates the use of ontologies to ensure interoperabil-
ity, but improvements in knowledge ontology representation stan-
dards are needed.

• Reliability: Most demostrators are too simple and do not provide
the required reconfigurability that manufacturing processes require.
Besides, prototypes use too few agents in compare to what it would
be used in a real setting (current platforms do not offer robustness
for such number of agents).

• Cost: Higher investment needed for implementing agent-based
solutions compared to classical centralized solutions. Moreover,
the implementation of a distributed and modular system implies the
complex task of redesigning the interactions between components
for the integration of MAS technologies.
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In conclusion, MAS-based approaches show great potential to integrate
assets in an easy, fast and reusable way, and to improve the adaptability of
industrial dynamic systems. However, the lack of standard methodologies
and uses cases in real industrial environments are an obstacle for their
immediate implantation. As industry distrusts emergent solutions that
have not been proved in real environments, it is important to demonstrate
that MAS meet all the requirements attributed to them.

2.3.3 Multi-Robot Systems
The integration of a MRS on a smart factory faces a variety of scientific
problems ranging from the definition and assigment of tasks to a set
of available robots, to the interaction with heterogeneous CPSs in real
industrial environments. Specifically, the coordination and cooperation
among robots and other non-robotic agents, also known as Multi Robot
Task Allocation (MRTA), is a complex and yet not completely solved
research field among robotics that deals with the efficient assignment
of a set of tasks to a set of robots [185]. Tasks can be discrete (e.g.,
deliver-this-there) or continuous (e.g., monitoring a building) and may
require single or multiple robots to be executed (i.e., single robot task
or ST vs multi robot task or MT). Similarly, each single task robot (SR)
can execute as most one task at a time while multi task robots (MR)
are capable of executing multiple tasks simultaneously. The present work
focuses on the decentralized version of the Single-Task Robots, Single-
Robot Tasks (STSR) classification.

Traditional control proposals were used to apply the centralized task
allocation approaches as they provide optimal solutions to the MRTA
problem. However, robustness and scalability problems have made the
trend to turn towards more decentralized solutions. In [186], a decen-
tralized market-based approach is presented, where robots bid for tasks
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based on their capabilities. For the bidding process the Contract Net
Protocol (CNP) [187] was used, in which the machine fulfills the role of
the coordinator and the MMRs participate as bidders. This multi-agent
task-sharing protocol is divided into 4 stages: 1) task announcement by
an agent that takes the role of the coordinator, 2) bid submission by
individual agents, 3) evaluation and winner selection by the coordinator,
and 4) contract stage of the winning agent. In order to increase the
robustness, other solutions assign an additional secondary robot to su-
pervise the primary robot and assume its task in case of failure. In order
to increase scalability, the auction process can be run locally, taking into
account only nearby MMRs, thus, improving networking performance and
reducing data processing performed by the MMRs.

Being robotic devices, MMRs can be developed using available RFs, as
they provide hardware abstraction and software components for the cre-
ation of complex and robust robot behaviors in diverse applications and
across a wide variety of robotic platforms. Nevertheless, RFs have been
focused on developing single robot functionalities and have not included
social abilities within their inherent characteristics. RFs must now evolve
aimed at improving social abilities among robots and allowing the inter-
action of robots with non-robotic entities. To overcome the lack of social
abilities inherent to RFs, the work in [1] proposed the combination of RFs
with already proven and reliable MAS to create the so-called Multi-Agent
Robotic Systems (MARS). MAS technology has been proved as a natural
way to meet the socialization requirements among different manufactur-
ing entities in many industrial domains [188]. In fact, the concept of
Industrial Agent is related to the implementation of CPPSs as agents
[189, 190]. The application of the MAS paradigm to RFs contributes
to the agentification of an MMR, a process by which an MMR would
become an agent that can socialize with other agents in the factory. The
combination of RFs and MAS can lead to a fast developing of reusable
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individual robotic systems that are coordinated by already proven multi-
agent technology. This results in a suitable and modular multi-agent
transportation system that is capable to communicate not only among
them but also with other components in the production system.

The creation of generic multi-layer architectures for multi-robot collab-
oration based on RF and MAS integration has been of interest to re-
searchers for decades [1, 191]. AutoRobot [138, 139] combines ROS and
JADE to enable support to autonomous and rational service robots. It
offers a series of reusable packages, templates and tools to help with the
integration of new agents (robots or sensors) within their framework.
However, it mainly focuses on single robot requirements, without ad-
dressing socialization issues. The MAS2CAR architecture [192] proposes
an architecture for controlling and coordinating robots working in teams,
where the coordination among agents occurs over a central supervisor
component which detects and avoids collision conflicts. Another three-
layered architecture is presented in [193] for enabling robotic services in
intelligent environments. Specifically, they present the interaction of a
mobile robot with smart light and door agents. A centralized component
acts both as a global knowledge container and as a central coordinator
of other system components.

In summary, the introduction of intelligent machines and transportation
vehicles increases the automation and the system reaction to distur-
bances at the shop floor level, such as changes in the production plan or
possible faults in the resources, thus increasing the robustness and adapt-
ability of the factory. The use of intelligent product and order agents
increases the traceability and available information at any time which can
be used for process optimization or failures forecasting. Despite the no-
ticeable efforts on the research of RF-MAS integration architectures, the
decentralization issue remains unsolved, limiting one of the main bene-
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fits of using MAS. It is therefore necessary further research to develop a
generic RF-MAS architecture to enable intelligent multi-agent networks
composed by robots and smart sensors.

2.4 Summary: Requirements for a
MRS in a smart factory

As mentioned above, the latest proposals for adaptive and product-
oriented manufacturing systems replace centralized control in favor of
autonomous, intelligent and heterogeneous production entities capable
of cooperating to solve problems. The MMR plays a key role with on-
demand material transportation between machines and warehouses, en-
abling system reconfigurability and supporting operators with complex or
hazardous dexterity abilities. Having reviewed the related literature and
considering the objectives of the work, it is possible to define the main
design requirements of a generic robotic system in a flexible manufac-
turing process as shown in Table 2.1 and described below.

Table 2.1: Main Requirements of a flexible manufacturing process.

Identifier Brief description
R1 Alignment with RAMI 4.0.
R2 Distributed control architecture.
R3 Modular design development.
R4 Monitoring and data management.
R5 Socialization among I4.0 Components.
R6 Efficient communication management.
R7 Fault detection and recovery.
R8 Reconfiguration.
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Alignment with RAMI 4.0 (R1)
Reference architectures propose a contextualization of Industry 4.0 to en-
sure an understanding among its participants, providing a starting point
for the design and development of solutions on a common basis. The
analysis of the related literature shows that RAMI 4.0 is the reference ar-
chitecture to follow at plant level. However, asset integration in Industry
4.0 is a complex task that involves, asset-related automation, information
management and service implementation. This includes the definition of
the Asset Related Services regarding the MMR (i.e., Application Rele-
vant Services that provide mobile and/or manipulation functionalities).
Once the characteristics of MMRs as I4.0 Components in the factory
have been defined, methodological support is needed to guide MMR in-
tegration into an I4.0 System. To that end, the concerns related to
MMR integration must be abstracted into layers, so that they can be
addressed both generically (i.e., regardless of the type of MMR to be
integrated) and independently (being decoupled from each other). In
addition, technological support is needed to facilitate the development
of AASs for MMRs based on patterns that include the necessary AAS
services that can be extended and customized according to application
requirements.

Distributed control architecture (R2)
Distributed systems are designed to manage changing environments where
intelligent and loosely-coupled software components do have to interact
with each other to perform tasks. In a MRS, it is important that the
control architecture distances itself from the traditional ones linked to
the state of a single component or controller (such as centralized, hi-
erarchical or modified-hierarchical). In this sense, each robot should be
able to perform its tasks autonomously or quasi-autonomously from the
exchange of information with other robots. Furthermore, it is important
to note that robotic processing needs can be complex, being able to
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perform low-level control and high-level social communication in parallel
is also considered necessary, so that there are no delays and problems
in functionality. Nevertheless, the complete distribution of the control
leads to a local information-based decision making, resulting on a locally
optimized solutions and a non-predictable global behaviour. The solu-
tion to this problem involves the development of hybrid solutions that
combine the benefits of centralized systems and distributed systems, em-
bodied in a SOA that reflects the service model defined in RAMI 4.0 (R1).

Modular design development (R3)
The design of modular and structured software systems allows highly
complex problems to be solved by dividing them into smaller parts that
can be developed, tested and modified much more easily without the
danger of affecting the rest of the application. For this, it is necessary
that the software units or modules have high cohesion and low coupling,
that is, they have the least possible dependencies. In the case of MARS,
the generation of modules that avoid having to adapt the functionali-
ties to the hardware, would allow the functionalities of the system to be
portable. In this way, it is only necessary to adapt or rectify the hardware
access units, which must share a common interface. As a consequence,
the scalability, extensibility, maintainability and portability of the system
are improved. The addition or removal of modules on the system does
also not affect other modules. Also updates can be done individually
for testing purposes or as a group to include new functionalities or solve
known bugs on the whole fleet. Finally, being modules independent from
each other, a failure of a module must not affect any other module, in-
creasing its robustness.

Monitoring and data management (R4)
Agents must update information about their operation and events oc-
curred. This information is monitored by the system and used by opera-
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tors for visualizing the state of the system, for historical traceability, for
rapid detection of failure situations and reaction, and, finally, for data
analysis such as optimization and forecasting.

Socialization among I4.0 Components (R5)
Sociability is the ability of two or more systems, applications or compo-
nents to exchange information or manage services that they both know.
For this, it is necessary that all of them agree on a method from which
its components can be understood. Based on this information exchange,
I4.0 Components make autonomous decisions, allowing a decentralized
control architecture. This requirement involves the definition of the in-
terface or API of the MMR as an I4.0 Component, through which it
interacts with the rest of the I4.0 Components in a I4.0 System to per-
form requests for its Application Relevant Services. In the case of robotic
systems in an industrial environment, it is important to be able to use a
language that allows robots to communicate with each other, but also
that they can communicate with machines, orders, operators, etc. This
implies that interoperability standards in socialization must go beyond
robotic platforms.

Efficient communication management (R6)
In a manufacturing system we have a large number of components that
must communicate over the network. If the interaction does not have
established rules so as not to saturate the system, it is possible that the
functional time restrictions cannot be met due to the long delays that
the system accumulates.

Fault detection and recovery (R7)
When failures occur in the software or hardware of any component, the
system may loose part of its information or receiving it erroneously. The
design must be robust and fault tolerant, including error detection and
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recovery or, at least, operating in degraded mode in unforeseen situa-
tions.

Reconfiguration (R8)
Also, changes in the manufacturing plan or the inclusion of new products
must be faced by a rapid and efficient reconfiguration of robotic com-
ponents, machines or additional software modules. Although a fault or
an unforeseen reconfiguration implies delays, robots must minimize the
effects that these may have on the global system.

In order to adapt the thesis to actual research problems and necessities,
this work presents two main contributions: First the development of a
generic multi-robot architecture that facilitates the integration of sin-
gle robot capabilities to work on a wide range of mobile manipulation
robotic applications. The architecture will be validated on both industrial
and non-industrial robotic use cases, within different European projects.
Second, its integration on the flexible manufacturing, using the latest IT
technologies and industrial standards.

47





3 State of the Technology

Taking into account the aforementioned requirements for the design of
MRS systems in Industry 4.0 environments, this chapter identifies the
available frameworks that support the required technologies, and analyses
their characteristics for this purpose. During the analysis, the weaknesses
and strengths of these frameworks are identified, and the benefits that
can be obtained by integrating them with each other. In addition, this
analysis focuses on those particular concepts that are considered essential
to understand the design proposed and tested in this thesis.
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3.1 Analysis and selection of tools

There are many and different frameworks that allow creating new robotic
applications in a fairly simple way. Over the years, there has been a shift
from developing software completely dependent on hardware to seeking
alternatives, not yet standardized, that provide solutions to the most re-
current problems in this area of knowledge. In this sense, a large number
of environments and libraries have emerged. In the following, RFs, OPC
UA and MAS will be analysed.

Component-based frameworks are the most popular robotic software de-
velopment approach as they simplify the development process by mod-
ularization and heterogeneity. Some have been popular in the past but
are already deprecated such as ORCA [194], Microsoft Robotics Stu-
dio (MSRS) or Player/stage [195]. Other popular and still maintained
component-based frameworks are Yet Another Robot Platform YARP
[196], ArmarX [197], OROCOS, Open-RTM [198] and ROS [199]. Si-
multaneously, modelling and simulation frameworks permit their collabo-
ration with some RFs. That is the case of Webots [200], V-REP (Virtual
Robot Experimentation Platform) [201] or Gazebo [202]. In addition,
frameworks such as the Open Robot Middleware Framework (RMF) [203]
enable interoperability between multiple fleets of robots and physical in-
frastructure, like doors or elevators, and are also seamlessly integrable
with the previously mentioned RFs.

In modern manufacturing facilities, PLCs play a central role as low-level
intelligent devices in production machines [204]. To permit the commu-
nication of robots with manufacturing machines, the OPC UA standard
has been considered as it is the de-facto standard middleware for seam-
less control of PLCs from diverse vendors [205].

50



3.1. Analysis and selection of tools

In order to enable the use of the OPC UA system architecture with
as many devices, components, tools and manufacturers as possible and
outside of classic industrial automation area, the OPC Foundation de-
cided to make its middleware specifications and stacks available as open
source. Since then, several libraries that provide OPC UA functionalities
have gradually appeared on the network. Some companies offer their
professional paid products for experienced developers who want to de-
velop their system independently [206, 207]. However, in addition to the
paid products, there are also many different free open source middleware
architectures such as node-opcua, EclipseMilo, Opcua4j. These cannot
usually compete with larger companies in terms of functionality and sup-
port, but they can still offer the opportunity to successfully implement
smaller OPC UA solutions and start in the OPC UA area. An extended
list of different architectures can be found in [208] and be used by in-
terested people who are considering entering this market. Because of
its documentation, ease of use and popularity, the open62541 [209] and
FreeOpcUa [210] implementations are the ones that will be considered
in this work.

Finally, MAS frameworks are standard tools created by researchers, devel-
opers and companies to facilitate the implementation of heterogeneous
agents. Although MAS technology is not new, its implementation is
still in its early stages. In this sense, it was not until the beginning of
the 2000s that this type of platforms began to be developed, highlight-
ing names such as AgentBuilder [211], JADE [212, 213], Jason [214] or
MaDKit [215].

The diversity of alternatives and application scenarios makes it difficult to
choose the optimal one for each aspect. Thus, the selection is supported
by studies that evaluate and detect the desirable characteristics (C) of
available RFs [1, 216–218] and MAS frameworks [219, 220]:
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• Support Sensors/Actuators (C1)
The management of the low-level hardware interfaces and drivers
cannot be ad-hoc for each application. It is desirable the support
for a large number of sensors and actuators, as well as their innocu-
ous interchangeability without affecting higher level functionalities.

• Provide Robotic algorithms (C2)
Existence of generic robotic functionalities that allow managing
low-level actions (control of actuators and sensors) and high-level
actions (task planning, navigation, etc.).

• Provide simulation and modelling tools (C3)
Availability of model generation tools and executable specifica-
tions. Simulation can help saving time and costs by training and
testing in advance, without damaging the working space.

• Based on a standard (C4)
Standards are crucial as they facilitate interoperability, compatibil-
ity, and seamless integration between technologies. They encour-
age innovation, competition, and best practices while enhancing
reliability.

• Supports platform security (C5)
Choosing frameworks with built-in security features or the flexibility
to develop them on-demand is crucial for deploying these technolo-
gies in industrial environments, ensuring protection against threats
and vulnerabilities.

• Open Source and active community (C6)
Free frameworks with active user community promotes the en-
gagement of the research community and much faster evolution or
problem solving.
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• Multi-platform (C7)
Platform abstraction layer that allows specific communications from
peripherals, work in real time, in multitasking, etc.

Table 3.1 groups the most popular, open source (C6) and multi-platform
(C7) robotic, machine and MAS frameworks, identifying which of the
mentioned requirements and desirable characteristics do they cover. In
the following, an analysis of the selected tools is presented.

Among RFs, it is clear that all of them provide mechanisms related to the
support of physical sensors and actuators (C1) from a reusable perspec-
tive. Being component-based, they also follow a distributed and modular
architecture, ensuring compliance with the requirements (R2) and (R3),
respectively. Most of them provide certain level of robotic algorithms
support (C2) and simulation tools (C3). They also provide mechanisms
for monitoring and visualization (R4), despite they need to be further
enhanced in order to save data on databases and detect desired anoma-
lies or events. These monitoring tools should be enhanced by developing
quality of service network management or overall system diagnostics and
error management tools (R7). Factory set up reconfiguration (R8) or
software updates are also possible thanks to the modular, plug-and-play
design, replacing one robot by another or including new ones on demand
without affecting the rest of the system. However, none has been devel-
oped considering intrinsic social capabilities that allow robots to establish
cooperative solutions (R4), making it clear that it is not possible for a
robotic platform to solve the complete problem on its own. This lack
of socialization complicates their direct integration on the factories of
the future (R1) and new mechanisms need yet to be developed. Finally,
despite some of them are based on the Common Object Request Bro-
ker Architecture (CORBA) specification, it cannot be considered as the
overall robotic communication standard as there are other middlewares
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more popular and with more active community than OpenRTM-aist and
OROCOS.
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Table 3.1: Robotic Machine and Multi-agent frameworks comparison

(R1) RAMI Alignment

(R2) Distributed

(R3) Modular

(R4) Monitoring tools

(R5) Enable Socialization

(R6) Efficient communic.
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(R8) Reconfiguration

(C1) Support Sens.&Act.

(C2) Robotic Algrtihms

(C3) Simulation/Modelling

(C4) Standard based
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An evaluation of existing RFs and the need of robotic benchmarks and
standards is done in [221]. Here, ROS appears as the most popular and
best suited framework to become the standard and YARP, which is more
focused on humanoid robots, as the second most popular one. ROS
is the framework with the brightest present with an increasing number
of citation of over a 25% yearly, and an accumulated increase of 250%
since 2017 (9260 citations in 2021 against the 3704 citations in 2017)
[222]. Also, many companies have trusted on ROS with over 200 robots
integrated on the ROS infrastructure, including industrial robots manu-
facturers that actively support the ros industrial flavour of ROS [223].
This allows them to ROSify their industrial robots and components, and
re-use all the software created in the ROS ecosystem.

Taking into account that several of the RFs have very similar character-
istics, it has been decided to analyse and use ROS as the reference RF
for development in this work. Its popularity and the enormous variety
of available add-on packages make ROS a highly flexible and interesting
middleware for a wide variety of robot applications. With the develop-
ment and release of ROS2, this middleware will be able to assert itself
on the market in the long term.

With regard to MAS frameworks, the intrinsic characteristics of practi-
cally all the frameworks analysed and the standards on which they are
build upon, meet the requirements R2-R5 without the need for any ad-
ditional development. Besides, all of them have some kind of network
analyser and manager to react in case of network overload (R6). In
addition, the requirement R7, despite not being specific to multi-agent
architecture, is partially met by platforms that, based on MAS frame-
works, add the necessary mechanisms to include this fault detection and
recovery characteristic [224]. Being designed upon industrial standards
(C4), they also support some kind of security directives (C5). On the
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other hand, since C1-C3 are strongly related to the hardware of physical
systems, the multi-agent paradigm does not naturally support them.

Thus, it can be concluded that the addition of the multi-agent paradigm
in RFs could be a step forward when it comes to assist socialization,
network management, recovery and security situations [1]. However, for
both frameworks to cooperate, it is necessary to define an integration
architecture that allows, on the one hand, to solve the communication
problems between them, and on the other hand, to allow the separation
of concerns between them, allowing specialists in different areas to work
together.

Specifically, in the present thesis it has been decided to use the JADE
multi-agent framework. Its high performance, ease of use, robustness
and use of the most widespread standard norms, makes it the most suit-
able solution for the problem under study. Its architectural design has
been articulated mainly on the basis of two important decisions: choice
of programming language and standard reference norm. With regard to
the programming language, cross-platform support has been sought. To
that end, Java was chosen, an object-oriented programming language
that, when compiled, generates code that must be interpreted during
execution time by a JVM (Java Virtual Machine) dependent on the tar-
get platform. In this sense, any operating system capable of running a
JVM virtual machine is able to implement a MAS in a simple way. With
regard to the standard reference norm, the framework is based on FIPA.
In this way, JADE can communicate its agents with others implemented
on another platform that follow the same standard.

The integration of the different robotic and MAS frameworks into a
RAMI-based flexible manufacturing leads to an agent-based robotic ar-
chitecture where robots or robotic components appear as agent assets
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(R1) that interact or cooperate with other non-robotic agents, providing
larger support for autonomy and increasing their socialization capabili-
ties. As seen in figure 3.1, RFs provide the support to hardware drivers,
simulation and development tools and robotic algorithms, while MAS
frameworks support the needed socialisation mechanisms. [1] explains
the characteristics and necessities for MARS and compares available and
mature Robotic Software Frameworks and Multi-Agent System Frame-
works. Among the agent-based robotic architectures, the following stand
out: PANGEA [225], an organizational-based platform for sensing devices
with resource constrains; COROS [226], a multi-agent software architec-
ture for cooperative and autonomous service robots; a three layer ar-
chitecture for service robots in intelligent environments [193]; and the
AutoRobot framework [139], that supports autonomous and intelligent
service robots. Unfortunately, these architectures are not yet well es-
tablished and accessible to be used. In addition, the architecture has
to be completed with a careful analysis of the application domain to
achieve stable interfaces and component re-usability [227]. These works
are mainly designed for service robotics, overlooking some important
industrial requirements and recommendations such as integrating the
robots in the CPPSs concept [21, 163, 164] or the I4.0 Component
[165], or the use of standard communication interfaces like OPC UA.

In this regard, OPC UA frameworks can be complementary enablers to
communicate machines, usually controlled by PLCs, with the robots and
other manufacturing systems. Among the frameworks evaluated, even if
open62541 and FreeOpcUa satisfy the same range of requirements and
characteristics, they differ significantly in their implementation. Due to
its simplicity, easy of use and object-oriented development, FreeOpcUa
is better suited for beginners than open62541. Another important point
against open62541 is that the library may only be used in projects that do
not belong to the open source category. Finally, it already exists a ROS
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Figure 3.1. Robotic and multi-agent system frameworks synergy [1].

package that implements bindings for FreeOpcUa Server and Client Li-
braries supporting C++ [210] and Python [228] programming languages.
For these reasons, the selected OPC UA middleware is FreeOpcUa, en-
abling the distributed interaction among robots and machines. Never-
theless, it should be noted that the middleware open62541 shows more
potential in the long term: since several companies are involved as coop-
eration partners in its architecture model, this system will be constantly
further developed, and various improvements and extensions will be im-
plemented. In any case, the integration of a different open source OPC
UA-based framework should not involve much work.
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3.2 ROS (Robot Operating System)
ROS [199] is one of the most widespread and popular RF with a global
and active community. It is considered an open source meta-operating
system that provides the minimum services of an operating system: hard-
ware abstraction, low-level device control, implementation of common
utilities, message passing between processes, and package management.
Among its features, it contains a large number of tools and libraries that
facilitate its use in various applications, without the need for additional
efforts. In this sense, the operating systems supported by ROS are those
most widely used for computer processors (Linux, OSX, Windows, as
well as various embedded platforms) and the programming and develop-
ment possibilities are also varied (C++, Python, Octave, LISP and even
JAVA), facilitating the integration work. It is also commercial friendly, as
it is distributed under permissive open source licenses, with Apache 2.0
being the default one. All these issues are what make it one of the most
used robotic frameworks for the development of applications of this type.

The ROS design is completely distributed, isolating small processing units
that exchange information. To do this, it has various levels of concepts.
The Filesystem concepts level mainly covers ROS resources that are en-
countered on disk, such as: packages, repositories, message (msg) types
and service (srv) types. The Computation Graph level is composed by
the ROS network processes that are processing data together allowing
the correct functioning of the whole. The most important ones are illus-
trated in Figure 3.2 and briefly described below:

• Node: Nodes represent modular computation processes. A robot
control system is usually composed by many nodes. For example,
one node controls a laser sensor, another one controls the localiza-
tion algorithms to define the robot position, another one calculates
the best route on a map, and a final one controls the wheels of

60



3.2. ROS (Robot Operating System)

a robot to follow the path. The ROS nodes communicate with
each other by sending messages by the means of message patterns
defined by the platform.

• Parameter server: Global information server that allows the pro-
cessing units to be parametrized in a generic way. In this sense, the
parameters stored in this central location can be modified during
execution, changing certain variables or operating modes of who-
ever uses them. Although ROS proposes that it is an independent
entity, nowadays it is part of the ROS Master node.

• Message: Messages are used by nodes to communicate with each
other. A message is simply a data structure, comprising typed
fields. The information stored in each message is configurable, with
simple messages (integers, character strings, etc.) and complex
messages (structures, other messages, etc.).

• Topic: Publisher-subscriber is the message pattern per excellence
of ROS due to the speed and simplicity it entails. It is a unidirec-
tional message transmission channel opened for writing (publish-
ers) or reading (subscribers). This way, it presents an asynchronous
solution for updating the information of many processing units at
the same time, without the need to open and close the connection
between them on each occasion. The name of the channels and
the messages they transmit have to be correctly defined by design,
since they are not subject to be modified during execution.

• Service: Request-reply is the message pattern used for those inter-
actions that cannot be resolved through topics. It is a synchronous
model through which two nodes interact based on events. The
identification of the services in the ROS system must be unique,
and there cannot be two collaborative nodes that offer a service
with the same name. A connection is established between nodes
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each time a service is requested, following the next steps: connec-
tion request, sending of messages by agreed protocol, and connec-
tion close. As long as a request/response model or direct commu-
nication with the other node or processing unit is not necessary,
services are less efficient than topics.

• Action: A client/server model that allows services to be carried
out asynchronously. It is not a native ROS communication, al-
though the implementation and use of the actionlib library among
the developer community is very extensive, and today it is con-
sidered the third method of communication on the platform. The
asynchronous implementation is based on the use of bidirectional
topics, ensuring the existence of a response from the server in all
cases. This solution was created to allow execution units to use
services without blocking their tasks to completion.

Figure 3.2. ROS Computation Graphs Components and interaction
mechanisms
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After briefly analysing the most important components and utilities of
this distributed architecture, it is important to analyse the possibilities
offered by this robotic framework in multi-robot or robot-human appli-
cations. For this, the native characteristics of ROS and the possibilities
generated by some developers have been analysed.

ROS itself allows multiple nodes to be run on different computers or
machines, as long as they share the same ROS Master node. In this way,
there is a general system address book that can be accessed by all the
nodes, establishing unique communication paths between them. This al-
lows a robot to interact directly with its sensors, an external computer to
monitor information from a robot at runtime, and even multiple robots
to interact using the same Master node. However, there are also external
alternatives that propose multimaster architectures to solve the problem
of multi-robot communication. Next, the multi-robot possibilities that
can be implemented on ROS are described:

• Mono-master architecture: Completely centralized control ar-
chitecture in which a single ROS Master node acts as the address
book for the entire system. In case of multi-robot communication,
this Master node usually runs on a workstation known to all robotic
systems. This multi-robot design is very inefficient and unscalable.
The dependence of the system on a single node implies a tradi-
tional centralized control, with all the problems that this entails.
Besides, since all the nodes of all the robots communicate through
the network, it is possible that there may be saturation problems
in wireless and even wired networks.

• Multi-master architecture: The ROS user community has sought
to provide a solution, based on external libraries, to the problems
that the use of a single ROS Master node had. These architectures
define their own Master node in each robot and generate commu-
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nication methods between these system nodes. Although there
are multiple ROS packages that allow you to customize this archi-
tecture, the most prominent is multimaster_fkie [2], whose node
architecture is illustrated in Figure 3.3. This package supports its
functionality in three of its own nodes:

– master_discovery:
Node that seeks to find new Master nodes in the multi-robot
network. To do this, it sends periodic multicast messages to
a group, hoping to get a response.

– master_sync:
Node that synchronizes the local Master with the remote
ones detected from the master_discovery. The topics, services
and parameters of the remote Master nodes are synchronized
with the local one, generating a transparent communication
between Masters.

– node_manager:
Node that allows managing and configuring the ROS nodes
of the different ROS Masters at the same time. Its main
functionality is the facilitation of tasks for operators during
the testing and commissioning phase of a piece of equipment.

The ROS master has a registration API which allows the registration of
nodes, publishers, subscribers and service providers. The registrations
are done individually, so if one publisher or service fails it does not affect
the subscriber or client, or vice versa. When a new publisher-subscriber
or service-client match happens, there is a XMLRPC interaction between
the master and the interested nodes, where the latter are notified about
information such as the IP and port of corresponding partners. The
interested nodes can now establish a peer-to-peer communication with
corresponding partners. In the publisher-subscriber case, this connection
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is held on until one of the participants interrupts it. However, in the
service-client case the XML data exchange with the master must be re-
peated every time. Therefore, two main issues can be expected in a MAS
with a single ROS master: first, all registrations and request are man-
aged by a single API resulting on a bottleneck; second, agents running on
an external device other than the master must register and call all their
topics and services over the network, resulting in slower response times
and network overload. To overcome these problems, a multi-master ap-
proach should allow every agent to poss its own master, distribute the
registrations locally and still be able to exchange information between
agents.

Figure 3.3. ROS multimaster configuration [2]
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3.3 JADE (Java Development
Framework)

JADE is a software platform that simplifies the implementation of any
type of distributed application that is based on MAS technology. It can
be considered as the most popular multi-agent platform as it offers the
basic features expected in a middleware of this type and some added fea-
tures that make its use, debugging and maintenance very easy. Among
these added features, JADE allows creating graphical interfaces to mon-
itor the operation of a specific agent, the messages that are exchanged
between the agents, sending messages in a simple and graphical way,
even creating an operator agent that interacts with the rest of agents
from buttons [229].

JADE defines the distributed architecture of the Figure 3.4, where it is
detailed how different hosts can contain agents, as long as there is one on
the same platform that hosts the main container functionality defined by
FIPA. The following specific entities must be run in this parent container
on a mandatory basis:

• Agent Management System (AMS): It deals with access con-
trol and provides a white page service. To do this, it registers and
monitors all the platform agents, that is, those belonging to the
main container and the remote containers. This agent is automat-
ically launched with the main container, since without it, no other
agent would exist.

• Directory Facilitator (DF): It provides a yellow page service
where the services offered by the different agents are registered,
allowing any agent to quickly find the agents providing them. By
default, a parent container must contain a DF as defined by the
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Figure 3.4. JADE architecture overview with containers and plat-
forms

standard, but it is possible to launch more than one to distribute
services over the network.

• Agent Communication Channel (ACC): The communication
channel between agents that controls the exchange of messages
(local and/or remote) within the platform. It is equipped with
all the tools to manage asynchronous messages of the typologies
defined by the FIPA ACL (Agent Communication Language) spec-
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ification.

Once the elements that a FIPA-compliant MAS platform must contain
are known, it is important to analyse the essential aspects that char-
acterize a JADE agent (see Figure 3.5). An agent is actually a Java
object that runs in a thread and is registered in the AMS with a unique
and universal identifier. An agent is made up of different generic states
that it can go through throughout its life-cycle. Agents take advantage
of their social capabilities to communicate by exchanging asynchronous
ACL messages. This language provides a standardized set of performa-
tives or communicative acts that allow specifying predefined sequences
of messages that can be applied in various situations that share the
same communication pattern. In this sense, FIPA Contract Net Protocol
(CNP) solves the "task delegation" problem with the following pattern:
1) task announcement by an agent that takes the role of the coordinator,
2) bid submission by individual agents, 3) evaluation and winner selec-
tion by the coordinator, and 4) contract stage of the winning agent.

The functional tasks of the agents in JADE are carried out from the
definition of behaviours. These represent small tasks that allow the
achievement of partial or complete objectives of the agent. Its manage-
ment is carried out from a scheduler that orders the execution of the
behaviour queue following a round-robin policy without priorities. The
agent is, therefore, capable of performing its tasks autonomously thanks
to the correct definition of its behaviours. Every time an agent receives
a message, it is stored in the message queue. If the agent is active, the
message is not processed until it reaches the appropriate code section
for that purpose. If the agent is blocked, the entry of a message in the
queue unblocks it by restarting the execution of the behavior queue.

Finally, JADE provides a gateway mechanism to communicate a MAS
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Figure 3.5. JADE generic agent

environment with other types of non-MAS environments. This gateway
is composed of two elements: the JadeGateway class and the Gate-
wayAgent class. The JadeGateway class is used in the non-MAS en-
vironment to instantiate an agent derived from GatewayAgent (Jade-
Gateway.init(myGatewayAgent)) and to execute commands (JadeGate-
way.execute(command)) in that agent. To that end, the GatewayAgent
defines a processCommand() method to execute the commands received
from the JadeGateway. Commands are data structures that can be used
in the non-MAS environment to send data to the MAS environment (i.e.,
from the program running the JadeGateway class to the GatewayAgent)
and/or to receive data from it (i.e., from the GatewayAgent to the pro-
gram running the JadeGateway class).
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3.4 OPC UA (Open Platform
Communication Unified
Architecture)

In 1995, the "OPC Working Group", led by industrial companies, such as
Siemens AG or Rockwell, developed a standard for real-time data access
under Windows operating system. However, being limited to Microsoft’s
operating systems, the OPC Foundation considered adapting the middle-
ware to create a standardized architecture: the "Unified Architecture",
also known as OPC UA. This model standardizes the exchange of data
between software applications, regardless of manufacturer, programming
language, location or operating system. Therefore, OPC UA comple-
ments the existing OPC industry standard with essential properties such
as platform independence, scalability, high availability, Internet capabil-
ity, and others. Like its predecessor, the new OPC UA architecture was
standardized and published under the IEC-62541 series of international
standards [230]. Due to its cross platform communication functionality
and multiple features, OPC UA has become an important middleware to
integrate new technologies into industrial applications [205].

OPC UA is a unified interoperability model focused on data acqui-
sition, information modeling and communication (between plant and
applications). OPC UA is composed of multiple clients and servers
that exchange information using either a client/server or a peer-to-peer
distributed architecture model, or a publisher/subscriber or a request-
response message pattern. Each client may interact concurrently with
one or more servers, and each server may interact concurrently with one
or more clients.
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OPC UA Client
The Client Application implements the client’s function within the client
architecture shown in Figure 3.6. The Client API is used to send and
receive OPC UA Service Requests and Responses to the OPC UA Server.
In this sense, the API is an internal interface that separates the appli-
cation code from the OPC UA Communication stack. This converts
client API calls into messages, and sends them as a client request to the
OPC UA server using the subordinate communication unit. Similarly, the
communication stack receives response and NotificationMessages from
the underlying communications entity, and delivers them to the Client
application through the Client API.

Figure 3.6. OPC UA Client architecture [3]

OPC UA Server
Since an OPC UA server is the center of an OPC UA system, it contains
a complex architecture that is designed to meet all requirements. In
order to be able to understand this model (represented in Figure 3.7) it
is necessary to describe important elementary contents from it in more
detail.
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Figure 3.7. OPC UA Server architecture [4]

• OPC UA Server Application: The Server Application imple-
ments the actual functions of the server. To do this, it uses the
OPC UA Server API to send and receive OPC UA messages to and
from clients. As with the client, this is an internal interface that
separates the communication stack from the server application.

• Real Objects: Real objects are physical or software objects that
can be accessed via the OPC UA Server Application or that are
managed internally by the server itself.

• OPC UA AddressSpace: The address space of an OPC UA
server is one of the most important components of this architec-
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ture. It contains the so-called nodes, that the client can access.
These nodes are representative definitions and indications, refer-
ences, of real objects. Each node is identified with a unique NodeId
and contains a set of Attributes. These attributes are used to
identify, categorize, and name the node, and, despite the exact
attributes of a node depends on its NodeClass, some are common
to all nodes such as the DataType.

• Subscription: This is an endpoint within the server that pub-
lishes notifications to each client. Clients can subscribe to three
different types of data changes: events, variables and aggregated
data. Each data source is represented by a MonitoredItem that
checks value changes according to a predefined sample interval. In
this process, the clients themselves control the publication rate at
which a message is published.

• Variables: Variables are Nodes that contain values. Each con-
taining a DataType that depends on the Variable. A simple variable
consists of a single node containing the current value of the node.
Complex variables can contain child variables.

• Events: Events are punctual occurrences that are received via
subscriptions. Events can be, errors, or address space configuration
changes generated by a node specified as an EventNotifier.

• Read and Write: The nodes are first identified by NodeId in the
address space, from that point on, its Attributes can be accessed
using the Read and Write services. Read and Write will trigger
value change notifications for Nodes with Subscriptions.
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4
A Generic ROS based

Architecture for Mobile
Manipulator Robots

In the factory of the future different kinds of mobile manipulators will
be found. Some might transport heavy loads, others might perform
pick-place operations that demand dexterity or even complex inspection
tasks. However, in spite of their very different uses, they all must face a
number of common challenges such as recognising orders from high-level
logistic systems, recognising their environment for navigation, interact-
ing with the scenario for dexterity tasks or collecting data for both health
and traceability monitoring. Most mobile manipulation applications are
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composed by navigation actions to a target position followed by an spe-
cific task, usually related to the robot manipulation skills. Robots could
therefore share a bunch of common modules, such as a generic state ma-
chine, that, correctly parameterized, triggers domain application specific
abilities that are already available and implemented on the robot. This
chapter presents and analyses relevant industrial mobile manipulators in
order to detect similarities in their hardware and software modules and to
define generic framework requirements for single robot use cases. The
three basic behaviours of mobile manipulators (navigation, perception
and manipulation) are considered, but also other reusable modules such
as monitoring, diagnostic and decision making. Based on the observed
requirements, a generic framework for MMRs is proposed, the so-called
Robotframework. The framework is then evaluated through industrial
and agriculture use cases, which prove both the feasibility and the gen-
erality of Robotframework.

4.1 Requirements for Single Mobile
Manipulator Robots

In order to illustrate the challenges that MMRs must face in different
domains, the following sections present and analyse heterogeneous indus-
trial robots working on different industrial use case scenarios. Namely, a
robot performing navigation and precise pick-place logistic tasks within
the RoboCup@work logistics league (YouBot, as part of the AutonOHM
team from the Tecnische Hochschule Nurnberg) and a robot performing
heavy load transportation for a car manufacturing facility (Autobod).
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4.1.1 Logistics and precise pick-place for the
RoboCup@work and ERL industrial
leagues

RoboCup@Work [99, 231] and the European Robotics League-Industry
[100] are competitions that target the use of robots in work-related sce-
narios, tackling open research challenges on mostly unsolved problems
in robotics, artificial intelligence, and advanced computer science. In
particular, they are mainly interested in perception, path planning and
motion planning, mobile manipulation, planning and scheduling, learning
and adaptability, and probabilistic modelling, to name just a few. The
orders are generated by a central manufacturing system, represented by
the Referee Box, and, in order to complete these tasks, the robot needs
to master skills such as localization, navigation, object detection or ob-
ject manipulation.

The KUKA omni directional mobile platform Youbot in Figure 4.1 has
been used in both competitions. Regarding its hardware, at the end-
effector of the manipulator, a primary Intel RealSense 3D D435 camera
has been mounted for detecting objects. Additionally, a secondary one
has been mounted on the back of the robot for helping with the detection
of forbidden areas on the way. Two laser scanners, one at the front
and one at the back of the YouBot platform, are used for localization,
navigation and obstacle avoidance. The YouBot’s default computer has
been enhanced with a NUC7i7BNH computer for intensive tasks like 3D
point cloud processing. Table 4.1 shows the main hardware specifications
of the robot. The drivers for the robot mobile platform and manipulator
as well as for the sensors like laser scanner or cameras are provided by the
different hardware vendors, and are accessible within the ROS framework
ecosystem.
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Figure 4.1. Customization
of KUKA YouBot platform
for team AutonOHM 2018.

Table 4.1. Hardware Specifications.

PC 1
CPU NUC7i7BNH
RAM 16 GB DDR4
OS Ubuntu 16.04
Gripper
Type 3D printed
Motor Dynamixel AX-12A
Sensors
Lidar Front SICK TiM571
Lidar Back SICK TiM571
3D-cam arm Intel RealSense D435
2D-cam arm Endoscope Cam
3D-cam back Intel RealSense D435

The software modules are composed of a combination of pure-open-
source, customized-open-source and self-developed packages. In fact,
image processing is handled with OpenCV library (2D image process-
ing and object recognition) and PCL (3D image processing). For map-
ping the arena and navigating on it customized gmapping [232] and
navigation-stack [233] ROS-packages have been used. Self-developed
packages include the state machine and different precise navigation, per-
ception and manipulation modules. To perform the transportation logis-
tics, a task planner node processes the high-level orders received from the
Referee Box, calculates the best route considering the maximum trans-
port capacity and distances between the workstations, and generates a
robot-readable set of subtasks that are managed on the state machine.

The main control of the robot is coordinated following the state machine
in Figure 4.2. It starts with an initialization state (Init state) where the
robot receives the map and localizes itself on it. From there, it moves
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to the Idle state and waits for new tasks to perform. The Referee Box
provides the high-level orders which are processed by the Task Planner
node and passed to the state Running, divided into a vector of smaller
subtasks. This state is divided into substates where the Movement,
Grasp, Delivery, Precise delivery and RotatingTable subtasks are man-
aged, as it is depicted in Figure 4.3. Once every subtask is finished it
returns to the Idle state to wait again for new tasks to perform. It is
important to notify failures, such as an unreachable navigation goal or an
unsuccessful grasping of an object, and react to them. Therefore, most
of the states have error handling behaviours (Error state) that manage
recovery actions that imply repeating the action or triggering planning
modifications. Next paragraphs describe how the different subtasks are
accomplished, grouped by type of robotic skill.

Figure 4.2. Global overview of the state machine for the
RoboCup@Work robot control.

Mapping, Localization and Navigation
A very important task when facing a new competition is generating the
map (Figure 4.4) of the working area (Figure 4.5). Mapping is a neces-
sary task that needs to be done at least once, and then be updated every
time the working environment suffers significant structural changes. The
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Figure 4.3. Detail of the substates of the Running state.

map is then loaded by the robot and used to localize itself, to generate
global path planning plans to navigate, and to detect unexpected objects
on the working area to avoid collisions.

For the global navigation (Move substate), the ROS navigation stack
has been used. The localization is based on a Monte Carlo particle filter
algorithm, close to the AMCL (Adaptive Monte Carlo Localization) lo-
calization described in [234]. The algorithm is capable of using two laser
scanners and an omnidirectional movement model which provides useful
positioning with an approximate error of about 6 cm, depending on the
complexity and speed of the actual movement.

For the fine navigation (Fine substate), such as approximation to ser-
vice areas, an approach based on the front laser scanner data and the
RANSAC algorithm [235] is used to detect the workstation in the laser
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Figure 4.4. Map used for navigation.

Figure 4.5. The @Work arena during the RoboCup world cup
in Montreal.

scan. Out of this, the distance and angle relative to the area are com-
puted. Using this information, the robot moves in a constant distance
along the workstation. A mean positioning error of under 3 cm was
achieved during a navigation benchmark tests performed in the Euro-
pean Robotics League local tournament in Milan.

Additionally, yellow/black barrier tapes are semi-randomly placed on the
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floor and used to mark restricted areas during the RoboCup@Work com-
petition. The robot needs to detect them and prevent stepping into the
restricted areas to avoid being penalized with point deduction. The pro-
cess to detect and avoid crossing the barrier tapes is: The Front and Back
Realsense cameras presented in Table 4.1 are used to obtain RGB images
of possible barrier tapes placed on the floor (Figure 4.6-a). These images
are transformed to obtain a top-down or bird-view perspective (Figure
4.6-b). The images are now color filtered and compared with the barrier
tape pattern (Figure 4.6-c). If the barrier tape is detected, the point
cloud information of the image is used to localize its position on the
map, and include it as an obstacle. The local planner will then take it
into account to plan new navigation trajectories that avoid crossing them.

(a) (b) (c)

Figure 4.6. Barrier Tape Detection: (a) Camera image of the barrier
tape; (b) Birdview; (c) Filter for yellow RGB and HSV values and
HU-Moments.

Perception and Manipulation
In case of a Grasp subtask, it is required a stable object recognition (Ob-
jectRecognition substate) that allows to grasp objects reliably (Grasp
substate). For this purpose, the robot performs a Fine Navigation to
a pre-grasp position. Once the mobile base reaches the position, the
arm is extended and positioned above the service area, performing the
object classification task using the RealSense camera as seen in Figure
4.7. The object recognition is performed in three steps: First, the 3D
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camera point cloud is used to segregate the flat points representing the
workstation platform from the objects to be detected; Second, the seg-
mented 3D points are projected to the cameras RGB image and several
vision learning morphological operations are applied to them; Finally, the
features are evaluated and used to classify the available objects on the
RGB image, and to analyse the most appropriate grasping points for the
gripper.

(a) (b) (c)

Figure 4.7. Segmentation mask: (a) The projected point cloud to
cameras RGB image; (b) Filled border and morphological operations;
(c) Classified objects.

Once the desired position is located, the arm is activated, whether for
picking up and storing the object on the robot, or for delivering it (Grasp
substate). The Manipulation module is responsible for the arm and grip-
per control, as well as for the inventory management. The picks are al-
ways performed from a flat surface, while the surface of the placements
can remarkably change. Placing an object on a flat surface (Delivery
substate) is a direct action. Placing it on a shelf, inside a container or
through a cavity requires an additional set of perception and manipula-
tion abilities. The robot must therefore recognize the exact position of
containers (Container Recognition substate) or cavities (Cavity Recog-
nition substate), respectively. For that purpose a container recognition
module has been developed, that detects blue or red boxes (see Figure
4.8). Similarly, a cavity recognition module has been developed in order
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to classify the different holes and precisely deliver an object on it (see
Figure 4.9). Finally, in case the object needs to be placed on a platform
with a shelf, a fixed position and predefined movements are used to avoid
colliding with the shelf, as seen in Figure 4.10.

(a)
(b) (c)

Figure 4.8. Box Detection: (a) RGB image with Blue and red boxes;
(b) Point cloud image (c) Red filtered point cloud and mass center.

Figure 4.9. Precise place-
ment of objects.

Figure 4.10. Placing an object
below the shelf.

Rotating Table
In case of a RotatingTable subtask, the robot first navigates to the ro-
tating turntable and performs a pre-processing step to determine the
rotation velocity of the table and the objects’ position on it (RRT Recog-
nition substate), as seen in Figure 4.11. With the collected data points
of each circular path, a RANSAC-based algorithm [235] calculates the
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rotation speed of the table, its center (blue marked in Figure 4.11-b),
and the radius of each determined path. Having all necessary information
and making use of the previously recorded time stamps, it is possible to
estimate an approximate moment, when each object passes the object
grasping position. To achieve an accurate grasping (Grasp substate), an
additional endoscope RGB camera has been attached on top of the ma-
nipulator. A background change algorithm is now applied to the image
in order to detect the object entrance in the camera view. The previously
calculated circular path velocity is used to close the gripper at the right
moment.

(a) (b)

Figure 4.11. Rotating Turn Table: (a) Robot in front of the rotating
turntable grasping an object; (b) All data points, given by the object
recognition, and the result of the determined circular paths of all
objects on the turntable with different grasp points (red marked).

More detailed information about the robot and the tasks performed by it
are available in the winners papers of the RoboCup@Work World cham-
pionships 2017 and 2018 [97, 236].
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4.1.2 Precise heavy load transportation for a
car manufacturing facility

Currently, load transportation tasks are mostly done either by complex
conveyor belts (highly optimized but expensive systems where even minor
changes require big investment), by guided milk-runs or by the workers
themselves. In the future, mobile robots will be able to navigate the facil-
ity and perform on-demand deliveries of material boxes from the goods
receipt to each station in the production line. Then, they will bring
material from the pre-assembly to assembly lines, and, finally, carry the
finished products to the delivery area. Using mobile robots for heavy
load transportation has several advantages. Firstly, it increases the flex-
ibility of the system by making each entity independent of the rest and,
therefore, making it easier to replace entities in case of failure. Secondly,
extra robots can be added at peak work times and be removed when they
are no longer required. Thirdly, on-demand deliveries lead to a reduction
of the warehouses at the factory (also called supermarkets).

This section presents a particular case of MMR, an autonomous trans-
port vehicle (ATV) prototype for heavy loads transportation in the Bosch
Production System (BPS), whose test area is presented in Figure 4.12.
As well as in the previous section, the robot needs to create a map of the
working area and navigate on it to move from one point to another. The
modules used for this purpose are, as explained in the previous section
based on standard ROS packages, and are therefore ignored here. This
section is focused on the docking manoeuvre problem: the action of ap-
proaching the warehouse areas (the so-called supermarkets) and precisely
entering the zones to load heavy packages on it.

The robot prototype has been developed by Bosch GmbH in cooperation
with Technische Hochschule Nuernberg Georg Simon Ohm. The Bosch
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Figure 4.12. Test area at Bosch Nuremberg: The robot loads material
from the input supermarket (source) and transports them to the work
station (make). Then, the robot takes the finished product to the
output supermarket (deliver).

ATV in Figure 4.13 seeks the development of a flexible transportation
system that is able to work in the existing factories. In order to au-
tonomously carry materials from the source supermarket to machines
and finally to delivery stations, the robot must be able to carry out tasks
such as navigation, obstacle avoidance or precise docking manoeuvres
without the help of environmental markers.

The software architecture is implemented in a Pokini i2 industrial mini-
computer, running on Ubuntu and using ROS as a middleware for the
complete system. ROS packages have been used and improved for cam-
era drivers, path planning, navigation, etc. To generate a map, localize
the robot on it and navigate avoiding obstacles on the way, a safety laser
scanner has been used. More technical specifications of the robot are
shown in table 4.2.
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Figure 4.13. AutoBod proto-
type.

Table 4.2. Platform Specifica-
tions.

Maximum Speed 1 m/s
Accuracy Global
Nav.

+/- 50 mm

Accuracy Docking +/- 10 mm
Payload Capacity 200 kg

Similarly as in the previous Robocup@work use case scenario, the control
of the ATV follows a singleton pattern state machine (see Figure 4.14).
In the initialization state (Init state), the robot receives the map and
localizes itself on it, waiting in the Idle state for new orders to perform.
These high-level orders can be supplied either by a user manually or by a
production system planner. The tasks are processed by the Task planner
node and sent to the state machine, divided into a vector of smaller
subtasks. The Move (M), LoadBox (L), and DeliverBox (D) subtasks
are now managed in the Next state.

This use case focuses on three different docking manoeuvre algorithms to
automatically perform the process of loading and delivering boxes from
material supermarkets. Other important functionalities such as naviga-
tion, monitoring or error management are similarly used as in the previous
RoboCup use case, but not covered in detail here.

The ATV first drives close to the supermarket using the state of-art ROS
localization [237] and navigation modules [233] based on encoders, IMU
and laser scanner sensors (Move state). The global localization has an
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Figure 4.14. State machine for the Autobod robot control.

accuracy of about 5 cm, which is not sufficient to drive under the roller
at which the load is located and performs a precise docking manoeuvre.
By the use of low cost sensors, the robot follows characteristic features
in the docking area such as material boxes, rails or additional lines in
order to accurately move into the supermarket, and pick-up or delivery
the material (Load Box and Delivery Box states). Once the load is lifted,
the ATV leaves the supermarket and it is again localized using the laser
scanner. Below, three different docking manoeuvre approaches making
use of perception, navigation and manipulation abilities are described.

Line following
The line detection approach is a low cost, robust and repeatable method
for the docking manoeuvre. First, a pre-step is necessary to place tape-
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lines with a color that contrast with the color of the floor. The image
obtained from an ultra wide angle RGB camera, directed towards the
floor (see figure 4.15), is processed to detect the line and its orienta-
tion. This information is used to guide the robot and to drive into the
supermarkets. Then, the robot lifts the load and drives out by follow-
ing the line again. In order to avoid external disturbances and obtain a
constantly well distributed illumination, the camera has been integrated
into a housing with low power LEDs. Despite being a robust method, it
is desirable to avoid the markers in the future, thus, other possibilities
have been researched.

(a) (b)

Figure 4.15. Line detection: The camera’s RGB image (a), processed
image including detected line (b).

Box detection
To develop a marker-free fine localization approach, it has been first de-
cided to use one of the most common blue boxes for material carrying
at the Bosch Production Systems as seen in Figure 4.12. To detect and
follow the box, a 3D camera is mounted on the yellow housing of the
robot. The position of the camera allows the detection of the box until
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the roller is above the robot.

Regarding image processing, the floor (figure 4.16, mark 2*) and the
background (figure 4.16, mark 1*) are first detected and removed from
the RGB image. The floor gets extracted by comparing the height values
from the depth sensor’s point cloud to a precalculated lookup table. The
background is removed by analyzing the depth values and erasing pixels
exceeding a certain distance. This first filtering reduces the area in the
RGB image to be processed by the box detection cascade algorithm and
speeds up the process.

Figure 4.16. Drawing of the box detection setup with the Asus Xtion
camera on the robot. Meanings: 1* represents the background; 2*
represents the floor.

To detect the boxes, the OpenCV library’s Haar Feature-based cascade
classifier has been used. The training for the cascade classifier consists
of 900 positive and 1,651 negative examples and 23 training levels.

Since many similar boxes can be found in the supermarket (see figure
4.17), an additional filter is applied to find the correct box. The 2D
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Figure 4.17. Box detection: Asus Xtion camera’s RGB image with
multiple boxes detected.

position information of the classifier is used in order to recognize the
lowest and most centered box in the image. Once the right box has been
recognized, the depth information is used to get the rotation of the box
relative to the position of the camera.

Rail detection
Another approach without the need of additional markers consist on using
the available rails on the supermarkets floor which are mounted perma-
nently. Once the position of the robot relative to the rail is known, it is
possible to control the ATV along the rails, until it reaches the roller for
docking.

For the detection of the rail, a low-cost, laser-based triangulation method
is used. A red line laser (power output 5 mW, opening angle 90 degrees)
is mounted on the left side of the ATV, about 10 cm above the rails,
facing vertically downwards. The camera, a low-cost Raspberry-Pi NoIR
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camera, is attached with a horizontal displacement of 10 cm to the line
laser, facing towards the projected line (see figure 4.18).

Line Laser
Projector

Camera

Rail

ATV

Figure 4.18. Diagrammatic drawing of the mounting of the line laser
projector and the camera on the ATV (side view).

The rollers are mainly guided by one rail (either left or right). In the
prototype setup, a camera and a line laser are mounted sinistrally allow-
ing only docking to left-side-guided rollers. The limited opening angle of
the camera and the line laser prevent a centered attachment to the ATV.

Due to the displacement between the laser line projector and the camera,
different heights of the rail result in shifted pixels in the camera image
(see figure 4.19). As a result, it is possible to determine the position of
the rail relative to the robot.

Figure 4.20-a shows the RGB camera image of the Raspberry Pi NoIR
camera. The edge of the detected rail is shown as a white cross in the
image.

Regarding image processing, the OpenCV library is used. The red laser
line gets extracted from the image using color filtering in HSV (hue,
saturation and value) representation. Noise is removed with the help of
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Camera

Laser Line

Line Laser
Projector

Figure 4.19. Diagrammatic drawing of the line laser projector, the
rail and the camera (3D view).

OpenCV’s functions erode and dilate. The resulting image (see figure
4.20-b) contains the extracted laser line.

(a) (b)

Figure 4.20. Rail detection: (a) Raspberry Pi NoIR camera’s RGB
image; (b) processed image including detected rail.
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Template matching is applied to determine the exact position of the rail
in the image. The template used is visible in figure 4.20-b as the sur-
rounding rectangle. As a result, pixel coordinates of the rail’s edge can
be calculated. Based on this information, it is possible to control the
robot along the rail.

Due to the distinct geometric shape of the rail resulting in a unique im-
age, errors like interfering objects are detected and the robot is stopped.

The proposed approach offers the advantage of being more robust against
sunlight than an infrared-based 3D depth camera. By using a line laser
with a higher power output, the robustness could be further increased.
Furthermore, the solution is remarkably cheaper than the application of
a standard 2D laser scanner (LIDAR).

More detailed information about the robot, its modules and the accuracy
evaluation performed are available in [111].
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4.1.3 Requirements identification

It is possible to glimpse from the previous sections two strong tenden-
cies in nowadays manufacturing. On the one hand there is an increasing
need of developing new robotic applications or using existing ones to
support the development of new technologies. On the other hand, these
solutions consist of a set of co-related mobile, manipulation and per-
ception robotic modules oriented to achieve concrete functionalities. To
build the integration between the different modules, current RFs such
as ROS, provide hardware abstraction and software resources to easy
the set up of their basic functionalities. Available RFs provide drivers,
communication mechanisms, simulators and higher level modules for lo-
calization, navigation, manipulation or perception. However, every time
a new project starts the state machine that builds the logic of the robotic
applications, the relationships between the different robotic modules or
the mechanisms to externally interact with them are mostly built from
scratch.

There is therefore a necessity to build a new robotic architecture that em-
braces high level robot functionalities on top of the already available RFS.
The main requirements of such a robotic system are collected in Table
4.3. The architecture must provide reusable modules that most applica-
tions require. In concrete, it must include navigation abilities to perform
global and and precise navigations (SR1). The architecture must also
provide manipulation abilities to perform specific dexterity tasks such as
precise drilling or inspection operations, or to support operators on the
working space with complex or monotonous tasks (SR2). Additionally, it
must consider perception abilities to detect obstacles on the way, mark-
ers that help localizing itself more precisely, and objects that need to be
inspected or moved from one place to another (SR3).
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The plans generated by high-level decision modules are normally based on
domain expert knowledge and the application context. These plans must
contain enough information for the robot to understand where to go and
which actions to take at each place. It is important to establish a num-
ber of rules and generic key-words to convert complex high-level order
information into robot-comprehensive multidisciplinary plans, increasing
the extensibility of applications domains and the reuse of previously de-
veloped robot abilities, without the need to touch or recompile the core
of the framework (SR4).

Previous experiences have also shown the importance of detecting and
notifying critical errors and warnings on time as well as building strong
recovery behaviours or, ultimately, triggering the complete application
interruption. At the same time, latest digitization technologies should
be used to increase the amount of information available to optimize the
processes, trace the results and prevent future errors (SR5-SR6). During
the development of previous works, it has also become clear that mobile
manipulator related applications are complex and carry a steep learning
curve for new users. To simplify the use of the framework for new and
former users, the architecture must provide an easy-to-use graphical user
interface (GUI) that allows a partial control of the robot application such
as starting, pausing or stopping it on demand, monitor its progress and
present the general system status (SR7).

Finally, when designing and developing a RF it is desirable its adaptabil-
ity to permit the adjustment of previous abilities to new scenarios and
scalability to permit the integration of novel abilities without needing
to change the core architecture. It is important to remark that these
requirements are based on single robot use cases, ignoring the necessity
of building a multi-robot system to coordinate several robots, creating
intelligent collaboration channels or permitting the robot interact with
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other non-robotic industrial systems. These aspects are later considered
in Chapter 5.

Table 4.3: Main System Requirements for a single MMRs.

System
Req.

Description

SR1 The robot can localize itself within the
working space with or without the help of
markers and can autonomously navigate.

SR2 The system must provide precise manip-
ulation capabilities to support dexterity
tasks.

SR3 The system must provide perception capa-
bilities to allow a save and precise naviga-
tion or to enable precise dexterity manipula-
tion and inspection tasks.

SR4 The robot can execute parameterized
high-level orders increasing its adaptabil-
ity to context changes, scalability and reuse
on heterogeneous applications.

SR5 The system must detect and notify criti-
cal errors and warnings, triggering recov-
ery behaviours or, ultimately, the complete
application interruption.

SR6 The system must enhance the factory digi-
tization, logging historical events such as
the route (positions) of the robot, the actions
occurred there and unexpected incidents.

SR7 The system must provide an easy-to-use
GUI to start the application, monitor its
progress and present the general system sta-
tus.
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4.2 Robotframework: a Generic
ROS-based architecture for mobile
manipulator robots

This Section describes the general control architecture proposed in this
work, the so-called Robotframework (see Figure 4.21), which seeks the
easy integration of the different robot functionalities ensuring the system
requirements presented in Table 4.3. It follows a distributed computing
design allowing several tasks to run in different computers while still ap-
pearing to its users as a single coherent system and allowing an easy
extensibility.

ROS is proposed as core communication middleware among the different
modules, as, during the last decade, ROS has become the de facto stan-
dard framework for the development of software in robotics. ROS is a
flexible open-source framework for writing robot software that provides a
collection of communication mechanisms, tools, libraries, and rules that
aim to simplify the task of creating robot software for a wide variety of
robotic platforms. Therefore, being a ROS-based architecture provides
the generality needed to build solutions in different domains.

Robotframework consist of several modules which are grouped in four
abstract layers according to their overall goal within the framework. The
architecture follows a top-down approach in terms of the functionality
covered by modules, from high-level decisions related to the desired plans
depending on the application context, to the low-level drivers fully depen-
dent on the robot used. Layers definition allows not only the separation
of concerns between modules, but also decoupling from each other, for
which the interfaces between them have been also defined.
The upper layer is responsible for generating the plans with the applica-
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Figure 4.21. Four-layer Robotframework control architecture. Mod-
ules represented with turquoise color are common to any application.
Grey modules are standard ROS modules while the rest are applica-
tion specific.
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tion specific targets that the mobile manipulator must address. Targets
are composed of a navigation goal that the mobile manipulator must
reach and the tasks to be executed if necessary. This thesis proposes a
meta-model for the generic definition of these plans, containing all the
necessary information so that the manipulator can navigate to the targets
and execute the necessary tasks. In addition, it is proposed a guideline,
driven by template examples, for the generation of new plans using the
human-readable JSON notation.

The plans passed to the robot, according to said meta-model, are the
mechanism that allows the interaction between layers 1 (Decision Layer)
and 2 (Application Layer). More specifically, the plans are generated in
the Decision Layer, where the domain experts knowledge is, and shelled
in the Application Layer which is in charge of translating that informa-
tion into instructions for modules of the two lower layers closest to the
robot’s intrinsic functionalities and hardware. For its part, the interaction
between layers 2 (Application Layer) and 3 (Drivers Layer) is based on
the implementation of the robot’s abilities in the form of plugins, from
which the robot’s drivers, located in layer 4, are used.

Finally, there are modules whose functionality is transversal to these 4
layers, since they have mechanisms related to the monitoring and diag-
nosis of the actions carried out by the rest of the modules. The gathered
information is used to diagnose the system and trigger the corresponding
recovery actions and saved in data bases, increasing the factory digitiza-
tion and enabling its better understanding and optimization. The infor-
mation is first collected in the edge, processed and then moved to the
cloud.

Therefore, the architecture consists of a generic core, common to all
applications, and custom modules dependant on the application and the
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MMR being used. In concrete, common modules are represented in
turquoise color and include the robot user interface, the robot_manager
in charge of the overall system, the targets_plan_operation_mode in
charge of managing the plans generated in the application layer, the
monitoring, diagnosis and logging modules and some common parts of
the Abilities Layer. The gradient turquoise-gray colour represents the
robot functionalities that are build on top of ROS modules and which
compose the basic but constantly expanding Robotframework abilities.
These abilities are based on state of the art ROS functionalities or newly
developed and tested ones during different projects. Most of them are
now available within the architecture, but it is up to the user to use
them or implement new modules using the available ones as templates.
Modules represented by gray colour are based on pure ROS packages,
such as robot drivers, which depend on the specific robotic components
used. Finally, the high-level decision support modules, represented in
blue, will be subject to the application and dependent on the domain
experts decisions. This modules however, must follow the plan meta-
model rules in order to be understood and executed in the lower layers
of Robotframework.

4.2.1 Decision Layer
The Decision Layer is the upper layer of the Robotframework architec-
ture that contains the modules involved in application related high-level
decisions, which are expressed in terms of plans for the MMR (addressing
the system requirement SR4). In this context, the robot provides services
contracted by higher level management modules, such as an operator or
a MES. These orders are processed, based: on rules defined by domain
expert knowledge, on the current environment state (map or obstacles),
and on information obtained from previous plan executions. For example,
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in the RoboCup use case the Referee Box is in charge of generating the
orders, whereas in the Bosch ATV’s scenario a production system planner
supplies transportation orders. As observed in Figure 4.21, the Decision
Layer consists of one to several Application Domain Task Planner
modules that, based on higher level orders, generate modular and struc-
tured plans for the specific MMR that are then executed and managed
in lower Robotframework layers. This layer also considers situations in
which plans are generated manually, represented by the so-called Man-
ual plans module. Note that task planners vary from one application to
another.

The Decision Layer is also provided with a GUI (Robot GUI module
in Figure 4.21), common for any application. It provides an easy-to-use
user interface that enables partial control of the robot, starting/stopping
specific operation modes, as well as the monitoring of the MMR’s gen-
eral status (fulfilling the system requirement SR7). An operation mode
is the implementation of a specific robot application. The proposed ar-
chitecture is designed to allow implementing new operation modes and
running them in the system without having to touch the core of the
framework. This is achieved using ROS pluginlib, a package that pro-
vides tools for writing and dynamically loading plugins using the ROS
build infrastructure. Not always required in operation modes, a user in-
terface provides interaction between the operation mode and a human
operator, or displays relevant information about an operation mode on a
host PC. Current design allows (optionally) creating a user interface for
the operation mode.

When the user starts an operation mode, the GUI corresponding to the
selected operation mode is shown by the Robot GUI. In this case, the
GUI can be used to load a previously generated plan (by a task planner
or manually), and to activate it, by pushing the button Start as seen
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Figure 4.22. Robot GUI interface to load and start a JSON plan
(left) and the application workflow messages once the plan has been
initialized (right).

in Figure 4.22-left. The plan is then interpreted and executed by the
robot while the GUI displays the current state of the system including
robot-status, task-information, alerts, or the batteries level as shown
in Figure 4.22-right. It is also possible to stop, re run the plan or to
cancel it in any moment, by pushing the cancel button for security or re-
planning reasons. There is also available a button to exit the application.

The Robotframework architecture has been designed to be generic enough
to abstract application dependent modules from the robot specific mod-
ules. This is achieved by proposing a generic language to create plans,
common to all applications, which is defined through the meta-model
depicted in Figure 4.23. The meta-model identifies the elements needed
to specify plans, their attributes and the relations between them.

As it is observed in Figure 4.23, a plan (Plan element) is composed by
targets (Target element) that contain a navigation goal (Navigation el-
ement), to move the robot to a desired position and, if necessary, a set
of tasks to be performed there (Tasks element).
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Figure 4.23. Meta-model for the plans.

The navigation step is usually required but it could be skipped by setting
the navigate attribute to false. If there is a navigation step, it is required
to set the (navigationType attribute) as well as the number of trials for
navigation in case of failure (navigationTrials attribute). Three naviga-
tion types have been distinguished (NavigationTypes enumeration):

1. Natural navigation: given a position of a goal location in the
workspace (TargetPose element; x, y and theta attributes), the
robot can plan a path free of obstacles and generate a continuous
motion to reach that goal, while avoiding any unforeseen obsta-
cle that might appear. To achieve this, the robot has a map of
the environment and the ability to determine its own position and
orientation within the map’s reference frame (frameId attribute of
the TargetPose element).

2. Relative navigation: Given a position relative to the robot’s current
position (TargetPose element; x, y, theta, and frameId attributes),
it generates a continuous motion to reach the goal. The displace-
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ment is measured using odometry information, i.e. wheel encoders
and an inertial measurement unit.

3. Precise navigation: Given a position relative to an artificial mark
(PoseOffset element), it generates a continuous motion to position
the robot with respect to that artificial mark. As feedback, it uses
the information provided by a camera, capable of detecting the
marks using artificial vision techniques.

The proposal allows establishing which actions to take when a navigation
failure occurs, which means that the robot cannot reach the navigation
target, through the NavigationFailure element (addressing SR5). Ev-
ery recovery action (RecoveryAction element) is determined by a name
(name attribute) and the action type to be carried out (type attribute).

Once the robot reaches the navigation target, it might be necessary to
execute one or more tasks (Task element), each of which is character-
ized by its name (name attribute), type (type attribute) and, if needed,
the set of data required to perform it (params attribute). The following
sub-sections will describe in detail the relations between these tasks and
the MMR’s abilities. Similarly to navigation failures, it is also possible to
determine which recovery actions to take in case of a task failure (Task-
Failure element).

The plans are implemented using a JavaScript Object Notation (JSON)
format, which is a very common open standard and language-independent,
that uses human-readable text to store and transmit data objects. For
this, the template depicted in Figure 4.24 is provided, at which the at-
tributes of the meta-model elements are stated following the format:
Element.attribute (in red color). JSON distinguishes two types of ele-
ments, which can be nested interchangeably: arrays and objects. Arrays
are delimited by square brackets, being array elements represented by
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comma-separated values. Objects are delimited by braces, and they rep-
resent lists of name-value pairs, which are separated by commas. The
mane of the pair is enclosed in double quotation marks, and it is sepa-
rated from its value by a colon. Note that the template of Figure 4.24
presents the case of a natural or relative navigation type. In the case of
a precise navigation type, the TargetPose object should be replaced by
PoseOffset and the frameId attribute should be removed.

Figure 4.24. Meta-model based template for plans generation.

107



Chapter 4. A Generic ROS based Architecture for Mobile Manipulator
Robots

When implementing a plan, the JSON file represents the plan itself,
which is defined by an array (enclosed by square brackets). Each target
of the plan is an array element defined as an object (enclosed by braces).
The information related to the navigation goal is indicated by name-value
pairs, where the name is the attribute name and the value must follow
the attribute-type established in the meta-model. The set of tasks to
be performed at the navigation target as well as the set of recovery ac-
tions against navigation or task failures are defined by an array, whose
elements correspond to each of the tasks or actions (objects enclosed by
braces). Again, the information related to each task or recovery action
is indicated by name-value pairs.

Implemented plans, both manually implemented and those generated
by task planners, are passed to the following Application Layer. It is
important to remark that task planners are the responsible for translat-
ing high-level orders into plans that follow the proposed meta-model.
Therefore, it can be concluded that the plan meta-model is the mech-
anism used by Robotframework to abstract the architecture from the
application particularities, being possible to reuse the same framework in
different domains and/or applications, just developing the concrete task
planners.

4.2.2 Application layer
The application layer includes the Robot Manager module, which is
responsible for controlling the overall robotic system, maintaining its
status continuously. In concrete, it is in charge of the following functions:

• Act as the entry point for the modules in the Decision Layer. Mod-
ules in the Decision Layer can interact with the system using the
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API provided by the Robot Manager. This functionality is available
via ROS topics and services.

• Manage the initialisation and stop of the operation modes. When
Robot Manager is run, it loads a set of available operation modes
specified in a configuration file. The API contains methods for ini-
tialising and stopping the loaded operation modes. It is important
to note that only one operation mode can be running at the same
time. Concurrent execution of operation modes is not foreseen in
the proposed architecture.

• Handle diagnostics events. Using the output generated by the
Diagnostics Manager module, the Robot Manager can act accord-
ingly (i.e. decide whether to modify the operation execution flow
or cancel the operation).

This layer also includes the Operation Mode module, which interprets
the high-level plans and implements a specific robotic application. There-
fore, it is aware of the meta-model and implementation format proposed
in the previous subsection, in order to process it to extract the infor-
mation needed to create instructions for the robot. This work presents
the so-called targets plan operation mode, designed to be as general as
possible, easily configurable for a variety of mobile manipulation robotic
processes and, thus, avoiding an ad-hoc implementation which are only
useful for specific workspace configurations. This operation mode is part
of the core of the Robotframework architecture. Figure 4.25 shows the
state machine implemented for this operation mode. It starts in a Wait-
ing state until a new-plan event indicates the beginning of the operation.
The system switches then to Checking next Target state, analysing the
next target in the plan sequence (Target element).

109



Chapter 4. A Generic ROS based Architecture for Mobile Manipulator
Robots

Figure 4.25. State machine representing the operation mode called
targets plan and its navigation, tasks, and error-handling behavior
states.

If the target has a navigation step, its corresponding Navigation element
is processed in the Navigating state, which is responsible for coordinating
the autonomous movements of the MMR. This state has been developed
in a generic way to support different global, relative, and precise naviga-
tion modules, as it will be explained later, which cover all the navigation
types identified in the meta-model. As a consequence, the architecture
permits an easy integration of different navigation modules and provides
the management of their results.

If the navigation is not able to reach the target pose, due to obstacles on
the way or localization problems, this will be notified in the result, two
possible situations are considered. On the one hand, the navigation can
be repeated until the number of trials is finished (information available
on the navigationTrials attribute) or the target pose is reached. On the
other hand, if required, the recovery behavior stated for the Target is
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triggered (NavigationFailure element). Every RecoveryAction is devel-
oped as a plugin and accomplished in the Running Navigation Recovery
Behavior state. If there are no more trials left, meaning the robot failed
to reach the destination, the failure is notified in the Running Navigation
Failure Behavior state, and the tasks to be performed at this point are
skipped, addressing the following Target.

If the navigation finishes correctly, the configured set of tasks (Tasks el-
ement of the plan model) are executed in the Doing Tasks state, whose
execution is detailed in Figure 4.26. A Task is the implementation of
a robots’ specific set of actions. The proposed architecture has been
designed to implement these robotic tasks by using the ROS pluginlib
mechanism. Indeed, tasks are not directly implemented in the Targets
plan operation mode. Instead, the operation mode is designed to allow
loading available, parameterized tasks as plugins, using ROS pluginlib
mechanism. Tasks are implemented in separate shared libraries, and
pluginlib can dynamically load those libraries at runtime and execute
the tasks. There is therefore no need to touch or recompile the core
of the framework. This is useful for reusing the application and pro-
vides a great extendibility to the system. Section 4.3 presents a task
example for an aileron inspection in an industrial context and two task
implementations in the context of precision agriculture for pest detec-
tion and treatment are presented to demonstrate the generalization of
the architecture. These task plugins can be later used as templates and
be adapted for future applications.

It is important to note that the implemented state machine also con-
siders the possibility of failure in the task execution process. In such
case, it provides a way to execute a set of Recovery Actions within the
Running Task Failure Behaviors state. This can be used, for example,
to log the failure in the results, or to notify the operator that something
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Figure 4.26. State machine detailing the execution of the Doing Tasks
state.

went wrong with a beep or light system. Again, those recovery actions
are developed as plugins.

4.2.3 Abilities layer
This layer is composed by the ROS nodes involved in the basic control
functionalities of a robot. These nodes manage the sensor and actu-
ator components, and provide robot capabilities such as autonomous
navigation, manipulation, and inspection. At this level, ROS provides a
wide range of state-of-the-art robotic algorithms, which are integrated
as part of Robotframework: GMaping [232] for generating maps using
data from the on board 2D laser scanners, IMUs and odometry sensors.
The robot position is estimated using the AMCL probabilistic approach.
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This approach uses a particle filter in which each particle corresponds
to an individual map of the environment. It computes an accurate pro-
posal distribution considering not only the movement of the robot but
also the most recent observation. The maps can be manually modified
to include, for instance, forbidden areas for the robot; the Navigation
Stack used in the Navigation State for planning global and local paths,
uses combined 2D laser scanners and IMU sensors to generate the ve-
locity commands for the mobile base while avoiding the obstacles on the
working environment; the Unified Robot Description File (URDF) for
generating a combined robot description; MoveIt! is used for generating
and executing collision free manipulation trajectories in the Doing Tasks
State as it will be later presented in Section 4.3. MoveIt! related tools
can be also used to integrate 3D point cloud based obstacles or useful
simulation tools among other utilities.

The navigation step consists always on several main steps: mapping,
map modification (manually), robot localization and navigation, which
are very well resolved with standard ROS module, addressing SR1 and
SR3 requirements. However, the tasks that need to be performed once
the navigation goal is reached (composed by different manipulation and
perception robotic skills) are very dependant on the application itself,
and require from new modules development. It has been therefore de-
cided to decouple the navigation from the following task execution and
to encapsulate this second task into pluginlibs to maintain a generic
state machine (fulfilling SR2 requirement). The tasks are first devel-
oped including software modules such as vision algorithms for inspection
or object recognition, manipulation strategies that make use of the al-
ready mentioned MoveIt!, and so on. These tasks are then encapsulated
following a plugin template provided by Robotframework which defines:
how to start/stop the task; the information that needs to return during
its execution; and, the information to return once finished. This infor-
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mation should be valid for any task and permits the generalization of the
state machine for a wide range of applications. Similarly, the plugins are
parameterized in order to make them reusable in a wider contexts. The
task is then dynamically loaded and executed at run-time by the state
machine.

Therefore, the entity of the Decision Layer in charge of generating plans
must be aware of the abilities of the robot and the plugins implemented
on it. More precisely, the type of every Task to execute when the naviga-
tion target is reached must correspond to the name of the pluginlib that
implements it. Furthermore, the values of the parameters for the plugins
are also determined trough the params attribute of the Task element in
the plans.

4.2.4 Drivers layer
The drivers layer depends on the robotic platform used within a spe-
cific application. It includes the modules that allow interacting with the
robot sensors and actuators. A benefit of using ROS is the availability
of a wide variety of robotic components drivers (mobile robots, manip-
ulators, cameras, lasers) and the possibility to replace them with similar
ones, while maintaining the core modules. Another benefit is that ROS
drivers are supposed to publish their own diagnostics messages, having
already available the input data for the architectures’ diagnostics module.

For example, the drivers for all the robotic components presented in this
work are available in ROS. From the already presented YouBot platform,
used during the RoboCup competition, or the AutoBod ATV prototype,
developed with Bosch GmbH and used during the docking manoeuvre
tests. Also the platforms that will be later presented: The segway mobile
platform and the iiwa manipulator used to perform both industrial aileron
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inspections and pest inspection tasks; the kobuki platforms used to de-
velop multi-robot task allocation strategies. Also the different drivers for
2D or 3D cameras, 2D laser scanner, IMUS, etc. are available in ROS.

This layer also contains the robot description as a URDF file. Any MMR,
for example, is composed by a mobile base containing differential of
omnidirectional wheels. Coupled to it, laser scanners or cameras are used
to perceive the environment, map it and find possible obstacles on the
way. The manipulator is mounted on top of the mobile platform and it is
usually equipped with cameras to detect the objects to be manipulated,
and with actuators that endow grasping capabilities. The relationships
among these components as well as many other valuable information for
their different software modules are defined within the robots’ URDF
description.

4.2.5 Monitoring Mechanisms
The three modules shown on the left side of Figure 4.21 are available
with the architecture to monitor the functional state of the system. The
Diagnostics module has been designed for collecting and preprocess-
ing specific data from drivers and abilities layers, which are then passed
to the Diagnostics Manager module for automatic decision making
and incidents notification, fulfilling system requirement SR5. These two
modules must be adapted to the application on demand.

The Logging module permits saving different log messages to all the
layers in the architecture. The logs are used to record historical track of
the process, ensuring SR6, and can either be stored locally in the robot
or, in case of having an internet connection, in the cloud. The data stor-
age and management system is built upon open source platforms and it
is prepared to store and manage data coming from several robots as seen
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in Figure 4.27. In concrete, a Docker container has been created which
already includes all these open source platforms installed and configured
ready to use, making it easy and consistent to deploy and portable on
any operating system.

Figure 4.27. Monitoring tools for data storage and visualization.

The logger module of each robot generates a JSON file for each message
being logged. This JSON file contains a robot unique identifier, times-
tamp of the message, and the message data, which can be classified
in four levels: DEBUG, INFO, WARNING and ERROR. The generated
JSON files are sent to a queue, in which messages are inserted and re-
moved according to first-in first-out (FIFO) rule. The selected queue
technology follows the publish/subscribe messaging pattern. In a pub-
lish/subscribe messaging pattern, any message published to a topic is
immediately received by all the subscribers to the topic. Publish/sub-
scribe messaging pattern provides greater network scalability and a more
dynamic network topology.
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For message storage, databases of both relational and non-relational
types can be subscribed to the queue, depending on the interests and
needs. On the one hand, a relational database is a type of database
that stores and provides access to data points that are related to one
another, making it easy to establish the relationships among data points.
Here, MySQL is being used: an open source relational database man-
agement system compatible with all major operating systems, that is
written in C and C++. MySQL is a secure relational database man-
agement system that consists of a solid data security layer that protects
sensitive data. On the other hand, non-relational databases allow flex-
ible schemes and they do not require relations between objects. Here,
Elasticsearch is being used: an open source distributed search engine,
usually used for log analytics and full-text search. Elasticsearch is a fast
search engine that quickly finds any text search in huge data-sets. Any
information that does not require strict data integrity can be stored in a
non-relational database, being its main advantage its fast performance
retrieving information, especially when dealing with high amount of data.

Finally, all information can be visualized using a web dashboard creator
tool. This type of user interface tools helps users to easily create and
edit dashboards. Here, the open source dashboard tools Grafana or
Kibana can be used, which work with Graphite, ElasticSearch, InfluxDB,
MySQL, and more data sources. It helps users to easily create and edit
dashboards. An example of a web dashboard using Grafana is shown in
Figure 4.28
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Figure 4.28. Example of a web dashboard created with Grafana.
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4.3 Robotframework validations
This section is devoted to the validation of the proposed architecture, in
terms of its usability and generalisation capacity. For this, the same ma-
nipulator robot has been adapted to be used in two different use cases:
1) an industrial use case where a single MMR performs a precise aileron
inspection task using an ultrasonic sensor; 2) a non industrial use case at
which the MMR is equipped with pest inspection and treatment tools.
Apart from being representative enough to prove the generalisation ca-
pacity of the framework, these use cases are also useful to introduce
future application developments. In concrete, this section presents the
key configuration changes required to reuse the real-time data collection
tools, diagnosis and error handling modules or user interface in order
to reduce the time required to develop new mobile manipulation appli-
cations. It will also demonstrate how to create new plugings for novel
tasks by using the available ones as templates, and how to extend the
navigation capabilities as well as the recovery behaviours, if required.

4.3.1 Setup and Configure Robortframework
The current section provides a guide with the most relevant steps to
setup a new robot using Robotframework, deploy available infrastructure
for diagnostics or logging, and modify the most relevant configuration
files. As commented above, the color palette used in Figure 4.21 informs
about the customization possibilities of the the main architecture mod-
ules. The turquoise components are provided by the architecture, but
they may require slight configuration changes. Some of these modules
can also be used as templates to develop new customized ones. The
gray components are ROS standard packages or modules developed in
previous projects. These packages can be directly reused or modified on
demand, depending on the application requirements. The modules on
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the Abilities Layer are most likely developed using pluginlibs. Lastly, the
blue colored Task Planner modules are closely related to the application
and are developed in close collaboration with domain experts.

4.3.1.1 Robot setup

On the one hand, each robotic platform needs its drivers for the platform
and the sensors that it carries. There are several ROS-enabled robots.
If a robot is not supported to be run in ROS, it will be necessary to
implement its corresponding ROS driver. There are also several robotic
sensors that are supported by official ROS packages, and many more
supported by the ROS community. On the other hand, the robot needs
to offer the following ROS services which are used by the Robot Manager
module:

• /start_robot (messages of type std_srvs::Trigger). This service
is called to start the robot. This is where the robot should perform
tasks like enable the motors and check system components status.

• /stop_robot (messages of type std_srvs::Trigger). This service is
called to stop the robot when the system exits from an operation
mode. This is where the robot should perform tasks like stop and
disable the motors.

• /notify_status (messages of type std_srvs::SetBool). This service
is called when the system wants to notify that it is ready to enter
an operation mode, or the operation mode starts. This is where
the robot should perform tasks like show a light code, beep a sound
or even talk.
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4.3.1.2 Robotframework setup

Once the robot is setup, it is time for integrating the application spe-
cific modules and preparing the ROS launchfiles to start the system.
The robot_bringup package contains configuration files to launch Robot-
framework. These configuration files have to be edited to add robot
specific nodes and suit it to application needs:

• Platform configuration: The robot_bringup/launch/platf
orm/robot.launch file is edited to add specific platform ROS
driver nodes. If the added node accepts parameters, it is necessary
to state them through a YAML file in the robot/bringup/laun
ch/platform/config/ directory, and load them from the launch
file, using the rosparam tag.

• Sensors configuration: Specific sensors ROS driver nodes are
added by editing the robot_bringup/launch/sensors/robot
_sensors.launch file. Again, parameters should be defined into
YAML files in the robot_bringup/launch/sensors/config
directory, and load them from the launch file using the rosparam
tag.

• Logger configuration: The logger configuration parameters are
set in the file robot_bringup/launch/logger/config/logge
r_parameters.yaml. These are the parameters available for the
Logger:

– buffer_size (int, default:1000): The size of the internal cir-
cular buffer used to store the log messages before being sent.

– robot (string, default: "my_robot"): The name of the robot.
This information is included in each logged message.

– project (int, default: 0): The project number. This info is
included in each logged message.
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– send_period (double, default: 1.0): The rate at which mes-
sages are sent to the log server (in seconds).

– max_log_file_size (int, default: 1000000): Maximum log
file size before rotating.

– log_to_file (bool, default: true): Whether or not to save
logs to file.

– log_location (string, default: ""): Path in which log files
will be created.

– rabbitmq_heartbeat (int, default: 10): Heartbeat timeout
value in seconds to ensure that the application layer promptly
finds out about disrupted connections.

– hostname (string, default: "52.47.176.128"): The host name
of the log server. It is possible to set the name or IP address
of an existing log server, or to deploy the log server locally
(and set this value to localhost).

• Operation mode configuration: The Robot Manager module is
the responsible for loading the operation modes at system startup.
Robotframework provides the here presented targets_plan_o
peration_mode which is reusable for a wide range of mobile
manipulation applications. However, if other operation modes are
needed, they have to be added to the robot_bringup/launch/m
anager/config/modes.yaml file.

• GUI configuration: Parameters for the Robot GUI module are
located in the robot_bringup/launch/gui/config/gui_para
meters.yaml file. This file can be used to set the GUI width or
height, to visualize a custom logo on it, or to change the update
rate or thresholds of specific information being shown on it (e.g.
batery_level, robot_status).
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4.3.1.3 Create a new task plugin

As commented above, the proposed architecture is designed to allow im-
plementing new robot tasks that make use of the robot abilities without
having to touch the core of the framework. This is achieved by using
ROS pluginlib, a package that provides tools for writing and dynamically
loading plugins using the ROS build infrastructure. New tasks, both
application specific tasks and recovery behaviour tasks, must be imple-
mented using C++ programming language following the steps bellow:

• Create a new package for the task that depends on ROS plugin-
lib and the op_mode_targets_plan package delivered with Robot-
framework.

• Create a new class that inherits from op_mode_targets_plan::TasK.
This class will have to implement three main functions:

– initialize(): Called initially when loading the plugin. Cre-
ates the TaskAction that defines interaction with the State
machine in Figure 4.25.

– initParams(): Parses the parameters defined in the plan
when loading the plugin. This modifies the behaviour of the
Task.

– executeCB(): Coordinates the calls and results with the
robot abilities in order to execute the task.

• Create a new TaskName_plugin.xml file. This file is used by the
ROS ecosystem to acknowledge the availability of the plugin and
permit loading this peace of code dynamically when needed.

In the following sections three different task plugins are presented. These
plugins are available with Robotframework and can be used as templates
to create new customize ones:
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• Croinspect-inspection-task: Focused on airplane inspection through
an ultrasonic sensor.

• Greenpatrol-inspection-task: Focused on finding plagues on
tomato plants.

• Greenpatrol-treatment-task: Focused on treating the plagues
by precisely spraying pesticide.

4.3.1.4 Deploying the Diagnostics architecture

The hardware based diagnostics are done using the ROS standard diag-
nostics mechanism. The core of the diagnostic system is the reporting
mechanism. Reporting is carried out by message publication on the topic
/diagnostics using the diagnostic_msgs/DiagnosticArray data type. Ev-
ery ROS hardware driver node is responsible for publishing the following
data:

• Component name: This is the name of the component in the
system.

• Operational level: Three levels of functionality are defined:

– OK: Everything is running as expected.
– Warn: There is an unexpected behaviour that should be

resolved and may affect operation.
– Error: There is a problem that should be fixed; the compo-

nent cannot be relied upon to operate correctly.

• Hardware id: If applicable, this identifies the specific hardware
running.

• Hardware specific data: Hardware specific data captured in
string key value pairs.
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4.3.1.5 Deploying the Log architecture

An internal log architecture for Robotframework is already available in
the cloud hosted in Amazon Web Services (AWS). However, the Log
architecture can be easily deployed in any PC as it is available as a set of
open source Docker containers. A DockerFile containing the configura-
tion for several docker images with elasticsearch, grafana, rabittmq and
a a few extra configuration steps are the only requirements to deploy a
personal database and to start recording desired data from the robot.

Step-by-step tutorials are available at Tekniker’s personal Gitlab reposi-
tories.

4.3.2 CRO-INSPECT: an industrial aileron
inspection use case

Highly integrated composite parts are superior to metals in terms of
weight-specific stiffness and strength. The aerospace sector tries to ex-
ploit these advantages in order to reduce the structural weight and, as
a consequence, to reduce the fuel consumption, leading to operational
costs reduction. However, the inherent complex structure of these com-
posites makes more difficult its inspection activities. Currently, most
inspections are performed manually, leading to two main disadvantages:
an excessive amount of time and the possibility of potential safety failures
due to human errors. It is therefore necessary the development of more
flexible, more reliable and faster Non Destructive Solutions (NDS). To
overcome these issues, Ultrasonic Testing (UT) techniques have demon-
strated to be a suitable NDS solution for the inspection of large and
hidden composite areas. Also, the automation of inspection processes
has been envisioned as a strategic solution. The integration of robotics
in manufacturing lines has proved improvements in process reliability,
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reduction of manufacturing times and, therefore, costs. Nevertheless,
many industrial operations cannot be fully automated at a reasonable
cost. In such a case, human-robot cooperation may be the most cost-
efficient and productive solution.

This is precisely the scope of the CRO-INSPECT European project [238].
The project seeks the development of a sound aircraft inspection solution
with enhanced robotic capabilities, using advanced UT techniques. The
proposed flexible robotic assistant solution helps operators to carry out
faster and more reliable inspections of complex composite parts, such
as low access areas or large areas. One main goal within the project is
the development of a mobile manipulator assistant robot, equipped with
force and ultrasonic sensors that offers flexible aileron inspection services
within different areas in the factory.

To achieve these goals, the robotic solution must integrate navigation,
manipulation, and perception abilities while following the high-level in-
structions from a production management system or by individual op-
erators that require their help. Apart from generic tasks, such as the
global and precise navigation tasks to reach the area where the aileron is
located, an aileron inspection task must also be integrated together with
the monitoring and visualization of the obtained data or the generation
of alerts to inform the operator about important events. This robotic
solution has been developed based on the proposed Robotframework, as
it is depicted in Figure 4.29.

Next subsections illustrate how the Robotframework has been adapted to
cover the needs of the CRO-INSPECT project as well as how the aileron
inspection tasks are carried out within the scope of the project.
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Figure 4.29. Robotframework architecture customized to the CRO-
INSPECT use case.

4.3.2.1 Drivers Layer

The Drivers Layer includes the modules that allow interacting with the
robot platform sensors and actuators. An overview of the specific robotic
system used for validation purposes is shown in Figure 4.30.
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The mobile platform consists on the Segway RMP 440 Omni Flex [239]
with mecanum wheels. The platform is equipped with an on-board PC,
a Velodyne 3D laser scanner [240] for obstacle detection and two OS32C
safety laser scanners [241] for obstacle detection, mapping and navi-
gation. A KUKA LBR iiwa manipulator [242] has been mounted on
the middle-left-side of the platform to allow inspecting the Aileron with
an ultrasonic sensor. The inspection system consists of an IDS RGB
2D camera [243] for precisely referencing the robot with respect to the
aileron and the UT sensing Rollscan shown in Figure 4.31.

Figure 4.30. Mobile platform.
Figure 4.31. NDT Rollscan
and 2D camera.
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4.3.2.2 Decision Layer

The robotic inspection of complex composite parts involves that a MMR
(with all corresponding hardware components such as cameras, laser
scanners, manipulator, etc.) freely navigates through an industrial workspace
to position in front of an aileron using the global navigation. The global
navigation needs to be corrected to precisely position in front of the
aileron with an accuracy under 1 cm using markers. Then, the robot is
ready to perform the aileron inspection task, making use of force sensors
and an ultrasonic inspection tool.

This Robotframework instance must consider the creation of aileron in-
spection plans, its execution, monitoring and error handling while pre-
cisely orchestrating the different modules taking part on the process.

The aircraft flap inspection strategy is defined through inspection plans
that are manually generated by an operator. This fact is represented
in Figure 4.29 by the Aileron Inspection Strategies module. Figure 4.32
represents a visual example of a plan that an operator could define, where
the workspace at which the mobile manipulator navigates is represented
as a sequence of six target positions. Additionally, at the targets marked
as red points ( T2, T4 and T6), the mobile manipulator has also to per-
form inspection operations, by using the robotic arm with the ultrasonic
equipment. The blue rectangles represent artificial markers that are used
to position the mobile robot precisely with respect to the aircraft flap.
The generated plan is then loaded on the robot using Robotframework’s
GUI which permits the initialization of the plan and a continuous moni-
toring of its execution status.

The plans are generated based on domain knowledge and the distribution
of the map of the different ailerons and robots, following the meta-model
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Figure 4.32. The CRO-INSPECT aircraft inspection operation rep-
resented as a sequence of targets.

and by using the JSON notation format presented in Section 4.2. List
4.1 presents the piece of the plan implementation corresponding to the
three first steps [T1-T3] of the aircraft inspection operation presented
in Figure 4.32. The plan begins with a Natural navigation (navigation-
Type 1) to get close to the aircraft flap to start with the inspection
operation (T1). Second, to perform the inspection task the robot must
improve its position to locate itself in front of the aileron, using the
markers-based Precise navigation (navigationType 3). Once the robot is
correctly positioned, it can start with the inspection strategy, developed
as the CroinspectInspectionTaskPlugin, using the manipulator force sen-
sors and an ultrasonic inspection tool. These two steps are presented
together as T2. Third, due to the extended length of the aileron and the
reachability constrains of the robot arm to inspect the complete aileron
at once, it is necessary to perform an additional relative navigation (nav-
igationType 2) to reach a further aileron section (T3). The rest of the
target positions (not shown in the example) are achieved by repeating
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actions similar to T2 and T3, until the complete aileron is inspected.
These robot abilities are later explained.

Listing 4.1: Example of a simple CRO-INSPECT Inspection Plan.
1 [
2 {
3 " navigate ": true,
4 " navigationType ": 1,
5 " navigationTrials ": 3,
6 " targetPose ": {
7 " frameId ": "map",
8 "x": 12.5,
9 "y": 25.46,

10 "theta": 1.57
11 }
12 },
13 {
14 " navigate ": true,
15 " navigationType ": 3,
16 " navigationTrials ": 2,
17 " poseOffset ": {
18 "x": 0.015,
19 "y": -0.95,
20 "theta": 3.102
21 },
22 "tasks": [
23 {
24 "name": " inspection ",
25 "type": " croinspect_inspection_task ::

CroinspectInspectionTaskPlugin ",
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26 }
27 ]
28 },
29 {
30 " navigate ": true,
31 " navigationType ": 2,
32 " navigationTrials ": 2,
33 " targetPose ": {
34 " frameId ": "map",
35 "x": 1.0,
36 "y": -0.2,
37 "theta": 0.0
38 }
39 }
40 ]

4.3.2.3 Application Layer

The operation mode used in this application corresponds to the generic
one described in Figure 4.25: the so-called targets_plan_operation_mode.
The operation mode executes the plan generated in the higher decision
level described before, parsing its indications and ensuring the different
configuration specifications.

For the example defined in List 4.1, the robot will therefore perform a
global navigation first to approach the inspection area. This is defined by
the navigationType 1, which contains the x, y and theta coordinates in
the map. If it fails, it will retry the navigation three times as specified in
the plan. Note that in this example, there is no recovery action defined
for navigation failures. Once it reaches the aileron zone it performs a
more precise navigation approach to the aileron (this time having two
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trials for it). In this case, the x, y and theta values correspond to the
maximum relative offset error from the robot to the marker position,
that the precise navigation module must ensure. After being precisely
located in front of the aileron, the robot performs the main application
task as defined in the CroinspectInspectionTaskPlugin. The last two ac-
tivities are then repeated until the complete aileron has been inspected.
In this case, the task functionality together with its recovery behaviours
is entirely outsourced to the specific plugin, described in the following
subsection. Therefore, no task failures are explicitly specified in the plan.

Although this use case is a very simple example, as it will be presented in
the next validation use case, the plan may contain additional parameters
that make the framework more flexible for complex manipulation tasks
that require more detailed configuration changes.

4.3.2.4 Abilities Layer

To successfully perform the above presented application, the robot must
present the following main abilities: create a map of the working envi-
ronment; localize itself on it; navigate to the working area in which the
aileron is located; perform a precise docking manoeuvre to let the plat-
form, and specially the arm, referenced and with a proper reachability to
the aileron; and, finally, perform the NDT inspection. Next paragraphs
describe how these abilities are achieved withing the customized Robot-
framework architecture.

Localization & Navigation
To generate a virtual representation of the environment, the robot uses a
process called SLAM (Simultaneous Localization and Mapping) to build
the map while trying to localize itself on it. The experiments have demon-
strated that poor mapping leads directly to an unstable pose estimation,
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so, it must be done carefully limiting the velocities and accelerations of
the platform, specially the rotational ones. In addition, during this pro-
cedure the robot is teleoperated and the expertise shows that creating
a good map can be the most time-consuming task, but there are some
general recommendations: Avoid rough movements, as they difficult the
scan-matching; Drive some more meters to get plenty overlap between
the start and the end of the loop. This improves the loop closure, which
is the process of overcoming the drift accumulated in the robot trajectory
over time; Visualize what the robot captures with the laser, to avoid loss
of relevant information.

Once a reliable map is built and based on the information obtained from
the sensors, the robot can estimate its pose with respect to a known
reference frame. For that estimation the AMCL probabilistic approach
is used. This approach uses a particle filter in which each particle cor-
responds to an individual map of the environment. It computes an ac-
curate proposal distribution considering not only the movement of the
robot but also the most recent observation. Nevertheless, although the
robot tracks and updates its position and orientation autonomously dur-
ing navigation, the localization must be known on start-up, giving it
externally or setting a specific initial pose on the map.

Now, the Natural navigation available with Robotframework can be used
to autonomously navigate through the working area. Autonomous navi-
gation refers to the capability of going from one point to another without
any external support, which includes the abilities of path planning, trajec-
tory tracking and obstacle avoidance. The navigation system divides the
ground of the map in cells, getting the corresponding grid-map. This al-
lows a more efficient path planning and obstacle avoidance. Accordingly,
it operates in the discrete space with the consequent loss of information.
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The map in Figure 4.33-left is represented as a grid cell where each cell
(pixel) depicts if that area is occupied (high value) or not (low value).
Apart from that, obstacles also have an inflation radius. This means that
the cells around the object have values between occupied and free, their
cost is reduced gradually. The meaning of the colors is the following:
The white rectangle is the robot and the green line the global path that
it follows; Black color represents the obstacles recorded in the static map
itself; The blue and red areas show the inflation radius of the obstacles;
The yellow points correspond what the lasers are acquiring.

Figure 4.33. CRO-INSPECT testing-area map used by the global
navigation module to reach the working zone where the aileron is
located (left). Closer view of the referencing of the robot to the
aileron with the help of markers and a 2D camera on board (right).

The planner uses the inflation radius to avoid driving close to the ob-
stacles if there is a safer alternative. When an obstacle appears in the
middle of the current navigation path, the system uses first the local
planner to try to avoid it. If the algorithm takes too much time or cal-
culates paths with distances above a threshold, it is the global planner
which takes the control and recalculate a new global navigation path. If
there is no other way to reach the specified goal, the system aborts the
process, notifies it and waits until a next goal is received.
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For the precise approach to the aileron, some markers have been located
along the base of the aileron and a 2D Camera has been integrated to the
mobile base as seen in Figure 4.33-right. For the calibration plates loca-
tion, a vision system has been developed which generates as an output
the pose (translation and rotation) of the centre of the sheet regarding
to the camera. These markers are then tracked by the Robotframework
Precise navigation as references and used to improve the robot position
in front of the aileron with an accuracy under 1 cm. Both navigation
types have been exhaustively tested, comparing different algorithms’ lim-
itations and capabilities in [244]. The main results will be summarized
in the experiments section.

Manipulation: Aileron Inspection Strategy
Once the robot is precisely positioned in front of the aileron, the inspec-
tion strategy takes place, which has been developed as a plugin and repre-
sents standalone integration cases within the architecture presented here:
the so-called croinspect_inspection_task::CroinspectInspectionTask Plu-
gin.

The force control-based aileron inspection task inspects a rectangular
pattern along the x axis of the aileron, based on the use of a mobile
robot and NDT system. For that purpose, the inspection strategy is di-
vided in two main tasks as seen in Figure 4.34: First a marker detection
attached on the aileron for precisely referencing the robotic arm with the
aileron. Second, the rastering shape trajectory execution for the aileron
inspection.

On the one hand, the fact that the manipulator is located on top of a
mobile platform carries the uncertainty of knowing how the manipulator
is positioned with respect to the aileron. The autonomous navigation
accumulates a positioning error of some centimetres and although the
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Figure 4.34. Aileron Inspection strategy workflow.

deviation is compensated with the precise positioning process based on
vision techniques, the robot doesn’t locate always exactly at the same
point. Therefore, executing a referencing strategy is mandatory in order
to absorb the remaining error.

The Find Marker referencing consists in moving the robot to a position
where the calibration plate is within the field of view of the on-board
camera. The same marker detection module used for referencing the
mobile platform is now used to obtain the Fcaltab-in-camera frame in Figure
4.35, with the peculiarity that the arm is much more precise in position-
ing, reaching an accuracy of millimetres instead of centimetres.

The trajectory for the ultrasonic test inspection of the aileron is a raster
trajectory that is defined offline as a set of points. Each point corre-
sponds to a cartesian pose composed by: X, Y, Z translation axis and
rotation angles, with a ZYX rotation order. These trajectory is here
referenced to the markers as Ftraj-in-caltab frame and represented as the
green trajectory. As these positions are referenced with respect to the
coordinate origin of the aileron in the CAD model, they must be trans-
formed to the IIWA robot base, which is represented in Figure 4.35. The
Fcamera-in-robot_base frame is fixed and available on the robot_description.

On the other hand, the Aileron Inspection state is in charge of executing
the rastering pattern trajectory. The marker referencing is used over each
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Figure 4.35. Trajectory in robot base frame.

point of the trajectory, the last transformation is applied, and the robot
starts moving to that point with the impedance control mode activated.
While the arm is moving along the aileron surface following the inspec-
tion trajectory, the NDT sensor is recording each measured data. In case
that an attenuation is detected in the ultrasounds signal, lower than the
configured threshold, the system generates an alarm signal. This signal
is connected directly to one of the inputs of the robot, and when it is
activated, the robot stops and starts a rescanning process in the current
point. This procedure allows checking if the signal loss has been due to
a deviation of the tool or because of a real defect in the aileron.

4.3.2.5 CRO-INSPECT Experiments

This section presents a summary of the validation tests performed in the
context of the European project CRO-INSPECT within the simulated
and real working environments. More detailed tests can be found in the
official deliverables of the project or in the extensive navigation tests ar-
ticle in [244]. The aim of the here presented tests is the assessment of
the following features: first, the correct integration of Robotframework
with the different robotic modules; second, successful execution of global
navigation, accurate navigation and inspection abilities using JSON for-

138



4.3. Robotframework validations

mat plans; third, the logging capabilities of the system to generate data;
finally, the verification of the system requirements proposed in Table
4.3. Every application execution has been performed using JSON format
plans similar to the ones shown in List 4.1.

In order to calculate the best position of the KUKA LBR iiwa robot arm, a
Gazebo simulation tool was used. This tool allows to find the best height
and position of the arm with regard to the chassis of the Segway mobile
platform choosing different positions and checking the reachability and
capability of achieving an inspection trajectory. Figure 4.36 shows the
Segway Flex Omni robot with the arm in a selected position for the test,
the aileron as well as the structure to attach it. The simulation has also
been used to test preliminary global and precise navigation, and also to
see the manoeuvrability of the arm to perform the aileron inspection tra-
jectory. The simulation allows the deployment of the architecture and all
of its modules within a safe environment, but unfortunately the physics
are not yet the most reliable ones so the results for timings, forces, ac-
celerations, etc. obtained here cannot be taken into account.

To evaluate the accuracy of the mobile platform in the real scenario a
laser tracker has been used. A laser tracker is an external unit that mea-
sures distances with micro metric accuracy. The pose estimation of the
robot’s localization algorithm is tracked while its real position is saved
with the laser tracker, and afterwards both data are associated based on
their timestamp.

For the evaluation tests, the robot starts in a big workshop and navigates
to a laboratory next to it, passing through a narrow entrance and travel-
ling approximately 20 m to its destination. To proceed with the precise
navigation, the robot must finish its trajectory inside an area where the
camera can detect the marker. Statistical values obtained from the anal-
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Figure 4.36. CRO-INSPECT mobile manipulator during simulation
(left) and real (right) scenario experiments.

ysis of global navigation tests show an average deviation of under 0.2 m
in translation and 2◦ in rotation. Then, the marker is detected, and the
precise navigation positioning is executed. In 25 experiments the robot,
starting from different points, corrects its position using the marker as
reference. Thanks to the vision system the robot can reach the goal
accurately, with a tolerance of 20 mm in x, 3 mm in y, and 0.28◦ (0.002
rad) in rotation (set by software due to the limitations of the control of
the platform itself). In all tests, a mean error of 217 mm is achieved with
a standard deviation of 104 mm and a minimum improvement of 68 mm.

Finally, Table 4.4 presents the timing required for each step to inspect
a 2.1 m of the aileron. In summary, the complete process takes 16
minutes and 32 seconds. However, this value can change depending on
some factors related with the navigation process. During the autonomous
navigation, the localization of the robot has a direct effect in the global
navigation. If it is well located the movements are smother and faster.
The obstacles that the robot may encounter on the way also have an
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important impact on the performance. During the precise positioning,
depending on the deviation from the goal and the number of corrections
needed, the required time can vary. The inspection process has resulted
to be quite static as less external disturbances are encountered during
the process resulting on a stable avarage time of 45 s per each 0.1 m.

Table 4.4: Performance of NDT aileron inspection process with a
mobile manipulator.

Task Duration
Global Navigation (8 m) 32 s
Precise Navigation 3 s
Aileron Inspection (1 m) 451 s
Relative Navigation (1.5 m) 6.5 s
Precise Navigation 2.5 s
Aileron Inspection (1.1 m) 497 s

4.3.2.6 CRO-INSPECT conclusions

Robotframework has been partially built in the context of CRO-INSPECT,
considering its generalisation as a main goal in order to be reusable for fu-
ture projects that require mobile manipulation robotic capabilities. It has
been used here as a first time being able to test a bunch of characteristics
of Robotframework and also to develop new ones proving its extendibility.

The high-level parametrized plans have been generated considering the
working space map distribution and domain expert knowledge for the
aileron inspection strategy. The plans follow the meta-model and its
corresponding JSON notation introduced in the previous section (SR4),
and the Robotframework GUI is used for starting the plan and visualiz-
ing system status (SR7). The plans contain natural, precise and relative
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navigation tasks that are not only useful in the context of the current
project, but will be reusable for future ones. The plans also contains an
application specific task integrated as pluginlib. In this case, the aileron
inspection makes use of a camera, force sensor and a NDT ultrasonic
sensor. The main Robotframework state machine presented in the Appli-
cation Layer of the previous section needed no change in order to execute
these plans. It is expected that this state machine will not require any
change also for future projects, due to the generalisation and extedibil-
ity characteristics taken into account during its development. Historical
events have been logged to obtain metrics such as the position of the
robot or the results obtained from the NDT inspection sensor. This in-
formation has been manually used to monitor the correct performance
of the system and detect incidents (SR6), but in the future this should
be an automatic process integrated in the cloud.

The Abilities Layer is usually the most customizable layer. The abilities
that the robot mus exhibit differ from one application to another. In this
project, the robot has validated the following abilities: create an static
map in which it will later localize itself based on board laser scanner,
IMU and odometry data (SR1); the Robotframework global navigation
ability has been integrated and a new marker-based Precise Navigation
has been developed and tested (SR2). The precise navigation has been
integrated in Robotframework and is expected to be useful for future
projects where higher positioning accuracy is necessary. The main per-
ception abilities (SR3) consist on: laser scanner data, for localization
and obstacle detection purposes; the marker detection module, which
has been used first for the precise navigation and then reused for the
arm referencing with respect to the aileron. Finally, an aileron inspection
ability based on force and ultrasonic sensors has been developed and in-
tegrated as pluginlib, which is expected to be less reusable in the future
as it is very application specific. This will be done and proved in the
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following use case.

The simulation tests have been used to validate the following key points:
the positioning of the arm on top of the mobile platform ensuring an op-
timal reachability to the aileron; The integration of Robotframework with
navigation and manipulation modules using the plans; a first instance of
the precise navigation module in a safe and controlled environment.

The real scenario tests have been used to validate the complete execu-
tion of an aileron inspection plan. The performed tests have shown that
the global navigation is able to reach an average accuracy of 20 cm.
This accuracy can be enhance up to the 0.5 cm using the markers-based
precise navigation. Also timings have been presented of how much time
takes to perform each one of the tasks to carry out a complete aileron
inspection task. It has been measured a total time of 16 minutes and
32 seconds to inspect an aileron of 2.10 m long, and starting the mobile
platform at a distance of 11 m away from the aileron.
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4.3.3 Greenpatrol: an agricultural pest
inspection and treatment use case

The European agriculture land surface is decreasing due to deforesta-
tion and urbanization while population continues increasing. In order to
achieve a more sustainable business model, protect the crops from ad-
verse weather conditions and control the temperature and water of the
plant, the greenhouse production is continuously growing during the last
decade. However, the presence of warm, humidity conditions and abun-
dant food under protected structures provide favourable habitats for pest
development, being this the main threat to production and productivity
of greenhouse crops worldwide. Digital farming can help through sen-
sors, robotics and data analysis to automatically maintain and monitor
greenhouses, making cropping system smart and, thus, enhancing the
agricultural productivity. In this context, the combination of different
robotic skills is necessary to perform early pest detection. The challenge
here is to detect and eradicate insects in their early eggs state, which
can measure as less as 0.3 mm. For this purpose, advance perception
and dexterity skills need to be merged to automatically obtain close and
good quality pictures of the pests from different sides of the leaves. The
information obtained must be processed to generate efficient high-level
instructions to command the robot according to an Integrated Pest Man-
agement (IPM) system.

In this context, Robotframework has been customized to integrate the
navigation, manipulation, and perception abilities, while following the
high-level instructions from an IPM decision support system for early
pest detection and treatment in greenhouses. The use of Robotframe-
work to obtain the architecture in Figure 4.37 has remarkably reduced
the development time required to perform ROS-based field robotic ex-
periments due to efficient reuse of common modules across projects and

144



4.3. Robotframework validations

robot platforms. To demonstrate the easy integration and the benefits of
combining different robotic skills within the architecture, flexible manip-
ulation strategies to enhance pest detection and targeted spraying have
been developed. Finally, to evaluate the obtained architecture, several
tests in simulated and field commercial greenhouses have been performed
in the context of the European GreenPatrol project [245].

Figure 4.37. Robotframework architecture customized for the Green-
patrol use case.
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Next subsections describe how this customization and experiments have
been carried out.

4.3.3.1 Drivers Layer

An overview of the specific robotic system used for validation purposes
is shown in Figure 4.38.

Figure 4.38. GreenPatrol robotic platform, entering the greenhouse.

The mobile platform consists on the Segway RMP 440 Omni Flex [239]
with mecanum wheels to improve mobility in greenhouse narrow corri-
dors. The platform is equipped with an on-board PC, a Velodyne 3D
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laser scanner [240] , for obstacle detection and two OS32C safety laser
scanners [241], for obstacle detection, mapping and navigation. The ab-
solute localization unit consists of a multi-constellation, GNSS receiver,
IMU and odometry. A KUKA LBR iiwa manipulator [242] has been
mounted on the middle of the platform to allow inspecting the leaves on
the right and left sides. The vision system consists of a 3D RealSense
camera [246], for leaves positions, and an IDS RGB autofocus camera
[243], to acquire good quality pictures of the pests, as seen in Figure
4.39.

Figure 4.39. GreenPatrol pest inspection and treatment tools,
mounted at the robot arms end-effector. 3D and RGB-autofocus
cameras for perceptions tasks, and sprayer for pest treatment tasks.

4.3.3.2 Decision Layer

For the current application, an IPM strategy generates pest scouting and
treatment plans based on domain expert knowledge, crops distribution in
the greenhouse and information obtained from previous plan executions
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as seen in Figure 4.37 (Scouting & treatment IPM strategies, Domain
expert knowledge, Map & crop distribution, and Scouting database mod-
ules, respectively). The graphical representation of an example plan for
the current application can be seen in Figure 4.40, where the robot must
navigate to four different greenhouse zones and perform there a pest
inspection task.

Figure 4.40. Representation of an IPM pest inspection plan composed
by four targets, consisting each one on a navigation task and a pest
inspection task.

The plans are implemented following the meta-model described in the
previous section, by using the proposed JSON format, allowing naviga-
tion and application specific tasks based on the pluginlib concept. The
parameterization of the plan tasks provides the IPM strategy with a high
reconfigurability to define, for example, the zones to be inspected or the
amount of pesticide to use, depending on the infection level of the plant.

On the one hand, the pest inspection process can be defined as the ac-
curate image acquisition process on different plant zones (namely high,
middle and low). The obtained pictures are transferred to the cloud once
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this process is finished, in order to be processed. The pest distribution
results obtained from this process are used to generate new inspection
and treatment plans, as later shown in the inspection manipulation strat-
egy section.

An example of a simple inspection plan is shown in Listing 4.2. The
robot navigates first to an specific area defined by the x, y and theta co-
ordinates of the greenhouse, using a global navigation (navigation type
1). Once there, it performs a pest inspection task on different plant
heights and leaf zones (plant_height and row_side parameters, respec-
tively). Furthermore, the id_inspection and date parameters are used to
link the inspection results to an specific plan and simplify, this way, the
traceability on the automatically generated logs.

Listing 4.2: Simple Greenpatrol inspection plan.
1 [
2 {
3 " navigate ": true,
4 " navigationType ": 1,
5 " navigationTrials ": 3,
6 " targetPose ": {
7 " frameId ": "map",
8 "x": 12.0,
9 "y": 3.0,

10 "theta": 1.5708
11 },
12 "tasks": [
13 {
14 "name": " inspection ",
15 "type": " greenpatrol_inspection_task ::

GreenpatrolInspectionTaskPlugin "
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16 "params": " high_up ; high_bottom ; middle_up ;
middle_bottom ;low_up; low_bottom ;
plant_height :1.5; row_side :right;
id_inspection :45;date:2020-09-25"

17

18 }
19 ]
20 }
21 ]

On the other hand, the pest treatment process can be defined as the
precise spraying of pesticide on different plant zones (namely high, middle
and low), being the pesticide spraying dose at each plant determined by
the IPM strategy (dosage parameter). An example of a simple pest
treatment plan is shown in Listing 4.3. In this case, the robot navigates
first to an specific area defined by the x, y and theta coordinates on the
greenhouse, using a global navigation (navigation type 1). Once there,
it performs a pest spraying task on different plant heights and leaf zones
(plant_height and row_side parameters, respectively). The id_treatment
and date parameters are again used to link the pest treatment results to
the specific plans.

Listing 4.3: Simple Greenpatrol pest treatment plan.
1 [
2 {
3 " navigate ": true,
4 " navigationType ": 1,
5 " navigationTrials ": 3,
6 " targetPose ": {
7 " frameId ": "map",
8 "x": 12.0,
9 "y": 3.0,
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10 "theta": 1.5708
11 },
12 "tasks": [
13 {
14 "name": " spraying ",
15 "type": " greenpatrol_spraying_task ::

GreenpatrolSprayingTaskPlugin ",
16 "params": " high_up ; high_bottom ; middle_up ;

middle_bottom ;low_up; low_bottom ;
plant_height :1.5; row_side :right;dosage
:0.5; id_treatment :10;date:2020-09-25",

17 " taskFailureBehaviors ": [
18 {
19 "name": "

greenpatrol_navigation_failure_
behavior ",

20 "type": " op_mode_targets_plan ::
GreenpatrolNavFailureBehavior
Plugin"

21 }
22 ]
23 }
24 ]
25 }
26 ]

4.3.3.3 Application layer

This layer is kept the same as in the previous CRO-INSPECT use case.
Due to the criticality of the satellite-based localization in greenhouses
to reach a position accurately, it has been necessary to include an addi-
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tional feature in the navigation stack to provide information about the
localization quality.

In case of a remarkable localization quality loss, the greenpatrol_navigation
_recovery_behaviour is triggered. This behaviour consists in sending the
robot to a well-known greenhouse position where the localization signal is
known to be strong, and retrying from there the previous navigation goal.

A second recovery behaviour triggered could be also implemented when,
despite having a proper localization signal, the robot does not reach the
destination with enough accuracy. This can happen because a slightly
better localization is needed, or because there are obstacles on the way
that the navigation module cannot overcome. In both cases, the recov-
ery behaviour consists of waiting for a predefined time still, while playing
an advertisement sound. The sound notifies the operators in the vicin-
ity about the current robot state and, if necessary, about the need of
removing the obstacle on the way.

4.3.3.4 Abilities layer

There are several challenges for developing a robotic system able to
perform autonomous and continuous monitoring in greenhouses for the
detection, identification and control of pests. As shown in Figure 4.41,
the plants grow remarkably during the growing season affecting: (1) the
localization and navigation systems, because of a constant change of the
environment and the narrowing of the corridors; (2) the manipulation
strategy, as the arm needs to approach the leaves to obtain good quality
pictures while avoiding damaging the crops; and (3) the vision modules,
dealing with changes in illumination and focus distance.

Localization & Navigation
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Figure 4.41. Tomato crop greenhouse evolution at the beginning (left
side) and at the end of the season (right side).

At this level, ROS provides a wide range of state-of-the-art robotic al-
gorithms:

• GMaping [232], for generating maps using the on board 2D laser
scanners. The maps can be manually modified to include, for
instance, forbidden areas for the robot.

• Navigation Stack, used in the Navigation State for planning global
and local paths. It uses combined 2D laser scanners and satellite
based localization to generate the velocity commands for the mo-
bile base, while avoiding the obstacles on the unstructured green-
house environment.

• URDF, for generating a combined robot description as presented
in Figure 4.42.

• MoveIt!, used for generating and executing collision free manipu-
lation trajectories in the Doing Tasks state as it will be later pre-
sented. MoveIt! tools can be also used to integrate 3D point cloud
based obstacles or useful simulation tools, among other utilities.

On top of them, several additional nodes have been developed. To ensure
the system requirement SR1 and freely navigate within the greenhouse,
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Figure 4.42. GreenPatrol robot description in ROS-visualization
RViz. It presents the main platform components (mobile platform,
arm, sensor...) and the transformation links between them.

the localization module benefits from the multiple signal frequencies and
the higher accuracy provided by the European Global Navigation Satellite
System (EGNSS) of the Galileo constellation, as explained in [77]. The
navigation, then, consists of the previously presented global navigation
type with configuration changes to adapt it to the greenhouse terrain.
The system requirement SR3 is achieved using a deep learning model for
detecting the most harmful pests in greenhouse tomato crops: Bemisia
Tabaci, Tuta Absoluta and Whitefly [247]. In addition, a leaf detection
deep learning model has been implemented to safely and accurately de-
tect and approach individual leaves by using a 3D camera. Then, closer
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and high resolution pictures of the pests are taken as presented hereun-
der, answering to system requirement SR2.

Once the mobile platform navigates in front of the target plant, the
robotic arm mounted on the middle-top of the mobile platform performs
the corresponding pest inspection or treatment task, on right and left
sides of the platform. This section presents the strategies taken and the
execution workflow for each manipulation task. The tasks have been
developed as plugins and represent standalone integration cases within
the architecture presented here.

Manipulation & Perception: Pest Detection Strategy
In the developed pest inspection task, the plant zones to be inspected
and the number of pictures that need to be taken at each zone are
determined by the Pest Monitoring Index (PMI), as shown in Table 4.5
and in Figure 4.43. Lower and darker zones tend to provide more suitable
habitats for the pests, resulting on a higher number of pictures required.
As an example, in the high-up zone (PMI6), the robot must inspect
leaves above 1m and requires two pictures to be taken, while in the
middle-bottom zone (PMI2), the robot must inspect leaves in between
0.5 m and 1 m and requires 4 pictures to be taken.

Table 4.5: Pest Monitoring Index for defining the number of pictures
to take at each plant zone.

PMI 1 2 3 4 5 6
N°of Photos 5 4 3 3 3 2

The manipulation strategy for pest detection consists of the workflow
defined in Figure 4.44. First, the arm is moved to the next inspection
zone. Second, the leaf detector model and the RGBD image are used to
find leaves’ poses. If no leaf is found, the arm is moved to the following
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Figure 4.43. PMI values related to a tomato plant inspection with
the GreenPatrol robot facing the plant at its high-up zone in Gazebo
simulation.

inspection zone. Third, the arm approaches the leaves found in the pre-
vious step and takes closer pictures of them, using the RGB autofocus
camera. An algorithm determines the quality of the picture. If the qual-
ity is not good enough, the arm makes a predefined small movement,
and takes a new picture from there. This process is repeated until all
required plant zones have been inspected.

The pictures taken in this process are saved locally and then sent to the
cloud in order to be analysed by the Deep Learning (DL) model to iden-
tify infection areas in the greenhouse. The Scouting & treatment IPM
strategies module uses these results along with additional information
such as the current harvest season conditions, the working area size, the
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size of the plant or legal aspects on pesticides on the working country.
As a result, new inspection and treatment plans can be generated.

Figure 4.44. Workflow of the manipulation strategy for pest detec-
tion.

Manipulation & Perception: Pest Treatment Strategy
The manipulation strategy followed in the developed pest treatment task
is represented by the workflow of Figure 4.45. First, the arm is moved
to the next spraying zone. Second, the sprayer is activated and in or-
der to cover the whole plant zone, the manipulator performs small and
controlled movements until the complete dose has been sprayed. This
process is repeated until all required plant zones have been sprayed.

Figure 4.45. Workflow of the manipulation strategy for the pest
treatment.

4.3.3.5 Monitoring

The log data is saved in non-relational databases and can be accessed
through elastic-search queries as seen in the Kibana user interface pre-
sented in Figure 4.46 (up) marked in red. First, the time frame at which
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the test was performed must be defined. To filter the logs and search
for specific information, queries can be done to the database. The dash-
board can also be configured to make automatic queries of desired sensor
or execution results and present them in different chart forms. Finally,
Grafana could also have been used seamlessly instead of Kibana.

Figure 4.46. Log queries visualized in the elastic search Kibana user
interface for the here presented semirandom pest inspection test (up
side). The graphs present timing metrics obtained from navigation
and inspection tasks during the scouting (down -left side) and spray-
ing (down-right side) plans execution.

158



4.3. Robotframework validations

4.3.3.6 Greenpatrol Experiments

This section presents the validation tests performed within the simulated
and real greenhouses, of 52x30 m and 31 corridors between plants . The
aim of these tests has been the assessment of the following features:
1) the correct integration of Robotframework with the different robotic
modules; 2) successful execution of pest inspection and treatment plans;
3) the logging capabilities of the system to generate and use the col-
lected data; and 4) the system requirements proposed in Table 4.3.

Greenhouse simulation tests
Gazebo simulator [202] has been used to simulate the crops, the robot
sensory information (laser, images...), the physics involved (collisions,
inertia...) and the localization data (global coordinates, errors...). The
leaves, despite realistic, do not perfectly represent the real world and do
not contain insects on them. Thus, a simulated vision module for leaf
detection provides their position. Also, the images used for validating
the pest detection and identification modules are semi-randomly acquired
from our custom dataset of labelled images (a set not used for training
the model), with infected and healthy images. The same software as in
the real scenario has been used.

The simulation test presented consists of the following steps. Firstly,
an IPM algorithm generates a new semi random scouting plan, which is
presented in Figure 4.47 (up). It bases on the greenhouse dimensions,
which in this case corresponds to 31 rows (R1-R31) in the horizontal axis
and 6 vertical zones that, in turn, consist of a bunch of plants. More
precisely, this plan consists of 120 targets to be performed in the zones
marked in blue. These targets contain navigation steps together with
inspection tasks. While the plan is executed, the log messages are gen-
erated and sent to the cloud through the Logger module. The results
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Figure 4.47. Representation of the greenhouse inspected/sprayed
zones during the different simulation test-steps: Initial Semirandom
Scouting Plan (up); Scouting Results representing the infected and
healthy zones (middle); Spraying Plan generated for infected zones
(down).

obtained from the analysed data are presented in Figure 4.47 (middle),
where the green color represents the healthy zones and the red color the
infected ones. From these results, the IPM algorithm can generate a new
spraying plan with 80 targets, as seen in Figure 4.47 (down). Similarly,
the plan is executed, the results are logged, and the results are analysed
again.

The graphs in Figure 4.46 present timing metrics obtained from the ex-
ecution of these inspection (down-left) and spraying (down-right) plans.
The observed navigation time peaks occur when moving from one row
to another. Smaller navigation times reflect the movements to plants
nearby. We could, for example, capture the exact moment at which the
robot failed to reach a destination after aborting the maximum number
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of trials (Navigation Trials 3 aborted. Run FailureBehaviour, as shown in
Figure 4.46 up). When a navigation fails, the following task is not per-
formed, resulting on 119 successful inspection and a single task skipped
during the scouting plan execution. Also, minimum, maximum, or aver-
age times for the different navigation, inspection, or spraying tasks can
be easily obtained to analyse the system performance. The total sim-
ulation task time is 1h and 40min for the semi-random scouting plan
execution, 2h and 24min for image analysis, and 47min for spraying plan
execution, resulting on 4h and 51min test.

On the other hand, 1547 pictures were acquired and processed dur-
ing the test, resulting on a 98.25% of the greenhouse being pest-free
(green zones) and a 1.75% being infected (red zones). As the leaves
positioning detection and image acquisition modules are simulated, the
arm movements are controlled, resulting on all inspection tasks success.
Similarly, the spraying manipulation strategy is based on prefixed arm
movements, and these movements are therefore always successful. The
semi-randomly acquired pictures could be used to partially validate the
pest detection and identification module, allowing the IPM module to
generate new spraying and treatment plans based on these results.

Finally, it is interesting to remark that logs are available as long as the
databases are maintained, allowing to analyse information ex-post. This
enhances the traceability capabilities by, for example, allowing to include
new required queries not overseen before.

Greenhouse field tests
The objective of the field tests is to ensure the integration of the robot
manipulation and perception modules within the architecture in real op-
erational conditions. The robot shown in Figure 4.38 replaces the sim-
ulated one and the leaves detection and pest inspection DL models are
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included. The rest of the software remains the same as in the simula-
tion tests. To check the integration of robot manipulation, inspection,
and spraying functionalities two different tests-sets have been performed.

The first tests-set consists of executing simple scouting plans for in-
specting the high zone of plants, on the right and on the left sides of the
robot. As explained above, the robot navigates to a plant, finds tomato
leaves’ poses and approaches them to take good-quality and closer pic-
tures. According to the Pest Monitoring Index in Table 4.6, the robot
should take 5 pictures in total, 2 from above the leaves (PMI6) and 3
from bellow them (PMI3). The robot is teleoperated to the next plant
and the process is repeated 28 times, resulting in the acquisition of 140
pictures.

Table 4.6: Acquired number of images and causes of missed pictures.

Desired number of pictures 140
Missed pictures during Find Leaves step 38
Missed pictures during the Take Closer Picture
step

27

Total acquired healthy pictures 64
Total acquired infected pictures 11

The log data is again used to obtain different metrics, similarly as in the
previous test. The total valid number of pictures acquired depends on
the number of leaves found during the FindLeavesStep in Figure 4.44.
Most of the times plenty of leaves are found as seen in the Table 4.7 row
1. However, bad illumination or closeness to leaves may cause that not
enough leaves are found as seen in Table 4.7 row 2. In that case, the
subsequent closer approach to leaf cannot take place. Among the closer
acquired pictures, several have not enough quality and are not valid for
the pest detection and identification model. This quality is measured

162



4.3. Robotframework validations

through different parameters such as blur, noise, and distortions of dif-
ferent intensities. Finally, the remaining good quality pictures are offline
post-processed in order to detect and identify Whitefly insects and Tuta
Absoluta damaged areas on the leaves (see Table 4.7 row 3).

Table 4.7: Image acquisition results acquired during the greenhouse
field inspection tests.

Successfully found leaves.

Illumination changes (left) and
closeness (right) challenges.

Successful White Fly (left) and
Tuta Absoluta damage (right) detection.
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4.3.3.7 Greenpatrol conclusions

The Greenpatrol use case has extended the Robotframework functional-
ities, including an automatic transfer of the generated log to the cloud
using non relational databases. This information has been used to make
queries and generate new plans, based on the results from previous plan
executions. All generated historical logs are now constantly available on
the cloud to perform system optimisations and promote the continuous
improvement.

The greenhouse simulation tests have validated the following key points:

• The generation of pest inspection and treatment plans by the IPM.

• The integration of Robotframework with navigation and manipu-
lation modules.

• The execution of the plans generated by IPM (SR1, SR2 and SR4).

• The proper notification and continuation of the plan when a navi-
gation fails (SR5).

• The manipulation strategies workflow for pest inspection and treat-
ment tasks.

The greenhouse field tests have been used to validate the execution of
simple pest inspection and treatment plans on robot’s right and left
sides, using the real perception modules and spraying equipment (fulfill-
ing, also, SR2, SR3 and SR4).

In both cases the following additional validations have been carried out:

• Use of the GUI for starting the plan, visualizing system status
(SR7), and pausing, stopping or restarting the plan on demand.
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• Storage of logs in the cloud and subsequent use of the logs to
obtain metrics, monitor the correct performance of the system and
detect incidents (SR6).

Regarding application specific issues, valuable observations have been ob-
tained from the greenhouse field tests.First, the number of movements
and pictures to be acquired depends on the number of leaves found. In
the real scenario, this depends on the leaf detector module which has
faced the following challenges: closeness to leaves reduces the camera
field of view and therefore the number of detected leaves; changes in the
illumination also reduces the number of detected leaves. Therefore, the
leaf detector DL model should be retrained with closer images, perspec-
tives, and illuminations in greenhouse environment.

Second, it was observed that most pictures analysed during the tests
where healthy images despite some more plants where actually infected.
It should be possible to increase the probabilities of acquiring infected
leaves pictures by including a Single Shot Detector (SSD) real time pest
detector model. This model could be combined with the current leaf
detector model to approach the most probable leaves with pests first. In
addition, some pictures had not enough quality and were not valid for
the pest detection model. In the future the quality threshold must be
increased.

In summary, greenhouse simulation and field tests have been performed
to validate the architecture. It should be mentioned that, although a
single simulation test has been presented here, more than 60 hours of
simulation have been carried out during the validation of the GreenPatrol
project. The field tests have been used to evaluate manipulation, leaves
detection and pest identification functionalities in addition to observing
limitations of the current robotic platform. The project’s youtube chan-
nel [239] contains audiovisual material presenting the robot during the
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simulated and greenhouse validation tests, the user interface and the
achievements reached during this almost 3 years project. Robotframe-
work has certainly reduced the time to build the here presented pest
detection and treatment application.
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4.4 Chapter Summary

The Robotframework architecture presents an innovative, efficient and
easy to use solution that facilitates the development of robotic applica-
tions belonging to different domains. Specifically, Robotframework al-
lows the seamless integration of high-level decision systems, which gener-
ate the application-dependent plans, with low-level robot abilities, which
are related to the robot drivers. The architecture also includes additional
logging, monitoring and error handling modules and an intuitive GUI to
control the robot and monitor its general status.

The architecture has been designed to be generic and not limited to a
concrete application. For this, Robotframework is based on ROS, and
follows a modular design that together with the meta-model and JSON
format, proposed for plans generation, as well as the pluginlibs design
concept, used for tasks development, make Robotframework easy to be
reused in other contexts, without needing to change the main core of
the architecture.

The proposal for plans generation assures a unified, generic and technology-
agnostic way of defining robotic applications. Additionally, the state ma-
chine presented in the Application Layer is common for all applications,
but the parametrizable plan generation and execution methods makes
it highly adaptable and extensible for new applications. From the abili-
ties point of view, on the one hand, most common global, relative and
precise navigation functionalities are already provided by the framework
core and can be used on demand. In concrete, the architecture core
supports three different types of navigation modes, which can be used
as a template, to be adapted or enhanced with newer functionalities.
On the other hand, new tasks can be implemented by using the ROS
pluginlib concept, without needing to touch the core of the framework.
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In fact, three different mobile manipulation tasks have been presented in
the form of plugins, which can be again used as template for new appli-
cations. In addition, the available framework infrastructure with reusable
and tested GUI, logging or application management modules will signif-
icantly reduce the time to build up a new robotic prototype with similar
requirements.

Initially, Robotframework has been built upon the needs and require-
ments collected from different industrial MMR projects and then vali-
dated, first with an industrial aileron inspection use case, and after with
a pest inspection and treatment use case, showing its general purpose
and re-usability potential.

The previous tests have shown how different tasks for pest detection and
treatment can share navigation functionalities thanks to the architec-
tures’ modular design based on plugins. During the tests only the first
navigation type available in the presented framework has been used being
10 cm accuracy sufficient for a greenhouse navigation solution. Some
applications such as a precise drilling or inspection operations, require
global navigation to be supported by a more accurate precise navigation.
For these cases, Robotframework supports the possibility to use rela-
tive and/or precise navigation to enhance the manoeuvrability and robot
platform’s positioning accuracy.

In conclusion, the use of Robotframework can significantly reduce the
time to build up new MMR applications for other agriculture or industry
related tasks, or even any other domain. Figure 4.48 presents a summary
of the already integrated applications with Robotframework and how the
previously introduced applications could be integrated with it.

However, as we have seen in Chapter 2, most RFs have initially been de-
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veloped thinking on single robot operations, being ROS no exception to
it. Most frameworks lack of mechanisms that would enhance the multi-
robot socialization capabilities and it is, therefore, difficult to integrate
the robots within a flexible manufacturing system. Also, decentralized
control and intercommunication with other non-robotics CPPS are chal-
lenges that need to be addressed.
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5
Integration of the ATV

in the Agent based
Flexible Manufacturing

While traditional manufacturing processes have been focused on fixed
production lines to reduce costs, nowadays manufacturing needs to be
more flexible in order to produce customized products with shorter life cy-
cles. Modern manufacturing has become more modular and distributed,
transferring the control to self-organized modules that grant flexibility
and improve the adaptability to market demanding changes. This lim-
its the top management layer to high-level strategical goals definition
and supervision of the factory, rather than the control of the complete
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top-down system. Each entity in the factory (machine, robot, operator,
product, etc.) can be represented as an individual agent with social ca-
pabilities, that is able to make decisions based on its local perception and
the interaction with other agents. These heterogeneous CPSs commu-
nicate with each other collecting and analysing information, increasing
their autonomy, decision making, flexibility and efficiency to resolve prob-
lems in complex-uncontrolled industrial environments.

In this context, the MMR is one of the key enablers of the factory of
the future. As seen in Figure 5.1, MMRs offer flexible transportation
services to intelligent machines that manage their own material handling
from/to warehouses, enabling the quick and cost adequate reconfigura-
bility of the production and, therefore, increasing the flexibility and scal-
ability of the overall manufacturing system. Figure 5.1 also shows how
robots are interconnected with their environment allowing to book free
charging stations during the time that are not transporting goods. One
of the main benefits is that production orders do not need to follow a
determined assembly sequence since the MMRs can perform unplanned
or on demand deliveries, e.g., to bring an unfinished product from a
broken machine to another one that has some free operation time on
its schedule. To command these robots, several RFs such as ROS have
appeared to facilitate the development of robotics by offering informa-
tion ontologies, robotics algorithms, introspection and simulation tools
among others. They usually offer modular solutions to common hardware
and functional problems which must be combined and extended for dif-
ferent applications. However, the state-of-the-art reflects a lack of social
capabilities among their intrinsic characteristics. Thus, it is necessary to
develop new generic interaction mechanisms for integrating autonomous
and intelligent MMRs within the flexible manufacturing systems.

While Chapter 4 has presented Robotframework, a generic robotic archi-
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Figure 5.1. The factory layout contains the following components:
source and delivery warehouses (bottom left/top right corners); in-
terim storages and charging stations (on the sides); working stations
with production machines (center and right side); MMRs spread all
over the factory.

tecture that facilitates the integration of single-robot capabilities, this
chapter focuses on the problematic of multi-robot decision making, and
the decentralized interaction among robots and other non-robotic man-
ufacturing entities. The system needs to benefit from latest standards
and technologies to embrace multi-robot problematic such as coordinat-
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ing several robots, creating intelligent collaboration channels or allowing
the robot to interact with other non-robotic industrial systems. The
development of these social abilities should benefit the transportation
robots as well as any other entity in the production system, enabling
the required flexibility, fast reaction to anomalous situations and, finally,
leading to the minimum production downtime.

While general requirements related to multi-robot systems have already
been referred in the existing literature in Chapter 2, the specific require-
ments related to the socialization of MMRs with their environment in a
flexible manufacturing process are yet to be defined. To that end, a list
of more specific requirements (SR) related to the MMR and its social-
ization abilities have been identified as shown in Table 5.1.

Table 5.1: System Requirements (SR) for the integration of an MMR
in a flexible manufacturing process.

System
Req.

Description

SR1 Offer transportation services.
SR2 Give efficient responses to service requests.
SR3 Notify significant events at a social level.
SR4 Allow reactivity through online service tuning.
SR5 Communicate with any type of CPPS.

With regard to SR1, the MMR services must be published and made
available to other entities. Negotiating capabilities are required to reach
agreements with other MMRs during task allocation process. SR2 comes
from the need of being ready to socialize, while abstracting this duty from
low-level, robot-dependent functional tasks. As for SR3, event manage-
ment mechanisms are needed to notify MMR state changes that may
affect other CPSs in the manufacturing environment, e.g., if its bat-
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tery level is low, the MMR must stop offering services until recharged.
Regarding SR4, the MMR functionality must be adaptable to context
changes, e.g., it must reduce the maximum navigation speed in presence
of human operators or while navigating in restricted areas. Finally, SR5
indicates the MMR must be capable of interacting not only with other
MMRs, but also with other heterogeneous, non-robotic CPSs in the fac-
tory, e.g., machines demanding transportation services.

This chapter is organized as follow. First, a decentralized architecture
for a flexible manufacturing system with focus on the integration of
the MMRs is presented. The heterogeneous production entities taking
part in the distributed manufacturing control system are identified and
the communication mechanisms that enable the interaction among them
are defined. Second, the evaluation of the developed social abilities for
robots and its integration on the flexible manufacturing is performed
through simulation tools and a fleet of low cost Kobuki robots. Here,
different communication protocols and frameworks have been integrated
to perform the synergy between the MMRs and the heterogeneous man-
ufacturing agents: a pure ROS communication; the de-facto industrial
standard OPC UA; and a MAS technology based on JADE framework.

5.1 Decentralized architecture for a
Flexible Manufacturing System
based on MMRs

This section presents a decentralized control architecture for a flexible
manufacturing system with three main layers as seen in Figure 5.2:

• The strategical layer contains high level components that offer
Infrastructure Services, as defined by RAMI 4.0, to support the
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interaction with and between I4.0 Components.

• The operational layer contains resource agents that interact with
each other based on their Application Relevant Services, as defined
by RAMI 4.0, to compose manufacturing applications.

• The communication layer is implemented by a middleware that
allows the interaction among heterogeneous agents.

Figure 5.2. Decentralized control architecture for a flexible manufac-
turing system.

5.1.1 Strategical layer
The strategical layer is responsible for long term operations and moni-
toring of the overall system. It defines strategical goals based on market
requirements or incoming sales orders (e.g. manufacturing of a certain
product in predefined quantity). From a technical point of view, this
layer provides interoperability between the I4.0 Components in a I4.0
system, manages the operation of the production by tracking registered
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agents and performed tasks, and monitors events happened during the
manufacturing process, triggering the required replenishments.

In order to ensure the required autonomy and modularization, the classic
hierarchical control structure is replaced by a hybrid decentralized struc-
ture. This narrows this management control layer to a global strategical
planning and supervision of the factory, rather than the control of the
complete system. This layer is composed of the following agents:

System Repository Agent
It is unique in the system (although it can be replicated). It is responsible
for managing the System Repository, which contains essential informa-
tion about all the I4.0 Components running in the system. Thus, it
holds the whole state of the system, keeping track of available resources
at run-time, services offered, state of the manufacturing resources, orders
being manufactured, etc. The System Repository Agent is responsible
for providing the AAS Infrastructure Services as defined by RAMI 4.0.
it works as a yellow pages directory by updating this information every
time a significant change occurs and supplying information to the rest
of agents in the system, when required (this functionality corresponds
to the AAS Exposure and Discovery Services as defined by RAMI 4.0).
It also acts as a historical database, saving historical data for learning,
forecasting and helps building a more intelligent factory.

Planner Agent
The Planner Agent acts as an interface to the MES, which sets produc-
tion goals based on incoming sales. These goals are, in turn, transformed
into a manufacturing plan which is then transmitted to the respective
machines providing all data (e.g. bills of material (BoM), CAD-/CAM-
data, etc.) necessary to fulfil these goals. Considering this data, the
machines calculate the necessary amount of material. It should be noted
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that he Planner Agent does not control the organization of the agents in
the operational layer, but supervise them and interacts with them only
if there is a change in the global plans or if an error event is detected.
In these cases, the corresponding replanning is performed.

Monitor Agent
These agents are in charge of continuously collecting general system in-
formation, presenting the current state of the factory to operators and
generating event alerts when necessary. This information must contain
an overall view of the factory with the most valuable information about
the agents registered in the system and the activities performed. The
operator can trigger specific information queries to obtain the current
state of a product, machine or robot. Also, the monitored information
could be used by customers to track the progress of their orders. It also
saves historical data for learning, forecasting and to help building a more
intelligent factory in the future.

Event Manager Agent
It deals with confirming the faults detected by system agents, updating
the repository indicating said faults, and managing the error according
to what is established in the application. All events must be tracked in
historical databases. New events are taken into account to trigger new
plan generations, or to notify the agents in the operational layer to take
the corresponding actions.

5.1.2 Operational layer
The management of the manufacturing process is usually based on two
types of agents: Product Agents, which manage manufacturing plans de-
fined as sequences of the manufacturing services they require to be man-
ufactured, whereas Resource Agents offer manufacturing services and
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collaborate which each other to fulfill Product Agent requests. Other
types of agents, such as Order Agents and Task Agents in the case of
PROSA and ADACOR architectures, respectively, can be considered if
they are necessary to assist the other agents, e.g., to provide coordina-
tion or handle scheduling. The simplest way to define agents consists of
identifying the basic physical and logical entities present in a manufac-
turing system and associating agents to them.

Resource Agents usually integrate physical assets and provide Applica-
tion Relevant Services, as defined by RAMI 4.0. These manufacturing
resources have been classified in two types:

• Active agents such as Smart Production Machines, which pro-
duce according to specifications from the strategical layers; MMRs,
which bring the materials from the interim storage areas to the ma-
chines and final products to delivery areas; and Operators, which
offer maintenance services in case of failure or need of reconfigu-
ration to both MMRs and machines.

• Passive agents such as Charging Stations, which offer their charg-
ing services to MMRs; or Processing Units, which provide cloud or
more likely edge processing capabilities to the active agents.

Based on goals defined in the strategical layer, these individual agents
interact with each other to autonomously organize the factory. Since
Resource Agents can participate in different manufacturing applications,
on demand and while they are available, they are persistent in nature:
once created, they remain in the system indefinitely unless there is a
problem or they are purposely deleted.

As seen in Table 5.2, agents offer their services in the system which
are then contracted by other agents on demand. Thereby, MMRs and
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machines interact over the communication layer and self-organize the
factory according to the global specifications defined in the strategical
layer. Moreover, operators have the possibility to supervise and interact
with the system in case of failure or hazard via smart devices.

AGENT Offered Contracted
Services Services

MMR (S1) Replenishment Maintenance
(S2) Delivery Charging
(S3) CallRobot Cloud/edge

Smart Production (S4) Manufacture Maintenance
Machine Delivery
iProduct (S5) Traceability Delivery

Manufacture
Operator (S6) Maintenance Call Robot
Charging station (S7) Charging Maintenance
Processing (S8) Cloud/edge

Table 5.2: Summary of offered and contracted services by different
Agents

Product Agent
Intelligent products are software entities responsible for managing, mon-
itoring and tracing all the steps necessary to manufacture a product.
Since the intelligent product knows all raw material and manufacturing
operations it requires, its agent (iProduct in Table 5.2) can contract
MMR services to transport the raw material from the warehouses to an
available machine, to perform a required operation (Delivery service).
Once loaded on the machine, it informs the machine to start with the
operation. When the job is finished, the Product Agent decides if the
resulting product needs a new manufacturing operation or if it is ready
to be transported to a delivery warehouse.
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Figure 5.3. Generic Product Model.

For that purpose, [248] proposes a Product Oriented Manufacturing
(POM) solution with interconnected manufacturing resources, which ad-
dress the manufacture of a product or range of similar products, including
the necessary assembly work, simultaneously and in a coordinated man-
ner. The entity Product is mapped to an information model that defines
its manufacturing steps and its sub-product entities, and makes refer-
ences to existing machine operations. In general, a manufacture of a
product may imply different and parallel lines of raw material over which
operations are performed to obtain sub-products that are then combined
by compound operations to obtain the final product. Fig 5.3 represents
the meta-model of a product type. The product instances, i.e., the man-
ufactured products, can be defined in XML files, as instances of the
meta-model, and stored in a product repository.
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During the whole process, this agent contracts the services of MMRs
and machines, monitors them to react and re-plan in case of failures and
saves a track of all steps having a complete view of the process of a
determined product. Based on the product model, a generic traceability
model could extend the latter to define actual manufacturing informa-
tion, such as which machine has performed which operation and at what
time. It is also possible to obtain information related to the incidences
that may have occurred, e.g., if transport was required and the transport
time, detection of failures and so on. This information could be queried
as a traceability service (S5) and used to inform a client about the exact
current status of his product.

This approach allows unitary traceability, but dismisses traceability at
other granularity levels. Other traceability entities (and, thus, their cor-
responding agents) can be defined at different levels, e.g., batch level,
customer level (i.e., monitoring all the products or batches that are part
of the same customer order) or manufacturing plan level (i.e., monitor
the manufacturing plan as a whole).

Transportation Agent (MMR)
The MMR is the main enabler of the flexible manufacturing, offering
transportation services (see Table 5.2) which are used by machines to
replenish their material reserves (S1), by the Product Agents to trans-
port them from one machine to another and to the delivery supermarkets
(S2) and, finally, by operators which may request some kind of material
or human-robot capability on their workplaces (S3). This allows a more
modular and distributed manufacturing architecture.

During this thesis, the industrial mobile robots in Figure 5.4 have been
used, some of which have been presented in Chapter 4 : the YouBot,
used during the RoboCup@Work and ERL competitions, presents most
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of the necessary functionalities of a transportation robot in the indus-
try; the AutoBot, developed as a proprietary ATV for Bosch GmbH,
presents the basic navigation and precise docking manoeuvre capabilities
for load pickup and delivery; the Segway+Iiwa MMR offers inspection
and dexterity capabilities, cooperating with operators on complex and
repetitive tasks; and, finally, the Kobuki, a low cost prototype, used in
this chapter to demonstrate a multi-robot transportation ecosystem and
the cooperation with machines and smart products.

Figure 5.4. Industrial Autonomous Transportation Vehicles. Left to
right: Autobod, YouBot, Segway+Iiwa, Kobuki.

Robots are necessarily connected wirelessly to an I4.0 System. They
update continually a Robot Heart Beat (RHB) containing a unique iden-
tifier, current pose and brief enlightenment about assigned a tasks. When
a MMR is plugged into the system, it registers its services in the System
Repository and starts informing about its availability and status.

Machine Agent
Machine agents are usually deployed in embedded operating systems that
endow, on the one hand, intelligence and the capability to interact with
other agents, and, on the other hand, the connection to the asset, which
is usually interfaced by a PLC. When the machine requires new material
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provisions, it sends a request to contract replenishment services of the
most suitable MMR. Machines also offer manufacturing services depend-
ing on their capabilities (S4) that are then contracted by smart products.

On system start up, machines register their services, location and other
important data in the System Repository. This way, new machines can
be added or updated respect to the services they offer. Their operation
plan can be provided by the Planner Agent (once received, they execute
it until they finish, while taking care of their internal material replenish-
ment), or it can be triggered on demand by the Product Agent.

Machines can interact with other agents either wired or wirelessly. They
publish Machine Heart Beat (MHB), a brief information about its internal
status that contains its identifier, status, identifiers of robots contracted
for the transportation, material type required and deadline for the task
to be finished.

Operator Agent
The operator performs value added tasks in the manufacturing process,
and collaborates with robots in his surroundings using a Human-Robot-
Interaction Panel which can run on a tablet-like device. This device
provides information about the area in which the operator is working and
enables the interaction with nearby MMRs, contracting their services
for inspection or hazard tasks. This interaction includes maintenance
services (S6) which can be used to trigger modification on robots or
machine behaviours, in case of failures.

Charging Station Agent
Because the transportation is carried out by MMRs, it is necessary to
have an area prepared to charge their batteries. The robots will charge
their batteries during their idle times while waiting to be assigned new
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tasks. However, in a factory with hundreds of them, it is not viable to
have one pre-assigned charging station to each robot. It is more likely
to have a pool of charging stations shared by all the robots. For that
purpose, the management of these smart charging spaces is performed
by software agents that control the slots available and offers them as
charging services (S7) to MMRs.

Processing Agent
MMRs are restricted to limited battery and computational power. In-
creasing their computational power would limit their working autonomy
time and the amount of extra load they are able to transport. In gen-
eral, MMRs need to perform a series of real time calculations for security
and efficiency. However, there are other tasks that may require a re-
markable computing effort and that do not imply real time processing
necessities. It is therefore interesting to include smart processing units
that offer computational services (S8) to MMRs on the edge or on the
cloud, depending on the privacy of the information exchanged. In ad-
dition, software agents such as the Charging Station or Smart Product
agents require a place to be executed. Processing Agents represent the
processing nodes where those agents could be deployed, providing access
to the computing capacity of the system. Processing Agents can negoti-
ate with each other, based on different criteria (e.g., available memory,
CPU load, etc.), to determine which one host agents.

5.1.3 Communication layer
In the future, hundreds of interconnected robots, machines, operators
and other heterogeneous agents are supposed to collaborate to build a
flexible manufacturing system. It is therefore important to create an in-
telligent communication network that enables the understanding among
them without overloading the network. Some information must some-
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times be directly sent to an specific entity while some other information
needs to be shared with several entities. This section presents some of
the most common communication middlewares used on robotics.

• ROS has become the standard robotic communication middleware,
due to its usability and popularity. Most robotic vendors create
drivers for ROS and ROS-Industrial ecosystem.

• OPC UA, the default agnostic PLC communication standard, is
used to communicate low-level manufacturing plant floor and up-
per MES systems to perform configuration changes on machines.

• MAS has proved over the last decade to be an excellent solution
to distribute the control on decentralized manufacturing systems.
This work focuses on the integration of autonomous multi-robot
transportation systems based on ROS into MAS.

ROS as communication middleware
Being the de facto standard for robotics, ROS is built as a set of com-
prehensive and well-structured libraries and drivers for several robots and
sensor devices, and a well defined structure for communication. ROS
provides a message passing interface with three information exchange
possibilities as explained in Section 3.2: the publisher-subscriber, the
service-client and the actions.

• The publisher-subscriber semantic allows the diffusion of informa-
tion to any other robotic component listening to a published topic.
Every agent interested in a topic can subscribe to it and wait for
new messages to arrive. There is no response implicit in this type
of communication and, therefore, the sender does not know who
received the information. This communication option will be used,
for example, by the machines and robots to publish their Heart
Beat on the cloud. Even though this Heart Beat is limited to a
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small quantity of bytes, the publication rate will be limited to the
smallest required in order not to saturate the network.

• The service-client semantic permits the direct communication be-
tween agents. The sender contacts a determined agent and re-
ceives back a response from it. The sender knows if the message
has been received or not. No other agent will notice this infor-
mation exchange. A machine can thereby create a point to point
communication with a desired MMR to receive a material supply.

• The actions are a combination of the previous two mechanisms.
It is used after a negotiation, once it is decided which agent is
going to perform the service. First, a service like peer-to-peer
communication takes place where the contracting agent sends a
goal to the service performing agent. The service agent responses
with an status message, confirming the acceptance of the task.
Second, the contracted agent sends a continuous feedback message
to the contracting agent informing about its current status. Finally,
once the service task is completed, a final Result message is sent.

Normally, in the ROS ecosystem, a single and centralized roscore master
manages the registration of all agents, services, topics and parameter
servers as well as the communications between all the ROS nodes. To
allow the decentralization, there are several multi-master packages, e.g.
multimaster_fkie [2], that allow every agent to be its own master and
exchange information between nodes without the need of a central server.

In this work, ROS acts as the main robotic middleware, providing the
latest state of the art robotic algorithms and tools. The limitations of
ROS as a multi-robot middleware are studied and wrappers are built on
top of ROS to integrate the robots into a MAS.
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ROS-OPCUA as communication middleware
In today’s factories the PLC is one the most common used device to
implement a low-level intelligence in production machines, controlling
the manufacturing actions performed by a machine and monitoring their
internal status such as the filling quantity of a depot. To avoid the limi-
tations of working with different vendor PLCs, OPC UA has become the
de-facto standard middleware for controlling them. To connect the PLCs
controlling the machines and the robots, this work uses the FreeOpcUa
library, which integrates all necessary the mechanisms to enable the com-
munication between robotic components and machines. As explained in
Section 3.4, OPC UA is composed of multiple clients and servers ex-
changing broadcasted on peer-to-peer information.

In this work, the OPC UA-server is used to track the information of vir-
tual machines and trigger the corresponding service requests to robots
for material replenishment and delivery. The machines (OPC UA) and
robots (ROS) are represented as OPC UA-clients that communicate
with each other through a custom communication server based on the
ros_opcua_communication package [210].

ROS-JADE as communication middleware
JADE is a generic software platform that simplifies the implementation
of distributed applications based on MAS technology. As seen in Section
3.3, it can be considered as one of the most popular multi-agent middle-
ware as it offers the basic features expected in a middleware of this type
and some added features that make its use, debugging and maintenance
very easy. Among these added features, JADE allows creating graphical
interfaces with the intention of seeing the operation of a specific agent,
the messages that are exchanged between the agents, sending messages
in a simple and graphical way or even creating an operator agent that
interacts with the rest of agents from buttons. It also provides ready
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to use mechanisms such as the Agent Management System (AMS), the
Directory Facilitator (DF) or the Agent Communication Channel (ACC)
which are inline with the infrastructure services defined in the RAMI
specifications.

In this work, JADE has been used as a wrapper on every agent to permit
a distributed communication of heterogeneous agents in a flexible man-
ufacturing system while endowing from the intrinsic mechanism of MAS
systems.

5.2 Integration of the ATV on the
flexible manufacturing system

This section presents the simulated and real scenario use cases where
MMRs cooperate with each other and with other smart agents in a
flexible manufacturing system. To perform the flexible transportation ef-
ficiently, these agents require a series of common and well defined mech-
anisms to allow integration and collaboration among agents. The vali-
dation has been carried out progressively in three complementary stages:

• First, a pure ROS and mainly simulated approach has been used to
define the foundations of the distributed multi-agent architecture
and the multi-robot task allocation adoption.

• Second, the previously defined mechanisms have been used and
enhanced with the possibility to communicate robots using ROS
and machines using OPC UA. This use case has been validated
with a series of MMRs represented by Kobuki robots and machines
represented by Raspberry Pi boards using CoDeSys IDE.

• Finally, MMRs have been integrated on a MAS-based architecture.
This is presented as a ROS-JADE integration that includes the de-
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velopment of a series of mechanisms for efficiently communicating
robots and other non robotic systems. In this stage, the concepts
of intelligent products and charging stations have been added.

5.2.1 Integration of MMRs and machines based
on a pure ROS simulated use case

This use case recreates the smart factory scenario presented in Figure 5.2
into the ROS environment, where interconnected MMRs, machines and
operators organize the transportation logistics workflow of a factory. To
manage strategical order generation, start the manufacturing process and
track the agents actions, a monitoring panel was been developed. This
simulated scenario is used to validate the monitoring panel, the multi-
agent task allocation process and the general information exchange such
as the publishing of heartbeats. The results of the development were
released in a github repository [249].

The focus of the simulated scenario is on the MMRs and the Replenish-
ment (S1), Delivery (S2) and CallRobot (S3) services presented in Table
5.2. Agents demanding these services need to define specific informa-
tion on the request as seen in Table 5.3. Every service request requires
a header, containing a time stamp, and an unique request identifier, the
identifier of the agent doing the request, the task type and a deadline
for the task to be completed. Additionally, depending on the task type,
there is a series of meta-data that need to be included in the message:

• Replenishment service is used by machines that want to restock
their intrinsic raw material supplies, such as nails or screws. This
specific order must contain the delivery location (to know where
the material should be brought), the material type (used by MMRs
to know from which source the material should be picked-up), and,
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finally, the amount or weight (to ensure that the contracted robot
is able to carry such amount of material).

• Delivery service is used to bring a by-product from one machine
to another and to dispatch warehouses. In this case, the pick-up
and delivery locations and the weight of the load are required.

• Call robot service is used to take a robot to an specific loca-
tion. This service could be useful for operators that need semi-
autonomous robot collaboration where the specific tasks are de-
fined once the robot is there. In this case, the destination location
and the robot type are required. Robots bid for the specific tasks
and compete with other robots to acquire it.

Replenishment services could also be contracted by Product Agents
which need to bring raw material to machines. Product Agents could
also be in charge of controlling the deliveries of products between ma-
chines or to warehouses. However, these cases are not covered in this
section.

Similarly, operators offer maintenance services to robots, machines and
charging stations, despite in this first step the failure and maintenance of
MMRs have only been considered. The monitoring agent will detect the
failure based on the RHB information or based on communication loss
with the robot, triggering a failure event to the corresponding operator
that has to perform the maintenance service.

Machines follow a predefined production plan that could be manually
generated or autommatically transferred from a MES. To execute the
plan, machines negotiate with available MMRs, contracting their replen-
ishment services to refill their raw material supplies and delivery services
to send finished products to delivery warehouses. To that end, machines
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Table 5.3: Different services structure based on pure ROS messages.

service_type ROS_msg *Metadata
Replenishment material_type,

delivery_location,
quantity

Delivery header, pickup_location,
id_sender, delivery_location,
service_type, quantity
deadline,

Call Robot *metadata destination_location,
robot_type

Maintenance destination_location,
failure_type

are endowed with two types of timers: the first timer triggers the empty
raw material supply event and its corresponding material replenishment
request, whereas the second timer triggers the manufacturing product
completeness and its corresponding delivery service request.

To perform the efficient assignment of a set of tasks to a set of agents,
a multi-agent task allocation problem must be solved. The decentralized
version of the ”Single-Task Robots, Single-Robot Tasks, Instantaneous
Assignment (ST-SR-IA)” classification proposed by [185] was used for
that purpose. The ST-SR-IA approach focuses on tasks that can be
achieved by single robot, robots that cannot perform simultaneously more
than one task, and instantaneous assignments of the tasks to the most
suitable robot after performing a bidding process.

For the implementation of the task allocation process, a decentralized
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bidding approach based on the Contract Net Protocol (CNP) [187] has
been used. This multi-agent task-sharing protocol is divided into four
stages: 1) task announcement by an agent interested on contracting spe-
cific services and which takes the role of the coordinator, 2) bid submis-
sion by individual agents able to perform the specific task, 3) evaluation
and winner selection, 4) and, finally, the contract stage of the winning
agent. Thus, the machine fulfils the role of the coordinator, whereas
MMRs participate as bidders. However, in order to increase the robust-
ness, besides assigning a primary robot to perform the task, an additional
secondary robot will be assigned. It will supervise the primary robot and
assume its task in case of failure. Moreover, the auction process is run lo-
cally between machines and nearby MMRs. This simplifies the approach,
reducing the information exchanged and allowing the scalability.

5.2.1.1 Simulated scenario setup

Some information is shared between several entities at the same time (a
machine publishing the request for a transportation service) while some
other information is directly exchanged between two individual collabo-
rating agents (once the service is contracted, per-to-per communication
between machine and robot is established). ROS provides a message
passing interface with two information exchange possibilities for these
cases: the service-client and the publisher-subscriber respectively. When
the machine requires a new replenishment or delivery service, it publishes
a new transportation task on the middleware. The available MMRs sub-
scribe to the task over the communication server. They calculate their
own specific bidding costs for fulfilling the transportation, and send them
through a service-client call to the communication server. These costs
consist of the path between the current robot position and the target
position. More parameters could be included to calculate the costs, e.g.
the robot’s battery status, or the suitability of a defined type of robot to
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perform a task. After a certain bidding period, the machine shorts the
bids and contracts the services of a primary and a secondary robot based
on the received cost. The function of the secondary robot is to backup
the primary robot, endowing a bigger robustness to the system. In case
the primary robot has a problem, the secondary robot will overtake its
task. Once the task is assigned, the MMR navigates to the closest ma-
terial storage area, performs an autonomous loading manoeuvre [111]
(here simulated), and transports the material to the machine. Once the
task is finished, the robot returns to a charging station and starts sub-
scribing again for new transportation tasks.

For the simulation, the material is supposed to be automatically dis-
tributed from the warehouse to the interim storage areas close to the
machines. Fig 5.5 represents in a sequence diagram the course of events
between machines and MMRs for the multi-robot task allocation. When
a new MMR is introduced in the system, it first requests necessary in-
formation to the middleware, such as the newest factory map, positions
of current machines and charging stations, and localizes itself in the fac-
tory. Once the initialization state is complete, the MMR subscribes to
the middleware and wait for new transportation tasks. When the ma-
chine reaches a specified minimum fill level of raw parts, it publishes a
new replenishment task on the cloud. Then, available MMRs receive
the new task directly from the machine and calculate their own specific
costs for fulfilling it. These costs consist of the path (MMR-material
source-machine), the robot’s battery status, and their suitability for the
respective type of task (in case diverse MMRs with different abilities are
available). Once the cost has been calculated, the robots check whether
they can complete the task within the deadline and, if so, send the cost
directly to the machine. After a certain bidding period, the machine
shorts the bids and tries to contract the services of the MMR with the
lowest cost. It is important for the machine to know if the elected robot
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Figure 5.5. Task allocation sequence diagram for an autonomous
ATV-machine material replenishment.

receives the request and if it is still available.

As shown in Figure 5.5, the ATV3 was the robot with the lowest cost,
but it was already elected by a different machine by the time the bid-
ding time finished. In case the MMR is still available, it becomes the
primary robot for the task. If not, the machine contacts the next robot
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on the list. As ATV2 had the second lowest cost and was still available,
it became the primary robot for the task. To increase the robustness
of the system, the machine selected a secondary robot by following the
same process (in this case ATV1). Once the task is assigned, the MMR
navigates to the closest material storage area, performs an autonomous
loading maneuver [111] (here simulated), and transports the material to
the machine. After fulfilling the task, the robot starts subscribing again
for new transportation tasks. On the bottom of the diagram it can be ap-
preciated how the elected primary robot ATV2 updates its unique RHB2
introduced in the subsection 4.2.5. The heartbeat allows the interested
agents, in this case the machine and the secondary ATV3, to receive a
status of the primary robot.

5.2.1.2 Simulated scenario evaluation

Two different control panel prototypes have been developed for the evalu-
ation of the system: 1) a management panel responsible for the strategi-
cal order generation and monitoring the entire systems, and 2) a human-
robot interaction panel that displays information of interest to the opera-
tor and allows him to interact with the MMRs in case of hazard or failure.

The management panel starts the manufacturing process and monitors
the tasks performed by the different MMRs and machines as shown in
Figure 5.6. Qt has been used for the creation of the graphical interface
as it is platform-independent, open source, easy to use and has a com-
prehensive documentation. The Management Panel is mainly used for
surveillance purposes. In the center, it presents a real time factory layout
with the machines represented as rectangular blue shapes and the MMRs
as circular black shapes. The top left corner displays general information
about the factory on demand. The top right corner displays informa-
tion of a chosen machine. The bottom right corner displays information
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Figure 5.6. Management Panel used for surveillance purposes by visu-
alizing the plant in ROS (center) and displaying several information
about the plant (top left), the machines (top right) and the ATVs
(bottom right). Additionally, it is used to define and publish global
production targets (bottom left).

about the ATVs. It is therefore intuitive to see the amount of tasks
that single robots or machines have performed, their connectivity status
thanks to the heart beats that both robots and machines are publishing,
or their current working status (working, pending or idle). Finally, the
user is given the opportunity to define and publish the new products
to be manufactured in the bottom left corner. This option should be
replaced in the future by an automatic module that reads the incoming
orders and publishes the respective answers in the system.

The Human-Robot-Interaction Panel (see Figure 5.7) runs on a tablet-
like device, provides the operators with information about the working
station they are at, and enables the interaction with nearby MMRs. This
interaction includes modification of MMR behavior in case of failures.

In order to evaluate the integration architecture of MMRs and machines
based on pure ROS, several cases and the reaction of the system to them
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Figure 5.7. Operator at the machine connects to and interacts with
an ATV via hand-held device.

are presented below.

Case 1: Replenishment task requested by a machine
A use case was conducted in which A machine publishes a new material
replenishment task. The five available robots send their bidding costs
to the machine and the machine selects the two MMRs with the lowest
costs once the bidding period finishes. The selected primary robot con-
dusts the task until it is finished and returns to it original position. In
the future, charging stations could be available and a new bidding pro-
cess to contract the services of a free charging station would be required.

Case 2: Failure on a determined machine
In this case, an operator intervenes and solves the fault by, e.g., updating
the machines software or repairing a hardware component. If possible,
the machines orders are redistributed between the other machines in the
factory. If not possbile, only its orders will be affected while the rest of
the production system proceeds as usual.

Case 3: Peak workload season
In order to react to peak workload seasons it is sufficient to add more
agents to the system. The agents that are already on the system will
not be affected as every agent makes its own decisions.
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Case 4: Network connection problems
A network problem can prevent the MMR from bidding for new tasks.
To solve this issue, enduring bidding periods are permitted. This extends
the time from the task publication to the contract of the MMR. How-
ever, it is enough to consider it in the replenishment time estimation and
publish the order on ahead. In addition, a network problem can prevent
the MMR from publishing its RHB. Assuming that there is a failure on
the primary MMR, if this occurs during a transportation task, the sys-
tem could react and start a new duplicated transportation task. To avoid
this problem, an additional ad-hoc network could be implemented on the
MMRs. Thus, if an MMR has a connection problem (e.g., it is too far
from an access point, or the connection suffers from huge latencies), it
will still have the possibility to communicate its status to nearby MMRs
that would transmit the information into the cloud as shown in [250].

Case 5: A busy MMR has issues to fulfil the task
An unavoidable obstacle in the way or an important hardware issue may
make it impossible for the MMR to reach its destination. In this case,
the problem will be evaluated first. If there is the possibility to solve
it within a reasonable time, an operator may be requested to intervene.
Otherwise, the secondary MMR could assume the task, or the machine
could publish another task request starting a new bidding process. This
new bidding immensely increases the robustness of the system, but the
task time restrictions might not be achieved.

This problem is represented by Figure 5.8 where the Machine 8 publishes
a new task and selects ATV3 as primary robot for being the closest one
to the machine and the ATV1 as the secondary robot for being the sec-
ond closest one. To simulate the failure on the MMR, the primary robot
(ATV3) is forced to be switched off. Then, the ATV1 notices that the pri-
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mary robot is no longer in the system. Thus, ATV1 assumes the task and
executes it by itself. Figure 5.8 (right) shows the ATV3 as disconnected
and the secondary ATV1 starting to perform the task. The operators no-
tice the disconnection and remove the ATV3 from the factory to repair it.

Figure 5.8. Experiments. Machine 8 publishes a new task and selects
ATV3 as primary and ATV1 as secondary robots (left); Forced failure
in ATV3 lets it as disconnected while ATV1 overtakes the task (right).

Case 6: Autonomous loading manoeuvre fails
The material box might get shifted during loading manoeuvres, which
could cause damage on the environment, the MMR itself, or in worst case
the operators. Therefore, operators must be able to interact with robots
by adjusting their speed or completely stopping their current activity.
After solving the problem, the operator can confirm the elimination of
the fault and allow the MMR to continue its normal operation.

Case 7: Software updates
Factory upgrades usually require to stop a partial area or even the com-
plete factory for a long time. Moreover, it may be difficult to determine
wether the new software contains failures until it is deployed and tested.
Modularized agents can help to scale up the factory upgrade. It is not
necessary to stop the whole factory, as single agents can be introduced
and tested bit by bit before the whole system is upgraded.
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5.2.1.3 Summary

In this subsection a simulated scenario for the integration architecture of
MMRs and machines based on a pure ROS solution has been presented.
The proposed MRTA was kept simple and local. When a machine offers
a new task, a distance parameter drives the selection of nearby MMRs
to enter in the bidding process. If the machine does not obtain any an-
swer from nearby MMRs during the bidding period, the parameter value
is increased so more distant MMRs can enter the bidding. Each MMR
estimates its own cost and sends it to the machine, avoiding complex
algorithms to run in any agent.

Although this solution allows decentralizing the control of each robot,
it continues to present problems in multi-robot applications, due to the
general philosophy of the platform. On the one hand, the synchronization
of services carried out by master_sync is through pull message pattern,
sending unnecessary messages and not updating the information in real
time. On the other hand, the master_discovery node is continuously
sending multicast messages in search of new Masters, without having
any certainty of the existence of the new one. In addition, as ROS is
made up of different and very small processing units that exchange in-
formation by topic, when communicating nodes from a global network,
it is possible that there may be delays and even information loss on some
occasions.

This scenario could be improved by extending the experiments in the
replicated factory layout in order to observe the influence of networking
problems for longer periods, and further research the scalability of the
solution in complex situations with a high number of machines, robots
and simultaneously performed tasks.
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5.2.2 Integration of MMRs and machines based
on a ROS-OPC UA real scenario use case

The PLC is the most common used device to implement a low-level in-
telligence in production machines. The PLCs control the machines and
monitor internal status such as the filling quantity of a depot. This sec-
tion presents a distributed control architecture for a flexible and robust
transportation system with MMRs using ROS, that offer transportation
services, and PLCs using the OPC UA industrial standard, that contract
their services for material replenishment or product deliveries.

ROS was not initially designed as a multi-robot system and, therefore,
the standalone ROS configuration must be analysed before building a
ROS-OPC UA integration. In this sense, the general objective of this
section is to answer the following questions:

• Is it necessary to distribute the ROS master?

• How does the multi-master architecture affect the network and
overall system performance?

• How can a stable ROS multi-agent configuration be built?

To answer these questions, three ROS configurations were assessed for
the proposed multi-agent system: 1) the standard single master con-
figuration in which a single-master handles the entire registration and
XML data requests; 2) a multi-master configuration in which every top-
ics/service from remote masters is synchronized to the local master; and
3) a filtered multi-master configuration in which each agent is specially
parametrized, to just synchronize required information and therefore re-
duce the network bandwidth.
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Figure 5.9. ROS single-master, multi-master and filtered multi-
master configurations with data exchange representation.

To find the benefits and limitations of each configuration, a test-factory
scenario was recreated and several tests were performed to measure three
indicators: 1) the network bandwidth, 2) the system performance over
the response time of a single ROS service call, and 3) the scalability, by
increasing the number of robots in the system and measuring their bid-
ding response time. After analyzing the advantages and disadvantages of
each configuration, the most suitable one was selected for a long working
period test, where machines and MMRs interact autonomously perform-
ing material replenishments and products deliveries.

To apply the multi-master configuration in ROS, the multimaster_fkie
package [2] was used. It contains a master discovery node, that finds
remote masters and a synchronization node that connects to the discov-
ered masters, requests their actual ROS state and registers the remote
topics and services locally. It is important to note that the synchro-
nization node must be correctly parameterized so as not to synchronize
unnecessary remote topics that could overload the network.
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5.2.2.1 Real scenario setup

The tests were performed in the small factory scenario depicted in Fig. 5.10.
MMRs were represented by six Kobukis (see Figure 5.11), equipped with
an ODROID-XU4 single-board computer to endow intelligence, a RP-
LIDAR laser scanner for localization and mapping, and a TP-LINK router
that provides WLAN connection. Machines are represented in the middle
by two PLCs running on a Raspberry Pi 3 with CODESYS [251] inter-
face for control and visualization purposes, as seen in Figure 5.12. Each
machine was running an OPC UA server for external interaction.

Figure 5.10. Test factory scenario at the Technische Hochschule
Nürnberg with up to six ATVs, two machines and a monitoring sta-
tion.

To enable the communication between OPC UA servers and MMRs using
ROS, a communication server was developed. This server was designed
to act as an interpreter to keep the intelligence distributed. The PLC and
the communication server were connected to each other via OPC UA.
The communication server subscribes to each PLC to update its internal
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Figure 5.11. Kobuki platform and that represents the ATV for vali-
dation tests.

Figure 5.12. Web Server Visualization of the PLC controlled ma-
chine1 simulated in codesys.

data and uses this information to trigger the interaction with MMRs.
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Figure 5.13. Setup of the test arena with MMRs 0 to 5 in the charging
stations, machines (MA1 and MA3) in the middle, communication
server and monitoring panel in the operator area, and source (SC)
and delivery (DL) storage areas on the sides.

The machines required two types of transportation services: a material
replenishment and a product delivery. To automate the task publica-
tions, two different counters were implemented into the machines: a
decremental counter that represents the material left in the storage, and
an incremental counter representing the produced products that have to
be delivered. To prevent inoperative times in the machines, a replenish-
ment task was published before the first counter reached the value zero.
The second counter triggered a delivery task prior to the overloading of
the machine’s depot.
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5.2.2.2 Real scenario evaluation

In order to asses the different ROS-based configurations, the following
tests were performed:

• First, the agents were connected over a wired network to measure
the overall system network bandwidth. For the remaining tests the
agents were connected to another over the wireless network as in
a real use case.

• Second, the time response for a ROS service call was measured to
evaluate reaction times on each configuration.

• Third, the time response to a single task request with respect to
the number of available MMRs was measured in order to analyse
the scalability.

• Fourth, the results were summarized and a configuration was se-
lected for an automatic run as described in 5.2.2.4, where the
system works non-stop for 15 minutes.

Network bandwidth analysis
Wireshark network protocol analyser [252] and a smart switch with port
mirror functionality were used to to capture all the network traffic among
the different devices. Fig. 5.14 illustrates a detailed result of the mea-
sured robot-robot, robot-server and machine-server communication for
the different configurations and a summary of the measured results is
provided in Table 5.4.

The conclusions drawn from the analysis of network bandwidth are as
follows:

• The implementation of a multi-master system led to a local regis-
tration of nodes, services and topics that otherwise would had been
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Figure 5.14. Representation of the network bandwidth between
agents during 35 sec and 10 test for each configuration.

Table 5.4: Average Robot-Server, Robot-Robot and Machine-Server
bandwidth summary.

SingleMaster Multimaster MultimasterFlt.

R-S 156 13 9 [KB/s]
R-R 2 18 6 [KB/s]
M-S 33 34 34 [KB/s]∑ 191 64 48 [KB/s]

registered by broadcasting the network. This led to a significant
network traffic reduction (156 KB/s → 13 KB/s) in the communi-
cation server. The network traffic among robots increases (2 KB/s
→ 18 KB/s) because topic and service registration data of remote
masters were synchronized and locally stored in each master.
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• By proper parametrization of the multimaster synchronization node,
the XML data exchange can further be reduced (13 KB/s → 9
KB/s and 18 KB/s → 6 KB/s) by synchronizing only the neces-
sary topics between agents.

• The data exchange between machines and communication server
is not influenced by the ROS configuration, as it uses the OPC UA
protocol for the communication.

It is important to keep topics local by using namespaces. If topics are
subscribed and published in different agents, they cannot be ignored
by using the described multimaster synchronization package and will be
therefore synchronized. An example is the global and commonly used
"/tf" topic. An intelligent topic handling will increase the network per-
formance for the three configurations.

Service call analysis
To evaluate the system performance under real execution conditions,
the agents were connected over a wireless network. This experiment
assesses the issue exposed in subsection 5.1.3 which refers to need for
agents running on an external device without having their own master
API, to register and call all their topics and services over the network.
The bidding calculation time of each robot is obtained over the service
call make_plan offered by the ROS move-base node [253] running on
each robot for the navigation. A summary of the test results is shown in
Table 5.5.

The conclusions drawn from the service call analysis are as follows:

• Service-client connections are not kept fixed and must be repeated
over the master API every time. In a single-master configuration,
this request is sent over the network for every client on each robot.
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Table 5.5: Analysis results of the bidding costs calculation for a re-
plenishment task with three Kobukis in the system.

Singlemaster Multimaster MultimasterFlt.

Kobuki0 1,78 0,34 0,35 [s]
Kobuki1 1,82 0,37 0,35 [s]
Kobuki2 1,79 0,36 0,35 [s]

As a result, a bottleneck issue appears in the master registration
API that must respond to a huge number of requests. Moreover,
the requests are broadcasted over the network instead of locally
which results, as expected, in slower response times.

• In the single-master configuration with three robots, the cost cal-
culations took approximately 1.8 seconds while in the multi-master
configurations only 0.35 seconds. This is because most registra-
tions are distributed and handled locally. Only the necessary agent-
to-agent information should be transmitted over the network. This
phenomenon was noticed again on the following scalability tests.

• There was no remarkable difference in the performance between
the standard and the filtered multi-master configurations. In both
cases the service call is handled locally and it is, therefore, inde-
pendent of the multi-master function.

Scalability analysis
The scalability tests were focused on the average bidding duration, i.e.,
the time that elapses between a machine publishing a new task (received
by the available robots over the network), the robots calculating their
costs and the machine receiving back the bids from the robots (again
through the network).
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A single replenishment task was triggered to calculate the bidding du-
rations by introducing up to six, maximum available, MMRs. As each
machine waits for a maximum defined time to receive robot bids, it is
important that the MMRs calculate and send their bids on-time to the
machine. Otherwise, the robot will not be taken into account for the
task allocation process. The maximum bidding time has been set to
2 seconds. The results are shown in Figure 5.15.

Figure 5.15. Scalability test results with up to six MMRs.

The conclusions drawn from the scalability analysis are as follows:

• An increasing number of MMRs in a single-master configuration
leads to a linear raising bidding duration for each robot, while in a
multi-master configuration the bidding time is not affected by the
number of MMRs.

• The more agents in the system, the more topics and services that
have to be managed. This is in concordance with previously per-
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formed tests. By distributing the master API most services are
maintained locally and the network bottleneck and overloading
problems are avoided, increasing the scalability of the system.

• Due to the maximum bidding time acceptance in the machines,
only up to four robots could be used in the single-master config-
uration. With more robots, the bidding times were too slow and,
therefore, they were not accepted by the machines. However, the
multi-master configurations show a stable bidding time of under
0.5 seconds regardless of the number of robots in the system.

• It takes approximately 1 minunte to launch the system with the
single-master configuration and 6 robots, whereas the multi-master
is ready within 15 seconds regardless of the amount of robots used.
In addition, while MMRs could not be launched at the same time
in the single-master tests, it was possible to do so using the multi-
master configuration.

5.2.2.3 Summary of the ROS configurations experiments

These tests showed that a decentralized middleware is necessary to build
a ROS-based MAS. A properly filtered multi-master configuration, that
maintains own topics and services locally, decreases the network band-
width, avoids the bottleneck problem, and increases system time re-
sponses, such as those involved in the bidding process. The tests also
showed that the multi-master configuration improves the scalability keep-
ing the response times between agents nearly constant regardless of the
amount of robots in the system.

This scenario could be improved by running further scalability tests where
dozens of ROS agents communicate among each other to ascertain the
current scalability results on a crowded system.
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5.2.2.4 Validation tests results

In order to validate the elected filtered multi-master configuration, a fi-
nal experiment was performed where the system runs non-stop for 15
minutes. For this experiment, machine 1 was configured to require new
material every 110 seconds and deliver its manufactured products every
60 seconds. In case of machine 3, these values were set to 160 seconds
and 76 seconds, respectively. If machines run out of material or had their
delivery depot overloaded, the production was temporarily stopped until
the MMRs have finished their transportation tasks. The test started with
the assumption that the machines were full of material and producing.
The results in Table 5.6 present the activity of machines and MMRs. A
video of the performed tests with explanations can be found in [254].

Table 5.6: Test results for 15 min non-stop replenishment (RP) and
delivery (DL) transportation with six Kobukis, two machines, a com-
munication server and a monitoring panel.

MA1 MA3
RP-DL RP-DL ∑Success ∑Failed

MMR0 0 - 12 0 - 0 12 / 12 0
MMR1 5 - 0 3 - 0 8 / 8 0
MMR2 1 - 0 2 - 0 3 / 3 0
MMR3 0 - 0 0 - 8 8 / 8 0
MMR4 0 - 0 0 - 0 0 / 0 0
MMR5 0 - 0 0 - 1 1 /1 0∑ 6 - 12 5 - 9 32 / 32 0

The conclusions drawn from the validation test are as follows:
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• According to the closeness from robots starting positions to source
and delivery areas, MMRs 0, 1 and 3 offered lower bidding costs
and were, therefore, more likely assigned than their partners in the
charging stations.

• Towards the end of the tests, a navigation failure occurs while
MMR3 tries to drive back to its initial position. Fortunately, the
delivery was already finished, so it did not affect the system. The
operator intervened to bring the MMR3 to its initial position. The
Kobuki was restarted, it localized by itself in the map, and it was
already taking part on new biddings a few seconds later.

• The fast restart of MMR3 shows the ability to quickly add new
robots into the system if necessary.

• Although the evaluation of the proposed multi-agent architecture
and the selected ROS configuration successfully met all the ex-
pectations, the results also show that an optimization of the task
publications times must be done.

5.2.3 Integration of MMRs in a flexible
manufacturing system based on
ROS-JADE multi-agent system

This section contributes to the definition of a generic multi-layer archi-
tecture for MMR integration in the factory, providing I4.0 Components
with social abilities to access Application Relevant Services that provide
MMR-related functionalities, as depicted in Figure 5.16.

To that end, the concerns related to MMR integration have been ab-
stracted into layers, so that they can be addressed both generically (i.e.,
regardless of the type of MMR to be integrated) and independently (i.e.,
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Figure 5.16. AAS overview (snapshot generated with the “AASX
Package Explorer” tool). Application Relevant Services offered by the
MMR are composed of Submodel Services and Asset Related Services.

being decoupled from each other). The points that were set to meet
this objective were to provide MMRs with distributed decision making
and to create a series of elements that would allow the integration of
the ROS environment with an agent-based manufacturing application
management platform, developed on the JADE platform.
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5.2.3.1 Multi-layer integration architecture

Asset integration in Industry 4.0 involves asset-related service implemen-
tation and management. If those concerns are detached, they can be
addressed in a generic way, so that they are applicable to any type of
MMRs, regardless of their communication capabilities and RFs used for
their development. To that end, the four-layer integration architecture
is illustrated in Figure 5.17.

Figure 5.17. Multi-layer approach for MMR integration in a factory
as an I4.0 Component.

• The upper layer (Social) implements the communication capabili-
ties needed by the MMR to interact with other I4.0 Components
to attend requests for Application Relevant Services.

• The second layer downwards (Cognitive) manages service requests
as follows: when a request corresponds to a Submodel Service, it
can be resolved directly at this layer; when a request refers to an
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Asset Related Service, it is necessary to pass the request to the
MMR (e.g., to ask the MMR to move or manipulate, or to request
information about its position or battery level) . In addition, as two
MMRs may offer the same Application Relevant Services but have
different communication capabilities, this layer is also responsible
for abstracting communications with the MMR.

• The layer downwards (Operative) manages Asset Related Service
requests by dividing them in smaller navigation and manipulation
functionalities that are executed in an orderly manner. This in-
volves monitoring the MMR state, and acting on it or reporting
events.

• The bottom layer (Functional) implements the execution of the
navigation and manipulation functionalities composing the MMR-
related Asset Related Services, as well as manages the communica-
tion with the drivers. Thus, it deals with the basic MMR control.

The Social and the Operative layers are located in the AAS, while the
Operative and Functional layers are located in the asset, i.e., in the
MMR. Considering that the MMR follows the Robotframework archi-
tecture, a mapping of the layers of the integration architecture within
Robotframework can be performed as shown in Figure 5.18:

• The Social and Cognitive layers of the integration architecture map
to the Decision layer of Robotframework. Therefore, the Decision
layer of Robotframework is the AAS of the MMR.

• The Operational layer of the integration architecture maps to the
Application layer of Robotframework, whereas the Functional layer
maps to the Abilities and Drivers layer.

Since the operational and functional layers map to layers already dis-
cussed in Chapter 4, only Social and Cognitive layers will be described
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Figure 5.18. Mapping integration architecture into Robotframework.

in this section.

Social layer
The agent (in the prototype, a JADE Agent) offers, at least, trans-
portation services (SR1), and communicates with the rest of the I4.0
Components in the I4.0 system, negotiating and cooperating with them
(SR5). However, since a MMR is made up of multiple components, it is
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possible to offer additional services, such as the use of integrated cameras
for monitoring purposes or localization services, giving the possibility of
global localization to other entities having limited resources.

The agent in this layer represents the global intelligence of the MMR
as an I4.0 Component. Its main functions are offering the MMR capabil-
ities as services, dealing with the requests of other I4.0 Components in
the system, and negotiating with other MMRs to decide which of them
will actually perform the service. Whenever the agent gains a negotia-
tion or receives an event from another system element, the social layer
transmits the order downwards through utilities of the cognitive layer,
making it independent from RF and MMR functionalities.

From a structural point of view, the agent incorporates a Finite State
Machine which consists of the following states:

• A boot state where the agent reads all the information related to
the MMR from the AAS Submodels and registers itself in the Sys-
tem Repository, if the availability of the physical asset is verified.
Then, any initialization task can be performed.

• A running state that manages the negotiations for service allo-
cation, the requests for Application Relevant Services, and the
interactions with the asset. Besides, in this state agent and MMR
liveness are also checked.

• An unavailable state for situations in which the MMR is not capable
of performing more tasks. This situation can occur if the actuators
fail or the battery is too low. In this state, it is possible to check
agent and MMR liveness just as in the running state. In this way,
the agent can find out whether the battery is sufficient again, errors
have been fixed or a new error has occurred.
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• A stop state that performs the finalization tasks.

Cognitive layer
This layer decouples communications between the agent and the MMR
into an auxiliary agent, named Gateway Agent (GA). The GA serves as
a bridge between the AAS, which uses ACL protocol, inherent to FIPA
agents, and the MMR, which uses a ROS communication protocol. The
interface of this layer is provided with two methods used to standardize
interactions between MMRs and the GAs: sendDataToMMR and rcv-
DataFromMMR.

The GA package integrates all the nodes and Java classes necessary to
carry out the communication between a system developed in a Java envi-
ronment, such as JADE, and the MMR developed in ROS. In essence, it
is an environment made up entirely of Java classes, in which there are no
ROS nodes per se. However, since it is a package which is developed us-
ing rosjava, there are Java classes that have the capacity to launch ROS
nodes and integrate them into the JADE platform. The most significant
classes are summarized as follows and their coordinated operation can
be seen in the Figure 5.19:

• ACLGWAgentROS: This class integrates the ROS functionali-
ties required to launch a node. This node, with the same name
as the class, is in charge of communicating with the ROS environ-
ment through the corresponding topics. At the same time, it has
the ability to integrate within the JADE platform, configuring the
communication with the agents and the name it will take within
the platform. Its behavior and agent functionalities are defined
within the GWagentROS class, which it instantiates.

• GWagentROS: This Java class defines the behavior that the
GWAgent agent will take regarding its activities within the MAS
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platform. It is a kind of appendix that provides the ROS node
with the capacity to send and receive messages from the rest of
the agents that will integrate the platform.

• StructCommand: This is the class where the necessary fields for
the communication between the transport agents and the GWA-
gent agent are collected.

It should be noted that, as mentioned above, the ACLGWAgentROS
class launches a ROS node that allows it to integrate into the ROS
environment as if it were just another ROS node. This node is able to
subscribe and publish to topics in the same way as the rest of the nodes
in the system, with the exception that, instead of being developed in
Python or C++, it is developed in Java. Therefore, it has the possibility
of using the necessary libraries, methods and resources to integrate into
the JADE platform.

5.2.3.2 Use cases

This section presents several use cases showing the socialization of MMRs
among themselves and with other non-robotic CPSs to demonstrate the
benefits of combining RF and MAS.

• The first use case shows an MMR -Transportation Agent (TA)-
noticing internal low battery levels and its interaction with available
charging stations -Charging Station Agents (CSA)-.

• The second use case shows a material replenishment order trig-
gered by a machine -Machine Agent (MA)- and the resulting task
allocation between available MMRs.

• The third use case shows a smart sensor which informs the MMR
that it is entering a human-working area, triggering a robot recon-
figuration.
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Figure 5.19. The operation of the Gateway Agent for decoupling
communications between the AAS and the MMR.
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CASE 1: Management of ATV Battery State
When the ATV notices critical battery levels, it requires a free position in
a charging station. The process is carried out in five steps: 1) the MMR
agent (the TA) receives a low battery event issued from the Functional
layer; 2) TA requests available power stations to the DF (AAS Infrastruc-
ture Service); 3) the TA triggering a negotiation among them in order
to contract their charging Asset Related Service; 4) CSAs negotiate un-
der the specified criterion, e.g., nearest to the MMR, calculating their
cost and sending it to other participants. The winner of the negotiation
informs TA about the pose; 5) the MMR navigates to that pose.
The battery state of a MMR robot is also valuable information that may
be required on demand by higher level operator or autonomous monitor-
ing systems. This information is internally stored on the cognitive layer
and requested by the monitoring agents as a Submodel Service. Other
information that is usually required by monitoring agents is related to its
current position, working mode or performing task.

CASE 2:Machine Material Replenishment
The intelligent MMR provides high flexibility to manufacturing processes
managing a dynamic plan to serve on-demand requests. This allows
solving expected or unexpected events in the plant in an agile way. For
instance, when a machine needs material to perform its operations, its
agent (the Machine Agent -MA-) makes use of Asset Related Trans-
port Service to perform a material replenishment (see Figure 5.20). The
replenishment transportation service request can be carried out in five
steps: 1) The MA detects lack of material; 2) MA requests available
transportation robots to the DF (AAS Infrastructure Service); 3) Initi-
ates a negotiation among TAs under a specified criterion; 4) The winner
MMR notifies the MA; 5) The MMR starts the transportation task in-
forming the MA about the beginning and the end of the task.
The information related to the transportation (in the case of the MMR)
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Figure 5.20. Interaction between the MMR and the machine.

or manufacturing task (in the case of machines) is valuable information
that can be used for traceability purposes and which required on demand
by higher level operator or autonomous monitoring systems. This infor-
mation is internally stored on the cognitive layer and requested by the
monitoring agents as a Submodel Service.
CASE 3: ATV Speed Adaptation on Demand
There are manufacturing entities that are not intelligent enough to be
represented as agents, but that could still transmit important informa-
tion to MMRs, triggering, if necessary, MMR reconfiguration. This is the
case of restricted area sensors. They can be easily settled in strategic
locations to alert about the entering into a special area. In order to re-
ceive this information, the robot must include the hardware component
that receives the sensor signal in the functional layer and implement a
new monitor in the operational layer to pre-process this information and
create the events that wake up the social agent . These events will trig-
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ger, then, the MMR reconfiguration.

For example, a robot without load could navigate at maximum speed
within an automated warehouse where human operators are not allowed
to enter. Thus, the transportation performance is improved, while the
risk of hurting humans is avoided. As reconfiguration actions are not di-
rectly related to the transportation task, robots must provide Submodel
Services that permits triggering such reconfiguration of internal robot
parameters.

5.2.3.3 Summary

The multi-layered architecture meets the requirements collected in 5.1,
while abstracting the social abilities from the control functionalities, de-
coupling attention to service requests from the high frequency informa-
tion refreshing at functional level, promoting control code re-use and
separation of concerns, as higher-level services can be adapted without
modifying the functionality and vice versa. The division on layers is done
with efficiency and modularity in mind, avoiding functionality overlap-
ping between layers. This architecture has been implemented on ROS
and JADE, the most widespread RF and MAS frameworks, respectively,
which offer the necessary base to develop a MARS. In addition, the use
cases presented in this work contribute to illustrate how ATVs based
on this architecture are able to collaborate with machines, charging sta-
tions or environmental sensors in the factory, efficiently responding to
transportation service requests and adapting to context changes.
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6 Conclusions and Future
Work

This chapter summarises the accomplishments of the research process
and outlines the key conclusions drawn from it. Additionally, it presents
the published contributions and proposes some possible future steps and
open questions that are yet to be solved.
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6.1 Conclusions

Modern manufacturing is evolving rapidly to meet global market de-
mands, leading to the concept of Industry 4.0, where simplified, modular,
and efficient processes with decentralized control are favored. The MMR
plays a vital role in intelligent manufacturing by replacing fixed conveyor
belts with flexible transportation robots and intelligent machines. This
enables quick and cost-effective production system reconfiguration and
allows for unplanned or on-demand deliveries. RFs aid in component
integration, but the development of logic, relationships between mod-
ules, and social abilities for intelligent interaction among diverse entities
within Cyber Physical Production Systems remain significant.

The thesis began by posing several research questions that served as
guiding principles throughout the investigation. These questions included
exploring the challenges faced by companies in transitioning to Industry
4.0, identifying design paradigms that could facilitate this transition, and
understanding the key concepts considered by reference architectures in
the interpretation of Industry 4.0. The thesis also aimed to uncover the
requirements for the design and development of MMRs in the context of
Industry 4.0, as well as the necessary information models, functionalities,
and architectural organization. Additionally, the research investigated the
integration of multi-MMR systems in the factories on the future consid-
ering as a reference the Platfform Industrie 4.0.

A significant effort of the thesis involved an in-depth analysis of dig-
italization initiatives in leading industrialized countries, specifically fo-
cusing on MMRs. This analysis led to one of the main results of
this thesis, the definition of the main design requirements for a
generic robotic system suitable for the flexible factory of the
future. Taking into account these requirements, various robotic, multi-
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agent and OPC UA frameworks have been analysed and their character-
istics have been summarized in Table 3.1. The list includes frameworks
with distributed and modular design (R2,R3), open-source (C6), multi-
platform (C7) and, if possible, based on standards (C4). On the one
hand, Robotic Frameworks, offer support of physical sensors and actua-
tors (C1), robotic algorithms (C2), simulation and modelling tools (C3).
Here, ROS emerged as the most popular and well-suited framework, with
widespread adoption and support from industrial robot manufacturers.
On the other hand, integrating the multi-agent paradigm into RFs could
advance socialization (R5), communication management (R6), recovery
(R7) and reconfiguration (R8) capabilities as well as the overall com-
munication security (C5). Here, the JADE multi-agent framework was
chosen for its high performance, ease of use, and adherence to widely
recognized standards. Additionally, OPC UA frameworks were identified
as complementary enablers for communication between machines, typi-
cally controlled by PLCs, robots and other CPPSs.

The first major contribution is centered on the development of
Robotframework, a generic control architecture enabling the in-
tegration of single robot capabilities for a wide range of mobile
manipulation applications. Combining the different robotic skills is
an error prone work that requires experience in many robotic fields, usu-
ally deriving on ad-hoc solutions that are not reusable in other contexts.
Robotframework aids at integrating different navigation, manipulation,
perception, and high-decision modules in a standardized form, leading to
a faster and simplified development of new robotic applications. The ar-
chitecture includes generic real-time data collection tools, diagnosis and
error handling modules, and user-friendly interfaces.

This architecture is considered generic because it is based on ROS, which
provides tools for developing robotic skills in a generic and standardized
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manner to work with a wide variety of hardware and software. It also
promotes the standardization of skills based on pluginlibs that together
with the meta-model and JSON format, proposed for plans generation,
enable interoperability and homogeneous execution of workflows across
different robots and robotic systems. All this without changing the main
core of the architecture. Thus, making use of Robotframework, any
high-level planner, which is application dependent, can generate a plan
for any robot, just being aware of the abilities provided by the concrete
robot (implemented by means of the pluginlib concept) as well as the
proposed meta-model guidelines and the JSON format.

Realistic use cases, including an industrial aileron inspection applica-
tion (CRO-INSPECT) and a pest inspection and treatment application
(Greenpatrol), validated the architecture’s effectiveness and practicality.
These use cases served to validate and demonstrate the generalization
capacity of Robotframework, and to showcase its implementation pos-
sibilities for future applications. As a result, it can be concluded that
the modular design and pluginlibs of Robotframework facilitate its reuse
in different contexts without major modifications, as it abstracts appli-
cation dependent modules from robot dependent modules, significantly
reducing the time required to develop new mobile manipulation applica-
tions. Notably, the framework’s flexibility is exemplified through various
navigation modes and mobile manipulation tasks presented as plugins,
offering templates for future applications. Figure 4.48 presents a sum-
mary of the already integrated applications with Robotframework and
how the previously introduced applications could be integrated with it.

However, while Robotframework effectively manages heterogeneous MMRs,
it lacks social features within its architecture. As a response to this lim-
itation and guided by design principles outlined in industrial reference
architectures such as RAMI 4.0, the thesis pursued the enhancement of
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social capabilities, that leads to the second contribution of this work.

The second major contribution of this thesis focuses on the seamless
integration of Robotframework into the factories of the future
by means of Asset Administration Shell. From a scientific point of
view, this approach offers a new perspective where MMR integration is
not treated as just another aspect of AAS implementation, but as its
main concern. To that end, heterogeneous production entities in the
smart factory have been identified and the service categories defined in
the Functional View of the AAS have been mapped to them.

From a methodological point of view, the integration is addressed through
a multi-layer approach that decouples integration-related concerns into
concrete, manageable tasks and provides guidance on how to define, im-
plement and deploy services. Moreover, the proposed integration prac-
tices adhere to RAMI 4.0 concepts to meet the requirements collected in
5.1, ensuring asset-related transportation services (SR1-SR2) while ab-
stracting social abilities from the control functionalities, as well as other
submodel services to notify significant events at social level (SR3) or
to allow internal parameters reconfiguration and adaptation on context
changes (SR4). Finally, the integration with MAS and industrial stan-
dards ensures the communication with any type of CPPS (SR5).

From an applied point of view, the development and evaluation of dis-
tributed task allocation and traceability mechanisms using Multi-Agent
Systems (MAS) and the industrial OPC UA standard demonstrate the
MMRs’ adaptness in transporting products and replenishing raw mate-
rials within the factory. The integration showcases the adaptability and
responsiveness of MMRs, effectively responding to transportation service
requests and dynamically adapting to contextual changes. The imple-
mentation of this architecture has been successfully executed on ROS and
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JADE, the widely adopted RF and MAS, respectively. The presented use
cases illustrate how MMRs based on this architecture seamlessly collabo-
rate with machines, charging stations, and environmental sensors within
the factory. The MMRs efficiently respond to transportation service re-
quests and adapt to changing contextual situations.

The consideration of the AAS concept and the conceptual service model
of the ASS (i.e., the service categories of the ASS) ensures the inte-
gration architecture’s interoperability, a prerequisite for facilitating their
adoption by companies. Besides, the successful implementation and val-
idation of this architecture further reinforce its applicability in future
smart manufacturing systems. Overall, these contributions emphasize
the significance of Robotframework and its potential to drive the ad-
vancement of Industry 4.0 principles, solidifying its position in the realm
of industrial automation and smart factories.

The contributions described in this report have given rise to a set of
results that have been published in journals with an impact index and
presented at international conferences of recognized prestige in the field
of research. The work carried out in relation to the development of
Robotframework, a generic robotic architecture for MMRs has resulted
in the following publications:

(a) J. Martin, A. Ansuategi, I. Maurtua, A. Gutierrez, D. Obregón,
O. Casquero, and M. Marcos, “A Generic ROS-Based Control
Architecture for Pest Inspection and Treatment in Greenhouses
Using a Mobile Manipulator”, in IEEE Access, vol. 9, pp. 94981-
94995, 2021, doi: 10.1109/ACCESS.2021.3093978.

(b) M. Pattinson, S. Tiwari, Y. Zheng, D. Fryganiotis, M. Campo-
Cossio, R. Arnau, D. Obregón, J. Martin, C. Tubio, I. Lluvia, O.
Rey, J. Verschoore, D. Húska, L. Lenza, J.R. Gonzalez, “Galileo
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Enhanced Solution for Pest Detection and Control in Greenhouses
with Autonomous Service Robots”, 2020 European Navigation Con-
ference (ENC), Dresden, Germany, 2020, pp. 1-10, doi: 10.23919/
ENC48637.2020.9317451.

(c) J. Martin, H. Engelhardt, M. Masannek, T. Scholz, K. Gillmann,
B. Schadde (2019). “RoboCup@Work 2018 Team AutonOHM”,
Robot World Cup XXII. RoboCup 2018 Lecture Notes in Computer
Science, vol 11374. Springer, Cham, doi: 10.1007/978-3-030-
27544-0_41

(d) J. Martin, H. Engelhardt, T. Fink, M. Masannek, T. Scholz,
(2018). “RoboCup@Work Winners 2017 Team AutonOHM”, Robot
World Cup XXI. RoboCup 2017 Lecture Notes in Computer Sci-
ence(), vol 11175. Springer, Cham, doi: 10.1007/978-3-030-
00308-1_41

(e) J. Martin, T. Fink, S. May, C. Ochs, and I. Cabanes, “An Au-
tonomous Transport Vehicle in an existing manufacturing facility
with focus on the docking maneuver task”, in 2017 3rd Interna-
tional Conference on Control, Automation and Robotics, ICCAR
2017, 2017, pp. 365–370.

With respect to the integration of Robotframework on the factories of
the future, the following publications can be highlighted:

(a) J. Martin, O. Casquero, B. Fortes and M. Marcos, , “A Generic
Multi-Layer Architecture Based on ROS-JADE Integration for Au-
tonomous Transport Vehicles”, Sensors, 2019 19(1), 69, doi:10.3390
/s19010069

(b) M. López, J. Martin, U. Gangoiti, A. Armentia, E. Estévez,
M. Macos, “Tolerancia a fallos en sistemas de fabricación flexible
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basado en MAS” Jornadas de Automática, 2018, Badajoz. (Price
for the best work in computers and control).

(c) M. López, J. Martin, U. Gangoiti, A. Armentia, E. Estévez, M.
Macos, “Supporting Product Oriented Manufacturing: a Model
Driven and Agent based Approach”, 16th IEEE International Con-
ference on Industrial Informatics (INDIN), 2018, Oporto.

(d) J. Martin, S. Endres, M. Stefan, and C. Itziar, “Decentralized
Robot-Cloud Architecture for an Autonomous Transportation Sys-
tem in a Smart Factory,” in 2nd International Workshop on Linked
Data in Industry 4.0 (LIDARI). CEUR Workshop Proceedings (CEUR-
WS.org), 2017.

6.2 Future Work
The work conducted in this thesis has laid a strong foundation for fu-
ture research in the realm of mobile manipulation robotics and smart
manufacturing systems. The development of the Robotframework archi-
tecture, validated through realistic use cases, showcases its potential for
diverse applications and its seamless integration within the factories of
the future. To further enhance its versatility, future work should focus on
integrating navigation goals into tasks, expanding the architecture’s ap-
plicability to a wider range of applications, conducting extensive testing
with new use cases, and transitioning to ROS2 for improved communi-
cation mechanisms among robots. These endeavors promise to elevate
the framework’s adaptability, robustness, and scalability, contributing to
the advancement of Industry 4.0 principles and the evolution of smart
factories on a global scale.

Chapter 4 of this thesis introduced the targets-plan-operation mode and
its correlated meta-model, which exhibits a generic and versatile nature
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applicable to a wide spectrum of mobile manipulation applications. How-
ever, there are potential improvements that could render it even more
inclusive, such as integrating navigation goals into tasks. Initially fo-
cused on mobile robots, the operation was expected to always have a
navigation goal, but as evident from the analysis, this may not always
be the case. By merging navigation goals and tasks under the unified
concept of "tasks," the framework’s versatility and coherence can be fur-
ther enhanced. This vision holds true for all the use cases presented
in this work, including Robocup@work, Bosch production system, and
cro-inspect, streamlining both the state machine’s complexity and the
development of new navigation and manipulation abilities.

Furthermore, the architecture holds the potential to extend its utility
to a broader range of applications that might not necessarily involve
navigation but could still benefit from the well-structured framework of
Robotframework. By reusing several packages provided, such as the GUI,
robot_manager, specific robotic skills, or the diagnostics and monitoring
modules, these applications can capitalize on the framework’s modularity
and efficiency.

A future direction for enhancing the architecture involves its integration
into ROS2, which holds the potential to address various issues related
to a single master and elevate the quality of communication mechanisms
among robots. This upgrade could further elevate the framework’s per-
formance, scalability, and compatibility with the latest advancements in
robotics and automation technologies.

To reinforce the robustness of the architecture, it is essential to sub-
ject it to further testing with new use cases. By exploring additional
scenarios, such as human-robot collaboration or transportation use cases
requiring load manipulation, the architecture’s adaptability and applica-
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bility can be thoroughly assessed and refined. For instance, a use case
where the product agent triggers all the required transportation and man-
ufacturing services while simultaneously performing traceability would be
an intriguing avenue for exploration. Mobile robotics offers a wide range
of possibilities, from ambitious applications to more modest ones, with
the potential to be employed in various fields. Virtually any task can
be streamlined and automated, either by a mobile robot operating inde-
pendently or in coordination with others, resulting in faster, safer and
more efficient processes. While significant progress has been made in
this domain over the past decades, the forthcoming advancements are
perhaps even more exciting and expected to have a profound impact on
society.

Another interesting line of work would be related to the use of other MAS
frameworks, such as Python Agent DEvelopment framework (PADE)
[255] or Smart Python Agent Development Environment (SPADE) [256].
A Python-based MAS framework can provide access to a rich ecosystem
of Machine Learning libraries that could be used to enhance agent capa-
bilities.
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