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Resumen

Los cristales fotónicos topológicos representan la convergencia de dos importantes
áreas de investigación: la fotónica y los materiales topológicos. Los cristales fotóni-
cos surgieron a finales de la década de 1980, cuando los investigadores comenzaron
a explorar estructuras dieléctricas periódicas que podían manipular la propagación de
ondas electromagnéticas. Los cristales fotónicos fueron propuestos inicialmente por
S. John y E. Yablonovitch, que posteriormente condujo a la conceptualización de la
banda prohibida fotónica, un rango de frecuencia específico en el que está prohibida
la propagación de ondas electromagnéticas. La integración de conceptos topológicos
en sistemas fotónicos comenzó a ganar fuerza con el descubrimiento de propiedades
topológicas en sistemas electrónicos. Aunque el efecto Hall cuántico de la década de
1980 ya había mostrado un gas de electrones 2D con una conductancia Hall cuanti-
zada basada en invariantes topológicas como el número de Chern, fue la observación
reveladora de S. Raghu y F.D.M. Haldane para resaltar el potencial de replicar estos
efectos en estructuras fotónicas. En particular, sus estudios aclararon cómo la cuanti-
zación topológica podría surgir de las propiedades globales de la función de onda en
la zona de Brillouin y que las fases topológicas son un fenómeno común de las ondas
en materiales periódicos, incluso en ausencia de cuantización de la carga eléctrica. Su
investigación planteó la hipótesis de la existencia de estados de borde electromagnético
topológicamente protegidos dentro de estructuras dieléctricas periódicas 2D compues-
tas de elementos magnetoópticos que rompen la simetría de inversión del tiempo. Este
concepto fue confirmado experimentalmente en 2009 con la observación de un cristal
fotónico girotrópico que admite estados de luz quirales topológicamente protegidos.
Esto ha abierto vías para estudiar análogos fotónicos de otras fases topológicas. Si bien
los resultados se limitaron inicialmente a 2D, la comunidad investigadora ha comen-
zado a extender los conceptos topológicos a sistemas fotónicos 3D. Esta transición
presentó nuevas oportunidades, que llevaron en 2015 a la primera observación exper-
imental de puntos de Weyl, que representan monopolos topológicos en el espacio de
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los momentos 3D. Esta fue la primera demostración experimental de los puntos de
Weyl, aunque los estudios se remontan a H. Weyl en 1929. Estos resultados han sen-
tado las bases para seguir avanzando en la exploración de fases topológicas con gap
en 3D. Como mostraremos en esta tesis, los puntos de Weyl pueden verse como una
fase intermedia sin gap, en la separación de dos fases distintas con bandas prohibidas
topológicamente diferentes. Si bien el estudio de las fases topológicas magnéticas se
limitó inicialmente a 2D, estos resultados sugirieron la posibilidad de extender su pro-
tección topológica a sistemas 3D con ruptura de simetría por inversión de tiempo.

Uno de los principales objetivos de esta tesis es introducir diseños de cristales
fotónicos capaces de realizar fases topológicas de la luz, con un enfoque específico en
la tridimensionalidad. Los cristales fotónicos tridimensionales son conceptualmente
ricos y desafiantes porque ponen de manifiesto todas las propiedades vectoriales de
la luz, lo que lleva a estimulantes desafíos físicos y matemáticos que surgen de la re-
stricción de transversalidad de las ecuaciones de Maxwell. Propondremos el diseño de
tres cristales fotónicos distintos que soportan tres fases topológicas distintas: el aislante
fotónico 3D Chern; el aislante fotónico axion; y el semimetal fotónico con puntos Weyl
desacoplados. Estas fases exhiben características únicas, como correspondencia bulk-
boundary vectorial, loops cerrados de Fermi y estados de bisagra quirales, que no se
habían propuesto previamente en cristales fotónicos 3D. Para abordar la topología en el
electromagnetismo 3D, proponemos métodos de caracterización específicos tridimen-
sionales, incluidos loops fotónicos vectoriales de Wilson y modelos de tight-binding
transversales. Estos métodos nos permiten superar los desafíos teóricos asociados con
la naturaleza vectorial de la luz y nos permiten modelar y caracterizar en detalle las
propiedades topológicas de los sistemas fotónicos 3D. En esta tesis, también suge-
rimos posibles implementaciones para realizar estas fases topológicas, que incluyen
paredes de dominio de cristales fotónicos, estructuras girotrópicas y emisores cuán-
ticos acoplados a los cristales fotónicos. Nuestro objetivo es demostrar su potencial
para aplicaciones en propagación de luz, detección de partículas de axiones, magneto-
fotónica y simulaciones cuánticas. Estas contribuciones se dividen en tres capítulos
principales, como sigue.

El capítulo "Fundamentals" proporciona una base concisa para comprender los
cristales fotónicos, con un enfoque específico en tres dimensiones. Al describir los
cristales fotónicos, adoptamos un enfoque basado en operadores para las ecuaciones
de Maxwell, elegido porque permite una clasificación de las simetrías de los cristales
fotónicos de una manera sencilla, al tiempo que resalta los aspectos vectoriales únicos
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del espacio 3D. Comenzamos introduciendo relaciones constitutivas para materiales
dieléctricos y exploramos las aproximaciones materiales esenciales que gobiernan la
respuesta en cristales fotónicos. Estas relaciones son fundamentales para compren-
der todos los cristales fotónicos dieléctricos, que son el foco principal de esta tesis.
Estas aproximaciones incluyen conceptos como linealidad, dispersión insignificante,
aproximación hermitiana, ausencia de fuentes y el requisito de positividad del índice
de refracción. Para hacer estos conceptos más tangibles, proporcionamos ejemplos del
mundo real de materiales comúnmente utilizados en cristales fotónicos. Estos mate-
riales ejemplifican materiales dieléctricos realistas que se adhieren a estas aproxima-
ciones dentro de rangos de frecuencia específicos. Luego, introducimos la formulación
del operador de las ecuaciones de Maxwell. Este enfoque nos permite describir ondas
clásicas en cristales fotónicos utilizando el formalismo de la mecánica cuántica. Si
bien destacamos similitudes y diferencias importantes entre estas dos descripciones,
abordamos conceptos como la invariancia de escala, la naturaleza de valor real, vecto-
rial y transversal de los campos electromagnéticos. Finalmente, exploramos la simetría
y la topología en el contexto de los cristales fotónicos. Examinamos cómo la period-
icidad de la red afecta las ondas electromagnéticas, dando lugar a bandas fotónicas,
números de Chern electromagnéticos y un vórtice de polarización en 3D. Esto último
está directamente relacionado con la restricción de transversalidad de las ecuaciones
de Maxwell. Clasificamos cristales fotónicos topológicos en función de las simetrías
de los materiales, en relación con las simetrías internas del tensor dieléctrico. Dis-
tinguimos dos simetrías de inversión temporal: una para materiales de tipo silicio y
otra para materiales magnetoeléctricos. Introducimos la simetría de la dualidad elec-
tromagnética y su papel en esta clasificación. A partir de los principios fundamentales
de la tabla periódica de aisladores topológicos, identificamos clases topológicas po-
tenciales para bandas prohibidas fotónicas. Finalmente, incorporamos simetrías de
grupos espaciales y analizamos los desafíos que surgen al caracterizar las propiedades
de simetría de modos electromagnéticos en un cristal fotónico 3D en el límite de onda
larga.

En el capítulo "Methods", presentamos técnicas de modelado y caracterización
diseñadas para explorar la topología en cristales fotónicos tridimensionales. La natu-
raleza vectorial y transversal de la luz hace que determinar invariantes topológicas y
desarrollar modelos analíticos 3D sea un desafío. Si bien muchos métodos topológicos
se diseñaron para ondas escalares, requieren modificaciones para extenderlos a campos
vectoriales en cristales fotónicos. Las condiciones de transversalidad impuestas por
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las ecuaciones de Maxwell en materiales dieléctricos periódicos añaden complejidad
al problema de Maxwell, a diferencia de otras ondas 3D clásicas. Una razón principal
es el comportamiento no analítico de los estados fotónicos en toda la zona de Brillouin
en el límite de energía cero, atribuido al obstáculo del punto Γ. Esta característica difi-
culta la construcción de modelos de tight-binding válidos en toda la zona de Brillouin
y dificulta la evaluación de invariantes topológicos, que se definen de forma no local en
el espacio de los momentos 3D. Para diseñar y analizar eficazmente las fases topológ-
icas 3D de la luz, pretendemos desarrollar métodos de caracterización adecuados para
abordar y resolver estos desafíos específicos. El contenido de este capítulo se divide
en dos secciones.

En la sección titulada “Electromagnetic vectorial Wilson loops”, describimos
la utilidad de los loops vectoriales electromagnéticos de Wilson y los centros de energía
híbridos de Wannier para el análisis topológico en cristales fotónicos. Se pone énfasis
en los cristales fotónicos 3D, destacando la naturaleza vectorial y transversal de la luz.
La sección extrae metodologías del "Tutorial: Computación de invariantes topológicas
en cristales fotónicos 2D" ( [1]), y las adapta al contexto 3D. La complejidad de las
ondas electromagnéticas 3D, distintas de sus análogos escalares 2D, requiere ajustes
específicos para la caracterización topológica. Proporcionamos orientación práctica
para calcular invariantes topológicas exclusivas de los cristales fotónicos 3D, como
la carga puntual de Weyl, el vector de Chern, el ángulo del axión magnetoeléctrico
y la carga monopolo de pared nodal de Weyl. Estas invariantes se aclaran a través
de ejemplos de cristales fotónicos 3D. Establecemos los loops electromagnéticos de
Wilson como una herramienta poderosa para discernir varios invariantes topológicos
3D, destacando su adaptabilidad a múltiples estructuras fotónicas. La sección culmina
con un tutorial para estos cálculos, exponiendo el potencial expansivo del método. Por
ejemplo, es potencialmente aplicable para discernir el brading de links nodales fotóni-
cos de multigap y para detectar una topología frágil dentro del gap fundamental de un
cristal fotónico 3D, lo que indica su solidez para los cálculos avanzados de topología
cuántica y la exploración de nuevas fases fotónicas.

En la sección titulada "Transversality enforced tight binding models", presenta-
mos una extensión innovadora del enfoque de tight-binding a cristales fotónicos tridi-
mensionales, un método tradicionalmente empleado en física del estado sólido para
describir la estructura de bandas y las características topológicas de un cristal con un
conjunto mínimo de parámetros. Este método de tight-binding, que llamamos tight-
binding transversal, está diseñado para superar los desafíos asociados con la simetría
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irregular de los estados de frecuencia cero y la naturaleza vectorial y transversal de las
ecuaciones de Maxwell que han dificultado la construcción de funciones de base de
tight-binding localizadas al máximo en cristales fotónicos 3D. El modelo resultante no
solo aborda la obstrucción electromagnética del punto Γ, que surge de la restricción
de transversalidad de Maxwell, sino que también reproduce con precisión la simetría,
topología y dispersión de energía de las bandas transversales a lo largo de la zona de
Brillouin. Demostramos las ventajas computacionales de este método, que permite la
simulación de sistemas complejos más allá de la capacidad de los actuales clústeres in-
formáticos de alto rendimiento. La eficacia del modelo se ejemplifica en la simulación
de respuestas de topología de orden superior en aisladores fotónicos de axiones y en la
extracción del número de capas de Chern en losas de cristales fotónicos. Además, una
extensión magnética de nuestro modelo ilustra su utilidad en el modelado de girotropía
mediante un acoplamiento no mínimo, mostrando una reducción significativa en los re-
cursos computacionales en comparación con los métodos de resolución exacta de las
ecuaciones cristalinas de Maxwell. Las implicaciones prácticas de este progreso son
profundas y ofrecen un marco teórico para sondear las respuestas límite de las fases
topológicas fotónicas 3D emergentes. Además de su eficiencia computacional, la ca-
pacidad de disponer de una expresión matemática simplificada para un modelo eficaz
del cristal puede mejorar los estudios analíticos en la comprensión del cristal, enten-
dido como entorno, en el estudio de la dinámica entre emisores cuánticos acoplados
a cristales fotónicos. Hasta donde sabemos, esto representa el primer método capaz
de proporcionar una representación tight-binding confiable de estructuras periódicas
dieléctricas 3D, en toda la zona de Brillouin 3D, lo que marca un paso fundamental
en el estudio de la fotónica topológica. Esperamos que el método contribuya signi-
ficativamente a la exploración de estados límite en futuras fases topológicas fotónicas
3D.

En el capítulo "Results", diseñamos tres cristales fotónicos tridimensionales
diferentes, cada uno de los cuales manifiesta una fase topológica específica: un ais-
lante fotónico Chern tridimensional, un aislante fotónico axión y un semimetal Weyl
de pared nodal caracterizado por puntos fotónicos Weyl aislados. Estas fases se dis-
tinguen por sus características de bulk-boundary, que incluyen correspondencia vec-
torial de bulk-boundary, loops cerrados de Fermi y estados de bisagra quirales. De-
scribimos las características topológicas de estos cristales fotónicos 3D empleando las
metodologías descritas en el capítulo anterior. Esto incluye la aplicación de loops elec-
tromagnéticos de Wilson y el modelo transversal de tight-binding, ambos diseñados
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específicamente para abordar los desafíos que presentan los sistemas de ondas elec-
tromagnéticas dentro de cristales fotónicos 3D. Estas fases topológicas tridimension-
ales están concebidas dentro de estructuras dieléctricas periódicas. Para estudiar fases
invariantes con simetría de inversión del tiempo, consideramos materiales isotrópicos
con alta constante dieléctrica. En el contexto de los fenómenos magnéticos, utilizamos
medios girotrópicos, cuyos parámetros están en línea con implementaciones tecnológ-
icas realistas de microondas.

En esta sección "3D Chern photonic insulator", presentamos el diseño y la
base teórica de una fase topológica tridimensional conocida como aislante fotónico
de Chern tridimensional, que se distingue por un vector de Chern compuesto por un
triplete de números de Chern. A través de la aniquilación de puntos de Weyl, podemos
determinar el valor, la orientación y el signo del vector de Chern, lo que lleva a fases
con números de Chern altos, protección topológica en condiciones magnéticas bajas y
orientabilidad del vector de Chern. Estas características se manifiestan en la presencia
de un número finito de loops de Fermi cerrados en el toro de la zona de Brillouin de
la superficie, que actúan como indicadores de la correspondencia bulk-boundary del
aislante 3D Chern. La evolución de estos loops desde los arcos abiertos de Fermi de la
fase semimetálica de Weyl, durante la transición a un estado con gap, revela una corre-
spondencia bulk-boundary vectorial única que está influenciada por la orientación del
vector Chern a través de paredes de dominio con diferentes Chern. Nuestro enfoque
permite aisladores Chern 3D con nuevos atributos: números elevados de Chern que
facilitan la propagación multimodal de estados topológicos de la superficie, requisitos
magnéticos reducidos y la capacidad de dirigir el vector Chern cambiando la dirección
de magnetización. Esto proporciona un marco versátil para interconectar diferentes
aisladores de Chern 3D, lo que lleva a una variedad de estados de superficie dependi-
endo de la orientación del vector de Chern. En particular, describimos la relación entre
el vector de Chern y el winding de los loops de Fermi en la superficie, estableciendo
una correspondencia completa entre el vector y el límite para estos sistemas fotónicos.
Además, discutimos las implicaciones de nuestros resultados para el diseño de láseres
topológicos y el potencial para manipular modos de superficie unidireccionales en apli-
caciones fotónicas. También destacamos la menor necesidad de respuestas magnéticas
fuertes, lo que amplía el alcance de los materiales que pueden usarse para fabricaciones
experimentales de aisladores topológicos fotónicos 3D. Este trabajo sienta las bases
para una mayor exploración y desarrollo en el campo de la fotónica topológica. El
potencial fotónico equivalente de un acoplador magnetoeléctrico, que utiliza un setup
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3D con vectores Chern que apuntan hacia adentro, presenta un diseño intrigante aún
por realizar, que dejamos abierto para investigaciones posteriores.

La sección "Photonic axion insulator" presenta un nuevo enfoque para crear una
topología similar a un axión dentro de cristales fotónicos de Weyl en 3D. Al integrar
obstrucciones de fase en la modulación de la supercélula de los elementos dieléctricos
de los cristales fotónicos con simetría de inversión, unimos estados quirales de propa-
gación de luz en bisagras que están correlacionadas con inversión, lo que conduce a la
formación de un canal de luz de axión quiral. Estos canales están integrados dentro de
una estructura dieléctrica 3D, lo que los hace resistentes a la radiación en el continuo
electromagnético. La clave de nuestro método es la cuantización del ángulo de axión,
que se logra mediante la creación de paredes de dominio entre estos cristales fotóni-
cos. También demostramos que al aplicar un campo magnético externo débil, podemos
manipular las propiedades girotrópicas del cristal fotónico, manipulando efectivamente
los diferentes modos de las fibras fotónicas quirales unidimensionales. Este proceso
allana el camino para el control dinámico de los modos de axión y sienta las bases para
dispositivos fotónicos controlables magnéticamente. Nuestro diseño representa un ais-
lante topológico de orden superior, con estados de bisagra quirales, con aplicaciones
prácticas en tecnología fotónica, mejorando potencialmente la eficiencia y versatilidad
del control de la propagación de la luz en comunicaciones y dispositivos ópticos. La
siguiente fase de la investigación se centrará en introducir respuestas dinámicas dentro
del cristal fotónico del axión. La obtención de un axión dinámico en un cristal fotónico
podría ayudar a unificar diferentes enfoques para la detección de materia oscura y con-
tribuir a una mejor comprensión del acoplamiento axión-fotón.

La sección “Unpaired Weyl 3D PhC” propone un nuevo diseño para un cristal
fotónico con una característica distintiva: un punto Weyl aislado con una alta carga
monopolo ubicado en el punto Γ. Este punto está estabilizado por una pared nodal
absorbente en el límite de la zona cúbica de Brillouin. El diseño se diferencia de
los sistemas Weyl tradicionales con configuraciones dipolares, sin la correspondiente
carga opuesta. El sistema se diseña seleccionando grupos espaciales con simetrías rota-
cionales capaces de estabilizar una pared nodal en el límite de la zona de Brillouin. El
aislamiento y la naturaleza topológica del punto Weyl aislado lo convierten en una
plataforma prometedora para el acoplamiento con emisores cuánticos, mejorando po-
tencialmente las interacciones entre ellos debido al entorno del cristal, un notable paso
adelante con respecto a lo que se puede lograr con los emisores cuánticos acoplado
a los sistemas Weyl dipolares tradicionales. Los resultados iniciales sugieren que es-
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tos cristales fotónicos podrían redefinir la comprensión actual de la correspondencia
bulk-boundary y las superficies de Fermi, ya que las paredes nodales pueden impedir
la existencia de secciones con gap de la zona de Brillouin.

En conclusión, esta tesis examina la teoría de bandas topológicas para ondas
electromagnéticas en cristales fotónicos, proporcionando conocimientos y metodologías
adaptadas al 3D. A través del desarrollo de técnicas de caracterización, hemos abor-
dado los retos que presenta el carácter vectorial y transversal de la luz. Propusimos
diseños realistas para implementar fases topológicas de luz 3D en cristales fotónicos,
estableciendo una conexión entre formulaciones teóricas y aplicaciones potenciales.
Este trabajo quiere abordar algunas preguntas abiertas y áreas aún por explorar. La
búsqueda de bandas planas 3D, la interacción de topologías frágiles con la singulari-
dad Γ y las implicaciones de la dualidad electromagnética para la protección topológ-
ica 3D son áreas notables para una mayor investigación. Esperamos que esta tesis
pueda proporcionar una comprensión más profunda del electromagnetismo 3D y ofre-
cer las herramientas que conduzcan a mayores avances en la exploración de los cristales
fotónicos topológicos.
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Abstract

The concept of topology has revolutionized our understanding of condensed matter
physics, leading to the discovery of novel electronic phases and the emergence of topo-
logical materials. In recent years, this concept has been extended to the field of pho-
tonics, where it has led to the design of a new class of materials known as topological
photonic crystals. These materials possess nontrivial topological properties that can
lead to unique and robust light propagation phenomena. This thesis presents a com-
prehensive study of 3D topological photonic crystals, with a focus on the discovery of
novel topological phases and the development of new methods for their characteriza-
tion and design. The main contributions of this work are the proposal and investigation
of 3D topological photonic phases, which include: the 3D Chern photonic insulator;
the axion photonic insulator; and the 3D Weyl semimetal with unpaired photonic Weyl
points. These phases exhibit unique features, such as vectorial bulk-boundary cor-
respondence, closed Fermi loops, chiral hinge channels, and forbidden surface Fermi
arcs, which have not been proposed before in 3D photonic crystals. To approach topol-
ogy in 3D electromagnetism, we propose dimension-specific characterization methods,
including vectorial photonic Wilson loops and transversality-enforced tight-binding
models. These methods allow us to overcome the theoretical challenges associated
with the vectorial nature of light, and permit us to model and characterize the topologi-
cal properties of 3D photonic systems in detail. Throughout this thesis, we also suggest
possible implementations to realize these topological phases, which include PhC do-
main walls, gyrotropic structures, and quantum emitters coupled to PhCs. Our goal is
to demonstrate their potential for applications in guided-light communication, optical
switching, particle detection, magneto-photonics, and quantum simulations. Overall,
this work aims to contribute to a deeper understanding of topological phenomena in 3D
electromagnetism and proposes novel investigation methods and possible applications.
We hope that the tools and designs developed in this thesis can be used as a starting
point to realize these topological phases in real-world photonic devices.
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Chapter 1

Introduction

1.1 Integration of Topological Concepts into Photonics

Topological Photonic Crystals (PhCs) represent a convergence of two significant ar-
eas of research: photonics and topological materials. PhCs emerged in the late 1980s
as researchers began to explore periodic dielectric structures that could manipulate the
propagation of electromagnetic waves. PhCs were initially proposed by S. John [2] and
E. Yablonovitch [3], which later led to the conceptualization of the photonic bandgap
[4, 5]—a specific frequency range where electromagnetic wave propagation is forbid-
den. The integration of topological concepts into photonic systems began in earnest
with the discovery of topological properties in electronic systems. While the integer
quantum Hall effect of the 1980s had already showcased a 2D electron gas with quan-
tized Hall conductance [6] rooted in topological invariants like the Chern number [7,8],
it was S. Raghu and F.D.M. Haldane’s insightful observation [9,10] spotlighted the po-
tential of replicating these effects in photonic structures. Specifically, they elucidated
how topological quantization could arise from the global properties of wave functions
across the Brillouin zone, and that topological phases are a common phenomenon of
waves in periodic media, even in the absence of an electric charge quantum. Their
research posited the existence of topologically protected electromagnetic edge states
within 2D periodic dielectric structures composed of magneto-optical elements break-
ing time-reversal symmetry (TRS). This concept was experimentally corroborated in
2009 [11] with the observation of a gyrotropic PhC supporting topologically protected
chiral edge states of light. This realization opened up avenues for the study of pho-
tonic analogs of other topological phases. While these results were initially limited
to 2D, the research community began to extend topological concepts to 3D photonic
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systems. This transition presented new opportunities, leading in 2015 to the first ex-
perimental observation of Weyl points, which represent topological monopoles in the
3D momentum space [12, 13]. This was the first experimental demonstration of Weyl
points, despite the studies dating back to H. Weyl in 1929 [14]. Such demonstrations
were remarkable results as they laid the groundwork for further advances in the ex-
ploration of topological gapped phases in 3D. As we will show in this thesis, Weyl
points can be viewed as an intermediate topological gapless phase between topologi-
cally distinct bandgaps [15]. While the study of strongly gapped magnetic topological
phases was initially limited to 2D, these results suggested the possibility of extending
their topological protection to 3D systems with broken TRS. One of the main objec-
tives of this thesis is to introduce realistic PhC designs capable of realizing gapped
strong-topological phases for light, with a focus on 3D. As well, we aim to develop
dimension-specific characterization methods tailored to address the challenges arising
from the vectorial and transversal nature of light.

1.2 Photonic Crystals in a Nutshell

PhCs are a specific class of optical materials that consist of a periodic arrangement
of dielectric elements, alternating between regions of higher and lower refractive in-
dices. Specifically, in a PhC, the dielectric (susceptibility) tensor (r) displays spatial
periodicity:

(r) = (r + R),

with R being a lattice vector. The periodicity in the PhC’s structure results in the Bragg
interference of electromagnetic waves, which in turn, alters the dispersion properties of
photonic modes [16,17]. To comprehend the optical properties of PhCs, a perspective
from momentum-space is frequently adopted. As we will detail in the following chap-
ter, in this representation, the two dynamic Maxwell equations (comprising Faraday’s
and Ampere’s laws) can be recast in a Bloch-like form using the Maxwell operator
((k)), thereby enabling the formulation of a Bloch eigenproblem:

(k)𝑢𝑛,k(s) = 𝜔𝑛(k)𝑢𝑛,k(s),

where 𝜔𝑛(k) are electromagnetic bands and 𝑢𝑛,k(s) are Bloch periodic electromagnetic
modes. In such a description, concepts from Bloch and topological band theories,
commonly applied in condensed matter physics, find direct application in the field of
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PhCs [18–21]. Nevertheless, it is important to note that the other pair of Maxwell equa-
tions —source-free magnetic and electric Gauss’s laws— impose further geometrical
constraints on the polarization of Bloch modes. In momentum-space representation,
these conditions can be compactly written as:

Div(k)[(s)𝑢𝑛,k(s)
]

= 0

where Div(k) is a divergence operator in momentum-space representation. As we will
see in Chapter 3 this constraint leads to a distinct, vortex-like, singularity at the zero-
energy limit within the Brillouin zone’s origin for the electromagnetic modes present
in all-dielectric periodic media in 3D [22]. This singularity necessitates specialized
treatment for the application of conventional topological band theory. Intriguingly,
this singularity can also give rise to unique 3D electromagnetic topologies, exemplified
by the Γ-enforced topology underlying the recent discovery of topological "non-gaps"
in 3D PhCs [23]. Accompanying this is the non-analyticity of the Bloch basis in 3D
momentum space and the challenge of forming a basis of exponentially localized states,
thus making 3D PhCs a conceptually challenging but stimulating field of study.

1.3 Periodic Table of Topological PhCs

As we have mentioned, the spatial variation of the dielectric function in PhCs can
lead to photonic bandgaps, which are specific frequency intervals where light propa-
gation is inhibited. The topology of these bandgaps can be systematically classified
using the Cartan-Altland-Zirnbauer (CAZ) scheme [24, 25] into distinct topological
classes, each characterized by specific topological invariants. The nature and number
of these topological invariants depend on both the symmetries of the Maxwell operator
((k)) and the spatial dimension of the PhC (𝑑). As we will detail in Chapter 2, in
PhCs, the Maxwell operator recognizes two types of even (bosonic) TRS of the CAZ
type, 𝑇1 and 𝑇3. Magneto-electric media are characterized by 𝑇1, while real-valued
dielectric materials of the silicon type pertain to 𝑇3. The combination of these two
symmetries results in the electro-magnetic duality symmetry (𝑈2), a natural symmetry
of the vacuum [26,27]. Based on the symmetries of the gapped Maxwell operator, the
classification outlines four distinct topological classes, summarized in Table 1.1.
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Media Symmetries Class 𝑑 = 1 𝑑 = 2 𝑑 = 3 𝑑 = 4
Gyrotropic None A 0 (1st) ℤ (1st) ℤ3 (1st) ℤ6⊕ (2nd) ℤ

Silicon-type 𝑇3 AI 0 0 0 (2nd) ℤ
Magneto-electric 𝑇1 AI 0 0 0 (2nd) ℤ

EM Dual 𝑇3, 𝑇1, 𝑈2 AI ⊕ AI 0 0 0 (2nd) ℤ2

Table 1.1: Topological classification of dielectric media in the CAZ scheme [28, 29]. Topologically
trivial is indicated by zero. 1st and 2nd labels stand for first and second Chern number, respectively. The
notation ℤ𝑛 indicates the existence of 𝑛 independent Chern numbers, each for each lower dimensional
manifold of the 𝑑 dimensional space. 𝑇1 and 𝑇3 are bosonic time-reversal symmetry operations. Their
product is associated the electromagnetic duality𝑈2 = −𝑖𝑇1𝑇3. In the absence of additional symmetries
beyond those of the CAZ scheme, strong topology is only achievable in 𝑑 ≤ 3.

As shown, for spatial dimensions 𝑑 ≤ 3, strong topology in PhC is limited to
class A with broken TRS. Incorporating spatial symmetries into topological classifi-
cation permits the definition of crystalline topological invariants that go beyond the
predictions of the CAZ scheme. This facilitates the realization of other symmetry-
protected topological phases, even in the presence of TRS [30–35], laying the foun-
dation for silicon-based topological PhCs. Topological PhCs have found widespread
applications across various optical devices [18–21], enabling robust and controllable
manipulation of light. These applications encompass topological waveguides, lasers,
and components for optical communication, ultimately enhancing the performance of
photonic technologies.

1.4 Realizing Elusive Topological Phases via PhCs

Beyond their applicative interest, topological PhCs also present a valuable platform
for the theoretical exploration of numerous topological phases, often challenging to
replicate in electronic counterparts. This is attributed to several pivotal reasons:

• Tailored Design - Unlike electronic systems that depend on natural crystal struc-
tures, PhCs represent a very versatile platform offering precise custom design
capabilities and thus control on their symmetry properties [18, 19]. This allows
the investigation and realization of topological phases that are not naturally oc-
curring in electronic materials [36].

• Extended Symmetries - While PhCs may lack specific symmetries found in
electronic systems (e.g., charge-conjugation [37]), they introduce unique electro-
magnetic symmetries, such as duality, broadening the spectrum for classifying
topological phases [38, 39].
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• 3D and Vectorial Properties - Photonics enable vectorial topological effects,
either stemming from light polarization [40] or from 3D spatial variation of the
dielectric tensor [41]. The intrinsic 3D nature of electromagnetic fields struc-
tures further enriches the scope of topological physics, leading, as we will see,
to vectorial bulk-boundary correspondence [42], a largely unexplored concept
in (layered) condensed matter systems.

• Bosonic Nature of Photons: Unlike electrons, photons are bosonic in nature,
which can simplify the realization of certain phases tough to observe in elec-
tronic systems. In the context of multi-gap topologies, the lack of a concept of
band filling renders the entire photon spectrum accessible, unlike in fermions
where only nodes near the Fermi level are probed, facilitating topological band-
nodes braiding. Furthermore, the absence of intrinsic spin-orbit interactions in
PhCs facilitates the manifestation of nodal phases, which can be fragile in elec-
tronic context [43, 44] (Sec. 4.3).

These unique features establish PhCs as a versatile playground for the imple-
mentation and study of several elusive topological phases.

1.5 Aim of This Thesis: Targeting Topological Phases
of 3D PhCs

One of the main objectives of this thesis is to introduce PhC designs capable of realiz-
ing topological phases for light, with a specific focus on 3D. In 3D PhCs, the existence
of a bandgap ensures light confinement along all spatial dimensions, in contrast to
2D PhCs which only prevent light propagation within the crystal’s plane. 3D PhCs
are conceptually rich and stimulating because the full vectorial properties of light are
rendered manifest, leading to stimulating physical and mathematical challenges arising
from the transversality constraint of Maxwell equations. We will explore design possi-
bilities both within and beyond the CAZ framework. Within the CAZ scheme, we will
propose a possible implementation of the photonic 3D Chern insulating state Section
4.1, a topological phase characterized by three first Chern invariants - or a Chern vec-
tor C = (𝐶𝑥, 𝐶𝑦, 𝐶𝑧) - [45–50] in class A, and study its vectorial bulk-boundary corre-
spondence. Beyond the CAZ framework, we will investigate the inversion-symmetric
photonic axion insulator Section 4.2, also in class A, but featuring a bulk-hinge corre-
spondence distinct from the CAZ counterparts [48, 51–57, 57–59, 59–68]. Finally, we
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will outline the design of a nodal 3D PhC where the entire boundary of the Brillouin
zone is an absorbing topological nodal wall Section 4.3. This 3D phase is situated in
class AI, but strictly falls outside the CAZ scheme, due to the absence of a spectral gap
and the inclusion of crystalline symmetries.

To effectively design and analyze 3D topological phases of light, we intend to
develop dimension-specific characterization methods tailored to address the challenges
arising from the vectorial nature of light in 3D.

1.6 General Outline

The content of this thesis is divided as follows:

• Fundamentals (Chapter 2): We review fundamental ideas in topological pho-
tonics, with a focus on 3D, including the concept of transverse photonic bands,
electromagnetic Chern numbers, and the Γ-point obstruction in 3D. In the same
chapter, we state essential material approximations governing the electromag-
netic response in all-dielectric PhCs, which are the primary focus of this text.

• Methods (Chapter 3). We develop dimension-specific modeling and topolog-
ical characterization methods tailored to address the challenges arising from
the vectorial nature of light in 3D. These include transversality-enforced tight-
binding models and electromagnetic Wilson loops in 3D. In the same chapter,
we provide a tutorial for computing various topological invariants of 3D PhC.
These include the axion angle, the Chern vector, and the Weyl charge of topo-
logical nodal walls.

• Results (Chapter 4). We propose the design of three distinct 3D PhC topo-
logical phases: the 3D Chern photonic insulator, the photonic axion insulator,
and the nodal-wall Weyl semimetal featuring unpaired photonic Weyl points.
These phases exhibit unique bulk-boundary properties, including vectorial bulk-
boundary correspondence, closed Fermi loops, chiral hinge channels, and for-
bidden surface Fermi arcs.

• Conclusions (Chapter 5). We offer an outlook on potential research avenues
based on the designs presented. For each topological phase, we touch upon po-
tential applications. These applications range from magnetic switching of light,
unidirectional light propagation, manipulation of quantum emitter interactions,
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and particle detection. Furthermore, we highlight how to use the developed mod-
eling and characterization methods for crafting novel PhC designs, leveraging on
symmetry and topological properties not discussed in this thesis.

• Appendix. We discuss electromagnetic boundary conditions, transversality, and
physicality constraints, as well as providing a perturbative expansion of the Maxwell
operator suited for photonic Weyl points.
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Chapter 2

Fundamentals

This chapter provides a concise foundation for comprehending PhCs, with a specific
focus on three dimensions (3D). In the description of PhCs, we will adapt an operator-
based approach to Maxwell’s equations, first introduced in Ref. [69, 70]. This for-
mulation is slightly different from, though equivalent, those traditionally adopted in
foundational works on PhCs such as Refs. [16, 17]. It is chosen here since it allows
a straightforward symmetry classification of PhCs, while simultaneously highlighting
the unique vectorial aspects of 3D space. The chapter is divided into three sections:

• Material Approximations (Section 2.1). We introduce constitutive relations
for dielectric media and explore the essential material approximations that gov-
ern the response in PhCs. These relations are critical for understanding all-
dielectric PhCs, which are the primary focus of this text. These approximations
encompass concepts like linearity, negligible dispersion, loss or gain, absence of
sources, and the requirement of index-positivity. To make these concepts more
tangible, we will provide real-world examples of materials commonly used in
photonics. These materials exemplify realistic dielectric media that adhere to
these approximations within specific frequency ranges.

• Operator-Form of Maxwell Equations (Section 2.2) In this section, we intro-
duce the operator formulation of Maxwell’s equations. This approach allows us
to describe classical waves in PhCs using the formalism of quantum mechanics.
We will highlight the important similarities and differences between these two
descriptions, enabling us to address concepts such like scale-invariance, real-
valuedness, and the vectorial and transversal nature of electromagnetic fields.
This foundation will be crucial as we explore the symmetries and topological
characteristics of photonic structures in the next section.

26



3D Topological Photonic Crystals

• Symmetry and Topology in PhCs (Section 2.3) In this section, we explore sym-
metry and topology in the context of PhCs. We examine how lattice periodicity
affects electromagnetic waves, leading to photonic bands, electromagnetic Chern
numbers, and a polarization vortex in 3D. We classify topological PhCs based
on material symmetries, pertaining to the dielectric tensor’s internal symmetries.
We distinguish two time-reversal symmetries: one for real-valued materials and
one for magneto-electric media. We introduce electromagnetic duality symme-
try and its role in this classification. Drawing from the foundational principles of
the periodic table of topological insulators [24, 25], we identify potential topo-
logical classes for photonic bandgaps. Finally, we incorporate space-group sym-
metries and explore methods to characterize electromagnetic modes in 3D PhCs,
emphasizing vectorial aspects.

This chapter draws upon seminal works in electromagnetism and topological
physics. References such as [71–75] elaborate on classical electromagnetism concepts,
while [16, 17, 26, 28, 29, 39, 70, 76–81] integrate these principles into the context of
topological PhCs.

2.1 Constitutive Relations and Material Approximations

In this section, we establish the approximations fulfilled by the dielectric materials
composing the PhCs examined in this thesis. First, we will introduce the constitu-
tive relations for dielectric materials. These relations elucidate how light’s electric
and magnetic fields interact with the crystal’s structure and its constituent materials,
primarily through the dielectric tensor, establishing a link between induced and ap-
plied electromagnetic fields. Then, we will explore the range of validity for several
critical approximations. These include linearity, negligible dispersion, as well as neg-
ligible loss or gain, the absence of sources, and the necessity of index-positivity. To
emphasize practical implications, we will provide some examples of frequency ranges
in which certain dielectric materials, used to fabricate topological PhCs, conform to
these assumptions under their standard operating conditions. The starting point of our
discussion is the Maxwell equations for media in the time domain:

∇ ⋅ 𝐃(r, 𝑡) = 𝜌(r, 𝑡) (Magnetic Gauss’s Law)
∇ ⋅ 𝐁(r, 𝑡) = 0 (Gauss’s Law) (2.2)
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∇ × 𝐄(r, 𝑡) = −𝜕𝑡𝐁(r, 𝑡) (Faraday’s Law)
∇ ×𝐇(r, 𝑡) = 𝜕𝑡𝐃(r, 𝑡) + J(r, 𝑡) (Ampère’s Law) (2.3)

where we incorporate the conventional vacuum constants (𝜖0 , 𝜇0 , and 𝑐−1) into the
definitions of the fields and the dielectric tensors. Here (𝐄,𝐇) are the applied electric
and magnetic fields and (𝐃,𝐁) are the induced displacement and the magnetic flux
density.

2.1.1 Linear approximation

In the linear response regime, the induced polarization and magnetization are linearly
related to the applied electric and magnetic fields (𝐄,𝐇), and the medium’s response
remains independent of the field strength as long as the fields are weak. Under this
assumption, we can establish constitutive relations as expressed below:

(

𝐃(𝑡, r)
𝐁(𝑡, r)

)

= ( ∗ (𝐄,𝐇))(𝑡) = ∫

𝑡

−∞
𝑑𝑡′(𝑡 − 𝑡′, r)

(

𝐄(𝑡, r)
𝐇(𝑡, r)

)

, (2.4)

where the induced fields, i.e. the displacement (𝐃) and magnetic (𝐁) field, depend on
the past field configuration through a convolution via a constitutive 6 × 6 tensor:

(𝑡, r) =
(

𝜀(𝑡, r) 𝜉(𝑡, r)
𝜁 (𝑡, r) 𝜇(𝑡, r)

)

, (2.5)

which can be split into 3 × 3 blocks, representing the electric permittivity (𝜀), mag-
netic permeability (𝜇), and magneto-electric coupling responses (𝜉 and 𝜁 ). The tensor
structure of 𝜀 and 𝜇 becomes relevant in the case of optically birefringent, piezoelec-
tric or gyrotropic crystals, since it captures the non-diagonal or anisotropic properties
commonly found in these media. On the other side, the off-diagonal terms 𝜉 and 𝜁 in
the 6×6 tensor describe the so-called bianisotropy [74,75], signifying the presence of
magneto-electric effects. The linear response approximation remains valid under the
condition that the applied fields are considerably smaller than the material’s breakdown
strength.

Nonlinear Topological PhCs In this thesis, we concentrate exclu-
sively on investigating topology within linear materials, omitting dis-
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cussions on nonlinearities. Nonetheless, it’s worth noting that topol-
ogy has found applications in nonlinear materials, leading to intriguing
phenomena like topological edge solitons [82], interacting many-body
quantum topological phases of light [83], and backscattering immune
parametric amplification [84].

2.1.2 Non-dispersive approximation

The non-dispersive approximation assumes that the susceptibility of the material is in-
dependent of frequency, i.e. the response of the medium is instantaneous and uniform
across all frequencies. In Equation 2.4, the susceptibility can be split into a disper-
sive part that depends on the past history and a non-dispersive part that refers to the
instantaneous response:

(𝑡, r) = 𝑁𝐷(r)𝛿(𝑡) +𝐷𝐼𝑆(𝑡, r). (2.6)

Whenever dispersion is negliglible, substituting Equation 2.6 in the integral of Equa-
tion 2.4, returns:

(

𝐃(𝑡, r)
𝐁(𝑡, r)

)

= (r)
(

𝐄(𝑡, r)
𝐇(𝑡, r)

)

(2.7)

where (r) has no time-dependence. This condition is valid for many practical oper-
ating conditions in dielectric PhC crystals and for certain specific frequency regimes.
However, it fails for materials with resonant behavior, such as metals, and certain di-
electric media with strong absorption or emission characteristics.

Dispersive Topological PhCs In media where dispersion cannot be
neglected, more complex models, such as the Lorentz model or the
Drude model, are necessary to accurately describe the electromagnetic
response. In this thesis, we will exclude metallic and plasma-based
PhCs from our analysis, and focus on all-dielectric structures within the
non-dispersive approximation. Incorporating dispersion in the PhC dis-
cussion has recently led to the concept of "ill-defined" topologies [85]
for plasma PhCs and the emergence of phenomena such as the topolog-
ical energy sinks studied in Ref. [26].
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2.1.3 Hermitian approximation

The Hermitian approximation assumes that the PhC does not either absorb or amplify
the light passing through it. This means that (r) is an Hermitian tensor:

(r) = †(r). (2.8)
For this approximation to hold, the materials used in the PhC structure should

have negligible absorption at the wavelengths of interest. As well, the materials should
not exhibit any gain, such as through stimulated emission. This Hermitian constraint
translates into:

𝜀(r) = 𝜀†(r), (2.9)
𝜇(r) = 𝜇†(r), (2.10)

and, it implies, for the magnetoelectric coupling:

𝜉(r) = 𝜁†(r). (2.11)

The Hermitian property of dielectric materials largely simplifies the solving of
electromagnetic problems and the design of optical components in PhCs and waveg-
uides, since it enables the application of powerful mathematical techniques such as
mode expansion, eigenvalue, and transfer matrix methods.

Beyond the Hermitian approximation Photonics provides an ideal
playground to study non-Hermitian topology due to its flexibility to in-
corporate gain through active media, as well as losses, absorption, and
non-reciprocities. This has led to the demonstration of phenomena such
as light-funneling via skin-effect [86, 87] and topological lasing [88],
both in photonic lattices and PhCs.

2.1.4 Positive index approximation

The positive index approximation assumes that the eigenvalues (𝜅𝑖(r)) of the constitu-
tive tensor(r) are strictly positive and bounded away from∞, uniformly in r. In other
words, the medium is a positive index material whenever there exist positive constants
𝐶, 𝑐 > 0, which satisfy [17, 89]:

0 < 𝑐 ≤ 𝜅𝑖(r) ≤ 𝐶 <∞ (2.12)
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∀𝜅𝑖(r) ∈ Spec{(𝐫)}, for every r. This constraint will become relevant for the defini-
tion of a Maxwell operator in Section 2.2 via the inverse operator −1(𝐫). In practice,
this condition is strictly related to the positivity of the principal refractive indices (𝑛𝑖)
of the medium, i.e. the refractive indices along principal axes (𝑖 = 1, 2, 3). For materi-
als with negligible magneto-electric coupling, the refractive index along 𝑖 are defined
from the eigenvalues of the 𝜖 and 𝜇 sub-tensors as follows:

𝑛2𝑖 = 𝜀𝑖𝜇𝑖. (2.13)

Double Positive Materials (DPS) [89], i.e. those where both the principal 𝜀𝑖 permit-
tivities and 𝜇𝑖 permeabilities are strictly positive (𝜀𝑖 > 0 and 𝜇𝑖>0) will be the main
focus of this thesis, as they comprise most of the well-known dielectrics.

Exploring Further Negative Index Materials (NIM) [90,91] and Near
Zero-Index (NZI) materials [92,93] explicitly violate the positive-index
condition. It is noteworthy that, to the best of our current knowledge,
the application of topological principles to the NZIs media and NIMs
remains largely unexplored [94, 95].

2.1.5 Media satisfying previous assumptions

In Table 2.1, we recapitulate all the previous assumptions done for dielectric media of
the type of PhCs studied in this thesis.

Material Approximation Condition On Dielectric Tensor (𝑡, r)

Linear Response
(

𝐃(𝑡, r)
𝐁(𝑡, r)

)

= ∫ 𝑡−∞ 𝑑𝑡
′(𝑡 − 𝑡′, r)

(

𝐄(𝑡, r)
𝐇(𝑡, r)

)

Dispersionless (𝑡, r) = 𝑁𝐷(r)𝛿(𝑡)
Hermitian (r) = †(r)
Positive Index 0 < 𝑐 ≤ 𝜅𝑖(𝐫) ≤ 𝐶 <∞, ∀𝜅𝑖(𝐫) ∈ spec{(𝐫)}

Table 2.1: Assumptions on the dielectric media which constitute the PhC.

It is pertinent to question whether the aforementioned assumptions can be phys-
ically realized in any realistic dielectric media. In practice, there exists a subset of
materials that can be simultaneously approximated as positive index, lossless, non-
dispersive, and linear within specific operating frequency ranges. Here are few exam-
ples of such materials utilized in the design and fabrication of topological PhCs, as
well as topological waveguides, fibers, metamaterials, and ring resonators.
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• Microwave Range: Alumina (Al2O3) [96,97] and (ferrimagnetic) Yittrium Gar-
net (YIG) [11, 98]

• Infrared Range: Gallium Arsenide (GaAs) [99] and Silicon (Si) [100, 101]

• Visible Range: Boron Nitride (BN) or Silicon Nitride (SiNx) [102, 103]

These materials are widely used in photonics and approximately conform to the stated
approximations across particular frequency regimes.

2.1.6 Source-free approximation

Another approximation we employ is the source-free approximation, which assumes
the absence of free electric charges (charge density 𝝆) or free electric currents (current
density J) within the PhC or the surrounding medium:

𝝆(r, 𝑡) = 0 = J(r, 𝑡). (2.14)

This simplification helps isolate the crystal’s structure and material interactions as the
primary factors affecting electromagnetic wave behavior inside it, considering contri-
butions from external sources like antennas, current-carrying wires, or free charges, as
perturbations.

2.2 Operator-Form of Maxwell Equations

In this section, we compactly express the Maxwell equations in an operator form [69,
70, 104]. This formulation allows us to apply quantum mechanics methods to clas-
sical waves, treating electromagnetic fields akin to a wave function and introducing
a Maxwell operator analogous to a Hamiltonian. We separately address the dynam-
ical Maxwell equations (Faraday and Ampère’s laws) as a linear Maxwell operator
equation acting on electromagnetic fields, while treating the Gauss’ laws as geometric
constraints for the solutions of this equation. To do so, let us consider the source-free
Maxwell equations for dielectric media, setting 𝜌 = 0 = J in Equation 2.3.
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2.2.0.1 Dynamical equations

We firstly focus on the two Faraday and Ampere equations, which govern the dynam-
ical evolution. Employing the constitutive relations:

(

𝐃(r, 𝑡)
𝐁(r, 𝑡)

)

= (r)
(

𝐄(r, 𝑡)
𝐇(r, 𝑡)

)

, (2.15)

with the assumptions done in the previous section for (r):

(r) =
(

𝜀(r) 𝜉(r)
𝜉†(r) 𝜇(r)

)

, (2.16)

the Faraday and Ampere’ equations can be compactified as:
(

0 𝛁×
−𝛁× 0

)(

𝐄(r, 𝑡)
𝐇(r, 𝑡)

)

= 𝜕𝑡

(

(r)
(

𝐄(r, 𝑡)
𝐇(r, 𝑡)

))

. (2.17)

Since (r) is invertible from the assumptions made in the previous section, these
two equations can be written in an operator form, which we will address to as the
Schrödinger representation of Maxwell’s equations:

(r)
(

𝐄(r, 𝑡)
𝐇(r, 𝑡)

)

= 𝑖𝜕𝑡

(

𝐄(r, 𝑡)
𝐇(r, 𝑡)

)

(2.18)

defining a generalized Maxwell operator:

(r) = (r)−1Rot(r) = (r)−1
(

0 +𝑖𝛁×
−𝑖𝛁× 0

)

(2.19)

in terms of the free Maxwell operator:

free(r) = Rot =
(

0 +𝑖𝛁×
−𝑖𝛁× 0

)

. (2.20)

The generalized Maxwell operator (r) holds similarity to a Schrödinger-like opera-
tor, acting on the

(

𝐄(r, 𝑡)
𝐇(r, 𝑡)

)

-fields, with the fields playing a role akin to that of a wave
function. A more in-depth analysis of the analogies and distinctions between Maxwell
and Schrödinger operators is presented in Table 2.2.
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2.2.0.2 Divergence-free conditions

The remaining two Maxwell equations, the Gauss’ laws, can be similarly expressed in
terms of the (r, 𝑡) tensor, as a single equation for the

(

𝐄(r, 𝑡)
𝐇(r, 𝑡)

)

-fields:

Div
(

(r)
(

𝐄(r, 𝑡)
𝐇(r, 𝑡)

))

= 0, (2.21)

where the divergence operator is simply Div
( )

=

(

𝛁⋅
𝛁⋅

)

. As we will show in
Section2.3.1.3, this relation provides a geometrical constraint to electromagnetic so-
lutions of Equation 2.18, enforcing transversal propagating of waves with respect to
their wavevector.

2.2.1 Electromagnetic observables

In the Schrödinger representation of the Maxwell equations (Equation 2.18), the gen-
eralized Maxwell operator (r) acts on electromagnetic fields similarly to how a
Schrödinger operator acts on a wave function. However, a significant departure from
quantum mechanics is evident in that physical electromagnetic fields in the time do-
main are real-valued vector fields. More specifically, electromagnetic fields constitute
elements of a Banach space denoted as [17, 105]:

real = 2
(ℝ

3,ℝ6) =
{

(E,H) ∶ ℝ3 → ℝ6|
|

|∫ 𝑑3r
(

𝐄,𝐇
)

⋅

(



(

𝐄
𝐇

))

= ∫ 𝑑r (𝐄 ⋅ 𝐃 +𝐇 ⋅ 𝐁) <∞
}

,

(2.22)

whose elements are functions mapping from a three-dimensional real space (ℝ3) to the
six-dimensional space of the electromagnetic Cartesian components (ℝ6). This mathe-
matical space consists only of square-integrable fields 2

 , associated to a -weighted
energy norm, a relevant condition for media where finite field energy waves are con-
sidered. In contrast to quantum mechanics, the components of the (𝐄,𝐇) fields are
directly accessible via experimental observations. More in general, electromagnetic
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observables can be represented as functionals of these fields [106]:

𝐹obs ∶ 2
(ℝ

3,ℝ6) → ℝ𝑛. (2.23)

Electromagnetic observables do not need to be linear or quadratic in the fields: how-
ever, many of the most well known observables, such as the energy density, the Poynt-
ing vector, or the Zilch for dual-symmetric media [26,107], are quadratic in the fields.

2.2.2 Frequency domain

In order to relate the fields to the light’s frequency, we make use of the inverse Fourier
transform in time:

(

𝐄(𝜔)
𝐇(𝜔)

)

= 1
√

2𝜋 ∫ℝ
d𝑡𝑒𝑖𝑡𝜔

(

𝐄(𝑡)
𝐇(𝑡)

)

, (2.24)

and write the Maxwell equations in the frequency domain:
(

0 +𝑖𝛁×
−𝑖𝛁× 0

)(

𝐄(𝜔)
𝐇(𝜔)

)

= 𝜔(𝜔)

(

𝐄(𝜔)
𝐇(𝜔)

)

, (2.25)

which constitutes a generalized eigenvalue problem [108] since, in general, (𝜔) ≠ 𝟙.

High and zero frequency limits In many physical situations the fol-
lowing limits become relevant:

• In the limit of large frequencies, the medium behaves like the
vacuum:

lim𝜔→±∞(𝜔) = 𝟙 (2.26)

• In the zero frequency limit, the medium has neither gyrotropy nor
bianisotropy:

lim𝜔→0(𝜔) = diag[𝜀(0), 𝜇(0)] = diag[𝜀(0), 𝜇(0)] (2.27)

In the context of topological PhCs, Equation 2.26, allows to pro-
vide a bound on the topological invariants of PhC bands [85].

Under the dispersionless approximation, it is assumed that:
𝑑
𝑑𝜔

(𝜔)||
|𝜔𝐿

≈ 0 (2.28)
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where 𝜔𝐿 represents a specific frequency around which the photonic crystal (PhC) op-
erates. Furthermore, within a certain energy regime where (𝜔 ≈ 𝜔𝐿), it is considered
that:

(𝜔) = (𝜔𝐿) =  (2.29)
and hence, in this thesis, we will take  as independent of frequency.

2.2.3 Energy scalar product

Inner products play a pivotal role in the computation of many topological invariants
and symmetry eigenvalues, Section 2.3.1.2 and 2.3.3. In the operator-form of Maxwell
equations, the fields are equipped with a (r)-weighted inner product (⟨⋅|⋅⟩) defined
as [16, 17, 108]:

⟨

(

𝐄
𝐇

)

|

(

𝐄′

𝐇′

)

⟩ = ∫ 𝑑3r
(

𝐄(r),𝐇(r)
)

⋅

(

(r)
(

𝐄′(r)
𝐇′(r)

))

= ⟨E|D’⟩ + ⟨H|B’⟩,

(2.30)
that differs from the usual Euclidean inner product, because of the form of the eigen-
problem in Equation 2.25. More specifically, eigensolutions of 2.25 with-frequency
independent, {

(

𝐄
𝐇

)

𝑗

} constitute a biorthogonal basis together with {K

(

𝐄
𝐇

)

𝑗′

}, and

not with {

(

𝐄
𝐇

)

𝑗′

}, differently from standard eigenvalue problems. Throughout this
thesis, the (r)-weighted product will be referred to as the "energy" scalar product.
The reason for this is that the associated -weighted norm (|| ⋅ ||2), defined as:

||

(

𝐄
𝐇

)

||

2
 = ⟨

(

𝐄
𝐇

)

|

(

𝐄
𝐇

)

⟩, (2.31)

simplifies to the conventional expression for electromagnetic energy stored in the fields:

(E,H) = 1
2
||(E,H)||2. (2.32)

Note that, even though we have been considering the frequency domain, the definitions
for ⟨⋅|⋅⟩ and || ⋅ || are valid also in time domain, in virtue of the Parseval’s theorem
[109].
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2.2.4 Scale invariance of Maxwell equations

In the frequency domain and under the dispersionless approximation, the scale-invariance
[110,111] of the Maxwell equations in free space is clearly evident. The free operator
(free(r) = Rot) is a purely kinetic term, so that a rescaling of the real-space coordi-
nates:

r′ = 𝑠r, (2.33)
𝛁′ = 𝛁′∕𝑠, (2.34)

leads to a corresponding rescaling of the electromagnetic frequencies:

𝜔′ = 𝜔∕𝑠. (2.35)

While the Schrödinger equation for electrons in crystals, which has a sum structure,
with Hamiltonian:

𝐻(r) = 1
2𝑚

(−𝑖ℏ𝛁)2 + 𝑉 (r), (2.36)
the Maxwell operator preserves a product structure, even in the presence of a dielectric
medium:

(r) = (r)−1Rot. (2.37)

Classical Electromagnetism Quantum Mechanics
Wave Function 𝜓 = (𝐄,𝐇) ∈ ℝ6 𝜓 ∈ ℂ𝑛

Hamiltonian Operator (r)−1Rot e.g. 𝐻 = 1
2𝑚 (−𝑖ℏ𝛁)2 + 𝑉

(product form) (sum form)
Hilbert Space 2

(ℝ
3,ℝ6) 2(ℝ3,ℂ𝑛)

Amplitudes electromagnetic field energy density probability
Observables functionals of the fields Hermitian operators

Table 2.2: Comparison between quantum mechanics and operator-form of classical EM waves, adapted
from [17, 29, 106].

Because of this, in the PhC community, it’s common practice to define a di-
mensionless reference quantity [16, 17]:

𝑓𝑐
|𝑎|

= 𝜔𝑐
2𝜋|𝑎|

(2.38)

where 𝑐 represents the speed of light, normalizing the electromagnetic frequencies
using a chosen characteristic real-space length scale |𝑎| (e.g. the lattice constant of the
PhC).
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2.2.5 Complex waves

Working with complex (as opposed to real) Hilbert spaces becomes convenient in order
to adapt methods from quantum mechanics to classical electromagnetism. For this
purpose, we will split the physical real fields into two complex fields 𝜓±(𝑡):

𝜓(𝑡) =

(

𝐄(𝑡)
𝐇(𝑡)

)

= 𝜓+(𝑡) + 𝜓−(𝑡) (2.39)

that are defined, in terms of the frequency Fourier transformed fields, where 𝜓+(𝑡) is
defined only in terms of positive frequencies:

𝜓+(𝑡) =
1

√

2𝜋 ∫

∞

0
𝑑𝜔𝑒𝑖𝜔𝑡

(

𝐄(𝜔)
𝐇(𝜔)

)

(2.40)

where 𝜓−(𝑡) is defined only in terms of negative ones:

𝜓−(𝑡) =
1

√

2𝜋 ∫

∞

0
𝑑𝜔𝑒−𝑖𝜔𝑡

(

𝐄(−𝜔)
𝐇(−𝜔)

)

. (2.41)

Interestingly, 𝜓+(𝑡) and 𝜓−(𝑡) evolve according to different source-free Maxwell equa-
tions [104, 106]. More specifically, 𝜔 ≥ 0 solutions evolve with , via the positive
frequency Maxwell operator + = −1free:

+𝜓+(𝑡) = 𝑖𝜕𝑡𝜓+(𝑡) (2.42)

while 𝜔 ≤ 0 states evolve with complex conjugate , via the negative frequency
Maxwell operator − = 

−1
free:

−𝜓−(𝑡) = 𝑖𝜕𝑡𝜓−(𝑡). (2.43)

This allows the fields (𝐄(𝑡),𝐇(𝑡)) to remain real-valued during time evolution. Impor-
tantly, the real-valuedness of the physical waves implies:

(

𝐄(𝜔)
𝐇(𝜔)

)

=

(

𝐄(−𝜔)
𝐇(−𝜔)

)

. (2.44)
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Taking the Fourier transform of Equation 2.44, shows that the complex waves have
their frequency locked:

𝜓−(𝑡) = 𝜓+(𝑡). (2.45)
In other terms, positive and negative frequency contributions of a wave are not inde-
pendent: knowing one (𝜓+(𝑡)) allows the reconstruction of the other (𝜓−(𝑡)).

2.2.6 Non-negative frequency waves

As shown in the previous section, real electromagnetic fields in the time domain can
be uniquely represented as complex waves with solely non-negative frequencies:

(

𝐄(𝑡)
𝐇(𝑡)

)

= 𝜓+(𝑡) + 𝜓+(𝑡) = 2𝑅𝑒[𝜓+(𝑡)] = 2𝑅𝑒[𝜓−(𝑡)]. (2.46)

This allows to establish a systematic link between the space of physical solutions and
an auxiliary complex Hilbert space:

(

𝐄(r, 𝑡)
𝐇(r, 𝑡)

)

∈ 𝐿2
(ℝ

3,ℝ6) ↔ 𝜓+ ∈ + = +[𝐿2
(ℝ

3,ℂ6)] (2.47)

where 2
 is a complex Hilbert space equipped with the (r)-product:

2
(ℝ

3,ℂ6) =
{

𝜓 ∶ ℝ3 → ℝ6|
|

|∫ 𝑑r (𝜓 ⋅ (𝜓)) <∞
}

, (2.48)

and where the spectral projector𝑄+ [69,70,105], filters non-negative energy solutions
with 𝜔 ≤ 0.

2.2.7 Photonic particle-hole redundancy

From the above definitions, it is easy to check that complex conjugation 𝐾 maps in-
coming waves to outgoing waves:

𝐾𝜓+ = 𝜓− (2.49)

relating negative to positive frequencies via:

𝐾+𝐾 = −, (2.50)
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therefore defining a symmetry between positive and negative frequency operators [28,
105, 106]:

𝐾+𝐾 = −−. (2.51)
Since 𝐾 is anti-unitary, anti-commuting, and squares to identity, it acts simi-

larly to an even particle-hole transformation (PH) [24, 25] in quantum mechanics ter-
minology.

However, different from electronic systems, this photonic PH is not a symmetry
in the traditional sense. It is rather a constraint of the complex-domain formulation,
telling us that the physical, electromagnetic fields need to be real. More specifically,𝐾
represents an anti-unitary map between 𝐿2

(ℝ
3,ℂ6) and the Hilbert space 𝐿2


(ℝ3,ℂ6)

with conjugate weight. As so, it constitutes an unavoidable constraint, related to the
real-valued nature of physical fields.

PH constraints In this context, it is worth mentioning the implications
of PH on the photonic bands and their topological invariants. In elec-
tromagnetism, it is possible to have an infinite number of bands above
a band gap, as the number of available modes with positive frequency
is typically infinite, in strong contrast with condensed matter systems
which have a well-defined ground-state. PH maps these positive and
negative bands into each other. In the theory of PhCs, the topologi-
cal role of negative frequency bands is often overlooked, assuming a
vanishing of their Chern number. However, PH symmetry only implies
that the total topological Chern number of negative frequency bands has
the opposite sign of the Chern number of positive frequency bands, not
their vanishing. While negative frequency bands are often neglected for
electromagnetic Chern number calculations, examples where they be-
come relevant exist, both in continua (see Refs. [81, 112]) and in PhCs
(see Ref. [85]).

2.2.8 Longitudinal and transversal waves

The Hilbert space in which electromagnetic fields live can be geometrically decom-
posed as a direct sum [69, 70, 105, 106, 113]:

𝐿2
(ℝ

3,ℂ6) =  ⊕  (2.52)
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where  are longitudinal gradient fields:

 =

{

𝜓 =

(

𝛁𝜒𝐸

𝛁𝜒𝐻

)

∈ 𝐿2
(ℝ

3,ℂ6)||
|

(

𝜒𝐸

𝜒𝐻

)

∈ 𝐿2(ℝ3,ℂ2)

}

= ran(𝛁,𝛁) = ker Rot = ker+.

(2.53)

and  are transversal fields:

 = ⟂ = ker(Div) = ran+ (2.54)

and with "ker" and "ran" referring to the kernel (null space) and range (image) of the
linear operator. The  and  spaces are, by definition, ⟨⋅|⋅⟩-orthogonal. Only the
elements of  satisfy the divergence-free constraint of Maxwell equations, as it can
be verified by taking the scalar product of 𝜒 =

(

𝛁𝜒𝐸

𝛁𝜒ℎ

)

and 𝜓 ∈  and performing
partial integration. Therefore, in the absence of sources, only transversal fields satisfy
the physicality constraint imposed by Maxwell equations.

2.2.9 Quadratic/linear Maxwell formulation

Please note that from now on we will drop the ± signs in both the fields and the op-
erators, and focus on complex waves with solely non-negative frequencies (𝜔 > 0).
Across this thesis, we will often consider non-bianisotropic media, where the magneto-
electric coupling is absent (𝜉 = 0) and the dielectric tensor simplifies to a diagonal
form:

 =

(

𝜀 0
0 𝜇

)

. (2.55)

In that scenario, the auxiliary Maxwell operator is block-off diagonal and squares to
[16, 17]:

2 =

(

2
(𝐸𝐸) 0
0 2

(𝐻𝐻)

)

=

(

𝜀−1𝛁 × 𝜇−1𝛁× 0
0 𝜇−1𝛁 × 𝜀−1𝛁×

)

. (2.56)

When this happens, the linear Maxwell eigenproblem,

𝜓 = 𝜔𝜓 (2.57)

Chapter 2 – Fundamentals 41



3D Topological Photonic Crystals

splits into two separate quadratic wave equations:

2
𝐸𝐸𝜓

(𝐸) =
(

𝜔(𝐸))2 𝜓 (𝐸) (2.58)

2
𝐻𝐻𝜓

(𝐻) =
(

𝜔(𝐻))2 𝜓 (𝐻), (2.59)

where 𝜔(𝐸) = 𝜔(𝐻) = 𝜔 ≥ 0, and for each components of: 𝜓 =

(

𝜓 (𝐸)

𝜓 (𝐻)

)

. Both the
linear and the quadratic formulations are equivalent: while the linear one is convenient
when analytically applying quantum mechanics methods to the classical waves, the
quadratic one is often employed in numerical solvers. In fact, it is often enough to
focus on a single electromagnetic component, either the electric or the magnetic field,
and reconstruct the latter via the derivative map [106, 114]. Starting from the electric
field only, one can reconstruct the entire electromagnetic field as follows:

𝑟(𝐸) ∶ 𝜓 (𝐸) → 𝜓 =
⎛

⎜

⎜

⎝

𝜓 (𝐸)

−𝑖𝜇−1𝛁 × (2
EE)

−1∕2𝜓 (𝐸)

⎞

⎟

⎟

⎠

, (2.60)

and analogously, starting from the magnetic field only:

𝑟(𝐻) ∶ 𝜓 (𝐻) → 𝜓 =
⎛

⎜

⎜

⎝

−𝑖𝜀−1𝛁 × (2
HH)

−1∕2𝜓 (𝐻)

𝜓 (𝐻)

⎞

⎟

⎟

⎠

. (2.61)

This equivalence largely simplifies the analysis of electromagnetic problems when
dealing with non-bianisotropic media.

Linear Quadratic (Electric) Quadratic (Magnetic)
Operator =

(

0 +𝑖𝜀−1𝛁×
−𝑖𝜇−1𝛁× 0

)

2
(𝐸𝐸) = (𝜀−1𝛁 × 𝜇−1𝛁×) 2

(𝐻𝐻) = (𝜇−1𝛁 × 𝜀−1𝛁×)

Eigenproblem 𝜓 = 𝜔𝜓 2
𝐸𝐸𝜓

(𝐸) = 𝜔2𝜓 (𝐸) 2
𝐻𝐻𝜓

(𝐻) = 𝜔2𝜓 (𝐻)

Table 2.3: Comparison of the linear and quadratic Maxwell formulation for media with negligible
magneto-electric coupling (𝜉 = 0.)

2.3 Symmetry and Topology in PhCs

In this section, we will discuss notions of symmetry and topology in the context of
PhCs -dielectric materials with discrete translational symmetry.
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In order to apply topological-band theory concepts to electromagnetic waves,
we aim to express the Maxwell operator for periodic media in a Bloch momentum
space representation. We will start by looking at how the lattice periodicity affects
electromagnetic waves. This includes concepts like photonic bands, electromagnetic
Chern numbers, and the gamma-point obstruction in 3D.

Next, we will dive into classifying topological PhCs based on material symme-
tries -internal symmetries of the dielectric tensor. We will uncover two types of time-
reversal symmetries: one preserved by real-valued materials and another preserved by
magneto-electric media. Additionally, we will introduce the concept of electromag-
netic duality symmetry, and helicity-preserving systems.

Finally, we will incorporate space-group symmetries, and analyze the chal-
lenges arising in characterizing the symmetry eigenvalues of the electromagnetic modes
in a 3D PhC in the long-wavelength limit.

2.3.1 Discrete translational symmetry

A PhC is defined by the periodicity of its dielectric tensor (r) [16, 17]:

(r) = (r + R) (2.62)

where R ∈  is a vector belonging to a lattice  defined by the span of three primitive
vectors:

 = spanℤ{a1, a2, a3} ≅ ℤ3. (2.63)
Similarly to what it is done in solid-state physics [115, 116], we can decompose coor-
dinate vectors r in real space ℝ3 ≅ 𝕎× as r = s+R where R ∈  and where s ∈ 𝕎
lives in the (Wigner-Seitz) unit cell. The momentum space can also be decomposed as
ℝ3 ≅ 𝔹× where  = spanℤ{b1,b2,b3} is the dual lattice generated via the following
relation:

a𝑚 ⋅ b𝑛 = 2𝜋𝛿𝑚,𝑛. (2.64)
and where 𝔹 is first Brillouin zone (BZ), defined as the minimal fundamental cell in
momentum space [115, 116]:

𝔹 =
{ 3

∑

𝑚=1
𝛽𝑚b𝑚 ∈ ℝ3|

|

|

𝛽1, 𝛽2, 𝛽3 ∈ [−1
2
, 1
2
)
}

, (2.65)
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with its elements referred to as crystal momenta k ∈ 𝔹. Because of the lattice period-
icity, we have that:

k = k + G (2.66)
with G ∈ . Therefore, the BZ exhibits the topological properties of a torus, denoted
as𝔹 ≅ 𝕋 3, which creates a natural framework for defining topological invariants within
this manifold.

2.3.1.1 Bloch theory of photonic bands

Exploiting the periodicity of the Maxwell operator with respect to the lattice, we can
represent the electromagnetic fields in momentum space via the Zak-Bloch-Floquet
transform [29, 70, 106, 115, 117]:

[𝜓](k, s) =
∑

R∈
𝑒−𝑖k⋅(s+R)𝜓(s + R) (2.67)

which maps onto the space-periodic part of the Bloch functions, with k in the BZ 𝔹
and for 𝐬 in the unit cell 𝕎. The -transformed fields are periodic in real space, as can
be checked from the definition:

[𝜓](k, s) = [𝜓](k, s − R), (2.68)

and they acquire a phase when translated in momentum space:

[𝜓](k − G, s) = 𝑒𝑖G⋅s[𝜓](k, s). (2.69)

In order to derive the momentum-space formulation of the Maxwell eigenproblem, we
apply the -transform on the position and momentum operators:

r̂−1 = 𝑖𝛁𝐤, (2.70)

(−𝑖𝛁r)−1 = −𝑖𝛁𝐬 + k̂, (2.71)
which translates to the following collection of Maxwell operators:

(k) = −1Rot(k) = −1

(

0 +(𝑖𝛁s − k)×
−(𝑖𝛁s − k)× 0

)

, (2.72)
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and their corresponding eigenproblem:

(k)𝑢𝑛,k(s) = 𝜔𝑛(k)𝑢𝑛,k(s) (2.73)

where 𝜔𝑛(k) is the 𝑛-th photonic band frequency and where 𝑢𝑛,k(s) =
(

𝑢(𝐸)𝑛,k (s)

𝑢(𝐻)
𝑛,k (s)

)

are
the space-periodic part of the Bloch function. These are directly obtained from the -
transformation, and related to the Bloch functions (𝜑𝑛,k(s)) as:

𝜑𝑛,k(s) = 𝑒𝑖k⋅s𝑢𝑛,k(s). (2.74)

The space-periodic eigenstates 𝑢𝑛,k(s) are complex-valued electromagnetic vector fields
equipped with the usual -weighted scalar product, with the integrals running over the
coordinates in a single unit cell:

⟨𝑢|𝑣⟩ = ∫𝕎
𝑑3𝐬𝑢†

(

𝜀 𝜉
𝜉† 𝜇

)

𝑣. (2.75)

2.3.1.2 Electromagnetic Chern numbers

The momentum-space Bloch formulation of the Maxwell eigenproblem provides the
basis for the application of the topological band theory methods to PhCs. In the study
of topological PhC, a fundamental concept is that of the electromagnetic Berry con-
nection, which is defined as follows [118–120]:

A𝑚,𝑛(k) = ⟨𝑢𝑚,k|𝑖𝛁k𝑢𝑛,k⟩ (2.76)

where we consider Bloch-periodic electromagnetic vector fields 𝑢𝑛,k =

(

𝑢(𝐸)𝑛,k

𝑢(𝐻)
𝑛,k

)

, we
employ the usual (k)-weighted scalar product, and where the indices 𝑛 and 𝑚 range
over the bands below the photonic bandgap of interest. Even though in photonics we
do not have the concept of a Fermi level or a ground state, we will often address the
𝑁𝑏𝑎𝑛𝑑 bands below the bandgap of interest as occupied bands. The Berry phase, a key
player in the calculation of numerous topological invariants, is defined as a line integral
of the Berry connection along a closed path in momentum space:

𝜙(𝓁) = ∮𝓁
TrA𝑚,𝑛(k) ⋅ 𝑑𝓵 mod2𝜋, (2.77)
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and tracing over the occupied bands. Exploiting the Stokes’s theorem, one can trans-
form the line integral into a surface integral:

𝜙(𝓁) = ∫ TrF𝑚,𝑛(k) ⋅ 𝑑2S (2.78)

where 𝑑2S is the surface differential for the 𝑆 area defined by the closed loop 𝓁 = 𝜕𝑆
and F𝑚,𝑛(k) is the Berry curvature:

F𝑚,𝑛(k) = 𝛁k × A𝑚,𝑛(k). (2.79)

When the integration of the Berry curvature is done over the first BZ, the result is
quantized in multiples of 2𝜋. This quantization leads to the concept of the Chern
number:

2𝜋𝐶 = ∫BZ
TrF𝑚,𝑛(k) ⋅ 𝑑2S. (2.80)

When bianisotropy is negligible (𝜉(r) = 0), the electromagnetic Chern number (𝐶)-the
Chern number defined in terms of the electromagnetic Berry connection of Equation
2.76- can be equivalently computed solely from the electric or the magnetic Chern
components:

A𝑚,𝑛(k) = ⟨𝑢𝑚,k|𝑖𝛁k𝑢𝑛,k⟩ = ⟨𝑢(𝐸)𝑚,k|𝑖𝛁k𝑢
(𝐸)
𝑛,k ⟩𝜀 + ⟨𝑢(𝐻)

𝑚,k |𝑖𝛁k𝑢
(𝐻)
𝑛,k ⟩𝜇. (2.81)

This results in the equivalence between the electric (𝐶 (𝐸)), magnetic (𝐶 (𝐻)) and elec-
tromagnetic Chern numbers (𝐶), according to the relation [120]:

𝐶 = 𝐶 (𝐸) = 𝐶 (𝐻) = 𝐶 (𝐸) + 𝐶 (𝐻)

2
. (2.82)

2.3.1.3 Gamma singularity

In 3D PhC, the vectorial nature of the electromagnetic fields gives rise to a vortex-like
polarization singularity in momentum-space at the Γ point (k = 0) in the limit of zero-
frequency states. This singularity arises from the divergence-free (Gauss) condition of
the Maxwell equations in source-free media:

Div (𝜓) = 0, (2.83)

which discards longitudinal modes from physical solutions, imposing a transversality
constraint for electromagnetic waves. As we will show now, this transversal constraint
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has important consequences on the symmetry and topology properties of 3D PhCs
[23,121–123]. For simplicity, we will provide a guiding example in a non-bianisotropic
(𝜉 = 0), non-magnetic (𝜇 = 𝟙) medium where the Gauss laws is reduced to:

𝛁 ⋅
(

𝜀𝜓 (𝐸)) = 0 = 𝛁 ⋅
(

𝜓 (𝐻)) , (2.84)

but the argument holds for the general case [121]. Focusing on the magnetic field com-
ponent, and applying the Bloch transformation to momentum space, the divergence-
free condition translates into:

(k + G𝑛) ⋅ 𝜑
(𝐻)
G𝑛,k

= 0, (2.85)

where 𝜑(𝐻)
G𝑛,k

is the 𝐺𝑛-th Fourier component of the plane wave expansion of the Bloch
magnetic field:

𝜑(𝐻)
𝑛,k (r) =

∑

G𝑛

𝑒𝑖(k+G𝑛)⋅r𝜑(𝐻)
G𝑛,k

, (2.86)

and where 𝜑(𝐻)
𝑛,k (r) is the Bloch function as defined in Equation 2.74. Geometrically,

Equation 2.85 restricts field solutions to lie in the tangent plane of a 3D sphere with
radius |k + G𝑛| centered around the Γ point.

Figure 2.1: Transversality constraint for Bloch magnetic fields in 3D PhC. Solutions are restricted to
lie in the tangent plane of a 3D sphere with radius |k + G𝑛| centered around the Γ point. 𝜑(𝐻)

G𝑛,k
is the

𝐺𝑛-th Fourier component of the plane wave expansion of the Bloch magnetic field.

If we take the limit of 𝐤 → 0, then for the lowest bands of the PhC, only the
𝐆𝑛 = 0 components of 𝜑(𝐻)

G𝑛,k
are nonzero to leading order [124, 125]. This means that

for the lowest bands near the Γ point, which disperse linearly (𝜔 ∝ |k|), the Bloch
fields are constrained to be tangent to a small sphere in momentum space surrounding
Γ. Notably, since according to the so-called hairy-ball theorem the Euler characteristic
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of the tangent space of a 3D sphere is nonzero [126, 127], it is impossible to select a
continuous basis for it. As we will see in further sections, the lack of analyticity in the
Bloch basis has a series of relevant consequences:

• It precludes the construction of exponentially localized Wannier functions [121]
for the lowest photonic bands of 3D PhCs.

• It renders ill-defined polarization and symmetry content of long-wavelength elec-
tromagnetic fields at zero frequency in 3D [23, 122].

This poses a challenge when applying standard Topological Quantum Chemistry (TQC)
methods [128, 129] to 3D PhCs, since TQC conventionally necessitates knowledge of
the symmetry content at Γ. To overcome this challenge, a recent study by Ref. [23]
introduced a regularization procedure enabling the topological characterization of 3D
PhCs using transverse symmetry indicators [130]. This advancement has extended
TQC to 3D PhCs and introduced the concept of topological non-gaps, i.e. gaps along
high-symmetry lines that signify Γ-enforced band closings within the BZ. The Γ-point
vortex has also relevant implications for the development of tight-binding models since
it prevents the construction of maximally localized orbitals. We will address this is-
sue in Section 3.2, by introducing the so-called "transversality-enforced" tight-binding
method for 3D PhCs.

2.3.1.4 TM and TE polarizations

In stark contrast to 3D, in 2D PhCs, it is possible to circumvent the vectorial nature of
light and avoid the Γ problem. More specifically, in 2D PhCs, it is possible to decouple
the field polarizations into Transverse-Electric (TE) polarized fields of the form:

𝜓TE =
⎛

⎜

⎜

⎝

𝜓 (𝐸)
TE

𝜓 (𝐻)
TE

⎞

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝜓 (𝐸𝑥)

𝜓 (𝐸𝑦)

0
0
0

𝜓 (𝐻𝑧)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, (2.87)
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and Transverse-Magnetic (TM) polarized fields of the form:

𝜓TM =
⎛

⎜

⎜

⎝

𝜓 (𝐸)
TM

𝜓 (𝐻)
TM

⎞

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0
0

𝜓 (𝐸𝑧)

𝜓 (𝐻𝑥)

𝜓 (𝐻𝑦)

0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, (2.88)

and, in the absence of bianisotropy, express Maxwell’s equations as two separate scalar
eigenproblems [16, 17].

Separability of TE/TM polarizations 2D PhCs consist of dielectric
elements periodic in the 𝑥, 𝑦 plane, ideally infinite and continuous along
𝑧. This means that both 𝜀 and 𝜇 can be written as 𝑧-independent tensors
of the form:

𝑣 =

(

𝑣2𝐷 0
0 𝑣3

)

, (2.89)

where 𝑣 = 𝑣(𝑥, 𝑦) and where 𝑣2𝐷 is 2×2. Because of the block-diagonal

structure, the electric fields in the 𝑥, 𝑦-plane, of the form𝜓 (𝐸) =

⎛

⎜

⎜

⎜

⎝

𝜓 (𝐸𝑥)

𝜓 (𝐸𝑦)

0

⎞

⎟

⎟

⎟

⎠

induce the time-dynamics only for the 𝑧−component of the magnetic

field 𝜓 (𝐻) =

⎛

⎜

⎜

⎜

⎝

0
0

𝜓 (𝐻𝑧)

⎞

⎟

⎟

⎟

⎠

. This means that TE modes only evolve into TE

modes. The same applies to TM modes. The 𝑧-independence of the
dielectric tensor allows to further factor the fields into a product via a
plane-wave in 𝑧:

𝜓(𝑥, 𝑦, 𝑧) = 𝜓(𝑥, 𝑦)𝑒𝑖𝑘𝑧𝑧, (2.90)
making therefore possible to define a 2D Maxwell scalar eigenproblem
for TM and TE polarizations, separately [16, 17].

The polarization-decoupled wave equations in 2D become particularly sim-
ple when we consider isotropic, real-valued dielectric media, having diagonal 𝜀2𝐷 =
diag[𝜀, 𝜀] and 𝜇2𝐷 = diag[𝜇, 𝜇]. In the second-order formulation of Equation 2.56,
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we have, for TE modes:
1
𝜇

(

𝜕𝑥
1
𝜀
𝜕𝑥 + 𝜕𝑦

1
𝜀
𝜕𝑦
)

𝜓 (𝐻𝑧) + 𝜔2𝜓 (𝐻𝑧) = 0 (2.91)

and, for TM modes:
1
𝜀

(

𝜕𝑥
1
𝜇
𝜕𝑥 + 𝜕𝑦

1
𝜇
𝜕𝑦

)

𝜓 (𝐸𝑧) + 𝜔2𝜓 (𝐸𝑧) = 0. (2.92)

Note that, for non-magnetic media (𝜇 = 1), the TM wave equation exactly map
to the Poisson equation with refractive contrast 𝑛2 = 𝜀:

(

𝜕2𝑥 + 𝜕
2
𝑦

)

𝜓 (𝐻𝑧) + (𝑛𝜔)2 𝜓 (𝐻𝑧) = 0. (2.93)

which establishes an parallelism between 2D acoustic waves with mass stiffness profile
𝜎(𝑥, 𝑦) [118] and 2D TM electromagnetic waves with refractive index profile 𝑛(𝑥, 𝑦).
TE and TM solutions to Equations 2.91 and 2.92 circumvent the Γ-point issue since
they automatically satisfy the transversality constraint: at Γ and zero frequency, any
TE or TM mode with constant amplitude and polarization vector 𝑢̂ aligned with the
𝑧̂ direction qualifies as a valid solution. This alignment with 𝑧̂ ensures orthogonal-
ity to 𝑘𝑥 and 𝑘𝑦. In practice, the TE/TM decoupling has allowed to transformation of
the Maxwell vector eigenproblem into a scalar one. As a result, 2D PhCs admit pho-
tonic counterparts of maximally localized Wannier functions, derived via solid-state
Wannierization techniques [131–133]. These functions can serve as a basis set for con-
structing a robust 2D tight-binding model of the 2D PhCs. As well, the scalar nature
of 2D PhCs allows the application of standard TQC methods [33, 134], which have
proven useful for the definition and the study of fragile topology in either TE or TM
modes [33, 135].

2.3.2 Symmetry Classification of Topological PhCs

In Section 2.3.1.1, we explored how the spatial variation of the dielectric function
in PhCs can create photonic bandgaps—frequency regions where light propagation is
forbidden due to interference within the periodic structure. Now, our focus shifts to
understanding the possible topological invariants associated with these bandgaps in
PhCs. The Cartan-Altland-Zirnbauer (CAZ) classification scheme, also known as the
Ten-Fold Way, is a standard framework used for categorizing topological phases in
various physical systems, including topological insulators and superconductors. This
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classification is based on the symmetries of a gapped Hamiltonian and comprises ten
distinct topological classes. Each class hosts different topological phases distinguished
by specific invariants, such as Chern numbers or Kane-Mele invariants. The calcula-
tion of these invariants is approached through cohomological methods, involving the
analysis of mappings from the BZ’s torus (𝕋 𝑑) to the Bloch sphere of two-band gaps
(𝕊2). The nature and quantity of these invariants depend on both the system’s symme-
tries and its dimensionality (𝑑). In this section, we briefly review the CAZ classifica-
tion of gapped Maxwell operators in PhCs. The resulting periodic table of PhCs will
allow us to highlight key peculiarities of topological photonics as compared to the con-
ventional classification theory in condensed matter systems. These differences arise
from the real-valued nature of electromagnetic fields, the presence of electromagnetic
duality symmetries, and the absence of either Kramers degeneracy or charge.

2.3.2.1 Dielectric or material symmetries

Topological PhCs are classified on the basis of the possible symmetry transformations
of the Maxwell operator , which we denote as dielectric or material symmetries. In
the spirit of the CAZ scheme, symmetries of the Maxwell operator are distinguished
on the basis of them being unitarity/antiunitary and commuting/anticommuting, con-
sidering:

• Unitary operators 𝑈 with 𝑈 2 = 𝟙, that implement:

– Regular or isospin type of symmetries, when commuting:

𝑈𝑈−1 = + (2.94)

– Chiral or sublattice type of symmetries (S), when anticommuting:

𝑈𝑈−1 = − (2.95)

• Antiunitary operators 𝑇 (which can be even or odd 𝑇 2 = ±𝟙), that implement:

– Time-reversal type symmetries (T), when commuting, similarly to Equa-
tion 2.94

– Particle-hole symmetries (C), when anticommuting, similarly to Equation
2.95.
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Following the approach guiding the CAZ scheme [24, 25], at the basis of the
periodic table of topological insulators, the initial classification of topological PhCs
will exclude those symmetries which are both commuting. This exclusion is based on
the premise that these symmetries are assumed to commute with the other types of
symmetries mentioned earlier in the CAZ scheme.

Maxwell Linear Formulation The distinction between commuting
and anticommuting symmetries is a key aspect for the CAZ topological
classification, and it has been often overlooked in the analysis of PhCs
[30]. In order to correctly classify the Maxwell operator, it is necessary
to employ the first-order formulation, instead of the quadratic formula-
tion, described in Section 2.2.9. The reason is that in the second-order
one, one can no longer distinguish between operators 𝑈 which com-
mute or anti-commute with the quadratic Maxwell operator, because in
both cases:

𝑈2𝑈−1 = (±1)22. (2.96)

In order to study the action of the symmetries on the (linear) Maxwell oper-
ator, we will represent the transformations in terms of Pauli matrices, with unitary
operations written as:

𝑈𝑖 = (𝜎𝑖 ⊗ 𝟙), (2.97)
and antiunitary ones as:

𝑇𝑖 = (𝜎𝑖 ⊗ 𝟙)𝐾, (2.98)
where 𝜎𝑖, 𝑖 = 1..3 are the Pauli matrices, equipped with the identity 𝜎0 = 𝟙.

Commuting Anticommuting
Unitary (𝑈𝑖) Regular, e.g. isospin Chiral, e.g. sublattice (CAZ ✓)
Antiunitary (𝑇𝑖) Time Reversal (CAZ ✓) Particle Hole (CAZ ✓)

Table 2.4: Distinction of possible material symmetries employed in the CAZ classification, in terms of
their commutation and unitarity properties. Commuting unitary symmetries are usually excluded from
the CAZ scheme. Note that antiunitary transformations can be of two types: even or odd (𝑇 2 = ±𝟙).

Correspondingly, we will express the free Maxwell operator:

free = Rot =
(

0 +𝑖𝛁×
−𝑖𝛁× 0

)

= −𝜎2 ⊗ (𝛁×) (2.99)
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where 𝛁× is the curl. Similarly, for the constitutive tensor:

 =

(

𝜀 𝜉
𝜉† 𝜇

)

=

(

𝑣0 + 𝑣3 𝑣1 − 𝑖𝑣2
𝑣1 + 𝑖𝑣2 𝑣0 − 𝑣3

)

=
3
∑

𝑖=0
𝜎𝑖 ⊗ 𝑣𝑖 (2.100)

where 𝑣𝑖 are 3x3 Hermitian matrices, defined as:

𝑣0 =
𝜀 + 𝜇
2

𝑣3 =
𝜀 − 𝜇
2

(2.101)

𝑣1 =
𝜉† + 𝜉
2

𝑣2 =
𝜉† − 𝜉
2𝑖

. (2.102)

2.3.2.2 Admissible symmetries in PhCs

All the symmetries which map positive frequency states into negative frequency states
need to be discarded since they can break the physical real-valuedness constraint of the
electromagnetic fields, discussed in Section 2.2.7. With these assumptions, together
with the hypothesis about Hermiticity and positive index of  adopted in Section 2.1,
it is easy to show that only three operations are admissible:

𝑇1, 𝑇3, 𝑈2. (2.103)

As we will see in Section 2.3.2.3, 𝑇1 and 𝑇3, implement two physically distinct types
of time-reversal symmetries. As we will see in Section 2.3.2.6 the 𝑈2 transformation,
represents electromagnetic duality symmetry. The specific conditions on 𝑣𝑖 which arise
from imposing the commutation/anticommutation relations with , have been derived
by Ref. [28, 39], and are summarized in Table 2.5.

(𝑣0 =) (𝑣1 =) (𝑣2 =) (𝑣3 =)
𝑇1 Re(𝑣0) Re(𝑣1) Re(𝑣2) iIm(𝑣3)
𝑇3 Re(𝑣0) iIm(𝑣1) Re(𝑣2) Re(𝑣3)
𝑈2 𝑣0 0 𝑣2 0

Table 2.5: Constraints on the components of the consitutive tensor, in presence of the three admissible
material symmetries: 𝑇1, 𝑇3, 𝑈2. Adapted from Refs. [28, 39]

2.3.2.3 Even time reversal symmetry

PhCs can present two types of time-reversal symmetries (TRS), denoted as 𝑇3 and
𝑇1. 𝑇3 is a symmetry characteristic of non-gyrotropic and non-magnetoelectric media,
which comprise most of the well-known dielectric media, of the silicon type. Instead,
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𝑇1 hold in certain type of bianisotropic structures, where electric and magnetic fields
are coupled. Both 𝑇1 and 𝑇3 are classified as TRS operators since they are implemented
in an anti-commuting and anti-unitary way [24,25]. As well, both of these symmetries
are even-type, bosonic symmetries, squaring to identity. Let’s analyze briefly each of
them individually.

2.3.2.4 𝑇3 for real-valued media

𝑇3 = (𝜎3 ⊗ 𝟙)𝐾 acts on the complexified fields as:

𝑇3 ∶ 𝜓 =

(

𝜓 (𝐸)

𝜓 (𝐻)

)

→

(

𝜓 (𝐸)

−𝜓 (𝐻)

)

(2.104)

with 𝑇 2
3 = 𝟙. The invariance under 𝑇3 on the Maxwell operator:

𝑇3𝑇 −1
3 = +, (2.105)

imposes constraints on the dielectric tensor’s components, specifically that 𝑣0, 𝑣2, and
𝑣3 must be real, while 𝑣1 must be purely imaginary. In more practical terms, this
constraint results in the dielectric and magnetic permeability (𝜖 and 𝜇) being real-
valued. Non-bianisotropic materials meeting these conditions for 𝑣𝑖 represent are non-
gyrotropic, also denoted as real-valued dielectric media. Many well-known dielectrics,
fall into this category [136–138] and are referred to as type-AI media in the CAZ
scheme [25].

Complex Conjugation The breaking of 𝑇3 is a pivotal factor enabling
the existence of unidirectional edge channels and non-reciprocal prop-
erties in PhCs. Otherwise, modes occur in counterpropagating pairs
that are linked by time-reversal symmetry. In the microwave regime,
PhCs made of yttrium–iron–garnet (YIG) can break 𝑇3 via gyrotropy
[98, 139, 140]. Strictly speaking TRS in PhCs isn’t realized through
complex conjugation (𝐾), as it is sometimes assumed [10, 30]. While
this may seem like a formal subtlety with no relevant practical differ-
ence, it holds theoretical significance in correctly assigning the CAZ
class. In the CAZ scheme, 𝐾 is an even particle-hole symmetry, asso-
ciated with class D [24, 25] and not in class AI, as it should correctly
be. In addition, as shown in Section 2.2.7, 𝐾 is not even a conven-

54 Chapter 2 – Fundamentals



3D Topological Photonic Crystals

tional symmetry of the Schrödinger operator, since it relates positive to
negative frequencies. Physical time-reversal symmetry acts on the real
electromagnetic fields as follows:

𝑇 ∶

(

E(𝑡)
H(𝑡)

)

→

(

E(−𝑡)
−H(−𝑡)

)

, (2.106)

which, at the level of complex fields 𝜓 is implemented via 𝑇3.

2.3.2.5 𝑇1 for magneto-electric coupling

Interestingly, 𝑇3 is not the only TRS-type symmetry admissible in PhCs. Together with
it, 𝑇1 is another candidate TRS operator:

𝑇1 = (𝜎3 ⊗ 𝟙)𝐾. (2.107)

𝑇1 is also a TRS-type operation, which exchanges electric and magnetic fields and
then complex conjugates them, therefore playing an important role in the analysis of
magneto-electric media. Imposing 𝑇1 to be a symmetry of the Maxwell operator trans-
lates on the conditions for which 𝑣3 is imaginary and 𝑣0, 𝑣1, 𝑣2 are real-valued tensors,
which are satisfied by certain bianisotropic media, having non-zero magneto-electric
coupling 𝜉 [74].

Photonic Analogues of QSHE 𝑇1 is an even, bosonic TRS:

𝑇 2
1 = 𝟙. (2.108)

In the CAZ classification scheme, the QSHE has a precise definition:
the system belongs to class AII [141], indicating the presence of an odd
time-reversal symmetry:

𝑇 2
QSHE = −1, (2.109)

which directly leads to the phenomenon of spin-momentum locking,
due to Kramer’s protection [142] i.e. the two-fold degeneracy of energy
levels in systems with odd time-reversal symmetry. Electromagnetic
media do not support odd time-reversal symmetries: both 𝑇1 and 𝑇3
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are even. Various effects have been proposed as photonic counterparts
of the Quantum Spin Hall Effect (QSHE) either in magneto-electric
media relying on 𝑇1 [143, 144] or in real-dielectric media with 𝑇3, in
combination with other symmetries. The even nature of bosonic TRS
in PhCs does not allow a strict QSHE identification of these topological
phases. In combination with other symmetries, it is possible to emulate
the response of photonic QSHE in terms of an effective Hamiltonian,
even though neither 𝑇1 or 𝑇2 cannot directly impart Kramer’s protection.

2.3.2.6 Electromagnetic duality

The presence of both 𝑇1 and 𝑇3 imply the existence of a third combined symmetry

𝑇1𝑇3 = 𝑖(𝜎2 ⊗ 𝟙) = 𝑖𝑈2 (2.110)

which represents electromagnetic duality (D) [104, 145–147]. When 𝑈2 commutes
with 𝑀 , it implies to the vanishing of 𝑣1 = 0 = 𝑣3. This is equivalent to say that
electric permittivity and magnetic permeability coincide

𝜀 = 𝜇. (2.111)

Vacuum is the simplest realization of this condition. The presence of this sym-
metry allows to split our frequency-degenerate solutions into left- or right-handed he-
licity components. In others terms, the Maxwell operator can be block-decomposed
as:

𝑀 =

(

ℎ=+ 0
0 ℎ=−

)

(2.112)

where the operators ℎ=± = 𝐻±𝐻± are obtained via the helicity projectors:

𝐻ℎ=± = 1
2
(𝟙 ±𝐷) (2.113)

onto right-handed and left-handed circularly polarized waves.

Duality beyond CAZ Dual symmetric media have two types of even
TRS and therefore fall outside of the traditional CAZ scheme. In simple
terms, we can think of dual symmetric media as a direct sum of two
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class AI bundles [28, 39]:
AI⊕ AI. (2.114)

This is because neither 𝑇1 or 𝑇3 mix left- and right-handed states, and
when restricted to helicity components, they are not longer distinct op-
erations. In addition, duality is a unitary commuting operation: such
transformations are deliberately left out the CAZ scheme. Whether du-
ality (or antiduality [27]) symmetry can protect other type of invariants
beyond the CAZ remains an open question, which we address in more
detail in Section 5.3.

2.3.2.7 Reduced periodic table of PhCs

In terms of the three admissible symmetries (𝑇1,𝑇3 and 𝑈2), it is possible to provide
a topological classification of PhCs across various 𝑑 spatial dimensions, by simple
application of the CAZ scheme [24, 25]. This allows to compile a periodic table of
insulating topological PhCs, Table 2.6. Notably, the periodic table of PhCs consists of
a subset of the electronic counterpart, as it does not include charge-conjugation (𝐶) nor
chiral-type (𝑆) operations of the type described in Equation 2.95. The table provides a
summary of dielectric media categorized by the material symmetries discussed insofar,
along with examples of dielectric realizations falling into each category.

Isospin Symmetries The CAZ classification scheme deliberately
leaves out additional material symmetries that are both unitary and
commutative (such as isospin-symmetries 𝑈ISO). When such sym-
metries are present, it is important to understand their interplay with
the other pre-existing symmetries pertaining to the Maxwell operator,
by breaking down the Maxwell operator into block operators that act
within the eigenspaces of the extra symmetry 𝑈ISO.These extra sym-
metries can become useful for the definition of isospin-resolved invari-
ants, which arise in topological phases protected by symmetries that
are a combination of an extra symmetry and a material symmetry. Ex-
amples have been demonstrated in Ref. [30], employing a combination
of TRS and a crystalline symmetry (𝐶6), or in Ref. [149] employing a
combination of parity(𝑃 ), duality (𝐷) and TRS (𝑃𝐷𝑇 ).
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Media
DielectricProposal/Realization

Symmetries
CAZ

𝑑
=
1

𝑑
=
2

𝑑
=
3

𝑑
=
4

Gyrotropic
YIGrods(IR)[139]

None
A

0
1stChern(ℤ)

three1stChern(ℤ
3)

six1st,one2ndChern(ℤ
6⊕

ℤ)
Real-valueddielectric

Silicon(VIS)Refs.[38,148]
𝑇
3

AI
0

0
0

one2ndChern(ℤ)
Magneto-electric

Metamaterials[74,144]
𝑇
1

AI
0

0
0

one2ndChern(ℤ)
EM

Dual
Vacuum

[145]
𝑇
1 ,𝑇

3 ,𝑈
2

AI⊕
AI

0
0

0
two2ndChern(ℤ

2)
Table

2.6:TopologicalclassificationofdielectricmediaintheCAZscheme[28,29].Topologicallytrivialisindicatedbyzero.
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2.3.2.8 Bulk-boundary correspondence

Photonic phases with nontrivial topological indices in the CAZ scheme realize topo-
logical protection through conventional (first-order) bulk-boundary correspondence
(BBC), i.e. present gapped 𝑑-dimensional bulk and gapless 𝑑 − 1 edges, whose re-
spective topological invariants 𝑇bulk and quantized observables 𝑂boundary are related:

𝑇bulk ∼ 𝑂boundary. (2.115)

In practical terms, however, BBC manifests slightly differently in photonics than in
electronics. The first challenge is posed by the role of the electromagnetic vacuum. In
electronics, the vacuum is inherently a trivial insulator. However, in photonics, due to
radiation through the electromagnetic continuum, the vacuum can potentially conduct
light. Avoiding this conduction this requires precise parameter tuning of the crystal
to confine edge modes within the topological gap, ensuring they fall outside the light
cone [17]. Alternative strategies have been successfully explored, like terminating the
PhC with quasi-perfect mirrors [11] or employing two different PhCs with overlapping
relevant photonic band gaps [50, 144]. The second issue concerns the role of quanti-
zation. The photonic Chern number has no clear quantum of conductance associated,
except that it determines the number of unidirectional edge states supported by a triv-
ial interface. In this context, Ref. [80] has shown a possible connection between the
photonic Chern number and the quantum of the light-angular momentum in a pho-
tonic insulator cavity. The question remains still unclear for other types of topological
invariants, such as the magnetoelectric angle.

2.3.3 Space-Group Symmetries

In the preceding section, our focus was primarily on material symmetries- those gov-
erning the relationships between electric and magnetic field components. In this sec-
tion, we shift our focus to examining the role of crystalline symmetries, by considering
the transformation properties of the Maxwell eigenproblem under spatial transforma-
tions. Including spatial symmetries in the topological classification allows the defini-
tion of new topological invariants. These invariants are at the basis of the topological
protection of crystalline insulators [150,151]. Let’s begin by considering a space group
denoted as 𝐺 [152–154]. Within this group, its elements are represented as 𝑔 and de-
fined as follows:

𝑔 = {𝑅|t}, (2.116)
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where𝑅 is an orthogonal transformation with det𝑅 = ±1, where the sign distinguishes
proper (+, e.g. rotation around an axis) and improper operations (−, e.g. inversions
and reflections), and where t is a fractional lattice translation t. The transformation of
the coordinate vector r in the Maxwell problem can be expressed as:

𝑔r = {𝑅|t}r = 𝑅r + t. (2.117)

The𝜓 (𝐸) electric field transforms a vector and the𝜓 (𝐻) magnetic field is a pseudovector
[16]:

𝑔𝜓 (𝐸) = (𝑅𝜓 (𝐸))(𝑔−1r), (2.118)
𝑔𝜓 (𝐻) = det(𝑅)(𝑅𝜓 (𝐻))(𝑔−1r), (2.119)

transforming both via their components and their coordinates. A PhC belongs to a
space group 𝐺 if the Maxwell eigenproblem remains invariant under all the spatial
symmetries 𝑔 ∈ 𝐺. In other words, when the Maxwell operator satisfies Equation
2.94:

𝑔𝑔−1 = , (2.120)
which directly translates on the equivalent conditions for the constitutive tensor . For
a PhC belonging to a space group 𝐺, we can define the 𝑥(𝑔) symmetry eigenvalue of
the electromagnetic fields for an operation 𝑔 ∈ 𝐺 as follows:

𝑥(𝑔) = ⟨𝜓|𝑔𝜓⟩, (2.121)

where the energy inner-product structure Equation 2.30 is involved. In the case of
non-magneto electric media, 𝑥(𝑔) can be equivalently obtained via the electric or the
magnetic field only.

2.3.3.1 Irrep characterization of photonic modes

To analyze photonic band structures, we compute symmetry eigenvalues from Bloch
eigenmodes 𝜑k,𝑛 in reciprocal space as:

𝑥k,𝑛(𝑔) = ⟨𝜑k,𝑛|𝑔𝜑k,𝑛⟩, (2.122)

where 𝑔 is an element in the little group 𝐺k of the high-symmetry point (HSP) k.
These symmetry eigenvalues can be used to extract the multiplicity of the irreducible
representations (irreps) 𝜌𝑖[k] in the HSP class [k], where 𝑖 labels the particular irrep.
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Using Schur’s orthogonality relations [152, 153], we can compile the vector:

vk =
⨁

𝑖
𝑛𝑖[k]𝜌𝑖[k], (2.123)

containing the multiplicity 𝑛𝑖[k] of each 𝜌𝑖[k] irrep. Obtaining these irreps is crucial for
constructing reliable symmetry-adapted models of the photonic bands in the vicinity
of k. In Appendix A, we demonstrate this by building a k ⋅p model of a photonic Weyl
point.

2.3.3.2 Ill-defined symmetry content at zero-energy

By collecting vk at all HSPs, we can assemble the so-called symmetry vector [128,
129, 155, 156]:

v =
⨁

k
vk, (2.124)

which encapsulates all the pertinent space-group symmetry information for the 𝑛 bands
of interest. The procedure has to be carried out on a bundle of bands that can form an
isolated set that satisfies the compatibility relations. The symmetry vector serves as the
foundation for applying TQC methods to PhCs [33,134] and for developing TB models,
capable of reproducing symmetry and topological features throughout the BZ [123].
This step can be realized smoothly in 2D PhCs, via TE and TM modes. Unfortunately,
in 3D PhCs, assigning irreps at k = 0 and 𝜔 = 0 becomes problematic due to the
Γ-point obstruction, originating from the Maxwell transversal constraint as discussed
in Section 2.3.1.3. In certain cases, we can extrapolate the symmetry content at the
Γ point from the asymptotic behavior for the lowest transverse modes in the k → 0
limit, particularly in space groups without (roto-)inversions, by considering the high
symmetry lines and planes intersecting Γ [122]. However, even when this is possible,
the symmetry content at Γ can be singular, as it involves a difference of irreps. To
address this issue, Ref. [23] introduced the concept of a transverse symmetry vector
(v𝑇 ):

v𝑇 =
⨁

𝑖,[k]
𝑛𝑖[k]𝜌𝑖[k] ⊕ (▪)2𝑇 , (2.125)

which includes the symbolic expression (▪)2𝑇 to denote the ill-defined symmetry con-
tent associated with the lowest two transverse (2T) modes at Γ and 𝜔 = 0. The sin-
gularity in the symmetry content at Γ precludes the construction of 3D TB models for
PhCs using standard Wannierization techniques. We will address this issue in Section
3.2 and propose solutions to circumvent these limitations.

Chapter 2 – Fundamentals 61



Chapter 3

Methods

In this chapter, we present dimension-specific modeling and characterization tech-
niques designed to explore the topology in 3D PhCs. The vectorial and transversal na-
ture of light makes determining topological invariants and developing analytical mod-
els in 3D challenging. While many topological methods have been crafted for scalar
waves, they require modifications to extend to vector fields in PhCs. The transversal-
ity conditions set by Maxwell’s equations in periodic dielectric media add complexity
to the Maxwell problem beyond other 3D classical waves. A primary reason is the
non-analytic behavior of photonic eigenstates throughout the BZ at the zero energy
limit, attributed to the Γ point obstruction. This characteristic makes constructing
tight-binding models over the entire BZ difficult and hinders the smooth evaluation
of topological invariants, which are defined non-locally in the 3D momentum space.
To effectively design and analyze 3D topological phases of light, we intend to develop
characterization methods tailored to address and solve these specific challenges. The
contents of this chapter are divided into two sections:

• Electromagnetic Wilson Loops for 3D PhCs (Section 3.1.1). We begin by
introducing electromagnetic Wilson loop and hybrid Wannier energy centers as
versatile tools for characterizing topology in PhCs. We address our focus on
3D PhCs, highlighting the necessary adjustments to apply these methods in the
context of vectorial waves and to overcome the Γ-point obstacle. Finally, we of-
fer a practical tutorial for computing 3D-specific topological invariants using the
aforementioned tools. These 3D invariants include the charge of the Weyl points
(𝑞W), the Chern vector (C = (𝐶𝑥, 𝐶𝑦, 𝐶𝑧)), the magnetoelectric axion angle (𝜃),
and the Weyl nodal wall monopole charge (𝑞WNW).

• Tranversality Enforced Tight Binding Models for 3D PhCs (Section 3.2).

62



3D Topological Photonic Crystals

We introduce a novel strategy for modeling 3D topological PhCs using a tight-
binding approach, overcoming the absence of maximally localized Wannier func-
tions in 3D PhCs. This technique comprises of two steps: extracting a pseudo-
orbital basis through group theoretical arguments and constructing a tight-binding
model with enforced transversality. The resulting model efficiently regularizes
the singularity at the BZ origin, preserves the PhC’s symmetries, and accurately
reproduces its topological and energetic traits.

The methods developed in this chapter permit us to overcome the theoretical challenges
associated to the vectorial nature of light in 3D PhCs, and will allow us to comprehen-
sively model and characterize the topological properties of the photonic 3D topological
phases proposed in Chapter 4.

3.1 Computing Topological Invariants in 3D PhC

This section serves as a practical guide for the topological characterization of 3D PhCs
via numerical methods. Our goal is to extend the methodologies presented in our re-
cent tutorial for 2D PhCs: "Tutorial: Computing Topological Invariants in 2D PhC" [1]
to the field of 3D PhCs. As highlighted in Chapter 2, the nature of 3D electromag-
netic waves is significantly different from that of 2D ones, which have scalar electronic
analogies. The key distinctions arise from the vectorial nature of light and the presence
of the Γ point obstruction in 3D PhCs (see Section 2.3.1.3). Therefore, this section will
have a special focus on the necessary adjustments needed for this change of dimension-
ality.

In particular, we offer strategies for computing the following 3D topological
invariants:

• the monopole charge of a Weyl point (𝑞𝑊 ) in a photonic Weyl semimetal.
• the Chern vector (C = (𝐶𝑥, 𝐶𝑦, 𝐶𝑧)) characterizing a 3D photonic insulator,
• the topological charge of a Weyl nodal wall (𝑞𝑊𝑁𝑊 ) in a photonic nodal semimetal,
• the axion angle (𝜃) of a photonic axion insulator,

The pivotal step in the numerical evaluation of these invariants is the imple-
mentation of electromagnetic Wilson loops. As we will show, these represent a very
versatile tool able to identify a large variety of 3D topological invariants. The concept
of concept of electromagnetic Wilson loops is introduced in Section 3.1.1.
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3.1.1 Electromagnetic Wilson Loops

An alternative approach to characterize the PhC topology with respect to the Berry
phase of Equation 2.77 is to compute the path-order exponential of the Berry connec-
tion defined in Equation 2.76 for the 𝑚, 𝑛 = 1...𝑁𝑏𝑎𝑛𝑑 bands of interest:

𝑚,𝑛(𝓁) = 𝑒𝑖 ∮𝓁 A𝑚,𝑛(k)⋅𝑑𝓵, (3.2)

an object also called Wilson Loop (WL) operator for the closed loop 𝓁 [157, 158].
The WL operator forms a matrix representation of a holonomy [159, 160], acting as
a parallel transport for eigenstates along the closed path 𝓁. Therefore, it encapsulates
crucial topological information concerning the geometric phases accumulated along
the loop 𝓁.

3.1.1.1 Discrete Limit

From the definition of the Berry connection of Equation 2.76, it is easy to show that
the Wilson line between two discrete momenta (k and k+𝝐) is given by the following:

k+𝝐←k
𝑚,𝑛 (𝜖) = ⟨𝑢𝑚,k+𝝐|𝑢𝑛,k⟩, (3.3)

where 𝜖 is the momenta separation and the ← arrow keeps track of the patch-ordering.
Reversing the path 𝜖 = 𝜖𝑇 gives:

(k+𝝐←k
𝑚,𝑛 (𝜖))−1 = (k←k+𝝐

𝑚,𝑛 (𝜖𝑇 )) = (k+𝝐←k
𝑚,𝑛 (𝜖))†. (3.4)

The WL discretization via Wilson lines allows to describe the WL operator as a path-
order product of overlap matrices. Specifically, for a closed loop that starts at a base-
point k(0) and ends at k(𝐹 ) = k(0), we can express the𝑚, 𝑛matrix element of the Wilson
loops as:

𝑚,𝑛(𝓁) = k(𝐹 )←k(𝑁)
𝑚,𝑝 k(𝑁)←k(𝑁−1)

𝑝,𝑞 ...k(2)←k(2)
𝑟,𝑠 k(1)←k(0)

𝑠,𝑛 , (3.5)
where the points of the path are ordered as {k(𝐹 ),k(𝑁),k(𝑁−1), ..,k(2),k(1),k(0)} with
𝑁 >> 1, and where 𝑝, 𝑞, 𝑟, 𝑠 = 1...𝑁𝑏𝑎𝑛𝑑 label the band index. Since overlap matrices
in Equation 3.2 can be easily evaluated numerically, this expression gives a computa-
tionally efficient way to obtain the WL and the associated topological invariants.
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3.1.1.2 Gauge Invariance and Band Projectors

Here we aim to highlight some key properties of the WL operator and its spectrum.
From the Equation 3.5, we can compactly write the WL operator as a path-order prod-
uct of projectors:

𝑚,𝑛(𝓁) = ⟨𝑢𝑚,k(𝐹 )
|

k(𝐹 )←k(0)
∏

𝑗
𝑃k(𝑗)

|𝑢𝑛,k(0)
⟩, (3.6)

where 𝑃k is the projector over the bands of interest 𝑁𝑏𝑎𝑛𝑑 , at momentum k:

𝑃k =
𝑁𝑏𝑎𝑛𝑑
∑

𝑚=1
|𝑢𝑚,k⟩⟨𝑢𝑚,k|. (3.7)

Clearly, these projectors are left invariant under a general 𝑈k(𝑁𝑏𝑎𝑛𝑑) gauge transfor-
mation of the subspace of the bands of interest, i.e. a rotation in the𝑁𝑏𝑎𝑛𝑑 dimensional
space of the bands below a bandgap:

|𝑢𝑛,k⟩ →
𝑁𝑏𝑎𝑛𝑑
∑

𝑚=1
𝑈𝑚,𝑛

k |𝑢𝑚,k⟩. (3.8)

As a result, the WL is gauge-covariant, meaning that it transforms as an operator, while
its spectrum is gauge-invariant. Moreover, the Wilson loop eigenvalues do not depend
on the choice of base point 𝑘(0) = 𝑘(𝐹 ), as can be deduced from Equation 3.4).

3.1.1.3 Spectral Properties

The WL eigenvalues consist of phase factors, as follows from the WL definition in
terms of the path-ordered exponential of the Berry connection:

spec[(𝓁)] = {𝑒𝑖𝑤𝑛(𝓁)}𝑁𝑏𝑎𝑛𝑑
𝑛=1 . (3.9)

The Wilson loop 𝑤𝑛(𝓁) phases, defined modulo 2𝜋, represent the "geometrical" phase
accumulated along the 𝓁 loop. For 𝑁𝑏𝑎𝑛𝑑 = 1, these quantities coincide with the
Berry’s phases. For more general 𝑁𝑏𝑎𝑛𝑑 , the WL spectrum represents the non-Abelian
Berry phases for multi-band system. A total Berry phase for the entire subspace be
defined as:

𝜙(𝓁) =
𝑁𝑏𝑎𝑛𝑑
∑

𝑛=1
𝑤𝑛(𝓁), (3.10)

which becomes relevant in the case of multi-band systems.
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3.1.1.4 Hybrid Wannier Centers

A spectral mapping can be established between the eigenvalues of the x-directed WL
and those of the x̂ position operator, providing a physical interpretation of the WL in
the context of hybrid Wannier centers [161, 162]. Note that, for simplicity of presen-
tation, we will illustrate this fact focusing on the x-direction with orthogonal (𝑘𝑦, 𝑘𝑧)
momenta. However, these results hold also for non-orthogonal lattices, replacing x
with a1 and substituting the orthogonal momenta with their projected components
(k ⋅ a2,k ⋅ a3) where a𝑚 are the primitive lattice vectors defined in Equation 2.64.
To demonstrate the spectral equivalence just mentioned, we consider a closed path
parallel to the 𝑘𝑥 axis. We label the WL computed along this x̂-directed path, with the
remaining (𝑑 − 1)-dimensional momenta orthogonal to it as k⟂:

𝑋 = (k⟂). (3.11)

The phases of this object (𝑤𝑛(k⟂)) constitute an effective (𝑑 − 1)-dimensional band-
structure in k⟂. However, unlike a traditional band structure, the WL phases are defined
only modulo 2𝜋. It is possible to show that eigenvalues of the 𝑋 are related to those
of the x̂ position operator, projected over the bands of interest [163]:

𝑃k⟂
x̂𝑃k⟂

, (3.12)

where the projectors:
𝑃k⟂

= ∫

𝜋∕𝑎𝑥

−𝜋∕𝑎𝑥

𝑑𝑘𝑥
2𝜋

𝑃k (3.13)

are defined similarly as in Equation 3.7. These 𝑥𝑛(k⟂) eigenvalues of 𝑃k⟂
x̂𝑃k⟂

have
the interpretation of hybrid Wannier centers, and the corresponding eigenstates are
known as x̂-localized hybrid Wannier functions |𝑋𝑛,k⟂

⟩. Hybrid Wannier Functions
(HWF) are confined in the x̂-direction, and extend as Bloch-waves perpendicular to
x̂ [164, 165]:

|𝑋𝑛,k⟂
⟩ = 𝑎𝑥 ∫

𝜋∕𝑎𝑥

−𝜋∕𝑎𝑥

𝑑𝑘𝑥
2𝜋

𝑒−𝑖𝑘𝑥𝑎𝑥𝑈𝑚,𝑛
k |𝜓𝑚,k⟩. (3.14)

When the mixing matrix 𝑈𝑚,𝑛
k is chosen to maximally localize the Wannier function

along 𝒙̂ by minimizing the quadratic spread functional [164], the corresponding Wan-
nier centers (𝑥𝑛(k⟂)) coincide with the phases of the WL operator. To be precise, a
spectral mapping can be established between the phases of the 𝑋 operator (𝑤𝑛(k⟂))
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and the eigenvalues of the x̂ projected position operator (𝑥𝑛(k⟂)), according to:
𝑤𝑛(k⟂)
2𝜋

=
𝑥𝑛(k⟂)
𝑎𝑥

(mod1), (3.15)

which is valid up to possible reordering.

Energy vs Charge Centers For electromagnetic waves, the interpreta-
tion of hybrid Wannier centers differs significantly from their counter-
parts in electronic systems. Instead of characterizing them as "charge"
centers, the correct interpretation is in terms of "energy" centers. More
specifically, the winding behavior of hybrid Wannier centers signifies
the transport of energy, linked to the Poynting vector, in contrast to the
charge transport typically discussed in electronic systems. This distinc-
tion emerges from the formulation of the electromagnetic WL, which
employs an energy inner product, weighted by the constitutive tensor
matrix:

 =

(

𝜀 𝜉
𝜉† 𝜇

)

,

This weighting is not a formal detail, but it represents a crucial point
in order to ensure the quantization of topological invariants [118, 119,
166]. Consequently, when dealing with PhCs, we will denote the hybrid
Wannier centers as Hybrid Wannier Energy Centers (HWECs) instead
of Hybrid Wannier Charge Centers (HWCCs).

3.1.1.5 Chern Number: Flow of hybrid Wannier centers

The connection between the WL and HWECs gives rise to a physical interpretation of
the electromagnetic Berry phase. As the momentum 𝑘𝑦 is varied across the BZ, the
average energy centers in the orthogonal direction to 𝑘𝑦 (𝑥) can move into a different
unit cell. This represents an energy pumping process, where each cycle of 𝑘𝑦 moves
the energy centers transversally across unit 𝑥 cells.In 2D, this description allows to
express the electromagnetic Chern number as the winding of 𝑥-HWECs along the k⟂

direction (𝑘𝑦):
𝐶 =

𝑁𝑏𝑎𝑛𝑑
∑

𝑛=1
∫

𝜋∕𝑎𝑦

−𝜋∕𝑎𝑦

𝑑𝑥𝑛(𝑘𝑦)
𝑎𝑥

. (3.16)
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or, equivalently for a periodic gauge choice (se Section 3.1.2.2):

𝐶 = 1
𝑎𝑥

𝑁𝑏𝑎𝑛𝑑
∑

𝑛=1

(

𝑥𝑛(𝑘𝑦 = 2𝜋∕𝑎𝑦) − 𝑥𝑛(𝑘𝑦 = 0)
) (3.17)

where the 𝑥𝑛(𝑘𝑦) are assumed to be smooth functions of 𝑘𝑦. The periodicity in Equa-
tion 3.17 is intended modulo a lattice vector 𝑎𝑥. Therefore, solely from the winding of
the 𝑥-localized HWEC as a function of 𝑘𝑦, it is possible to extract the Chern number
of the 2D PhC. Other 2D topological invariants such as the valley-Chern number [167]
or the ℤ2 fragile index [33] can be also deduced for 2D PhCs using HWECs [1]. In the
next section, we will demonstrate how to extend these results from 2D to 3D, using the
WLs to compute topological invariants for 3D PhCs.

3.1.2 Numerical Implementation

In this section, we emphasize the essential modifications required for evaluating elec-
tromagnetic WLs in 3D, relative to the 2D approach, to accommodate this dimensional
change. Similar to the methods detailed in Ref. [1], we will use electromagnetic so-
lutions derived from the MIT Photonic Bands (MPB) [168] package as the foundation
for our topological analysis.

3.1.2.1 Overlap Matrices for Vector Fields

The fundamental objects for the numerical evaluation of electromagnetic WLs are the
overlap matrices defined in Equation 3.3. In the case of 3D PhCs, these involve the
use of the full vector field:

𝑢𝑚,k =

(

𝑢(𝐸)𝑚,k

𝑢(𝐻)
𝑚,k

)

, (3.18)

where the eigenstates, the periodic part of the Bloch modes, are considered to be al-
ready normalized. For non-bianisotropic media, the problem can be separated into
electric (𝑢(𝐸)𝑚,k) or magnetic (𝑢(𝐻)

𝑚,k )-field components and the computation of overlap ma-
trices is accomplished through:

𝑚,𝑛
k′←k
3D,𝐸 = ⟨𝑢(𝐸)

𝑚,k′|𝑢
(𝐸)
𝑛,k ⟩𝜀, where 𝑢(𝐸)𝑛,k =

⎛

⎜

⎜

⎜

⎝

𝑢(𝐸𝑥)𝑛,k

𝑢(𝐸𝑦)𝑛,k

𝑢(𝐸𝑧)𝑛,k

⎞

⎟

⎟

⎟

⎠

, (3.19)
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and

𝑚,𝑛
k′←k
3D,𝐻 = ⟨𝑢(𝐻)

𝑚,k′|𝑢
(𝐻)
𝑛,k ⟩𝜇, where 𝑢(𝐻)

𝑛,k =

⎛

⎜

⎜

⎜

⎝

𝑢(𝐻𝑥)
𝑛,k

𝑢(𝐻𝑦)
𝑛,k

𝑢(𝐻𝑧)
𝑛,k

⎞

⎟

⎟

⎟

⎠

, (3.20)

for the electric and magnetic field solutions respectively. The transition from a scalar
to a vectorial problem becomes evident as we consider the inner product’s vectorial
structure, which involves the three Cartesian components as follows:

𝑚,𝑛
k′←k
3D,𝐸 = 𝑢(𝐸𝑥)

𝑚,k′𝑢
(𝐷𝑥)
𝑛,k + 𝑢(𝐸𝑦)

𝑚,k′𝑢
(𝐷𝑦)
𝑛,k + 𝑢(𝐸𝑧)

𝑚,k′𝑢
(𝐷𝑧)
𝑛,k , (3.21)

where the overline indicates complex conjugation, and:

𝑚,𝑛
k′←k
3D,𝐻 = 𝑢(𝐻𝑥)

𝑚,k′ 𝑢
(𝐵𝑥)
𝑛,k + 𝑢(𝐻𝑦)

𝑚,k′ 𝑢
(𝐵𝑦)
𝑛,k + 𝑢(𝐻𝑧)

𝑚,k′ 𝑢
(𝐵𝑧)
𝑛,k . (3.22)

In contrast, in 2D PhCs band-topology can be assessed solely using scalar fields [1],
either with the 𝑧-polarized electric field for TM modes:

k′←k
𝑚,𝑛 𝑇𝑀

= ⟨𝑢(𝐸𝑧)
𝑚,k′|𝑢

(𝐸𝑧)
𝑛,k ⟩𝜀, (3.23)

or with the 𝑧-polarized magnetic field for TE modes:

k′←k
𝑚,𝑛 𝑇𝐸

= ⟨𝑢(𝐻𝑧)
𝑚,k′ |𝑢

(𝐻𝑧)
𝑛,k ⟩𝜇, (3.24)

This marks the initial transition from the scalar to the vectorial nature of the problem.

3.1.2.2 Componentwise Gauge Fixing

When the periodic part of the Bloch fields (𝑢𝑚,k) is obtained by frequency-domain
solvers, random phases can originate at different k points, due to the diagonalization
procedure. These arbitrary phases automatically cancel pairwise in the WL evaluation
when taking products of neighboring states within the closed path of Equation 3.5,
since every state appears twice as a ket-bra form. However, at the endpoints of the
path, k0 and k(𝐹 ), a periodic-gauge choice must be explicitly enforced to ensure the
smoothness of the Wilson loops eigenvalues in the BZ [169]. Let us consider a non-
contractible path that traverses the BZ along a reciprocal vector G, where:

k(𝐹 ) = k(0) + G. (3.25)
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We want to ensure that the Bloch states (𝜓) satisfy the periodic gauge condition:

𝜓k+G = 𝜓k, (3.26)

or, equivalently, that the periodic part of the Bloch fields (𝑢) respects:

𝑢k+G = 𝑒−𝑖G⋅r𝑢k. (3.27)

A way to enforce this constraint is to formally redefine the periodic part of the fields,
at k + G as:

𝑢′k+G =
𝑢k+G

𝜓k+G
𝜓k, (3.28)

where the righthand side of the equation is composed of solely states obtained directly
from the numerical solver. For 3D vector fields, this operation has to be done com-
ponentwise, for each Cartesian component of the fields, e.g. for the 𝑥-electric field
component:

𝑢(𝐸𝑥)
′

k+G =
𝑢(𝐸𝑥)k+G

𝜓 (𝐸𝑥)
k+G

𝜓 (𝐸𝑥)
k . (3.29)

This gauge-fixing is relevant to guarantee the smoothness of the Wilson loop eigenval-
ues in the BZ.

3.1.2.3 Polarization Vortex and Wilson Loops

So far, the differences with respect to the 2D scenario have manifested as a simple
increase of vectorial components within the problem. Yet, the most profound and
conceptually fundamental distinction emerges when we consider the role of theΓ point.
When implementing WL calculations for photonic bands, special care should be given
at the𝜔 = 0 states, where 3D PhCs present a vortex-like singularity in the polarization.
Numerical solvers such as MPB usually give a null eigenfunction as the default solution
at 𝜔 = 0, which can result in discontinuities in the WL spectrum. In 2D, this issue can
be resolved by noticing that, at𝜔 = 0, any constant, normalized eigenfunction is a valid
solution for the dynamical equations, Equations 2.92 and 2.91. In Ref. [1] we showed
that this replacement allows to avoid singularities, without affecting the topological
characterization. The situation is more complicated in 3D PhC since no well-defined
polarization can be assigned to the 𝜔 = 0 states. To address this problem, we propose
two distinct strategies, and we elaborate on them in the next two subsections with
practical 3D PhC examples, proposing:

70 Chapter 3 – Methods



3D Topological Photonic Crystals

• The calculation of Γ-avoiding section Chern numbers, suited for gapped and
(some) gapless 3D PhCs (Section 4.1.3.3).

• The calculation of a Γ-encircling Berry Flux, for gapless 3D PhCs (Section
3.1.4).

Both approaches are designed to circumvent the Γ point, allowing the topological char-
acterization of 3D PhCs.

3.1.3 Γ-Avoiding Section Chern Number

The Chern number is an invariant defined for gapped systems on closed, even dimen-
sional manifolds. In 2D, this invariant is related to a specific mapping from the BZ,
which has the topology of a torus (𝕋 2), to the Bloch sphere (𝕊2) representing the gapped
energy bands. This mapping, denoted as

ℎ ∶ 𝕋 2 → 𝕊2, (3.30)

takes each point k in the BZ to a point h(k) on the Bloch sphere. As k traverses the BZ,
the unit vector on the Bloch sphere may wind around multiple times. The Chern num-
ber quantifies this winding behavior, which is akin to measuring how many times the
unit vector wraps around the Bloch sphere as k varies across the BZ. Mathematically,
this corresponds to the Brouwer degree of the mapping [170], providing a numerical
measure of the winding. It’s essential to note that the standard definition of the degree
of a map requires the map to be continuous in k. As we already mentioned in Section
3.1.2.3 this continuity in the BZ can be guaranteed for the eigenstates of a 2D PhC,
while in 3D PhCs the lack of analyticity at Γ cannot be avoided. In 3D PhC, each
gapped 2D cross section of the 3D momentum space:

k = (𝑘𝑥, 𝑘𝑦, 𝑘𝑧) (3.31)

can be associated to a section Chern number 𝐶𝑙 [171, 172], as long as 𝑘𝑙 ≠ 0, with
𝑙 ∈ {𝑥, 𝑦, 𝑧}. This is because 𝑘𝑙 = 0 cross sections contain the Γ vortex singularity
and, differently from 2D, no polarization state can be assigned to zero-energy Γ states.
Fortunately, in a 3D BZ, we have always the option to consider 2D planar subdomains
that bypass the Γ point, a possibility that clearly does not exist in a 2D BZ. As we will
demonstrate shortly, excluding the 𝑘𝑙 = 0 plane results in the removal of a 0-D interval
from the domain of a piece-wise defined function, which we will introduce in order to
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calculate Chern and Weyl topological invariants. As we will see, this will discontinuity
will not affect the topological characterization of the 3D PhC. To numerically obtain
the section Chern number 𝐶𝑙 for a 𝑙 cross section, we consider, for fixed 𝑘𝑙 ≠ 0, the
WL operator computed in the 𝑖 direction:

𝑖(𝑘𝑗 , 𝑘𝑙) = 𝑖(𝑘𝑗), (3.32)

and track the flow of the 𝑖𝑛(𝑘𝑗 , 𝑘𝑙) HWECs with respect to 𝑘𝑗 . Here, 𝑖, 𝑗, 𝑙 can take
values in the cyclic permutations of 𝑥, 𝑦, 𝑧. Explicitly, the 𝐶𝑙 section Chern number
can be evaluated from the winding of the HWECs, according to:

𝐶𝑙 =
𝑁𝑏𝑎𝑛𝑑
∑

𝑛=1
∫

𝜋∕𝑎𝑗

−𝜋∕𝑎𝑗

𝑑𝑖𝑛(𝑘𝑗)
𝑎𝑖

. (3.33)

or, equivalently, for a smooth gauge:

𝐶𝑙 =
𝑁𝑏𝑎𝑛𝑑
∑

𝑛=1

𝑖𝑛(𝑘𝑗 = −𝜋∕𝑎𝑗) − 𝑖𝑛(𝑘𝑗 = 𝜋∕𝑎𝑗)
𝑎𝑖

. (3.34)

Non-Zero Chern Numbers with TRS Here we want to highlight an-
other important difference from 2D. A non-zero Chern number of a
2D BZ is always associated with the breaking of TRS. Differently, the
section Chern number taken on a 2D cross-section of a 3D BZ can be
non-zero also in the presence of TRS. This situation can, for example,
occur in chiral crystals that support Weyl points arising from inversion
breaking, e.g. the woodpiles PhCs of Ref. [67, 173]: a section Chern
number taken in between the Weyl points can be non-zero, even though
the system does not break TRS.

3.1.3.1 Discontinuities at Weyl Nodes

The section Chern number 𝐶𝑙 is a topological invariant of gapped bands. Therefore,
it can change only when the band gap closes at a certain point on the 𝑘𝑙 plane -that
is, when the 𝑘𝑙 planes host nodal features. Because of this, the section Chern num-
bers can be used to detect the existence of nodal features in 3D momentum space,
such as Weyl Points, which are source and sink of Berry curvature [174–178], and ex-
tract their topological charge. The section Chern number is in general represented by
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a piece-wise constant function in 𝑘𝑙, with possible discontinuities on the planes that
contain gap closings. For example, let us assume the system has only Weyl points in
the open interval (− 𝜋

𝑎𝑙
, 𝜋
𝑎𝑙
), located on different 𝑃 planes 𝑘𝑙 = 𝑘𝑙,𝑊𝑝

, with 𝑝 = 1..𝑃 . The
corresponding section Chern number is going to be a piece-wise constant function of
the type:

𝐶𝑙 = 𝐶𝑙(𝑘𝑙) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

𝐶1 𝑘𝑙 ∈
[

− 𝜋
𝑎𝑙
, 𝑘𝑙,𝑊1

)

⋮

𝐶𝑝 𝑘𝑙 ∈
(

𝑘𝑙,𝑊𝑝−1
, 𝑘𝑙,𝑊𝑝

)

𝐶𝑝+1 𝑘𝑙 ∈
(

𝑘𝑙,𝑊𝑝
, 𝑘𝑙,𝑊𝑝+1

)

⋮

𝐶𝑃 𝑘𝑙 ∈
(

𝑘𝑙,𝑊𝑃−1
, 𝑘𝑙,𝑊𝑝

)

𝐶𝑃+1 𝑘𝑙 ∈
(

𝑘𝑙,𝑊𝑝
, 𝜋
𝑎𝑙

)

(3.35)

where 𝐶𝑃+1 = 𝐶1. As we will show now, this piece-wise defined function can be used
to detect the existence of Weyl nodes, and extract the net topological charge (𝑞𝑊𝑝

) from
Chern number discontinuities:

𝑞𝑊𝑝
= 𝐶𝑝+1 − 𝐶𝑝, (3.36)

at each plane 𝑘𝑙 = 𝑘𝑙,𝑊𝑝
. To handle the discontinuities numerically, a cutoff is needed.

More specifically, we have to evaluate the section Chern number around the plane con-
taining the Weyl point 𝑘𝑙,(𝑊 ), excluding a specific range [𝑘𝑙,(𝑊 ) − 𝜖, 𝑘𝑙,(𝑊 ) + 𝜖] where
0 < 𝜖 << 1. The choice for 𝜖 balances two different criteria: it should be smaller than
the separation from other nodal features yet larger than a lower bound, which depends
on the WL discretization, to ensure convergence. For example, in the calculation con-
sidered in Section 4.1 a 81 × 81 grid in (𝑘𝑥, 𝑘𝑦) is employed, and a 𝜖

2𝜋
∼ 0.03 interval

around Weyl nodes is excluded. In Figure 3.1, we consider the case of a single pair
of oppositely-charged Weyl points (a Weyl dipole with 𝑞± = ±1), having symmetric
nodes at 𝑘±𝑧 . To identify the Weyl point topological charge, we compute the 𝐶𝑧 sec-
tion Chern number on 2D 𝑘𝑧 planes, away from 𝑘𝑧 = 𝑘±𝑧 . The resulting 𝐶𝑧(𝑘𝑧) is a
piece-wise continuous function, that jumps from 0 to 1 (with a net +1 discontinuity)
at 𝑘𝑧 = 𝑘+𝑧 , and from 1 to 0 (with a net −1 discontinuity) at 𝑘𝑧 = 𝑘−𝑧 . These disconti-
nuities signify a net ±1-charge for Weyl points located on the 𝑘𝑧 = 𝑘±𝑧 planes, acting
as as a source and sink of Berry curvature.

On the other hand, no discontinuity is observed at Γ, confirming that the vortex
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Figure 3.1: Section Chern number approach to identify the charge of a Weyl dipole in the 3D BZ. Panel
a): Location of the charge ±1 Weyl nodes (k± = (𝜋𝑎 ,

𝜋
𝑎 ,±

𝜋
2𝑎 )) in the 3D BZ. 2D 𝑘𝑧 cross sections, with

the Γ-avoiding cross section displayed in white. Panel b): Discontinuity in the section Chern number at
the planes which contain the Weyl nodes 𝑘𝑧 = ± 𝜋

2𝑎 .

singularity does not affect the calculation of the section Chern number. In this exam-
ple, with a single pair of Weyl points split along the 𝑘𝑧 line, the topological charge
can be computed solely using the 𝐶𝑧 invariant. For more complicated Weyl point con-
figurations, such as multiple or coplanar Weyl points, it may be necessary to evaluate
other section Chern numbers (𝐶𝑖) to fully determine the individual topological charge
of the individual nodes. The section Chern number method proposed here can also be
used to compute the three components of the Chern vector of 3D Chern insulators. A
3D Chern insulator is a 3D TRS-broken topological phase characterized by a triplet of
three first Chern numbers (C = (𝐶𝑥, 𝐶𝑦, 𝐶𝑧)) [179–184]. In a layer construction pic-
ture [45,185], 3D Chern insulators can be interpreted as a stack of 2D Chern insulators,
with each 𝑘𝑖 section in the BZ having a constant value 𝐶𝑖. The section Chern number
allows to evaluation of the components of the Chern vector in a straightforward way.
We will employ the section Chern number method to characterize a topological Weyl
to 3D Chern transition in the PhC designed in Section 4.1.

3.1.4 Γ-Encircling Wilson Loops

The section Chern number approach for characterizing PhC topology relies on the as-
sumption of the existence of gapped 2D cross-sections within the BZ. However, in
certain situations, no such gapped domains can be identified. This scenario can arise,
for instance, when dealing with extended nodal walls, which make every planar cross
section gapless. Additionally, up to this point, our discussion has primarily revolved
around cross-sections that avoid the Γ point within the BZ. We haven’t yet addressed
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Figure 3.2: a: Small sphere of |𝑘𝑟| surrounding a photonic Weyl point at Γ.b: The Weyl point charge
can be extracted from winding in 𝜃0.

situations where topological charges are precisely located at the Γ point itself. Here-
with, we aim to show how to proceed in these two cases. Specifically, we will introduce
an alternative approach for extracting:

1. the monopole charge associated with a Weyl point positioned at the Γ point in
the lowest transversal bands

2. the topological charge of a Weyl nodal wall situated along the boundary of the
BZ.

We do this by tracking the Wilson loop flow on closed 2D manifolds that enclose
the monopole charge (the Weyl point or the nodal wall). Since a Chern number can
be defined for this 2D closed manifold, the Berry flux 𝑞IN piercing through it can be
deduced from the winding of the Wilson loop on its surface. More specifically, this
can be done by parametrizing the surface of the closed manifold with parallel loops:

𝑙 = 𝑙(𝑝) (3.37)

that cover the entire manifold as the 𝑝 parameter varies in a closed interval, 𝑝 ∈ [0, 1],
and by tracing the flow of this WL operator:

𝑙 = 𝑙(𝑝), (3.38)

as a function of 𝑝. Because the net charge in the BZ must be zero, the total monopole
charge of nodes falling outside the manifold can be obtained as:

𝑞IN = −𝑞OUT. (3.39)

By choosing a closed surface that encircles the Γ point, it is possible to explicitly ex-
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Figure 3.3: Layer Chern number. a: Slab with 𝑛𝑧 layer. b: Winding of the HWEC in the 2D BZ of the
slab.

clude the k = 0 eigenstates from the calculation. This allows to simultaneously char-
acterize the topology of nodes where the previous approach fails, while at the same
time avoiding the necessity of assigning a well-defined polarization state to the 𝜔 = 0
fields. We will use this method to characterize the topology of the 3D PhC of Section
4.3, which simultaneously presents a Weyl nodal wall and a Weyl point located at Γ.

3.1.5 Layer Chern Numbers via 3D Effective Models

The 3D topological invariants computed so far can be obtained in a straightforward
way from WLs computed in the bulk of the 3D PhC. However, there exist certain 3D
invariants which are convenient to be evaluated in a slab configuration. An example
of these invariants is the layer Chern number 𝐺 [59,186–188]. This quantity becomes
relevant for the topological characterization of certain 3D topological phases, which
display bulk-hinge correspondence, in contrast to bulk-boundary correspondence, such
as in the example described in Section 4.2. The layer Chern number 𝐺 is nothing but
the Chern number computed for a 2D slab of a 3D crystal. For a 𝑧-normal slab with
𝑛𝑧 >> 1 layers, the 𝐺𝑧 layer chern number can be obtained computing the 𝑥-directed
WLs for the slab:

 (SLAB)
𝑥 = 𝑥(𝑘𝑦), (3.40)

and tracking the flow in 𝑘𝑦. Note that, since 𝑘𝑧 is no longer a well-defined momentum
component for a slab, the 𝑘𝑧 dependence of the WL is ignored. More specifically, the
𝑘𝑧 axis folds to 2𝜋∕𝑛𝑧 → 0 in the 𝑛𝑧 >> 1 limit, and the Wilson loop must be evalu-
ated at 𝑘𝑧 = 0. While the implementation of the layer Chern number is conceptually
straightforward, its practical execution can be computationally intensive, especially
when using exact electromagnetic solvers. In the system studied in Chapter 4, deal-
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ing with a 3D PhC solved in MPB, even a thin slab calculation with just 4 + 4 layers,
4-bands, and a 24 × 24 k grid points was already beyond the available computational
resources in a state-of-the-art high-performance computing cluster. In general, con-
ducting electromagnetic simulations for confined slab and rod geometries of 3D PhCs
can be computationally demanding. To overcome these numerical difficulties, con-
densed matter systems often rely on tight-binding models. Unfortunately, extending
a tight-binding approach from electronic systems to 3D PhCs presents its own chal-
lenges, due to the absence of a maximally localized Wannier basis, stemming from the
Γ point singularity described in Section 2.3.1.3. In Section 3.2, we will detail how to
circumvent these conceptual difficulties and create effective tight-binding models of
3D PhCs, that accurately reproduce their topological properties, while using a reduced
set of parameters and basis functions compared to traditional brute-force simulations.
Once an effective model for the 3D PhC is obtained, the layer Chern number 𝐺 can
be easily be computed. In Section 4.2, we will illustrate how to use the layer Chern
number 𝐺 for the topological characterization of a 3D PhC, displaying (higher-order)
axion topology.

3.1.6 Discussion and outlook

In this section, we have demonstrated the possibility of computing several 3D topolog-
ical invariants using a single tool: the electromagnetic Wilson loop and the associated
hybrid Wannier energy centers. It’s essential to emphasize that the Wilson loop is a
versatile and powerful approach capable of identifying a wide range of 3D topologi-
cal invariants, beyond the specific examples presented here. The methods introduced
in this section could be readily extended for other applications, such as, just to name
a few possibilities, assessing the braiding of multigap photonic nodal links [189] or
detecting fragile topology [190] within the fundamental gap of 3D PhCs.

3.2 Transversality-Enforced Tight-Binding Models

In this section, we aim to extend the tight-binding modeling approach to 3D PhCs.
The tight-binding, heavily used in solid-state physics, can describe a crystal’s band
structure and topological properties while using a small set of parameters and basis
functions as compared to ab initio models or exact solvers, allowing the simulation of
much larger systems using fewer computational resources. Unfortunately, the exten-
sion of such models to 3D PhCs has been so far elusive. The main reasons are the
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irregular symmetry content of the zero frequency states in 3D PhCs and the impossi-
bility of directly constructing a basis of maximally localized TB basis functions due to
the vectorial nature and transversality of Maxwell’s equations. In the following sec-
tion, we explore these obstacles in depth, outlining a potential approach to overcome
them.

3.2.1 Obstructions to 3D Photonic TB Models

The development of highly efficient simulation techniques is in high demand to ad-
vance the field of 3D photonics [18–21, 148]. 3D topological PhCs, when interfaced
with trivial dielectric materials, can sustain surface and hinge states within the bulk
band gap. These states are topologically protected and constrain light propagation on
confined regions, leading, just a name a few, to an enhanced local density of states
capable of boosting light-matter interactions [191] or to non-reciprocal propagation
properties of light via unidirectional hinge channels [36]. The study of these photonic
architectures requires the simulation of very large supercells, which often reach the
limits of state-of-the-art high-performance computing resources.

For this reason, in solid-state physics, the common strategy is to use Tight-
Binding (TB) models [192–194] to replicate the topological properties of the crystal.
Those models are built from a small set of basis functions based on maximally localized
Wannier functions and some hopping parameters. This reduced dimensionality, low-
ers the computational effort required to perform extensive calculations substantially in
comparison with the requirements of ab initio techniques. Unfortunately, extending
a TB approach from electronics to PhCs is not straightforward. Electronic systems
naturally display a set of atomic orbitals that can be mathematically mapped to a set
of exponentially localized states known as Maximally Localized Wannier Functions
(MLWFs) [164]. This set of functions can be directly used as a basis for a TB model.
Finding such a basis of localized states for 3D PhCs is not obvious. In 1D and 2D
PhCs, it’s always possible to separate the solutions of the wave equation into scalar TE
and TM modes. This separation allows us to express Maxwell’s equations as a scalar
eigenproblem, closely resembling the spinless Schrödinger equation. In these cases,
it is possible to find photonic counterparts of MLWFs through well-established solid-
state Wannierization techniques [131–133]. These MLWFs can then serve as a basis
set of states for constructing a robust TB model of the crystal, facilitating the analysis
of its properties. However, the situation differs in 3D PhCs due to a fundamental obsta-
cle stemming from the transversality constraint. As discussed in Section 2.3.1.3, the
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divergence-free nature of source-free Maxwell equations leads to non-analyticity in the
Bloch basis across the entire BZ. This non-analyticity makes it impossible to construct
exponentially localized Wannier functions for the lowest photonic bands [22,23,121].
Consequently, it prevents the establishment of a standard Wannier basis for a 3D pho-
tonic TB model. To understand this fact, we remind that, to maximally localize a
Wannier function, we need to select a specific mixing gauge matrix in Equation 3.14,
capable of minimizing the spread of the quadratic spread functional [164] along a given
direction. In 3D PhCs, this localization becomes problematic due to the lack of ana-
lyticity in the Bloch basis. In addition, the irregular symmetry content at the Γ point
apparently creates on obstruction in the development of a symmetry-adapted model
valid all across the BZ, also in the zero-energy, long-wavelength limit. To overcome
these limitations, we propose a novel method for constructing a reliable TB represen-
tation of 3D PhCs that doesn’t rely on the existence of MLWFs. We accomplish this by
introducing auxiliary longitudinal modes to the physical transverse bands of the PhC,
effectively addressing the singularity at the Γ point. Our inspiration for using longitu-
dinal modes in the Γ point context came from Ref. [23], where the potential of these
modes for regularization was first demonstrated in extending topological characteri-
zation via symmetry indicators [45, 67, 195–198] to 3D PhCs. The method proposed
here is based solely on group theoretical arguments, exploiting the formalism of TQC
for non-fermionic systems [23, 199–201], and it comprises two steps:

• We use TQC to identify and define a set of pseudo-orbitals and their correspond-
ing real space locations, providing us with a starting basis for the construction
of a photonic TB.

• We enforce transversality on the effective TB model of the 3D PhC built from
the pseudo-orbitals obtained in the previous step. By distinguishing physical
transverse modes and auxiliary longitudinal modes, we trace out the latter from
the final TB description.

This results in a Transversality-Enforced-Tight-Binding (TETB) which can replicate all
the energetic features, symmetry content, and topology of the 3D PhC. Additionally,
we explain how to introduce the effects of a static magnetic field into the model. We
use the TETB method developed to model the topological transition in Section 4.2.
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3.2.2 Selecting Pseudo-Orbitals Candidates

As previously stated, our first objective is to identify a basis of orbitals that can be
used to build a TB model for a 3D PhC. In this section we describe how to obtain
such a basis most effectively, by minimizing the basis dimensionality, and therefore
the complexity of resulting TB. We will use the term pseudo-orbitals to refer to the
localized, symmetric functions that induce the photonic bands, and we will highlight
the key differences from conventional orbitals commonly used in solid-state physics.

3.2.2.1 Transverse symmetry vector

To start, we need to pinpoint the symmetry content of the band structure at all HSPs
in the BZ. This is determined by the irreps of the eigenvectors at the HSPs. These ir-
reps constitute the first stage of studying the system’s topology via TQC. Any reliable
TB model of a crystal, which replicates the system’s topology, must reproduce such
irreps at the HSPs. The irreps of the electromagnetic fields at the HSPs are computed
numerically, using the methods described in Section 2.3.3. We use the functions pro-
vided in the last version of MPB (v1.11.1) dedicated to the computation of overlap
integrals. Then, we apply Schur’s Orthogonality Relations [152] to obtain the irrep
decomposition. The irreps are labeled following the Bilbao Crystallographic Server
(BCS) [154, 202] notation. Each irrep is denoted as 𝜌𝑖[k] where 𝑖 labels the particular
irrep at each class of HSP [k]. In 3D PhCs, the irrep contents can be computed at ev-
ery HSP except for the zero-frequency modes at Γ, where the symmetry identification
is either ill-defined or irregular. In the following, the symbol (▪)2𝑇 will represent the
Γ irrep content, consistent with the notation introduced by Ref. [23]. This symmetry
identification procedure has to be carried out on a bundle of bands that can form an
isolated set that satisfies the compatibility relations. The bundling procedure for trans-
verse bands is described in Section B.1. These steps return the transverse symmetry
vector (v𝑇 ), expressed as:

v𝑇 =
⨁

𝑖,[k]
𝑛𝑖[k]𝜌𝑖[k] ⊕ (▪)2𝑇 , (3.41)

where 𝑛𝑖[k] labels the multiplicity of each irrep.
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3.2.2.2 Infinite Pseudo Orbital Solutions

Using TQC, we aim to decompose the transverse symmetry vector v𝑇 into Elementary-
Band Representations (EBRs) [128, 129, 155, 156], which will constitute the building
blocks of our TB model. Roughly speaking, an EBR describes the transformation
properties of the bands obtained by placing a set of orbitals, which transform under a
certain irrep 𝜌𝐪 of the site-symmetry group, at a particular maximal Wyckoff position
𝐪. Thus, a certain EBR can be specified by the pair "𝜌𝐪@𝐪". In PhCs, the concept of
orbital is not technically precise and we use pseudo-orbitals to refer to the localized,
symmetric functions that induce the photonic bands. All EBRs for all SGs and the
irreps at the HSPs they induce are tabulated in the BCS. Then, the initial problem
reduces to finding a linear combination of EBRs such that v𝑇 =

∑

𝑖 𝑛𝑖EBR𝑖, with
𝑛𝑖 ∈ ℤ. Therefore, we collect all the EBRs of the SG of the crystal into a matrix A.
Denoting the number of EBRs in the SG by 𝑁𝐸𝐵𝑅 and the total number irreps at all
HSPs by 𝑁𝑖𝑟𝑟, A has a size of 𝑁𝑖𝑟𝑟 ×𝑁𝐸𝐵𝑅. The 𝑖-th column of A will represent the
symmetry vector of the 𝑖-th EBR, as tabulated in the BCS. To find a linear combination
of EBRs that describes the symmetry content of v𝑇 , we must obtain an integer solution
to:

v𝑇 = An, (3.42)
where n is an integer vector describing the multiplicities of each EBR. In general,
rank(A) ≤ min(𝑁𝐸𝐵𝑅, 𝑁𝑖𝑟𝑟), which means that we can, in principle, find infinite solu-
tions to Equation 3.42. Such indeterminate problems with solutions over the integers
are known as Diophantine equations.

Equivalence of the infinite solutions From a physical perspective, the
existence of multiple solutions is attributable to the fact that differ-
ent linear combinations of EBRs can yield the same symmetry vector,
resulting in an equivalent description of the photonic band structure.
Physically, this is possible because a set of orbitals localized at some
Wyckoff positions can be adiabatically moved to other Wyckoff posi-
tions in a symmetry-allowed way, i.e., the linear combinations of EBRs
induced from the pseudo-orbitals before and after this symmetric de-
formation are topologically equivalent.

Note that standard methods to solve linear systems of equations are not well
suited for solving Equation 3.42 since they yield real-valued solutions while we need
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integer solutions. A convenient way to solve this equation is to compute the Smith
decomposition of the integer matrix A:

A = U−1DV−1, (3.43)

where U and V are matrices invertible over the integers and D is an integer diago-
nal matrix, whose non-zero entries are called divisors of A [203]. Now, the general
solution n can be computed as:

n = VD+Uv𝑇 + (𝟙𝑁𝐸𝐵𝑅
− VD+UA)z (3.44)

where D+ denotes the pseudo-inverse of 𝐃 and z is an arbitrary integer vector. Equa-
tion 3.44 (or equivalently, Equation 3.42) gives an infinite number of solutions. This
means that, for a given symmetry vector 𝐯𝑇 , there can be many equivalent EBR de-
compositions, as many as z.

3.2.2.3 Minimization of the TB Basis

These multiple solutions can result in a different number of bands depending on the
EBRs used and their associated dimension. The number of bands 𝜇 that result from
the EBR decomposition can be obtained using the norm:

𝜇 = ||n|| =
𝑁𝐸𝐵𝑅
∑

𝑗=1
𝑔𝑗|𝑛𝑗| (3.45)

where | ⋅ | indicates the absolute value and 𝑔𝑗 is the dimension of the EBR 𝑛𝑗 . Min-
imizing the norm of the vector solution 𝐧 is equivalent to minimizing the number of
bands employed for the construction of the TB model. Therefore, choosing solutions
with minimal norms can enable a simpler construction of a TB model for the 3D PhC.
Other norms can be equivalently defined, to estimate the complexity of the associated
TB, depending on convenience.

In Section B.3 we describe the necessary steps for obtaining pseudo-orbitals
which are simultaneously optimal and physical solutions to Eq. 3.42. As we will show,
the pseudo-orbital are minimal because they minimize the number of auxiliary modes
introduced to regularize the Γ point singularity, and they are physical, because they
satisfy the transversality constraint, which discards longitudinal wave solutions.
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3.2.2.4 Negative EBR Coefficients

The vector solution 𝐧 of Equation B.3 in general contains certain negative EBR coef-
ficients. For the lowest bands of a trivial 3D PhC, this situation can never be avoided
since it relies on the intrinsic obstruction due to the Γ point problem [23], which en-
forces the presence of at least one minus sign in the decomposition.

Fragility and transverse bands The impossibility of expressing the
lowest bands of a 3D PhC as a linear combination of EBRs using strictly
positive coefficients is reminiscent of the concept of ‘fragility’ in topo-
logical band theory [1,33,204]. Unlike fragile topology, which involves
a difference of EBR, here the decomposition involves a difference of ir-
reps. The concept of fragile topology in the lowest fundamental gap of
3D photonic bands remains an open problem, along with its relation to
the gamma vortex. We will return to this point in Section 5.3.

The seeming fragility of the transverse band can be exploited in the development of the
TB model by reinterpreting the EBR with a negative coefficient as a set of ‘auxiliary’
longitudinal modes (𝐯𝐿) which regularize Γ point problem (see Section 3.2.3 for more
details). This reorganization of the modes can be formalized through the following
expression:

v𝑇 = v𝑇+𝐿 − v𝐿, (3.46)
where v𝑇+𝐿 is a linear combination of EBRs with integer positive coefficients. This
reorganization of the modes can be formalized through the following expression

v𝑇 + v𝐿 = v𝑇+𝐿, (3.47)

where v𝑇+𝐿 is a linear combination of EBRs with integer positive coefficients and de-
scribes a regular set of modes that include all the symmetry content of the transverse,
physical band structure while avoiding the singularity at Γ. Later, we will prove that
spectral filtering can remove the auxiliary longitudinal bands 𝐯𝐿 by tuning the TB pa-
rameters a posteriori. Note also that, using the function BandRep at the BCS to obtain
the irrep content of the EBRs at Γ, Eq. B.15 assigns a well-defined value to (■)2𝑇 .
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3.2.3 Constructing a Photonic TETB

Once a set of candidate pseudo-orbitals has been determined, we look for a TB model
that satisfies the following conditions: the additional degrees of freedom introduced
as longitudinal modes (𝐯𝐿) represent energy bands away from the physical bands, the
TB model captures the features of the transverse bands (𝐯𝑇 ) in the energy window of
interest, and the model reproduces the (▪)2𝑇 obstruction at Γ and all the symmetry,
topology, and energetic features of the active bands in the PhC.

3.2.3.1 Quadratic Mapping and Spectral Filtering

To proceed, we exploit a formal mapping between the cell-periodic Schrödinger and
Maxwell wave equations, respectively linear and quadratic in time. This allows us to
relate the energy 𝜆 of the electronic wavefunction 𝜙(𝐫) in presence of a crystal periodic
potential 𝑉 (𝐫):

[

−ℏ2
2𝑚

𝛁2 + 𝑉 (𝐫)
]

𝜙(𝐫) = 𝜆𝜙(𝐫), (3.48)
and the frequency of light 𝜔 in media with periodic dielectric permittivity 𝜀(𝐫) and
permeability 𝜇(𝐫) :

[

𝜀(𝐫)−1𝛁 × 𝜇(𝐫)−1𝛁×
]

𝜓 (𝐸)(𝐫) = 𝜔2𝜓 (𝐸)(𝐫) (3.49)

according to 𝜆 ∼ 𝜔2 [205]. The validity of this mapping was already discussed in
Chapter 2. This quadratic mapping allows us to construct an effective solid-state in-
spired optical 3D TB model by enforcing the eigenvalues (𝜆) of the set of transversal
bands to be positive, 𝜆 = 𝜔2 ≥ 0, while the lowest set of longitudinal bands to be
negative, 𝜆 = 𝜔2 ≤ 0. Note that since the frequency of the electromagnetic solutions
is 𝜔 =

√

𝜆, the final real spectra will not contain the auxiliary nonphysical modes.
Forcing the longitudinal modes and active transverse modes to be isolated from each
other except at 𝜆 = 0 enables us to achieve all the previous points.

3.2.3.2 Enforcing Transversality

To construct a reliable TB that satisfies the abovementioned constraints, we proceed
as follows:

1. From the EBR decomposition obtained in as in the previous section (Section
3.2.2), we identify v𝐿, v𝑇 , and v𝑇+𝐿.
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2. We build a TB model with generic free parameters from the set of pseudo-
orbitals and Wyckoff positions dictated by the EBRs in v𝑇+𝐿.

3. We analyze the symmetry content of the bands induced by these orbitals and
identify which modes can be associated uniquely to v𝐿 and v𝑇 .

4. We tune the parameters of the TB (onsite energies and hoppings) so that the
set of longitudinal bands become the lowest energy modes, with negative fre-
quency (𝜆 = 𝜔2 ≤ 0). Then, we fit the 𝜆 = 𝜔2 ≥ 0 bands to the square of the
electromagnetic frequencies obtained numerically for the PhC.

This will result in a TETB model, with Hamiltonian 𝐻(k), which captures all the
symmetry, topology, and energetic features of the transverse bands in the PhC.

Invariance under any space group transformation 𝑔 imposes the following con-
straint on 𝐻(k):

𝑔𝐻(k)𝑔−1 = 𝐻(𝑔k), (3.50)
where 𝑔k≡𝑅k for 𝑔={𝑅|t}. Similarly, invariance under TRS implies

𝐻(−𝐤) = 𝐻∗(𝐤), (3.51)

where ∗ denotes complex conjugation.

3.2.3.3 Introduction of a magnetic field perturbation

Some of the essential applications of topological photonics rely on TRS breaking since
it stabilizes strong topology in the CAZ ten-fold classification of topological materi-
als [25, 206]. Usually, TRS breaking in PhCs is achieved using gyroelectric or gyro-
magnetic materials, applying an external static magnetic field, or equivalently through
intrinsic remnant magnetization. To mimic such effects, we develop a general method
to simulate in our TETB models the interaction of an external and static magnetic field
with a PhC. In TB models for electronic bands, the effects of a static magnetic field
can be introduced via minimal interaction of the electrons with the vector potential
A, usually through Peierls substitution [207, 208], but this is forbidden for photonic
systems due to the uncharged nature of photons. This forces us to use non-minimal
couplings, where the magnetic field H is treated as a perturbation in the system’s re-
sponse. Accordingly, the Hamiltonian, including the effects of a magnetic field, can
be represented by

𝐻𝑀 (k,H) = 𝐻(k) + 𝑓𝑀 (k,H), (3.52)
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where 𝐻(k) is the TETB Hamiltonian of the previous section and 𝑓𝑀 (𝐤,H) is a mag-
netic field depending perturbation.

Crystal-field joint transformations Here, we would like to comment
on the following subtlety, which sometimes is a source of confusion.
Even though coupling to an external magnetic field breaks the TRS of
the crystal, we must still impose invariance under joint transformations
of the crystal plus the magnetic field. The symmetry constraints of
Equation 3.50 and 3.51, generalized to include the magnetic field, be-
come:

𝑔𝑓𝑀 (k,H)𝑔−1 = 𝑓𝑀 (𝑔k, 𝑔H) (3.53)
for any space group transformation 𝑔 and, for TRS:

𝑓𝑀 (−𝐤,−𝐇) = 𝑓 ∗
𝑀 (𝐤,𝐇). (3.54)

In most cases, taking 𝑓𝑀 (k,H) as a linear function in the components of H is enough
to model the effects of the magnetic field. Higher orders of H could easily be added to
model the effects of higher magnetic field intensities.

3.2.4 Discussion and outlook

In this section, we proposed a method to construct a reliable TB representation of 3D
PhCs, even if maximally localized WFs do not exist for such systems [121] and even in
the presence of an irregular content at zero energy. To our knowledge, this represents
the first method able to provide a reliable tight-binding representation of 3D dielec-
tric periodic structures, all across the 3D BZ. This TETB is capable of capturing and
regularizing the Γ-point electromagnetic obstruction that arises due to the transver-
sality constraint of Maxwell’s equations while accurately reproducing all the symme-
try, topology, and energetic dispersion of the transverse bands in the PhC. Finally, we
showed how to model gyrotropy by providing a magnetic version of our TETB model
using non-minimal coupling. The lower computational cost of TB models compared
to exact solvers can allow to increase in the complexity of future theoretical develop-
ments in the field of topological photonics via the calculation of extensive supercells.
For example, recently, this method allowed us to simulate the higher-order response
on the hinges of photonic axion insulators [36], and to extract the layer Chern num-
ber of 3D PhC slabs (see Section 4.2 for more details). This development was only
possible using TETB models because calculating 𝑥𝑦-confined rod geometries of 3D
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supercells was beyond state-of-the-art high-performance computing clusters. There-
fore, we hope that our TETB can facilitate the study of boundary responses of future
3D photonic topological phases.
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Results

In this chapter, we propose the design of three distinct PhCs displaying three distinct
topological phases: the 3D Chern photonic insulator, the photonic axion insulator,
and the nodal-wall Weyl semimetal featuring unpaired photonic Weyl points. These
phases exhibit unique bulk-boundary properties, including vectorial bulk-boundary
correspondence, closed Fermi loops, chiral hinge channels, and forbidden surface Fermi
arcs. We characterize the topological properties of these 3D PhCs using methods intro-
duced in Chapter 3, specifically the electromagnetic Wilson loops and the transversality-
enforced tight-binding model. These methods are tailored to address the challenges
specific to electromagnetic wave systems in 3D PhCs. For each proposed topological
phase, we briefly discuss potential applications. These applications range from mag-
netic switching of light, unidirectional light propagation, manipulation of quantum
emitter interactions, and axionic dark matter detection.

The chapter is divided as follows:

• 3D Chern Photonic Insulator (Section 4.1). We introduce a TRS-broken 3D
topological phase in class A: the 3D Chern photonic insulator, characterized by a
Chern vector -a triplet of first Chern numbers. Utilizing Weyl point annihilation,
our design scheme tailors this Chern vector in magnitude, sign, and direction.
These topological phases demonstrate high Chern numbers, vector orientability,
and TRS protection under minimal magnetic conditions. The bulk properties
correlate with a finite number of closed Fermi loops winding on the surface BZ
torus, establishing the 3D Chern insulator’s bulk-boundary correspondence. We
elucidate that these loops evolve from the open Fermi arcs of the Weyl semimetal
phase during a gapless-to-gapped transition. The increase in the values of the
Chern vector components comes accompanied by an increase in the number of
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the Fermi loops, while the orientability of the Chern vector gives rise to a mod-
ification of the Fermi loop winding, originating a vectorial bulk-boundary cor-
respondence across domain walls with different Chern vectors. We finally show
how the dispersion characteristics of these loops are tied to the PhC’s anomalous
surface states and their non-reciprocal propagation dynamics.

• Photonic Axion Insulator (Section 4.2). We propose a possible approach to
induce axionic band topology in gyrotropic 3D Weyl PhCs gapped by SM. To
quantize an axionic angle, we create domain walls across inversion-symmetric
PhCs, incorporating a phase obstruction in the SM of their dielectric elements.
This allows us to bind chiral channels on inversion-related hinges, ultimately
leading to the realization of an axionic chiral channel of light. By controlling
the gyrotropic response of the material, we demonstrate a physically accessible
way of manipulating the axionic modes through a small external magnetic bias,
which provides an effective topological switch between different 1D chiral pho-
tonic fiber configurations. We show that the unidirectional axionic hinge states
supported by the photonic axion insulator are buried in a fully connected 3D
dielectric structure, thereby being protected from radiation through the electro-
magnetic continuum.

• Unpaired Photonic Weyl Semimetal (Section 4.3). We outline a scheme to
design a nodal-wall 3D PhC that features a single, isolated, Weyl point at the
Γ point. The high-monopole charge of this unpaired Weyl point is balanced by
an absorbing nodal wall at the boundary of the cubic BZ. The symmetry of the
nodal wall, combined with the maximal topological charge of the Weyl point,
gives rise to a nodal configuration with topological properties that are distinctly
different from those of standard Weyl-dipolar systems.

We propose these 3D phases in all-dielectric periodic structures, i.e. structures that
contain no metallic or plasma components. To model TRS-invariant phases, we con-
sider high-dielectric, isotropic media. In magnetic scenarios, we use gyrotropic media
with parameters aligned with realistic microwave implementations [11, 41, 139].
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4.1 3D Chern Photonic Insulator

4.1.1 Introduction

TRS-broken topological materials, like Chern Insulators (CI) [9, 10] and Chern lasers
[88], stand out among topological states of matter for their topologically protected,
non-reciprocal edge states. In these systems, scattering processes from one boundary
state into another are strongly suppressed, due to the decoupling of counter-propagating
1D chiral edge channels [209, 210]. As established in Chapter 2, strong topology in
PhC is limited to class A with broken TRS for spatial dimensions 𝑑 ≤ 3. Pioneering
studies in 2D photonics have shown that TM modes in gyro-magnetic PhCs can emu-
late the Chern insulating state for light [11,139]. Owing to a non-zero Chern number,
these systems support topologically protected one-way edge states with minimal dis-
sipation and no back-scattering, resilient to impurities and lattice defects disrupting
translational symmetry. At the same time, significant Chern numbers have been de-
tected in 2D square PhC bandgaps [98, 211]. Photonic systems with elevated Chern
numbers can sustain multiple spatially separated edge states [211]. These edge states
allow a plethora of applications, including unidirectional multimode waveguides where
information can be multiplexed through the different edge states allowing for photonic
on-chip communications with higher channel capacity [211]. Nevertheless, the value
of the Chern number in these 2D systems was not determined by design, but a con-
sequence of the particular system under study. A systematic design strategy able to
dictate the Chern number’s value remained elusive. B. I. Halpherin [212] initially
highlighted in the electronic context that extending Chern topology to 3D is feasible,
albeit under stricter prerequisites. For instance, while maintaining lattice translational
symmetry, a 3D Chern insulating phase is anticipated to support anomalous surface
states with unidirectional properties [179–184]. In contrast to 2D, a 3D Chern in-
sulator (3D CI) is a topological phase that can be characterized by three first Chern
invariants - or a Chern vector C = (𝐶𝑥, 𝐶𝑦, 𝐶𝑧) - defined on lower dimensional mani-
folds [45–50]. The existence of a triplet of Chern invariants leads to vectorial aspects
of BBC which outpass those usually predicted by conventional "scalar" BBC typical
for 2D CIs. In 2D, the Chern vector is always fixed along the axis of the reduced dimen-
sionality, i.e. orthogonal to the plane of the system. On the contrary, the possibility
of orienting Chern vectors in space, opens up the possibility of constructing domain
walls between different orientations, thus requiring for a "vectorial" BBC to be de-
fined. In condensed matter systems, the 3D quantum Hall effect is usually discussed
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in layered systems [213–220]. Since layered systems have a preferred axis, and since
the magnetic field needs to be along this axis, the orientability of the Chern vector
doesn’t come up. Other 3D proposals in photonics [221] have also been limited to unit
and uniaxial Chern numbers and did not manifest the full topological properties asso-
ciated to the Chern vector. Motivated by previous insights, in this chapter, we develop
a general design strategy allowing to tailor the Chern vector of a 3D PhC in terms of
magnitude, sign, and direction. This strategy uses Weyl point manipulation and mul-
tifold Supercell Modulations (SM) [222] to realize the following different topological
scenarios:

• The Chern number’s additivity with band-folding over large supercells enables
the system to support large Chern numbers, allowing for multimodal unidirec-
tional surface states.

• Adjusting the amplitude of the SM, it becomes possible to reduce the magnetic
requirements, which can be beneficial for specific photonic applications.

• Activating orthogonal components of the Chern vector offers a broader array of
boundary interfacing possibilities as compared to 2D systems.

We characterize the propagation properties of the anomalous surface states in the 3D
Chern insulators, unveling the emergence of photonic Fermi loops. By orienting the
Chern vector in different spatial directions across domain walls, we discuss vectorial
aspects of their bulk-boundary correspondence. These ideas were initially presented
in our recent theoretical works, "Cubic 3D Chern photonic insulators with orientable
large Chern vectors" [50] and "Vectorial Bulk-Boundary Correspondence for 3D Pho-
tonic Chern Insulators" [42]. While Ref. [50] develops the design strategy centered
around SM and Weyl point annihilation for Chern vector engineering, Ref. [42] ex-
plores anomalous surface states for different boundary configurations of 3D Chern in-
sulators, especially addressing non-collinear Chern vector orientations, in a vectorial
bulk-boundary correspondence picture. We refer to the experimental study carried out
by the Baile Zhang group [41], for a realistic implementation in a 3D PhC setup. In
their work, they realized a photonic 3D Chern insulating phase via Weyl point anni-
hilation, featuring high Chern numbers and orientable Chern vectors. Vectorial bulk
boundary correspondence was observed in a gyrotropic PhCs at microwave frequen-
cies, demonstrating the adaptability of these theoretical ideas into experimental set-
tings.
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4.1.2 Initial setup

The starting point of our design is a PhC with a unit cell containing four dielectric
rods directed along the main diagonals of a cubic crystal (scalable lattice parameter
|𝑎|). The rods meet at the origin of the unit cell, and the structure is invariant under
the operations of the centrosymmetric and non-symmorphic space group (SG) Pn3̄m
(No. 224) [223]. Since we will later consider modulations of this structure, it is con-
venient to simulate the dielectric rods by assembling dielectric spheres with radius
𝑟 = 𝑟0 along (𝑥, 𝑦, 𝑧)0∕|𝑎| = (𝑡, 𝑡, 𝑡), (𝑡, 1 − 𝑡, 1 − 𝑡), (1 − 𝑡, 𝑡, 1 − 𝑡), (1 − 𝑡, 1 − 𝑡, 𝑡) with
0 < 𝑡 < 1∕2, i.e. employing a spherical covering approximation [224]. The resulting
design is shown in Figure 4.1(a). Starting in a TRS-preserving system, the dielectric
material is described by a diagonal (isotropic) permittivity tensor, 𝜀𝑇𝑅𝑆 = 𝜀𝟙3, where
𝟙3 = 𝐱̂⊗ 𝐱̂ + 𝐲̂⊗ 𝐲̂ + 𝐳̂⊗ 𝐳̂ and 𝜀 ∈ IR (no losses), and by unit magnetic permeability
𝜇 = 𝟙3. To simulate the optical response of the system, we employ the MIT Photonic
Bands (MPB) software package [168]. As shown in Figure 4.1(a), with TRS, the pho-
tonic band-structure presents a three-fold degeneracy between the three lowest energy
bands at the high symmetry point 𝐑 = 2𝜋

|𝑎|
(1∕2, 1∕2, 1∕2); note that, in the displayed

energy window, the two lowest bands are fully degenerate. Everywhere else in the BZ,
there is a gap between the second and third bands. The dispersion reflects the three-
fold rotational symmetry of the crystal, and is invariant under cyclic permutations of
the three 𝑘𝑖 (𝑖 = 𝑥, 𝑦, 𝑧) directions. In order to keep the notation consistent throughout
the section and to capture all the variety of symmetry designs, we label the high sym-
metry points in the BZ according to a Cartesian orthorhombic convention, see Figure
4.3, using the BCS notation.

4.1.2.1 Weyl points formation

To split the three-fold degeneracy at 𝐑 into two Weyl points [223], we break TRS. This
can be achieved by either applying an external magnetic field bias to a gyro-electric
crystal [9,10] as we proceed here, or by exploiting the internal remnant magnetization
of ferrimagnetic materials [139]. TRS breaking is implemented by introducing off-
diagonal imaginary elements in the permittivity tensor: for the specific case of an
applied magnetic field 𝐇 = 𝐻𝑧𝐳̂, the induced gyro-electric tensor is:

𝜀𝜂𝑧 =

⎛

⎜

⎜

⎜

⎝

𝜀⟂ 𝑖𝜂𝑧 0
−𝑖𝜂𝑧 𝜀⟂ 0
0 0 𝜀

⎞

⎟

⎟

⎟

⎠

, (4.1)
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where 𝜂𝑧 = 𝜂𝑧(𝐻𝑧) the bias-dependent gyro-electric parameter and 𝜀⟂ =
√

𝜀2 + 𝜂2𝑧 .
The gyro-electric tensor corresponding to magnetic fields in other directions can be ob-
tained by orthogonal rotations of Equation 4.1. Under these conditions, the three-fold
degeneracy splits into a pair of Weyl points (or a "Weyl dipole"). In order to analyze
the formation and splitting of the Weyl points under TRS breaking and to predict the
direction of their displacement in the BZ, we develop a 𝐤⋅𝐩model around the three-fold
degeneracy at 𝐑. The model, based on the group theoretical method of invariants (see
Appendix A), allows us to conclude that Weyl points appear at inversion-symmetric
positions with respect to 𝐑 along the 𝑘𝑧 direction, with a separation that can be ad-
justed by choosing the bias field𝐻𝑧 appropriately. Our MPB simulations, presented in
Figure 4.1(b), confirm this predictions accurately. More generally, for a magnetization
applied along any of the main coordinate axes 𝑥𝑖, the Weyl dipole is oriented along the
line joining 𝐑 to 𝐑′ = 𝐑−𝐛𝑖, where 𝐛𝑖 is the corresponding primitive reciprocal lattice
vector.

4.1.2.2 Topological charge of photonic Weyl points

Next we calculate the chiral topological charge 𝑞± of the Weyl points. For the 𝐤 ⋅ 𝐩
model we use the Z2Pack numerical tool [225, 226], concluding that the Weyl points
have opposite valued unit charges (𝑞± = ±1). We confirm these predictions by com-
puting the topological charges directly from the MPB eigenstate solutions. To do so,
we implement a numerical approach based on the analysis of the winding properties of
photonic hybrid Wannier energy centers as defined in the Chapter 3. There, we estab-
lish a mapping from electronic hybrid Wannier charge centers [164, 227] to photonics
and we perform a generalization of the photonic Wilson loop approach of Ref. [1]
(initially implemented for 2D scalar waves) applicable to fully 3D electromagnetic
vector fields. The results of this analysis are summarized in Figure 4.1(c): the top
panel shows the electromagnetic Chern number 𝐶𝑧 of the two lowest bands calculated
on 2D planes orthogonal to the magnetization axis. We observe a sharp discontinu-
ity Δ𝐶𝑧 = ±1 at the wavevector of each Weyl point. This is similarly reflected in
the winding of the Wilson loop eigenvalues on two selected planes, as shown in the
bottom panel. The Weyl points of the WS phase have the same frequency and occur
between bands 2 and 3. These bands directly connect to the Γ states at frequency zero,
as shown in Figure 4.1(b). Therefore the entire 𝑁𝑏𝑎𝑛𝑑 = 2 needs to be involved in the
calculation. The Weyl dipole orientation in the 3D BZ is shown in Figure 4.1(b). On
the other hand, no discontinuity is observed at Γ, confirming that the vortex singularity
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Figure 4.1: Cubic SM at 𝑁 = 𝑁𝑊 = 2. Each a,b,d,e panel shows the crystal unit cell, the irreducible
Brillouin zone (IBZ) and the corresponding band-structure (BS). Frequencies 𝑓 are given in reduced
units, |𝑎| being the scale invariant lattice parameter and 𝑐 the speed of light. Panels c and f contain
the topological characterization from analysis of the photonic Wilson loops (WL), for the system in
the Weyl semimetallic (WS) phase and in the topological insulating 3D CI phase, respectively. a: PhC
constructed from cylinders of radius 𝑟0 = 0.15 and dielectric constant 𝜀 = 16 at TRS. The three lowest
photonic modes display a three-fold degeneracy at 𝐑 and the two lowest bands are fully degenerate in the
displayed energy window. b: TRS breaking implemented via a gyro-electric response with 𝜂𝑁𝑊 =2

𝑧 = 16:
the bias field is adjusted in order to split the Weyl points of approximately half the BZ, i.e. at 𝑘±𝑧 = ± 𝜋

2|𝑎| ,
along the 𝐒𝐑𝐒′ line where 𝐒′ = 𝐒 − 𝐛𝑧. c: Electromagnetic section Chern number calculated on 2D 𝑘𝑧planes normal to the magnetization (upper panel) and transverse flow of the 𝜃𝑦 eigenvalue of the WL
matrix summed over the entire subset of 𝜈𝑜𝑐𝑐 bands lying below the local gap at 𝑘𝑧 (lower panel). The
discontinuity of the section Chern number at the wavevector of each Weyl point 𝑘±𝑧 is used a measure
its topological charge (𝑞± = 1). d: Artificial folding of the bands on a 𝑁 = 2 cubic supercell: Weyl
points superimpose at 𝐙 in the new BZ. e: Coupling and annihilation of Weyl points through a 𝑁 = 2
SM with parameter 𝑟𝑚 = 𝑟0∕20 which is graphically visualized via a colorbar where 𝑟𝑚𝑎𝑥 = 𝑟0+ 𝑟𝑚 and
𝑟𝑚𝑖𝑛 = 𝑟0 − 𝑟𝑚. This results in a topological direct gap (𝑓𝑔) at 𝐙 with gap-to-midgap (𝑓𝑔∕𝑓𝑚) ratio of
1.86%. The size of gap can be appropriately tuned by choosing the value of the modulation, as shown
in the inset. f: The section Chern 𝐶𝑧 number is constant everywhere in the BZ confirming the absence
of any gap closure and it displays unit value establishing the system to be in the 3D CI phase.

94 Chapter 4 – Results



3D Topological Photonic Crystals

Figure 4.2: Comparison of section Chern number and hybrid Wannier energy center characterization for
the WS (left) and the 3D CI (right). a,b: Section Chern number 𝐶𝑧 = 𝐶𝑧(𝐶𝑧), showing discontinuities
at the planes that intersect the Weyl nodes (𝑘±𝑧 = ± 𝜋

2𝑎 ) for the WS phase, and no-discontinuities for the
3D CI phase. c,d: Cumulative flow of the 𝑥-HWEC as a function of 𝑘𝑦, taken at fixed 𝑘𝑧. e,f: Individual
𝑥-HWEC for the𝑁𝑏𝑎𝑛𝑑 = 2 bands below the Weyl nodes and the𝑁𝑏𝑎𝑛𝑑 = 16 bands below the 3D Chern
gap.

does not affect the calculation of the section Chern number. From the discontinuity in
the section Chern number at each Weyl point, we deduce the associated topological
charge [172], confirming that 𝑞± = ±1, as predicted by the 𝐤 ⋅ 𝐩 model.

4.1.2.3 Weyl points annihilation

The k⋅p model allows us to identify a geometrical perturbation able to open a bandgap.
In Appendix A we study the coupling of the Weyl points and show that the only pos-
sible deformations of the geometrical structure leading to Weyl annihilation and to the
opening of a topological gap are lattice commensurate SMs. In particular, we find that
it is possible to independently activate the SM along the 𝑥𝑖 Cartesian directions and
couple Weyl points generated by the corresponding external magnetic field 𝐻𝑖. When
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we couple the Weyl nodes by a lattice commensurate modulation, we backfold the BZ
into a region commensurate with the Weyl node separation vector, which is a reciprocal
lattice vector in the folded BZ. The additivity of the Chern number then ensures that
every plane in the reduced BZ carries a nonzero Chern number, resulting in a 3D CI
when the gap is opened [222]. This expresses the fact that the Chern number density of
our 3D system does not change as a function of the (TR-even) SM; it simply goes from
being unquantized in the original system (necessitating the existence of Weyl points),
to being a quantized multiple of a reciprocal lattice vector in the modulated system.

4.1.3 Engineering of the 3D CI gap and its Chern vector

4.1.3.1 Three-step procedure

With this starting setup, in order to obtain 3D Chern insulating phases, we outline a
general three-step strategy:

1. First, using the external magnetic field we move the Weyl points at fractional
distances of the Brillouin zone (BZ), i.e. at positions 𝐊1,2 = 𝐑 ± 𝐗𝑖

𝑁𝑊
where

𝑁𝑊 ∈ ℕ and𝑁𝑊 > 1. In this way, in a further step, we will be able to couple and
gap the Weyl points with a commensurate modulation of a supercell structure.
Notice that larger 𝑁𝑊 are associated to smaller splittings.

2. Secondly, we fold the BZ by creating multifold (𝑁 > 1) supercells; this is
achieved by replicating the original unit cell either in a cubic supercell of dimen-
sions (𝑁,𝑁,𝑁) or in a uniaxial supercell of size𝑁 directed along the magnetic
field direction. This step of the procedure will merge the Weyl points, originally
at 𝐊1,2 in the natural BZ, to the same 𝐤 point in the new reduced BZ, forming a
four-fold degeneracy. In Appendix C, we show that fine-tuning and perfect band
folding are not strictly necessary for opening a gap at the Weyl points. This en-
dows our system with robustness and tolerance against reciprocal lattice vector
mismatches.

3. As a third and last step, we couple and gap the opposite-charge Weyl points by
spatially modulating the crystal geometry with a periodicity commensurate to
the designed supercell. More specifically, we vary the radius of the cylinders
through the entire supercell: numerically, this is achieved by locally changing
the radius of the spheres in the covering approximation, from their original 𝑟0
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radius to the new local one 𝑟(𝑥, 𝑦, 𝑧). Coherently to the choice made in the previ-
ous point 2, this is either done with a cubic modulation of the type: Δ𝑟(𝑥, 𝑦, 𝑧) =
𝑟(𝑥, 𝑦, 𝑧) − 𝑟0 = 𝑟𝑚[cos(2𝜋𝑥∕𝑁|𝑎|) + cos(2𝜋𝑦∕𝑁|𝑎|) + cos(2𝜋𝑧∕𝑁|𝑎|)] when
all the Cartesian components of the modulation are turned on or with a uniaxial
modulation, where only the component-oriented along the magnetic field is acti-
vated, e.g. Δ𝑟(𝑥, 𝑦, 𝑧) = 𝑟𝑚 cos

(

2𝜋𝑥𝑖∕𝑁|𝑎|
) for a field with 𝐻𝑖 ≠ 0 field (more

details are given in Appendix C).

Depending on the relative values of the supercell period (𝑁), the Weyl dipole splitting
(𝑁𝑤), the intensity of the SM (𝑟𝑚), and the external magnetic field direction (𝐻𝑖), it is
possible to design different tailored 3D CI phases, in particular: a cubic 3D CI with
orientable Chern vectors, a 3D CI in a reduced magnetization environment and a 3D
CI with tunable large Chern numbers. We stress that the argument of gap opening
by folding and SM is very general, and can be applied as long as the constraints of
commensurability between the Weyl displacement and the supercell size are satisfied.
Therefore, other crystal structures exhibiting a pair of Weyl points could be suited to
their annihilation via the mechanism proposed, seeAppendix C.

4.1.3.2 Cubic 3D CI

Our first objective is to design a cubic 3D CI with orientable Chern vectors. As we
will show, this can be achieved using a cubic SM with 𝑁 = 𝑁𝑊 > 1. In order to
keep the MPB simulations computationally affordable we consider the simplest case
of 𝑁 = 𝑁𝑊 = 2, which requires to separate the Weyl points to half the BZ as in
Figure 4.1(b). The effect of band folding in such a system is visualized in Figure
4.1(d): for a field oriented as𝐻𝑧, the two Weyl points superimpose to form an artificial
four-fold degeneracy at 𝐗3 ≡ 𝐙. More generally, on a 𝑁 = 𝑁𝑊 cubic supercell
and from simple folding considerations, we expect the opposite-charge Weyl points
to merge at 𝐗𝑖 when 𝑁 = 𝑁𝑊 is even, at 𝐑𝑖 − 𝐗𝑖 when 𝑁 = 𝑁𝑊 is odd, where
𝐗𝑖 =

𝐛𝑖
2
≡ 𝐗,𝐘,𝐙. From this starting point, in order to realize a cubic 3D CI phase with

orientable Chern vectors, all three Cartesian components of the cubic commensurate
modulation need to be simultaneously turned on, according to the most general relation
given previously. The resulting photonic band structure of the𝑁𝑊 = 𝑁 = 2 supercell
modulated structure is shown in Figure 4.1(e): as it can be seen, the Weyl points
annihilate and open up a gap.
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Figure 4.3: Orientability of the Chern vector C = (𝐶𝑥, 𝐶𝑦, 𝐶𝑧) ≡ 𝐶𝑥𝐱̂ + 𝐶𝑦𝐲̂ + 𝐶𝑧𝐳̂ with the external
magnetic field. a: Labeling convention of the BZ adopted in the main text, to capture all symmetry and
orientations of the designed unit cells: each point 𝐗𝑖 = 𝐛𝑖

2 is indicated according to the corresponding
primitive reciprocal lattice vector 𝐛𝑖, i.e. in a orthorhombic notation. b,c,d: Supercells of size (2, 2, 2).
Owing to cubic symmetry of the SM, a 3D Chern insulating phase can be obtained for any choice of
the magnetization along the three principal axes; shown the corresponding tetragonal IBZs for 𝐱̂, 𝐲̂, 𝐳̂
respectively.

4.1.3.3 Topological characterization

To numerically verify the topological properties of this bulk gap in our design we
compute photonic Wilson loops and analyze their winding in the BZ, via the methods
developed in Chapter 3. Our results, summarized in Figure 4.1(f), determine that the
obtained insulating phase acquires a nonzero Chern number along every plane perpen-
dicular to the magnetization axis as predicted by the 𝐤 ⋅ 𝐩 model. Since the system is
fully gapped in all the three k directions, no discontinuity is observed in 𝑘𝑖 in any of the
three section Chern numbers𝐶𝑖(𝑘𝑖), 𝑖 = 𝑥, 𝑦, 𝑧. As shown in the right panels of Figure
4.2, the 𝐶𝑧(𝑘𝑧) is indeed continuous and equal to +1 independently of 𝑘𝑧. This means
that we can identify the 𝑧 component of the Chern vector with the constant value of 𝐶𝑧
in the BZ. The same can be done for the other 𝑥 and 𝑦 components. For the example
considered here 𝐶𝑥(𝑘𝑥) = 0 = 𝐶𝑦(𝑘𝑦), and we deduce the Chern vector C = (0, 0, 1).
Therefore, by simply changing the orientation of the magnetization axis, it is possible
to select each Cartesian component in a first Chern class vector (𝐶𝑥, 𝐶𝑦, 𝐶𝑧), due to
the the cubic nature of the underlying system and modulation. Note that the existence
of three weak indices in 3D allows for more interfacing possibilities as compared to
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the 2D case, where only the trivial/TI and the opposite (or different) Chern number
combinations are realizable. The analysis of these other interfacing possibilities is left
for Section 4.1.5, dedicated to bulk-boundary correspondence.

4.1.3.4 Magnetic bias reduction

In our previous example, we required the Weyl points to be displaced to the half of the
BZ. Achieving such a condition requires large TRS-breaking parameters. In our sim-
ulations, fulfilling this requirement implied using a magnetization bias corresponding
to 𝜂𝑁𝑊 =2 = 16. Note that, to date, large gyrotropic parameters have been experi-
mentally achieved in PhCs only in the microwave frequency regime via ferri-magnetic
materials [139, 139, 228] and that the gyrotropic response of most currently known
dielectric materials is weak. Therefore, in this section, we suggest a way to reduce
the magnetization requirements for obtaining CI phase by employing multifold super-
cells and by increasing the intensity of the modulation. Instead of displacing the Weyl
points to half the BZ and applying a SM over two original unit cells, we now move the
Weyl points to a smaller fractional distance of the BZ and apply a SM over a larger
number of original supercells to merge and gap the Weyl points appropriately. The
resulting 3D CI phase still displays the same Chern number as in the maximally TRS
broken system with 𝑁 = 𝑁𝑊 = 2, but it occurs in a largely reduced magnetic field
environment due to the smaller 𝐤-space displacement of the Weyl points. For exam-
ple, making 𝑁 = 𝑁𝑊 = 3, which corresponds to a dipole separation of one-third
of the BZ and spatially modulating the structure over 3 original unit cells, one can
get the same topological phase as in the previous example. Under this construction,
the CI phase is achieved at 𝜂𝑁𝑊 =3

𝑧 = 7.8, as shown in Figure 4.4. As can be natu-
rally expected, the resulting 3D CI suffers a moderate reduction in the bandgap. But
when we compare the designs for 𝑁 = 𝑁𝑊 = 2 and 𝑁 = 𝑁𝑊 = 3, showcased in
Table 4.1, the latter offers a balanced trade-off between gap size and TRS-breaking
intensity. This is evident from the significant reduction in the needed magnetization
bias (from 𝜂𝑁𝑊 =2 = 16 to 𝜂𝑁𝑊 =3 = 7.8), making it an appealing strategy for photon-
ics where the magnetic response isn’t strong. The gyrotropic parameter can be further
lowered, detailed inAppendix C. By exploiting larger supercells like𝑁𝑊 = 5, 6, 7 and
adjusting the modulation intensity (𝑟𝑚), the bandgap decrease can be partially compen-
sated. The Chern gap, at linear order, scales with the SM intensity, as shown in Figure
4.1(e). This fact can help mitigate the bandgap reduction. Clearly, we cannot iterate
this procedure to infinity. Pushing to near-zero bias always involves a trade-off with
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Figure 4.4: 3D CI in a reduced magnetization environment. Uniaxial supercells (1, 1, 𝑁) with modula-
tion parameter 𝑟𝑚 = 𝑟0∕20 and WLs on selected planes for 𝑘𝑧∕2𝜋 = 0.3. a,b: 3D CI with C=1 at large
magnetization 𝜂𝑁𝑊 =2 = 16, corresponding to the maximum Weyl dipole separation and bandgap. c,d:
3D CI in a largely reduced magnetic environment 𝜂𝑁𝑊 =3 = 7.8. The bandgap only suffers a moderate
contraction, yet the Chern vector and the topological properties are preserved.

𝑁 = 𝑁𝑊 2 3

𝐶 1 1
𝜂 16 7.8

𝑓𝑔∕𝑓𝑚(%) 1.5 1.2

Table 4.1: Reduction of the magnetic bias and of the topological gap-to-midgap ratio. Under a large
drop in the magnetizing bias 𝜂, the bandgap suffers only a moderate reduction. Both PhCs are in the
same 𝐶𝑧 = 1 topological phase.
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Figure 4.5: Generating larger Chern numbers: annihilation of Weyl points with𝑁𝑊 = 2 over multifold
supercells of even 𝑁 . a: Unit Chern number 3D CI. b,c,d: Increasing Chern numbers 𝐶 according to
the relation 𝐶 = 𝑁∕2. Calculations performed on 1D supercells (1, 1, 𝑁) with modulation parameter
𝑟𝑚 = 𝑟0∕20 and WL on selected planes for 𝑘𝑧∕2𝜋 = 0.3.

the bandgap. Specifically, for very large 𝑁 , Weyl point splitting becomes negligible,
making it clearly challenging to open the TRS broken gap, since lim𝑁→∞ 𝑓𝑔 = 0.

4.1.3.5 Arbitrarily large Chern vectors

Lastly, we show that our design strategy can also be used to obtain 3D CIs with larger
Chern numbers. This can be achieved by modulating over even multifold supercells
with 𝑁 = 2𝑛 > 2, 𝑛 ∈ ℕ, while keeping 𝑁𝑊 = 2. The use of larger supercells
permits the folding of the BZ multiple times. In the band-folding process, the Chern
number contribution in each folded region of the BZ adds up. We thus expect the gap
resulting for such a modulated system to achieve larger Chern numbers 𝐶𝑖 according
to the following relation: 𝐶𝑖 = 𝑛. To prove this, we build uniaxial supercells of size
(1, 1, 2𝑛) with 𝑛 = 1, 2, 3, 4. These crystalline supercells are magnetized along the 𝐳̂
direction, creating Weyl points at half of the original BZ (𝑁𝑊 = 2). After folding, we
find that the Weyl points are superimposed at 𝐑 − 𝐙 ≡ 𝐒 if 𝑛 is even and at 𝐑 is 𝑛 is
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Figure 4.6: Insulating trivial interface consisting of dielectric material 𝜀𝑡𝑟𝑖𝑣 = 16 embedded in a
"plumber" Schwarz P minimal surface (SG 221) with 𝑔0 = 0.5. The trivial gap contains completely
the gap of the topological system.

odd. As a final step we activate the modulation along the 𝑧 direction. In Figure 4.5 we
calculate the Chern number of the band gaps in these systems using hybrid Wannier
energy centers and analyzing their winding in the BZ. The modulated supercells with
𝑛 = 1, 2, 3, 4 under the appropriate TRS breaking acquire, as predicted, Chern numbers
𝐶𝑧 = 1, 2, 3, 4 respectively.

4.1.4 Surface characterization

4.1.4.1 Trivial/Topological domain wall

In order to analyze the boundary response at the interface formed by a trivial insula-
tor and the 3D CI, we search for a PhC with a bandgap completely overlapping the
topological system one. Other CI/CI interfacing possibilities are discussed in Section
4.1.5. Finding a proper insulating interface is a necessary requirement in order to pre-
vent propagation of edge modes in free space due to modes living in the light cone and
to avoid the formation of defect states due to lattice mismatches: this is usually a quite
difficult task in 3D, due to limited available bandgap geometries as compared 2D. In
this work, this is achieved by means of a triply periodic minimal surface (the "plumber"
Schwarz P [229]) having the spatial symmetries of SG No. 221 and displaying a large
trivial gap. This PhC consists of an isotropic TRS dielectric material 𝜀=𝜀𝑡𝑟𝑖𝑣𝟙3 em-
bedded in the region of space defined as 𝑔(𝑥, 𝑦, 𝑧) < 𝑔0 where 𝑔0 ∈ ℝ and 𝑔(𝑥, 𝑦, 𝑧)
is the triply periodic minimal surface: 𝑔(𝑥, 𝑦, 𝑧) = cos(2𝜋𝑥∕|𝑎|) + cos(2𝜋𝑦∕|𝑎|) +
cos(2𝜋𝑦∕|𝑎|). As shown in Figure 4.6, the trivial photonic gap contains the topologi-
cal bandgap of 3D CI completely.
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Figure 4.7: a: Projected band-structure on the surface BZ with Miller index (100), for the interface
between 𝑁𝑡𝑟𝑖𝑣 = 8 cells of trivial insulator and 𝑁𝑇 𝐼 = 8 cells of TI, under a 𝐇 = 𝐻𝑧𝐳̂ field and
with unit Chern number. Edge states cross the topological gap, highlighted in the shaded region. The
extended BZ is fully displayed from −𝐙 to 𝐙, since it lacks of TRS due to the application of a 𝐳̂ directed
bias field. b: 2D dispersion of topological surface states on the projected BZ, in the energy range of the
topological bandgap. c: Equifrequency loops for a cut taken at midgap: the arrows on the plot indicate
the direction of the group velocity 𝐯𝑔 = ∇𝐤𝑓 |𝑎|∕𝑐 = (𝑣𝑦, 𝑣𝑧). Blue and red colors correspond to chiral
partners with opposite 𝑣𝑦 and same optical chirality 𝑐 which are located on opposite left/right sides of the
interface (𝐿,𝑅). d: Edge states dispersion along a direction normal to both the interface and the external
magnetic field; highlighted in circles is a pair of counterpropagating𝑚− 𝑡ℎ edge channels with ±𝑘𝑦: the
spatial profile of their total electric field is shown in two following panels. e: Counterpropagating chiral
partners located on the two opposite left/right surfaces of the sample (𝐿,𝑅): wavefront propagation in
the 𝐤 direction indicated by White arrows on a 𝑥𝑦 cross-section. f: Schematics of the conveyor belt
anomalous surface states wrapping around the Chern vector.

4.1.4.2 Anomalous Hall surface states

To keep the simulations numerically affordable, we stick to the case of a cubic supercell
with 𝑁 = 𝑁𝑊 = 2 and analyze a topological slab with normal vector oriented along
𝐱̂, in the presence of a 𝐻𝑧 field and with a unit Chern vector 𝐶𝑧 = 1. From conven-
tional bulk-boundary considerations, we expect anomalous surface states to appear on
the planes parallel to the magnetization (i.e., with normal vectors perpendicular to the
magnetization direction). Surface states are considered unidirectional in the following
sense: The component of the group velocity (or Poynting vector) normal to the magne-
tization direction has a well-defined sign i.e. surface states cannot back-scatter along
this specific direction. This component will be later denoted as a conserved component
of the conveyor belt surface state Figure 4.7(f). With this setup, we characterize the
hallmarks of unidirectional surface state propagation using a combined real-reciprocal
space analysis. Figure 4.7(a) shows the band-structure for the (100)-surface, confirm-
ing the emergence of anomalous surface states connecting the lower and upper bands
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and fully crossing the bandgap. To better visualize the surface state energy disper-
sion, in Figure 4.7(b) we consider a 3D surface plot, out of which we take the midgap
equifrequency cut shown in Figure 4.7(c). We observe the emergence of 3D Chern
Fermi Loops (FLs) which are the natural evolution of the Fermi Arcs (FAs) of the
photonic Weyl semimetallic phase. In Section 4.1.4.3, we show how the open FAs of
the WS phase evolve into the closed 3D Chern FLs as a consequence of Weyl points
annihilation. In a 3D CI, the FLs come in "disjoint" partners, that be separated in real
space, i.e. we can- associate those with positive group velocity components normal
to the magnetization to a surface of the slab and those with negative ones to the other
surface. In order to establish the relation between counter-propagating modes with re-
spect to the direction orthogonal to the magnetization axis 𝐳̂ and the interface normal
𝐱̂, i.e. 𝐲̂ = 𝐳̂ × 𝐱̂, we analyze the propagation of individual edge channels at fixed 𝑘𝑧.
As indicated by red/blue colors in Figure 4.7b–c, modes propagating with positive
transverse group velocity 𝑣𝑦 > 0 appear on one side of the topological slab, their flow
being compensated by counter-propagating 𝑣𝑦 < 0 partners located on the other sur-
face of the slab. We define chiral partners, the pair of surface states living on opposite
sides of the slab, moving with opposite components of the group velocity which is
normal to the magnetization axis. This feature is visualized in Figure 4.7b–e where
we select a pair of chiral partners for explanatory purposes and display their electric
field profile in real space on a cross-sectional view of the crystal slab. We conclude
that each disjoint piece of the surface states energy sheet in Figure 4.7(c) corresponds
to 𝑣𝑦 > 0 and 𝑣𝑦 < 0: this spatial separation of chiral partners, provided by the bulk,
is the protection mechanism which prevents the back-scattering of one state into the
other. Because of this, the presence of touching points in the dispersion between dif-
ferent chiral partners (red and blue lines in Figure 4.7(c)), is purely accidental. As so,
these crossings occur between states that reside on opposite sides of the slab and are
physically separated in real space by the bulk. Therefore they cannot gap out, up to
exponentially small finite size effects, and are protected by the spatial separation sep-
aration of chiral partners on opposite surfaces. Interestingly, even if individual edge
channels display nonzero propagation along the magnetization direction, integrating
the total contribution of entire surface states yields no net energy transport along the
bias field, as expected due to equilibrium conditions. The chiral propagation of pho-
tonic surface states was experimentally observed in the PhC realization designed by
the group of Baile Zhang [41]. To confirm the topological protection, several copper
pillars were inserted to function as metallic obstacles. They showed that, when the
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Figure 4.8: Adapted from Ref. [41]. Measured field distribution of chiral surface states. The surface
states are excited by a point source (cyan star). Comparison of the measured field distribution without
and with copper pillars (yellow rods) inserted into the sample as metallic obstacles. The samples are
biased along the z-axis. The chiral surface states can propagate smoothly around the sharp corners and
obstacles without scattering. The surface waves are mainly confined at their individual layers when
passing around the copper pillars due to the weak dispersion along the z-axis.

dispersion along the Chern vector axis is limited, the surface waves are mainly con-
fined in the vertical direction when passing around the copper pillars, and propagate
in a unidirectional fashion, see Figure 4.8.

4.1.4.3 Evolution of FAs into loops

The FLs of the 3D Chern phase originate from the FAs [230] of the starting photonic
Weyl semimetal setup as the Weyl points undergo annihilation. Figure 4.9 describe the
evolution of the FAs during the supercell folding and modulating process, for an uniax-
ial system with 𝑁 = 𝑁𝑊 = 2. Figure 4.9(a) shows the FAs of the Weyl semimetallic
phase. Opposite charged Weyl points are located at (𝑘±𝑦 , 𝑘±𝑧 ) = (±𝜋

2
, 𝜋), i.e. midway

along the 𝐒𝐑 line. After supercell folding, the Weyl points are superimposed and their
FAs display a folding as well, as in Figure 4.9(b). Finally, by turning on the SM, a gap
is opened in the BZ and the FAs sharply evolve into disjoint FLs of the 3D CI system,
as in Figure 4.9(c). This "arc" to "loop" transition was experimentally observed in
Ref. [41], as shown in Figure 4.10. In Section 4.1.3.5, we demonstrated it is possible
to achieve high Chern numbers by increasing the modulation period. We showed that
the increase in Chern number can be tracked via Wilson loop winding. More specif-
ically, according to bulk-boundary correspondence, large Chern numbers correspond
to an increase in the number of FLs on the surface’s BZ. This predicted increase in FLs
with the Chern number was confirmed in Ref. [41]. These experiments could resolve
Chern numbers up to 𝐶𝑧 = 6, confirming the possibility of increasing the Chern num-

Chapter 4 – Results 105



3D Topological Photonic Crystals

Figure 4.9: Evolution of the FAs. a: Starting FAs of the Weyl semimetal phase. b: Brillouin zone
folding. c: SM. The FAs of the Weyl semimetal are transformed into the FLs of the 3D CI system as
a result of the supercell folding and modulation. Panels d-f show that same situation from a different
point of view: first, the SM is introduced and later the Weyl points are brought together.

Figure 4.10: Adapted from Ref. [41]. FA or FL surface states, where red and blue dots represent pro-
jected Weyl points carrying opposite topological charges. To visualize these states, the field distributions
on the surface were mapped using a near-field scanning probe and, subsequently, Fourier transformed
to form surface dispersion contours.
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Figure 4.11: Adapted from Ref. [41]. Bottom: measured surface intensity for biasing magnetic field
along the 𝑧 axis at frequency 19.6 GHz. Middle: measured surface intensity extracted from bottom
panels at fixed 𝑘𝑧. Top: PhC unit cell of the PhC with increasing Chern vectors from 𝐶𝑧 = 1 to 𝐶𝑧 = 6.

ber from a starting value of 𝐶𝑧 = 1 by the addition of further modulation periods, as
shown in Figure 4.11.

4.1.5 Vectorial bulk boundary correspondence

In this section, we investigate vectorial aspects of bulk-boundary correspondence at
the interface of 3D CIs with different Chern vectors 𝐂1 ≠ 𝐂2. In particular, we ana-
lyze the emerging surface states and show what occurs when the Chern vectors across
the boundary are not parallel to each other. The analysis of interfaces where Chern
vectors have a different orientation in space allows us to promote the "scalar" bulk-
boundary correspondence (sBBC) from 2D to a "vectorial" bulk-boundary correspon-
dence (vBBC) for 3D CIs. In 2D, the Chern vector aligns orthogonal to the system’s
plane. In 3D, the quantum Hall effect in condensed matter is typically associated with
layered systems [213–220]. Since layered systems have a preferred axis, with the mag-
netic field along this axis, the vectorial nature doesn’t play any role in such a system.
However, the possibility of orienting Chern vectors in space, demonstrated in 3D PhCs
in the previous section, allows to construction of domain walls between different Chern
orientations, thus necessitating a vBBC. An illustrative case is when a domain wall has
Chern vectors orthogonal to one another, i.e., 𝐂1 ⋅ 𝐂2 = 0. We seek answers to the
following: Do individual components of the Chern vector independently contribute to
surface modes? How do multiple photonic surface modes hybridize given different
orientations of the Chern vector? Can we systematically count surface modes or pre-
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Figure 4.12: Orientability of the Chern vector along the gyrotropic axis.

dict their direction? Exploring the link between FL connectivity and the change in the
Chern vector at the interface is a primary goal of this section.

4.1.5.1 Orientable Chern vectors

The Chern vector for our 3D CI cubic model is fixed by the magnetization direction of
Equation 4.1, as shown in Figure 4.12. Therefore, by choosing gyrotropic materials,
it is possible to arrange magnetized samples in the desired configuration to construct
domain-wall interfaces.

4.1.5.2 Domain-wall planar interfaces

To analyze planar interfaces at the boundary of different 3D CIs, we construct 1D su-
percells and obtain topological slabs with normal vector oriented along 𝐱̂. In particular,
we analyze the following 3D CI/3D CI interfacing configurations:

1. 𝐂1 = 𝐶𝑧1 𝐳̂ and 𝐂2 = 𝐶𝑧2 𝐳̂, with 𝐶𝑧1 = −𝐶𝑧2 = 𝐶𝑧: anti-parallel Chern vectors,
both parallel to the interface plane. We call this configuration anti-ferromagnetic
𝐶𝑧I/𝐶𝑧I.

2. 𝐂1 = 𝐶𝑥𝐱̂ and 𝐂2 = 𝐶𝑧𝐳̂: Chern vectors orthogonal to each other, one parallel
to the interface plane, the other orthogonal to the interface plane. We call this
configuration 𝐶𝑥I/𝐶𝑧I.

3. 𝐂1 = 𝐶𝑦𝐲̂ and 𝐂2 = 𝐶𝑧𝐳̂: Chern vectors orthogonal to each other, both parallel
to the interface plane. We call this configuration 𝐶𝑦I/𝐶𝑧I.

There are two additional interface conditions: (4) The case for which 𝐂1 = 0 and
𝐂2 = 𝐶𝑧2 𝐳̂, i.e. a non-null Chern vector parallel to the interface with a trivial insulator;
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(5) The case where 𝐂1 = 𝐶𝑧1 𝐳̂ and 𝐂2 = 𝐶𝑧2 𝐳̂, with 𝐶𝑧1 = 𝐶𝑧2 = 𝐶𝑧, i.e. identical
Chern vectors, both parallel to the interface plane. Case (4) was already extensively
studied in Section 4.1.4.1 and it here is referred to as Trivial/𝐶𝑧I configuration. Case
(5) will not have protected chiral modes by the scalar bulk-boundary correspondence,
and so will not be of further interest here. However such interfaces may be interest-
ing from the point of view of higher order topology [222], and will be explored in
Section 4.2. For each interface (1)–(3), we characterize the number and propagation
direction of the emerging surface states and investigate the vectorial aspects of BBC
using a combined real-reciprocal space analysis. First, we analyze the surface states
in the frequency domain, showing the surface states energy sheets as a function of
surface momenta 𝑘𝑦, 𝑘𝑧 on the (100) plane. We then look at midgap equifrequency
cuts to extract FLs. Second, we analyze the direction of the associated group velocity
(or Poynting vector) and the spatial localization of the fields on the boundary. Note
that, for numerical convenience, we analyze only systems with unit Chern vectors, i.e.
where 𝐶𝑥, 𝐶𝑦, 𝐶𝑧 are either 1 or −1. Extending our considerations to larger Chern vec-
tors would require larger supercells that are computationally too challenging for our
resources. Nevertheless, unit Chern vectors allow us to derive general principles of
the vBBC that generalize to Chern vectors of arbitrary magnitude and direction. Fig-
ures 4.13,4.14, 4.15 summarize the surface states analysis for the 𝐶𝑧I/𝐶𝑧I, 𝐶𝑥I/𝐶𝑧I
and 𝐶𝑦I/𝐶𝑧 configurations, respectively. Each figure displays: in panel a, the orien-
tation of the Chern vectors as shown by arrows together with the unit cell of the 3D
Chern PhCs; in panels b-c, the band dispersion, for the surface states (light blue) and
for the nearby bulk bands (orange); in panel d, the equi-frequency FLs in momentum
space, with arrows indicating the direction of the group velocity (or, equivalently, the
Poynting vector [231]). Red and green lines label the localization of surface modes,
respectively, on the left or right side of the interface.

4.1.5.3 Case 𝐶𝑧I/𝐶𝑧I

In the case where the Chern vectors are anti-parallel, along 𝐳̂, and both parallel to
the interface surface, the configuration is similar to an anti-ferromagnetic arrangement
of opposite Chern numbers for a 2D system in the (001) plane [19]. Therefore, for
this simple case, we can expect sBBC to naturally extend to 3D. Specifically, when
𝐶𝑧1 = −𝐶𝑧2 = 𝐶𝑧, we have |2𝐶𝑧| chiral boundary modes. Indeed, the configuration
with anti-parallel unit Chern vectors 𝐶𝑧1 = −𝐶𝑧2 = 1 results in two co-propagating
surface states on each side of the supercell slab, as in Figure 4.13. Note that the con-
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Figure 4.13: 𝐶𝑧I/𝐶𝑧I interface. 𝐶𝑧1 = −𝐶𝑧2 = 1. Two co-propagating surface states on each side of
the slab. a: shows the orientation of the Chern vectors (by arrows) together with the PhC unit cell on
each side of the interface. The color code indicates the value of the local radius of the cylinders that
constitute the rods of the PhC. The radii of the dielectric rods are locally modulated in order to induce a
SM effect able to open up the 3D Chern gap in the underlying crystals. b shows the surface (light blue)
and bulk (orange) state dispersion as a function of 𝑘𝑦 and 𝑘𝑧 for frequencies near the topological gap.
c shows the surface state dispersion over a narrow frequency range in the bulk band gap. Green (red)
colors denote states on the right (left) interface. d shows an equi-frequency cut of the surface states.
The direction of the Poynting vector is denoted by arrows.

served propagation component for these surface states coincides with the propagation
direction of the chiral edge modes that would live in the 2D analog system. The 2D
analogy employed here works because 3D CIs can be interpreted, in a layer construc-
tion picture [45, 185], as a stack of 2D CIs.

4.1.5.4 Case 𝐶𝑥I/𝐶𝑧I

In 3D CIs, unidirectional surface states can emerge only on the planes parallel to the
magnetization [45,46,185]. Therefore, we can expect the 3D CIs with the Chern vector
normal to the interface plane (the 𝐶𝑥I side) not to contribute to the spectral flow on the
boundary. As a confirmation of this, we observe that both the surface states dispersion
and the FL displayed in Figure 4.14 constitute an adiabatic deformation of those found
on the 3D 𝐶𝑧I/trivial interface of Ref. [50]. In particular, the conserved propagation
component is determined by 𝐶𝑧 only, yielding a surface mode with velocity along 𝑘𝑦.
Effectively, the 𝐶𝑥I side does not alter the number of surface modes on the 𝐱̂ interface.
Therefore, the propagation and the spectral properties of the surface modes do not
change even when reversing the sign of 𝐶𝑥. Note, however, that the presence of a
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Figure 4.14: 3D 𝐶𝑧I/3D 𝐶𝑥I interface. 𝐶𝑧 = 1 and 𝐶𝑥 = −1. Identical when 𝐶𝑧 = 1 and 𝐶𝑥 = 1. A
single unidirectional surface state: lack of contribution from the Chern vector normal to the interface
plane. a shows the orientation of the Chern vectors (by arrows) together with the PhC unit cell on each
side of the interface. The color code indicates the value of the local radius of the cylinders that constitute
the rods of the PhC. The radii of the dielectric rods are locally modulated in order to induce a SM effect
able to open up the 3D Chern gap in the underlying crystals. b shows the surface (light blue) and bulk
(orange) state dispersion as a function of 𝑘𝑦 and 𝑘𝑧 for frequencies near the topological gap. c shows
the surface state dispersion over a narrow frequency range. Green (red) colors denote states on the right
(left) interface. d shows an equi-frequency cut of the surface states. The direction of the Poynting vector
is denoted by an arrow.
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Figure 4.15: 3D 𝐶𝑧I/3D 𝐶𝑦I interface. A single surface state propagating along (011), i.e. along
the vectorial sum of the unit Chern vectors. a shows the orientation of the Chern vectors (by arrows)
together with the PhC unit cell on each side of the interface. The color code indicates the value of the
local radius of the cylinders that constitute the rods of the PhC. b shows the surface (light blue) and bulk
(orange) state dispersion as a function of 𝑘𝑦 and 𝑘𝑧 for frequencies near the topological gap. c shows
the surface state dispersion over a narrow frequency range. Green (red) colors denote states on the right
(left) interface. d shows an equi-frequency cut of the surface states. The direction of the Poynting vector
is denoted by an arrow.

band-gap in the 𝐶𝑥I side (in this case a Chern gap) is fundamental for it to behave as
an insulator. In conclusion, due to the orientation of its Chern vector, the 𝐶𝑥I side
acts as a trivial insulator from the perspective of surface states, even though the Chern
vector itself is not zero. A𝐶𝑥I/𝐶𝑦I configuration for the same 𝐱̂ boundary can be treated
very similarly. In such a case, the FLs would be rotated in the 𝑘𝑦 − 𝑘𝑧 plane relative
to Figure 4.14 , propagating along 𝑧. These facts will be exploited in the following
subsection.

4.1.5.5 Case 𝐶𝑦I/𝐶𝑧I

In this configuration, the Chern vectors are orthogonal to each other, and both paral-
lel to the interface plane. This is a fully 3D configuration of Chern vectors, and so a
2D scalar analogy cannot be applied. To understand the correct counting of surface
modes and their propagation on the boundary, we need to consider how surface states
can hybridize with each other. Following what was observed in the previous subsec-
tions, both the 𝐶𝑦I and 𝐶𝑧I side should contribute to surface modes with, respectively,
propagation along 𝑘𝑧 and 𝑘𝑦. However, in the plot of Figure 4.15 we observe a sin-
gle surface state propagating along (011), i.e. along the vector sum of the unit Chern
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vectors. This can be understood as follows. In a layer construction picture, the surface
modes can never scatter along the propagation direction [46], but they can hybridize
along the Chern vector direction. This reasoning will be supported by topological con-
siderations and by a simple model in Section 4.1.5.6. Therefore, if we superimpose
the plot of Figure 4.14 (d), i.e. for the 𝐶𝑧I side, with a 90 degrees tilted version of
it, i.e. for the 𝐶𝑦I side, and if we allow only states on the same side of the sample to
hybridize, we obtain the FL connectivity of Figure 4.15(d). Therefore, it can now be
interpreted via a linear combination of unit Chern vectors, as summarized in Figure
4.16 b,d.

4.1.5.6 Topology of Fermi loops and vBBC

From our previous considerations, it is possible to gain more insight into the topologi-
cal properties of the FLs and infer some general statements about vBBC for the case of
a 3D CI. In Section 4.1.4.2 we showed that FLs can split in disjoint chiral partners lo-
cated on opposite sides of the interface slab [46,50], which is reproduced here as well,
as confirmed by the fields localization analysis. When residing on the same side of the
sample, overlapping FLs can hybridize giving rise to a single, continuously connected
FL, as sketched in Figure 4.16 (d–e) . The hybridization results in a local change of
Poynting vector, for each specific momentum component. However, the winding of the
resulting loop around the surface BZ is the same as that of the individual loops before
hybridization. To see how this works quantitatively, we can consider a simple model
for the interface between a 𝐶𝑧 = 1 and a 𝐶𝑦 = 1 3D Chern system, again with the
interface normal to the 𝐱̂ direction. Without any hybridization, we will have two chiral
surface modes propagating on the interface: Δ𝐶𝑧 = 1 across the interface implies the
existence of a state whose Hamiltonian can be written as 𝐻𝑧 = 𝑣𝑧𝑘𝑦, describing a chi-
ral mode propagating in the 𝐲̂ direction. Similarly, Δ𝐶𝑦 = −1 at the interface implies
the existence of a mode with low energy effective Hamiltonian 𝐻𝑦 = 𝑣𝑦𝑘𝑧, describing
a chiral mode propagating in the 𝐳̂ direction. The model employed here represents an
effective model for the dispersion of a unidirectional mode on the surface, with broken
TRS and at the lowest order in 𝐤. Ignoring any hybridization between these modes, we
can write the combined surface effective Hamiltonian as:

𝐻0 =

(

𝑣𝑧𝑘𝑦 0
0 𝑣𝑦𝑘𝑧

)

. (4.2)
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The effective Hamiltonian description allows us to find an expansion in powers of the
wave vector 𝐤 of the photonic energy bands 𝜔, able to replicate the photonic modes
dispersion obtained by numerically solving the Maxwell equations. The constant fre-
quency contours of 𝐻0 consist of one horizontal and one vertical line at each point
in the surface Brillouin zone. The two modes at frequency 𝜔 intersect at (𝑘𝑦, 𝑘𝑧) =
(𝜔∕𝑣𝑧, 𝜔∕𝑣𝑦) Furthermore, there is spectral flow from negative to positive frequency in
𝐻0, in that we can continuously follow each surface band from−∞ to+∞ in frequency.
However, the twofold degeneracy of states at (𝑘𝑦, 𝑘𝑧) = (𝜔∕𝑣𝑧, 𝜔∕𝑣𝑦) is generically un-
stable to surface perturbations. To the lowest order, we can model such a perturbation
as a constant off-diagonal term added to the effective surface Hamiltonian, Equation
4.2,

𝐻 = 𝐻0 + 𝑉 =

(

𝑣𝑧𝑘𝑦 𝑟
𝑟∗ 𝑣𝑦𝑘𝑧

)

, (4.3)

where |𝑟| parametrizes the strength of the hybridization between modes. The eigen-
frequencies of 𝐻 are given by

𝜔± = 1
2
(𝑣𝑧𝑘𝑦 + 𝑣𝑦𝑘𝑧) ±

1
2

√

(𝑣𝑧𝑘𝑦 − 𝑣𝑥𝑘𝑧)2 + 4|𝑟|2. (4.4)

We see immediately that 𝜔+ ≠ 𝜔− for any (𝑘𝑦, 𝑘𝑧), so there is no longer degeneracy
between states. The constant energy contours are now hyperbolic, just as in Figure
4.16. Although there is a gap between 𝜔+ and 𝜔− at each momentum in the surface
Brillouin zone, however, there is still spectral flow from the valence states to the con-
duction states in frequency and the edge state dispersion extends throughout the entire
gap. To see this, we can consider the line 𝑡 = 𝑣𝑧𝑘𝑦 = 𝑣𝑦𝑘𝑧 in the surface Brillouin
zone. Along this line, we have𝜔± = 𝑡±|𝑟|; Thus both𝜔+ and𝜔− interpolate from −∞
to +∞ as a function of 𝑡, consistent with the bulk-boundary correspondence. To gener-
alize this hybridization picture to interfaces with larger Chern vectors, we can employ
a circuit- or network-type analogy, where the loop states are viewed as wires. If we
consider a 𝐱̂ interface with 𝑀 loops directed along 𝑘𝑦 and 𝑁 loops directed along 𝑘𝑧,
we can picture the BZ as sort of a black box with 𝑀 leads on the left and right edges,
and𝑁 leads on the top and bottom edges. If we want to wire up this box so that current
can flow through all the leads, the only way to do this with no intersections is to have
a single wire that winds from left to right 𝑀 times and from bottom to top 𝑁 times.
Since the surface BZ has the topology of a torus, we have (𝑇1, 𝑇2) = (𝑀,𝑁), where
𝑇1, 𝑇2 denote the winding around the two handles of the surface BZ torus. Therefore,
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Figure 4.16: Topology of the FLs and their hybridization. Solid and dashed lines label states residing
on opposite side of the sample. Thick and thin lines indicate states before and after hybridization,
respectively. a: FLs with (𝑇1, 𝑇2) = (0, 1). b,c: FLs with (𝑇1, 𝑇2) = (1, 1) before and after hybridization.
d,e) FLs with (𝑇1, 𝑇2) = (2, 1) before and after hybridization.

given a difference of Chern numbers equal to:

Δ𝐂 = 𝐂1 − 𝐂2 = (𝐶𝑥1 − 𝐶𝑥2 ,−𝑀,𝑁), (4.5)

we can expect 𝑀 = 𝐶𝑦1 − 𝐶𝑦2 loops directed along 𝑘𝑦 and 𝑁 = 𝐶𝑧1 − 𝐶𝑧2 loops di-
rected along 𝑘𝑧, since, as observed in Section 4.1.5.4 , the individual values of 𝐶𝑥 do
not contribute to any mode on a 𝐱̂ interface. In conclusion, the non-zero components
of the discontinuity of Chern vectors parallel to the interface correspond to the wind-
ing numbers of the surface FLs around the two handles of the surface BZ torus, which
completes our vBBC picture for 3D CIs. A (𝑀,𝑁) = (2, 2) type of interface configu-
ration was experimentally constructed by the group of Baile Zhang [41] in their vBBC
demonstration experiment. Note that the symmetry of a FL in 𝐤 is not a universal
property and depends on the geometry of the crystal. As discussed inAppendix C, the
BBC relations are not modified by an asymmetry of the FLs. As well, we stress that the
number of loops is not the topologically protected quantity. vBBC only establishes a
link between the Chern vector discontinuity and the winding of the FLs on the surface
BZ, not with their number. For example, two FL states propagating along 𝑘𝑦 and 𝑘𝑧, as
represented in Figure 4.16(b), are topologically equivalent to a single FL propagating
along a tilted direction, as in Figure 4.16(c): their winding across the two handles of
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Figure 4.17: The interface between two photonic 3D Chern insulators with perpendicular Chern vectors
and magnetic field applied along the diagonal formed by the sum of the two Chern vectors. The FLs
wrap around the surface BZ torus to form a (2, 2)-torus link (Hopf link).

the BZ is the same, and thus the net propagation direction. This is important because
it means that surface states on the same surface of the slab are allowed to scatter and
interfere, changing the counting of closed loops on the BZ. Due to topological protec-
tion, the scattering result is still a closed loop, with the same number of crossing points
for a fixed momentum line and the same winding across the BZ. Finally, note that the
vBBC conditions derived here can also be applied to diagonal orientations of the in-
terface normal with respect to the Chern vector, provided moving in a new reference
frame. In these regards, a detailed explanation of the vBBC for diagonal cuts of the
crystal is provided in Appendix C, where a guiding example is provided.

4.1.6 Discussion and outlook

In this section, we developed a strategy to induce the annihilation of Weyl points
through cubic and multifold SMs, allowing us to achieve a photonic 3D CI phase
with the following novel characteristics: high Chern numbers, reduced magnetic con-
straints, and orientable Chern vectors. We showed that 3D CI photonic phase obtained
displays anomalous surface states on the planes orthogonal to the net magnetization,
with non-reciprocal properties. As a remarkable signature of this, we observed the
formation of disjoint equifrequency loop structures associated to the spatial separation
of chiral and counter-propagating partners. The closed loops emerge from the open
FAs of the Weyl semimetal phase, as a result of the topological transition into the 3D
Chern insulating phase. From the analysis of interfaces where Chern vectors have a
different orientation, we could discuss vectorial aspects of bulk-boundary correspon-
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dence, establishing a link between the Chern vector discontinuity and the winding of
the FLs on the surface BZ. More in detail, we targeted the following three topological
features: First, arbitrarily large Chern numbers can be achieved by design, allowing for
multi-modal propagation of topological surface states [98], [211]. On the one hand,
the system with Chern number 𝑁 supports 𝑁 equifrequency loops. These 𝑁 equifre-
quency loops are compressed into a folded BZ that is 1∕𝑁 the size of the original BZ.
In this sense, if we are interested in quantities integrated over the BZ, we cannot ex-
pect an increase in extensive quantities such us the total field intensity. However, if
we are interested in addressing states at a particular wavevector, which is a reasonable
constraint in photonic systems, then the modulation has allowed us to address 𝑁 chi-
ral surface modes with equivalent reciprocal lattice vectors, i.e. achieve unidirectional
multiple surface mode operation. The capability of designing photonic systems with
large Chern numbers in 3D could find interesting applications in the development of
the emergent field of topological lasers [88,232] with a larger number of unidirectional
surface states. Second, we showed the TRS breaking parameters required to induce this
3D CI phase can be substantially diminished by the use of larger supercells, which can
enable the realization of a 3D CI phase in photonic systems where the magnetic re-
sponse is weak or it is not possible to manipulate largely the Weyl points in the BZ.
We also intend to emphasize that the strategy we devised in our method is material
agnostic, and can be easily adapted to any to-be-discovered experimental platform. In
that sense, our work provides a roadmap to future experimental exploration of topolog-
ical PhCs by showing how to reduce the needed magnetic response. Third, we showed
that any element of the first Chern class vector can be selected by simply changing the
magnetization direction, allowing for unique 3D CI/3D CI interfacing combinations as
compared to 2D. This allowed us to investigate vectorial aspects of bulk-boundary cor-
respondence for photonic 3D CIs with Chern vectors differently oriented in space. We
showed that, for a 3D CI crystal, the Chern vectors across the interface no longer need
to be parallel or anti-parallel to each other, which may render the scalar analogy with
2D difficult to apply. We concluded that vectorial features of the BBC need to be taken
into account to correctly capture the number and the propagating properties of the pho-
tonic surface modes, in perspective of promoting sBBC from 2D to a vBBC for 3D CIs.
Specifically, we analyzed the variety of possible surface states that can emerge on the
boundary of photonic 3D CIs, depending on the orientation of Chern vectors across,
and with respect to the interface. We showed that: (1) Any discontinuity in the Chern
vector components normal to the plane of the interface does not contribute to the num-
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ber of surface modes; (2) Multiple unidirectional photonic surface modes arising from
different Chern vectors across the interface can hybridize with each other, preserving
their winding around the surface BZ; (3) The number and propagation direction of the
surface modes can be related to a difference of Chern vectors parallel to the interface.
Our observations can summarized via the following statement: the winding numbers
of the surface FLs around the surface BZ correspond to the non-zero components of
the discontinuity of Chern vectors parallel to the interface. In other words, we derived
a link between a bulk topological quantity, the Chern vector, and a boundary observ-
able, the winding of the FLs on the surface, which completes the vBBC picture for
3D CI PhCs. The present work remains open to new developments and research lines:
First, as already noted in the previous sections, a 3D CI can be thought of as a stack of
2D CIs from a layer construction point of view [45, 185]. An obstruction in this layer
structure across the interface can give rise to extra chiral boundary modes [65, 222],
even without a discontinuity in the Chern vector [222], beyond what is expected from
a simple extension of 2D sBBC to 3D. The concept of obstructed 3D Chern Insulators
(o3D CI) and their chiral photonic hinge modes will be explored in the next section.
Moreover, our analysis was performed using 1D linear supercells, due to numerical
limitations. However, more complex supercells and Chern vector configurations may
be worth to be considered (2D rod-, 3D core- geometries made of 3D CIs, etc.). An
interesting design could consist of 3D CI arranged around a trivial core with Chern
vectors pointing inwards (e.g. fixing a 3D +𝐶𝑥I on a left 𝐱̂ panel). Such a 3D in-
terfacing arrangement, originally proposed in Ref. [46] as a possible realization of a
magneto-electrical (ME) coupler in the field of electronics, has not yet a realization or
equivalent in photonics. Analysis of all these designs is left for further investigation.

4.2 Photonic Axion Insulator

Axion insulators (AXIs) [48, 51–57, 57–59, 59–68] are 3D inversion ()-symmetric
magnetic Higher-Order Topological Insulators (HOTIs) [233,234] which induce vari-
ous topological magnetoelectric effects, such as the quantized magneto-optical Faraday
and Kerr rotation, the image magnetic monopole effect, and half-quantized surface Hall
conductance [56–59]. The topological properties of AXIs arise from the quantization
of their electromagnetic coupling term, the so-called topological 𝜃-angle [48, 51, 52],
which is pinned to 𝜋 in presence of -symmetry (or other 𝜃-odd operations such as
roto-inversions and time-reversed rotations). [235]. AXIs are of significant interest
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because, acting as HOTI, they are able to support hinge-localized chiral modes, which
propagate in the form of unidirectional axionic channels [236–238]. These hinge-states
are expected to emerge at the 1D facets of an AXI crystallite or in the presence of 1D
dislocations in the AXI lattice, where gradients of the 𝜃 angle arise, inducing the for-
mation of axionic strings [59, 237, 239]. Recent studies [59, 65] have shown that the
chiral propagation of the AXI hinge-localized modes is highly tunable. Especially in
the presence of a ferromagnetic order, it is possible to switch between different hinge-
mode configurations via external magnetic control, allowing magnetic re-routing of
conducting channels from one input into one or more outputs. In the context of PhCs
(PhCs), this remarkable property of AXIs could allow for magnetic manipulation, guid-
ing, and rerouting of the 1D non-reciprocal flow of light, with relevant applications for
optical communication technologies and for the development of magnetically-tunable
photonic switch devices. So far, no proposals have been presented for axion-based
PhCs or axion-protected light propagation. In addition to this, recent studies have sug-
gested that AXI materials may be capable of detecting axion-like particles, that con-
stitute dark-matter candidates [240–242]. This is due to the fact that emergent axionic
excitations in AXI couple with electromagnetism,  ∝ 𝜃𝐄 ⋅ 𝐇, similar to the axion
(𝑎)-photon coupling observed in high-energy physics for light dark-matter, which fol-
lows  ∝ 𝑎𝐄 ⋅ 𝐇. In PhCs, photons can interact with external magnetic fields via
gyrotropy, they display a non-zero effective mass, and they are wavelength-tunable via
lattice size-scaling, all of which are essential ingredients for the realization of an ax-
ion haloscope [240,243–245]. The demonstration of an AXI in a PhC could represent
an opportunity to bridge these two different approaches in the study of axion-photon
coupling. Despite the theoretical significance and potential applications of AXIs, no
proposals have been put forward yet for their implementation in PhCs: this section
aims to propose and demonstrate the first theoretical model and general design strat-
egy for photonic AXIs in 3D PhCs. To induce axionic band topology ina 3D PhC,
we incorporate a phase obstruction in the SM of the dielectric elements within gy-
rotropic Weyl PhCs [42,50]. The SM is designed as an -symmetric, static, geometric
deformation of the PhC lattice, enabling an experimental implementation of the PhC
without necessitating any dynamic driving. Serving as a photonic analog of a Charge-
Density-Wave (CDW) [222,238,246,247], the SM couples Weyl points with opposite
topological charges while maintaining the -symmetry of the model. The resulting
AXI is dubbed relative, because it is only exhibited at the interface of two PhCs with
a quantized relative axionic angle 𝛿𝜃 and vanishing relative Chern numbers. This ap-
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proach is grounded in the concept that a dislocation of the CDW phase in a specific
class of -symmetric Weyl Semimetals (WS) acts as a source of axion field gradi-
ents [222, 238, 239]. Consequently, the domain wall separating the phase-obstructed
CDW-WS can be interpreted as the critical point between a trivial insulator and an
AXI. By employing this strategy, we successfully realize a photonic relative Axion
Insulator (rAXI) in a realistic gyrotropic setup. By inserting planar dislocations in the
SM phase, we bind 1D chiral channels on -related hinges, that provide a PhC realiza-
tion of an axion domain wall protected by -symmetry. Remarkably, the 1D channels
supported by the rAXI are buried in a fully connected 3D dielectric structure, thus
protected from radiation through the electromagnetic continuum [248]. This design
not only represents the first instance of a tunable HOTI with chiral hinge states in 3D
PhCs [19], but the observed 1D-modes are also consistent with a single, unidirectional
axionic channel that wraps around the central phase-obstructed core, endowing the
photonic hinge-channels with non-reciprocal propagation properties. Lastly, we pro-
pose a physically viable method for manipulating these axionic hinge modes by con-
trolling the PhC gyrotropic response using a small external magnetic bias. Specifically,
we induce gyrotropy-induced transitions in the photonic AXI, which can function as an
efficient topological switch between various 1D photonic fiber configurations. Interest-
ingly, recent experimental advancements in 3D gyrotropic crystals have demonstrated
that manipulating Weyl points via external fields is possible, with a high degree of
control and intensity [41,249]. These findings suggest the possibility of manipulating,
directing, and deviating the 1D non-reciprocal flow of light in a photonic AXI using
state-of-the-art experimental setups. The capability of manipulating the HOTI hinge
states in the photonic AXI via gyrotropy underscores the potential of the proposed
design for creating magnetically tunable photonic switch devices, thereby paving the
way for advancements in axion-based photonics. These ideas were initially presented
in our recent theoretical work, "Axion Topology in PhC Domain Wall" [36].

4.2.1 Inversion-symmetry pinning

Our starting setup for inducing photonic AXI band topology consists of an-symmetric
gyrotropic PhC [42,223,250] under an external magnetic field H = (0, 0,𝐻𝑧), as shown
in Figure 4.18(a). The starting point is the Weyl PhC studied in the previous chapter at
Section 4.1.2. However, differently from before, we now want to preserve-symmetry,
the fundamental symmetry for inducing AXI topology. As we already discussed in Sec-
tion 4.1, in the presence of a gyroelectric medium the external magnetic field induces
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an off-diagonal imaginary component in the permittivity tensor [9, 10], as expressed
by Equation 4.1, where 𝜂𝑧 = 𝜂𝑧(𝐻𝑧) is the bias-dependent gyroelectric parameter. As
a consequence of TRS breaking due to gyrotropy, a photonic Weyl dipole is generated
in the Brillouin zone, along the direction of the𝐻𝑧 magnetic field, as shown in Figure
4.18(a). The Weyl dipole separation increases proportionally to the external 𝐻𝑧 and
can be magnetically tuned. In order to emulate the effect of a CDW in condensed-
matter systems [236, 238, 246] to open a topological gap, we introduce a 𝑧-directed
SM of lattice period 𝑁 ∈ ℕ and 𝑁 ≥ 2, commensurate with the Weyl dipole sepa-
ration 𝐐 = 𝐪+ − 𝐪−, where 𝐪± are the locations of Weyl points with chirality ±1 in
Brillouin zone. Accordingly, we fix the Weyl points of opposite topological charge at
approximately 𝐪± = (𝜋, 𝜋, 𝜋 ± 𝜋∕𝑁). This results in a folding of the BZ, as shown
in Figure 4.18(b), and couples the Weyl points to open a non-trivial gap, as shown in
Figure 4.18(c). The SM is introduced as a local deformation Δ𝑟 of the radius 𝑟 of the
dielectric rods, according to the relation:

Δ𝑟 = 𝑟𝑚cos(2𝜋𝑧∕𝑁|𝑎| + 𝜙), (4.6)

where |𝑎| is the lattice parameter of the starting PhC, while 𝑟𝑚 and 𝜙 control, respec-
tively, the amplitude and the phase of the dielectric modulation. Note that this rep-
resents a static geometric deformation of the PhC structure which can be stably im-
plemented during the fabrication process and does not require any dynamical driving.
The 𝜙 phase of the SM is the fundamental design parameter that we will set in order
to induce axionic band topology. For the purpose of preserving the -symmetry of the
unperturbed PhC of Figure 4.18(a), which is crucial for axion behavior, we pin the
modulation at the -center and target only two specific values of the SM phase: 𝜙 = 0
and 𝜙 = 𝜋. The corresponding modulated dielectric structures are shown in Figure
4.18(c–d) in a 3D rendering, and in Figure 4.19 in a side view, for a𝑁 = 3 modulation
period. We observe that both 𝜙 = 0 and 𝜙 = 𝜋 phases display the same insulating
spectrum. However, we will now demonstrate that their 3D photonic bulk gaps ex-
hibit a different topological obstruction in the -symmetry indicators associated to the
quantization of their relative axion angle 𝛿𝜃.

4.2.2 Transversality-enforced TB for the rAXI

In this section, we develop a TETB model [250] of the photonic rAXI with the methods
described in Chapter 3. The model, enabling the simulation of the electromagnetic re-
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Figure 4.18: Effect of a SM on the photonic Weyl bands. The left panels show the PhC geometry and the
reduced frequencies 𝑓 |𝑎|∕𝑐, where 𝑐 is the speed of light and |𝑎| the scale-invariant lattice parameter,
obtained by solving numerically the Maxwell equations. The right panels show the square root of the
transversality-enforced tight-binding model eigenvalues √𝜆, consistent with the mapping between the
Schrödinger and electromagnetic wave equations, that relates energies and frequencies quadratically
(𝜆 ∼ 𝜔2, see [250]). In these plots, we show the 𝑘𝑧 line, for fixed 𝑘𝑥 = 𝜋 and 𝑘𝑦 = 𝜋. Weyl points
which are separated by a |𝐐| = 2𝜋∕𝑁 distance in momentum space as in panel a, are superimposed on
an artificial supercell in panel b, and then coupled by a commensurate SM of period 𝑁 = 2𝜋∕|𝐐| as
in panels c–d. The supercell amplitude is 𝑟𝑚∕𝑟0 = 1∕20 for the PhC and 𝑉4𝑐 = −𝑉4𝑏 = 1∕150 for the
TETB. The relative gyrotropic parameter is 𝜂𝑧 = 7.8 for the PhC, which corresponds to an adimensional
magnetic perturbation of 𝐻𝑧 = 5.45 in the TETB. Panel c and d differ solely for the angular phase of
the SM 𝜙, with 𝜙 = 0 in panel c, and 𝜙 = 𝜋 in panel d.
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Figure 4.19: 3D photonic rAXI resulting from a 𝑁 = 3 periodic SM imposed on a gyrotropic Weyl
photonic semimetal (side view). The SM acts as a local deformation of the diameter of the dielectric
rods. The 𝑧-directed modulation is along the magnetization axis. The SM is centered at the inversion
center of the unperturbed lattice: panels (a and b correspond to an angular phase 𝜙 of the SM of 0 and
𝜋, respectively.

sponse of the photonic rAXI, allows the demonstration of HOTI bulk-hinge correspon-
dence of the rAXI through cost-effective calculations of large-scale rod geometries.
Moreover, it facilitates efficient computation of the axion topological invariants and
provides an analytical model that is well-suited for identifying symmetries in the topo-
logical phase, while capturing and regularizing the Γ-point electromagnetic obstruc-
tion that arises due to the transversality constraint of the Maxwell equations [23,250].
Before the introduction of the 𝑧-directed external magnetic field and SM, the crystal
structure belongs to SG #224 (𝑃𝑛3̄𝑚) [42,50,250]. The symmetry content of the pho-
tonic bands can be deduced by analyzing the Bloch electric modes (E), obtained in
MPB via numerical solution of the Maxwell equations. The E field transforms as a
vector:

𝑔E(r) = (𝑅E)(𝑅−1(r − t)), (4.7)
for each SG operation 𝑔 = {𝑅|t}, where𝑅 is a point group element and t a translation.
For each band 𝑛with𝜔 ≠ 0 and every high-symmetry point 𝐤ℎ, we compute the 𝑥𝑛,𝐤ℎ(𝑔)
diagonal elements of the representation matrix corresponding to 𝑔 in the little group
of 𝐤ℎ, from the overlap integrals:

𝑥𝑛,𝐤(𝑔) = ⟨𝐄𝑛,𝐤ℎ|𝑔𝐃𝑛,𝐤ℎ⟩ (4.8)
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Figure 4.20: TETB for the non-magnetic case. a: Photonic bands and associated dielectric structure
of the 3D PhC with SG 𝑃𝑛3̄𝑚 (No. 224). Irreps are labeled at HSP according to BCS notation. b:
Band structure of the TB model built from the photonic pseudo-orbitals. The bands enclosed by the
green-shaded region belong to the additional modes included to regularize the symmetry content at Γ.
c: TETB obtained after applying the spectral mapping and imposing the transversality constraint.

where 𝐃 = 𝜀𝐄 is the displacement field and 𝜀 the dielectric constant. From Schur’s Or-
thogonality Relations [152], we are able to extract the symmetry vector 𝐯𝑇 that gives
the multiplicity of each irreducible representation (irrep) in the little group of each
high symmetry point. We label the irrep according to the notation of Bilbao Crystal-
lographic Server (BCS) [202] This analysis returns, for the six lowest-electromagnetic
modes:

𝐯𝑇 = [(■)2𝑇 + Γ−
2 + Γ−

4 , 𝑅
−
4 + 𝑅+

5 , 𝑀1 + 2𝑀4, 𝑋1 +𝑋3 +𝑋4] (4.9)

where (■)2𝑇 indicates the irregular symmetry content at Γ and 𝜔 = 0 arising from
transversality of the electromagnetic waves [23, 250], with ()𝑇 labeling the transverse
bands. The entire transverse bundling procedure is described in Section B.1. A symmetry-
constrained, tight-binding Hamiltonian 𝐻(k) can be constructed for these transverse
photonic bands, via the TETB methods proposed in Chapter 3. This approach involves
the introduction of auxiliary longitudinal modes 𝐯𝐿, which can regularize the Γ-point
obstruction, such that 𝐯𝑇+𝐿 = 𝐯𝑇 + 𝐯𝐿 is regular. By exploiting a formal mapping be-
tween the Schrödinger and electromagnetic wave equations, which relates energies and
frequencies quadratically (𝜆 ∼ 𝜔2), a TETB model is developed enforcing the lowest
set of longitudinal bands at 𝜔2 ≤ 0, resulting in the 𝐯𝑇 = 𝐯𝑇+𝐿 − 𝐯𝐿 transverse vector
capturing all the symmetry, topology and energetic features of the active bands in the
PhC. For the specific 𝐯𝑇 of Equation 4.9, this can be achieved via

𝐯𝑇+𝐿 = 𝐴2𝑢@4𝑏 + 𝐴2𝑢@4𝑐. (4.10)

with 𝐯𝐿 = 𝐴1@2𝑎, where the decomposition is done in terms of Elementary Band Rep-
resentations (EBRs), which constitute the trivial atomic limits induced by localized or-
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Parameters Value
𝛼1 0.306159
𝛼2 0.123753
𝑎1 0.157927
𝑎2 -0.064197
𝑟2 0.068848
𝑠2 -0.100771
𝑤2 0.022712
𝑎3 0.035449
𝑟3 -0.041474

Table 4.2: Parameters of the TB Hamiltonian for SG 𝑃𝑛3̄𝑚 (No. 224).

bitals at a specific Wyckoff position, as in the notation of BCS. This results in a 8-band
model, from 𝐴2𝑢 photonic pseudo-orbitals at Wyckoff position 4𝑐 ∶ (1∕2, 1∕2, 1∕2)
and 4𝑏 ∶ (0, 0, 0), both with site-symmetry group 3̄𝑚. This gives rise to a TB Hamil-
tonian, which can be expressed as a 8 × 8 matrix 𝐻(k), where the symmetry of the
crystal constrains the functional dependence on k. The analytical expression of the
𝐻(k) Hamiltonian, obtained including interactions up to third-nearest neighbors, is
shown in Equation D.5 ofAppendix B. The resulting Hamiltonian 𝐻(k) can be writ-
ten in terms of nine free, real parameters: 𝛼1 and 𝛼2 are on-site energies, while the
six remaining parameters are first (𝑎1), second (𝑎2, 𝑟2, 𝑠2, 𝑤2) and third (𝑎3, 𝑟3) near-
est neighbor hoppings. The free parameters in the Hamiltonian are fitted to the band
structure of the crystal, shown in Figure 4.20, while forcing the auxiliary nonphysi-
cal longitudinal bands to have negative eigenvalues. The result is given in Table 4.2.
We perform the fitting using a least-square minimization routine at all HSPs. The cost
function is a multiobjective, multivariable function, which measures the distances be-
tween the square of the frequencies computed numerically in MPB for the PhC and
the eigenvalues of the TETB for each irrep. The objective vector contains the multiple
distances, while the variables are the TB coefficients. Specifically, we use the least-
squares function of the scipy.optimize package in Python [251]. The eigenvalues of the
TB model are shown in Figure 4.20. The longitudinal bands are in the green-shaded
region and represent the negative eigenvalues, detached from the physical, transverse
ones. Finally, we take the square root of the eigenvalues (𝜆 = 𝜔2) and discard the lon-
gitudinal bands, obtaining the physical band-structure shown in Figure 4.20. One can
see that the TETB model reproduces the MPB band structure of the crystal accurately
for the six lowest energy bands, both in their dispersion and symmetry content.
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Figure 4.21: TETB for the magnetic case. a: Photonic bands and associated dielectric structure of the
3D PhC with SG 𝑃𝑛3̄𝑚 (No. 224). Irreps are labeled at HSP according to BCS notation. b: Band
structure of the TB model built from the photonic pseudo-orbitals. The bands enclosed by the green-
shaded region belong to the additional modes included to regularize the symmetry content at Γ. c:
TETB obtained after applying the spectral mapping and imposing the transversality constraint.

4.2.2.1 Gyrotropy

The introduction of a 𝑧-directed gyromagnetic bias gives rise to a topological charge-1
Weyl dipole oriented along the 𝑘𝑧 axis. In the TETB, gyrotropy can be modeled via
non-minimal coupling to an external magnetic field H:

𝐻(k,H) = 𝐻(k) + 𝑓 (k,H), (4.11)

where the function 𝑓 (k,H) should respect the symmetries of the crystal, H transform-
ing as a pseudovector. Non-minimal coupling is adopted, due to the uncharged nature
of photons, which prevents the use of Peierls substitution. The H = (0, 0,𝐻𝑧) field
is tuned in order for a Weyl dipole to form along the 𝑘𝑧 line, with a separation of
|𝐐| = |𝐪+ − 𝐪−| = 2𝜋∕𝑁 and 𝑁 ∈ 𝑁 and 𝑁 ≥ 2, as shown in Figure 4.18(a). To
model this phenomenon via the TETB, we will use a first-order perturbation in H, with
the magnetic field directed along the 𝑧 axis. As a result of the constraints (3.53) and
(3.54), the linear coupling to the magnetic field depends on five free, real parameters:
𝛿1 for first-nearest neighbor hopping terms, and 𝛿2, 𝛽2, 𝜅2 and 𝜖2 for second-nearest
neighbor hoppings. Due to symmetry constraints, first-order linear perturbation does
not affect the third nearest neighbor hoppings. The corresponding magnetic TETB per-
turbation 𝑓𝑀 (k,H) is given in Equation D.9 ofAppendix B. Now, the new parameters
need to be adjusted to fit the MPB band structure of the crystal affected by the static
magnetic field (shown Figure 4.21).

As in the previous section, we apply the same minimization routine over the
new parameters, keeping the last TETB parameters (Table 4.2) unchanged. We obtain
the values shown in Table 4.3 for the perturbation. Figure 4.21 displays the eigenval-
ues of the perturbed TETB model with a magnetic field along 𝑧. Again, the longitu-
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Parameters Value
𝛿1 0
𝛿2 0.001
𝛽2 −0.001
𝜅2 0.001
𝜖2 −0.001

Table 4.3: Parameters of the linear function 𝑓𝐿(k,H).

Figure 4.22: Position of the Weyl point obtained from MPB and TB model for a crystal with SG 𝑃𝑛3̄𝑚
(No. 224) in perfect agreement with Ref. [50]. a: Weyl point at exactly half the MA line for the MPB
computations. b: Weyl point situated at exactly half the MA line for the TB model.

dinal auxiliary bands are kept in the green-shaded region, showing that they continue
to be negative even in the presence of the magnetic field. Finally, using 𝜆 = 𝜔2, the
longitudinal modes are discarded, obtaining the physical band-structure shown in Fig-
ure 4.21 that closely matches the one obtained through the electromagnetic numerical
simulations of the PhC Figure 4.21. Note that in the MPB simulations, the applied
magnetic field generates a pair of Weyl points [50], one of them halfway along the MA
high symmetry line. As shown in Figure 4.21, the TETB model exactly replicates this
behavior.

4.2.2.2 Supercell modulation

Starting from the 𝐻(k,H) magnetic Hamiltonian, we consider an additional pertur-
bation aimed at capturing the effect of a SM of the dielectric elements. The SM is
introduced in the TETB via a simple onsite supercell-modulated potential, that mim-
ics the local electromagnetic energy redistribution in the modulated dielectric rods:

𝐻Δ(r,H) = 𝐻(r,H) +
∑

𝑖
𝑉𝑖 cos

(

2𝜋𝑧𝑖
𝑁|𝑎|

+ 𝜙
)

𝑐†𝑖 (r)𝑐𝑖(r), (4.12)

where 𝐻(r,H) is the real-space TETB Hamiltonian for the magnetic system before
modulation, |𝑎| is the lattice parameter of the crystal before modulation, and 𝑉𝑖 and 𝜙
parameterize the amplitude and the phase of the modulation, respectively. Note that
the sum in Equation 4.12 runs over all the basis pseudo-orbitals used in the TETB
model, i.e., the pseudo-orbitals placed at Wyckoff positions 4𝑐 and 4𝑏. Since these po-
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sitions are related by symmetry, the amplitude of the modulation in the positions inside
a Wyckoff position should be equal. We will call them 𝑉4𝑐 and 𝑉4𝑏, respectively. How-
ever, since the maximal Wyckoff position 4𝑏 and 4𝑐 cannot be adiabatically deformed
into each other without breaking the symmetry of the model, we have the additional
freedom of choosing the relative sign of their modulation amplitude, 𝑉4𝑏 and 𝑉4𝑐. Jus-
tified by the fact that the Wyckoff positions 4𝑐 fall inside the dielectric elements, while
the Wyckoff positions 4𝑏 are in the air region, we decide to adopt the convention where
the on-site potentials on 4𝑏 and 4𝑐 are opposite in sign, i.e. 𝑉4𝑐 = −𝑉4𝑏 > 0, consistent
with regions of higher and lower electromagnetic energy concentration. As shown in
Figure 4.18(c), the effect of the SM is correctly captured by the transverse modes of
the TETB after the introduction of the on-site potential, which results in the opening of
a 𝐶𝑧 = 1 gap. As we will demonstrate now, the supercell-modulated pseudo-orbitals
of the TETB induce all the irreps of the supercell-modulated PhC band-structure, rep-
resenting an exact representation for the 𝐯̃𝑇𝜙 electromagnetic modes bellow the gap, ̃
standing for the symmetry vector after modulation. We express the symmetry vec-
tor in the notation of MSG #2.4 (𝑃 1̄), which is the symmetry of the crystal after the
introduction of the 𝐻𝑧 magnetic bias, the -symmetric SM, and the off-axis ℎ𝑥,𝑦 per-
turbation. For the geometry-modulated PhCs, we find:

𝐯̃𝑇𝜙=0 = [(■)2𝑇 + 2Γ+
1 + 2Γ−

1 , 2𝑅
+
1 + 4𝑅−

1 , 3𝑇
+
1 + 3𝑇 −

1 , 3𝑈
+
1 + 3𝑈−

1 , 2𝑉
+
1 + 4𝑉 −

1 ,

3𝑋+
1 + 3𝑋−

1 , 3𝑌
+
1 + 3𝑌 −

1 , 3𝑍
+
1 + 3𝑍−

1 ](4.13)
and

𝐯̃𝑇𝜙=𝜋 = [(■)2𝑇 + 2Γ+
1 + 2Γ−

1 , 2𝑅
+
1 + 4𝑅−

1 , 3𝑇
+
1 + 3𝑇 −

1 , 3𝑈
+
1 + 3𝑈−

1 , 4𝑉
+
1 + 2𝑉 −

1 ,

3𝑋+
1 + 3𝑋−

1 , 3𝑌
+
1 + 3𝑌 −

1 , 3𝑍
+
1 + 3𝑍−

1 ](4.14)
On the other hand, for the onsite-modulated TETB, we obtain:

𝐯̃𝑇+𝐿𝜙=0 = [4Γ+
1 + 8Γ−

1 , 5𝑅
+
1 + 7𝑅−

1 , 6𝑇
+
1 + 6𝑇 −

1 , 6𝑈
+
1 + 6𝑈−

1 , 5𝑉
+
1 + 7𝑉 −

1 ,

6𝑋+
1 + 6𝑋−

1 , 6𝑌
+
1 + 6𝑌 −

1 , 6𝑍
+
1 + 6𝑍−

1 ]
(4.15)

and
𝐯̃𝑇+𝐿𝜙=𝜋 = [4Γ+

1 + 8Γ−
1 , 5𝑅

+
1 + 7𝑅−

1 , 6𝑇
+
1 + 6𝑇 −

1 , 6𝑈
+
1 + 6𝑈−

1 , 7𝑉
+
1 + 5𝑉 −

1 ,

6𝑋+
1 + 6𝑋−

1 , 6𝑌
+
1 + 6𝑌 −

1 , 6𝑍
+
1 + 6𝑍−

1 ]
(4.16)
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The TETB therefore captures a double band inversion occurring at the 𝑉 = (𝜋, 𝜋, 0)
point, between the system with 𝜙 = 0 and 𝜙 = 𝜋. After having identified the irregular
irrep content at Γ, as (■)2𝑇 = −Γ+

1 + 3Γ−
1 , consistent with symmetry-constrained

decomposition for point group 1̄ as in Refs. [23,250], we can split the TETB as follows:
𝐯̃𝑇+𝐿𝜙 = 𝐯̃𝑇𝜙 + 𝐯̃𝐿𝜙 , where:

𝐯̃𝐿𝜙=0,𝜋 = [3Γ+
1 + 3Γ−

1 , 3𝑅
+
1 + 3𝑅−

1 , 3𝑇
+
1 + 3𝑇 −

1 , 3𝑈
+
1 + 3𝑈−

1 , 3𝑉
+
1 + 3𝑉 −

1 ,

3𝑋+
1 + 3𝑋−

1 , 3𝑌
+
1 + 3𝑌 −

1 , 3𝑍
+
1 + 3𝑍−

1 ]
(4.17)

represents the longitudinal auxiliary modes with 𝜔2 < 0, and has the same expres-
sion for both 𝜙 = 0, 𝜋. This shows that the symmetry vector of the TETB repre-
sents an accurate representation of the electromagnetic modes below the gap of the
rAXI. Specifically, the TETB symmetry vector with an onsite supercell-modulation
can be decomposed as a longitudinal component 𝐯̃𝐿𝜙 which has same expression for
both 𝜙 = 0, 𝜋 phases and a transverse part 𝐯̃𝑇𝜙 , which coincides with symmetry vector
of the transverse modes of the PhC.

4.2.2.3 Magnetic symmetry-indicators

In order to highlight the role of -symmetry in protecting the rAXI topology, we com-
pute the magnetic symmetry-indicators (SI) 𝜈𝑇𝜙 = {𝑧̄2,𝑥, 𝑧̄2,𝑦, 𝑧̄2,𝑧|𝑧̄4} [45,67,195–198]
for the tranverse-electromagnetic modes of the PhC (the ̄overbar stands for magnetic
and the ()𝑇 superscript indicates transverse bands). In particular, we focus our inter-
est on the 𝑧̄4 strong index, which is associated to axion topology [66, 198, 222]. We
consider the structures with 𝜙 = 0 and 𝜙 = 𝜋, in the presence of both 𝐻𝑧 and a small
in-plane ℎ𝑥,𝑦 which reduce the symmetry to MSG 2.4 (in the BNS notation of Refs.
[153,252]). For the effective photonic TETB, which is regular and does not present any
obstruction at Γ, the calculation of the SI follows directly from the well-known closed-
formula expression that relates the -eigenvalues to the {𝑧̄2,𝑥, 𝑧̄2,𝑦, 𝑧̄2,𝑧|𝑧̄4} magnetic
SI [45, 67, 195–197], i.e.:

𝑧̄2,𝑖 =
1
2

∑

𝐤ℎ ∈ {𝐼𝐼𝑀𝑆}
𝐤ℎ ⋅ 𝐑𝑖 = 𝜋

(𝑛+ℎ − 𝑛
−
ℎ ) mod 2 (4.18)

𝑧̄4 =
1
2

∑

𝐤ℎ∈{𝐼𝐼𝑀𝑆}
(𝑛+ℎ − 𝑛

−
ℎ ) mod 4 (4.19)
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where 𝑛+ℎ (𝑛−ℎ ) are the multiplicities of the positive (negative) parity eigenvalues at
the high-symmetry point 𝐤ℎ, and 𝐑𝑖 are the primitive lattice vectors. This returns,
depending on the phase 𝜙:

𝜈𝑇+𝐿𝜙=0 = {0, 0, 1|0} (4.20)
and

𝜈𝑇+𝐿𝜙=𝜋 = {0, 0, 1|2}. (4.21)
To obtain the corresponding 𝜈𝑇𝜙 transverse SI for the electromagnetic modes, we can
exploit the linearity of the SI with respect to the symmetry vector [23, 203], i.e.:

𝜈𝑇𝑖 = 𝜈𝐿+𝑇𝑖 − 𝜈𝐿𝑖 . (4.22)

Since the SI of the longitudinal modes of Equation 4.17 are trivial, it follows that the
SI of the TETB and the MPB calculations coincide, 𝜈𝑇𝑖 = 𝜈𝐿+𝑇𝑖 . This confirms that the
𝜙 = 0 and the 𝜙 = 𝜋 systems are obstructed with respect to each other, with a 𝛿𝑧̄4 = 2
discontinuity of the even 𝑧̄4 signaling a relative axionic obstruction. On the other
hand, the invariance of the 𝑧̄2,𝑧 term is related to an odd 𝐶𝑧 Chern invariant, which,
as confirmed via photonic Wilson loop [1, 33, 50] calculations, is 𝐶𝑧 = 1 identically
for both structures. Note that although we have computed 𝜈𝑇𝜙=0 and 𝜈𝑇𝜙=𝜋 using the
TETB model , the difference

𝜈𝑇𝜙=𝜋 − 𝜈
𝑇
𝜙=0 = {0, 0, 0|2} (4.23)

depends only on the sign of the modulation-induced band gap.

4.2.3 Topological characterization

To verify the quantization of the relative axion angle between 𝜙 = 0, 𝜋, we compute
the layer Chern number 𝐺𝑧 of a 𝑧-slab with its normal along the magnetization axis.
The 𝜃 angle can be extracted from the layer Chern number 𝐺𝑧 of a 𝑧-slab with its
normal along the AXI magnetization axis. More specifically, the 𝜃 angle manifests as
an offset in 𝐺𝑧, according to the relation [59, 235]:

𝐺𝑧 = 𝐶𝑧𝑛𝑧 + 𝜃∕𝜋, (4.24)

where 𝑛𝑧 counts the layers of the slab and where 𝐶𝑧 is the bulk Chern number of a
single layer. This calculation can be approached in two steps:
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Figure 4.23: The layer Chern number for the two phases of an AXI insulator. The slab Wilson loop
winds in respectively 𝑛𝑧 and 𝑛𝑧 + 1 times, with the +1 extra winding shown in the green circle. This
confirms that the two phases present a difference in axion angle of 𝛿𝜃 = 𝜋.

1. Compute the bulk Chern number 𝐶𝑧 for the 3D periodic structure.

2. Compute the layer Chern number 𝐺𝑧 for the 2D slab confined in 𝑧 of 𝑛𝑧 >> 1
layers. Importantly, the slab should respect the symmetry protecting the AXI, in
our case, inversion.

Step 1 can be implemented via the use of the section Chern number introduced in
Section 4.1.3.3. Since Step 2 is can computationally intensive in MPB, we evaluate it
using the effective model for the 3D PhC. We describe the construction of this model
inAppendix B. In Figure 4.23 we evaluate the layer Chern number for the two phases
of an AXI insulator (the AXI PhC described in detail in Section 4.2). Both phases
(panel a and b) have a bulk Chern number 𝐶𝑧 = 1. An -symmetric slab of 𝑛𝑧 = 6
layers is considered. The 𝑥-directed slab Wilson loop winds in respectively 𝑛𝑧 and
𝑛𝑧 + 1 times along 𝑘𝑦, with a +1 extra winding. This confirms that the two phases
present a difference in axion angle of 𝛿𝜃 = 𝜋.

4.2.4 Relative AXI domain walls

In this section, our goal is to render physically manifest the relative axion topology
demonstrated just now. To accomplish this, we create a domain wall in 𝑥 between
the photonic 3D insulator with 𝜙 = 0 and its obstructed counterpart with 𝜙 = 𝜋,
i.e. imposing a relative axion phase difference of 𝛿𝜃 ≡ 𝛿𝜙 = 𝜋, as shown in Figure
4.24(a). We expect this domain wall configuration to be formally equivalent to the
critical point between an AXI with 𝜃 = 𝜋 and a trivial insulator [222,238,239,239,253]
and therefore gapped. To ensure a surface gap, we apply a tilt to the magnetic field
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Figure 4.24: Axionic surface gap for an -symmetric domain wall with 𝛿𝜃 ≡ 𝛿𝜙 = 𝜋. In panel a, PhC
geometry of the phase-obstructed domain wall configuration. In panel b, domain wall band structure
on the 𝑥 = 0 plane, with projected bulk bands in black, and surface-localized states in blue.
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directed towards the 𝑧-axis, represented as with

H = (|ℎ|cos(𝜎), |ℎ|sin(𝜎),𝐻𝑧) (4.25)

and |ℎ|≪ |𝐻𝑧|.As shown inAppendix D, the component of the magnetic perturbation
normal to the interface plane ensures the existence of a surface gap, which is essential
for the observation of the higher-order topology of the rAXI. The tilted external field
couples to the PhC, inducing an in-plane gyrotropic perturbation 𝜂𝑥,𝑦 = 𝜂𝑥,𝑦(ℎ𝑥,𝑦) in
the permittivity tensor. As a result, the PhC domain wall bands are gapped, as shown
in Figure 4.24(b). The size of the surface gap can be controlled via the ℎ𝑥,𝑦 bias, by
gradually deviating from the gapless condition which results from the boundary con-
dition choice, as demonstrated inAppendix D. In what follows, we select a boundary
condition in which the size of the surface gap disappears in the absence of any mag-
netization orthogonal to the interface plane: this boundary configuration is reached by
maintaining the rod geometry continuously connected across the interface for the PhC.
In the TETB, this corresponds to a surface potential that linearly interpolates between
the two modulations. Importantly, the 𝜙 = 0 and 𝜙 = 𝜋 structures differ only in their
𝑧̄4 index but have an identical Chern vector. It is critical to maintain the condition
of equal Chern vectors across the interface in order to prevent anomalous Hall sur-
face states from populating the surface gap, consistently with vectorial bulk-boundary
correspondence [42].

4.2.5 Chiral hinge states

Next, to generate and manipulate a chiral hinge channel of light, we will be inves-
tigating the higher-order topology of the PhC. For this purpose, we construct an -
symmetric 𝑧-wire configuration. We embed a 𝑁𝑥 × 𝑁𝑦 core of 𝜙 = 0 PhC inside a
2𝑁𝑥 × 2𝑁𝑦 region of PhC showing 𝜙 = 𝜋. The corresponding dielectric structure,
which is fully connected, is shown in Figure 4.26(a), with the central rod extruded
upwards, for better visualization. To keep the simulations affordable, we compute the
boundary modes for this rod geometry via the use of the TETB model. As shown
in Figure 4.25(c), chiral gapless modes emerge as in-gap states in the projected do-
main wall bands, consistent with the bulk–hinge correspondence of the photonic rAXI.
These HOTI states are consistent with the existence of a single unidirectional mode
wrapping around a central phase-obstructed core. Moreover, their group velocity can
be easily switched by flipping of the external magnetic bias𝐻𝑧. Displayed for a cross-
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Figure 4.25: Gapless AXI hinge states evaluated a 𝑧-wire configuration, with 2𝑁𝑥 × 2𝑁𝑦 = 40 × 40
cells. The crystal structure is fully connected but presents an axion phase discontinuity of 𝛿𝜃 ≡ 𝛿𝜙 = 𝜋.
Projected surface bands in blue, hinge bands in red, in panel c. The chiral modes are localized on -
related hinges: a 𝑥𝑦-cross section of the 𝑧-wire geometry is shown in panels a,b,d,e. The flipping of
the external 𝐻𝑧 field results in an overall exchange of the group velocity signs. These HOTI states are
consistent with the existence of a single unidirectional mode wrapping around a central phase-obstructed
core.
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section of the connected structure in Figure 4.25(a-e), the 1D channels localize on
-related hinges parallel to the 𝑧 direction. It is noteworthy that not all of the four
-related hinges support chiral modes at once. Instead, the localization on either a
pair of -related hinges or the other can be chosen by rotation of the small ℎ𝑥,𝑦 bias in
the 𝑥𝑦 plane, leading to 4 possible realizations of the hinges, 𝛼, 𝛽 (with occupancy of
the hinges passing through the corners on the 11̄0 diagonal) and 𝛾, 𝛿 (with occupancy
of the hinges passing through the corners on the 110 diagonal), as shown in Figure
4.26(b-e). These different hinge-state configurations are plotted in Figure 4.26 at the
Γ point for the upwards-moving state. As shown inAppendix D, they can be regarded
as distinct boundary-obstructed phases [254, 255], since a surface gap (but not a bulk
gap) must close in passing from one configuration to another. The 𝛼,𝛽,𝛾 ,𝛿 gyrotropic-
bias-field induced transitions offer a promising and physically accessible way to manip-
ulate the photonic 1D modes, via rotation of the PhC gyrotropic axis through magnetic
control by external field. Therefore, the present platform can provide an effective pho-
tonic topological switch between different 1D photonic fiber configurations. Remark-
ably, the observed hinge modes are embedded within a fully connected 3D dielectric
structure, making them highly suitable for guided-light communication applications,
as they are protected from radiation through the electromagnetic continuum [248]. By
proposing the first tunable HOTI chiral hinge states in PhCs [19], we provide a PhC re-
alization and a distinct manifestation of the axionic hinge states predicted in supercell-
modulated Weyl semimetals [222, 237–239, 253]. More specifically, the hinge modes
of Figure 4.25(b-e) are consistent with the presence of a single, unidirectional axionic
mode wrapping around a central phase-obstructed core [256].

4.2.6 Discussion and outlook

In this section, we proposed a mechanism inducing axionic band topology in a gy-
rotropic PhC and demonstrated the potential use for magnetically tunable photonic
switch devices. This approach provides a realistic and physically accessible platform
for generating and manipulating the higher-order topology of the AXI PhC, enabling
effective topological switching between different configurations for axionic hinges of
light. In addition to its fundamental theoretical significance, related to the possibility of
coupling between photonic axionic excitations and dark-matter axions, the realization
of AXI PhC has the potential to open up the field of axion-based topology, enabling
more efficient and versatile control of light propagation in PhCs, and thus advanc-
ing the state-of-the-art in photonic communication and optical technologies. Our next
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Figure 4.26: Tunable AXI hinge states at Γ, for different magnetic bias configurations, computed via
the TETB. Panel a displays the corresponding PhC dielectric structure. For visual purposes, the central
𝜙 = 0 core is extruded vertically with respect to the phase-obstructed embedding with 𝜙 = 𝜋. Panels
b-e correspond to 𝛼, 𝛾, 𝛽, 𝛿 configurations. A single eigenvector is plotted here, upwards moving. The
activation of the 90◦-rotated hinges is made possible via a ℎ𝑥,𝑦 in-plane small bias component
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step would be to make the axionic response dynamic, introducing a time dependence
in the PhC setup. Traditional axion haloscopes exploit conversion into massive pho-
tons inside cavity plasma or dielectric haloscopes [243,244]. More recent topological
approaches have proposed to exploit the conversion from dark-matter axions into dy-
namic condensed-matter axionic excitations [240,245]. Obtaining a dynamic axion in
a PhC could help bridge this different approach for dark-matter detection, and help for
a better understanding of the axion-photon coupling.

4.3 Unpaired Photonic Weyl Semimetal

4.3.1 Introduction

Since the development of topological photonics, a large variety of photonic Weyl points
have been demonstrated in PhCs [12,50,223,257–263]. Weyl photons, with unit topo-
logical charge and linear dispersion, have been proposed in Refs. [12,50,223,257,258].
Weyl photons of higher topological charge have been observed in Refs [259, 263].
However, all these photonic Weyl points have in common that they appear as dipolar
systems with zero net charge, according to the Nielsen-Ninomiya theorem which binds
left- and right-handed Weyl points to come in pairs [264,265]. Photonic Weyl crystals
have mostly been searched because of their topologically protected FAs, which ap-
pear on surfaces that connect the projections of the Weyl points with opposite charge
[259–262]. Photonic FAs, such as helicoid surface states and large surface arcs, have
been for example exploited for achieving unidirectional light propagation [259], spa-
tial frequency filtering of surface modes [262] and diffractionless propagation of light
waves [260]. However, more recently, photonic Weyl points have started to attract
interest in the context of coupled quantum emitters (QE), due to the possibility of
engineering the QE interactions, by manipulating the Weyl environment. Quantum
emitters are nano-sized or quantum-confined systems capable of emitting individual
photons [266–269]. Recent studies have demonstrated that Weyl PhC environments
can mediate tunable long-range coherent interactions for QEs, to be employed for real-
izing entanglement protocols and for quantum simulator implementations [270, 271].
However, existing setups often involve dipolar-Weyl systems, that lead to momentum-
space interference effects. In these implementations, the QE interaction mediated via
a specific Weyl point usually competes with the presence of at least another Weyl point
partner in the BZ, both of them with finite momentum: the resulting power-law decay
interaction between QEs is thus naturally affected by an interference term related to the
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separation of the opposite charge Weyl points [270]. An ideal scenario could be repre-
sented by an unpaired photonic Weyl point at the center of the BZ, in a highly symmet-
ric environment. Going back to the theoretical aspects of non-dipolar Weyl systems, in
condensed matter large efforts have been dedicated to eluding the Nielsen-Ninomiya
theorem and obtaining isolated Weyl points either via artificial dimensions (on the
3+1D boundary of a 4+1D bulk [272, 273]), via dynamical driving or non-Hermitian
systems [274–277] as well as in presence of long-range non-local interactions [278].
However, very recently it has been demonstrated that the Nielsen-Ninomiya can be
simply circumvented by stabilizing an absorbing Weyl Nodal Wall (WNW) on the BZ
boundary, via non-symmorphic symmetries [279–282], a situation that could be po-
tentially realized in conventional all-dielectric 3D PhCs of the silicon-type. Specific
symmetry conditions for achieving this, either in spinless or spinful systems have been
explicitly derived in Refs. [280, 282]. Motivated by the above considerations, in this
section we show how to obtain an unpaired photon Weyl point (UPhW) in a realistic
PhC. This configuration requires simultaneously the presence of a point-group sym-
metry to fix the Weyl point at the Gamma point (Γ) and a way to circumvent the no-go
theorem, stabilizing an absorbing nodal Weyl wall (WNW) on the BZ boundary. First,
we create a stable photonic nodal wall, acting as a topological sink absorbing the Berry
flux. Since we are dealing with a bosonic system, a combination of even time-reversal
symmetry ( 2 = 1) with a two-fold screw-rotation, can ensure Kramers degeneracy
on the plane orthogonal to the screw axis [282]. In order to have a closed nodal wall
spreading on the entire BZ boundary, we proceed by looking for candidate PhCs in
SGs containing twofold screw-rotation symmetries for all three cartesian directions.
Moreover, in order to have the Weyl point at Γ, we consider non-symmorphic chiral
structures with additional crystal symmetries able to pin the Weyl point at the BZ cen-
ter, for example in point group 𝐷4 and 𝑂 [283–285]. Finally, in order to prevent the
presence of nodal lines, we ensure to deal with chiral structures.

4.3.2 Design strategy: triply periodic structures

Guided by these reasonings, we model dielectric PhCs from symmetry-constrained
triply periodic surfaces (TPS) [229,286–296] and characterize their properties. A TPS
represents an isolevel surface, 𝑅𝑒𝑓 (𝐫) = 𝑓0 (𝑓0 ∈ ℝ), obtained from Fourier expan-
sion of the lattice:

𝑓 (𝐫) =
∑

𝐆
𝑐𝐆𝑒

𝑖𝐆⋅𝐫 , (4.26)
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where 𝐆 are the reciprocal lattice vectors. By definition, a TPS is 3D periodic 𝑓 (𝐫) =
𝑓 (𝐫 + 𝐑) in the direct basis 𝐑. A PhC can be defined from a TPS via its permittivity
profile:

𝜀(𝐫) =
⎧

⎪

⎨

⎪

⎩

𝜀𝑑𝑖𝑒 for 𝑅𝑒𝑓 (𝐫) < 𝑓0
𝜀𝑎𝑖𝑟 for 𝑅𝑒𝑓 (𝐫) > 𝑓0

, (4.27)

i.e. filling the spatial regions defined by the TPS by either a simple dielectric (𝜀𝑑𝑖𝑒 =
12) or by air (𝜀𝑎𝑖𝑟 = 1). TPS-based structures can be found in a large variety of nat-
ural templates such as butterfly wings and soap films, giving rise to their structural
colors [287–290]. Recently, micro- and nano-manufacturing techniques have been de-
veloped to synthesize TPS-based PhCs and metamaterials, over a broad range of length
scales [229, 291, 293, 294], such as templating and coating techniques [295], as well
as via sol-gel assembly [296]. In order for the TPS-based PhC to satisfy the desired
symmetry properties for obtaining a UPhW, we constrain the spatial profile of the TPS
by imposing 𝑔𝑓 (𝐫) = 𝑓 (𝑔−1𝐫) = 𝑓 (𝐫), for each operation 𝑔 = {𝐑|𝐭} in the SG of
interest. This condition enforces constraints on the coefficients 𝑐𝐆, specifically:

𝑐𝐆𝑒
𝑖𝐆⋅𝐭 = 𝑐𝑔𝐆, (4.28)

that can be solved as a set of coupled equations via the method suggested by Thomas
Christensen in Ref. [23]. Note that, the use of non-gyrotropic and non-magnetoelectric
materials, of the silicon-type:

𝜀𝑇𝑅𝑆 =

⎛

⎜

⎜

⎜

⎝

𝜀(𝐫) 0 0
0 𝜀(𝐫) 0
0 0 𝜀(𝐫)

⎞

⎟

⎟

⎟

⎠

(4.29)

with 𝜀 ∈ IR guarantees us to have  2 = 1, in virtue of the bosonic nature of the
system. We study two different types of chiral photonic lattices, both modeled via of
simple isotropic dielectric: a tetragonal crystal in SG 92 and a cubic crystal in SG
213. Both SGs present twofold screw-rotation symmetries for all three cartesian direc-
tions, therefore being compatible with the formation of a closed nodal wall on the BZ
boundary.
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Figure 4.27: Unpaired photonic Weyl point with topological charge −2 between photonic bands 5, 6
located at Γ, in a chiral tetragonal PhC (SG 92). a: Photonic bandstructure. The lines𝑍𝑅 and𝑅𝑋 lie on
the BZ boundary and are fully degenerate, hosting a Weyl nodal wall. The nodal wall is visualized via
the darker faces of the BZ cube. b: The tetragonal unit cell with the isolevel of TPS. In the numerical
simulations, these are filled by a simple dielectric. c: Photonic Wilson loop is computed on parallel
circles of a small sphere surrounding the unpaired Weyl point.

4.3.3 Nodal wall and unpaired photonic Weyl

We obtain a UPhW with a charge of 4 in the cubic photonic lattice and with a charge of
2 in the tetragonal one. In both cases, the UPhW is located at Γ. We characterize the
type of dispersion of the photonic spectra, along different BZ directions and show a
practical way to switch the chirality of the Weyl point. Finally, we verify the presence
of an absorbing nodal wall at the BZ boundary. We compute the dispersion of the
PhCs via MPB [168]. To check for the presence of a UPhW at Γ we analyze the high-
symmetry lines, checking for the bands to be gapped only on the lines connected to
Γ and two-fold degenerate on the BZ boundary. To extract the spatial profile of the
nodal wall, we numerically evaluate the zeroes of the frequency difference between
the degenerate bands on a dense 𝑘-mesh of 603 grid points. The crystal unit cell,
the photonic spectra, and the Wilson loops are displayed in Figures 4.27 and 4.28.
As shown, the bands are two-fold degenerate at Γ, become fully gapped along each
high symmetry line originating from Γ, and then become gapless again on the BZ
boundary. For both the chiral structures, we verify that the sign of the UPhW charge
can be changed by switching the chirality of the TPS, 𝑓 (𝐫) → 𝑓 (−𝐫). In the chiral
cubic lattice (Figure 2) we find a UPhW with maximal chiral charge (−4) between
photonic bands 3, 4, located at Γ. In the tetragonal lattice (Figure 1) we observe a
UPhW with topological charge −2 between photonic bands 5, 6, located at Γ. As we
will detail in the next section, to obtain the topological charge of the UPhW, we employ
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Figure 4.28: UPhW with topological charge −4, in a chiral cubic PhC (SG 213). Photonic band struc-
ture, showing a crossing between bands 3, 4 located at Γ. These transverse bands are directly connected
with the 𝜔 = 0 modes. a: Photonic bandstructure. The lines 𝑅𝑀 and 𝑀𝑋 lie on the BZ boundary
and are fully degenerate, hosting a Weyl nodal wall. The nodal wall is visualized via the darker faces
of the BZ cube. b: The cubic unit cell with the isolevel of TPS. In the numerical simulations, these are
filled by a simple dielectric. c: Photonic Wilson loop is computed on parallel circles of a small sphere
surrounding the unpaired Weyl point.

the photonic Wilson loop method, implemented for 3D electromagnetic fields [1, 50]:
specifically, since we are dealing with a system that is nowhere gapped, we evaluate
Wilson loops on the surface of a small sphere surrounding the UPhW, according to the
methods developed in Section 3.2

4.3.4 Topological characterization

In this section, we show how to evaluate the topological charge of the UPhW (𝑞𝑈𝑃ℎ𝑊 )
for the system shown in Figure 4.28. The UPhW in Figure 4.28 occurs between a
pair of bands (3rd and 4th band) of which the lower one is directly connected to the
transversal modes connected to zero energy. The system is complicated by the fact
that the entire boundary of the BZ (the surface of the BZ cube) constitutes a topolog-
ical WNW, absorbing the topological charge of the Weyl point (𝑞𝑊𝑁𝑊 = −𝑞𝑈𝑃ℎ𝑊 ).
This means that the system is nowhere gapped on any planar cross-section taken in
the BZ. Therefore, the section Chern number method cannot be applied. In order to
determine 𝑞𝑈𝑃ℎ𝑊 , we evaluate the WL on the surface of a small sphere surrounding
the UPhW at Γ, excluding the k = 0 eigenstates, as in Figure 3.3. We consider a small
sphere with radius |𝑘𝑟| surrounding the Γ point, and we compute the WL along the
"lines of latitude" of the sphere, on the circles parallel to the equator. These circles are

Chapter 4 – Results 141



3D Topological Photonic Crystals

parametrized by the azimuthal angle 𝜑 ∈ [0, 2𝜋) for a fixed polar angle 𝜃0:

𝑘𝑥 = |𝑘𝑟| sin
(

𝜃0
)

cos(𝜑)

𝑘𝑦 = |𝑘𝑟| sin
(

𝜃0
)

sin(𝜑)

𝑘𝑧 = |𝑘𝑟| cos
(

𝜃0
)

.

Since the lines of latitudes are closed, they provide valid paths on which to evaluate
the WL:

𝑙 = 𝑙(𝜃0). (4.30)
The UPhW’s charge can be determined by tracking the evolution of the eigenvalues
of 𝑙 with respect to 𝜃0. Since the lines of latitudes cover the entire sphere as the 𝜃0
angle varies in [0, 𝜋), the result is a closed 2D manifold, for which a Chern number can
be defined. In the example of Figure 4.28, the WLs winds −4 times, confirming that
the topological charge of the UPhW located at Γ is 𝑞𝑈𝑃ℎ𝑊 = −4. Since there are no
other gap closings in the BZ beyond the UPhW and the WNW, the nodal wall charge
is 𝑞𝑁𝑊 = +4. The value of the topological charge is independent of the radius |𝑘𝑟|, as
long as the sphere includes only the node of interest. Note that in the calculation we
considered all 3 three low-energy transverse bands connected at 𝜔 = 0 are considered,
but none of the eigenstates with k = 0 has been included.

4.3.5 Discussion and outlook

In this section, we unveil a new type of maximally-charged UPhW in a PhC mod-
eled from all-dielectric TPS. Interestingly, these Weyl photons seem to elude a no-go
theorem in topology, acting as an isolated source of Berry curvature but lacking an
opposite topological charge partner. We show that the UPhWs are stabilized by the
combination of the point group symmetries of the PhC together with the spinless TRS
of the all-dielectric material. The proposed UPhWs have either maximal (-4) or high
(-2) topological charge and appear at the center of the 3D Brillouin zone, surrounded
by an absorbing closed nodal wall. In virtue of the UPhW isolation in the BZ and
their topological properties, the present design can be used as a starting platform for
coupling QEs. The cubic symmetry of the nodal configuration and the centrality of
the Weyl point in the BZ make the PhC environment highly symmetric. While this
work is still under development, we plan to leverage this symmetry property, combined
with the PhC’s topology, to benefit the manipulation of quantum emitters interactions,
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minimizing limitations present in conventional Weyl-dipolar systems [270, 271]. As
a next step, we intend to investigate the bulk-boundary correspondence within these
structures. A notable observation emerged during our initial analysis: the presence of
nodal walls effectively negates any gapped BZ slice, essential for the topological argu-
ment of surface Fermi surfaces. Because of this, the PhC with UPhWs challenges the
Nielsen-Ninomiya theorem, presenting a unique topological anomaly: this suggests an
intriguing scenario where topological FA surface states might be absent [279], even in
the presence of a Weyl point. The construction of a TETB model of the PhCs using
methods from Chapter 3 could help delve deeper into this aspect.
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Conclusions

Chapter Outline

This thesis provides a comprehensive study of topological phenomena in PhCs, focus-
ing on the three-dimensional context. The primary aim of this research is to deepen the
theoretical understanding of 3D topological phases of light within PhCs. To this end,
we have formulated detailed designs of these 3D topological phases, underscoring their
potential applications and theoretical significance. Addressing the unique challenges
posed by light’s vectorial nature required the development of specialized characteriza-
tion techniques and methodologies. In the subsequent sections, we will delineate the
primary contributions of this thesis. These contributions encompass the development
of innovative tools for modeling and characterizing 3D PhCs, the proposal of novel
topological phases, and the exploration of open questions that pave the way for future
investigations in the field.

5.1 Modeling and Characterization of 3D PhCs

After an initial introduction Chapter1 and covering the fundamental theoretical frame-
work of the thesis Chapter2, in Chapter3 we developed dimension-specific character-
ization techniques suited for approaching topology in 3D PhCs: the vectorial electro-
magnetic Wilson loops and the transversality-enforced tight-binding models. Through
these methodologies, we were able to circumvent the theoretical intricacies associated
with light’s transversal and vectorial nature, enabling us to model and characterize the
topological properties of 3D PhC. We presented the electromagnetic Wilson loop as a
robust tool for computing a number of 3D topological invariants, focusing on the ad-
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justments needed for these methods, particularly in the face of vectorial waves and the
Γ-point challenge. We supplemented this with a hands-on tutorial for practical compu-
tations, emphasizing its versatility and broad applicability in different 3D topological
phases. Using hybrid Wannier energy centers, we showed how to compute the mag-
netoelectric angle of a photonic axion insulator, the topological charge of a nodal-wall
semimetal, and the Chern vector of a PhC insulator. These methods can be readily
adapted for other applications. For instance, they can be used to assess the braiding
of multigap photonic 3D nodal links [189], given its potential as a robust platform
for topological quantum computation. Additionally, they can be employed to evalu-
ate fragile topology within the fundamental photonic bandgap, a phase in 3D PhCs
that remains elusive and conceptually challenging [190]. Furthermore, we unveiled a
method for constructing reliable tight-binding representations of 3D PhCs, even when
faced with an irregular symmetry content at zero frequency and the non-existence of
maximally localized Wannier functions for such systems. This method, named as the
TETB, not only captures and regularizes electromagnetic obstructions but also repro-
duces the symmetry, topology, and energetic dispersion of transverse bands in the PhC
all across the BZ. By introducing a magnetic version of our model, we showcased its
potential in modeling gyrotropy, emphasizing the method’s computational efficiency
compared to exact solvers. Recent applications of this method, such as simulating the
higher-order response of photonic axion insulators’ hinges, underline its significance
and potential in the field of topological photonics. This method can facilitate the study
of boundary responses of future photonic topological phases, particularly in the case
of 3D PhCs. Beyond its computational efficiency, the ability to have a simplified math-
ematical expression for a PhC’s effective model can enhance analytical insights into
understanding the PhC environment, such as in studying the dynamics between cou-
pled quantum emitters and PhCs.

5.2 Design and Applications of 3D Topological PhCs

In Chapter 4, we proposed the design of three distinct PhCS displaying different novel
topological phases: the 3D Chern photonic insulator, the photonic axion insulator, and
the nodal-wall Weyl semimetal. The modeling and topological characterization were
made possible via the tools developed in the previous Chapter 3, allowing to circum-
vent the challenges arising from vectorial and transversal properties of light in 3D. In
our exploration of the 3D Chern photonic insulator, we have unveiled a method to tai-
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lor the Chern vector, via cubic and multi-fold supercell modulations and inducing the
annihilation of Weyl points. Key features of this phase encompass high Chern num-
bers, the capability for reduced magnetic constraints, and the potential for orientable
Chern vectors. As a significant hallmark of this phase, we observed the emergence
of anomalous surface states. Characterized by their non-reciprocal properties, these
states are further distinguished by the formation of distinct equifrequency loop struc-
tures, which arise from a topological transition from the Weyl semimetal phase to the
3D Chern insulating phase. The same design revealed the ability to achieve large Chern
numbers, leading to multi-modal propagation of topological surface states. This inno-
vation has the potential to extend its applications to the realm of topological surface
lasers. Our method, is adaptable to reducing the TRS breaking parameters by leverag-
ing larger supercells, emphasizing its adaptability to weakly-magnetic media. These
findings also underscore the exploration of vectorial aspects of bulk-boundary corre-
spondence in 3D CIs, a substantial shift from the traditional scalar analogy prevalent in
2D systems. The orientation of Chern vectors has been shown to play a pivotal role in
the accurate prediction and understanding of photonic surface modes. Looking ahead,
our work offers some unexplored theoretical aspects. While our study predominantly
focuses on the surface response, other boundary configurations could be explored. An
especially intriguing avenue is the prospect of a 3D CI arranged around a trivial core
with inward-pointing Chern vectors, a magnetoelectric configuration proposed in the
electronic context, and which awaits an equivalent in photonics. As a second design,
we proposed a way to induce axionic band topology in a gyrotropic PhC, emphasiz-
ing its transformative potential as a magnetically tunable photonic switch device. We
showed that the crystal gyrotropy offers a tangible and efficient strategy for generating
and controlling the higher-order topology of the AXI PhC, allowing for topological
switching among different axionic hinge configurations. Beyond its core theoretical
implications, especially concerning the potential coupling of photonic axionic exci-
tations with dark-matter axions, the axion PhC lays the ground for the development
of the field of axion-based photonics and broader applications in controlled light ma-
nipulation. Our next objective is to incorporate a dynamic time dependence into the
axionic response of PhC design, to explore the possibilities discussed in relation to
the dark-photon conversion. Whereas classical axion haloscopes utilize conversion
into massive photons within specific media, more recent topological methods suggest
conversion from dark-matter axions to dynamic axions in condensed-matter systems.
Implementing such a dynamic axion in a PhC might bridge these approaches, enrich-
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ing our understanding of axion-photon coupling. As a last design, in the design of
the nodal-wall PhC, we identified a novel type of Weyl point within an all-dielectric
photonic crystal. These Weyl points, with high-topological charge, apparently chal-
lenge conventional fermion-doubling theories by existing as isolated Berry curvature
sources without an inverse topological charge counterpart. Positioned centrally in the
3D Brillouin zone, these nodes are encapsulated by a BZ boundary acting as a closed
nodal wall, which absorbs their topological charge. As we discussed, the topology and
momentum-space symmetry of this PhC configuration offer promising avenues for the
manipulation of quantum emitter interactions, in particular, to overcome the limita-
tions of conventional dipolar-Weyl PhC environments. Via the formation of Weyl-
bound states, these systems may represent a valuable starting point for future research
in photonic quantum implementations of long-range interactions via quantum emitters
in a PhC environment.

5.3 3D Phases of Light Beyond This Thesis

The 3D PhC phases examined in this thesis primarily derive their topology from the
breaking of TRS and the inclusion of crystalline symmetries. Another area worth
exploring is the role of duality symmetry in the topological protection of 3D PhCs.
Achieving electromagnetic duality in materials that macroscopically violate it (with
𝜀 > 1 and 𝜇 = 1) has typically been approached by leveraging the local response of
small dielectric objects and their induced electric and magnetic dipoles within spe-
cific frequency ranges of interest [38,297]. In the context of topological PhCs, certain
studies suggest the feasibility of inducing Dirac-like band crossings in 3D PhCs by
enforcing duality through fine-tuned dielectric meta-atom geometries, artificially in-
stantiated at discrete points in the BZ [38]. A pivotal question arises: can one induce
emergent electromagnetic duality throughout entire the BZ for a specific band in a PhC
with an inherently dual-broken symmetry? One potential approach could be to use in-
verse design, seeking for TM/TE degeneracy on a flat band, in 2D PhCs that exhibit
macroscopic dual-broken symmetry. This approach is inspired by observations that, in
our simulations, there exists a correlation between macroscopic duality and band flat-
ness. We propose this line of inquiry as a promising direction for subsequent research.
Furthermore, all the proposed phases here displayed topological features in the first
fundamental gap, thereby requiring the use of modeling and characterization methods
suited to transversal waves. To circumvent the singularities arising from the transver-
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sality constraint of Maxwell equations in periodic dielectric media, we employed the
use of auxiliary longitudinal modes able to regularize this obstruction. An open ques-
tion remains concerning the possibility of being able to symmetry-identify other types
of topologies in the first fundamental gap. A possible alternative approach could be
realized by defining Real Space Invariants (RSIs) [298, 299] in the electromagnetic
context. These, with an enforced transversality constraint, may offer an approach to
identify, for example, obstructed atomic limits or fragile topology, below the first fun-
damental gap. RSIs assess whether two configurations of occupied orbitals can be
smoothly deformed while preserving system symmetries, aiding in distinguishing cer-
tain topological obstructed phases. Even though fragile bands exhibit integer-valued
RSIs, akin to topologically trivial bands, they can be diagnosed through inequalities or
modular equations involving RSIs [298, 300]. A related question concerns the inter-
play between fragile topology and the Γ singularity. Can the topological vortex at the
Γ point be modified by realizing non-trivial fragile topology below the fundamental
gap [301, 302]? Or again, is it possible to induce a transition from trivial to fragile
topology that creates a gap between the auxiliary longitudinal and transverse bands?
We raise these questions as a starting stimulus for future investigation.

Finally, another interesting avenue involves the quest for achieving flatbands in
3D PhC. The advantages of slow light, which offers capabilities like high spatial energy
enhancement, have been demonstrated in 2D setups [303–305], yet their realization in
3D remains a challenge. Our numerical observations suggest that the challenge in
achieving 3D flatbands might stem from the interplay between even and odd polariza-
tions: as even modes flatten, the dispersion of odd modes tends to increase. Photonic
flat bands are fundamentally very different from electronic ones. Unlike electronic sys-
tems where distant atomic sites lead to trivial flatbands, as exemplified by the spaghetti
bands in certain layered systems, photons in the limit of far-separated dielectric objects
disperse linearly within the light cone: photonic flatbands necessary require lattice
wavefunction interference. In the electronic context, 2D flatbands resulting from wave-
function interference often exhibit topological (e.g. fragile) characteristics, as seen in
systems like twisted bilayer graphene or Kagome/Lieb lattices [306, 307]. Topologi-
cally derived flatbands in 3D PhCs could present transformative opportunities for slow
light applications.

In summary, this thesis examines topological phenomena in PhCs, providing
insights and methodologies tailored for 3D. Through the development of characteri-
zation techniques, we have addressed the challenges presented by light’s vectorial and
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transversal nature. We proposed realistic designs to implement 3D topological phases
of light in PhCs, establishing a clear connection between theoretical formulations and
potential applications. This work wants to address some open questions and areas yet
to be explored. The pursuit of 3D flatbands, the interplay of fragile topologies with
the Γ singularity, and the implications of electromagnetic duality for 3D topological
protection are notable areas for further investigation. We hope this thesis can provide
a deeper understanding of 3D electromagnetism and offer the tools leading to further
advancements in the exploration of 3D topological phases in PhCs.
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Appendix A

Method of Invariants for coupled
Weyl points

In this appendix, we establish two symmetry-adapted models to study the topological
Weyl-Chern transition detailed in Section 4.1.2. We begin by modeling the formation
of Weyl points, which originate from the splitting of the threefold degeneracy at𝐑 upon
the application of an external magnetic field, 𝐇. This model enables us to identify the
only possible perturbations that can couple the Weyl points, leading to the opening of
a topological gap. The analytical models are based on the standard group theoretical
method of invariants [308], here adapted for electromagnetic waves in 3D. This method
allows us to find an expansion in powers of the wave vector 𝐤 of the photonic energy
bands 𝜔, able to replicate the photonic modes dispersion in the vicinity of a point in
momentum space. Here, we proceed by constructing an effective energy dispersion
operator𝐻(𝐤), expressed in terms of the space group irreducible representations, able
to capture symmetry properties of the photonic modes. In the photonic context, 𝐻(𝐤)
can be viewed as a perturbative expansion of the Maxwell-Bloch operator acting on
the electromagnetic fields in the first-order formulation of Maxwell’s equations [104].
For related applications of the k ⋅p approach to 2D photonic systems, see e.g. Refs. [9,
309]. In what follows, we adopt the notation convention taken in the BCS [310], unless
otherwise stated, and express reciprocal lattice vectors in reduced units 2𝜋∕|𝑎| = 1.

A.1 Weyl Dipole Formation

We start by modeling the Weyl points formation from the splitting of the threefold de-
generacy at𝐑 = (1∕2, 1∕2, 1∕2) (see Figure A.1(a)). From the analysis of the transfor-
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mations of the electromagnetic field under spatial symmetries, obtained via numerical
computations, we know that this degeneracy is related to the three-dimensional small
representation 𝑅−

4 of the little group of 𝐑, given the transformation properties of these
modes under the elements of the space group 𝑃𝑛3̄𝑚 (No.224). Following the method
of invariants, we first note that the product 𝑅−∗

4 × 𝑅−
4 can be decomposed into small

irreducible representations (irreps) at Γ as:

𝑅−∗
4 × 𝑅−

4 = Γ+
1 + Γ+

3 + Γ+
4 + Γ+

5 (A.1)

using the character orthogonality relations. A general eigenstate in this three-band
space can be expanded in the basis {|𝜙𝑖⟩} of the R−

4 representation as:

|𝜓𝐤⟩ = 𝑐𝑖(𝐤)|𝜙𝑖𝐤⟩, (A.2)

adopting the Einstein summation convention. The energy expectation value is a scalar
invariant, which is computed as:

⟨𝐻⟩ = ⟨𝜓𝐤|𝐻|𝜓𝐤⟩ = 𝑐∗𝑖 (𝐤)𝑐𝑗(𝐤)𝐻(𝐤)𝑖𝑗 . (A.3)

We seek a combination of bilinears 𝑐∗𝑖 𝑐𝑗 transforming as the irreps above and take the
Hermitian scalar product with functions of the crystal momentum (𝐤) and the external
field (𝐇) with the same symmetry properties. From each term with 𝑐∗𝑖 𝑐𝑗 in this scalar
product, it is easy to obtain the matrix elements of 𝐻(𝐤,𝐇). The energy scalar is
written in this scalar product form:

⟨𝐻⟩ =
∑

𝛼,𝑖
𝐶𝛼
𝑖 (𝑞

𝛼
𝑖 )

∗ ⋅ 𝑝𝛼𝑖 (A.4)

where the sum runs over the irreps in the decomposition and {𝑞𝑖} and {𝑝𝑖} are the
symmetry-adapted bases of the state coefficients and 𝐤 and 𝐇, respectively. The cou-
pling constants 𝐶𝛼

𝑖 are parameters of the model. To find the bases of bilinears in the
wave coefficients transforming as the irreps above, we use the representation 𝜌𝑅−

4
of the

generators (omitting inversion for brevity, as it is represented by the negative identity
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matrix):

𝜌𝑅−
4
(2001) =

⎛

⎜

⎜

⎜

⎝

−1 0 0
0 −1 0
0 0 1

⎞

⎟

⎟

⎟

⎠

, 𝜌𝑅−
4
(3+111) =

⎛

⎜

⎜

⎜

⎝

0 1 0
0 0 1
1 0 0

⎞

⎟

⎟

⎟

⎠

,

𝜌𝑅−
4
(2110) =

⎛

⎜

⎜

⎜

⎝

0 1 0
1 0 0
0 0 −1

⎞

⎟

⎟

⎟

⎠

,

(A.5)

where, for convenience, we have labeled the matrices by the rotation part of the sym-
metry element only. Note that these differ from the BCS data by a permutation of the
basis, chosen to rearrange𝐻 in a more convenient form. Since it is a non-symmorphic
space group, some operations have fractional translations. In Seitz notation, these are:

{2001|
1
2
, 1
2
, 0}, {2110|

1
2
, 1
2
, 0}. (A.6)

We then find functions of 𝐤 and 𝐇 with the same transformation properties, up to
the second order in the wave vector. In principle, the magnetic field could be strong.
Therefore, the criterion to choose the maximum power of 𝐇 that is included for each
order in 𝐤 is to exhaust all the possibilities in the irrep decomposition. This way, we
ensure that all the couplings allowed by symmetry are included for a given order in the
wave vector. Finally, we require 𝐻(𝐤,𝐇) to be Hermitian. Following this procedure,
we find that the most general expression for the energy operator is:

𝐻 = (𝑎0𝑘2 + 𝛼0𝐻2)𝟙3 + 𝑖𝛿0𝜀𝑗𝑘𝑙𝐻𝑙 + 𝑏0

⎛

⎜

⎜

⎜

⎝

𝑘2𝑥 0 0
0 𝑘2𝑦 0
0 0 𝑘2𝑧

⎞

⎟

⎟

⎟

⎠

+

𝛽0

⎛

⎜

⎜

⎜

⎝

𝐻2
𝑥 0 0
0 𝐻2

𝑦 0
0 0 𝐻2

𝑧

⎞

⎟

⎟

⎟

⎠

+ 𝑐0

⎛

⎜

⎜

⎜

⎝

0 𝑘𝑥𝑘𝑦 𝑘𝑥𝑘𝑧
𝑘𝑥𝑘𝑦 0 𝑘𝑦𝑘𝑧
𝑘𝑥𝑘𝑧 𝑘𝑦𝑘𝑧 0

⎞

⎟

⎟

⎟

⎠

+

𝛾0

⎛

⎜

⎜

⎜

⎝

0 𝐻𝑥𝐻𝑦 𝐻𝑥𝐻𝑧

𝐻𝑥𝐻𝑦 0 𝐻𝑦𝐻𝑧

𝐻𝑥𝐻𝑧 𝐻𝑦𝐻𝑧 0

⎞

⎟

⎟

⎟

⎠

,

(A.7)

where 𝐤 = (𝑘𝑥, 𝑘𝑦, 𝑘𝑧) is the wave vector measured from the point 𝐑 and we employ
real coefficients (Latin when referring to 𝐤 and Greek to 𝐇). One can check that the

152 Chapter A – Method of Invariants for coupled Weyl points



3D Topological Photonic Crystals

Figure A.1: Extracting the coefficients of the analytical 𝑘 ⋅ 𝑝 model in the vicinity of 𝐑. Here, we are
considering an extrapolation of the model at a distance of 𝛿𝑘 = 0.008 from 𝐑. The empty circles are
for numerically computed bands 𝑣1,2,3 while the lines for the analytical dispersion 𝑤1,2,3. a In presence
of TRS, we conclude that 𝑏0 = −2.9𝑎0 > 0. b In a weak field 𝜂 = 0.5, we obtain that 𝛼0 ∼ −𝛽0 since
the third band does not move in energy and 𝛼0 ∼ 0 since the vertical displacement of the two lowest
degenerate modes is equal and opposite. Weyl points appear at positions: 𝑘±𝑧 = ±

√

|𝛿0𝐻𝑧|

𝑏0
, which here

is at 𝑘±𝑧 = ±0.004. The 𝛿0𝐻𝑧 > 0 and 𝛿0𝐻𝑧 < 0 cases are equivalent upon reversing the two lowest
photonic modes.

energy operator is invariant under the little-group symmetries as it verifies, for every
operation 𝑔 = {𝑅|𝐭}:

𝜌𝑅−
4
(𝑔)𝐻𝜌𝑅−

4
(𝑔)−1 = 𝐻(𝑅𝐤, 𝑅𝐇). (A.8)

We also have imposed that the model be invariant when both the system and the ex-
ternal magnetic field 𝐇 are transformed by time reversal Θ. We can express the TR
operation as Θ = 𝑈𝜅, where 𝑈 is a unitary matrix and 𝜅 is the complex conjugation
operator. Then, the TRS condition reads:

Θ𝐻(𝐤,𝐇)Θ−1 = 𝑈𝐻∗(𝐤,𝐇)𝑈−1 = 𝐻(−𝐤,−𝐇) (A.9)

where the unitary 3×3 matrix part has the simple form 𝑈 = 𝟙3. Evaluating the model
at the point 𝐑, in the presence of TRS, allows us to fix some of the coefficients by
comparing with the numerical simulations, as described in Figure A.1. This yields
𝑏0 ∼ 2.9𝑎0. When a magnetic field is applied along one of the coordinate axes 𝐇 =
𝐻𝑖𝐱̂𝑖, the energy dispersion of the three photonic modes along the line parallel to the
field is:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝜔1 = (𝑎0 + 𝑏0)𝑘2𝑖 + (𝛼0 + 𝛽0)𝐻2
𝑖

𝜔2 = 𝑎0𝑘2𝑖 + 𝛼0𝐻
2
𝑖 − 𝛿0𝐻𝑖

𝜔3 = 𝑎0𝑘2𝑖 + 𝛼0𝐻
2
𝑖 + 𝛿0𝐻𝑖

. (A.10)
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This further fixes 𝛼0 ∼ −𝛽0 ∼ 0 and shows that the magnetic field fully lifts the
threefold degeneracy. We see in Figure A.1(b) that the band curved upwards in energy
will cross with one of the remaining two, giving rise to a Weyl point. The strength of
the magnetic field tunes where this crossing happens along this line, according to the
expression:

𝑘±𝑖 = ±

√

|𝛿0𝐻𝑖|

𝑏0
. (A.11)

The same happens in the opposite direction along the same line, hence the ± sign.
This shows that a Weyl dipole appears along the line parametrized by 𝑘𝑖 and that the
position of the nodes can be tuned by the magnetic field strength 𝐻𝑖.

A.2 Coupling of Weyl points

Here we want to identify the possible perturbations able to couple and gap the Weyl
nodes. Because the validity of the previous analysis is limited to the neighborhood
of the point 𝐑, we construct another model that expands directly around the Weyl
points. In particular, we can fix the magnetic field to 𝐇 = 𝐻𝑧𝒛̂ and tune the strength
𝐻𝑧 to create a pair of Weyl points at along the 𝐓 = (1∕2, 1∕2, 𝑢) line, for example at
𝐊1,2 = (1∕2, 1∕2,±1∕4). As we will show, the Weyl nodes can then be coupled by
a supercell modulation that doubles the real-space unit cell in the 𝒛̂ direction. This
corresponds to the uniaxial 𝑁𝑊 = 𝑁 = 2 case in Section 4.1, i.e. a (1, 1, 2) supercell.
A generalization to cubic (𝑁,𝑁,𝑁) supercells is straightforward since each Carte-
sian component of the modulation can be turned on independently. The compatibility
relations from 𝐑 into the 𝐓 line yield:

𝑅−
4 (3) → 𝑇1(1) + 𝑇5(2), (A.12)

where the dimensions of the small irreps are in parentheses. The magnetic field splits
the states of 𝑇5 and one of them degenerate with the 𝑇1 state at 𝐊1,2. Now, we will set
up a model that describes these six photonic modes and their coupling by an external
perturbation. Therefore, we may divide the 6 × 6 energy operator matrix into 3 × 3
blocks. The diagonal blocks are identified with the Weyl points and the off-diagonal
ones with any perturbation that couples the states at both nodes, possibly looking for
those that gap them. To do so, we build the representation that acts on the six photonic
states, from the space group representation induced from the direct sum 𝑇1 + 𝑇5. We
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𝚪 𝐗3
𝐷∗

1 ×𝐷1 Γ+
1 + Γ+

3 + Γ−
4 𝑋1

𝐷∗
1 ×𝐷5 Γ+

4 + Γ−
4 + Γ+

5 + Γ−
5 𝑋3 +𝑋4

𝐷∗
5 ×𝐷1 Γ+

4 + Γ−
4 + Γ+

5 + Γ−
5 𝑋3 +𝑋4

𝐷∗
5 ×𝐷5

Γ+
1 + Γ−

1 + Γ+
2 + Γ−

2
+2Γ+

3 + 2Γ−
3 + Γ+

4
+Γ−

4 + Γ+
5 + Γ−

5

2𝑋1 + 2𝑋2

Table A.1: Decomposition of the product𝐷∗ ×𝐷. Each row labels the decomposition of the term-wise
product, considering that 𝐷 = 𝐷1 + 𝐷5 is derived from a space group irrep induced from the sum of
small irreps 𝑇1 + 𝑇5, which is then restricted to the arms 𝐊1,2. The terms in the reduction are small
irreps of the little groups at 𝚪 and 𝐗3 = (0, 0, 1∕2). The labels for the 𝑋 irreps are those from the point
𝐗 ≡ 𝐗2 =

𝐛𝑦
2 = (0, 1∕2, 0), since 𝐗3 is in the star of 𝐗. Note that the label for the 𝐗 point differs from

that in Section 4.1 (where it is called 𝐗2) and was chosen for consistency with the BCS notation.

then restrict this representation only to the 𝐊1,2 arms and consider the elements that
either leave 𝐊𝑖 invariant or relate one to the other. Both 𝐊1 and 𝐊2 belong to the
same star and are related by inversion. The subspace of these two arms is invariant
under all these elements, which form a group that we denote by 𝐺𝑊 . Let us call 𝐷 the
representation of 𝐺𝑊 so obtained. 𝐷 is divided into blocks arising from the 𝑇1 and 𝑇5
irreps, hence we write 𝐷 = 𝐷1 +𝐷5. The direct product of the full space group irrep
can be used to find the reduction of the product 𝐷∗ × 𝐷 into small irreps of the little
groups at 𝚪 and 𝐗3 = 𝐛𝑧

2
= (0, 0, 1∕2). The result of this product is shown in Table

A.1. From Table A.1, we can determine the elements of the diagonal blocks using the
Γ irreps, and those of the off-diagonal blocks using the 𝑋𝑚 irreps (𝑚 = 1, 2, 3, 4). The
𝑋𝑚 irreps are consistent with lattice translations that have a non-trivial representation,
indicating that they couple points in the BZ that are not equivalent. Following the same
procedure as in the previous section, we obtain the matrix representation of the energy
operator. The matrices of 𝐷 that are needed to find the symmetry-adapted bases are
the following (again, we omit the representation matrix of inversion for brevity):

𝜌𝐷1
(2001) =

(

1 0
0 1

)

, 𝜌𝐷1
(𝑚010) =

(

𝑒−𝑖𝜋∕4 0
0 𝑒𝑖𝜋∕4

)

,

𝜌𝐷1
(4+001) =

(

𝑒𝑖
𝜋
4 0
0 𝑒−𝑖

𝜋
4

) (A.13)
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and

𝜌𝐷5
(2001) =

(

−12 0
0 −12

)

,

𝜌𝐷5
(𝑚010) =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

0 𝑒−𝑖3𝜋∕4 0 0
𝑒𝑖𝜋∕4 0 0 0
0 0 0 𝑒−𝑖𝜋∕4

0 0 𝑒𝑖3𝜋∕4 0

⎞

⎟

⎟

⎟

⎟

⎟

⎠

,

𝜌𝐷5
(4+001) =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

0 𝑒−𝑖3𝜋∕4 0 0
𝑒−𝑖3𝜋∕4 0 0 0

0 0 0 𝑒−𝑖𝜋∕4

0 0 𝑒−𝑖𝜋∕4 0

⎞

⎟

⎟

⎟

⎟

⎟

⎠

.

(A.14)

We obtain: Equation A.18:

𝑋 =

⎛

⎜

⎜

⎜

⎝

𝐶1(𝑝1 − 𝑖𝑞1) 𝑖𝑝3 + 𝑞4 −𝑖𝑞3 + 𝑝4
−𝑖𝑝3 − 𝑞4 𝐶2𝑝1 − 𝑖𝐶3𝑞1 𝑖𝑝2 + 𝑞2
−𝑖𝑞3 + 𝑝4 −𝑖𝑝2 − 𝑞2 −𝑖𝐶2𝑞1 + 𝐶3𝑝1

⎞

⎟

⎟

⎟

⎠

, (A.15)

where (𝑝𝑚, 𝑞𝑚) are real and belong to the 2D irreps 𝑋𝑚 and 𝐶1,2,3 are real coupling
constants, associated to the𝑋1 modulation. As a last step, we impose TRS. The unitary
part of the TR operation Θ = 𝑈𝜅 is in this case

𝑈 =

(

0 1
1 0

)

⊗

⎛

⎜

⎜

⎜

⎝

1 0 0
0 −1 0
0 0 1

⎞

⎟

⎟

⎟

⎠

. (A.16)

We are interested in modulations implemented by physically altering the dielectric
structure of the crystal. Therefore, the modulation itself is considered to transform
trivially under Θ. TRS forbids one of the couplings for each one of the𝑋2,𝑋3, and𝑋4

modulations. Furthermore, analyzing the effect of these three by numerically diago-
nalizing the 𝐻 matrix shows that none of them is able to open a gap, but they simply
move the Weyl points. Figure A.2 shows examples of these modulations that do not
open a gap.
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Figure A.2: Examples of perturbations that do not open a gap. a,b,c modulations belonging to irreps
𝑋2, 𝑋3 and 𝑋4 respectively.

A.2.1 Gap opening by supercell modulations

It turns out that only modulations transforming in the 𝑋1 representation can gap out
the Weyl points. We now want to obtain a representation for 𝑋1 to check which type
of geometrical perturbation it can be associated to. The representation matrices used
to obtain the 𝑋1 modulation terms are the following:

𝜌𝑋1
(2001) =

(

1 0
0 1

)

, 𝜌𝑋1
(𝑚010) =

(

0 −1
1 0

)

,

𝜌𝑋1
(4+001) =

(

0 −1
1 0

)

.

(A.17)

Herewith we present the final expression of the energy operator along the T line of
𝐻(𝑘𝑧,𝐻𝑧) with only the 𝑋1 couplings included:

𝐻(𝑘𝑧,𝐻𝑧) =

(

𝑊+ 𝑋1

𝑋†
1 𝑊−

)

, (A.18)
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Figure A.3: Effect of the 𝑋1 modulation and Weyl points coupling. From the analytical model, a four-
fold degeneracy point is achieved at the folding condition 𝐻𝑧 =

𝛿
𝛼−𝛽 , as shown in dashed lines. When

a 𝑋1 modulation is introduced, the Weyl dipole couples and a bandgap is opened, as shown by solid
lines. Parameters: 𝑎 = −7,𝑏 = −30,𝛼 = 1,𝑐 = 1, 𝑑 = 30, 𝛾 = 1, 𝛽 = 0.45, 𝛿 = 7.5, 𝐶1,2,3 = 1, 𝑝1 = 7,
𝑞1 = 0.

𝑊± =

⎛

⎜

⎜

⎜

⎝

𝑎𝑘2𝑧 ± 𝑏𝑘𝑧 + 𝛼𝐻
2
𝑧 0 0

0 𝑐𝑘2𝑧 ± 𝑑𝑘𝑧 + 𝛽𝐻
2
𝑧 𝐻𝑧𝛿 ± 𝛾𝑘𝑧𝐻𝑧

0 𝐻𝑧𝛿 ± 𝛾𝑘𝑧𝐻𝑧 𝑐𝑘2𝑧 ± 𝑑𝑘𝑧 + 𝛽𝐻
2
𝑧

⎞

⎟

⎟

⎟

⎠

, (A.19)

𝑋1(𝑝1, 𝑞1) =

⎛

⎜

⎜

⎜

⎝

𝐶1(𝑝1 − 𝑖𝑞1) 0 0
0 𝐶2𝑝1 − 𝑖𝐶3𝑞1 0
0 0 −𝑖𝐶2𝑞1 + 𝐶3𝑝1

⎞

⎟

⎟

⎟

⎠

, (A.20)

where the coordinates (𝑝1, 𝑞1) transform as𝑋1 and parametrize the modulation strength,
and𝐶1,2,3 are real coupling constants, while the rest of the parameters are also real. The
𝑘𝑧 component is taken from the point where the Weyl points merge after the cell fold-
ing. The effect of this modulation is visualized in Figure A.3. The bandgap opened via
supercell modulation in the TRS broken system is shown to be a Chern gap in Section
4.1. From the analytical model, we also observe that, to exactly superimpose the Weyl
points, we need to tune the magnetic field to the folding condition:

𝐻𝑧 =
𝛿

𝛼 − 𝛽
, (A.21)

as can be seen by diagonalizing the matrix 𝐻(0,𝐻𝑧). We use the projectors onto the
𝑖-th basis element in the space of the irrep 𝑋1:

𝑃𝑖𝑖 ∝
∑

𝑔∈𝐺
𝑋∗

1 (𝑔)𝑖𝑖𝑔 (A.22)

158 Chapter A – Method of Invariants for coupled Weyl points



3D Topological Photonic Crystals

where 𝑔 runs over the little co-group at 𝐗3 = (0, 0, 1∕2) and we disregard any normal-
ization factors. Applying these to an arbitrary function 𝑓 (𝑧), we find:

𝑋1 ∶

⎧

⎪

⎨

⎪

⎩

𝑃11𝑓 ∝ 𝑓 (𝑧) + 𝑓 (−𝑧)

𝑃22𝑓 ∝ 𝑓 (𝑧) − 𝑓 (−𝑧)

𝑋2, 𝑋3, 𝑋4 ∶ 𝑃𝑖𝑖𝑓 = 0, 𝑖 = 1, 2.

(A.23)

Therefore, given functions of 𝑧 that under lattice translations obey 𝐓𝑓 = 𝑒𝑖𝐗3⋅𝐓𝑓 , those
that provide a basis for this irrep are one even and one odd, respectively. This proves
that modulation of the radius of the rods Δ𝑟 = 𝑟(𝑧) − 𝑟0 = 𝑟𝑚 cos(2𝜋𝑧∕𝑁|𝑎|) with
𝑁 = 2 belongs to 𝑋1. In particular, it is parametrized by (𝑝, 𝑞) = (𝑝, 0) in the model
given in the previous section. We also note that when the modulation is cubic, i.e.
Δ𝑟 = 𝑟(𝑥, 𝑦, 𝑧) − 𝑟0 = 𝑟𝑚[cos(𝜋𝑥∕|𝑎|) + cos(𝜋𝑦∕|𝑎|) + cos(𝜋𝑧∕|𝑎|)], it is only the 𝑧
dependent part that is responsible for gapping the Weyl points generated in a 𝐻𝑧 field.

A.2.2 Case 𝑁 = 𝑁𝑊 > 2

As stated before, this model addresses the case where 𝑁 = 𝑁𝑊 = 2. When 𝑁𝑊 = 2
is fixed but 𝑁 = 2𝑛 with 𝑛 integer (see Figure 4.5), the modulation belongs to point
(0, 0, 1∕𝑁) and must enter at order 𝑛 in 𝐻 . Therefore, unless 𝑁𝑊 = 𝑁 = 2, the
modulation will belong to the high-symmetry line𝚫. The little group of its wave vector
is smaller than in the𝑁 = 2 case. The expression for the diagonal blocks in Equation
A.18 is identical since the Weyl points still lie on the 𝐓 line, but the reduced symmetry
of the modulation modifies the off-diagonal blocks. The most general expression for
TR-even modulations in this case is the following:

Δ =

⎛

⎜

⎜

⎜

⎝

𝐴1𝑟3 −𝑟5 𝑖𝑠5
𝑟5 𝑟1 + 𝐴2𝑟3 𝑖𝑟4
𝑖𝑠5 −𝑖𝑟4 −𝑟1 + 𝐴2𝑟3

⎞

⎟

⎟

⎟

⎠

, (A.24)

where 𝑟𝑙 and 𝑠𝑙 belong to the Δ𝑙 (𝑙 = 1, 3, 4, 5) irreps and all of them are complex.
Note that (𝑟5, 𝑠5) is the basis for the 2D irrep Δ5 and 𝐴1,2 are real coupling constants
for the Δ3 modulation.
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Appendix B

Transversality Enforced Tight
Binding Model

In this Appendix, we demonstrate the process for extracting optimal pseudo-orbitals
that are integral to constructing the minimal TETB for the PhC. Initially, we address
the method for isolating a transverse bundle appropriate for a TETB description. Sub-
sequently, we present a minimization procedure that yields a set of efficient pseudo-
orbitals, minimizing the number of additional longitudinal modes. Lastly, we examine
the constraints of physicality and detail the methodology to enforce them.

B.1 Transverse Symmetry Vector

The bundle size used to compile the transverse symmetry vector depends on the number
of bands one wants to include in the TB description of the PhC. In general, this is a
nontrivial decision, as TB models can not be constructed for arbitrary sets of bands.
Specifically, the bands described by a TB model must fulfill the following conditions:

• Condition 1: They must satisfy compatibility conditions.
• Condition 2: All the topological symmetry indicators must be trivial.

Condition 1 is automatically satisfied by any isolated set of bands, i.e., by a
collection of bands separated by gaps from the rest. This happens, for instance, when
the lowest frequency bands are separated from the rest by a global gap, which in the
case of PhCs is known as the fundamental gap. Looking at Figure 4.20, no global gap
that one could use to easily define a suitable set of bands for the TB model is appre-
ciated. Consequently, we must artificially detach a set of lower frequency bands from
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the rest, up to the point we want the TETB to describe the properties of the bands.
Condition 2 is satisfied for electronic bands or 1D and 2D PhCs bands if the irreps at
the HSP can be written as a sum of EBRs. However, for 3D PhCs, the second condition
is harder to check owing to the irregular irrep contents for the zero-frequency modes at
Γ. This is a highly nontrivial problem pointed out for the first time in Ref. [23], leading
to the definition of "transverse" symmetry indicators. All possible transverse connec-
tivities for the 230 space groups have been computed in Ref. [23], with and without
TRS, together with their topological symmetry indicators. These connectivities can be
used to identify, in the photonic bands of interest, a bundle satisfying Condition 1-2.

B.1.1 Transverse bundling: Example in SG No. 224

In the case of SG No. 224 with TRS, Ref. [23] gives 𝜇𝑇1 = 4, with 4 possible transverse
symmetry vectors, and 𝜇𝑇2 = 6 with 22 different transverse symmetry vectors. This
means that we can build TB models with four or six transverse bands but not with 1,
2, 3, or 5. There are, of course, other possibilities with more bands corresponding to
𝜇𝑇𝑛 for 𝑛 > 2 that will not be considered here. The irreps labeled in Figure 4.20 don’t
correspond to any of the four minimal solutions. Still, one of the 22 second minimal
solutions precisely matches the irreps for the six lower frequency bands. By analyzing
the symmetry properties of the electromagnetic modes at the HSP, we compute the
symmetry vector for the lowest six active bands of the PhC, which returns:

𝐯𝑇 = [(▪)2𝑇 + Γ−
2 + Γ−

4 , 𝑅
−
4 + 𝑅+

5 ,𝑀1 + 2𝑀4, 𝑋1 +𝑋3 +𝑋4]. (B.1)

The second condition is also satisfied, as all the symmetry indicators for 𝑆𝐺224 with
TRS are trivial [130]. This means that building a TB model that faithfully replicates
the properties of the six lower frequency bands in the spectrum should be possible.

B.2 Non-Minimal Pseudo-Orbital Choice

As we showed in Section 3.2.2.2, the Diophantine problem has, in principle, infinite
solutions. The easiest way to solve Equation 3.42 is to set 𝐳 = 0 in Equation 3.44.
This provides a valid solution but is not guaranteed to be of minimal norm.
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B.2.1 Non-minimal orbital choice: example in SG No. 224

For the example with symmetry vector of Equation B.1, setting z = 0 in Equation
3.44, returns the following vector with 𝑁𝐸𝐵𝑅 = 25 components:

n = (1, 0, 0, 0, 2,−1, 0, 0, 0, 0, 0,−1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)𝑇 (B.2)

which, in the notation of BCS, corresponds to the following combination of EBRs:

v𝑇z=0 = 𝐴1@2𝑎 + 2𝑇2@2𝑎 − 𝐴1𝑔@4𝑏 − 𝐴1𝑔@4𝑐. (B.3)

This vector solution has norm 𝜇 = 22. As we will show now, this is not the minimal
norm solution. To verify whether a solution with a shorter length can be found, we
propose a minimization strategy.

B.3 Minimizing the Number of Longitudinal Modes

The minimization strategy starts with the following observation. Equation 3.42 has
in principle infinite solutions.. The PhC system under study fixes the number of trans-
verse physical bands. However, the number of longitudinal, additional bands remains
arbitrary. We would prefer the minimal number of additional bands necessary to de-
scribe the band structure since the resulting TB model will be easier to implement. For
this reason, we aim to impose an upper limit on the number of longitudinal bands. This
can be achieved by splitting the problem defined in Equation 3.42 into three problems:

• Step 1: Search for all possible longitudinal solutions having a fixed number of
bands (𝑑𝐿). This returns a finite set of possible candidate longitudinal modes,
n𝐿.

• Step 2: Employ the longitudinal modes obtained in the previous step, to look
for solutions to the EBR decomposition problem. This problem can still have
multiple solutions, but these are no longer infinite.

• Step 3: Verify whether the transversality constraint is respected, i.e. the Γ sin-
gularity is correctly reproduced by the solution.

The smallest value of 𝑑𝐿 > 0 for which the three problems are simultaneously satisfied
returns the optimal transversality-enforced pseudo-orbitals basis for the TB model.
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The first step is implemented as follows. Given a fixed number of bands 𝑑𝐿, we look
for longitudinal vectors n𝐿, that satisfy:

g ⋅ n𝐿 = 𝑑𝐿, (B.4)

where g = [𝑔1, .., 𝑔𝑖, ..., 𝑔𝑁𝐸𝐵𝑅
] is a vector containing the 𝑔𝑖 dimensions of all EBRs

of the SG and ⋅ is the dot product. We want to keep 𝑑𝐿 as small as possible since
we aim to minimize the number of longitudinal bands. Obviously, 𝑑𝐿 must be strictly
positive (𝑑𝐿 > 0) since at least one longitudinal mode is needed to regularize the Γ
obstruction. In practice though, 𝑑𝐿 can never be smaller than 𝑑𝐿 = 𝑑min

𝐿 , where 𝑑min
𝐿

is the dimension of the smallest EBR in the SG (𝑑min
𝐿 = min[𝑔𝑖]). With this starting

choice for 𝑑𝐿, we move to the next step. If no solution is found for the smallest choice
of 𝑑𝐿, we increase its value, until a valid solution is found to both problems.

Before proceeding to the description of steps 2 and 3, we introduce two new
auxiliary transverse symmetry vectors, allowing us to simplify the problem.

B.3.1 Γ-reduction

To help the practical numerical implementation of Step 2 and Step 3, we define two
auxiliary Γ-reduced symmetry vectors, starting from the v𝑇 . Both vectors are agnostic
of the irregular symmetry content at 𝜔 = 0, making our method totally agnostic of the
extrapolated 𝜔 = 0 irreps. These two Γ-reduced vectors are defined as follows:

• A Γ-agnostic symmetry vector, v𝑇(𝐵𝑍−Γ). This vector is directly obtained from v𝑇

by eliminating the entire symmetry content at k = 0, both for 𝜔 > 0 and 𝜔 = 0.
This reduced vector has size (𝑁𝑖𝑟𝑟−𝑁𝑖𝑟𝑟[Γ]), being𝑁𝑖𝑟𝑟[Γ] the number of irreps
at Γ. This vector is used to define a reduced Diophantine problem:

v𝑇(𝐵𝑍−Γ) = ARDn, (B.5)

where the reduced matrix ARD, of size (𝑁𝑖𝑟𝑟 −𝑁𝑖𝑟𝑟[Γ]) ×𝑁𝐸𝐵𝑅, is obtained by
eliminating the irreps at the Γ point from the EBR matrix A.

• A Γ-defective vector v𝑇𝜔>0. This vector is full-sized, with𝑁𝑖𝑟𝑟 components. At Γ
it contains the𝜔 > 0 irreps obtained from MPB, but leaves the𝜔 = 0 symmetry-
content ill-defined. Technically, this is no longer a symmetry vector, because
this subtraction makes it defective, i.e. we have 2 missing entries in the total
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multiplicity of the irreps at Γ as compared to the other HSPs

2 +
𝑁𝑖𝑟𝑟[Γ])
∑

𝑗
𝑛𝑗 =

𝑁𝑖𝑟𝑟[kHSP≠Γ]
∑

𝑗
𝑛𝑗 . (B.6)

Step 2 of is implemented using the Γ-agnostic symmetry vector, v𝑇(𝐵𝑍−Γ). Step 3 re-
quires the use of the Γ-defective vector v𝑇𝜔>0, to perform the transversality check.

B.3.2 Multiple solutions

Step 2 involves solving the reduced Diophantine problem Equation B.5, via:

n = n𝑇+𝐿 − n𝐿 (B.7)

where n𝐿 are the longitudinal modes obtained in the previous step (Step 1) through
Equation B.4. For a fixed 𝑑𝐿, this problem can have multiple, but no longer infinite
solutions. These are therefore accessible to any computational constraint solver [311].

B.3.3 Physicality constraint

In Step 3, we verify that the physicality constraint is respected, i.e. that theΓ singularity
is correctly reproduced by the solution. As we have already mentioned, due to the
transversality constraint at Γ, the symmetry content at 𝜔 = 0 is irregular. In other
words, it contains negative multiplicities in the irreps decomposition. This negative
multiplicity can be formally canceled by the irreps of the 𝜔 > 0 transverse modes or
by the auxiliary longitudinal bands. If a transverse mode at 𝜔 > 0 is sacrificed to
cancel the negative multiplicities at 𝜔 = 0, our model will not enforce transversality,
making it unphysical. Therefore, for a solution to be transversal, it must satisfy either
of the two equivalent conditions:

1. All negative irreps arising from the singularity at Γ must be present in auxiliary
longitudinal bands so they can be canceled.

2. All the 𝜔 > 0 transverse irreps in v𝑇 should also be contained in the transverse
bands of the EBR decomposition.

Note that 𝑑𝐿 > 0 is a necessary but not sufficient condition for a solution to be trans-
verse. An example of an unphysical pseudo-orbital choice with 𝑑𝐿 > 0 is given in
Section B.3.4.
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B.3.4 Unphysical orbital choice: example in SG No. 224

Here we present an example of an unphysical pseudo-orbital choice that can arise if
transversality is not enforced (i.e. skipping Step 3). We are in SG224 and we consider
the following:

v𝑇 = [(▪)2𝑇 +Γ+
1 +Γ−

1 +2Γ+
2 +Γ−

3 , 𝑅
−
1 +𝑅

−
2 +𝑅

+
3 +𝑅

+
4 ,𝑀1+2𝑀2+𝑀4, 𝑋1+2𝑋2+𝑋3]

(B.8)
which is a valid transverse symmetry vector [23]. The associated Γ-defective vector
v𝑇𝜔>0 is:

v𝑇𝜔>0 = [Γ+
1 +Γ

−
1 +2Γ

+
2 +Γ

−
3 , 𝑅

−
1 +𝑅

−
2 +𝑅

+
3 +𝑅

+
4 ,𝑀1+2𝑀2+𝑀4, 𝑋1+2𝑋2+𝑋3] (B.9)

If we apply Step 2 and look for all possible solutions to the reduced Diophantine prob-
lem, we obtain two possible EBR decompositions (v𝑇1 and v𝑇2 ). As we will see, the first
one is unphysical:

v𝑇1 = 𝐴1@2𝑎 + 2 ∗ 𝐴2@2𝑎 + 𝐸𝑔@4𝑏 − 𝐴1𝑔@4𝑏 − 𝐴2@2𝑎 (unphysical) (B.10)

v𝑇2 = 𝐴1@2𝑎 + 2 ∗ 𝐴2@2𝑎 + 𝐸𝑢@4𝑐 − 𝐴1𝑔@4𝑏 − 𝐴2@2𝑎 (physical). (B.11)
Both v𝑇1,2 EBR decompositions are associated to the following longitudinal mode:

v𝐿 = 𝐴1𝑔@4𝑏 + 𝐴2@2𝑎 (B.12)

and their extrapolated Γ content is the following:

(▪)1 = −Γ+
1 + Γ−

2 − Γ+
2 − Γ+

3 + Γ+
3 + Γ+

4 (B.13)

(▪)2 = −Γ+
1 + Γ−

2 − Γ+
2 + Γ−

4 + Γ−
5 − Γ+

5 . (B.14)
The unphysicality of the first EBR decomposition arises from the annihilation of a Γ+

3

irrep which belonged to the positive frequency modes in v𝑇𝜔>0. More specifically, a
transversal 𝜔 > 0 mode is sacrificed to regularize the singularity. While this cancel-
lation is mathematically valid, it is unphysical, since we are breaking transversality
forcing another transversal mode to go to 𝜔 = 0 to cancel that irrep.
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B.3.5 Minimal orbital choice: example in SG No. 224

Let us now see how the minimal decomposition works for the SG No. 224 example
with symmetry vector v𝑇 as in Equation B.1. The first possibility to try is to take
𝑑𝐿 = 𝑑min

𝐿 = 2 since the lowest dimension of any EBR in this SG is min[𝑔𝑖] = 2.
Applying the steps described in Section B.3, we obtain the following solution:

v𝑇+𝐿 = 𝐴2𝑢@4𝑏 + 𝐴2𝑢@4𝑐, (B.15)

v𝐿 = 𝐴1@2𝑎. (B.16)
Since we can‘t go lower than 𝑑𝐿 = 2, this needs to be the solution with the minimal
number of bands. As well, physicality is satisfied. Therefore this represents an optimal
pseudo-orbital choice for building a TETB of the six transverse modes in Equation
B.1.
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Appendix C

Photonic 3D CIs: Generalizations

This appendix provides complementary information on the "Photonic 3D CI" detailed
in Section 4.1. It discusses the robustness and limitations of the topological phase
and proposes generalizations. Section C.1 explores the stability of the topological
gap, noting that Weyl points can be annihilated without perfect band folding. The
discussion then shifts to strategies for minimizing magnetic bias and increasing Chern
numbers, detailing on the effects on the bandgap size. Differences between uniaxial,
cubic and other more general commensurate supercell modulations are outlined, and
the orientation of the Weyl dipole is discussed in relation to these.

Section C.2 examines the symmetries of FLs and highlights how their shape
can change based on geometrical symmetries. The section also considers diagonal
Chern vector’s orientations and its implications for topological protection on oblique
surface cuts.

C.1 Bulk Topological Properties

C.1.1 Robustness of the topological gap

Fine-tuning and perfect band folding are not strict requirements for achieving the an-
nihilation of Weyl points, endowing our system with a certain level of robustness and
tolerance over reciprocal lattice vector mismatches. As shown in Figure C.1, the anni-
hilation of Weyl points, in the modulated system, occurs even under a bias field which
is different from finely tuned value allowing perfect band folding, i.e. when 𝑁𝑊 is an
integer. The bandgap is maximized at fine-tuning and then gradually decreases when
deviating from it. This indicates that the 3D CI phase can be achieved under a certain
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Figure C.1: Weyl point annihilation occurs with tolerance over folding lattice vector and Weyl point
location mismatch. a Supercell of size (2, 2, 2) with no modulation: the gyro-electric parameter
(𝜂𝑁𝑊 =2 = 15) deviates from the finely tuned one (𝜂𝑁𝑊 =2 = 16) required to merge Weyl points ex-
actly at zone boundary. b After modulation, Weyl points annihilate, resulting in a topological bandgap
𝑓𝑔 which is ∼ 75% the maximum value 𝑓𝑁𝑊 =2

𝑔 obtained at fine-tuning.

continuum interval of TRS-breaking conditions centered around discrete values (𝑁𝑊 )
of the Weyl dipole splitting.

C.1.2 Minimizing the magnetic bias

In Section 4.2, we developed a strategy allowing us to generate the 3D photonic CI
phase under more accessible magnetization conditions. The method is based on the
use of multi-fold supercells at small Weyl splitting: a 3D CI phase can be achieved
under smaller splitting of the Weyl dipole as compared to the 𝑁 = 𝑁𝑊 = 2 system,
by a proper choice of the modulation with 𝑁 = 𝑁𝑊 > 2. The detailed steps of this
procedure are visualized in Figure C.2, for an uniaxial supercell with 𝑁 = 𝑁𝑊 = 3.
The resulting bandgap displays the same Chern number as the 𝑁 = 𝑁𝑊 = 2 system
but it is achieved at less than half the gyro-electric bias (𝜂𝑁𝑊 =3

𝑧 = 7.8, 𝜂𝑁𝑊 =2
𝑧 = 16). To

decrease further the magnetic strength factor, in Figure C.3 we provide some examples
with larger𝑁 = 𝑁𝑊 , in which we increased and optimized the modulation intensity to
partially compensate for the bandgap decrease. The example case where 𝜂∕𝜖 = 1.6∕16
at 𝑁 = 𝑁𝑊 = 7, constitutes a significant reduction in the magnetic bias. However,
we cannot indefinitely iterate this process down to zero magnetic field. Indeed, as
𝑁 = 𝑁𝑊 grows, the bandgap suffers an unavoidable reduction: a decrease in the
magnetic field necessarily leads to a compromise on the resulting gap.

To visualize this, we display a table of decreasing bandgaps for the uniaxial
supercell where modulation intensity is chosen to maximize the bandgap at growing
𝑁 , in Table C.1. As it can be seen, the bandgap diminishes as 𝑁 = 𝑁𝑊 grows.
Clearly, in the limit of very large 𝑁 , there is no splitting of Weyl points, and thus no
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Figure C.2: Usual 3D CI design strategy, but in a reduced magnetization environment, with𝑁 = 𝑁𝑊 =
3. a: PhC in the presence of TRS, where |𝑎𝑧| = 3|𝑎| is the lattice parameter along 𝑧 axis direction. b:
Limited TRS breaking implemented via a gyro-electric response to an applied 𝐇 = 𝐻𝑧𝐳̂ field inducing
a bias parameter 𝜂𝑁𝑊 =3

𝑧 = 7.8: the bias field is adjusted to split the Weyl points of approximately a third
the BZ, i.e. at 𝑘±𝑧 = ± 2𝜋

3|𝑎| , along the 𝐒𝐑𝐒′ line where 𝐒′ = 𝐒− 𝐛𝑧. c: Artificial folding of the bands on
a 𝑁 = 3 uniaxial supercell: Weyl points superimpose at 𝐒 in the new BZ. d: Coupling and annihilation
of Weyl points through a 𝑁 = 3 uniaxial supercell modulation with modulation parameter 𝑟𝑚 = 𝑟0∕20,
resulting in a topological direct gap at 𝐒 with gap-to-midgap (𝑓𝑔∕𝑓𝑚) ratio of 1.2%. The section Chern
𝐶𝑧 number is constant everywhere in the BZ and displays unit value (inset), establishing the system to
be in the same topological insulating phase as the 𝑁𝑊 = 𝑁 = 2 system, but with a large reduction of
the required magnetic bias.

𝑁 = 𝑁𝑊 5 6 7
𝜂 3.0 2.1 1.6

𝑓𝑔∕𝑓𝑚(%) 1.5 1.4 1.0
𝑓𝑔(𝑓 |𝑎|∕𝑐) 0.005 0.004 0.003

Table C.1: Reduction of the magnetic bias 𝜂 and associated gap-to-midgap ratio 𝑓𝑔∕𝑓𝑚(%). Values are
optimized by adjusting the magnitude of the modulation (𝑟𝑚), yet the bandgap reduction is unavoidable.
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Figure C.3: Bandgap reduction with decreasing Weyl point separation, at increasing𝑁 = 𝑁𝑊 . Partial
compensation of the bandgap reduction is achieved by strengthening the modulation intensity (𝑟𝑚).

TRS broken gap can be opened, lim𝑁→∞ 𝑓𝑔 = 0.

C.1.3 Higher Chern numbers on multi-fold supercells N>2

In Section 4.1, we proved that arbitrarily large Chern numbers can be obtained by
folding over multi-fold supercells with 𝑁 = 2𝑛 > 2 and at 𝑁𝑊 = 2. Figure C.4
displays the band-structure associated to the WLs shown in Figure 4.5 of Section 4.1,
for uniaxial supercells with 𝑁 up to eight. As it can be noticed, the bandgap opens up
at 𝐑−𝐙 = 𝐒 if 𝑛 is even and at 𝐑 is 𝑛 is odd. As the supercell modulation approaches
a longer wavelength limit, the size of the gap gradually diminishes.

C.1.4 Uniaxial vs cubic supercell modulation

In this section, we explain how to activate different modulation components and better
clarify the concept of multifold supercell modulation. In the PhC studied here radius
of the cylinders is locally varied, by locally changing the radius of the spheres in the
covering approximation. The local change from the original 𝑟0 radius to the new local
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Figure C.4: Band-structure for systems with increasing Chern number. Uniaxial (1, 1, 𝑁) supercells
with a: 𝑁 = 2, b: 𝑁 = 4, c: 𝑁 = 6 and d: 𝑁 = 8 and with modulation parameter 𝑟𝑚 = 𝑟0∕20. The
corresponding WLs are shown in Figure 4.5 in the Section 4.1.

one 𝑟(𝑥, 𝑦, 𝑧) is performed according to the relation:

Δ𝑟(𝑥, 𝑦, 𝑧) = 𝑟𝑚[𝛿𝑥 cos(2𝜋𝑥∕𝑁|𝑎|) + 𝛿𝑦 cos(2𝜋𝑦∕𝑁|𝑎|) + 𝛿𝑧 cos(2𝜋𝑧∕𝑁|𝑎|)] (C.1)

where we introduced a vector of model parameters 𝛿 = (𝛿𝑧, 𝛿𝑦, 𝛿𝑧) that differentiates
between different types of modulations. The cubic case is represented by 𝛿 = (1, 1, 1)
and the 𝑧-directed uniaxial case by 𝛿 = (0, 0, 1). This means that, for an uniaxial su-
percell the modulation is performed along a single Cartesian axis while for a cubic
one, the structure is modulated along all the Cartesian components. Figure C.5 com-
pare cubic and uniaxial supercells, on a (222) lattice so that one could better follow the
3D periodicity. Here the modulation parameter has been largely amplified 𝑟𝑚 ∼ 𝑟0∕5.
Graphically, the supercell modulation is visualized by employing a scale of colors for
the dielectric structure plots and a color bar is associated with the local radius of the
cylinders. Note that in the cases considered in the Section 4.1, the modulation applied
is a perturbation (𝑟𝑚 << 𝑟0), which may result in a very subtle graphical difference
between the original lattice and the modulated one.
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Figure C.5: Visualizing the supercell modulation when the model parameters are largely amplified
𝑟𝑚 ∼ 𝑟0∕5. Cubic (b) and uniaxial case (c). For the uniaxial case, we replicate laterally 4 unit cells, to
compare with the 3D periodic structure with the cubic modulations.

C.1.5 Weyl dipole tilted from the Cartesian directions

The strategy we developed in Section 4.1.3.1 to obtain 3D CIs also applies when the
magnetic field deviates from the crystal high symmetry lines, as long as the Weyl dipole
is oriented along an integer linear combination of the lattice vectors. In such cases, it
is possible to find a proper supercell commensurate with the Weyl dipole separation.
For a (110) Weyl dipole orientation, as in Figure C.6, the proper auxiliary supercell
should have the following structure (𝑁𝑥, 𝑁𝑦, 𝑁𝑧) with𝑁𝑥 = 𝑁𝑦 = 𝑁 = 𝑁𝑊 chosen to
be commensurate with the Weyl dipole separation. For example, assume splitting the
Weyl points at 𝑁𝑊 = 4 along (110): by simple folding arguments, a bandgap can be
opened via folding and modulating along (110) on a commensurate𝑁𝑥 = 𝑁𝑦 = 𝑁 = 4
supercell (either cubic with 𝑁𝑧 = 𝑁 or anisotropic with 𝑁𝑧 ≠ 𝑁). This way one can
achieve a Chern vector whose direction is not strictly a Cartesian direction provided
being an integer linear combination of them. For the example discussed previously,
we can expect the resulting system to have a non-zero Chern vector along (110). In
general, the Chern vector should display the same orientation as the Weyl dipole, as
long as one chooses a commensurate supercell that annihilates them.

C.2 Surface Topological Properties

C.2.1 Winding and symmetries of the Fermi Loops

In Section 4.1.5, we displayed FLs which have reflection symmetry with respect to a
line in the surface momentum space. Differently from their winding, the symmetry
of the FLs in 𝐤 is not a universal property and depends on the geometry of the crys-
tal, as we show here with a clarifying example. Figure C.7 displays the FLs of the
𝐶𝑧∕𝐶𝑥 configuration explored in Section 4.1.5.4 (panel a), compared with the FLs of
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Figure C.6: Orienting the Weyl dipole along an integer linear combination of the Cartesian components.
Splitting occurs along the 𝐙𝐑𝐙′ line where 𝐙′ = 𝐙 − 𝐛𝑦 − 𝐛𝑥

Figure C.7: FLs with the same winding but different symmetries.

a topologically equivalent system, but on which 𝑦-mirror symmetry is geometrically
broken (panel a). Specifically, the crystals in panel a are supercell modulated along 𝑦
via a 𝑠𝑖𝑛-like modulation, in contrast to the 𝑐𝑜𝑠-like modulation employed in the sys-
tem sustaining the FLs of panel a. As it can be observed comparing both panels, in
the system with a 𝑠𝑖𝑛-like modulation y the 𝑦 direction, the 𝑦-mirror symmetry of the
original FLs is broken but the connectivity, the winding, and the topology of the FLs
are unaffected. Therefore, although the winding of the FLs is not affected by the real
space geometrical symmetries, their shape can be altered by them. Nevertheless, the
BBC relations are not modified by an asymmetry of the FLs.

C.2.2 Diagonal Chern vector orientation

In this section, we discuss how to apply vBBC in the case of oblique orientation of the
surface cut of a 3D cube with respect to the Chern vector, i.e. when the Chern vector is
neither parallel nor perpendicular to the boundary. Specifically, we ask which diagonal
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cuts do not break topological protection and how to apply vBBC in that case. This
question is relevant since the topological invariants of a 3D CI are only defined on its
lower-dimensional surfaces and some constraints exist on the planes which can support
unidirectional boundary states [45,46,180–185,212]. In this sense, 3D CIs have some
similarities with weak 3D quantum spin Hall systems [52,312,313], which are a "weak"
topological phase and rely on translation along some preferential direction. However,
3D CIs are more robust than this, since no local perturbation on an edge can gap their
surface states. Indeed, as we show now, for a 3D CI it is possible to find some diagonal
cuts, where the topological protection of surface modes is preserved. In such a case,
vBBC can be easily applied provided moving to a new reference frame. We show this
with a clarifying example.

Consider a cut with a normal vector given by (𝑚, 𝑛,𝓁) and a Chern vector given
by (0, 0, 1) for simplicity. Since the surface normal is an integer number of lattice
vectors, we can go to a new coordinate system 𝑒1 = (𝑚, 𝑛,𝓁), 𝑒2 = (−𝑛, 𝑚, 0), 𝑒3 =
(−𝓁𝑚,𝓁𝑛, 𝑚2 + 𝑛2), such that the boundary normal vector is (1, 0, 0). In this new
coordinate system (i.e. the new reciprocal lattice vectors), the Chern vector is given by
(𝓁, 0, 𝑚2+𝑛2). Therefore, we know there will be surface states since the Chern number
change has a component perpendicular to the boundary, according to Equation 4.5 of
the section 4.1.5. This means that it is possible to find some oblique planes, an integer
linear combination of reciprocal lattice vectors, where the topological protection of
unidirectional surface states is not lost. Moreover, it shows that also for an oblique
cut, vBBC can be easily applied, by simply moving to the new coordinate frame. This
important point is related to the fact that a 3D Chern insulating phase is defined by
weak indices in the CAZ classification table [25], therefore imposing some constraints
on the surfaces that can support unidirectional surface states.
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Appendix D

Magnetic Properties of the Photonic
Axion Insulator

This appendix aims to characterize and model the gyrotropic response of the "Pho-
tonic Axion Insulator" presented in Section 4.2. The appendix starts by providing the
magnetic Hamiltonian and the magnetic space group analysis of the PhC structure, ex-
plaining the impact of the rotation of the external magnetic field on the topological and
symmetry properties of the rAXI. Connecting bulk results with the domain wall sur-
face gap, the relation between the magnetically induced surface gap and the different
hinge configurations is investigated.

D.1 Bulk Symmetry Properties

D.1.1 TETB Hamiltonian for the magnetic Weyl phase

Here we provide the analytical expression of the 𝐻(k) Hamiltonian for the gyrotropic
PhCs obtained including interactions up to third-nearest neighbors, comparing the
magnetic and nonmagnetic cases. The nonmagnetic Hamiltonian for the 3D PhC of
Figure 4.20 is given by Equation D.5). It is a 8 × 8 matrix 𝐻(k), built by placing
pseudo-orbitals that transform as 𝐴2𝑢 in Wyckoff positions 4𝑐 ∶ (1∕2, 1∕2, 1∕2) and
4𝑏 ∶ (0, 0, 0) and including interactions up to third-nearest neighbors. The Hamilto-
nian involves nine free, real parameters: 𝛼1 and 𝛼2 are on-site energies, while the six
remaining parameters are first (𝑎1), second (𝑎2, 𝑟2, 𝑠2, 𝑤2) and third (𝑎3, 𝑟3) nearest
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neighbor hoppings. It is compactly expressed in terms of the following functions:

ℎ1(𝑥1, 𝑥2) = 𝑎2 cos
(

𝜋[𝑥1 + 𝑥2]
)

+ 𝑟2 cos
(

𝜋[𝑥1 − 𝑥2]
)

, (D.1)

ℎ2(𝑥1, 𝑥2, 𝑥3) = 𝑎3 cos
(

𝜋[𝑥1 + 𝑥2 + 𝑥3]
)

+ 𝑟3 cos
(

𝜋[𝑥1 − 𝑥2 − 𝑥3]
)

+2𝑟3 cos
(

𝜋𝑥1
)

cos
(

𝜋[𝑥2 − 𝑥3]
)
, (D.2)

ℎ3(𝑥1) = 𝑎1 cos
(

𝜋𝑥1
) (D.3)

ℎ4(𝑥1, 𝑥2) = 𝑠2 cos
(

𝜋[𝑥1 + 𝑥2]
)

+𝑤2 cos
(

𝜋[𝑥1 − 𝑥2]
)

. (D.4)
The linear coupling to the external magnetic field 𝑓𝑀 (k,H) is written in Equa-

tion D.9 for the PhC in Figure 4.21. It depends on five free, real parameters: 𝛿1 for
first-nearest neighbor hopping terms, and 𝛿2, 𝛽2, 𝜅2 and 𝜖2 for second-nearest neigh-
bor hoppings. Due to symmetry constraints, first-order linear perturbation does not
affect the third nearest neighbor hopping. It can be compactly expressed in terms of
the following functions:

𝑓𝑀1(𝑥1, 𝑥2,𝐻1,𝐻2) = 𝑖(𝐻1 −𝐻2)
{

𝛽2 cos
(

𝜋[𝑥1 − 𝑥2]
)

+ 𝛿2 cos
(

𝜋[𝑥1 + 𝑥2]
)}

(D.6)
𝑓𝑀2(𝑥1,𝐻1,𝐻2) = 𝑖𝛿1(𝐻1 −𝐻2) cos

(

𝜋𝑥1
) (D.7)

𝑓𝑀3(𝑥1, 𝑥2,𝐻1,𝐻2) = 𝑖(𝐻1 −𝐻2)
{

𝜅2 cos
(

𝜋[𝑥1 − 𝑥2]
)

+ 𝜖2 cos
(

𝜋[𝑥1 + 𝑥2]
)}

(D.8)
.

D.1.2 Magnetic space group analysis

In this section, we analyze the Magnetic Space Group (MSG) for the gyrotropic PhCs.
The MSG assignation is conducted on the dielectric structure, via the use of the func-
tionalities of FINDSYM [314]. We perform this analysis for the case of a Supercell
Modulation (SM) of a 𝑁 = 3 period, with phase 𝜙 = 0, 𝜋 and in the presence of an
external magnetic field :

H = (|ℎ|cos(𝜎), |ℎ|sin(𝜎),𝐻𝑧) (D.10)

with |ℎ| << |𝐻𝑧|. We evaluate the symmetry content of the electromagnetic fields,
via the study of the transformation properties of the D electric and B magnetic modes
supported by the PhC, using the MPB solver [168], as explained in the Chapter 3.
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We label the irreps at the HSPs according to the notation of BCS [154, 202].
We compute the symmetry vector ṽ, which contains the multiplicity of each irrep in the
little group of each HSP. From these, we finally extract the corresponding Symmetry
Indicators (SI) [45, 67, 195–198]. Please note that all operations and coordinates are
expressed with respect to the following primitive lattice vectors:

𝐞1 = 𝐱̂, 𝐞2 = 𝐲̂, 𝐞3 = 3𝐳̂. (D.11)

These lattice vectors are those of the BCS parent Space Group (SG) #224. We will
stick to this cartesian system even for the lower symmetry phases.

D.1.2.1 Case with |ℎ| = 0

When the gyrotropic axis is along 𝑧, i.e. in the presence of an external H = (0, 0,𝐻𝑧)
magnetic field, the PhCs are in MSG 67.505. Please note that there is a 𝜋∕4 rotation
in the 𝑂𝑋𝑌 plane between SG 224 and MSG 67.505.

To label the irreps at the HSP, we consider the maximal unitary subgroup of
MSG #67.505 (Cm’m’a), i.e. Space Group (SG) #13 (𝑃 2∕𝑚), whose generators are:

{𝐶2𝑧|
1
2
, 1
2
, 0}, {𝑚𝑧|

1
2
, 1
2
, 0}, {1̄|0, 0, 0}, (D.12)

expressed in the basis of Equation D.11. The anti-unitary generators of MSG #67.505
are:

{𝐶 ′
2110

|

1
2
, 1
2
, 0}, {𝑚′

110|
1
2
, 1
2
, 0},

{𝐶 ′
211̄0

|0, 0, 0}, {𝑚′
11̄0|0, 0, 0},

(D.13)

which are also expressed in the basis of Equation D.11 and where the prime indicates
the time-reversal operation. Please note that there is a 𝜋∕2 rotation in the 𝑂𝑌𝑍 plane
between MSG 67.505 and SG 13.

The symmetry vectors, computed for the lowest six transverse bands of the PhC
are:

𝐯̃𝑇𝜙=0 = [3𝐴1, 3𝐵1, 𝐶
−
1 + 2𝐶+

2 + 3𝐶−
2 , 3𝐷1, 3𝐸1, (■)2𝑇

+2Γ+
2 + 2Γ−

2 , 𝑌
−
1 + 2𝑌 +

2 + 3𝑌 −
2 , 3𝑍

+
2 + 3𝑍−

2 ]
(D.14)

and
𝐯̃𝑇𝜙=𝜋 = [3𝐴1, 3𝐵1, 𝐶

−
1 + 2𝐶+

2 + 3𝐶−
2 , 3𝐷1, 3𝐸1, (■)2𝑇

+2Γ+
2 + 2Γ−

2 , 𝑌
+
1 + 3𝑌 +

2 + 2𝑌 −
2 , 3𝑍

+
2 + 3𝑍−

2 ]
(D.15)

where (■)2𝑇 indicates the irregular symmetry content at Γ and 𝜔 = 0 arising from
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transversality of the electromagnetic waves [23, 250], where ()𝑇 labels the transverse
bands and where ̃superscript indicates that the analysis is done after the introduction
of the SM. Note that HSPs labeled as 𝑌 ,𝑍, 𝐶 correspond to the following reduced
coordinates in the BZ, whose little group has solely 1-dimensional irreps:

𝑌 = (𝜋, 𝜋, 0), 𝑍 = (0, 0, 𝜋), 𝐶 = (𝜋, 𝜋, 𝜋). (D.16)

The HSPs 𝐴,𝐵,𝐷,𝐸, whose little group has a single 2-dimensional irrep, correspond
to the following:

(D.17)

On the other hand, for the lowest modes of the Transversality-Enforced Tight-
Binding (TETB) model, we obtain:

𝐯̃𝑇+𝐿𝜙=0 =[6𝐴1, 6𝐵1, 3𝐶+
1 + 4𝐶−

1 + 2𝐶+
2 + 3𝐶−

2 , 6𝐷1,

6𝐸1, 2Γ+
1 + 4Γ−

1 + 2Γ+
2 + 4Γ−

2 , 3𝑌
+
1 + 4𝑌 −

1

+ 2𝑌 +
2 + 3𝑌 −

2 , 3𝑍
+
1 + 3𝑍−

1 + 3𝑍+
2 + 3𝑍−

2 ]

(D.18)

and
𝐯̃𝑇+𝐿𝜙=𝜋 =[6𝐴1, 6𝐵1, 3𝐶+

1 + 4𝐶−
1 + 2𝐶+

2 + 3𝐶−
2 , 6𝐷1,

6𝐸1, 2Γ+
1 + 4Γ−

1 + 2Γ+
2 + 4Γ−

2 , 4𝑌
+
1 + 3𝑌 −

1

+ 3𝑌 +
2 + 2𝑌 −

2 , 3𝑍
+
1 + 3𝑍−

1 + 3𝑍+
2 + 3𝑍−

2 ].

(D.19)

These equations are in correspondence with Equations 4.15 and 4.16 where
we take into account solely inversion symmetry. After having identified the irregular
irrep content at Γ, as (■)2𝑇 = −Γ+

1 +Γ−
1 +2Γ−

2 , consistent with symmetry-constrained
decomposition for point group 2∕𝑚 as in Refs. [23, 250], we can split the TETB sym-
metry vector as follows: 𝐯̃𝑇+𝐿𝜙 = 𝐯̃𝑇𝜙 + 𝐯̃𝐿𝜙 . Since 𝐯̃𝐿𝜙 have trivial SI, we can extract the
transverse SI for the photonic bands obtaining:

𝜈𝑇+𝐿𝜙=0 = {1, 0}

𝜈𝑇+𝐿𝜙=𝜋 = {1, 1}
(D.20)

corresponding to the ℤ2 × ℤ2 magnetic SI group, see Table 5 in Ref. [195].
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D.1.2.2 Case with 0 < |ℎ| << |𝐻𝑧|

When we apply a small off-𝑧 tilt to the external magnetic field, as described by Equa-
tion D.10, the PhC undergoes subduction to MSG #2.4 (𝑃 1̄). As long as the |ℎ| per-
turbation is weak enough as compared to |𝐻𝑧|, the transition occurs without closing
the bulk Chern gap, leaving the Chern numbers unaffected, with

(𝐶𝑥, 𝐶𝑦, 𝐶𝑧) = (0, 0, 1). (D.21)

More precisely, the |ℎ| component introduces a small deviation from the Weyl folding
commensurate condition, which results in a graduaopeninking of the bulk 3D Chern
gap as |ℎ| is increased. However, as long as the bulk 3D Chern gap remains opens
and Equation D.21 condition is satisfied, the SI analysis done for |ℎ| = 0 uniquely
determines the SIs for the |ℎ| ≠ 0 case. The reason for this is that the SI group for
MSG #2.4, which is ℤ3

2 × ℤ4, is a supergroup of ℤ2
2 in MSG #67.505. Applying the

compatibility relations in MSG #67.505 to the well-known expression for the inversion
SI [45, 67, 195–198], returns that {𝑧̄2,𝑥, 𝑧̄2,𝑦, 𝑧̄2,𝑧|𝑧̄4} can only takes value in:

{0, 0, 0|0}, {0, 0, 0|2}, {0, 0, 1|0}, {0, 0, 1|2}, (D.22)

thus forming ℤ2
2. The transverse SI for the photonic bands in the presence of 0 <

|ℎ| << |𝐻𝑧|, computed in the MSG 2.4 setting, are:

𝜈𝑇+𝐿𝜙=0 = {0, 0, 1|0}

𝜈𝑇+𝐿𝜙=𝜋 = {0, 0, 1|2}
(D.23)

which is in agreement with Equations D.20, which were obtained in SG 13 setting. In
SG 13, the -SI {𝑧̄2,𝑥, 𝑧̄2,𝑦, 𝑧̄2,𝑧|𝑧̄4} are reduced to

𝑧̄2,𝑥 = 𝑧̄2,𝑦 = 0 mod 2 (D.24)
𝑧̄2,𝑧 = 𝑛(Γ−

1 ) + 𝑛(Γ
−
2 ) + 𝑛(𝑌

−
1 ) + 𝑛(𝑌

−
2 ) mod 2 (D.25)

𝑧̄4 = 2𝑛(Γ−
2 ) + 2𝑛(𝑌 −

2 ) + 2𝑛(𝐶−
1 ) + 2𝑛(𝑍−

1 ) mod 4 (D.26)

where 𝑛(𝑖𝑟𝑟𝑒𝑝) counts the irrep multiplicity at the corresponding HSP. These relations
directly follow from applying compatibility constraints. Importantly, note that 𝑧̄4 ∈
{0, 2}. This shows that the relative Axion Insulators (rAXI) with 𝜙 = 0, 𝜋 display an
obstruction of their 𝑧̄4 symmetry indicators, irrespective of the presence of a small |ℎ|
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magnetic perturbation.

D.2 Domain-Wall and Rod Configurations

In the Section 4.2, we constructed phase-obstructed domain walls of PhCs, with the
𝜙(𝑥) SM phase changing from 𝜙(𝑥) = 0 for 𝑥 < 0, to 𝜙(𝑥) = 𝜋 for 𝑥 > 0. Even
in the presence of the domain wall, the AXI PhC is a continuous and fully connected
structure, with the rods connected all across the interface. The electromagnetic modes
supported by the PhC can be numerically simulated by solving Maxwell’s equations on
a dense real-space grid, where discontinuities in the dielectric constant are treated via
a simple linear interpolation on a dense mesh. Specifically, we use the MIT Photonic-
Bands package (MPB) [168] in this case. Conversely, TB models are typically con-
structed using discrete orbitals localized at specific Wyckoff positions. To accurately
capture the continuous nature of PhC geometry in the TETB model, we employ a spe-
cific boundary condition choice:

• We keep the hopping terms constant across the interface;

• We use linear interpolation to transition between the onsite energies of the sub-
systems with SM 𝜙 = 0 and 𝜙 = 𝜋.

This prevents the emergence of surface effects in the TETB which deviate from the
surface electromagnetic response of a fully connected 3D photonic structure. Specif-
ically, for the model considered here, this boundary choice ensures that the SM mass
term which couples the Weyl points [236]:

𝑚 = Δ𝑒𝑖𝜙, (D.27)

crosses zero across a domain wall where 𝑚(𝑥 → −∞) = 𝑚 and 𝑚(𝑥 → ∞) = −𝑚,
where (Δ, 𝜙) are amplitude and phase of the SM. This ensures the domain wall bands
are gapless at criticality, as shown in Figure D.1(a).

D.2.1 Gapless Dirac cone on the 𝑥 = 0 plane

As shown in Figure D.1(a), the 𝛿𝜃 = 𝜋 domain wall bands display a massless 2D
Dirac cone, located at (𝑘𝑦, 𝑘𝑧) = (𝜋, 𝜋) in the surface BZ. This gapless state arises as
a projection of the folded bulk Weyl points 𝑉 = (𝜋, 𝜋, 0), when 𝛿𝜃 = 𝜋, and when the
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external magnetic field complies with the commensuration folding condition and does
not present any component orthogonal to the interface plane. More specifically, since:

𝑚(𝑥 = 0) = 0, (D.28)

the nested Weyl points reappear as a projection of the bulk Weyl points on the 𝑥 = 0
plane, due to the local cancellation of the effects of the SM. At 𝑥 = 0, the rAXI irreps
are exchanged through the phase-obstructed domain wall as a result of the double band
inversion occurring in the bulk at 𝑉 , which is the point where folding of the Weyl points
occurs. Importantly, this Dirac cone is not robust to perturbations at the boundary. In
particular, the gapless condition for the surface modes on the 𝑥 = 0 plane is only
maintained as long as the magnetic field does not present any component orthogonal
to the interface, i.e., for an 𝑥-domain wall, when ℎ𝑥 = |ℎ|cos(𝜎) = 0.

D.2.2 Magnetic control of the surface gap

To impart a mass to the Dirac cone, we introduce a small magnetic perturbation in the
𝑥𝑦 plane with |ℎ| << |𝐻𝑧|, resulting in the gapped domain wall bands displayed in
Figure D.1(b). As shown in Figure D.2, by tuning the value of |ℎ| it is possible to
control the size of this surface gap. For example, for a fixed value of 𝜎 = 𝜋∕4, the
optimum gap is reached at |ℎ| ∼ 1. Note that |ℎ| has to be treated as a perturbation
as compared to 𝐻𝑧: for values of |ℎ| ∼ |𝐻𝑧|, the gap tends to close again, due to
deviation from the Weyl folding condition, and correspondent shrinking of the bulk
gap.

D.2.3 Topological transition between hinge states

In the Section 4.2, we verified that it is possible to induce topological transitions across
different hinge-state configurations by tuning the 𝜎 angle and rotating magnetic pertur-
bation in the 𝑥𝑦 plane. This results in four distinct hinge-state configurations 𝛼,𝛽,𝛾 ,𝛿,
with localization of the upwards-moving state on either of the four different hinges.
Since these transitions occur across these topologically distinct boundary configura-
tions, we expect them to be accompanied by a gap-closing point. Indeed, as shown
in Figure D.3, for a 𝑥 domain wall, the gap closes when the magnetic perturbation is
along ±𝑦. We checked that the same happens for a 𝑦 domain wall, with a gap closing
when the magnetic perturbation is along 10, i.e. ±𝑥. These four values of the in-plane
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Figure D.1: Surface bands for a 𝑥 domain wall with 𝛿𝜙 = 𝛿𝜃 = 𝜋. a: Gapless configuration. Projected
bulk bands in black, surface bands in blue. b: gapped configuration in the presence of a small magnetic
perturbation |ℎ| in the 𝑥𝑦 plane. c: Localization of the surface modes at the interface.
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Figure D.2: Dependence of the surface gap with respect to the amplitude of the magnetic perturbation
|ℎ|, for an 𝑥 domain wall and for a fixed angle 𝜎 = 𝜋∕4, as computed for the TETB model.

angle:
𝜎 = 0, 𝜋

2
, 𝜋, 3𝜋

2
(D.29)

corresponds to magnetic orientations that do not break any symmetry among the four
inversion-symmetric hinge configurations.

D.2.4 Relative phase difference

As already observed, an 𝑥 domain wall across phase-obstructed 3D Chern photonic
insulators, behaves as the critical point between AXI and a trivial insulator, as long
as the SM phase satisfies 𝛿𝜙 = 𝛿𝜃 = 𝜋. Figure D.4 shows the surface bands while
deviating from this condition, setting

−𝜋 < 𝛿𝜃 < 𝜋. (D.30)

As depicted, the surface bands gradually disappear as the phase difference is tuned to
0, recovering the projected 3D Chern gap. The surface modes then reappear as the
sign of the phase difference is reversed, reaching criticality again when 𝛿𝜃 = −𝜋 =
𝜋 (mod2𝜋).
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Figure D.3: Dependence of the surface gap with respect to the 𝜎 in-plane angle of the magnetic pertur-
bation, for an 𝑥 domain wall and for a fixed amplitude |ℎ| = 1, as computed for the TETB model.

Figure D.4: Dependence of the surface gap for an 𝑥 domain wall with respect to the value of the 𝛿𝜙 = 𝛿𝜃
phase difference across the interface. Projected bulk bands in black, surface bands in blue.
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