den Hoed, M., Lopez-Lopez, E., te Winkel, M. et al. *Genetic and metabolic determinants of methotrexate-induced mucositis in pediatric acute lymphoblastic leukemia*. **Pharmacogenomics J** 15, 248–254 (2015)This version of the article has been accepted for publication, after peer review (when applicable) and is subject to Springer Nature's AM terms of use, but is not the Version of Record and does not reflect post-acceptance improvements, or any corrections. The Version of Record is available online at: <u>https://doi.org/10.1038/tpj.2014.63</u>

## Genetic and metabolic determinants of methotrexate induced

## <sup>2</sup> mucositis in pediatric acute lymphoblastic leukemia.

M.A.H. den Hoed<sup>1</sup>, E. Lopez-Lopez (PhD)<sup>2</sup>, M.L. te Winkel(MD, PhD)<sup>1</sup>, W. Tissing(MD, PhD)<sup>3</sup>,
J.D.E. de Rooij(MD)<sup>1</sup>, A. Gutierrez-Camino(MSc)<sup>2</sup>, A. Garcia-Orad(Prof.)<sup>2</sup>, E. den Boer(MSc)<sup>4</sup>, R.
Pieters(Prof.)<sup>1,5</sup>, S.M.F. Pluijm(PhD)<sup>1</sup>, R. de Jonge(PhD)<sup>4</sup>, M.M. van den Heuvel-Eibrink(MD,
PhD)<sup>1</sup>
<sup>1</sup>Department of Pediatric Oncology/ Hematology, Erasmus MC-Sophia Children's Hospital,
Rotterdam, The Netherlands; <sup>2</sup>Department of Genetics, Physical Anthropology and Animal

Physiology, University of the Basque Country (UPV/EHU), Leioa, Spain; <sup>3</sup>Department of
 Oncology/ Hematology, University of Groningen, University Medical Center Groningen-Beatrix
 Children's Hospital, Groningen, The Netherlands; <sup>4</sup>Department of Clinical Chemistry, Erasmus
 MC – University Medical Center, Rotterdam, The Netherlands; <sup>5</sup>Department of Pediatric
 Oncology/ Hematology, Princess Maxima Center, Utrecht, The Netherlands;

14

15 **Corresponding author:** 

16 M.M. van den Heuvel-Eibrink, MD, PhD, Associate Professor in Pediatric Oncology/Hematology

17 Erasmus MC – Sophia Children's Hospital, Room Na16.13

18 Dr. Molewaterplein 60, 3015 GJ Rotterdam, the Netherlands

19 Email: m.vandenheuvel@erasmusmc.nl

20 tel: +31(0)10 7036691 fax: +31(0)10 7036801

| 0   | 0 |
|-----|---|
| - / |   |
|     |   |

- 23 Running head: Methotrexate toxicity in pediatric acute lymphoblastic leukemia
- 24 Key words: childhood acute lymphoblastic leukemia (ALL), methotrexate toxicity, single
- 25 nucleotide polymorphisms, pharmacogenetics
- 26 Word counts; total: 5519 abstract: 164 manuscript: 3180
- Number of; tables: 2, figures: 3, supplemental: 6

#### 29 Abstract

Methotrexate(MTX) is an effective and toxic chemotherapeutic drug in the treatment of 30 pediatric acute lymphoblastic leukemia(ALL). In this prospective study we aimed to identify 31 metabolic and genetic determinants of MTX toxicity. 134 Dutch pediatric ALL patients were treated with four high infusions MTX(HD-MTX: 5  $g/m^2$ ) every other week according to the DCOG-ALL10 protocol. Mucositis(National Cancer Institute grade  $\geq$ 3) was the most frequent 34 occurring toxicity during the HD-MTX phase(20%), and occurred especially after the first MTX 35 36 course. Mucositis was not associated with plasma MTX, plasma folate or plasma homocysteine levels. Higher erythrocyte folate levels measured at start of protocol M(median 1.2 µmol/L vs. 37 1.4 µmol/L, p<0.008), which could reflect an increased MTX uptake in mucosal cells, were 38 39 associated with more mucositis. From 17 single nucleotide polymorphisms(SNPs) in the MTX pathway, only patients with the wild-type variant of rs7317112 SNP in ABCC4 gene had more 40 mucositis(AA(39%) vs. AG/GG(15%), p=0.016). We found no evidence that erythrocyte folate 41 levels mediate in the association between the rs7317112 and mucositis. 42

## 43 Introduction

Acute lymphoblastic leukemia (ALL) represents 25% of all childhood malignancies<sup>1</sup>. Cure rates have reached 90% in the developed countries due to improved stratification and advanced treatment options over the last decades<sup>2, 3</sup>. Consequently, it has gained importance to reduce toxicity of cancer treatment by identifying determinants of toxicity.

Methotrexate (MTX) is an important chemotherapeutic drug in the treatment of pediatric ALL. Side effects of MTX vary among patients and can lead to amendments of treatment with a possible impaired survival in serious cases<sup>4</sup>. The aim of this study is to identify metabolic and genetic determinants of MTX toxicity.

MTX enters the cell via the reduced folate carrier (RFC1/SLC19A1) or solute carrier organic anion transporter (SLCO1B1)<sup>5, 6</sup>. In the cell, MTX is converted to MTX-polyglutamate (MTX-PG) and it inhibits dihydrofolate reductase (DHFR) which depletes formation of the active form of folate; this folate depletion is cytotoxic to leukemic cells. MTX can further interfere with thymidylate synthase (TS), 5,10-methylenetetrahydrofolate reductase (MTHFR), methionine synthase reductase (MTRR) and thiopurine methyltransferase (TPMT)<sup>7</sup>. MTX is eliminated through transporters such as multidrug resistance-associated proteins (ABCC2 and ABCC4)<sup>8</sup> (supplemental figure 1).

Several studies in ALL have suggested that variation in single nucleotide polymorphisms (SNPs) in these aforementioned genes contribute to the inter-individual variation in MTX toxicity (supplemental table 1). But outcomes of previous studies were often contradictory and they ignored the metabolic implication of SNPs. The novelty of this study is that it includes prospective monitoring of toxicity in a cohort of pediatric ALL patients, including not only genetic variation but also plasma and cellular assessment of MTX pathway metabolites (folate/homocysteine).

## 67 Patients and Methods

Eligible for inclusion were children with newly diagnosed ALL (from November 2004 to March 68 2012) who were admitted to the Erasmus MC-Sophia Children's Hospital in Rotterdam or the 69 University Medical Center Groningen (UMCG)-Beatrix Children's Hospital in Groningen. The patients were treated according to the Dutch Child Oncology Group ALL-10 protocol and were 71 aged between 1-19 years. The ALL-10 protocol stratified patients into a standard, medium or a 72 high-risk group. For the current study, only standard- and medium-risk patients were included, 73 as high-risk patients received interfering concomitant drugs. Children with relevant germline 74 aberrations, such as Down syndrome<sup>9</sup>, SPINK-1 mutation<sup>10</sup>, were excluded from this study due 75 to their expected clinical aberrant toxicity profile (figure 1). 76

The study was approved by medical ethical committee (MEC-05-358) and informed consent was obtained by parents or guardians and patients (in case they were older than 12 years) according to the Declaration of Helsinki<sup>11</sup>.

80 ALL10 Protocol and data collection

Patients were included before start of Protocol M, which is a 56-day treatment period including 81 four courses of High Dose-MTX (HD-MTX) (supplemental figure 2). At day 1 of protocol M, oral 82 6-Mercaptopurine (25 mg/m<sup>2</sup> daily) was started for 56 days. Patients received 4 courses of MTX intravenous (IV) infusions every 2 weeks at a dose of 5 g/m<sup>2</sup> over 24 hrs starting at day 8. 84 Each HD-MTX administration was combined with intrathecal triple therapy in a standard dose 85 adjusted for age (8-12 mg MTX; 20-30 mg Cytosine Arabinoside; 8-12 mg Diadreson F aquosum). Leucovorin rescue (folinic acid: 15 mg/m<sup>2</sup>) was administered every 6 hours, starting 87 at 42 hours after start of the of HD-MTX administration with a minimum of three dosages. 88 Standard supportive care guidelines included hyperhydration (2.5–3.0 L/m<sup>2</sup>/day) and using 89 sodium bicarbonate to keep the urine alkalinized (pH between 7 and 8). 90

Patients had a standard hospital admission of 48 hours during the MTX courses. Plasma MTX levels were measured at 24 (T24) and 48 (T48) hours after starting the MTX-HD infusion. Patients were discharged from hospital as soon as MTX plasma levels at T48 were below 0.4  $\mu$ mol/L. When MTX<sub>T48</sub> plasma levels were higher than 0.4  $\mu$ mol/L, hyperhydration, alkalinization and folic acid rescue was continued for a minimum of 24 hours.

96 **Toxicity assessment** 

A slightly modified version of The National Cancer Institute (NCI)<sup>12</sup> Common Terminology Criteria for Adverse Events v.3.0 (CTCAE) score system was used to document toxicity. Toxicity was graded at five time points: just before each HD-MTX course and at the end of protocol M the maximum experienced toxicity during and after the previous course was graded (supplemental figure 2, supplemental table 2). Relevant clinical toxicity was defined as NCI grade  $\geq$ 3, for mucosal, neurological and skin toxicity. Hospital readmissions were also recorded as a proxy for toxicity.

104 Metabolic determinants of toxicity

Plasma MTX was determined using the Abbot fluorescent polarization immune assay on an Abbott TDx FLx Immunology Analyzer (Abbott Diagnostics, Hoofddorp, The Netherlands). For patients in which blood samples of MTX were not exactly taken at 24 or 48 hours, plasma MTX levels were extrapolated to 24 or 48 hours with MwPharm (version 3.30) with the pharmacokinetic model from Rousseau<sup>13</sup>.

Peripheral blood samples for measurement of MTX-pathway metabolites (plasma homocysteine and folate, and erythrocyte folate) were collected from the patients in fasting state before the start of protocol M and two weeks after discontinuation of protocol M (supplemental figure 2). The EDTA tubes was kept on melting ice until centrifugation within two hours. Samples of MTX-polyglutamates (MTX-PG<sub>1-5</sub>) were only collected two weeks after

discontinuation of protocol M. All blood samples were stored at -80°C and analyzed collectively at the end of the total study period. Erythrocyte and plasma folate were measured using electrochemiluminescence immunoassay (Modular E170, Roche, Almere, Netherlands). Plasma homocysteine levels were analyzed using liquid chromatography - tandem mass spectrometry<sup>14</sup>.

119 Genetic determinants of toxicity

Candidate SNPs were selected based on their documented effect on enzyme activity or 120 association with MTX toxicity by earlier published studies (supplemental table 1). Our selection 121 included the following SNPs in; *MTHFR* (rs1801133<sub>C>T</sub><sup>15-20</sup> and rs1801131<sub>A>C</sub><sup>18, 21</sup>), MTRR 122  $(rs1801394_{A>G}^{18})$ , RFC1  $(rs1051266_{G>A}^{17, 22})$ , ABCC2  $(rs12826_{A>G}, rs12826_{C>T}, and rs3740065_{T>C})^{23}$ , 123 ABCC4 (rs1678392<sub>G>A</sub>, rs2619312<sub>T>C</sub>, rs7317112<sub>A>G</sub>, rs9302061<sub>T>C</sub>, rs9516519<sub>T>G</sub> and 124  $rs10219913_{T>C}$ <sup>23</sup> and SCLO1B1 (rs48651564<sub>T>C</sub>)<sup>24, 25</sup>. SNPs in the gene TPMT (rs1800462<sub>G>C</sub>, 125 rs1800460<sub>G>A</sub> and rs1142345<sub>A>G</sub>) were also selected as MTX indirectly inhibits the TPMT 126 enzyme activity after HD-MTX infusions due to protein binding<sup>7</sup> and a low TPMT activity is 127 known to cause toxicity for 6-MP<sup>26</sup>(supplemental table 3). 128

129 Genotyping

Peripheral blood drawn at start of protocol M whence genomic DNA was extracted using the 130 Magna Pure Compact Nucleic Acid isolation kit (Roche Molecular Biochemicals, Almere, 131 Netherlands) in accordance with the manufacturer's instructions. Genotyping was performed 132 using Taqman allelic discrimination assays, PCR-RFLP or PCR sequencing. A Taqman allelic 133 discrimination assay was performed on the Prism 7000 sequence detection system (Life 134 Technologies, Applied Biosystems, Bleiswijk, Netherlands) and compared with 500 healthy 135 Dutch blood bank donors cohort<sup>27</sup>. PCR sequencing was performed using a BigDye terminator 136 v1.1 Course Sequencing kit (PE Applied Biosystems, Foster City, CA, USA) on a 3130x Genetic 137

Analyzer (Applied Biosystems). Sequence analysis was done with CLC Workbench software
 (CLCbio, Aarhus, Denmark).

140 Statistical Analysis

Clinical toxicity was defined as an NCI grade  $\geq$  3, and plasma MTX measurements were included in the analysis as endpoints. For each SNP, genotype frequency distribution was tested for Hardy–Weinberg equilibrium (HWE) using the standard  $\chi^2$ -test. Polymorphism groups were dichotomized into a dominant or recessive inheritance model, based on their significant association with each toxicity endpoint or levels of MTX or folate metabolites<sup>28</sup>.

Mann-Whitney U-test was used to examine the differences between MTX, folate and homocysteine levels and patients with and without toxicity or between the genotype categories. The  $\chi^2$ -test was used to compare the frequency of toxicity between the genotype categories. Logistic regression analysis was performed and adjusted for age and gender and, if applicable, MTX course. Lastly, we tested for possible mediation of MTX levels or folate metabolites in the associations between SNPs and toxicity by following the requirements stated by Baron and Kenny et al.<sup>29</sup>.

Analyses were controlled for multiple testing by repeating the analysis with measures from only the first course as an internal validation.

The significance level was set at p=0.05 (two-tailed tests). Statistics were performed with SPSS Statistics Version 20.0.0.1 (SPSS Inc., Chicago, IL, USA). Linkage disequilibrium was calculated with Haploview (version 4.2; Broad Institute, Cambridge, MA, United States)<sup>30</sup>, using International HapMap Project (release #24; http://www.hapmap.org).

## 159 **Results**

160 Patients characteristics and frequency of toxicity

134 patients were included (Erasmus MC n=86, UMCG n=48) (figure 1) with a median age of 5.3
years (range 1.4-18.1 years) of which 52% (n=70) were male and 17 patients (13%) had T-cell
ALL (table 1).

At the start of Protocol M, none of the patients showed signs of clinical toxicity (NCI  $\geq$  grade 3). At the start of protocol M, most patients had white blood cell count above the required threshold of  $1.5 \times 10^9$ /L (92%, n=121). However, 58% (n=71) patients were neutropenic (<0.5 ×  $10^9$ /L). During protocol M, skin toxicity occurred in 7% (n=9), diarrhea in 3% (n=2) and neurotoxicity in 3% (n=2) of the patients. Acute kidney toxicity at T48 occurred in only 1 patient (1%) and acute liver toxicity at T48 occurred in 6 patients (5%) (figure 2).

Mucositis occurred in 20% (n=26) of the patients and especially after the first course compared to the other courses (15% (n=18) vs. 8.1% (n=10) in the other courses, p=0.006). The occurrence of mucositis was not related to age, gender, immunophenotype nor neutropenia or leukopenia (table 1).

Extra hospital admissions in between MTX courses were reported in 10 patients (8%). These were caused by severe mucositis (n=3), nausea (n=1), blood transfusions (n=2), encephalopathy (n=1), fever (n=2) and unknown factors (n=1). No deaths were reported during protocol M. Only mucositis was used as toxicity endpoint in further analyses.

178 Metabolic determinants of MTX-induced toxicity

Median plasma MTX levels of all the four courses in 134 patients were 64 μmol/L at T24 (n=298,

range: 9-382 μmol/L) and 0.38 μmol/L at T48 (n=448, range: [0.10-22 μmol/L]).

There was no significant difference in median MTX plasma levels between patients with and without mucositis at T24 or T48 over all courses, or per course. This was confirmed by multivariable logistic regression analyses, were we adjusted for age and gender (data not shown).

In 78 patients, the median baseline level of plasma homocysteine was 6.9 umol/L [3.3-20.2
umol/L], and plasma folate level was 17.0 nmol/L [6.0-44.8 nmol/L] and erythrocyte folate level
was 1.24 umol/L [0.81-3.61 umol/L].

Higher levels of baseline erythrocyte folate were found in patient with mucositis (p=0.012, 188 figure 3). For every increase in  $\mu$ mol/L erythrocyte folate the odds of developing mucositis was 189 1.10 (95%CI 0.97-1.25). However after removing one extreme outlier more than 3 standard 190 deviations from the mean of erythrocyte folate, a higher erythrocyte folate at baseline 191 increased the odds of developing mucositis during protocol M (OR=1.23, 95% CI=1.04-1.45), 192 even after correction for age and gender (OR=1.30, 95% CI=1.08-1.57). Plasma folate and 193 erythrocyte folate levels were correlated with each other (r = 0.429, p<0.001). Plasma folate 194 (p=0.907) and plasma homocysteine (p=0.518) were not associated to mucositis (figure 3). 195

Compared to patients without mucositis, patients with mucositis had similar changes in erythrocyte folate, plasma folate and plasma homocysteine levels after therapy (from day 0 to two weeks after the end of the MTX courses). Baseline erythrocyte folate was not associated with MTX levels at T24 or T48 (at the first course or all courses) or levels of MTX-PG<sub>1-5</sub> after therapy (data not shown).

201 Genetic determinants of MTX toxicity

All genotypes were in Hardy-Weinberg Equilibrium (HWE).  $\chi^2$ -test and univariate logistic analyses showed that only subjects with wildtype genotype rs7317112<sub>A/A</sub> (*ABCC4*) had more often mucositis than carriers of the G allele (p=0.02)(table 2). After correction for age and

gender, patient with wild-type rs7317112<sub>A/A</sub> genotype remained more prone to grade  $\geq$  3 mucositis (AA, OR: 2.81, 95%CI [1.01-7.84]). All other selected SNPs were not associated to 206 mucositis or extra hospital admissions (table 2). 207

The wildtype MTRR rs1801394<sub>A/A</sub> and wildtype rs4149056T/T (SLCO1B1) were associated with higher T24 MTX levels and wildtype rs7317112<sub>A/A</sub> (ABCC4) revealed higher T48 levels (supplemental table 4). As MTX levels were not associated with mucositis, MTX levels are not 211 able to mediate in the association between SNPs and mucositis.

Wildtype rs4149056<sub>T/T</sub> (SLCO1B1) was the only genotype that was associated with higher baseline plasma folate levels (supplemental table 4). As  $rs4149056_{T/T}$  was not associated with 213 mucositis, rs4149056<sub>T/T</sub> is not able to mediate in the association between SNPs and mucositis.

Erythrocyte folate and SNP rs7317112<sub>A>G</sub> (ABCC4) are the only factors associated with 215 mucositis. However erythrocyte folate levels did not seem to mediate in this association 216 217 between SNP and mucositis, as erythrocyte folate levels were not associated with SNP rs7317112<sub>A>G</sub> (ABCC4),. In addition, erythrocyte folate and SNP rs7317112<sub>A>G</sub> (ABCC4) are also 218 not correlated (spearman's rho: r= 0.002, p=0.985), neither associated (linear regression,  $\beta 0.23$ ; 219 95%Cl (-1.17 - 1.63)), nor do they interact, as the interaction term "rs7317112\*erythrocyte *folate level*" was not significant (interaction term: p=0.235). 221

## Discussion

This study evaluated the determinants of MTX related toxicity in a prospective cohort of pediatric ALL patients. The most apparent grade  $\geq$  3 toxicity was mucositis (20%), while other types of toxicity were observed in less than 10% of the patients (diarrhea, skin, neurotoxicity, kidney, nor liver toxicity. The occurrence of mucositis was associated with higher erythrocyte folate levels at baseline, but not with baseline plasma levels of MTX, homocysteine or folate. Of 17 selected SNPs, wild type rs7317112<sub>A/A</sub> in the *ABCC4* gene was the only allelic variant that was associated with the occurrence of mucositis. As erythrocyte folate and rs7317112<sub>A/A</sub> were not correlated, neither associated, nor do they interact with each other, we can conclude that they are associated with mucositis probably through different biological pathways.

Mucositis was the most often reported toxicity, which is in line with previous studies reporting a prevalence of mucositis (NCI ≥ grade 3) of 20-40% in pediatric ALL patients after treatment 234 with HD-MTX 5 mg/m $^{2 17, 31-33}$ . Mucositis was more prevalent after the first MTX course which may have been due to several factors. First, 90% of the patients started protocol M with 236 neutropenia. It is conceivable that patients with a lower neutrophil count may have an impaired ability to be protected against oral mucosal damage, which may affect the 238 proliferation of oral epithelial cells<sup>34</sup>. In our study mucositis was however not associated with 239 neutropenia (neutrophil count or neutrophil count <0.5 umol/L). This illustrates that it is safe to 240 start protocol M with a WBC > 1 x  $10^9$ /L regardless of neutrophil count. Secondly, other factors 241 contributing to mucositis after the first MTX course could be the preceding treatment with 242 cyclophosphamide, 6-mercaptopurine and cytarabine just before protocol M<sup>35</sup>. These drugs are 243 known to induce mucositis and could enhance mucositis response after the first course<sup>36</sup>. Lastly, 244 folinic acid is administered after the first MTX course, this will increases cellular folate levels 245 and could therefore decrease the mucositis rate after the following MTX courses. 246

Mucositis was not associated with MTX plasma levels in our study. This is in line with other studies that have shown that cell injury was not related with a high MTX plasma concentration<sup>37, 38</sup>, but rather with the MTX clearance. This illustrates that plasma levels at T24 and T48 may not be the best indicator of toxicity during treatment. Alternative options such as the area under the curve of MTX clearance over a longer period of time or the measurement of the active polyglutamate form of MTX (MTX-PG)<sup>39</sup> may be more valuable than MTX levels. Accumulation of intracellular MTX-PGs have been shown to be associated with anti-leukemic effects and relapse in children with ALL<sup>39, 40</sup>. However in our cohort, we found no association between MTX-PG<sub>1-5</sub> measured in erythrocytes at stop protocol M and toxicity.

Mucositis is caused by intracellular depletion of folate after administering MTX, which induces mucosal cell death by blocking crucial steps in the DNA synthesis<sup>41</sup>. It is possible that the folate 257 status and dietary folate intake of a patient influences the occurrence of mucositis<sup>4</sup>. As stated 258 above, our data show that mucositis was not associated with baseline plasma levels of homocysteine or folate, but an association was found with higher baseline levels of erythrocyte folate. This may be due to the fact that erythrocyte folate levels reflect the plasma folate levels 261 of the previous 3 months<sup>42,43</sup>, whereas plasma folate levels strongly correlate with daily dietary 262 intake. Therefore, plasma folate levels seem to reflect the biological state less precise and with more uncertainty. Individuals with higher baseline erythrocyte folate levels may have a, more 264 effective cellular uptake and retention of folate<sup>44, 45</sup>. Since MTX is structurally similar to folate and uses the same cellular metabolism and transport routes<sup>46, 47</sup>, there could be a higher 266 uptake of MTX by the mucosal cell. However, we did not find any association between baseline 267 erythrocyte folate and MTX-PG<sub>1-5</sub> at stop protocol M, probably due to the fact that MTX-PG's were measured 9 weeks later than the measurement of erythrocyte folate. 269

It remains debatable whether folate supplementation before protocol M would prevent MTX
toxicity and more clinical trials would be necessary to find the optimal folic acid dosage.
However it had been suggested that folate supplementation can counteract the anti-leukemic
activity of MTX and effectively should not be compromised by decreasing toxicity that is not life
threatening<sup>48-52</sup>.

In this prospective study, 17 recently reported relevant candidate SNPs were included to study 275 genetic variation. Only wildtype rs7317112<sub>A/A</sub> genotype in the ABCC4 gene was identified to be 276 associated with less occurrence of mucositis (table 2). We also found that rs7317112<sub>A/G-G/G</sub> was 277 associated with higher MTX levels at T48. Other ABCC4 polymorphisms were previously found 278 to be associated with a decreased clearance of MTX in a treatment protocol with 3 and 5  $g/m^2$ 279 MTX<sup>23</sup>. The ABCC4 gene encodes the multi-drug resistance protein 4 (MRP4), a member of the ATP-binding cassette family involved in low-affinity and high-capacity efflux of molecules like MTX (MTX-PG1) and folate<sup>47</sup>. MRP4 is expressed in many tissues such as the liver, kidney, mucosa, and various blood cells<sup>53, 54</sup>. Rs7317112<sub>A>G</sub> is located in intron 1 of the ABCC4 gene<sup>55</sup> in 283 putative intronic enhancers and a CpG site, which could carry changes in the methylation 284 pattern and ABCC4 expression<sup>56</sup>. The exact biological mechanism of  $rs7317112_{A>G}$ , which is associated with less mucositis and higher MTX levels, needs to be further explored.

The present study with well documented prospectively collected data, did not confirm previously found associations between SNPs and mucositis (supplemental table 1). Previous studies show conflicting results regarding the association between SNPs and toxicity. Also, different toxicity endpoints and various dosages of MTX hamper comparison between these studies. In addition, it is conceivable that when using very high MTX dosages in pediatric ALL (5 gr/m<sup>2</sup>), allelic variants become less relevant as the high dose may overrule the influence of genetic variation. The use of SNPs may therefore not be relevant in clinical practice to prevent

non-life-treating toxicity. It may be of more value to focus on treatment efficacy by
 personalizing MTX dosages to improve treatment.

In conclusion, mucositis occurs especially after the first MTX course and it was the most frequently occurring toxicity in our cohort of pediatric ALL patients during the HD-MTX phase. Plasma levels of MTX, folate and homocysteine were not associated with mucositis. The only determinants of mucositis in pediatric ALL during MTX-HD treatment were a higher baseline erythrocyte folate, which reflects the accumulation of MTX polyglutamates in mucosal cells, and the wild-type variant of SNP rs7317112 in *ABCC4*.

- 302 Acknowledgments: This study was financially supported by Stichting Kinderen Kankervrij (KiKa
- errant, nr. 67) and an Erasmus MC translational grant (E. den Boer)
- 304 **Disclosure:** The authors report no potential conflicts of interest.

## 306 **References**

| 307 | 1. | Gatta G, Botta L, Rossi S, Aareleid T, Bielska-Lasota M, Clavel J, et al. Childhood cancer |
|-----|----|--------------------------------------------------------------------------------------------|
| 308 |    | survival in Europe 1999-2007: results of EUROCARE-5-a population-based study. The          |
| 309 |    | lancet oncology 2014; <b>15</b> (1): 35-47.                                                |

310

| 311 | 2. | Pui CH, Carroll WL, Meshinchi S, Arceci RJ. Biology, risk stratification, and therapy of |
|-----|----|------------------------------------------------------------------------------------------|
| 312 |    | pediatric acute leukemias: an update. <i>J Clin Oncol</i> 2011; <b>29</b> (5): 551-565.  |

313

3. Kamps WA, van der Pal-de Bruin KM, Veerman AJ, Fiocco M, Bierings M, Pieters R. Long-3. term results of Dutch Childhood Oncology Group studies for children with acute 3. lymphoblastic leukemia from 1984 to 2004. *Leukemia* 2010; **24**(2): 309-319.

317

4. Crews KR, Liu T, Rodriguez-Galindo C, Tan M, Meyer WH, Panetta JC, *et al.* High-dose methotrexate pharmacokinetics and outcome of children and young adults with osteosarcoma. *Cancer* 2004; **100**(8): 1724-1733.

321

Niemi M, Pasanen MK, Neuvonen PJ. Organic anion transporting polypeptide 1B1: a
 genetically polymorphic transporter of major importance for hepatic drug uptake.
 *Pharmacological reviews* 2011; 63(1): 157-181.

325

326 6. Zhao R, Diop-Bove N, Visentin M, Goldman ID. Mechanisms of membrane transport of
 327 folates into cells and across epithelia. *Annu Rev Nutr* 2011; **31:** 177-201.

328

| 329 | 7.  | Wennerstrand P, Martensson LG, Soderhall S, Zimdahl A, Appell ML. Methotrexate                  |
|-----|-----|-------------------------------------------------------------------------------------------------|
| 330 |     | binds to recombinant thiopurine S-methyltransferase and inhibits enzyme activity after          |
| 331 |     | high-dose infusions in childhood leukaemia. European journal of clinical pharmacology           |
| 332 |     | 2013; <b>69</b> (9): 1641-1649.                                                                 |
| 333 |     |                                                                                                 |
| 334 | 8.  | Krajinovic M, Moghrabi A. Pharmacogenetics of methotrexate. Pharmacogenomics                    |
| 335 |     | 2004; <b>5</b> (7): 819-834.                                                                    |
| 336 |     |                                                                                                 |
| 337 | 9.  | Ravindranath Y. Down syndrome and leukemia: new insights into the epidemiology,                 |
| 338 |     | pathogenesis, and treatment. Pediatric blood & cancer 2005; 44(1): 1-7.                         |
| 339 |     |                                                                                                 |
| 340 | 10. | Witt H, Luck W, Hennies HC, Classen M, Kage A, Lass U, et al. Mutations in the gene             |
| 341 |     | encoding the serine protease inhibitor, Kazal type 1 are associated with chronic                |
| 342 |     | pancreatitis. <i>Nature genetics</i> 2000; <b>25</b> (2): 213-216.                              |
| 343 |     |                                                                                                 |
| 344 | 11. | Assembly WMAG. The Declaration of Helsinki — Sixth Revision. Helsinki, Finland 2008.            |
| 345 |     |                                                                                                 |
| 346 | 12. | Health USNIo (2013). NCI criteria v3.0. 2011 NCICCv (ed). CETP: National Cancer                 |
| 347 |     | Institute.                                                                                      |
| 348 |     |                                                                                                 |
| 349 | 13. | Rousseau A, Marguet P. Application of pharmacokinetic modelling to the routine                  |
| 350 |     | therapeutic drug monitoring of anticancer drugs. <i>Fundamental &amp; clinical pharmacoloav</i> |
| 351 |     | 2002; <b>16</b> (4): 253-262.                                                                   |
|     |     |                                                                                                 |

352

- Ducros V, Belva-Besnet H, Casetta B, Favier A. A robust liquid chromatography tandem
   mass spectrometry method for total plasma homocysteine determination in clinical
   practice. *Clinical chemistry and laboratory medicine : CCLM / FESCC* 2006; 44(8): 987 990.
- 357
- 15. Urano W, Taniguchi A, Yamanaka H, Tanaka E, Nakajima H, Matsuda Y, *et al.* Polymorphisms in the methylenetetrahydrofolate reductase gene were associated with both the efficacy and the toxicity of methotrexate used for the treatment of rheumatoid arthritis, as evidenced by single locus and haplotype analyses. *Pharmacogenetics* 2002; **12**(3): 183-190.
- 363
- 16. van Ede AE, Laan RF, Blom HJ, Huizinga TW, Haagsma CJ, Giesendorf BA, *et al.* The
   C677T mutation in the methylenetetrahydrofolate reductase gene: a genetic risk factor
   for methotrexate-related elevation of liver enzymes in rheumatoid arthritis patients.
   Arthritis Rheum 2001; 44(11): 2525-2530.

368

Shimasaki N, Mori T, Samejima H, Sato R, Shimada H, Yahagi N, *et al.* Effects of
 methylenetetrahydrofolate reductase and reduced folate carrier 1 polymorphisms on
 high-dose methotrexate-induced toxicities in children with acute lymphoblastic
 leukemia or lymphoma. *J Pediatr Hematol Oncol* 2006; **28**(2): 64-68.

Huang L, Tissing WJ, de Jonge R, van Zelst BD, Pieters R. Polymorphisms in folate-related
genes: association with side effects of high-dose methotrexate in childhood acute
lymphoblastic leukemia. *Leukemia* 2008.

377

Aplenc R, Thompson J, Han P, La M, Zhao H, Lange B, *et al.* Methylenetetrahydrofolate
 reductase polymorphisms and therapy response in pediatric acute lymphoblastic
 leukemia. *Cancer Res* 2005; **65**(6): 2482-2487.

381

Seidemann K, Book M, Zimmermann M, Meyer U, Welte K, Stanulla M, et al. MTHFR
677 (C-->T) polymorphism is not relevant for prognosis or therapy-associated toxicity in
pediatric NHL: results from 484 patients of multicenter trial NHL-BFM 95. Ann Hematol
2006; 85(5): 291-300.

386

de Jonge R, Hooijberg JH, van Zelst BD, Jansen G, van Zantwijk CH, Kaspers GJ, *et al.* Effect of polymorphisms in folate-related genes on in vitro methotrexate sensitivity in
 pediatric acute lymphoblastic leukemia. *Blood* 2005; **106**(2): 717-720.

390

Jansen G, Mauritz RM, Assaraf YG, Sprecher H, Drori S, Kathmann I, *et al.* Regulation of
 carrier-mediated transport of folates and antifolates in methotrexate-sensitive and resistant leukemia cells. *Adv Enzyme Regul* 1997; **37**: 59-76.

394

23. Lopez-Lopez E, Ballesteros J, Pinan MA, Sanchez de Toledo J, Garcia de Andoin N,
 Garcia-Miguel P, et al. Polymorphisms in the methotrexate transport pathway: a new

tool for MTX plasma level prediction in pediatric acute lymphoblastic leukemia.
 *Pharmacogenetics and genomics* 2013; 23(2): 53-61.

399

Ramsey LB, Bruun GH, Yang W, Trevino LR, Vattathil S, Scheet P, et al. Rare versus
 common variants in pharmacogenetics: SLCO1B1 variation and methotrexate
 disposition. *Genome research* 2012; 22(1): 1-8.

403

Radtke S, Zolk O, Renner B, Paulides M, Zimmermann M, Moricke A, *et al.* Germline
genetic variations in methotrexate candidate genes are associated with
pharmacokinetics, toxicity, and outcome in childhood acute lymphoblastic leukemia. *Blood* 2013; **121**(26): 5145-5153.

408

Krynetski E, Evans WE. Drug methylation in cancer therapy: lessons from the TPMT
polymorphism. *Oncogene* 2003; **22**(47): 7403-7413.

411

412 27. Griffioen PH, de Jonge R, van Zelst BD, Montserrate Brouns R, Lindemans J. Detection 413 and allele-frequencies of the 833T>C, 844ins68 and a novel mutation in the 414 cystathionine beta-synthase gene. *Clin Chim Acta* 2005; **354**(1-2): 191-194.

415

Sole X, Guino E, Valls J, Iniesta R, Moreno V. SNPStats: a web tool for the analysis of
association studies. *Bioinformatics* 2006; **22**(15): 1928-1929.

| 419 | 29. | Baron RM, Kenny DA. The moderator-mediator variable distinction in social                       |
|-----|-----|-------------------------------------------------------------------------------------------------|
| 420 |     | psychological research: conceptual, strategic, and statistical considerations. Journal of       |
| 421 |     | personality and social psychology 1986; <b>51</b> (6): 1173-1182.                               |
| 422 |     |                                                                                                 |
| 423 | 30. | Barrett JC, Fry B, Maller J, Daly MJ. Haploview: analysis and visualization of LD and           |
| 424 |     | haplotype maps. Bioinformatics 2005; 21(2): 263-265.                                            |
| 425 |     |                                                                                                 |
| 426 | 31. | Buitenkamp TD, Mathot RA, de Haas V, Pieters R, Zwaan CM. Methotrexate-induced                  |
| 427 |     | side effects are not due to differences in pharmacokinetics in children with Down               |
| 428 |     | syndrome and acute lymphoblastic leukemia. <i>Haematologica</i> 2010; <b>95</b> (7): 1106-1113. |
| 429 |     |                                                                                                 |
| 430 | 32. | Liu SG, Li ZG, Cui L, Gao C, Li WJ, Zhao XX. Effects of methylenetetrahydrofolate               |
| 431 |     | reductase gene polymorphisms on toxicities during consolidation therapy in pediatric            |
| 432 |     | acute lymphoblastic leukemia in a Chinese population. Leukemia & lymphoma 2011;                 |
| 433 |     | <b>52</b> (6): 1030-1040.                                                                       |
| 434 |     |                                                                                                 |
| 435 | 33. | Faganel Kotnik B, Grabnar I, Bohanec Grabar P, Dolzan V, Jazbec J. Association of               |
| 436 |     | genetic polymorphism in the folate metabolic pathway with methotrexate                          |
| 437 |     | pharmacokinetics and toxicity in childhood acute lymphoblastic leukaemia and                    |
| 438 |     | malignant lymphoma. European journal of clinical pharmacology 2011; 67(10): 993-                |
| 439 |     | 1006.                                                                                           |
| 440 |     |                                                                                                 |
|     |     |                                                                                                 |

| 441 | 34. | Witko-Sarsat V, Rieu P, Descamps-Latscha B, Lesavre P, Halbwachs-Mecarelli L.             |
|-----|-----|-------------------------------------------------------------------------------------------|
| 442 |     | Neutrophils: molecules, functions and pathophysiological aspects. Laboratory              |
| 443 |     | investigation; a journal of technical methods and pathology 2000; <b>80</b> (5): 617-653. |
| 444 |     |                                                                                           |
| 445 | 35. | van Kooten Niekerk PB, Schmiegelow K, Schroeder H. Influence of methylene                 |
| 446 |     | tetrahydrofolate reductase polymorphisms and coadministration of antimetabolites on       |
| 447 |     | toxicity after high dose methotrexate. European journal of haematology 2008; 81(5):       |
| 448 |     | 391-398.                                                                                  |
| 449 |     |                                                                                           |
| 450 | 36. | Niscola P, Romani C, Cupelli L, Scaramucci L, Tendas A, Dentamaro T, et al. Mucositis in  |
| 451 |     | patients with hematologic malignancies: an overview. Haematologica 2007; 92(2): 222-      |
| 452 |     | 231.                                                                                      |
| 453 |     |                                                                                           |
| 454 | 37. | Cheng KK. Association of plasma methotrexate, neutropenia, hepatic dysfunction.           |
| 101 | 071 | nausoa/vomiting and oral mucositis in shildron with cancer. Fur I Cancer Care (Engl)      |
| 400 |     | hausea/volniting and oral mucositis in children with cancer. Lui 5 cuncer cure (Lingi)    |
| 456 |     | 2008; <b>17</b> (3): 306-311.                                                             |
| 457 |     |                                                                                           |
| 458 | 38. | Maiguma T, Hayashi Y, Ueshima S, Kaji H, Egawa T, Chayama K, et al. Relationship          |
| 459 |     | between oral mucositis and high-dose methotrexate therapy in pediatric acute              |
| 460 |     | lymphoblastic leukemia. International journal of clinical pharmacology and therapeutics   |
| 461 |     | 2008; <b>46</b> (11) <b>:</b> 584-590.                                                    |
| 462 |     |                                                                                           |

Masson E, Relling MV, Synold TW, Liu Q, Schuetz JD, Sandlund JT, *et al*. Accumulation of
 methotrexate polyglutamates in lymphoblasts is a determinant of antileukemic effects

| 465 | in vivo. A rationale for high-dose methotrexate. The Journal of clinical investigation |
|-----|----------------------------------------------------------------------------------------|
| 466 | 1996; <b>97</b> (1): 73-80.                                                            |
| 467 |                                                                                        |

468 40. Mikkelsen TS, Sparreboom A, Cheng C, Zhou Y, Boyett JM, Raimondi SC, et al.
469 Shortening infusion time for high-dose methotrexate alters antileukemic effects: a
470 randomized prospective clinical trial. J Clin Oncol 2011; 29(13): 1771-1778.

471

472 41. Kremer JM. Toward a better understanding of methotrexate. *Arthritis and rheumatism*473 2004; **50**(5): 1370-1382.

474

- 475 42. Ganji V, Kafai MR. Trends in serum folate, RBC folate, and circulating total
  476 homocysteine concentrations in the United States: analysis of data from National
  477 Health and Nutrition Examination Surveys, 1988-1994, 1999-2000, and 2001-2002. *The*478 *Journal of nutrition* 2006; **136**(1): 153-158.
- 479
- .
- 480 43. Bailey LB. *Folate in Health and Disease, Second Edition*. Taylor & Francis, 2010.

481

482 44. de Rotte MC, de Jong PH, Pluijm SM, Calasan MB, Barendregt PJ, van Zeben D, et al.
483 Association of low baseline levels of erythrocyte folate with treatment nonresponse at
484 three months in rheumatoid arthritis patients receiving methotrexate. Arthritis Rheum
485 2013; 65(11): 2803-2813.

486

487 45. Kim YI, Fawaz K, Knox T, Lee YM, Norton R, Arora S, *et al.* Colonic mucosal 488 concentrations of folate correlate well with blood measurements of folate status in

| 489 |     | persons with colorectal polyps. The American journal of clinical nutrition 1998; 68(4):   |
|-----|-----|-------------------------------------------------------------------------------------------|
| 490 |     | 866-872.                                                                                  |
| 491 |     |                                                                                           |
| 492 | 46. | Goodsell DS. The molecular perspective: methotrexate. The oncologist 1999; 4(4): 340-     |
| 493 |     | 341.                                                                                      |
| 494 |     |                                                                                           |
| 495 | 47. | Assaraf YG. The role of multidrug resistance efflux transporters in antifolate resistance |
| 496 |     | and folate homeostasis. Drug resistance updates : reviews and commentaries in             |
| 497 |     | antimicrobial and anticancer chemotherapy 2006; <b>9</b> (4-5): 227-246.                  |
| 498 |     |                                                                                           |
| 499 | 48. | Pinedo HM, Zaharko DS, Bull JM, Chabner BA. The reversal of methotrexate cytotoxicity     |
| 500 |     | to mouse bone marrow cells by leucovorin and nucleosides. Cancer Res 1976; 36(12):        |
| 501 |     | 4418-4424.                                                                                |
| 502 |     |                                                                                           |
| 503 | 49. | Rask C, Albertioni F, Schroder H, Peterson C. Oral mucositis in children with acute       |
| 504 |     | lymphoblastic leukemia after high-dose methotrexate treatment without delayed             |
| 505 |     | elimination of methotrexate: relation to pharmacokinetic parameters of methotrexate.      |
| 506 |     | Pediatric hematology and oncology 1996; <b>13</b> (4): 359-367.                           |
| 507 |     |                                                                                           |
| 508 | 50. | Khanna D, Park GS, Paulus HE, Simpson KM, Elashoff D, Cohen SB, et al. Reduction of       |
| 509 |     | the efficacy of methotrexate by the use of folic acid: post hoc analysis from two         |
| 510 |     | randomized controlled studies. Arthritis Rheum 2005; 52(10): 3030-3038.                   |
| 511 |     |                                                                                           |

| 512 | 51. | Sterba J, Dusek L, Demlova R, Valik D. Pretreatment plasma folate modulates the               |
|-----|-----|-----------------------------------------------------------------------------------------------|
| 513 |     | pharmacodynamic effect of high-dose methotrexate in children with acute                       |
| 514 |     | lymphoblastic leukemia and non-Hodgkin lymphoma: "folate overrescue" concept                  |
| 515 |     | revisited. <i>Clinical chemistry</i> 2006; <b>52</b> (4): 692-700.                            |
| 516 |     |                                                                                               |
| 517 | 52. | Cohen IJ, Wolff JE. How long can folinic acid rescue be delayed after high-dose               |
| 518 |     | methotrexate without toxicity? <i>Pediatric blood &amp; cancer</i> 2014: <b>61</b> (1): 7-10. |
|     |     |                                                                                               |
| 519 |     |                                                                                               |
| 520 | 53. | Russel FG, Koenderink JB, Masereeuw R. Multidrug resistance protein 4 (MRP4/ABCC4):           |
| 521 |     | a versatile efflux transporter for drugs and signalling molecules. Trends in                  |
| 522 |     | pharmacological sciences 2008; <b>29</b> (4): 200-207.                                        |
| 523 |     |                                                                                               |
| 524 | 54. | Wu C, Orozco C, Boyer J, Leglise M, Goodale J, Batalov S, et al. BioGPS: an extensible        |
| 525 |     | and customizable portal for querying and organizing gene annotation resources.                |
| 526 |     | Genome biology 2009; <b>10</b> (11): R130.                                                    |
| 527 |     |                                                                                               |
| 528 | 55. | McLaren W. Pritchard B. Rios D. Chen Y. Flicek P. Cunningham F. Deriving the                  |
| 520 |     | consequences of genomic variants with the Ensembl API and SNP Effect Predictor                |
| 520 |     | Biginformatics (Oxford England) 2010; 26(16); 2060-2070                                       |
| 530 |     | Bioinjorniatics (Oxjora, Englana) 2010, <b>26</b> (16): 2069-2070.                            |
| 531 |     |                                                                                               |
| 532 | 56. | Samuelsson J, Alonso S, Ruiz-Larroya T, Cheung TH, Wong YF, Perucho M. Frequent               |
| 533 |     | somatic demethylation of RAPGEF1/C3G intronic sequences in gastrointestinal and               |
| 534 |     | gynecological cancer. International journal of oncology 2011; <b>38</b> (6): 1575-1577.       |
|     |     |                                                                                               |

## 536 Figure Legends

537

- 538 **Figure 1: Flowchart of patient inclusion**
- 539 Abbreviations: ALL=acute lymphoblastic leukemia; HR=high risk; NEL=not eligible; SNP=single
- nucleotide polymorphism; n= number.

| 541 | Figure 2: | Prevalence of | of Toxicity | after | МТХ | courses | during | Protocol | M (5 | gr/m2 |
|-----|-----------|---------------|-------------|-------|-----|---------|--------|----------|------|-------|
| 542 | MTX)      |               |             |       |     |         |        |          |      |       |

The maximum grade of toxicity after a MTX course was documented 2 weeks later, during the hospital visit for the next MTX course. NCI criteria grade  $\geq$  3 severities are depicted. Abbreviations: "1-4" = represent the consecutive MTX courses; "Sum" = represents the maximum score of toxicity during all the four courses; Hops. Admis. = extra hospital admissions in-between MTX courses.

# 548 Figure 3: Comparison of baseline folate and homocysteine levels in patients with and

#### 549 without mucositis during protocol M

550 Shown are the mean and the SEM for MTX levels and the median and the interquartile range 551 for the folate metabolites. Abbreviations: \* = significant association p<0.05; \*\* = mucositis

552 measured after only the first course.



## Figure 1: Flowchart of patient inclusion

Abbreviations: ALL=acute lymphoblastic leukemia; HR=high risk; NEL=not eligible;

SNP=single nucleotide polymorphism; n= number.



## Figure 2: Prevalence of Toxicity per MTX course during Protocol M (5 gr/m2 MTX)

The maximum grade of toxicity after a MTX course was documented 2 weeks later, during the hospital visit for the next MTX course. NCI criteria grade ≥ 3 severities are depicted. Abbreviations: "1-4" = represent the consecutive MTX courses; "Sum" = represents the maximum score of toxicity during all the four courses; Hops. Admis. = extra hospital admissions in-between MTX courses.

| Mucositis                              | Yes (n=26)     | No (n=104)     | P – Value |  |  |  |  |  |
|----------------------------------------|----------------|----------------|-----------|--|--|--|--|--|
| Median age at diagnosis , range, years | 5.7 (1.6-17.5) | 6.4 (1.5-18.1) | 0.61      |  |  |  |  |  |
|                                        |                |                |           |  |  |  |  |  |
| Sex, n (%)                             |                |                |           |  |  |  |  |  |
| Female                                 | 11 (42%)       | 50 (48%)       |           |  |  |  |  |  |
| Male                                   | 15 (58%)       | 54 (52%)       | 0.60      |  |  |  |  |  |
| Immunophenotype, n (%)                 |                |                |           |  |  |  |  |  |
| B-lineage                              | 23 (89%)       | 88 (86%)       |           |  |  |  |  |  |
| T-lineage                              | 3 (12%)        | 14 (14%)       | 0.53      |  |  |  |  |  |
| Leukopenia T0, n (%)                   |                |                |           |  |  |  |  |  |
| < 1.5 × 10 <sup>9</sup> /L             | 2 (8%)         | 12 (11%)       |           |  |  |  |  |  |
| > 1.5 × 10 <sup>9</sup> /L             | 24 (92%)       | 92 (89%)       | 0.57      |  |  |  |  |  |
| Neutropenia T0, n (%)                  |                |                |           |  |  |  |  |  |
| < 0.5 × 10 <sup>9</sup> /L             | 20 (77%)       | 61 (41%)       |           |  |  |  |  |  |
| > 0.5 × 10 <sup>9</sup> /L             | 6 (23%)        | 43 (59%)       | 0.09      |  |  |  |  |  |

# Table 1: Patient characteristics of the pediatric ALL cohort compared in patients with and without mucositis during protocol M (n=134)

The analyses were repeated in patients with mucositis only during the first course, but

results did not differ. Abbreviations: ALL = Acute Lymphoblastic Leukemia; n = number; T0 =

measured at start protocol M; L = liter.



Figure 3: Comparison of baseline folate and homocysteine levels in patients with and without mucositis during protocol M

Shown are the mean and the SEM for MTX levels and the median and the interquartile range for the folate metabolites. Abbreviations: \* = significant association

p<0.05; \*\* = mucositis measured after only the first course.

| Table 2: Comparison between single nucleotide polymorphisms and mucosal toxicity |            |           |    |     |           |       |        |             |         |
|----------------------------------------------------------------------------------|------------|-----------|----|-----|-----------|-------|--------|-------------|---------|
|                                                                                  |            |           |    |     | Mucositis |       |        |             |         |
| Gene                                                                             | SNP        |           | n  | (%) | yes       | (%)   | OR     | (95%-CI)    | p-value |
| ABCC2                                                                            | rs12826    | A/A       | 37 | 42% | 10        | (27%) | Refere | nce         |         |
|                                                                                  |            | A/G - G/G | 43 | 58% | 12        | (28%) | 1.05   | (0.39-2.80) | 0.93    |
| ABCC2                                                                            | rs717620   | G/G       | 57 | 68% | 15        | (26%) | Refere | nce         |         |
|                                                                                  |            | G/A - A/A | 23 | 32% | 7         | (30%) | 1.23   | (0.42-3.56) | 0.45    |
| ABCC2                                                                            | rs3740065  | т/т       | 61 | 80% | 17        | (28%) | Refere | nce         |         |
|                                                                                  |            | T/C - C/C | 19 | 20% | 5         | (26%) | 0.92   | (0.29-2.96) | 0.57    |
| ABCC4                                                                            | rs1678392  | G/G       | 57 | 70% | 15        | (26%) | Refere | nce         |         |
|                                                                                  |            | G/A - A/A | 21 | 30% | 7         | (33%) | 1.40   | (0.47-4.13) | 0.37    |
| ABCC4                                                                            | rs2619312  | Т/Т       | 55 | 63% | 14        | (25%) | Refere | nce         |         |
|                                                                                  |            | T/C - C/C | 25 | 37% | 8         | (32%) | 1.38   | (0.49-3.89) | 0.36    |
| ABCC4                                                                            | rs7317112  | A/A       | 41 | 53% | 16        | (39%) | Refere | nce         |         |
|                                                                                  |            | A/G - G/G | 39 | 47% | 6         | (15%) | 0.28   | (0.10-0.83) | 0.016** |
| ABCC4                                                                            | rs9302061  | T/T       | 30 | 35% | 7         | (23%) | Refere | nce         |         |
|                                                                                  |            | T/C - C/C | 50 | 65% | 15        | (30%) | 1.41   | (0.50-3.98) | 0.35    |
| ABCC4                                                                            | rs9516519  | T/T       | 59 | 70% | 13        | (22%) | Refere | nce         |         |
|                                                                                  |            | T/G - G/G | 21 | 30% | 9         | (43%) | 2.65   | (0.92-7.67) | 0.06    |
| ABCC4                                                                            | rs10219913 | T/T       | 58 | 73% | 18        | (31%) | Refere | nce         |         |
|                                                                                  |            | T/C - C/C | 22 | 27% | 4         | (18%) | 0.49   | (0.15-1.67) | 0.40    |
| MTHFR                                                                            | rs1801133  | C/C       | 40 | 50% | 9         | (23%) | Refere | nce         |         |
|                                                                                  |            | С/Т - Т/Т | 40 | 50% | 13        | (33%) | 1.66   | (0.61-4.48) | 0.23    |
| MTHFR                                                                            | rs1801131  | A/A       | 40 | 49% | 11        | (28%) | Refere | nce         |         |
|                                                                                  |            | A/C - C/C | 40 | 51% | 11        | (28%) | 1.00   | (0.37-2.67) | 0.60    |
| MTRR                                                                             | rs1801394  | A/A       | 14 | 16% | 4         | (29%) | Refere | nce         |         |
|                                                                                  |            | A/G - G/G | 66 | 84% | 18        | (27%) | 0.94   | (0.26-3.37) | 1.00    |
| RFC1                                                                             | rs1051266  | G/G       | 26 | 30% | 8         | (31%) | Refere | nce         |         |
|                                                                                  |            | G/A - A/A | 54 | 70% | 14        | (26%) | 0.79   | (0.28-2.21) | 0.65    |
| TPMT*2                                                                           | rs1800462  | G/G       | 74 | 92% | 21        | (28%) |        |             |         |
|                                                                                  |            | G/C - C/C | 6  | 8%  | 1         | (17%) | NA     |             | NA      |
| TPMT*3B                                                                          | rs1800460  | G/G       | 74 | 93% | 21        | (28%) |        |             |         |
|                                                                                  |            | G/A - A/A | 6  | 7%  | 1         | (17%) | NA     |             | NA      |
| TPMT*3C                                                                          | rs1142345  | A/A       | 74 | 93% | 21        | (28%) |        |             |         |
|                                                                                  |            | A/G - G/G | 6  | 7%  | 1         | (17%) | NA     |             | NA      |
| SCL01B1                                                                          | rs4149056  | Τ/Τ       | 58 | 75% | 18        | (31%) | Refere | nce         |         |
|                                                                                  |            | T/C - C/C | 22 | 25% | 4         | (18%) | 0.49   | (0.15-1.67) | 0.40    |

Abbreviations: ALL= Acute Lymphoblastic Leukemia; n=number; \*\* = significant association between mucositis after the first MTX course and the SNP; NA = not analyzable because of low numbers; 95%CI = 95% confidence interval; rs1801133 = MTHFR 677 C>T; rs1801131 = 1298 A>C; rs1801394 = MTRR 66A>G; RFC1 = SLC19A1; rs1051266 = RFC1 80 G>A; rs1800462 = TPMT\*2 238 G>C; rs1800460 = TPMT\*3B 460 G>A; rs1142345 = TPMT\*3C 719 A>G; rs4149056 = SCL01B1 521T>C.



Supplemental figure 1: Genes in the folate metabolism pathway and MTX transporters

Abbreviations: 6-MP, 6-mercaptopurine; MTX, methotrexate; RFC, reduced folate carrier; MTX-PG, methotrexate-polyglutamate; TS, thymidylate synthase ; CH2-THF, 5,10-Methylenetetrahydrofolate (5,10-CH2-THF); MTHFR, methylenetetrahydrofolate reductase; MTRR, methionine synthase reductase; ABCC, ATP-binding cassette, sub-family C. MTX is eliminated primarily by renal excretion, and ~ 10% of each dose is excreted unchanged in the bile.<sup>1</sup>



#### Supplemental figure 2: Overview of protocol M, of the ALL10 protocol.

6-mercaptopurine (6-MP) was given every day since start protocol M. High Dosage Methotrexate (HD-MTX) was given intravenously (IV) in four courses at day 8, 22, 36 and 50 of protocol M (MTX1, MTX2, MTX3, MTX4), as also intrathecal medication (ITH). MTX plasma levels were measured at 24 and 48 hours after infusion. Clinical Toxicity was determined at baseline and also at the start of each of the four MTX courses. DNA material was collected at start and samples for metabolism parameters were withdrawn from patients at start and two weeks after the last MTX course. Metabolism parameters included levels of erythrocyte folate, plasma folate and plasma homocysteine.

Supplemental table 1: Global overview of studies in pediatric ALL on associations between candidate polymorphisms and MTX toxicity, MTX levels and/or folate metabolites.

|         |            | High MTX serum                                               |                                |                                 |                         |                                  |                      |       |        |       |          |
|---------|------------|--------------------------------------------------------------|--------------------------------|---------------------------------|-------------------------|----------------------------------|----------------------|-------|--------|-------|----------|
|         |            |                                                              |                                |                                 |                         | level                            | s/ Poor              | Eryth | rocyte | Serum | Folate / |
|         |            | Overall                                                      | Toxicity*                      | Mu                              | cositis                 | clea                             | rance                | F0    | late   | Homo  | cysteine |
|         |            | Yes                                                          | No                             | Yes                             | No                      | Yes                              | No                   | Yes   | No     | Yes   | No       |
| ABCC2   | rs12826    |                                                              | 2                              |                                 | 2                       |                                  | 2                    |       |        |       |          |
| ABCC2   | rs717620   |                                                              | 2, 3                           | (+) 2                           | 3                       | (+) 4                            | 2, 3                 |       |        |       |          |
| ABCC2   | rs3740065  | 3                                                            | 2                              |                                 | 2, 3                    | (+) <sup>2</sup>                 | 3                    |       |        |       |          |
| ABCC4   | rs1678392  |                                                              | 2                              |                                 | 2                       |                                  | 2                    |       |        |       |          |
| ABCC4   | rs2619312  |                                                              | 2                              |                                 | 2                       |                                  | 2                    |       |        |       |          |
| ABCC4   | rs7317112  | (+) <sup>2</sup>                                             |                                | (-)                             | 2                       |                                  | 2                    |       |        |       |          |
| ABCC4   | rs9302061  |                                                              | 2                              |                                 | 2                       | (+) <sup>2</sup>                 |                      |       |        |       |          |
| ABCC4   | rs9516519  |                                                              | 2                              |                                 | 2                       |                                  | 2                    |       |        |       |          |
| ABCC4   | rs10219913 |                                                              | 2                              |                                 | 2                       |                                  | 2                    |       |        |       |          |
| MTHFR   | rs1801133  | $(+)^{5-13}$<br>$(-)^{14-18}$                                | 19-28                          | (+) <sup>7, 10,</sup><br>12, 24 | 8, 19, 21, 25,<br>29    | (+) <sup>11, 12,</sup><br>17, 27 | 8, 13, 20, 28,<br>30 |       |        |       |          |
| MTHFR   | rs1801131  | (+) <sup>9, 12, 14,</sup><br>17, 24<br>(-) <sup>16, 28</sup> | 5, 7, 8, 10, 13,<br>19, 25, 26 |                                 | 7, 8, 10, 12,<br>19, 25 | (+) <sup>17</sup>                | 8, 13, 20, 28,<br>30 |       |        |       |          |
| MTRR    | rs1801394  |                                                              | 12                             | (+) <sup>28</sup>               | 12                      | (+) <sup>31</sup>                |                      |       |        |       |          |
| RFC1    | rs1051266  | (+) <sup>12, 32</sup>                                        | 20-23, 26-28,<br>31, 33        | (+) <sup>25, 28</sup>           | 12, 21, 31,<br>33       | (+) <sup>32, 34</sup>            | 20, 27, 30,<br>33    |       |        |       |          |
| TPMT    | rs1800462  | (+) <sup>35, 36</sup>                                        |                                |                                 |                         |                                  |                      |       |        |       |          |
| TPMT    | rs1800460  | (+) <sup>6, 35, 36</sup>                                     | 16, 26                         |                                 |                         |                                  |                      |       |        |       |          |
| TPMT    | rs1142345  | (+) <sup>6, 22, 35-</sup><br>37                              | 16, 26                         |                                 |                         |                                  |                      |       |        |       |          |
| SCLO1B1 | rs4149056  |                                                              | 38                             | (+) <sup>39</sup>               | 38                      | (+) <sup>2, 31, 38-</sup><br>41  | 13, 30               |       |        |       |          |

The numbers refer to the references. \*overall toxicity includes the following toxicities: mucosal/gastro-intestinal, skin, neutropenia, anemia, thrombocytopenia, nausea, diarrhea and neurological toxicity; +=variant is associated with more toxicity; - = variant is associated with less toxicity; No = no association of variant with toxicity; \* = association that was found in the current study. Other available literature that was not mentioned in this table:  $^{42-44}$ =not available online ;  $^{45}$ =letter to the editor ;  $^{46-51}$ =Meta analyses

MTHFR gene ; <sup>52</sup>=meta analyses RFC gene

| Supplemental table 2                                                          | 2: Slightly mo       | odified NCI criteria                              | used for the grading toxicity                                                                            |                                                                                          |                                                              |         |
|-------------------------------------------------------------------------------|----------------------|---------------------------------------------------|----------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|--------------------------------------------------------------|---------|
|                                                                               |                      | Subclinic                                         | al toxicity                                                                                              | Threshold for clinic                                                                     | al relevant toxicity                                         |         |
| Adverse event                                                                 | grade 0              | grade 1                                           | grade 2                                                                                                  | grade 3                                                                                  | grade 4                                                      | grade 5 |
| ASAT/ALAT<br>T48                                                              | Normal               | > N - 2.5 x N                                     | 2.5 x N - 5 x N                                                                                          | 5 x N - 20 x N                                                                           | > 20 x N                                                     | Death   |
| Creatinine<br>T48                                                             | Normal               | < 1.5 x N                                         | 1.5 x N - 3.0 x N                                                                                        | 3.1 x N - 6.0 x N                                                                        | > 6.0 x N                                                    | Death   |
| Changes in the skin                                                           | Normal     < 1.5 x N |                                                   | Dry desquamation, vasculitis, pruritis                                                                   | Moist desquamation, ulceration                                                           | Exfoliative dermatitis,<br>necrosis                          | Death   |
| Mucositis/ stomatitis<br>of the oral cavity<br>(clinical exam)                | Normal               | Erythema of the<br>mucosa                         | Patchy ulcerations                                                                                       | Confluent ulcerations, bleeding with minor trauma                                        | Tissue necrosis, significant spontaneous bleeding            | Death   |
| Mucositis/<br>(functional/<br>symptomatic)                                    | Normal               | Minimal<br>symptoms, normal<br>diet               | Symptomatic, but can eat and swallow modified diet                                                       | Symptomatic and unable to<br>adequately aliment or hydrate<br>orally                     | Symptoms associated with<br>life-threatening<br>consequences | Death   |
| Diarrhoea*                                                                    | Normal               | Increase of <4<br>stools per day over<br>baseline | Increase of 4-6 stools per day<br>over baseline, iv fluids indicated<br><24hrs, not interfering with ADL | Increase of >=7 stools per day<br>over baseline or incontinence,<br>interfering with ADL | Life threatening consequences                                | Death   |
| Central neurotoxicity                                                         | Normal               | Mild somnolence,<br>or agitation;<br>drowsiness   | Somnolence <50% of the time,<br>moderate disorientation                                                  | Somnolence >50% of the time,<br>severe disorientation,<br>hallucinations                 | Coma, seizures                                               | Death   |
| eripheral Paraesthesia's mild<br>eurotoxicity Normal subjective mild weakness |                      | Severe paraesthesia's and/or mild weakness        | Unbearable paraesthesia's, deficits in motor function                                                    | Paralysis                                                                                | Death                                                        |         |

This table represents the slightly modified NCI criteria used for the ALL10 protocol. \*Diarrhea was not questioned in UMCG. Abbreviations: NCI, National

cancer institute.

# Supplemental table 3: Overview of all the SNPs in this study

|             |            |           |          |            | Chromosome   | hromosome    |    | s   |      |                                   |  |
|-------------|------------|-----------|----------|------------|--------------|--------------|----|-----|------|-----------------------------------|--|
| Gene        | dbSNP ID   | Variation | Position | location   | position     |              | n% |     | HWE  | PCR Primer                        |  |
| ABCC2       | Rs12826    | A>G       | 74858    | Downstream | 10;101612320 | wild type    | 50 | 42% | 0.69 | F: GGC ATT TGC ATT TCC ACT        |  |
|             |            |           |          |            |              | heterozygous | 52 | 44% |      | R: CCT GGA GAA TTT GTA AAT CAC A  |  |
|             |            |           |          |            |              | mutant       | 16 | 14% |      |                                   |  |
| ABCC2       | Rs717620   | G>A       | 5116     | 5"UTR      | 10;101542578 | wild type    | 80 | 68% | 0.52 | F: AGG GCT TTT TAG TCA CAT GTC    |  |
|             |            |           |          |            |              | heterozygous | 36 | 31% |      | R: AGA CCA ATT GCA CAT CTA ACA    |  |
|             |            |           |          |            |              | mutant       | 2  | 2%  |      |                                   |  |
| ABCC2       | Rs3740065  | T>C       | 68231    | Intron 29  | 10;101605693 | wild type    | 94 | 80% | 0.17 | F: CCC CCA GGT GAG CTC TA         |  |
|             |            |           |          |            |              | heterozygous | 21 | 18% |      | R: CAG CGG CAA AAC TGC TA         |  |
|             |            |           |          |            |              | mutant       | 3  | 3%  |      |                                   |  |
| ABCC4       | Rs1678392  | G>A       | 8811856  | Intron 26  | 13;95722180  | wild type    | 81 | 70% | 1    | F: AGC GAT TTT CCT GCT TCA        |  |
|             |            |           |          |            |              | heterozygous | 31 | 27% |      | R: TCC AGG TAC CCA CAT GTA AGT    |  |
|             |            |           |          |            |              | mutant       | 3  | 3%  |      |                                   |  |
| ABCC4       | Rs2619312  | T>C       | 8812715  | Intron 26  | 13;95723039  | wild type    | 74 | 63% | 1    | F: TGT GGG AAT TTA AGA TGA GAT TT |  |
|             |            |           |          |            |              | heterozygous | 39 | 33% |      | R: TTG GGG GTC TGA TTT CTG        |  |
|             |            |           |          |            |              | mutant       | 5  | 4%  |      |                                   |  |
| ABCC4       | Rs7317112  | A>G       | 9013199  | Intron 1   | 13;95923523  | wild type    | 62 | 53% | 0.37 | F: GCC AGC GTG TGA CCT T          |  |
|             |            |           |          |            |              | heterozygous | 44 | 37% |      | R: GGG GAC AGA GCC AGA CT         |  |
|             |            |           |          |            |              | mutant       | 12 | 10% |      |                                   |  |
| ABCC4       | rs9302061  | T>C       | 9056380  | Upstream   | 13:95966704  | wild type    | 41 | 35% | 0.57 | F: CGT GGT GCT AGA TTA CAT CAA    |  |
|             |            |           |          |            |              | heterozygous | 60 | 51% |      | R: CCA GGA TCC CAA GAA ATT AG     |  |
|             |            |           |          |            |              | mutant       | 17 | 14% |      |                                   |  |
| ABCC4       | Rs9516519  | T>G       | 8762133  | 3"utr      | 13;95672457  | wild type    | 83 | 70% | 0.53 | F: CCT GGG ACC TTT TGT ACT TTA T  |  |
|             |            |           |          |            |              | heterozygous | 33 | 28% |      | R: TGT GGT TTG TTG GAC TGA AC     |  |
|             |            |           |          |            |              | mutant       | 2  | 2%  |      |                                   |  |
| ABCC4       | Rs10219913 | T>C       | 8790611  | Intron 28  | 13:95700935  | wild type    | 86 | 73% | 0.3  | F: GCC CCT AAA TAA GAG CAA CTC    |  |
|             |            |           |          |            |              | heterozygous | 28 | 24% |      | R: GGG AAC AAC CTT TAA CAA GAA C  |  |
|             |            |           |          |            |              | mutant       | 4  | 3%  |      |                                   |  |
| MTHFR       | Rs1801133  | C>T       | 677      | Exon 4     | 1:11778965   | wild type    | 59 | 50% | 0.06 | F: TGA AGG AGA AGG TGT CTG CGG GA |  |
|             |            |           |          |            |              | heterozygous | 42 | 36% |      | R: AGG ACG BTB CGG TGA GAG TG     |  |
|             |            |           |          |            |              | mutant       | 17 | 14% |      |                                   |  |
| MTHFR       | Rs1801131  | A>C       | 1298     | Upstream   | 1:11854476   | wild type    | 58 | 49% | 0.83 | F: GGG AGG AGC TGA CCA GTG CAG    |  |
|             |            |           |          |            |              | heterozygous | 49 | 42% |      | R: GGG GTC AGG CCA GGG GCA G      |  |
|             | 5 4004004  |           | 6.6      |            |              | mutant       | 11 | 9%  | 0.40 |                                   |  |
| MTRR        | Rs1801394  | A>G       | 66       | Upstream   | 5:7870973    | wild type    | 19 | 16% | 0.19 | F: CAG TTT CAC TGT TAC ATG CCT TG |  |
|             |            |           |          |            |              | heterozygous | 66 | 56% |      | R: CAA TTT TTG AGA CCA TTT AGT CT |  |
| CL 04 C + 4 | D 4054266  | <u> </u>  | 66       |            | 24 46053304  | mutant       | 33 | 28% | 0.00 |                                   |  |
| SLC19A1     | Rs1051266  | G>A       | 80       | Exon4      | 21:46957794  | wild type    | 35 | 30% | 0.36 | F: TCC AGG CAC AGT GTC ACC TTC    |  |
| (RFC1)      |            |           |          |            |              | heterozygous | 54 | 46% |      | R: IGC ICC CGC GTG AAG TTC T      |  |

## Supplemental table 3: Overview of all the SNPs in this study

|         |           |           |          |          | Chromosome  |              | all groups |     |      |                                          |
|---------|-----------|-----------|----------|----------|-------------|--------------|------------|-----|------|------------------------------------------|
| Gene    | dbSNP ID  | Variation | Position | location | position    |              | n%         | n%  |      | PCR Primer                               |
|         |           |           |          |          |             | mutant       | 29         | 25% |      |                                          |
| TPMT*2  | Rs1800462 | G>C       | 238      | Exon 5   | 6:18143955  | wild type    | 109        | 92% | 0.18 | F: TGT AAA ACG ACG GCC AGT               |
|         |           |           |          |          |             | heterozygous | 8          | 7%  |      | R: GTA TGA TTT TAT GCA GGT TTG           |
|         |           |           |          |          |             | mutant       | 1          | 1%  |      |                                          |
| TPMT*3B | Rs1800460 | G>A       | 460      | Exon 7   | 6:18139228  | wild type    | 110        | 93% | 0.15 | F: AGGCAGCTAGGGAAAAAGAAAGGTG             |
|         |           |           |          |          |             | heterozygous | 7          | 6%  |      | R: CAAGCCTTATAGCCTTACACCCAGG             |
|         |           |           |          |          |             | mutant       | 1          | 1%  |      |                                          |
| TPMT*3C | Rs1142345 | A>G       | 719      | Exon 10  | 6:18130918  | wild type    | 110        | 93% | 1    | F: GAG ACA GAG TTT CAC CAT CTT GG        |
|         |           |           |          |          |             | heterozygous | 8          | 7%  |      | R: CAG GCT TTA GCA TAA TTT TCA AT TCC TC |
|         |           |           |          |          |             | mutant       | 0          | 0%  |      |                                          |
| SCLO1B1 | rs4149056 | T>C       | 521      | Intron 4 | 12:21331549 | wild type    | 88         | 75% | 0.69 | Assay ID: C30633906_10                   |
|         |           |           |          |          |             | heterozygous | 29         | 25% |      |                                          |
|         |           |           |          |          |             | mutant       | 1          | 1%  |      |                                          |

Abbreviations: F=forward strand; R=reverse strand.

| Supplem | Supplemental table 4: Comparison between single nucleotide polymorphisms and Toxicity, MTX levels and Folate metabolites |           |    |     |       |       |      |     |        |          |         |       |     |                |            |        |       |  |
|---------|--------------------------------------------------------------------------------------------------------------------------|-----------|----|-----|-------|-------|------|-----|--------|----------|---------|-------|-----|----------------|------------|--------|-------|--|
|         |                                                                                                                          |           |    |     | Extra | Hosp. |      |     | Γ      | MTX leve | els T24 |       | _   | MTX levels T48 |            |        |       |  |
|         |                                                                                                                          |           | n  | (%) | yes   | (%)   | р    | n   | Median | (rai     | nge)    | р     | n   | Median         | an (range) |        | р     |  |
| ABCC2   | rs12826                                                                                                                  | A/A       | 37 | 42% | 5     | (10%) |      | 139 | 65.59  | (36.26-  | 143.50) |       | 220 | 0.44           | (0.12-     | 2.14)  |       |  |
|         |                                                                                                                          | A/G - G/G | 43 | 58% | 5     | (8%)  | 0.66 | 145 | 63.29  | (24.43-  | 190.53) | 0.94  | 169 | 0.39           | (0.20-     | 22.89) | 0.94  |  |
| ABCC2   | rs717620                                                                                                                 | G/G       | 57 | 68% | 9     | (12%) |      | 85  | 64.90  | (24.43-  | 190.53) |       | 122 | 0.44           | (0.12-     | 22.89) |       |  |
|         |                                                                                                                          | G/A - A/A | 23 | 32% | 1     | (3%)  | NA   | 199 | 63.70  | (32.70-  | 146.40) | 0.51  | 267 | 0.35           | (0.20-     | 1.42)  | 0.05  |  |
| ABCC2   | rs3740065                                                                                                                | T/T       | 61 | 80% | 7     | (8%)  |      | 71  | 65.59  | (24.43-  | 190.53) |       | 75  | 0.42           | (0.20-     | 22.89) |       |  |
|         |                                                                                                                          | T/C - C/C | 19 | 20% | 3     | (13%) | 0.42 | 213 | 58.06  | (36.26-  | 142.26) | 0.26  | 314 | 0.34           | (0.12-     | 0.68)  | 0.00  |  |
| ABCC4   | rs1678392                                                                                                                | G/G       | 57 | 70% | 6     | (8%)  |      | 74  | 65.59  | (24.43-  | 146.40) |       | 113 | 0.41           | (0.12-     | 1.33)  |       |  |
|         |                                                                                                                          | G/A - A/A | 21 | 30% | 4     | (13%) | 0.47 | 206 | 63.54  | (41.34-  | 190.53) | 0.94  | 269 | 0.40           | (0.13-     | 2.14)  | 0.62  |  |
| ABCC4   | rs2619312                                                                                                                | T/T       | 55 | 63% | 6     | (8%)  |      | 103 | 68.79  | (32.70-  | 146.40) |       | 143 | 0.41           | (0.12-     | 1.33)  |       |  |
|         |                                                                                                                          | T/C - C/C | 25 | 37% | 4     | (10%) | 1.00 | 181 | 63.20  | (24.43-  | 190.53) | 0.58  | 246 | 0.39           | (0.13-     | 22.89) | 0.96  |  |
| ABCC4   | rs7317112                                                                                                                | A/A       | 41 | 53% | 2     | (3%)  |      | 133 | 60.01  | (32.70-  | 146.40) |       | 188 | 0.32           | (0.12-     | 1.42)  |       |  |
|         |                                                                                                                          | A/G - G/G | 39 | 47% | 8     | (15%) | NA   | 151 | 74.00  | (24.43-  | 190.53) | 0.04  | 201 | 0.40           | (0.21-     | 22.89) | 0.00* |  |
| ABCC4   | rs9302061                                                                                                                | T/T       | 30 | 35% | 3     | (8%)  |      | 192 | 61.62  | (32.70-  | 190.53) |       | 245 | 0.42           | (0.20-     | 22.89) |       |  |
|         |                                                                                                                          | T/C - C/C | 50 | 65% | 7     | (9%)  | 1.00 | 92  | 65.26  | (24.43-  | 146.40) | 0.54  | 144 | 0.38           | (0.12-     | 2.14)  | 0.34  |  |
| ABCC4   | rs9516519                                                                                                                | T/T       | 59 | 70% | 5     | (6%)  |      | 78  | 66.57  | (24.43-  | 146.40) |       | 118 | 0.40           | (0.12-     | 22.89) |       |  |
|         |                                                                                                                          | T/G - G/G | 21 | 30% | 5     | (15%) | 0.13 | 206 | 62.00  | (32.70-  | 190.53) | 0.33  | 271 | 0.40           | (0.13-     | 2.14)  | 0.96  |  |
| ABCC4   | rs10219913                                                                                                               | Т/Т       | 58 | 73% | 7     | (8%)  |      | 60  | 63.20  | (24.43-  | 190.53) |       | 100 | 0.39           | (0.13-     | 2.14)  |       |  |
|         |                                                                                                                          | т/с - с/с | 22 | 27% | 3     | (10%) | 0.72 | 224 | 75.12  | (49.93-  | 146.40) | 0.02  | 289 | 0.42           | (0.12-     | 22.89) | 0.46  |  |
| MTHFR   | rs1801133                                                                                                                | C/C       | 40 | 50% | 8     | (14%) |      | 125 | 63.54  | (32.70-  | 142.26) |       | 190 | 0.40           | (0.13-     | 1.33)  |       |  |
|         |                                                                                                                          | С/Т - Т/Т | 40 | 50% | 2     | (4%)  | NA   | 159 | 67.54  | (24.43-  | 190.53) | 0.23  | 199 | 0.41           | (0.12-     | 22.89) | 0.74  |  |
| MTHFR   | rs1801131                                                                                                                | A/A       | 40 | 49% | 4     | (7%)  |      | 159 | 73.50  | (24.43-  | 146.40) |       | 199 | 0.41           | (0.12-     | 22.89) |       |  |
|         |                                                                                                                          | A/C - C/C | 40 | 51% | 6     | (11%) | 0.74 | 125 | 61.32  | (32.70-  | 190.53) | 0.05  | 190 | 0.40           | (0.13-     | 2.14)  | 0.57  |  |
| MTRR    | rs1801394                                                                                                                | A/A       | 14 | 16% | 2     | (12%) |      | 229 | 81.56  | (59.00-  | 139.35) |       | 328 | 0.42           | (0.12-     | 1.42)  |       |  |
|         |                                                                                                                          | A/G - G/G | 66 | 84% | 8     | (8%)  | NA   | 55  | 60.39  | (24.43-  | 190.53) | 0.00* | 61  | 0.40           | (0.13-     | 22.89) | 0.71  |  |
| RFC1    | rs1051266                                                                                                                | G/G       | 26 | 30% | 4     | (12%) |      | 202 | 64.77  | (40.11-  | 190.53) |       | 275 | 0.44           | (0.12-     | 22.89) |       |  |
|         |                                                                                                                          | G/A - A/A | 54 | 70% | 6     | (8%)  | 0.49 | 82  | 64.87  | (24.43-  | 143.50) | 0.65  | 114 | 0.39           | (0.13-     | 2.14)  | 0.49  |  |
| TPMT    | rs1800462                                                                                                                | G/G       | 74 | 92% | 9     | (9%)  |      | 17  | 64.87  | (24.43-  | 190.53) |       | 29  | 0.40           | (0.12-     | 22.89) |       |  |
|         |                                                                                                                          | G/C - C/C | 6  | 8%  | 1     | (11%) | NA   | 267 | 66.81  | (40.11-  | 96.45)  | NA    | 360 | 0.40           | (0.30-     | 0.67)  | NA    |  |
| TPMT    | rs1800460                                                                                                                | G/G       | 74 | 93% | 9     | (9%)  |      | 16  | 64.90  | (24.43-  | 190.53) |       | 25  | 0.41           | (0.12-     | 22.89) |       |  |
|         |                                                                                                                          | G/A - A/A | 6  | 7%  | 1     | (13%) | NA   | 268 | 61.01  | (40.11-  | 96.45)  | NA    | 364 | 0.40           | (0.30-     | 0.67)  | NA    |  |
| TPMT    | rs1142345                                                                                                                | A/A       | 74 | 93% | 9     | (9%)  |      | 17  | 64.87  | (24.43-  | 190.53) |       | 26  | 0.39           | (0.12-     | 22.89) |       |  |
|         |                                                                                                                          | A/G - G/G | 6  | 7%  | 1     | (13%) | NA   | 267 | 66.81  | (40.11-  | 96.45)  | NA    | 363 | 0.42           | (0.35-     | 0.67)  | NA    |  |
| SCLO1B1 | rs4149056                                                                                                                | T/T       | 58 | 75% | 6     | (7%)  |      | 82  | 59.77  | (24.43-  | 190.53) |       | 104 | 0.42           | (0.12-     | 22.89) |       |  |
|         |                                                                                                                          | T/C - C/C | 22 | 25% | 4     | (14%) | 0.28 | 202 | 74.20  | (47.42-  | 146.40) | 0.02* | 285 | 0.37           | (0.13-     | 1.15)  | 0.14  |  |

| Suppler | Supplemental table 4. Comparison between single nucleotide polymorphisms and Toxicity, WITX levels and Folate metabolites |           |                              |        |        |           |      |     |                         |        |        |      |     |                               |        |         |      |  |
|---------|---------------------------------------------------------------------------------------------------------------------------|-----------|------------------------------|--------|--------|-----------|------|-----|-------------------------|--------|--------|------|-----|-------------------------------|--------|---------|------|--|
|         |                                                                                                                           |           | Erythrocyte Folate Levels T0 |        |        |           |      |     | Plasma Folate Levels T0 |        |        |      |     | Plasma Homocysteine Levels T0 |        |         |      |  |
|         |                                                                                                                           |           | n                            | Median | (rai   | (range) p |      | n   | Median                  | (rar   | nge)   | р    | n   | Median                        | (rar   | (range) |      |  |
| ABCC2   | rs12826                                                                                                                   | A/A       | 43                           | 1.30   | (0.81- | 3.61)     |      | 68  | 15.98                   | (6.01- | 44.80) |      | 68  | 7.60                          | (3.30- | 25.30)  |      |  |
|         |                                                                                                                           | A/G - G/G | 39                           | 1.14   | (0.83- | 2.28)     | 0.32 | 50  | 16.99                   | (6.55- | 37.92) | 0.75 | 50  | 7.00                          | (3.60- | 15.50)  | 0.46 |  |
| ABCC2   | rs717620                                                                                                                  | G/G       | 25                           | 1.29   | (0.95- | 1.83)     |      | 38  | 13.86                   | (7.45- | 44.80) |      | 38  | 6.80                          | (3.30- | 25.30)  |      |  |
|         |                                                                                                                           | G/A - A/A | 57                           | 1.19   | (0.81- | 3.61)     | 0.12 | 80  | 17.54                   | (6.01- | 44.13) | 0.26 | 80  | 7.40                          | (3.30- | 20.20)  | 0.87 |  |
| ABCC2   | rs3740065                                                                                                                 | T/T       | 19                           | 1.16   | (0.83- | 2.28)     |      | 24  | 18.24                   | (8.05- | 37.50) |      | 24  | 6.55                          | (3.60- | 15.50)  |      |  |
|         |                                                                                                                           | T/C - C/C | 63                           | 1.27   | (0.81- | 3.61)     | 0.10 | 94  | 15.22                   | (6.01- | 44.80) | 0.22 | 94  | 7.65                          | (3.30- | 25.30)  | 0.37 |  |
| ABCC4   | rs1678392                                                                                                                 | G/G       | 22                           | 1.35   | (0.83- | 2.28)     |      | 34  | 18.60                   | (7.38- | 44.13) |      | 34  | 7.80                          | (3.60- | 14.70)  |      |  |
|         |                                                                                                                           | G/A - A/A | 58                           | 1.19   | (0.81- | 3.61)     | 0.15 | 81  | 16.15                   | (6.01- | 44.80) | 0.78 | 81  | 6.90                          | (3.30- | 25.30)  | 0.41 |  |
| ABCC4   | rs2619312                                                                                                                 | T/T       | 31                           | 1.38   | (0.83- | 3.61)     |      | 44  | 19.32                   | (7.38- | 44.13) |      | 44  | 7.70                          | (3.60- | 14.70)  |      |  |
|         |                                                                                                                           | T/C - C/C | 51                           | 1.14   | (0.81- | 2.05)     | 0.01 | 74  | 15.72                   | (6.01- | 44.80) | 0.28 | 74  | 7.00                          | (3.30- | 25.30)  | 0.88 |  |
| ABCC4   | rs7317112                                                                                                                 | A/A       | 39                           | 1.21   | (0.81- | 3.61)     |      | 56  | 16.48                   | (6.01- | 37.50) |      | 56  | 7.20                          | (3.30- | 14.70)  |      |  |
|         |                                                                                                                           | A/G - G/G | 43                           | 1.23   | (0.83- | 2.28)     | 0.86 | 62  | 16.81                   | (7.35- | 44.80) | 0.68 | 62  | 7.10                          | (3.60- | 25.30)  | 0.48 |  |
| ABCC4   | rs9302061                                                                                                                 | T/T       | 56                           | 1.22   | (0.81- | 2.28)     |      | 77  | 15.92                   | (6.01- | 44.80) |      | 77  | 7.10                          | (3.30- | 25.30)  |      |  |
|         |                                                                                                                           | T/C - C/C | 26                           | 1.22   | (0.94- | 3.61)     | 0.71 | 41  | 17.30                   | (8.77- | 35.98) | 0.36 | 41  | 7.70                          | (3.30- | 15.50)  | 0.67 |  |
| ABCC4   | rs9516519                                                                                                                 | T/T       | 23                           | 1.29   | (0.83- | 2.28)     |      | 35  | 16.22                   | (7.38- | 44.13) |      | 35  | 7.70                          | (3.60- | 14.70)  |      |  |
|         |                                                                                                                           | T/G - G/G | 59                           | 1.19   | (0.81- | 3.61)     | 0.37 | 83  | 16.51                   | (6.01- | 44.80) | 0.43 | 83  | 7.00                          | (3.30- | 25.30)  | 0.43 |  |
| ABCC4   | rs10219913                                                                                                                | T/T       | 19                           | 1.18   | (0.94- | 2.05)     |      | 32  | 16.95                   | (6.01- | 37.92) |      | 32  | 8.15                          | (3.80- | 25.30)  |      |  |
|         |                                                                                                                           | T/C - C/C | 63                           | 1.26   | (0.81- | 3.61)     | 0.39 | 86  | 16.33                   | (6.55- | 44.80) | 0.55 | 86  | 7.00                          | (3.30- | 15.50)  | 0.25 |  |
| MTHFR   | rs1801133                                                                                                                 | C/C       | 38                           | 1.28   | (0.83- | 2.23)     |      | 59  | 15.92                   | (7.38- | 44.80) |      | 59  | 7.10                          | (3.30- | 25.30)  |      |  |
|         |                                                                                                                           | C/T - T/T | 44                           | 1.20   | (0.81- | 3.61)     | 0.30 | 59  | 16.59                   | (6.01- | 34.02) | 0.89 | 59  | 7.45                          | (3.30- | 20.20)  | 0.82 |  |
| MTHFR   | rs1801131                                                                                                                 | A/A       | 45                           | 1.21   | (0.83- | 3.61)     |      | 60  | 17.46                   | (6.01- | 44.80) |      | 60  | 7.15                          | (3.30- | 25.30)  |      |  |
|         |                                                                                                                           | A/C - C/C | 37                           | 1.26   | (0.81- | 1.83)     | 0.90 | 58  | 14.66                   | (6.55- | 37.50) | 0.23 | 58  | 7.20                          | (3.30- | 15.50)  | 0.65 |  |
| MTRR    | rs1801394                                                                                                                 | A/A       | 66                           | 1.24   | (0.81- | 3.61)     |      | 99  | 17.30                   | (6.01- | 44.80) |      | 99  | 7.00                          | (3.30- | 25.30)  |      |  |
|         |                                                                                                                           | A/G - G/G | 16                           | 1.19   | (0.83- | 2.28)     | 0.58 | 19  | 14.58                   | (7.35- | 37.50) | 0.33 | 19  | 8.30                          | (3.60- | 20.20)  | 0.72 |  |
| RFC1    | rs1051266                                                                                                                 | G/G       | 58                           | 1.27   | (0.83- | 3.61)     |      | 83  | 16.22                   | (6.01- | 44.13) |      | 83  | 7.05                          | (3.30- | 25.30)  |      |  |
|         |                                                                                                                           | G/A - A/A | 24                           | 1.16   | (0.81- | 2.23)     | 0.16 | 35  | 17.61                   | (7.35- | 44.80) | 0.60 | 35  | 7.55                          | (4.40- | 20.20)  | 0.62 |  |
| TPMT    | rs1800462                                                                                                                 | G/G       | 4                            | 1.12   | (0.99- | 1.29)     |      | 9   | 19.19                   | (9.59- | 34.02) |      | 9   | 8.00                          | (5.00- | 14.70)  |      |  |
|         |                                                                                                                           | G/C - C/C | 78                           | 1.24   | (0.81- | 3.61)     | 0.33 | 109 | 16.44                   | (6.01- | 44.80) | 0.45 | 109 | 7.10                          | (3.30- | 25.30)  | 0.33 |  |
| TPMT    | rs1800460                                                                                                                 | G/G       | 4                            | 1.12   | (0.99- | 1.29)     |      | 8   | 20.38                   | (9.59- | 34.02) |      | 8   | 8.25                          | (5.00- | 14.70)  |      |  |
|         |                                                                                                                           | G/A - A/A | 78                           | 1.24   | (0.81- | 3.61)     | 0.33 | 110 | 16.48                   | (6.01- | 44.80) | 0.51 | 110 | 7.05                          | (3.30- | 25.30)  | 0.20 |  |
| TPMT    | rs1142345                                                                                                                 | A/A       | 4                            | 1.12   | (0.99- | 1.29)     |      | 8   | 17.71                   | (9.59- | 25.96) |      | 8   | 8.25                          | (5.60- | 14.70)  |      |  |
|         |                                                                                                                           | A/G - G/G | 78                           | 1.24   | (0.81- | 3.61)     | 0.33 | 110 | 16.48                   | (6.01- | 44.80) | 0.81 | 110 | 7.05                          | (3.30- | 25.30)  | 0.19 |  |
| SCLO1B1 | rs4149056                                                                                                                 | T/T       | 22                           | 1.32   | (0.95- | 2.28)     |      | 30  | 20.01                   | (6.01- | 44.80) |      | 30  | 6.80                          | (3.60- | 25.30)  |      |  |
|         |                                                                                                                           | T/C - C/C | 60                           | 1.21   | (0.81- | 3.61)     | 0.25 | 88  | 15.72                   | (6.55- | 44.13) | 0.03 | 88  | 7.70                          | (3.30- | 20.20)  | 0.24 |  |

| Sur | pplemental table 4. | Compariso | n between sin | gle nucleotide | polymor | phisms and 1 | Toxicitv | . MTX levels an | d Folate metab | olite |
|-----|---------------------|-----------|---------------|----------------|---------|--------------|----------|-----------------|----------------|-------|
|     |                     |           |               |                |         |              |          | ,               |                |       |

Abbreviations: ALL = Acute Lymphoblastic Leukemia; n=number; \* = significant association in the first MTX course as well; T0 = at baseline

## References

- 1. Widemann BC, Adamson PC. Understanding and managing methotrexate nephrotoxicity. *The oncologist* 2006; **11**(6): 694-703.
- 2. Lopez-Lopez E, Ballesteros J, Pinan MA, Sanchez de Toledo J, Garcia de Andoin N, Garcia-Miguel P, *et al*. Polymorphisms in the methotrexate transport pathway: a new tool for MTX plasma level prediction in pediatric acute lymphoblastic leukemia. *Pharmacogenetics and genomics* 2013; **23**(2): 53-61.
- Sharifi MJ, Bahoush G, Zaker F, Ansari S, Rafsanjani KA, Sharafi H. Association of -24CT, 1249GA, and 3972CT ABCC2 Gene Polymorphisms with Methotrexate Serum Levels and Toxic Side Effects in Children with Acute Lymphoblastic Leukemia. *Pediatric hematology and oncology* 2014; 31(2): 169-177.
- 4. Rau T, Erney B, Gores R, Eschenhagen T, Beck J, Langer T. High-dose methotrexate in pediatric acute lymphoblastic leukemia: impact of ABCC2 polymorphisms on plasma concentrations. *Clinical pharmacology and therapeutics* 2006; **80**(5): 468-476.
- 5. Chiusolo P, Reddiconto G, Farina G, Mannocci A, Fiorini A, Palladino M, *et al*. MTHFR polymorphisms' influence on outcome and toxicity in acute lymphoblastic leukemia patients. *Leuk Res* 2007; **31**(12): 1669-1674.
- 6. Sepe DM, McWilliams T, Chen J, Kershenbaum A, Zhao H, La M, *et al*. Germline genetic variation and treatment response on CCG-1891. *Pediatric blood* & cancer 2012; **58**(5): 695-700.
- Tantawy AA, El-Bostany EA, Adly AA, Abou El Asrar M, El-Ghouroury EA, Abdulghaffar EE. Methylene tetrahydrofolate reductase gene polymorphism in Egyptian children with acute lymphoblastic leukemia. *Blood coagulation & fibrinolysis : an international journal in haemostasis and thrombosis* 2010; 21(1): 28-34.
- 8. Liu SG, Li ZG, Cui L, Gao C, Li WJ, Zhao XX. Effects of methylenetetrahydrofolate reductase gene polymorphisms on toxicities during consolidation therapy in pediatric acute lymphoblastic leukemia in a Chinese population. *Leukemia & lymphoma* 2011; **52**(6): 1030-1040.
- 9. Tanaka Y, Manabe A, Nakadate H, Kondoh K, Nakamura K, Koh K, *et al*. Methylenetetrahydrofolate reductase gene haplotypes affect toxicity during maintenance therapy for childhood acute lymphoblastic leukemia in Japanese patients. *Leukemia & lymphoma* 2013.
- 10. Eissa DS, Ahmed TM. C677T and A1298C polymorphisms of the methylenetetrahydrofolate reductase gene: effect on methotrexate-related toxicity in adult acute lymphoblastic leukaemia. *Blood coagulation & fibrinolysis : an international journal in haemostasis and thrombosis* 2013; **24**(2): 181-188.

- 11. El-Khodary NM, El-Haggar SM, Eid MA, Ebeid EN. Study of the pharmacokinetic and pharmacogenetic contribution to the toxicity of high-dose methotrexate in children with acute lymphoblastic leukemia. *Med Oncol* 2012; **29**(3): 2053-2062.
- 12. Faganel Kotnik B, Grabnar I, Bohanec Grabar P, Dolzan V, Jazbec J. Association of genetic polymorphism in the folate metabolic pathway with methotrexate pharmacokinetics and toxicity in childhood acute lymphoblastic leukaemia and malignant lymphoma. *European journal of clinical pharmacology* 2011; **67**(10): 993-1006.
- Fukushima H, Fukushima T, Sakai A, Suzuki R, Nakajima-Yamaguchi R, Kobayashi C, *et al.* Polymorphisms of MTHFR Associated with Higher Relapse/Death Ratio and Delayed Weekly MTX Administration in Pediatric Lymphoid Malignancies. *Leukemia research and treatment* 2013; 2013: 238528.
- 14. Haase R, Elsner K, Merkel N, Stiefel M, Mauz-Korholz C, Kramm CM, *et al*. High dose methotrexate treatment in childhood ALL: pilot study on the impact of the MTHFR 677C>T and 1298A>C polymorphisms on MTX-related toxicity. *Klinische Padiatrie* 2012; **224**(3): 156-159.
- 15. Costea I, Moghrabi A, Laverdiere C, Graziani A, Krajinovic M. Folate cycle gene variants and chemotherapy toxicity in pediatric patients with acute lymphoblastic leukemia. *Haematologica* 2006; **91**(8): 1113-1116.
- 16. van Kooten Niekerk PB, Schmiegelow K, Schroeder H. Influence of methylene tetrahydrofolate reductase polymorphisms and coadministration of antimetabolites on toxicity after high dose methotrexate. *Eur J Haematol* 2008; **81**(5): 391-398.
- 17. Kantar M, Kosova B, Cetingul N, Gumus S, Toroslu E, Zafer N, *et al.* Methylenetetrahydrofolate reductase C677T and A1298C gene polymorphisms and therapy-related toxicity in children treated for acute lymphoblastic leukemia and non-Hodgkin lymphoma. *Leukemia & lymphoma* 2009; **50**(6): 912-917.
- D'Angelo V, Ramaglia M, Iannotta A, Crisci S, Indolfi P, Francese M, et al. Methotrexate toxicity and efficacy during the consolidation phase in paediatric acute lymphoblastic leukaemia and MTHFR polymorphisms as pharmacogenetic determinants. *Cancer Chemother Pharmacol* 2011; 68(5): 1339-1346.
- 19. Aplenc R, Thompson J, Han P, La M, Zhao H, Lange B, *et al*. Methylenetetrahydrofolate reductase polymorphisms and therapy response in pediatric acute lymphoblastic leukemia. *Cancer Res* 2005; **65**(6): 2482-2487.

- 20. Chiusolo P, Giammarco S, Bellesi S, Metafuni E, Piccirillo N, De Ritis D, *et al*. The role of MTHFR and RFC1 polymorphisms on toxicity and outcome of adult patients with hematological malignancies treated with high-dose methotrexate followed by leucovorin rescue. *Cancer Chemother Pharmacol* 2012; **69**(3): 691-696.
- 21. Shimasaki N, Mori T, Samejima H, Sato R, Shimada H, Yahagi N, *et al*. Effects of methylenetetrahydrofolate reductase and reduced folate carrier 1 polymorphisms on high-dose methotrexate-induced toxicities in children with acute lymphoblastic leukemia or lymphoma. *J Pediatr Hematol Oncol* 2006; **28**(2): 64-68.
- 22. Dorababu P, Naushad SM, Linga VG, Gundeti S, Nagesh N, Kutala VK, *et al*. Genetic variants of thiopurine and folate metabolic pathways determine 6-MP-mediated hematological toxicity in childhood ALL. *Pharmacogenomics* 2012; **13**(9): 1001-1008.
- 23. Shimasaki N, Mori T, Torii C, Sato R, Shimada H, Tanigawara Y, *et al*. Influence of MTHFR and RFC1 polymorphisms on toxicities during maintenance chemotherapy for childhood acute lymphoblastic leukemia or lymphoma. *J Pediatr Hematol Oncol* 2008; **30**(5): 347-352.
- 24. Ongaro A, De Mattei M, Della Porta MG, Rigolin G, Ambrosio C, Di Raimondo F, *et al*. Gene polymorphisms in folate metabolizing enzymes in adult acute lymphoblastic leukemia: effects on methotrexate-related toxicity and survival. *Haematologica* 2009; **94**(10): 1391-1398.
- 25. Erculj N, Kotnik BF, Debeljak M, Jazbec J, Dolzan V. Influence of folate pathway polymorphisms on high-dose methotrexate-related toxicity and survival in childhood acute lymphoblastic leukemia. *Leukemia & lymphoma* 2012; **53**(6): 1096-1104.
- 26. Kim H, Kang HJ, Kim HJ, Jang MK, Kim NH, Oh Y, *et al*. Pharmacogenetic analysis of pediatric patients with acute lymphoblastic leukemia: a possible association between survival rate and ITPA polymorphism. *PloS one* 2012; **7**(9): e45558.
- 27. Imanishi H, Okamura N, Yagi M, Noro Y, Moriya Y, Nakamura T, *et al*. Genetic polymorphisms associated with adverse events and elimination of methotrexate in childhood acute lymphoblastic leukemia and malignant lymphoma. *Journal of human genetics* 2007; **52**(2): 166-171.
- 28. Huang L, Tissing WJ, de Jonge R, van Zelst BD, Pieters R. Polymorphisms in folate-related genes: association with side effects of high-dose methotrexate in childhood acute lymphoblastic leukemia. *Leukemia* 2008.
- 29. Ruiz-Arguelles GJ, Coconi-Linares LN, Garces-Eisele J, Reyes-Nunez V. Methotrexate-induced mucositis in acute leukemia patients is not associated with the MTHFR 677T allele in Mexico. *Hematology (Amsterdam, Netherlands)* 2007; **12**(5): 387-391.

#### 1-9-2014 19:42

- 30. Lopez-Lopez E, Martin-Guerrero I, Ballesteros J, Pinan MA, Garcia-Miguel P, Navajas A, *et al.* Polymorphisms of the SLCO1B1 gene predict methotrexate-related toxicity in childhood acute lymphoblastic leukemia. *Pediatric blood & cancer* 2011; **57**(4): 612-619.
- 31. Csordas K, Lautner-Csorba O, Semsei AF, Harnos A, Hegyi M, Erdelyi DJ, *et al.* Associations of novel genetic variations in the folate-related and ARID5B genes with the pharmacokinetics and toxicity of high-dose methotrexate in paediatric acute lymphoblastic leukaemia. *Br J Haematol* 2014.
- 32. Gregers J, Christensen IJ, Dalhoff K, Lausen B, Schroeder H, Rosthoej S, *et al*. The association of reduced folate carrier 80G>A polymorphism to outcome in childhood acute lymphoblastic leukemia interacts with chromosome 21 copy number. *Blood* 2010; **115**(23): 4671-4677.
- 33. Faganel Kotnik B, Dolzan V, Grabnar I, Jazbec J. Relationship of the reduced folate carrier gene polymorphism G80A to methotrexate plasma concentration, toxicity, and disease outcome in childhood acute lymphoblastic leukemia. *Leukemia & lymphoma* 2010; **51**(4): 724-726.
- 34. de Deus DM, de Lima EL, Seabra Silva RM, Leite EP, Cartaxo Muniz MT. Influence of Methylenetetrahydrofolate Reductase C677T, A1298C, and G80A Polymorphisms on the Survival of Pediatric Patients with Acute Lymphoblastic Leukemia. *Leukemia research and treatment* 2012; **2012**: 292043.
- 35. Relling MV, Hancock ML, Rivera GK, Sandlund JT, Ribeiro RC, Krynetski EY, et al. Mercaptopurine therapy intolerance and heterozygosity at the thiopurine S-methyltransferase gene locus. Journal of the National Cancer Institute 1999; **91**(23): 2001-2008.
- 36. Albayrak M, Konyssova U, Kaya Z, Gursel T, Guntekin S, Percin EF, *et al*. Thiopurine methyltransferase polymorphisms and mercaptopurine tolerance in Turkish children with acute lymphoblastic leukemia. *Cancer Chemoth Pharm* 2011; **68**(5): 1155-1159.
- 37. Dorababu P, Nagesh N, Linga VG, Gundeti S, Kutala VK, Reddanna P, *et al*. Epistatic interactions between thiopurine methyltransferase (TPMT) and inosine triphosphate pyrophosphatase (ITPA) variations determine 6-mercaptopurine toxicity in Indian children with acute lymphoblastic leukemia. *European journal of clinical pharmacology* 2012; **68**(4): 379-387.
- 38. Radtke S, Zolk O, Renner B, Paulides M, Zimmermann M, Moricke A, *et al*. Germline genetic variations in methotrexate candidate genes are associated with pharmacokinetics, toxicity, and outcome in childhood acute lymphoblastic leukemia. *Blood* 2013; **121**(26): 5145-5153.
- 39. Trevino LR, Shimasaki N, Yang W, Panetta JC, Cheng C, Pei D, *et al*. Germline genetic variation in an organic anion transporter polypeptide associated with methotrexate pharmacokinetics and clinical effects. *J Clin Oncol* 2009; **27**(35): 5972-5978.
- 40. Ramsey LB, Panetta JC, Smith C, Yang W, Fan Y, Winick NJ, *et al.* Genome-wide study of methotrexate clearance replicates SLCO1B1. *Blood* 2013; **121**(6): 898-904.

- 41. Ramsey LB, Bruun GH, Yang W, Trevino LR, Vattathil S, Scheet P, *et al*. Rare versus common variants in pharmacogenetics: SLCO1B1 variation and methotrexate disposition. *Genome research* 2012; **22**(1): 1-8.
- 42. Salazar J, Altes A, del Rio E, Estella J, Rives S, Tasso M, *et al*. Methotrexate consolidation treatment according to pharmacogenetics of MTHFR ameliorates event-free survival in childhood acute lymphoblastic leukaemia. *Pharmacogenomics J* 2012; **12**(5): 379-385.
- 43. Karathanasis NV, Stiakaki E, Goulielmos G, Kalmanti M. The Effect of RFC G80A Polymorphism in Cretan children with acute lymphoblastic leukemia and its interaction with MTHFR C677T and A1298C polymorphisms. *International journal of laboratory hematology* 2013.
- 44. Matimba A, Li F, Livshits A, Cartwright CS, Scully S, Fridley BL, *et al*. Thiopurine pharmacogenomics: association of SNPs with clinical response and functional validation of candidate genes. *Pharmacogenomics* 2014; **15**(4): 433-447.
- 45. Lopez-Lopez E, Ballesteros J, Garcia-Orad A. MTHFR 677TT genotype and toxicity of methotrexate: controversial results. *Cancer Chemother Pharmacol* 2011; **68**(5): 1369-1370; author reply 1371.
- 46. Spyridopoulou KP, Dimou NL, Hamodrakas SJ, Bagos PG. Methylene tetrahydrofolate reductase gene polymorphisms and their association with methotrexate toxicity: a meta-analysis. *Pharmacogenetics and genomics* 2012; **22**(2): 117-133.
- 47. Lopez-Lopez E, Martin-Guerrero I, Ballesteros J, Garcia-Orad A. A systematic review and meta-analysis of MTHFR polymorphisms in methotrexate toxicity prediction in pediatric acute lymphoblastic leukemia. *Pharmacogenomics J* 2012.
- 48. Wang H, Meng L, Zhao L, Wang J, Liu X, Mi W. Methylenetetrahydrofolate reductase polymorphism C677T is a protective factor for pediatric acute lymphoblastic leukemia in the Chinese population: a meta-analysis. *Genetic testing and molecular biomarkers* 2012; **16**(12): 1401-1407.
- 49. Wang H, Wang J, Zhao L, Liu X, Mi W. Methylenetetrahydrofolate reductase polymorphisms and risk of acute lymphoblastic leukemia-evidence from an updated meta-analysis including 35 studies. *BMC medical genetics* 2012; **13**: 77.
- 50. Yan J, Yin M, Dreyer ZE, Scheurer ME, Kamdar K, Wei Q, *et al*. A meta-analysis of MTHFR C677T and A1298C polymorphisms and risk of acute lymphoblastic leukemia in children. *Pediatric blood & cancer* 2012; **58**(4): 513-518.
- 51. Tong N, Sheng X, Wang M, Fang Y, Shi D, Zhang Z. Methylenetetrahydrofolate reductase gene polymorphisms and acute lymphoblastic leukemia risk: a meta-analysis based on 28 case-control studies. *Leukemia & lymphoma* 2011; **52**(10): 1949-1960.

52. He HR, Liu P, He GH, Dong WH, Wang MY, Dong YL, *et al*. Association between the reduced-folate-carrier G80A polymorphism and methotrexate toxicity in childhood acute lymphoblastic leukemia: a meta-analysis. *Leukemia & lymphoma* 2014.