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Abstract 

Our perceptual system appears hardwired to exploit regularities of input features across space and 
time in seemingly stable environments. This can lead to serial dependence effects whereby recent 
perceptual representations bias current perception. Serial dependence has also been demonstrated 
for more abstract representations such as perceptual confidence. Here we ask whether temporal 
patterns in the generation of confidence judgments across trials generalize across observers and 
different cognitive domains. Data from the Confidence Database across perceptual, memory, and 
cognitive paradigms was re-analyzed. Machine learning classifiers were used to predict the 
confidence on the current trial based on the history of confidence judgments on the previous trials. 
Cross-observer and cross-domain decoding results showed that a model trained to predict 
confidence in the perceptual domain generalized across observers to predict confidence across the 
different cognitive domains. The recent history of confidence was the most critical factor. The 
history of  accuracy or type-1 reaction time alone, or in combination with confidence, did not 
improve the prediction of the current confidence. We also observed that confidence predictions 
generalized across correct and incorrect trials, indicating that serial dependence effects in 
confidence generation are uncoupled to metacognition (i.e. how we evaluate the precision of our 
own behavior). We discuss the ramifications of these findings for the ongoing  debate on domain-
generality vs. specificity of metacognition.
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Introduction 

Perceptual judgments in the face of uncertainty are accompanied by metacognitive 
evaluations – a sense of confidence that tracks the probability of one's decision being correct. It 
remains, however, unclear how confidence is generated on a moment-to-moment basis.

 Our perceptual systems appear hardwired to exploit the auto-correlation in perceptual 
input across space and time, leading to serial dependence effects in perception, such that recent 
prior perceptual representations bias current perception (Fischer & Whitney, 2014). Serial 
dependence in perception reflects the influence that prior perceptual representations have on 
ongoing perception and is a widespread phenomenon demonstrated for low-level features such as 
oriented gratings (Fischer & Whitney, 2014) to more complex objects such as faces (Liberman et 
al., 2014) or ensemble visual representations (Manassi et al., 2017). It has also been argued that a 
mechanism based on serial dependence can account for different experimental results reported 
across perceptual, memory, and attention tasks  (Kiyonaga et al., 2017). 

 Recent research also indicates the existence of serial dependence for perceptual confidence  
(Rahnev et al., 2015); see also (Mueller & Weidemann, 2008). Serial dependence in confidence 
judgments across two different visual tasks has been demonstrated  even when confidence is not 
always rated (Aguilar-Lleyda et al., 2021). The current study focuses on understanding the role of 
serial dependence in confidence generation beyond perception, across multiple cognitive domains. 
Here we test the hypothesis that serial dependence effects in confidence generation in perceptual 
tasks generalize across observers and cognitive domains. 

We leverage the power of machine learning classifiers and out-of-sample predictions to 
investigate how predictable confidence is, whether the moment-to-moment predictability of 
confidence is task/domain-specific, or whether the patterns of serial dependence during confidence 
generation in the perceptual domain generalize to predict confidence judgments made by different 
observers across different cognitive domains. Machine learning classifiers were trained using 
confidence measures estimates from previous trials to predict the level of confidence in the current 
trial. The classifier was trained in one particular domain (i.e. perception) and then  tested across 
different cognitive domains  (i.e. memory) and generalization performance was quantified. 

https://paperpile.com/c/ajKj4G/MVni
https://paperpile.com/c/ajKj4G/MVni
https://paperpile.com/c/ajKj4G/1ocO
https://paperpile.com/c/ajKj4G/1ocO
https://paperpile.com/c/ajKj4G/6R4X
https://paperpile.com/c/ajKj4G/nbkh
https://paperpile.com/c/ajKj4G/dFc0w
https://paperpile.com/c/ajKj4G/w5ff
https://paperpile.com/c/ajKj4G/W9SK
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We predicted that if the dynamic representation of metacognitive confidence across trials is 
shared across different cognitive domains then the classifiers ought to generalize and hence predict 
the representation of metacognitive confidence in different observers and domains. Notably, the 
question addressed here is impossible to address using traditional statistical approaches in which all 
data is fit at once in the same statistical model. This is one of the advantages of using machine 
learning to study generalization and out-of-sample predictions regarding human decisions, 
including confidence ratings. For instance, a recent study showed evidence of serial dependence 
across domains in a paradigm in which recognition judgments were interleaved with perceptual 
judgments so that confidence in the perceptual judgment influenced subsequent memory 
confidence in the next  trial  (Kantner et al., 2019). However, this approach in which all data is 
fitted at once within the statistical model does not enable to quantify and predict confidence in 
new examples, namely, across different observers and across cognitive domains.

 The distribution of confidence judgments in visual tasks is highly stable within a particular 
observer when performance is measured across different days in the same visual task and also across 
visual tasks of similar structure (Ais et al., 2016). Such findings suggest that serial dependence may 
also be stable within individual observers when similar visual perceptual tasks are considered but 
raise questions on whether it is also similar across observers. Here we addressed whether the 
patterns of confidence across trials  associated with serial dependence effects were similar across 
observers, by training and testing the classifiers in different observers. We also tested whether these 
confidence patterns are generalizable across correct and incorrect response trials (see Methods). A 
recent meta-analysis by (Rouault et al., 2018) found no behavioral evidence for the association of 
inter-individual measures of metacognitive performance (i.e. how confidence tracks accuracy) 
across perception and memory domains. This observation predicts that the pattern of moment-to-
moment estimation of confidence might be different and not generalizable across cognitive 
domains.

Methods

This study re-analyzed data from the Confidence Database (Rahnev et al. 2020). We 
selected all datasets that employed a 4-point confidence scale because this scale was most common 
in the perceptual domain thereby providing a rich dataset to train the classifier and assess the degree 
of generalization across other domains (i.e., cognitive, memory, and mixed). This resulted in a total 
of 32 datasets: 16 from the perceptual domain, four from the cognitive domain, six from the 
memory domain, and six from a mixed domain (where the data came from tasks from multiple 
domains). Details about each dataset – including the name of the dataset, number of subjects, and 
total number of trials – are included in Supplementary Table 1. In total, there were 3,077 subjects 

https://paperpile.com/c/ajKj4G/vymN
https://paperpile.com/c/ajKj4G/FoSu9
https://paperpile.com/c/ajKj4G/yBLTX
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and 925,091 trials across all 32 datasets. The data were downloaded in April 2020 and may not 
reflect datasets added to the Confidence Database after that date. 
 

Machine learning models
We used machine learning models: a random forest (RF) classifier and a linear vector 

machine (SVM) as a baseline model (see Table 1) . 
We chose the linear SVM due to its simplicity and its ability to perform a large number of 

inferences during prediction, thus, the linear SVM served as a baseline classification model. We 
chose the random forest classifier to perform the 4-classes classification task because the random 
forest classifier allowed us to compute the feature importance and make interpretable relationships 
between the features and the target. This was the same strategy as in our prior study (Mei et al., 
2021).

Model name Random Forest classifier Linear SVM

Advantages 1. An ensemble model
2. One of the best 

models for multiclass 
classification

3. Interpretation of the 
feature importance is 
straightforward

4. Overfitting can be 
regularized by 
increasing the number 
ensemble tree-based 
models

1. A simple linear model
2. Powerful for scaling 

up the inference of a 
trained model

3. Interpretation of the 
feature weights is 
simple and directional

4. Overfitting can be 
regularized by L2 
penalty

Disadvantages 1. It is difficult to 
control for the 
complexity of the 
ensemble treed-based 
models due to the 
large number of 
hyperparameters, such 
as the depth, resample 
sizes for training the 
individual tree-based 
models

2. Training and 
inference time is much 

1. Not suitable for 
multiclass 
classification

2. Feature weights are 
distributed in multiple 
trained models, 
making it difficult to 
integrate
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longer than SVM for 
big datasets

Table 1. Summary of  relevant properties  of each the RF and SVM classifier.

An RF classifier is an ensemble of multiple simpler classifiers that are trained on a subset of 
the training data, and then the final decision is made by a voting algorithm of these classifiers 
(Breiman, 2001). The RF classifier was implemented using the Scikit-learn Python library using the 
0.24 version which included some modifications of implementations of Breiman (2001) to avoid 
overfitting. We used an RF classifier that contained 500 decision tree classifiers and the entropy 
loss objective function. The rest of the hyperparameters were the default. The output probabilities 
from the RF model were normalized within each ensemble tree-based model. The predicted class 
probabilities of an input sample were computed as the mean predicted class probabilities of the 
tree-based model in the forest. The class probability of a single tree is the fraction of samples of the 
same class in a leaf. The predicted class probabilities of an input sample within the individual tree 
were summed up to one. This was implemented in the scikit-learn generic “predict_proba” 
function.

We used the SVM classifier as a baseline model. SVM  is often used for binary classification 
tasks. In the current study, we used the Scikit-learn implemented SVM with the liblinear kernel 
(Pedregosa et al., 2011; Fan et al., 2008). L2 regularization was also added to control for overfitting. 
L2 regularization restricts the sum of the parameters in a regression model so that the model is 
forced to use simpler functions to model the data. This leads to the model having lower variance 
and makes it less likely to overfit (Hoerl and Kennard, 1970). Because the classification task in the 
current study is multiclass, the strategy to handle the multiclass support was a one-vs-rest scheme. 
In short, the data was reformulated into one of the four classes being class “1” and the rest of the 
classes being class “0”. Thus, the SVM classifier learned four one-vs-rest binarized discriminative 
patterns. During the testing phase, for a given matrix of one-hot coded confidence, the SVM 
classifier predicted the probability of being one of the four classes, giving a vector of four values. 
Before comparing to the one-hot coded true label, the predicted probabilities were passed to a 
softmax function to make the sum of the four values equal to one. 

Cross-validation procedure
For within-perceptual-domain classifications, the classifier was trained on data from all 

subjects but one in a particular study, and the classifier was tested on the remaining subject. For 
across-domain generalization, the classifier was trained on one of the studies in the perceptual 
domain and then tested on each subject of each study of a different domain.The data was split into 

https://scholar.google.com/scholar?cluster=945255950668999288&hl=en&as_sdt=0,5
https://www.jmlr.org/papers/volume12/pedregosa11a/pedregosa11a.pdf?source=post_page---------------------------
https://www.jmlr.org/papers/volume9/fan08a/fan08a.pdf
https://www.tandfonline.com/doi/abs/10.1080/00401706.1970.10488634
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'correct' and 'incorrect'  examples; specifically, 'correct' and 'incorrect' here referred to whether the 
target trial (in which confidence was predicted) was correct or not, but the training examples 
(based on the previous 7 trials) could contain correct and incorrect trials. Accordingly, we run the 
classification analysis four times: (1) Training the classifier with the instances in which the current 
(to be predicted) trial was correct and testing on similar left-out instances; (2) Training the 
classifier with the instances in which the current trial was incorrect and testing on similar left-out 
instances; (3) Training the classifier with the instances in which the current trial was correct and 
testing on the instances in which the current was incorrect; and (4) Training the classifier with the 
instances in which the current trial was incorrect and testing on the instances in which the current 
was correct.  

To measure the classification performance, the classifiers predicted the probabilities of the 
levels of confidence for the test set. Each column of the prediction matrix corresponded to each 
level of confidence. Thus, each column of the prediction matrix was compared against each 
column of the one-hot coded label matrix using the area under the receiver operating curve (ROC 
AUC). The average of the four ROC AUC measures represented the cross-validation performance 
of a given fold of cross-validation.  The range of ROC AUC score is between zero and one, where 
0.5 is referred to as the theoretical chance level and 1 is the perfect accuracy, while values below 0.5 
mean that performance is worse than guessing.

Feature importance

In order to measure how the confidence ratings of the previous trials contribute to 
classifying the confidence rating of the current trial, we looked into the RF classifiers, computing 
feature importances using permutation tests (Altmann et al., 2010). For each fold of cross-
validation, after an RF classifier was trained on the training data, a permutation test algorithm was 
applied to both the RF classifier and the testing data. During the permutation, for the testing data, 
the order of the trials of confidence ratings of one of the previous trials was shuffled while the rest 
remained unchanged. Predictions of the testing data were made using the shuffled data. A new 
ROC AUC score was computed by comparing the true labels and the predictions. The difference 
between the new ROC AUC score and the true ROC AUC score represented the contribution of 
the confidence ratings of the particular previous trial that were shuffled. A positive difference 
meant that the feature was good for the classification, while zero meant that the feature was not 
important. Particularly, compared to the early proposed feature importance extraction algorithm 
(Breiman, 2001), the permutation feature importance algorithm could return negative feature 
importance estimates. Negative feature importance meant the inclusion of the feature would make 
the classification less effective. 

Second-level statistics

https://academic.oup.com/bioinformatics/article/26/10/1340/193348
https://link.springer.com/content/pdf/10.1023/A:1010933404324.pdf
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After cross-validation of the classifiers for within- and cross-domain predictions, we 
performed second-level statistics on the results. For the classification results within the perceptual 
domain, we averaged the ROC AUC scores over the cross-validation folds for each study before 
the second-level statistics. For the cross-domain classification results, the classifier was trained in 
the perceptual domain and then we averaged the ROC AUC scores within each testing fold for 
each domain (i.e. cognitive, memory, and mixed). Therefore, each average of decoding 
performance contained 16 independent ROC AUC scores, one per study of the perceptual 
domain of the Confidence Database. Classification performance within this domain, and for each 
level of correctness if  applicable, was assessed by comparing  the ROC AUC scores of each study 
to 0.5 (theoretical chance level for the ROC AUC metric) using a one-sample permutation test as 
implemented in the EnvStats R library (https://cran.r-
project.org/web/packages/EnvStats/index.html) but using custom Python scripts.  

Initially, we computed the average of the ROC AUC. Then we subtracted the average 
from each experimental ROC AUC score and added 0.5 to get a vector that had a mean of 0.5 and 
the same variance as the original vector. We drew 16 observations with replacement from this 
vector, hence creating 16 ‘fake’ data points which were then averaged in order to get an  estimate of 
the mean of the population when the ROC AUC was assumed to be 0.5. We repeated these steps 
(sampling and average) 10,000 times to estimate the chance level distribution (i.e.  the distribution 
of the null hypothesis). The probability of the chance level being greater or equal to the 
experimental score was used as the p-value to determine the significance of the experimental score 
compared to 0.5. If the p-value was lower than the critical level, we determined the ROC AUC 
scores were significantly greater than 0.5. For cross-domain classification and each level of 
correctness, we performed the same statistical analysis to the ROC AUC scores. For within-
perceptual domain decoding, the p-values of the permutation tests were corrected by the 
Bonferroni procedure in total, while for cross-domain decoding, the p-values were corrected by the 
Bonferroni procedure for each of the domains. 

For the analysis of the feature importance estimates of the random forest classifier, we 
performed permutation tests similar to those described above to compare the feature importance 
estimates against zero. Given a set of feature importance estimates, its mean was subtracted from 
the estimates, hence creating ‘fake’ estimates centered at zero. We then drew samples with 
replacement from the ‘fake’ estimates and we saved the average of the samples. This was repeated 
10,000 times to get the chance level distribution. The probability of the chance level being greater 
or equal to the average of the feature importance estimates was used as the p-value to determine the 
significance of the experimental score compared to zero. For the within-perceptual domain 
decoding analyses, the p-values of the permutation tests were corrected by the Bonferroni 
procedure. For the cross-domain decoding analyses, the p-values were Bonferroni corrected on 
each of the domains. 

https://cran.r-project.org/web/packages/EnvStats/index.html
https://cran.r-project.org/web/packages/EnvStats/index.html
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In order to analyze the linear trend of the feature importance values as a function of the 
trial indices, we fitted linear regression models using the trial indices as the independent variable 
and the feature importance values as the dependent variable. The regression models were cross-
validated with a 20-fold cross-validation procedure to estimate the performance of the regression. 
Then, we performed permutation tests to assess the statistical significance of the regression models. 
We shuffled the correspondence between the feature importance values and the trial indices and 
then we fitted a new regression model and cross-validated the model using the same 20-fold cross-
validation procedure. We repeated this for 1,000 times to estimate the empirical chance level of the 
regression model. The probability of the chance level being greater or equal to the average of the 
original regression performance was used as the p-value to determine the significance of the 
regression coefficients compared to zero.

Past history v.s. recent history
To further investigate how the recency of confidence ratings in the previous trials 

influenced the prediction of confidence rating in the current trial, we split the confidence ratings 
in the previous trial into “past” and “recent”, where “past” included confidence ratings in trials of 
T-5, T-6, and T-7, while “recent” included confidence ratings in trials of T-1, T-2, and T-3. 
Confidence rating in trial T-4 was not used in this analysis to equate the number of features. We 
applied the same feature and label preparation, machine learning models, and cross-validation 
procedures to decode the confidence rating in the current trial using either the confidence on 
“past” or “recent” trials. After cross-validation of the decoding, we applied the same second-level 
statistics to the ROC AUC results, comparing the ROC AUC against 0.5. 

Results

We analyzed studies on metacognition across four different domains from the Confidence 
Database. We investigated the generation of confidence judgments by training machine learning 
classifiers using measures of confidence from previous trials to predict the level of confidence in the 
current trial. We quantified the extent to which the representation of confidence generalizes across 
different observers across different cognitive domains. Two classifiers were used: a random forest 
(RF) classifier and a linear vector machine (SVM) as a baseline model. Testing the two classifiers 
allowed us to test the robustness of the predictions across the different models. 

Initially, each classifier was trained in the perceptual domain and then tested within the 
same domain using a leave-one-subject-out cross-validation procedure for each study  (see 
Methods).  Importantly, the cross-validation procedure was performed separately for correct and 
incorrect trials when decoding the confidence level. 
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Subsequently, the classifier trained in the perceptual domain was tested across domains, i.e. 
cognitive, memory, and mixed domains from the Confidence Database (Rahnev et al., 2020).

Classification of confidence within the perceptual domain: 
We found that the level of confidence in the current trial could be predicted based on the 

history of previous trials. Figure 1 illustrates that classifier predictions were successful regardless of 
whether the current trial was correct or incorrect. Averaging across each of the subplots in Figure 
1, the decoding scores were 0.64 +/- 0.048 (mean (M) +/- standard deviation (SD)) for SVM and 
0.64 +/- 0.003 for RF(detailed statistics are shown in Supplementary Table 2). All the cross-
validation with the split of data into correct and incorrect examples were significantly greater than 
0.5 (p < .001, corrected by Bonferroni procedure for multiple comparisons, as indicated in each of 
the Figures). The results suggested that both linear and nonlinear models could learn the patterns 
of history of confidence ratings to predict the confidence rating of the current trial. Similar results 
were observed using the SVM classifier (Figure S1).

Figure 1. Decoding confidence levels within the perceptual domain. The random forest classifiers were 
trained and tested within each study dataset using a leave-one-subject-out cross-validation procedure. 
The decoding scores were averaged across the cross-validation folds for each study and then the 
distribution of these averaged scores is plotted. The prediction of confidence level in the current trial 
based on the previous confidence levels was clearly above chance levels. Statistical significance was 
estimated by means of resampled one-sample tests against 0.5.  Error Bars show the standard errors 
across cross-validation folds. The estimated significant levels were corrected by Bonferroni correction 
procedure (n.s.: not significant, *: p < 0.05, **: p < 0.01, ***: p < 0.001).

We hypothesized that trials that were closer to the current trial may be more important for 
the prediction of confidence in the current trial than those that were further away from the current 
trial. To test this hypothesis, we conducted the same decoding analyses based on recent trials (-1, -
2, -3 trials back)  and based on past trials (-5, -6, -7 trials back). The results showed that confidence 
in the current trial could be predictive from both recent and also past trials, however, decoding 

https://paperpile.com/c/ajKj4G/yeGR1
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from the most recent trials was better (see Figure 2). Similar results were observed using the SVM 
classifier (Figure S2).

Figure 2 . Decoding of confidence within the perceptual domain based on recent vs. past trials back. 
The random forest classifiers were trained and tested within each study dataset using a leave-one-
subject-out cross-validation procedure for trials of T-7, T-6, T-5 and T-3, T-2, T-1 separately. The 
decoding scores were averaged across the cross-validation folds for each study and then the distribution 
of these averaged scores is plotted. Statistical significance of each unique condition was estimated by 
means of resampled one-sample tests against 0.5. Statistical significance of the difference between 
‘past’ and ‘recent’ conditions was estimated by comparing the corresponding pair of ‘past’ and ‘recent’ 
conditions.  Error bars show the standard errors across cross-validation folds. The estimated 
significant levels were corrected by Bonferroni correction procedure (n.s.: not significant, *: p < 0.05, 
**: p < 0.01, ***: p < 0.001).

We also analyzed the feature importance of the random forest classifier (see Methods) 
associated with each of the trials back. The results showed that the vast majority of the trials back 
had feature importances that were significantly different from zero, though the most recent trial 
was most important for predicting confidence in the current trial (see Figure 3).  We then fit a 
linear regression model, using the trials as the independent variable and the feature importance as 
the dependent variable. The model fitting was conducted  for: 1)  results using correct trials as the 
training set and tested with correct trials,  2) results using correct trials as the training set and tested 
with incorrect trials, 3) results using incorrect trials as the training set and tested with correct trials, 
and 4) results using incorrect trials as the training set and tested with incorrect trials. After cross-
validating the linear regression model using leave-one-study-out procedure as described above, we 
derived the statistical significance of the slope of the regression model using a permutation test. 
During permutation, we shuffled the correspondence between the independent variable and the 
dependent variable, and fitted a linear regression model using the shuffled data. This procedure 
was repeated 1,000 times to  estimate the empirical chance level of the slope of the regression model 



12

we fitted with the unshuffled data. The significant level of the slope was the probability of the 
fitted slope being greater or equal than the empirical chance levels. The results of permutation tests 
for four conditions were corrected using Bonferroni correction. The slopes were all positive over 
the four conditions and they were all statistically significant (see Figure 3). Therefore, the results 
suggested that the more recent trials contributed more to the prediction of the current confidence.

Figure 3. Illustration of the feature importance estimates of the RF classifiers within the perceptual 
domain. Permutation tests were performed on the estimates associated with each trial back assessing 
its significance against zero importance. The vast majority of the trials back had feature importances 
that were statistically significant after multiple comparison correction. The only feature importance 
that was not significant was the feature importance of the seventh trial back when training and 
testing on incorrect trials (p = 0.059). Error bars show the standard errors across cross-validation 
folds. The rest of the feature importance estimates were all significantly greater than zero (p < 0.001). 
The shaded areas associated with the regression lines were resampled standard errors of the fitted 
regression line. The resampling method was random sampling, differing from the cross-validation 
procedure, which was implemented with the algorithm of the Seaborn library. n.s.: not significant, *: 
p < 0.05, **: p < 0.01, ***: p < 0.001

Testing the generalization of confidence across domains. 
Having demonstrated that current estimates of perceptual confidence are affected by prior 

metacognitive decisions, we then examined whether the construction of metacognitive confidence  
in the perceptual domain generalizes across different other domains. Here, the classifier was trained 
on one of the studies in the perceptual domain (see Methods) and then tested on all the data of 
each experiment in a different other domain (i.e., cognitive, memory, and mixed domains; see 
Figure 4 and Supplementary Table 3). We observed that regardless of the training data, testing 
data, type of models, or domains of generalizing to, the confidence ratings of the previous seven 
trials were able to predict the confidence rating in the current trial (all scores were compared 
against to 0.5 level; all p’s < .001 corrected for multiple comparisons). Similar results were observed 
using the SVM classifier (Figure S3).

https://github.com/nmningmei/decoding_confidence_dataset/blob/main/stats/confidence/LOO/feature_importance_secondary.csv
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Figure 4. Cross-domain decoding scores of confidence predictions. The random forest classifiers were 
trained on the perceptual domain and then tested on the other three domains. The statistical 
significance was estimated by resampled one-sample tests against 0.5. Each subplot shows the 
performance of cognitive, memory and mixed domains respectively. Error bars show the standard 
error across cross-validation folds.  The estimated significant levels were corrected by Bonferroni 
correction procedure (n.s.: not significant, *: p < 0.05, **: p < 0.01, ***: p < 0.001). 

The above results demonstrate that a classifier trained in the perceptual domain generalises 
to predict confidence across different cognitive domains. 

We then tested whether the trials that were closer to the current trial were more important 
for predicting confidence. The same decoding analyses were conducted but now using just the 
most recent trials (-1, -2, -3 trials back) or the past trials (-5, -6, -7 trials back). Again, we observed 
that confidence in the current trial could be predictive from both recent and also past trials, 
however, decoding from the most recent trials was better (see Figure 5). Similar results were 
observed using the SVM classifier (Figure S4).

https://github.com/nmningmei/decoding_confidence_dataset/blob/main/stats/confidence/cross_domain/scores.csv
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Figure 5. Decoding confidence across domains based on recent vs. past trials. The random forest  
classifiers were trained on the perceptual domain and then tested on the other three domains for trials 
of T-7, T-6, T-5 and T-3, T-2, T1 separately. The statistical significance of each unique condition was 
estimated by means of resampled one-sample tests against 0.5. Statistical significance of the difference 
between ‘past’ and ‘recent’ conditions was estimated by comparing the corresponding pair of ‘past’ and 
‘recent’ conditions. Error bars show the standard errors across cross-validation folds.  The estimated 
significant levels were corrected by Bonferroni correction procedure (n.s.: not significant, *: p < 0.05, 
**: p < 0.01, ***: p < 0.001). 

As before, we determined the relative importance of each of the trials back at predicting 
metacognitive confidence in the current trial. The results showed that the vast majority of the 
previous trials had feature importances that were significantly different from zero, though again 
the most recent trial was most important for generalizing confidence in the current trial across a 
different domain. Additionally, we fitted linear regression models to measure the feature 
importance as a function of trial indices, separately for different domains, training data, and testing 
data. There was a positive linear trend among all of these regression models. The results suggested 
that the confidence from the more recent trials were the most informative to predict the 
confidence ratings at the current trial. Figure 6 illustrates these results.

https://github.com/nmningmei/decoding_confidence_dataset/blob/main/stats/confidence/cross_domain/scores.csv
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Figure 6.  Illustration of the feature importance estimates of the RF classifiers  trained in the 
perceptual domain for cross-domain decoding. Error bars show the standard errors across cross-
validation folds. Permutation tests were conducted on the feature importance estimates, comparing 
against zero for each of the trials back. The shaded areas associated with the regression lines were 
resampled standard errors of the fitted regression line. The resampling methods used the random 
sampling  implemented with the algorithm of the Seaborn library: n.s.: not significant, *: p < 0.05, **: 
p < 0.01, ***: p < 0.001, corrected for multiple comparisons within each domain.

We note here that we elected to  train the classifiers in the perceptual domain because the 
amount of training examples was much bigger in this domain.  However, it may be asked whether 
the pattern of results generalize when the classifiers are trained in the memory or cognitive 
domains. 

To quantify the full generalizability of confidence decoding across all domains, we tested 
how the decoders performed when they were trained and tested  within the same domain (i.e., 
memory or memory) and when they were tested the decoders in a different  domain (i.e., from 
memory to perception or cognitive).  In doing so, we also tested how different attributes beyond 
the history of confidence ratings, namely, the history of type-1 reaction time, and the history of 
accuracy, contributed  to predict the confidence  in the current trial. 

We run the  classification for each combination of the different attributes:  confidence 
only, reaction time only, accuracy only, confidence and reaction time, confidence and accuracy, 
and all three of them. In each combination, the features of each attribute were concatenated 
horizontally. Note that for this analysis, the data was not split into “correct” and “incorrect” 
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examples. When the classifier was cross-validated within the same domain, we followed the leave-
one-subject-out cross-validation procedure, so that the classifier was trained in all the data except 
one subject, and then  tested in the left-out subject. When the classifier was cross-validated across 
different domains, we first trained the classifier in a given domain (i.e., Memory) and then tested 
the classifier in another domain (i.e., Cognitive) for each subject.  

Figure 7 shows the decoding results demonstrating that history of confidence alone was the 
most critical attribute for predicting confidence in the current trial, and that the recent history of  
accuracy or type-1 reaction times did not contribute to predicting the current confidence. Figure 8 
displays the feature importance of the confidence ratings in the previous trials. The pattern of 
results was similar to that reported in the above analyses. Across the different domains, the 
confidence rating from the previous one trial was generally the most important feature compared 
to the confidence ratings between T-2 and T-7 trials. This pattern did not change when including 
or adding  information related to the history of accuracy and/or reaction time (Figure 8)1.  

Similar results were observed using the SVM classifier (Figure S5). We then analyzed the 
slopes of the regression lines of the feature importance as a function of previous trials individually 
for different attributes (confidence, accuracy, and RT). We concatenated the features of all 
attributes from the previous trials to predict the confidence in the current trial. The results are 
presented in Figure 8 (see also Table S1 for the statistical significance measures of the models). The 
results show that confidences from the previous trials contributed the most to the prediction of  
confidence in the current trial, and the most recent trials contributed more to the prediction than 
past trials. This linear trend was statistically significant within and across domains. On the other 
hand, relative to confidence, the accuracy and RT from the previous trials contributed little to the 
prediction of the current confidence.

1 We conducted a nonparametric comparison between the generalization performance in the within- and cross-
domain. We first computed the difference of the average generalization performance between the within- and cross-
domain. We  then created a vector by concatenating the generalization performance of the within- and cross-domain. 
This vector was shuffled into two new groups, and the difference between within- and cross-domain decoding was  re-
computed 10,000 times to estimate the distribution of the empirical chance level. Finally, we computed the significant 
level by calculating the probability of the absolute value of the experimental difference being greater or equal to the 
absolute distribution of the empirical chance level (two-tailed).  The results showed that the ROC-AUC decoding 
scores were significantly 0.04  higher in the cross- relative to the within-domain decoding (p < 0.001). However it is 
difficult to make inferences based on this result because of several factors such as different amounts of examples  for 
training the random forest classifier in the within- vs cross-domain generalization. 
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Figure 7. Within- and cross-domain decoding ROC scores of confidence predictions. The random 
forest classifiers were trained on a given domain and then tested on the other three domains. The 
statistical significance was estimated by resampled one-sample tests against 0.5. Error bars show the 
standard error across cross-validation folds. The estimated significant levels were corrected by 
Bonferroni correction procedure (n.s.: not significant, *: p < 0.05, **: p < 0.01). 

https://github.com/nmningmei/decoding_confidence_dataset/blob/main/stats/confidence/cross_domain/scores.csv
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Figure 8. Feature importance of the attributes of the previous trials, confidence, accuracy, and 
reaction time, in predicting the confidence in the current trial. The random forest classifiers were 
cross-validated with confidence, accuracy, and reaction time from the previous seven trials as 
concatenated features and with confidence in the current trial as the target (see Methods).

Finally, we note that the one-versus-rest classification procedure that we used does not take 
into account the ordinal nature of confidence. We elected to use the random forest classifier to 
perform  classification because it allowed us to compute the importance of each feature  and make 
interpretable relationships between the features and the target (see Mei et al., 2020). Nevertheless, 
we re-run the analyses using a random forest regression procedure, which should take into account 
the ordinal nature of confidence. The results showed that the random forest regression models 
were not as sensitive as the classification models, but the regression models performed better than 
chance level when the feature attributes included confidence from the previous trials (i.e., 
confidence only, confidence + accuracy, confidence + RT, and all three attributes) 
(Supplementary Figures 7 and 8, and Supplementary Tables S2 illustrate the results). One potential 
reason that the regression models did not perform as good as the classification models may relate to 
the measure of the model performance, namely, variance explained (i.e. how much variance of the 
true confidence ratings were explained by the predicted confidence ratings). This measure may not 
be sensitive enough for the goal of prediction. Additionally, variance explained is more sensitive to 
extreme values in the predicted confidence ratings, which was not the case for ROC AUC. 

Discussion
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The goal of the present study was to determine whether serial dependence effects in 
confidence generation generalize across different observers and cognitive domains. In the 
perceptual domain, classification results across observers showed that the current level of 
confidence can be predicted by the prior confidence estimates. This result is in keeping with 
previous studies on confidence leak (Rahnev et al., 2015), (Mueller & Weidemann, 2008), 
(Aguilar-Lleyda et al., 2021).  We also observed that classifiers trained to predict confidence in the 
perceptual domain generalized to other cognitive domains. The extent to which confidence can be 
predicted is best addressed by using cross-validation with out-of-sample generalization. For 
instance, a recent study showed evidence of serial dependence across domains in a paradigm in 
which recognition judgments were interleaved with perceptual judgments so that confidence in the 
perceptual judgment influenced subsequent memory confidence in the next  trial  (Kantner et al., 
2019). However, this study used standard statistical approaches in which all data are fitted at once 
within the same statistical model, thereby not allowing quantification and prediction of 
confidence in new examples and experimental contexts, namely, across different observers and 
across cognitive domains, as observed in the current study.  Intriguingly, confidence predictions 
generalized across correct and incorrect trials suggesting that serial dependence effects in 
confidence generation are uncoupled to metacognition (i.e. how confidence tracks accuracy). In 
line with this, the results showed that the recent history of confidence was the most critical factor 
and that accuracy or type-1 reaction time alone, or in combination with confidence, did not 
improve the prediction of the current confidence. Relatedly, previous observation indicated that 
inter-individual differences in serial dependence are negatively associated with metacognitive 
sensitivity (Rahnev et al., 2015). This observation highlights that serial dependence may not always 
confer adaptive value to perception (Cicchini et al., 2018) and cognitive performance, but can 
under certain circumstances provide sub-optimal or maladaptive outcomes (Kiyonaga et al., 2017). 
This pervasiveness of serial dependence may reflect the habit of human observers to experience the 
world in a stable, auto-correlated manner (Fischer & Whitney, 2014).  The generalization of serial 
dependence in confidence generation across correct and incorrect trials  is difficult to explain 
according to strict normative models of decision confidence as reflecting the read-out of the 
perceptual signal (Macmillan & Douglas Creelman, 2004); (Hebart et al., 2016; Kiani & Shadlen, 
2009), and it is in line with prior studies that observed dissociations between perceptual 
performance and metacognitive confidence (Desender et al., 2018; Koizumi et al., 2015; Samaha et 
al., 2016, 2019). 

The current results have important implications for the ongoing debate on the domain-
generality/specificity of metacognition. Evidence in favor of domain-general metacognitive 
mechanisms comes from studies showing that observers can successfully assign confidence to two 
discriminations in different modalities (i.e. visual and auditory), notably, as efficiently as when the 
two discriminations involve the same sensory domain  (de Gardelle et al., 2016). This question is 

https://paperpile.com/c/ajKj4G/dFc0w
https://paperpile.com/c/ajKj4G/w5ff
https://paperpile.com/c/ajKj4G/W9SK
https://paperpile.com/c/ajKj4G/vymN
https://paperpile.com/c/ajKj4G/vymN
https://paperpile.com/c/ajKj4G/dFc0w
https://paperpile.com/c/ajKj4G/tudG
https://paperpile.com/c/ajKj4G/nbkh
https://paperpile.com/c/ajKj4G/MVni
https://paperpile.com/c/ajKj4G/yAcg
https://paperpile.com/c/ajKj4G/qAw4+YRib
https://paperpile.com/c/ajKj4G/qAw4+YRib
https://paperpile.com/c/ajKj4G/qwSj+OHNx+v3cQ+sYAi
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https://paperpile.com/c/ajKj4G/RP3Jy
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normally addressed in behavioral studies by computing the correlation of individual measures of 
metacognition (i.e. meta-d’ or Mratio) across different domains (i.e. perception and memory). 
Studies using this approach have found mixed results with some reporting significant correlations 
(Fitzgerald et al., 2017; McCurdy et al., 2013; Ruby et al., n.d.) but others failing to find such 
correlations (Baird et al., 2013, 2015; Morales et al., 2018). A recent meta-analysis (Rouault et al., 
2018) of behavioral studies observed mixed evidence for the association of inter-individual 
measures of metacognitive performance across perception and memory domains (but see 
(Mazancieux et al., 2020.). Different factors can contribute to these mixed results: lack of statistical 
power,  differences in metacognition measures and differences in task requirement across studies, 
uncertainty in the estimation of the model parameters across different indices of metacognitive 
performance such as meta-d’ (Rouault et al., 2018), and also different sources of metacognitive 
inefficiency dominating different tasks (Shekhar & Rahnev, 2021).  The current results contribute 
to this debate by showing that classifier predictions of confidence judgments generalize across 
cognitive domains. However, we note that the domain-generality issue in metacognitive research 
typically relates to metacognitive sensitivity or efficiency, rather than confidence per se. The 
present results indicate that serial dependence in confidence ratings is a robust phenomenon and likely 
not  domain-specific.

Psychology findings have been subject to recent scrutiny due to failures to replicate in new 
samples or replications that do not hold up to the size of the published effects (Open Science 
Collaboration, 2015). One of the factors contributing to replication failures may be related to 
misuse and appropriateness of statistical tests, beyond the so-called  p-hacking or the  selective sub-
sampling of the data. Many studies fit a statistical model with all experimental data at once, which 
can lead to overfitting and poor generalization of the model with new observations that are  similar 
but come from a different sample. Because of this, it has been argued that psychological science can 
greatly benefit from the field of  machine learning in which pattern classifiers are tested in their 
ability to predict new data coming from the same or different participants (Yarkoni & Westfall, 
2017). These authors have made the strong argument that psychological theories contribute little 
to predict future human behavior with a respectable level of precision.  In the same vein, there has 
been a recent emphasis on changing current statistical practices and encourage the adoption of 
“estimation thinking”, namely, to provide a quantitative model of the effect under investigation,  
rather than the standard “dichotomous thinking” based on the traditional null hypothesis testing 
framework to reject the null (Cumming, 2014).  The present approach using pattern classification 
with out-of-sample generalization thereby provides evidence that confidence generation can be 
reliably quantified and predicted across new samples and experimental contexts.  The use of 
machine learning can prove very useful towards developing predictive models of confidence across 
different populations and experimental contexts  (see (Fleming et al., 2016; Mei et al., 2020), for a 
similar approach to predict prospective beliefs of self-performance).  It is difficult to make 
conclusions regarding the level of ROC prediction scores obtained here without a prior context of 
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similar studies using different measures of predictive performance.  However, ROC is arguable the 
best measure of predictive performance compared to other measures of effect size  (Rice & Harris, 
2005), and the current ROC confidence prediction scores of ~ 0.65 for within-domain and slightly 
lower for cross-domain generalization,  indicate that confidence prediction for unobserved data is a 
robust phenomenon. 
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Supplementary Results

Domain Study # subjects # trials

Perceptual 
domain Bang, 2019, Exp1 12 42342

Bang, 2019, Exp2 201 38793

Gajdos,2019 22 11335

Haddara,unpublished 443 209539
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Koculak,unpublished 54 33984

Law,unpublished 16 19088

Maniscalco, 2017, Exp1 30 28657

Maniscalco, 2017, Exp2 41 20221

Maniscalco, 2017, Exp3 21 13040

Maniscalco, 2017, Exp4 33 22232

Shekhar,2018 19 13547

Sherman, 2016, JOCN 18 34962

Siedlecka,2019 37 14253

Wierzchon,2014 155 57397

vanBoxtel, 2019, Exp1 45 71685

vanBoxtel, 2019, Exp2 37 58941

Cognitive Adler, 2018, Exp1 11 47443

Adler, 2018, Exp2 8 25216

Adler, 2018, Exp3 16 48495

Paulewicz,unpublished 53 2809

Memory Matthews,2019 34 11636

Siedlecka, 2018, Exp1 38 2934

Siedlecka, 2018, Exp2 55 3988

Siedlecka,unpublished 20 2906

Mixed Denison,2018 12 24540
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Samaha,2016 15 8295

Samaha, 2017, Exp3 20 17560

Xu, 2019, Exp1 31 7426

Xu, 2019, Exp2 24 3169

Ye,2018 18 14833

Table S1. Summary of the datasets from the Confidence Database used in the current investigation.
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Decoder Training data Testing data ROC AUC score

Correct 0.64 +/-0.05***Correct

Incorrect 0.63+/-0.05***

Correct 0.64+/-0.05***

Support vector 
machine

Incorrect

Incorrect 0.63+/-0.05***

Correct 0.65+/-0.05***Correct

Incorrect 0.64+/-0.05***

Correct 0.64+/-0.05***

Random forest 
classifier

Incorrect

Incorrect 0.64+/-0.05***

Table S2. Decoding confidence levels within the perceptual domain. ROC AUC scores were averaged 
across cross-validation folds (mean +/- standard deviation). The estimated significant levels were 
corrected by Bonferroni correction procedure ( ***: p < 0.001).
).
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Target domain Decoder Training data Testing data ROC AUC score

correct trials 0.58+/-0.01***

correct trials incorrect trials 0.58+/-0.03***

correct trials 0.56+/-0.02***
Support vector 
machine incorrect trials incorrect trials 0.6+/-0.02***

correct trials 0.58+/-0.01***

correct trials incorrect trials 0.59+/-0.01***

correct trials 0.56+/-0.02***

Cognitive
Random forest 
classifier incorrect trials incorrect trials 0.59+/-0.01***

correct trials 0.62+/-0.01***

correct trials incorrect trials 0.63+/-0.01***

correct trials 0.58+/-0.03***
Support vector 
machine incorrect trials incorrect trials 0.58+/-0.04***

correct trials 0.61+/-0.01***

correct trials incorrect trials 0.61+/-0.01***

correct trials 0.59+/-0.02***

Memory
Random forest 
classifier incorrect trials incorrect trials 0.59+/-0.02***

correct trials 0.63+/-0.01***

correct trials incorrect trials 0.6+/-0.01***

Mixed
Support vector 
machine incorrect trials correct trials 0.6+/-0.03***
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incorrect trials 0.59+/-0.01***

correct trials 0.62+/-0.01***

correct trials incorrect trials 0.6+/-0.01***

correct trials 0.61+/-0.02***
Random forest 
classifier incorrect trials incorrect trials 0.59+/-0.01***

Table S3. Confidence predictions of the classifiers trained in the perceptual domain generalized to the 
cognitive, memory, and mixed domains.The estimated significant levels were corrected by Bonferroni 
correction procedure (*: p < 0.05, **: p < 0.01, ***: p < 0.001).
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Figure S1. ROC decoding accuracy of the current confidence within the perceptual domain. The 
SVM classifiers were trained and tested within each study using a leave-one-subject-out cross-
validation procedure. The decoding scores were averaged across the cross-validation folds for each 
study and then plotted. ROC decoding accuracy was clearly above chance levels. Statistical 
significance was estimated by means of resampled one-sample tests against 0.5.  Error bars show the 
standard errors across cross-validation folds. The estimated significant levels were Bonferroni 
corrected  (***: p < 0.001).
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Figure S2 . Decoding of confidence within the perceptual domain based on recent vs. past trials back. 
The SVM classifiers were trained and tested within each study dataset using a leave-one-subject-out 
cross-validation procedure for trials of T-7, T-6, T-5 and T-3, T-2, T-1 separately. The decoding scores 
were averaged across the cross-validation folds for each study and then the distribution of these 
averaged scores is plotted. Statistical significance of each unique condition was estimated by means of 
resampled one-sample tests against 0.5. Statistical significance of the difference between ‘past’ and 
‘recent’ conditions was estimated by comparing the corresponding pair of ‘past’ and ‘recent’ conditions.  
Error bars show the standard errors across cross-validation folds. The estimated significant levels were 
Bonferroni corrected  (**: p < 0.01, ***: p < 0.001).
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Figure S3. Cross-domain decoding scores of confidence predictions. The SVM classifiers were trained 
on the perceptual domain and then tested on the other three domains. The statistical significance was 
estimated by resampled one-sample tests against 0.5. Each row shows the performance of cognitive, 
memory and mixed domains respectively. Error bars show the standard errors across cross-validation 
folds. The estimated significant levels were Bonferroni corrected (**: p < 0.01, ***: p < 0.001).
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Figure S4. Decoding confidence across domains based on recent vs. past trials. The SVM  classifiers 
were trained on the perceptual domain and then tested on the other three domains for trials of T-7, T-
6, T-5 and T-3, T-2, T1 separately. The statistical significance of each unique condition was 
estimated by means of resampled one-sample tests against 0.5. Statistical significance of the difference 
between ‘past’ and ‘recent’ conditions was estimated by comparing the corresponding pair of ‘past’ and 
‘recent’ conditions. Each row of subplots show the performance of cognitive, memory and mixed 
domains respectively. Error bars show the standard errors across cross-validation folds. The estimated 
significant levels were Bonferroni corrected (**: p < 0.01, ***: p < 0.001).
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Figure S5. Within- and cross-domain decoding scores of confidence predictions. The SVM 
classification models were trained on a given domain and then tested on the other three domains. The 
statistical significance was estimated by resampled one-sample tests against 0.5. Error bars show the 
standard errors across cross-validation folds. The estimated significant levels were Bonferroni 
corrected (*: p < 0.05).
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Figure S6. Within- and cross-domain regression scores of confidence predictions. The SVM regression 
models were trained on a given domain and then tested on the other three domains. The statistical 
significance was estimated by resampled one-sample tests against zero. Error bars show the standard 
errors across cross-validation folds. The estimated significant levels were Bonferroni corrected (*: p < 
0.05).
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Figure S7. Within- and cross-domain regression scores of confidence predictions. The random forest 
regression models were trained on a given domain and then tested on the other three domains. The 
statistical significance was estimated by resampled one-sample tests against zero. Error bars show the 
standard errors across cross-validation folds. The estimated significant levels were Bonferroni 
corrected ( *: p < 0.05).
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Figure S8. Feature importance of the attributes of the previous trials, confidence, accuracy, and 
reaction time, in predicting the confidence ratings in the current trial. The random forest regression 
models were cross-validated with confidence, accuracy, and reaction time from the previous seven 
trials as concatenated features and with confidence in the current trial as the predicted target. Error 
bars in the figure are standard errors. The shaded areas associated with the regression lines were 
resampled standard errors of the fitted regression line. The resampling methods were random 
sampling, differing from the cross-validation procedure, which was implemented with the algorithm 
of the Seaborn library.
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Source Target Attribute Mean(θ) STD(θ) p-uncorrected

Perception Cognitive Confidence 0.007421 0.00047 0.989

Perception Memory Confidence 0.006706 0.00027 0.001

Perception Mixed Confidence 0.007506 0.00027 1.000

Perception Perception Confidence 0.011853 0.00035 0.001

Cognitive Cognitive Confidence 0.008683 0.00060 0.959

Cognitive Memory Confidence 0.009696 0.00033 0.001

Cognitive Mixed Confidence 0.019600 0.00059 0.998

Cognitive Perception Confidence 0.008496 0.00012 0.001

Memory Cognitive Confidence 0.010505 0.00067 0.968

Memory Memory Confidence 0.002943 0.00023 0.001

Memory Mixed Confidence 0.008276 0.00028 0.073

Memory Perception Confidence 0.008726 0.00011 0.001

Mixed Cognitive Confidence 0.014106 0.00108 0.965

Mixed Memory Confidence 0.009925 0.00030 0.001

Mixed Mixed Confidence 0.007556 0.00027 0.998

Mixed Perception Confidence 0.015392 0.00017 0.001

Perception Cognitive Accuracy 0.000101 0.00002 0.996

Perception Memory Accuracy -0.000312 0.00003 0.025

Perception Mixed Accuracy 0.000088 0.00002 0.530

Perception Perception Accuracy 0.000518 0.00006 0.002

Cognitive Cognitive Accuracy -0.000034 0.00002 0.242

Cognitive Memory Accuracy 0.000290 0.00007 0.557

Cognitive Mixed Accuracy 0.000299 0.00004 0.957
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Cognitive Perception Accuracy 0.000134 0.00001 0.009

Memory Cognitive Accuracy 0.000053 0.00003 0.252

Memory Memory Accuracy 0.000059 0.00008 0.812

Memory Mixed Accuracy -0.000188 0.00006 0.914

Memory Perception Accuracy -0.000039 0.00001 0.705

Mixed Cognitive Accuracy 0.000005 0.00004 0.290

Mixed Memory Accuracy -0.000269 0.00006 0.146

Mixed Mixed Accuracy 0.001082 0.00009 0.997

Mixed Perception Accuracy 0.000098 0.00001 0.059

Perception Cognitive Reaction time 0.000052 0.00003 0.630

Perception Memory Reaction time -0.000054 0.00003 0.725

Perception Mixed Reaction time 0.000076 0.00001 0.932

Perception Perception Reaction time -0.000148 0.00011 0.207

Cognitive Cognitive Reaction time 0.000210 0.00004 0.350

Cognitive Memory Reaction time 0.000724 0.00015 0.180

Cognitive Mixed Reaction time -0.000654 0.00007 0.013

Cognitive Perception Reaction time 0.001950 0.00005 0.001

Memory Cognitive Reaction time 0.000413 0.00009 0.255

Memory Memory Reaction time -0.000618 0.00012 0.277

Memory Mixed Reaction time 0.000371 0.00010 0.800

Memory Perception Reaction time 0.000297 0.00003 0.097

Mixed Cognitive Reaction time 0.000154 0.00005 0.531

Mixed Memory Reaction time 0.000538 0.00013 0.334

Mixed Mixed Reaction time -0.000130 0.00005 0.368

Mixed Perception Reaction time 0.000372 0.00002 0.001
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Table S4. Statistical significance of regression models for feature importance as the function of the 
attributes of the previous trials, confidence, accuracy, and reaction time, in predicting the confidence 
ratings in the current trial. The predicting models were random forest classification.
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Source Target Attribute Mean(θ) STD(θ) p-uncorrected

Cognitive Cognitive Accuracy -0.000012 0.000007 0.416

Cognitive Memory Accuracy 0.000016 0.000002 0.834

Cognitive Mixed Accuracy 0.000027 0.000001 0.986

Cognitive Perception Accuracy 0.000028 0.000001 0.001

Memory Cognitive Accuracy -0.000027 0.000027 0.544

Memory Memory Accuracy 0.000017 0.000018 0.579

Memory Mixed Accuracy -0.000280 0.000017 0.968

Memory Perception Accuracy 0.000195 0.000007 0.003

Mixed Cognitive Accuracy 0.000066 0.000014 0.002

Mixed Memory Accuracy 0.000004 0.000031 0.564

Mixed Mixed Accuracy 0.005737 0.000152 0.997

Mixed Perception Accuracy 0.000122 0.000005 0.388

Perception Cognitive Accuracy 0.000013 0.000005 0.261

Perception Memory Accuracy -0.000095 0.000011 0.719

Perception Mixed Accuracy 0.000044 0.000005 0.274

Perception Perception Accuracy 0.000401 0.000012 0.991

Cognitive Cognitive Confidence 0.018844 0.000701 0.971

Cognitive Memory Confidence 0.016528 0.000266 1.000

Cognitive Mixed Confidence 0.017212 0.000351 0.999

Cognitive Perception Confidence 0.019841 0.000091 0.001

Memory Cognitive Confidence 0.015453 0.000600 0.951

Memory Memory Confidence 0.014427 0.000403 1.000

Memory Mixed Confidence 0.010110 0.000360 0.997
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Memory Perception Confidence 0.018926 0.000112 0.001

Mixed Cognitive Confidence 0.031420 0.001186 0.861

Mixed Memory Confidence 0.018873 0.000335 0.820

Mixed Mixed Confidence 0.021610 0.000466 1.000

Mixed Perception Confidence 0.033076 0.000174 0.001

Perception Cognitive Confidence 0.025475 0.001038 0.844

Perception Memory Confidence 0.019238 0.000316 0.005

Perception Mixed Confidence 0.021248 0.000487 0.999

Perception Perception Confidence 0.035747 0.000526 1.000

Cognitive Cognitive Reaction time -0.000049 0.000013 0.500

Cognitive Memory Reaction time 0.000105 0.000032 0.808

Cognitive Mixed Reaction time -0.000062 0.000009 0.947

Cognitive Perception Reaction time 0.000327 0.000021 0.987

Memory Cognitive Reaction time 0.000018 0.000056 0.488

Memory Memory Reaction time 0.000395 0.000069 0.887

Memory Mixed Reaction time -0.000032 0.000122 0.460

Memory Perception Reaction time 0.000135 0.000051 0.137

Mixed Cognitive Reaction time 0.000192 0.000025 0.296

Mixed Memory Reaction time 0.000350 0.000039 0.065

Mixed Mixed Reaction time 0.000840 0.000026 0.998

Mixed Perception Reaction time 0.000301 0.000013 0.644

Perception Cognitive Reaction time -0.000029 0.000003 0.405

Perception Memory Reaction time -0.000022 0.000006 0.810

Perception Mixed Reaction time 0.000059 0.000004 0.952

Perception Perception Reaction time -0.000077 0.000015 0.428



44

Table S5. Statistical significance of the regression models for feature importance as the function of the 
attributes of the previous trials, confidence, accuracy, and reaction time, in predicting the confidence 
ratings in the current trial. The predicting models were random forest regression. 


