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Abstract 27 

Background: The possible associations between genetic variants and osteosarcoma risk 28 

have been analyzed without conclusive results. Those studies were focused mainly on 29 

genes of biologically plausible pathways. However, recently, another pathway has 30 

acquired relevance in cellular transformation and tumorigenesis, microRNA (miRNA) 31 

processing pathway. Dysregulation of the expression levels in genes of this pathway has 32 

been described in cancer. Consequently, single nucleotide polymorphisms (SNPs) that 33 

change genes that codify proteins involved in miRNA processing pathway may affect 34 

miRNA, and therefore their target genes, that might be associated with cancer 35 

development and progression. The aim of this study was to evaluate whether SNPs in 36 

miRNA processing genes, confer predisposition to osteosarcoma. 37 

Procedure: We analyzed 72 SNPs in 21 miRNA processing genes in a total of 99 38 

osteosarcoma patients and 387 controls.  39 

Results: A total of three SNPs were associated with osteosarcoma susceptibility. 40 

Interestingly, these three SNPs were located in three miRNA processing genes (CNOT1, 41 

CNOT4 and SND1) part of the RISC complex. Among them, the association of 42 

rs11866002 in CNOT1 remained significant (p=0.08) after Bonferroni correction.  43 

Conclusions: For the first time, this study indicates that SNPs in RISC complex genes, 44 

especially rs11866002 in CNOT1 may represent novel markers of osteosarcoma 45 

susceptibility.  46 

47 



Introduction 48 

Osteosarcoma is the most common primary malignant bone tumor, mainly occurring in 49 

children and adolescents (1). Several studies have provided evidence of an inherited 50 

genetic risk for osteosarcoma. Most of these studies focused on biologically plausible 51 

pathways such as cyclic AMP signaling cascade (GRM4), growth related genes (VDR, 52 

IGF2R), or DNA repair (TP53, MDM2, etc) (2-4).  53 

54 

Recently, another pathway that has acquired relevance in cellular transformation and 55 

tumorigeneisis is microRNA (miRNA) processing pathway (Kumar et al. 2007, Zhang et 56 

al., 2013). In this pathway, primary double-stranded miRNA transcripts (pri-miRNA) are 57 

processed in the nucleus by DROSHA RNase and the double-stranded RNA binding 58 

protein, DGCR8. The resulting precursor miRNA molecule of 70-100 nucleotides (pre-59 

miRNA) is then translocated into the cytoplasm by RAN GTPase and XPO5. In the 60 

cytoplasm, the pre-miRNA terminal loop is cleaved by DICER in collaboration with 61 

TARBP2, yielding ∼22-nt RNA duplexes. One strand of the duplex is preferentially 62 

incorporated into the RNA-induced silencing complex (RISC), that includes EIF2C1, 63 

EIF2C2, SND1, GEMIN3, GEMIN4 and CCR4-NOT complex (3). In the RISC, miRNAs 64 

target mRNAs for translational repression, deadenylation, or degradation (Li et al., 2014). 65 

An alteration in any step of this pathway could affect miRNAs production, as has been 66 

shown in recent studies (Melo and Esteller 2014, Melo et al., 2009, Iliou 2013, Wu et al. 67 

2014), and this might lead to the deregulation of cancer related genes. In fact, 68 

dysregulation of the expression levels in genes of this pathway has been described in 69 

several types of cancer, for example, the down-regulation of DROSHA and DICER 70 

expression in breast cancer and the up-regulation of EIF2C2 and TARBP2 in prostate 71 

cancer (refs Huang 2014).  72 

http://www.pnas.org/content/111/19/6970.long#ref-3


73 

It is widely known that single nucleotide polymorphisms (SNPs) could affect protein 74 

synthesis or function. Consequently, SNPs in genes of the miRNA processing pathway 75 

migth lead to changes in miRNA-mediated regulation (Mishra et al., 2009). In fact, the 76 

SNP rs640831 in DROSHA has been associated with the dysregulation of 56 miRNAs in 77 

lung cancer (Rottuno et al., 2010). Therefore, SNPs in this pathway may be associated 78 

with cancer development and progression (Horiwaka et al., 2008), as has been found in 79 

some studies. For instance, rs2740348 in GEMIN4 has been associated with prostate 80 

cancer risk (Liu et al., 2012), rs417309 in DGCR8 with breast cancer risk (Jiang et al., 81 

2013), rs197412 in GEMIN3 with renal cell carcinoma risk (Horiwaka et al., 2008), and 82 

recently, our group found rs139919 in TNRC6B to be associated with acute lymphoblastic 83 

leukemia susceptibility (Gutierrez-Camino et al., 2014), 84 

85 

However, in spite of all these evidences, SNPs in miRNA processing genes have not been 86 

studied in association with osteosarcoma risk. 87 

88 

Therefore, the aim of this study was to detect new genetic markers of osteosarcoma 89 

susceptibility, performing a deep analysis of SNPs in miRNA processing genes. 90 

91 

Methods 92 

Patients 93 

The patients included in this retrospective study were 99 Spanish children and young 94 

adults (<34 years) diagnosed with high-grade conventional osteosarcoma at the Oncology 95 

Unit of the Department of Pediatrics of the University Clinic of Navarra between 1985 96 

and 2003. In addition, 387 healthy individuals of European origin with no previous history 97 



of cancer from the collection C.0001171 registered in the Institute of Health Carlos III 98 

(ISCIII) were enrolled as controls (Table I). Informed consent was obtained from patients 99 

or their parents before sample collection and local institutional approval was obtained 100 

(Research Ethics Committee of the University of Navarra 105/2009)  101 

 102 

Selection of genes and polymorphisms 103 

We selected 21 genes in the miRNAs processing pathway after literature review and using 104 

the Patrocles database (14) (http://www.patrocles.org/) (University of Liège, Liège, 105 

Belgium). Using tagSNPs, we covered almost all the SNPs in each gene with potentially 106 

functional effects using International HapMap Project (release #24; 107 

http://www.hapmap.org), F-SNP (http://compbio.cs.queensu.ca/F-SNP/) (Queen´s 108 

University, Kingston, Canada), Fast-SNP (http://fastsnp.ibms.sinica.edu.tw) (Academia 109 

Sinica, Taipei, Taiwan), and Patrocles databases and the Haploview v4.2 software 110 

(http://www.broad.mit.edu/mpg/haploview/) (Broad Institute, Cambridge, USA). We 111 

considered functional SNPs those causing amino acid changes, alternative splicing, those 112 

located in the promoter region in putative transcription factor binding sites, or 113 

disrupting/creating miRNAs targets. We also selected SNPs from the literature described 114 

in association with cancer risk. All SNPs were selected with a minor allele frequency 115 

(MAF) greater than 5% (MAF≥0.05) in European/Caucasian populations. 116 

  117 

Genotyping 118 

Genomic DNA was extracted with conventional phenol-chloroform methods from 119 

EDTA-anticoagulated blood (Sambrook 2001). 120 

 121 

http://www.patrocles.org/
http://compbio.cs.queensu.ca/F-SNP/
http://www.broad.mit.edu/mpg/haploview/)%20(Broad


SNP genotyping was performed using TaqMan OpenArray Genotyping technology 122 

(Applied Biosystems, Life Technologies, Carlsbad, CA, USA) according to published 123 

Applied Biosystems protocols. The preliminary list of SNPs was filtered using suitability 124 

for the Taqman OpenArray platform as criterium. Initially, 76 SNPs were selected for 125 

analysis. After considering compatibility with the Taqman OpenArray platform, 72 SNPs 126 

in 21 genes involved in miRNA biogenesis were included in a Taqman OpenArray Plate 127 

(Applied Biosystems) (Supplementary Table SI ). 128 

 129 

Data analysis was carried out with Taqman Genotyper software (Applied Biosystems) for 130 

genotype clustering and genotype calling. As a genotyping control, duplicate samples 131 

were placed across the plates.  132 

 133 

Statistical analysis 134 

In order to identify any deviation from Hardy-Weinberg equilibrium (HWE) in the 135 

population of healthy controls (n = 387), χ2 test was used. The association between 136 

genetic polymorphisms in cases and controls was also evaluated using the χ2. Fisher´s 137 

exact test was used if a genotype class had less than 5 individuals. The effect sizes of the 138 

associations were estimated using odds ratio (OR) values obtained from univariate 139 

logistic regression. The most significant test among codominant, dominant, recessive, and 140 

additive genetic models was selected. In all cases, the significance level was set at 5%. 141 

The results were corrected for multiple comparisons using the conservative Bonferroni 142 

correction. In this case, the significance level was set at 10%. Analyses were performed 143 

using the R v2.11 software (http://www.R-project.org) (University of Auckland, New 144 

Zealand). 145 

 146 



Results 147 

 148 

Genotyping Results 149 

A total of 99 patients with osteosarcoma and 387 unrelated healthy controls were 150 

available for genotyping. Successful genotyping was achieved for 427 DNA samples 151 

(87.86%) (samples with more than 20% missing genotypes were removed). Among the 152 

SNPs, 67/72 (93.05%) were genotyped satisfactorily. Failed genotyping was due to 153 

absence of PCR amplification, insufficient intensity for cluster separation or poor cluster 154 

definition. After removing failed samples and SNPs, the average genotyping rate was 155 

97.22%. Furthermore, 10 SNPs out of the 67 genotyped SNPs were not in HWE in the 156 

population of 387 healthy controls and, therefore, were not considered for further 157 

analysis. In total, 15 SNPs were excluded from the association study (Supplementary 158 

Table SII), leaving 57 SNPs available for further analysis. 159 

 160 

Analysis of the association with osteosarcoma risk  161 

In order to investigate whether genetic variation in miRNA processing genes influences 162 

the risk of osteosarcoma, the frequencies of the 57 successfully genotyped 163 

polymorphisms were compared between cases and controls. As shown in Table II, three 164 

polymorphisms in miRNA-processing genes were associated with osteosarcoma risk (p < 165 

0.05).  166 

 167 

The most significant SNP was rs11866002, a SNP located in the CNOT1 gene. Under the 168 

dominant genetic model, the CT+TT genotype was associated with a 0.44-fold decrease 169 

in osteosarcoma risk (95% CI: 0.27-0.73; p = 0.001) which remained statistically 170 

significant after Bonferroni correction (p = 0.08). The other two SNPs showing less 171 



significant association with osteosarcoma risk were rs3812265 in CNOT4(p=0.025) and 172 

rs3823994 in SND1 (p=0.041) (Table II).  173 

 174 

Discussion 175 

In this study, three SNPs in three miRNA processing genes (CNOT1, CNOT4 and SND1), 176 

all of them were located in the RISC, were found to be associated with osteosarcoma risk. 177 

Remarkably, the association of rs11866002 in CNOT1 remained statistically significant 178 

after Bonferroni correction. Our results suggest a role of SNPs in miRNA processing 179 

genes in osteosarcoma susceptibility. 180 

 181 

In our study, the CC genotype of rs11866002 in CNOT1 was associated with a decreased 182 

risk of osteosarcoma. This SNP, which was the most significantly associated with 183 

osteosarcoma risk (p=0.001 and 0.08 after Bonferroni correction), is a synonymous 184 

change potentially affecting splicing regulation (20). Interestingly, this result is consistent 185 

with our previous study, in which the C allele was associated with a lower risk of acute 186 

lymphoblastic leukemia (Gutierrez-Camino et al., 2014), suggesting a relevant role of 187 

rs11866002 in cancer susceptibility. On the other hand, the rs3812265 CT+TT genotype 188 

in CNOT4 was associated with an increase in osteosarcoma susceptibility (p=0.025). This 189 

SNP is a missense variant that changes the sequence of the protein (Val>Ile) (20) , and 190 

that, as a result, could affect its function. In the RISC complex, both CNOT1 and CNOT4 191 

are part of CCR4-NOT complex (18, 19), which removes poly(A) from mRNAs bound 192 

by miRNAs (17). It has been reported that the depletion of the components of the CCR4–193 

NOT deadenylating complex prevents the decay of mRNAs (Behm-Ansmant 2006). 194 

Therefore, polymorphisms that affect CNOT1 and CNOT4 might alter mRNA 195 



deadenylation and could alter the expression of genes involved in the origin and evolution 196 

of osteosarcoma. 197 

 198 

Finally, TT genotype of SNP rs3823994 in SND1 gene showed association with a 199 

decreased risk of osteosarcoma. This SNP potentially affects splicing regulation. SND1 200 

functions as a nuclease in the RISC complex (21) and controls the degradation of edited 201 

miRNAs (Li et al., 2008). It has been shown that SND1 is deregulated in hepatocellular 202 

carcinoma (Yoo et al., 2011) and primary cutaneous malignant melanoma (Sand et al., 203 

2012). The deregulation of SND1 could affect miRNA levels, which could explain the 204 

increase in osteosarcoma risk. Indeed, it has been described that silencing of SND1 205 

increases the expression of the mature miR-17-92a cluster members (Heinrich et al., 206 

2013), a cluster overexpressed in osteosarcoma in association with proliferation, invasion 207 

and migration of osteosarcoma cells (Yang et al., 2014).  208 

 209 

The remarkable finding in this study is that all the SNPs associated with osteosarcoma 210 

susceptibility were located in the RISC complex. This complex loaded with a miRNA 211 

(miRISC) mediates the repression of specific target mRNAs either by degrading or by 212 

inhibiting translation (Huang 2014). Several studies have provided evidence that 213 

deregulation of genes of this complex not only affects silencing of miRNA targets, but 214 

also miRNA expression levels. For instance, depletion of TNRC6A leads to the 215 

upregulation of many mRNA targets but it does not affect miRNAs expression levels 216 

(Eulalio et al., 2009) and the dysregulation of EIF2C2 has been correlated with an 217 

increase of mature miRNA levels in multiple myeloma (zhou et al., 2010, paper de 218 

winter). Therefore, SNPs in the components of RISC complex that affect their function 219 

may alter the miRNA-mediated mRNA regulation. 220 



 221 

In conclusion, we have found for the first time that SNPs in RISC genes, especially 222 

rs11866002 in CNOT1 may represent novel markers of osteosarcoma susceptibility. 223 

Further studies will be needed to confirm these results.  224 

 225 
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Tables 246 

Table 1: Characteristics of the study population of osteosarcoma patients and controls. 247 

 
Patients Controls 

No. of individuals 99 387 

Mean age ± SE, y 14.60 ± 5.23 51.2 ± 7.7 

Sex, n (%)   

Males 55 (55.55) 199 (51.4) 

Females 44 (44.44) 187 (48.3) 

SE: standard error. 248 

Table 2: Genotype frequencies of the SNPs in miRNA processing genes that were most 249 

significantly associated with osteosarcoma risk. 250 

Gene SNP Genotype 
Controls 

n (%) 

Cases 
n (%) 

Best fitting 
model 

OR (95% CI) 
P-value 

 

P-value 
(Bonferroni) 

CNOT1 rs11866002 CC 134 (38.7) 46 (59.0) Dominant  0.001 
0.08 

  CT 174 (50.3) 26 (33.3) 
CC 

CT/TT 
1.00 

0.44 (0.27-0.73) 
  

  
TT 38 (11.0) 6 (7.7) 

   
 

CNOT4 rs3812265 CC 212 (63.1) 39 (49.4) Dominant  0.025 
N.S. 

  CT 109 (32.4) 37 (46.8) 
CC 

CT/TT 
1.00 

1.75 (1.07-2.87) 
 

 

  TT 15 (4.5) 3 (3.8)    
 

SND1 rs3823994 AA 163 (46.8) 47 (59.5) Additive  0.041 
N.S. 

  AT 157(45.1) 28 (35.4) AA vs AT vs TT 0.66(0.43-0.99)  
 

  TT 28 (8) 4 (5.1)     

NS: No significant 251 

 252 

253 
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