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Abstract
Varopoulos extensions of boundary functions in Lp and BMO in domains

with Ahlfors-regular boundaries and applications

Athanasios Zacharopoulos

This thesis focuses on the construnction of Varopoulos-type extensions of Lp and BMO
boundary functions in rough domains. To be more specific, let Ω ⊂ Rn+1, n ≥ 1, be an
open set with s-Ahlfors regular boundary ∂Ω, for some s ∈ (0, n], such that either s = n and
Ω is a corkscrew domain with the pointwise John condition, or s < n and Ω = Rn+1 \ E,
for some s-Ahlfors regular set E ⊂ Rn+1. In this thesis we provide a unifying method
to construct Varopoulos type extensions of Lp and BMO boundary functions. In particu-
lar, we show that a) if f ∈ Lp(∂Ω), 1 < p ≤ ∞, there exists F ∈ C∞(Ω) such that the
non-tangential maximal functions of F , dist(·,Ωc)|∇F |, as well as the Carleson functional of
dist(·,Ωc)s−n∇F are in Lp(∂Ω), with norms controlled by the Lp-norm of f , and F → f
in some non-tangential sense Hs|∂Ω-almost everywhere; b) if f̄ ∈ BMO(∂Ω) there exists
F̄ ∈ C∞(Ω) such that dist(x,Ωc)|∇F̄ (x)| is uniformly bounded in Ω and the Carleson func-
tional of dist(x,Ωc)s−n∇F̄ (x), as well the the sharp non-tangential maximal function of F̄ are
uniformly bounded on ∂Ω with norms controlled by the BMO-norm of f̄ , and F̄ → f̄ in a
certain non-tangential sense Hs|∂Ω-almost everywhere. If, in addition, the boundary function
is Lipschitz with compact support then both F and F̄ can be constructed so that they are
also Lipschitz on Ω and converge to the boundary data continuously. The latter results hold
without the additional pointwise John condition assumption. Finally, for elliptic systems of
equations in divergence form with merely bounded complex-valued coefficients, we show some
connections between the solvability of Poisson problems with interior data in the appropriate
Carleson or tent spaces and the solvability of Dirichlet problem with Lp and BMO boundary
data.
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Resumen de la tesis

Esta tesis se enmarca en el área del análisis matemático. En particular, utilizando técnicas
de las áreas de Análisis Armónico y Teoría de Medidas Geométricas, construimos extensiones
de tipo Varopoulos de funciones de frontera Lp y BMO en “dominios salvajes”. Es decir,
extensiones suaves de funciones tales que las normas Lp de su función maximal no tangencial
y funcional de Carleson de sus gradientes puedan controlarse mediante la norma de los datos
de frontera. Además, utilizamos estas extensiones para aplicaciones de ecuaciones en derivadas
parciales y especialmente en problemas de condición de frontera.

Construir una extensión de Varopoulos de funciones Lp/BMO /Λ(α) es un problema im-
portante en Análisis Armónico con aplicaciones a Problemas de Condición de Frontera para
operadores elípticos de segundo orden en forma de divergencia. En el semiespacio superior y
para funciones BMO, este problema fue resuelto por Varopoulos en 1977 [Var77] y fue refinado
por Garnett en 1981 [Gar81], y recientemente ha sido generalizado por Hofmann y Tapiola
(2021) [HT21] a dominios “de sacacorchos” (corkscrew domains) con bordes n-UR. La versión
Lp de este problema para 1 < p <∞ en el semiespacio superior fue demostrada por Hytönen
y Rosén en 2018 [HR18].

Para ser más específico, el principal objetivo de esta tesis doctoral es construir extensiones
de tipo Varopoulos de funciones definidas en el borde de un dominio Ω en Rn+1 con fron-
tera s-Ahlfors regular, donde 0 < s ≤ n. Específicamente, dada una función f ∈ Lp, para
1 < p ≤ ∞ (o f ∈ BMO o en elespacio de Campanato Λ(α) para 0 < α < 1), construimos una
función suave F en Ω de manera que F converge a f casi en todas partes del borde en un cierto
sentido no tangencial, mientras que la función maximal no tangencial (o la función maximal
no tangencial sharp) de F y una versión modificada “ponderada” del funcional de Carleson
del gradiente de F están en Lp (o acotadas uniformemente) con normas controladas por las
normas Lp (o normas BMO /Λ(α)) de f . El segundo objetivo principal es construir exten-
siones de tipo Varopoulos, es decir, extensiones que satisfagan las estimaciones mencionadas
anteriormente, de funciones Lipschitz con soporte compacto en el borde que sean Lipschitz
en la clausura de Ω y también pertenezcan al espacio de Sobolev homogéneo (ponderado si
s < n) W 1,2(Ω). Finalmente, aplicamos el segundo objetivo para obtener resultados que rela-
cionan la solucionabilidad de Problemas de Condición de Frontera y Problemas de Poisson
para sistemas elípticos en forma de divergencia con coeficientes complejos y meramente acota-
dos. En particular, demostramos que si el problema de regularidad de Poisson o el problema
de Poisson-Dirichlet con datos interiores en los espacios “correctos” de Carleson o de “tienda”
(tent space) invariantes bajo escala es solucionable en Ω, entonces el problema de Dirichlet
Lp/BMO también es solucionable en Ω.

La tesis comienza con la introducción donde presentamos la historia de las extensiones
de Varopoulos a través de resultados conocidos y luego se procede a la presentación de los
resultados obtenidos en esta tesis y las técnicas utilizadas. En el Capítulo 1 mencionamos los
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preliminares y notaciones que se utilizan en el resto de la tesis. En el Capítulo 2 construimos
y analizamos las propiedades de una extensión diádica suave υf de funciones de frontera f ,
mientras que en el capítulo 3 construimos una descomposición en corona para funciones en
Lp y BMO usando argumentos de tiempo de parada. En el capítulo 4 demostramos que la
extensión diádica υf es ε-aproximable en Lp (si f ∈ Lp) y también uniforme ε-aproximable (si
f ∈ BMO) en el dominio Ω. En el capítulo 5 construimos extensiones de tipo Varopoulos de
funciones Lipschitz con soporte compacto y demostramos que nuestras extensiones también
son Lipschitz en Ω. Además, en el Capítulo 6 construimos las extensiones de Varopoulos
deseadas de las funciones Lp y BMO y en el capítulo 7 utilizamos las extensiones construidas
en el capítulo 5 para aplicaciones a problemas de condición de frontera. Por último, al final
de la tesis se ha incluido un apartado de apéndices de algunos lemas técnicos.

A continuación, analizamos cada capítulo con más detalle.

Capítulo 1: Preliminares y Notaciones

En los preliminares damos las definiciones necesarias que se utilizan en el resto de la tesis.
En este capítulo también definimos algunos espacios funcionales que son cruciales para los
capítulos 6 y 7. Además definimos los operadores máximos y los funcionales de Carleson
y damos una breve introducción a los sistemas Elípticos y los problemas de valores en la
frontera. Finalmente damos definiciones relacionadas con la geometría de los dominios que
nos interesan, así como algunas construcciones técnicas como las descomposición diádica en
el suppµ por un s-Ahlfors medida regular µ en Rn+1 y la descomposición de Whitney de los
dominios Ω ⊂ Rn+1. En la tesis, usamos la notation σ = Hs|∂Ω.

Capítulo 2: Extensión diádica regularizada de funciones en el borde de
un dominio

En este capítulo construimos la extensión diádica regularizada de la siguiente manera. A
cada cubo de Whitney P le asociamos un cubo “diádico” de frontera b(P ) con lado de la
misma longitud y de modo que dist(P, b(P )) ≈ `(P ). Luego definimos una versión suave de
la extensión diádica de la función de borde, que denotamos como υf , usando una partición
de la unidad {ϕP }P∈W(Ω) subordinada a la colección de cubos de Whitney (dilatados) de Ω
(siguiendo el espíritu de la extensión de Whitney) cuyos coeficientes son los promedias de f
sobre b(P ) (ver definición 2.1).

Después, mostramos que υf es, de hecho, una extensión de f en el sentido de que converge
no tangencialmente (es decir, la convergencia tiene lugar dentro de un cono con vértice en el
borde) a los datos del borde. También obtenemos algunas estimaciones locales para ∇υf y
para la función máxima no-tangencial Nα(υf )(ξ) (si f ∈ Lp(σ)).

Si f está en el espacio de Campanato Λβ(∂Ω) por β ∈ [0, 1) (ver (1.2)) obtenemos es-
timaciones por el functional de Carleson de ∇υf (i.e. por C(β)

s (∇υf )(ξ)) así como el agudo
funcional maximal no-tangencial N β

],α(υf )(ξ).
También demostramos que si la función de frontera f está en el espacio Lipβ(∂Ω) por

β ∈ (0, 1], entonces υf ∈ Lipβ(Ω) con Lipβ(υf ) . Lipβ(f). Finalmente, utilizando estos
resultados demostramos el Teorema 0.4, que plantea la construcción de extensiones de función
de tipo Varopoulos en el espacio de Campanato Λβ(∂Ω).

Capítulo 3: Una descomposición en corona para funciones en Lp o BMO
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RESUMEN DE LA TESIS

En este capítulo mediante un argumento de stopping time adecuado, construimos una
descomposición de Corona en la frontera de manera que la diferencia entre el promedia f en
un “top cube” y la media en el "stopping parent" no sea pequeña (en cierto sentido).

Para ser más especifico, dado cualquier cubo R ∈ Dσ y para fijo ε > 0, nosotros definimos
la colección Stop(R) ⊂ D(R) formado por cubos S ∈ D(R) los cuales son maximales (por lo
tanto disjuntos) con respecto a la condición

|mσ,Rf −mσ,Sf | ≥

{
εMf(S) , si f ∈ L1

loc(σ)

ε‖f‖BMO(σ) , si f ∈ BMO(σ).

Primero probamos algunos lemas técnicos que se basan en resultados de Hytönen y Rosén
[HR18] y luego demostramos que los cubos “superiores” satisfacen una condición de empaque-
tamiento de Carleson Car(ε). Este es el teorema principal de este capítulo.

Capítulo 4: Lp y ε-aproximabilidad uniforme de la extensión diádica reg-
ularizada

El teorema que demostramos en este capítulo establece que para cada ε > 0, una versión
suave del la extensión diádica υf de nuestra función de borde f en Lp (o BMO) se puede
aproximar mediante una función w tal que la función maximal no tangencial de su diferencia
en un punto del borde ξ está dominada por una constante múltiple de εM(f)(ξ), donde
Mf es la función maximal de Hardy-Littlewood de f , y el funcional de Carleson modificado
del gradiente de w en ξ está dominado por una constante múltiple de M(M(M(f)))(ξ). Se
demuestra una versión uniforme de esta aproximación si f es una función en BMO.

El esquema de prueba es el siguiente. Recuerde la construcción de la extensión diádica
suave y utilizando descomposición de la corona en el borde que construimos en el capítulo
3. Definimos la función aproximada u una vez más a través de {ϕP }P∈W(Ω) de manera que,
en pocas palabras, u es una constante (la media de f sobre el cubo superior de cada “árbol”
(tree) ) cuando P está asociado a un cubo diádico del borde b(P ) que está en el árbol pero
no de manera que exista otro cubo diádico del borde Q con longitud de lado comparable que
pertenezca a otro árbol y dist(b(P ), Q) . `(b(P )). En el resto de los cubos, se define como
la extensión diádica υf . Luego, mediante estimaciones sutiles que utilizan las condiciones de
stopping y el teorema de embedding de Carleson discreto, podemos concluir la prueba del
teorema principal de este capítulo (por el Teorema ver 4.3).

Como corolario (ver Teorema 4.4) obtenemos que si f ∈ Lp(σ), p ∈ (1,∞), es (resp.
f ∈ BMO(σ)), entonces υf es ε-aproximada en Lp (uniformemente ε-approximada).

Capítulo 5: Extensiones tipo Varopoulos de funciones de Lipschitz con
soporte compacto

En este capítulo nosotros construimos extensiones de tipo Varopoulos de funciones de
Lipschitz con soporte compacto en el borde que sean Lipschitz en la clausura de Ω y también
pertenezcan al espacio de Sobolev homogéneo (ponderado si s < n) W 1,2(Ω).

El método que utilizamos es el siguiente. Se utiliza el primer resultado de capítulo 4 para
construir la función aproximada de la extensión diádica suave de f y se define la extensión
F para que sea igual a la función aproximada en todas partes, excepto en entorno del borde

v



de “ancho” δ > 0, donde se establece que sea igual a la extensión diádica suave. Dado que la
extensión diádica suave de una función Lipschitz es Lipschitz en la clausura del dominio, F
converge a f de manera continua. Además, las estimaciones requeridas de la función maximal
no tangencial de F y del funcional de Carleson modificado del gradiente de F son consecuencias
de una elección adecuada de δ. Para ser precisos, δ = ‖f‖Lp/‖f‖Ṁ1,p para 1 < p < ∞ o
δ = ‖f‖BMO/Lip(f). Finalmente, multiplicando F con una función de cut-off relacionada con
el soporte de f , se demuestra que esta nueva función sigue siendo una extensión de Varopoulos
de f que es Lipschitz en la clausura de Ω y cumple las cotas de Sobolev deseadas.

En particular, probamos la extensión de Lipschitz de funciones de frontera en Lp en el
Teorema 5.1. También construimos la extensión-BMO en el teorema 5.4.

Finalmente, en Teorema 5.5, modificamos la extensión construida en los teoremas anteri-
ores para que también estén en Ẇ 1,2(Ω).

Capítulo 6: Construcción de extensiones tipo Varopoulos de funciones Lp

y BMO

En este capítulo, primero asumimos la condición de John puntual cuando s=n para de-
mostrar un teorema de traza. Es decir, se mostra que existe un operador de traza sobreyectivo
Tr(u) para todas las funciones suaves u tal que el funcional de Carleson del gradiente de u
está en Lp para 1 < p .∞ y la función maximal no tangencial de u está en Lp, y se cumple
que ‖Tr(u)‖Lp(σ) < C‖N (u)‖Lp(σ). Este resultado también es cierto en el caso de BMO si el
funcional de Carleson del gradiente de u está uniformemente acotado y si, además, se asume
que Ω cumple la condición de John local para s = n(que es una versión invariante bajo escala
de la condición de John puntual y siempre es verdadera cuando s < n), el operador de traza
es sobreyectivo con ‖Tr(u)‖BMO(σ) < C‖C(∇u)‖L∞(σ). Combinando los teoremas de capítulo
5 con un argumento de iteración y el teorema de traza, las extensiones de tipo Varopoulos de
funciones de borde en Lp para 1 < p . ∞ y BMO se pueden construir. La única desventaja
es que cuando s = n y f ∈ BMO, se debe asumir la condición de John local. Sin embargo,
esto unifica el método de construcción de extensiones para funciones de borde Lp y BMO y
proporciona una prueba autocontenida que aclara la verdadera naturaleza de la importante
propiedad de extensión de Varopoulos y los elementos que intervienen en su prueba. Entonces
podemos demostrar los Teoremas 0.5 y 0.6. Por el Teorema 0.6 es necesario el método que
se utilizó anteriormente para funciones BMO cuando s = n consistía en una descomposición
de f = g + b donde g ∈ L∞ y b(ξ) =

∑
ak1Qk(ξ), donde Qk es una colección numerable

de cubos diádicos del borde que satisfacen una condición de empaquetamiento de Carleson y
|ak| ≤ C‖f‖BMO. Se puede construir una extensión B de la parte "mala" b, que es más fácil
de manejar aunque aún técnica en dominios generales como los que consideramos. Luego,
la dificultad está en la construcción de la extensión G de la parte "buena" g que se hacía
previamente mediante métodos de EDP utilizando que las funciones armónicas acotadas son
ε-aproximables en ciertos tipos de dominios (por ejemplo, con bordes UR). Uso esta descom-
posición de f para manejar el caso de dominios que cumplen la condición de John punto a
punto pero no la condición de John local cuando s = n. De hecho, podemos utilizar la ex-
tensión B construida por Hofmann y Tapiola, ya que no utiliza la rectificabilidad n-uniforme
del borde, sino sólo que el dominio cumple la condición de corkscrew y su borde es n-Ahlfors
regular. La principal novedad aquí es que utilizo la extensión de Varopoulos de funciones L∞

que se demostró previamente y permite de superar las restricciones geométricas provenientes
de los métodos de EDP.
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RESUMEN DE LA TESIS

Capítulo 7: Aplicaciones a problemas de valores en la frontera

En este capítulo usamos los teoremas que demostramos en capítulo 5 para obtener conex-
iones entre los problemas Poisson y de condiciones de frontera para sistemos de ecuaciones
elípticas en forma de divergencia con coeficientes de valores complejos meramente acotados.
En particular, utilizamos la extensión de Varopoulos Lipschitz para mostrar que si el pro-
blema de regularidad de Poisson o el problema de Poisson-Dirichlet con datos interiores en
los espacios “correctos” de Carleson o “tienda” invariantes bajo escala es resoluble en Ω, en-
tonces el problema de Dirichlet Lp/BMO también es resoluble en Ω. Además, demostramos
desigualdades de tipo Rellich unilaterales condicionales para soluciones de ciertos problemas
de condición de frontera.

Apéndice

En el apéndice pruebamos de algunos lemas técnicos que utilizamos en la tesis.
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Introduction

In the present thesis we are concerned with open sets Ω ⊂ Rn+1, n ≥ 1, which satisfy one of
the following assumptions:

(a) Ω satisfies the corkscrew condition and its boundary ∂Ω is n-Ahlfors regular (see Defi-
nitions 1.1 and 1.10), or

(b) Ω = Rn+1 \ E, for some s-Ahlfors regular set E ⊂ Rn+1 with s < n.

We will call such domains AR(s) domains for s ∈ (0, n]. We also define σs := Hs|∂Ω to be the
“surface” measure of Ω, where Hs is the s-dimensional Hausdorff measure.

Our first main goal is to construct, in AR(s) domains, smooth extensions u : Ω → R of
boundary functions that are in Lp(σs) for p ∈ (1,∞] (resp. in BMO(σs)) so that their non-
tangential maximal functions defined in (1.9) (resp. sharp non-tangential maximal function
defined in (1.10)) and the modified Carleson functionals (see (1.12) for the definition) of their
“weighted” gradients are in Lp(σs) (resp. uniformly bounded) with norms controlled by the
Lp(σs) (resp. BMO(σs)) norms of the boundary functions. The identification on the boundary
is in the non-tangential convergence sense (up to a set of measure zero on the boundary). To
do so, when s = n, we assume that Ω satisfies the pointwise John condition (see Definition
1.13), while no additional connectivity assumption is required for s < n. Let us highlight that
this is the first time that such results are proved in such general geometric setting and also for
s < n. Our second goal is to construct such extensions of Lipschitz functions with compact
support on the boundary of an AR(s) domain so that they are Lipschitz on Ω and in the
weighted Sobolev space Ẇ 1,2(Ω;ωs) as well. In fact, this is even more important due to the
applications to Boundary Value Problems given in Section 7. Finally, we also prove similar
extensions of boundary functions in the Campanato space Λβ(∂Ω) for β ∈ (0, 1).

Extensions of this kind in the case s = n were first constructed by Varopoulos [Var77],
[Var78], in the upper half-space Rn+1

+ for boundary functions in BMO, and by Hytönen and
Rosén, [HR18], for boundary functions in Lp for p ∈ (1,∞). Hofmann and Tapiola, [HT20],
showed that in corkscrew domains with uniformly n-rectifiable boundary (in the sense of
David and S. Semmes [DS1], [DS2]), one can also extend BMO functions with the desired
bounds. Recently, Mourgoglou and Tolsa, [MT22], constructed an almost harmonic extension
of functions in the Hajłasz Sobolev space Ṁ1,p(σn), which is the correct analogue of the Lp

version of Varopoulos extension for one “smoothness level” up. To be precise, it was proved
in [MT22] that the Carleson functional, defined in (1.11), of the distributional Laplacian of
the almost harmonic extension is in Lp(σn) and in [MPT22] that the non-tangential maximal
function of its gradient is in Lp(σn) with norms controlled by the Ṁ1,p(σn) semi-norm of the
boundary function. The almost harmonic extension and its elliptic analogue (see [MPT22])

ix



were very important since they turned out to be the main ingredients for the solution of the
Lp-Regularity problem in domains with interior big pieces of chord-arc domains ([AHMMT,
Definition 2.12, p. 892]) for the Laplace operator, [MT22], and for elliptic operators satisfy-
ing the Dahlberg-Kenig-Pipher condition, [MPT22], respectively. This solved a 30 year-old
question of Kenig.

To construct the extension of BMO boundary functions, Varopoulos introduced the notion
of ε-approximability in [Var77, Var78], which was further refined by Garnett, [Gar81], who was
studying the same problem, inspired by Carleson’s Corona theorem and the duality between
the Hardy space and BMO. The usual definition of ε-approximability for s = n is the following:

We say that, for a fixed ε > 0, a function u is ε-approximable in Ω ⊂ Rn+1 if there
exist a constant Cε > 0 and a function ϕ = ϕε ∈ C∞(Ω) such that ‖u − ϕ‖L∞(Ω) < ε and
sup
ξ∈∂Ω

Cn(∇ϕ)(ξ) < Cε.

We will generalize the definition and say that, for a fixed ε > 0, a function u is uniformly
ε-approximable in Ω ⊂ Rn+1 if there exist a constant Cε > 0 and a function ϕ = ϕε ∈ C∞(Ω)
such that

sup
x∈Ω
|u(x)− ϕ(x)|+ sup

x∈Ω
δΩ(x)|∇(u− ϕ)(x)| . ε (0.1)

and
sup
ξ∈∂Ω

Cs,c(∇ϕ)(ξ) . ε−2, (0.2)

where δΩ(·) = dist(x·,Ωc) and the implicit constants are independent of ε.

Dahlberg in [Dah80] proved that, in Lipschitz domains, every bounded harmonic function is
ε-approximable, which was very useful in the solution of the Dirichlet problem with Lp bound-
ary data for elliptic equations in [KKPT00, HKMP15]. Moreover, Hofmann, Martell, and May-
boroda, [HMM16], showed that in corkscrew domains with uniformly n-rectifiable boundary
every bounded weak solution of divA∇u = 0 satisfying the so-called Dahlberg-Kenig-Pipher
condition is ε-approximable, while in the converse direction, Garnett, Mourgoglou and Tolsa
in [GMT18] proved that if any bounded harmonic function is ε-approximable in Ω ∈ AR(n)
then ∂Ω is uniformly n-rectifiable. The latter was further generalized by the same authors
along with Azzam, [AGMT], to solutions of elliptic equations with more general coefficients.

Following Hytönen and Rosén, [HR18], we generalize the definition of ε-appoximability to
the case p ∈ (1,∞] and to domains with s-Ahlfors regular boundaries. If Ω ∈ AR(s) then, for
fixed p ∈ (1,∞], we say that a function u is ε-approximable in Lp(σs) if there exists a function
ϕ = ϕε ∈ C∞(Ω) such that

‖N (u− ϕ)‖Lp(σs) + ‖N (δΩ∇(u− ϕ))‖Lp(σs) .p ε ‖Nu‖Lp(σs) (0.3)

and
‖Cs,c(∇ϕ)‖Lp(σs) .p ε

−2 ‖Nu‖Lp(σs). (0.4)

The concept of ε-approximability in Lp for p ∈ (1,∞) was introduced by Hytönen and
Rosén in [HR18] who showed that the dyadic average extension operator as well as any weak
solution to certain elliptic PDEs in Rn+1

+ are ε-approximable in Lp for every ε ∈ (0, 1) and
p ∈ (1,∞). The second part of that result was extended by Hofmann and Tapiola in [HT20]
to harmonic functions in Ω = Rn+1 \E where E ⊂ Rn+1 is a uniformly n-rectifiable set. The
converse direction was proved by Bortz and Tapiola in [BT19].
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Subsequently we formulate the original results that are proven in this thesis and we discuss
the techniques used. We first prove a pointwise version of ε-approximability of a regularized
version of the dyadic extension of f which we denote by υf (see (2.1) for the definition of υf ).

Theorem 0.1. Let Ω ∈ AR(s) for s ∈ (0, n] and let f ∈ L1
loc(σs). If ε > 0, there exist

w ∈ C∞(Ω), α0 ≥ 1, and c0 ∈ (0, 1/2] such that for any α ≥ α0, any c ∈ (0, c0], and any
ξ ∈ ∂Ω,

Nα(w − υf )(ξ) +Nα(δΩ∇(w − υf ))(ξ) . εMf(ξ), (0.5)

Cs,c(∇w)(ξ) . ε−2
[
M(M̃(f))(ξ) +M(M̃(Mf))(ξ)

]
. (0.6)

Therefore, υf is ε-approximable in Lp. The implicit constants depend on n, s, and the Ahlfors
regularity constants, c0 depends on the constants of the Whitney decomposition, and α0 depends
on n and on the constants of the corkscrew condition and of the Whitney decomposition.

The following theorem shows that if f ∈ BMO(σs), then υf is uniformly ε-approximable.

Theorem 0.2. Let Ω ∈ AR(s) for s ∈ (0, n] and let f ∈ BMO(σs). If ε > 0 then there exist
w ∈ C∞(Ω) and c0 ∈ (0, 1/2] such that for any any c ∈ (0, c0], it holds that

sup
x∈Ω
|(w − υf )(x)|+ sup

x∈Ω
δΩ(x)|∇(w − υf )(x)| . ε‖f‖BMO(σs), (0.7)

sup
ξ∈∂Ω

Cs,c(∇w)(ξ) . ε−2‖f‖BMO(σs). (0.8)

The implicit constants depend on n, s, and the Ahlfors regularity constants and c0 depends on
the constants of the Whitney decomposition.

Theorems 0.1 and 0.2 are the stepping stones towards the construction of the desired ex-
tensions. Our first goal is to prove Varopoulos extensions of Lipschitz functions with compact
support which are Lipschitz on Ω and also lie in Ẇ 1,2(Ω;ωs).

Theorem 0.3. Let Ω ∈ AR(s) for s ∈ (0, n]. If f ∈ Lipc(∂Ω) then there exist a function
F : Ω→ R and c0 ∈ (0, 1/2], such that for any c ∈ (0, c0], it holds that

(i) F ∈ C∞(Ω) ∩ Lip(Ω) ∩ Ẇ 1,2(Ω;ωs),

(ii) ‖N (F )‖Lp(σs) + ‖Cs,c(∇F )‖Lp(σs) . ‖f‖Lp(σs), for p ∈ (1,∞],

(iii) ‖N (δΩ∇F )‖Lp(σs) . ‖f‖Lp(σs),

(iv) F |∂Ω = f continuously.

Moreover, there exist a function F̄ : Ω → R and a constant c0 ∈ (0, 1/2] such that for any
c ∈ (0, c0] it holds that

(i) F̄ ∈ C∞(Ω) ∩ Lip(Ω) ∩ Ẇ 1,2(Ω;ωs),

(ii) sup
ξ∈∂Ω

N],c(F̄ )(ξ) + sup
ξ∈∂Ω

Cs,c(∇F̄ )(ξ) . ‖f‖BMO(σs),

(iii) sup
x∈Ω

δΩ(x)|∇F̄ (x)| . ‖f‖BMO(σs),

xi



(iv) F̄ |∂Ω = f continuously.

The second part of the theorem above was already used without proof in connection with
Boundary Value Problems (see e.g. [DaKe] and [MiTa]). To the best of our knowledge, a
proof of this theorem is not available in the literature,. However, it should not be considered
folklore since its proof is far from trivial (at least in our setting) and, it was neither written
somewhere, nor it was known among experts.

We also prove a version of the theorem above for boundary functions in the Campanato
space Λβ(∂Ω) for β ∈ (0, 1), as well as in the space Lipβ(∂Ω) consisting of β-Hölder continuous
functions. In fact, in our setting, any function in Λβ(∂Ω) agrees σs-a.e. with a Hölder
continuous function and the two semi-norms are comparable, see Remark 1.2.

Theorem 0.4. Let Ω ∈ AR(s) for s ∈ (0, n]. If f ∈ Λβ(∂Ω) for β ∈ (0, 1) then there exist a
function F : Ω→ R and a constant c0 ∈ (0, 1/2], such that for any c ∈ (0, c0], there holds

(i) F ∈ C∞(Ω),

(ii) sup
ξ∈∂Ω

N (β)
],c (F )(ξ) + sup

ξ∈∂Ω
C(β)
s,c (∇F )(ξ) . ‖f‖Λβ(∂Ω),

(iii) sup
x∈Ω

δΩ(x)1−β|∇F (x)| . ‖f‖Λβ(∂Ω),

(iv) nt-limx→ξ F |∂Ω(x) = f(ξ) for σs-a.e ξ ∈ ∂Ω.

Moreover, if f ∈ Lipβ(∂Ω), then F ∈ Lipβ(Ω) and F |∂Ω = f continuously.

Interestingly, this is the first time that such a theorem appears in the literature although
Λβ(∂Ω) is a natural endpoint in the interpolation scale that contains the spaces Lp(σs) and
BMO(σs). Nevertheless, its proof is surprisingly easier than the corresponding proofs for
Lp(σs) and BMO(σs) boundary functions. This is because the regularized version of the
dyadic extension of the boundary data satisfies the desired properties and there is no need to
use ε-approximability.

When the boundary function is discontinuous, the construction is more complicated and,
for s = n, requires an additional mild connectivity assumption between σn-almost every fixed
point ξ ∈ ∂Ω and a corkscrew point xξ associated to ξ by means of a “good" curve (also
depending on ξ). This is necessary in order to construct a surjective trace operator given by
means of (a version of) non-tangential convergence to the boundary points.

We prove the existence of an extension of a boundary function in Lp that satisfies the
estimates of the one that Hytönen and Rosén built in [HR18] in Rn+1

+ .

Theorem 0.5. Let Ω ∈ AR(s) for s ∈ (0, n]. If s = n assume additionally that Ω satisfies the
pointwise John condition. If f ∈ Lp(σs) with p ∈ (1,∞], there exist u : Ω→ R and c0 ∈ (0, 1

4 ]
such that, for any c ∈ (0, c0], it holds that

(i) u ∈ C∞(Ω),

(ii) ‖N (u)‖Lp(σs) + ‖Cs,c(∇u)‖Lp(σs) . ‖f‖Lp(σs),

(iii) ‖N (δΩ∇u)‖Lp(σs) . ‖f‖Lp(σs),
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(iv) For σs-almost every ξ ∈ ∂Ω,1

 
B(x,δΩ(x)/2)

u(y) dy →

{
f(ξ) non-tangentially, if s < n,

f(ξ) quasi-non-tangentially, if s = n.

For p = ∞, we use the sup-norm on the right hand-side of (ii) and (iii) instead of the L∞-
norm.

We can also prove a BMO version of the previous theorem, which is an extension that
enjoys the properties of the one constructed by Varopoulos [Var77] in Rn+1

+ .

Theorem 0.6. Let Ω ∈ AR(s) for s ∈ (0, n], which, for s = n, assume that it additionally
satisfies the pointwise John condition2. If f ∈ BMO(σs) then there exist u : Ω → R and
c0 ∈ (0, 1

4 ] such that, for any c ≤ c0, it holds that

(i) u ∈ C∞(Ω),

(ii) sup
ξ∈∂Ω

N],c(u)(ξ) + sup
ξ∈∂Ω

Cs,c(∇u)(ξ) . ‖f‖BMO(σs),

(iii) sup
x∈Ω

δΩ(x)|∇u(x)| . ‖f‖BMO(σs),

(iv) For σs-almost every ξ ∈ ∂Ω,

 
B(x,δΩ(x)/2)

u(y) dy →

{
f(ξ) non-tangentially, if s < n,

f(ξ) quasi-non-tangentially, if s = n.

Remark 0.7. Note that the estimate (iii) of Theorem 0.6 can also be written as a non-
tangential estimate. Namely, it is equivalent to the estimate

sup
ξ∈∂Ω

N (δΩ∇u)(ξ) . ‖f‖BMO(σs).

Remark 0.8. The proof of the existence of extensions of complex-valued boundary functions
is exactly the same but for the sake of simplicity we prefer to state and prove our results for
real-valued boundary functions. Moreover, if ~f : ∂Ω → Cm with ~f = (f1, . . . , fm), then its
extension is simply ~F = (F1, . . . , Fm), where Fj is the extension of fj for each j ∈ {1, 2, . . . ,m}.

Let us discuss the techniques that were used to prove Theorem 0.6 by the authors in [Var77],
[Var78], [Gar81], and [HT21]. For a boundary function f ∈ BMO(σ), the first important step
was to write it as the sum of a function g ∈ L∞(σ) and the function b :=

∑
j≥1 ajχQj , where

the coefficients aj satisfy the bound supj≥1 |aj | . ‖f‖BMO(σ) and {Qj}j≥1 is a countable
family of boundary cubes that satisfies a Carleson packing condition, see (3.1). Then the

1For the definitions of non-tangential and quasi-non-tangential convergence, see Definition 1.16.
2In the case that s = n and Ω satisfies the pointwise John condition but not the local John condition, we

assume that f is compactly supported for technical reasons.
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desired extension of f is constructed as the sum of the extension G of g and the extension
B of b. The extension B can be constructed by hand and although, in “rough” domains, one
needs technical arguments to prove the Carleson estimate for the gradient of B and the non-
tangential convergence to b (see [HT21]), this can be accomplished without resorting to deep
results. On the contrary, the extension of g ∈ L∞(σ) uses the ε-approximability of essentially
bounded harmonic functions, which is an important theorem in boundary value problems for
elliptic PDEs with discontinuous data. To be precise, one extends b by means of harmonic
measure producing a L∞ harmonic function, which is further approximated by a function
that satisfies the desired Carleson estimate. Then the extension is constructed by an iteration
method.

In light of [HMM16] and [GMT18], the notion of ε-approximability of L∞ harmonic func-
tions in AR(n) domains is equivalent to uniform n-rectifiability of ∂Ω. The method described
above has geometric limitations and it is natural to ask if the converse of [HT21] holds true;
that is, whether the existence of a Varopoulos-type extension in AR(n) domains implies uni-
form n-rectifiability of ∂Ω. Theorems 0.5, and 0.6 show that this is clearly not the case since,
if E is the 4-corner Cantor set then Ω = Rn+1 \E ∈ AR(n) and it is a uniform domain (thus,
it satisfies the pointwise John condition).

To tackle Theorem 0.5 and Theorem 0.6, insipred by [HR18], we use a regularized version
of the standard dyadic extension υf of a function f ∈ L1

loc(σ) and f ∈ BMO(σ)) respectively.
We prove in Theorem 0.1 that υf has an Lp(σ) ε-approximator, while in Theorem 0.2 we
prove that υf has a uniform ε-approximator. This comes in contrast to the previous works
in the case of BMO(σ) where one approximated a harmonic function. Our proof relies on a
Corona decomposition on the boundary, see Definition 3.1, and the correct definition of the
approximating function.

The scheme of the proof of Theorems 0.1 and 0.2 is the following. To each Whitney cube P
we associate a boundary “dyadic” cube b(P ), with the same side-length so that dist(P, b(P )) ≈
`(P ). Then we define a regularized version of the dyadic extension of the boundary function
υf using a partition of unity {ϕP }P∈W(Ω) subordinated to the collection of (dilated) Whitney
cubes of Ω (in the spirit of the Whitney extension) with coefficients the averages of f over
b(P ). Subsequently we construct a Corona decomposition on the boundary, see Definition 3.1
in chapter 3, so that the difference between the average of f on a top cube and its average on
its “stopping parent” is not small (in a certain sense). Define the approximating function w
once again via {ϕP }P∈W(Ω) so that, roughly speaking, w is constant (the average of f over the
top cube of each tree) when P is associated to a boundary cube b(P ) which is in the tree but
not such that there exists another boundary dyadic cube Q with comparable side-length which
belongs to another tree and dist(b(P ), Q) . `(b(P )). In the rest of the cubes it is defined just
as the dyadic extension υf . Then, by some subtle estimates using the stopping conditions and
the discrete Carleson embedding theorem, we can conclude.

Note that even when the boundary function is in Lp we still have to overcome significant
challenges due to the geometry of our domains. For instance, in Rn+1

+ , Hytönen and Rosén,
[HR18], use the separation of variables (x, t) ∈ Rn ×R+ in a crucial way as they reduce their
case into estimating Cn(∂tw), where ∂tw stands for the partial derivative in the transversal
direction. In higher co-dimensions, even if Ω = R3 \ R, such a reduction does not seem to
work. Instead, we resort to multiscale analysis to construct the approximating function. An
important component is the proof of the packing condition for the top cubes, which was not
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shown in [HR18], however our proof relies on some of their arguments.

The proof of Theorem 0.5 (resp. 0.6) is based on a trace theorem, Theorem 0.1 (resp.
Theorem 0.2), and an iteration argument. The connectivity condition (i.e., pointwise John
condition) when s = n is required just for the trace theorem, where we show that if Cs(∇u) ∈
Lp(σs) (resp. uniformly bounded) then there exists a trace operator of u on the boundary.
Interestingly, to show that the trace of u is in Lp(σs) we also need that the non-tangential
maximal function of u is in Lp(σs), while to show that it is in BMO(σn) we need to assume
that the domain satisfies the local John condition, i.e., a stronger geometric assumption which
is always satisfied when s < n. This is the reason why when s = n, f ∈ BMO(σn) and Ω has
the pointwise John condition (but not the local John condition), we use the usual splitting of
the BMO(σn) function into a L∞(σn) function and a function of the form

∑
j≥1 ajχQj . Then

we apply Theorem 0.1 to get the extension of its L∞ part and add it to the extension of the
“bad” part as constructed in [HT21, Proposition 1.3]3. One needs to be careful with the details
of the iteration argument as well, in order to be able to define

∑
j≥0 uj in a meaningful way

and identify ∇
∑

j≥0 uj with
∑

j≥0∇uj . For more details see Section 6.

To prove Theorem 0.3, for f ∈ Lipc(∂Ω) first we use Theorems 0.1 and 0.2 to construct
the approximating functions of the regularized dyadic extension of f . Subsequently we define
the extension to be equal to the approximation everywhere, apart from a neighborhood of the
boundary of “width” δ > 0, where we set it to be equal to the regularized dyadic extension.
Then, we choose δ to be ‖f‖Lp(σs)/‖f‖Ṁ1,p(σs)

in the case of p ∈ (1,∞) (resp. ‖f‖L∞(σs)/Lip f

for p = ∞) and ‖f‖BMO(σs)/Lip f in the case of BMO(σs) and obtain the desired estimates.
It is interesting to note that we do not construct an a priori extension and modify it later to
obtain the Lipschitz extension; we just modify the ε-approximator of υf . That is why we do
not assume any connectivity condition as in Theorems 0.5 and 0.6. Instead, the existence of
the trace is readily given by the continuity of υf which is Lipschitz on Ω.

Finally, we use Theorem 0.3 to obtain connections between Poisson and Boundary Value
Problems (see Definitions 1.6, 1.8, and 1.9) for systems of elliptic equations in divergence form
with merely bounded complex-valued coefficients. In particular, we prove the following.

Theorem 0.9. Let Ω ∈ AR(n) and L be defined as in (1.27). If L∗ is its formal adjoint then
the following hold:

1. If (PRL
p ) is solvable in Ω for some p > 1 then (DL∗

p′ ) is also solvable, where 1/p+1/p′ = 1.

2. If (PRL
1 ) for H = 0 is solvable in Ω then both (PDL∗

∞ ) with H = 0, and (DL∗
BMO) are

solvable in Ω.

3. If (PDL
p ) for p ∈ (1,∞) (resp. (PDL

∞)) is solvable in Ω with H = 0, then the Dirichlet
problem (DL

p ) (resp. (DL
BMO)) is also solvable in Ω.

The Poisson Dirichlet problem (PDL
p ) for p > 1 (resp. the Poisson regularity problem

(PRL
p )) with interior data in suitable Carleson spaces with scale-invariant estimates for the non

tangential maximal function of the (resp. gradient of the) solution (see Definitions 1.8 and 1.9),
was first defined and investigated in a recent work of Mourgoglou, Poggi and Tolsa [MPT22].

3We recall here that in [HT21], uniform n-rectifiability was only used for the extension of the L∞ part,
while the bad part can be extended in any AR(n) domain.
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The authors were interested in the solvability of the regularity problem (see Definition 1.7)
for elliptic equations satisfying the so-called Dahlberg-Kenig-Pipher condition in corkscrew
domains with uniformly n-rectifiable boundaries. Due to the fact that it is not known if the
layer potentials for such operators are bounded, the authors went through the solvability of the
Poisson Dirichlet problem in order to circumvent the aforementioned difficulty. In particular,
they show that, for such operators, (PDL∗

p′ )⇒ (RL
p ) for any p > 1. To do so they use the almost

elliptic extension which, as mentioned before, is a one “smoothness level up” Varopoulos-type
extnesion for Sobolev functions on the boundary. One of their results states the following
equivalences for elliptic equations with merely bounded coefficients:

(DL∗
p′ )⇔ (PDL∗

p′ )⇔ (PRL
p ), p ∈ (1,∞).

The equivalence (PDL∗
p′ ) ⇔ (PRL

p ) holds for systems as well since the proof in [MPT22] does
not rely on the maximum principle or the elliptic measure. Nevertheless, the rest of the results
in [MPT22] exploit the connection between the weak-A∞ condition of the elliptic measure and
the solvability of (DL∗

p′ ) in a significant way and so they only hold for real equations. Inspired
by the use of the almost elliptic extension in [MPT22], we utilize the Varopoulos-extension
constructed in Theorem 0.3 in order to extend some of those results to the case of elliptic
systems; we also obtain the endpoint results which are new even for real equations. We refer
to the introduction of [MPT22] for a detailed presentation of the historically results in this
area.

Related results

While writing this thesis, we were informed by Bruno Poggi and Xavier Tolsa that in collab-
oration with Simon Bortz and Olli Tapiola, they have independently proved in [BOPT23], a
less general version of Theorem 0.6 which holds for uniform domains with n-Ahlfors regular
boundaries such that there is an elliptic measure which is A∞ with respect to surface mea-
sure. They obtain this result as a corollary of their main result studying ε-approximability of
solutions to arbitrary elliptic partial differential equations. Their assumptions hold, in partic-
ular, for the complement of the 4-corner Cantor set in R2, thus they also show that uniform
rectifiability is not a necessary condition in order to construct Varopoulos-type extensions.

xvi



Chapter 1

Preliminaries and notation

We will write a . b if there is a constant C > 0 so that a ≤ Cb and a ≈ b if α . b and b . a.
If we want to indicate the dependence of C on a certain quantity s, we write a .s b. For a
function space X we denote by Xc all the compactly supported functions in X.

1.1 Preliminaries

In Rn+1 and for s ∈ [0, n + 1], we denote by Hs the s-dimensional Hausdorff measure and
assume that Hn+1 is normalized so that it coincides with Ln+1, the (n + 1)-dimensional
Lebesgue measure in Rn+1. We also denote by σs := Hs|∂Ω the surface measure of Ω. When
the dimension is clear from the context we drop the dependence on s and just write σ.

Definition 1.1. If s ∈ (0, n+1], a measure µ in Rn+1 is called s-Ahlfors regular if there exists
some constant C0 > 0 such that

C−1
0 rs ≤ µ(B(x, r)) ≤ C0 r

s

for all x ∈ suppµ and 0 < r < diam(suppµ). If E ⊂ Rn+1 is a closed set we say that E is
s-Ahlfors regular if Hs|E is s-Ahlfors regular.

1.2 Function spaces

We write 2∗ = 2(n+1)
n−1 and 2∗ = (2∗)′ = 2(n+1)

n+3 . Recall that C∞c (Ω) is the space of compactly
supported smooth functions in Ω. For p ∈ [1,∞) and a non-negative function w ∈ L1

loc(Ω)
we define the homogeneous weighted Sobolev space Ẇ 1,p(Ω;w) to be the space consisting of
L1

loc(Ω) functions whose weak gradients exist in Ω and are in Lp(Ω;w). We also define the inho-
mogeneous weighted Sobolev space W 1,p(Ω;w) to be the space of functions in Lp(Ω;w) whose
weak derivatives exist in Ω and are also in Lp(Ω;w), and W 1,p

0 (Ω;w) to be the completion of
C∞c (Ω) under the norm ‖u‖W 1,p(Ω;w) := ‖u‖Lp(Ω;w) + ‖∇u‖Lp(Ω;w). Finally, we let Y 1,2

0 (Ω;w)
be the completion of C∞c (Ω) under the norm ‖u‖Y 1,2(Ω;w) := ‖u‖L2∗ (Ω;w) + ‖∇u‖L2(Ω;w).

Let Σ be a metric space equipped with a non-atomic doubling measure σ, which means
that there is a uniform constant Cσ ≥ 1 such that σ(B(x, 2r)) ≤ Cσσ(B(x, r)) for all x ∈ Σ
and r > 0. If E ⊂ Σ is a Borel set such that 0 < σ(E) < ∞ and f ∈ L1

loc(σ), we denote the
average of f over E by

mσ,Ef :=

 
E
f dσ :=

1

σ(E)

ˆ
E
fdσ. (1.1)

1



If σ is the Lebesgue measure then we simply write mEf .

For β ∈ [0, 1) we define Λβ(∂Ω) to be the Campanato space consisting of the functions
f ∈ L1

loc(σ) satisfying

‖f‖Λβ(∂Ω) := sup
x∈suppσ

r∈(0,2 diam ∂Ω)

1

rβ

 
B(x,r)

|f(y)−mσ,B(x,r)f |dσ(y) <∞. (1.2)

Note that Λ0(σ) = BMO(σ), the space of functions of bounded mean σ-oscillation. We also
define the space of functions of vanishing mean oscillation1, which we denote by VMO(σ),
to be the closure of the space of continuous functions with compact support Cc(Σ) in the
BMO(σ) norm.

We say that α is a 2-atom if there exists x ∈ Σ and 0 < r < diam(Σ) such that

suppα ⊂ B(x, r), ‖α‖L2(σ) . σ(B(x, r))−1/2 and
ˆ
αdσ = 0.

We define the atomic Hardy space H1(σ) as follows: f ∈ H1(σ) if there exist a sequence
λj ∈ C and a sequence of 2-atoms αj such that f =

∑
j λjαj in L

1(σ); we say then that f has
an atomic decomposition. H1(σ) is a subspace of L1(σ) and is a Banach space with norm

‖f‖H1(σ) := inf
{∑

j

|λj | : all atomic decompositions f =
∑
j

λjαj

}
.

By the work of Coifmann and Weiss, [CW77], we have that (H1(σ))∗ = BMO(σ) and
(VMO(σ))∗ = H1(σ).

For β ∈ (0, 1] we define Lipβ(Σ) to be the space of measurable functions that satisfy

‖f‖Lipβ(Σ) := sup
x,y∈Σ
x 6=y

|f(x)− f(y)|
|x− y|β

<∞. (1.3)

When β = 1 we simply write Lip(Σ) since it is the space of Lipschitz functions. If Σ is locally
compact then it holds that Lipc(Σ) is dense in Cc(Σ) in the supremum norm. Therefore, it is
easy to see that in that case

Lipc(Σ)
BMO(σ)

= VMO(σ).

Remark 1.2. By a simple inspection of the proof of [MS79, Theorem 4], it is easy to see that
if Σ is a metric space equipped with a measure σ which is s-Ahlfors regular and β ∈ (0, 1)
then for every f ∈ Λβ(Σ) there exists g ∈ Lipβ(Σ) such that f(x) = g(x) for σ-a.e. x ∈ Σ and
‖f‖Λβ(σ) ≈ ‖f‖Lipβ(Σ).

Following [Ha] we will introduce the Hajłasz’s Sobolev space on Σ. For a Borel function
f : Σ→ R we say that a non-negative Borel function g : Σ→ R is a Hajłasz upper gradient of
f if

|f(x)− f(y)| ≤ |x− y| (g(x) + g(y)) for σ-a.e. x, y ∈ Σ. (1.4)
1VMO was originally introduced by Sarason in [Sar75].
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CHAPTER 1. PRELIMINARIES AND NOTATION

We denote the collection of all the Hajłasz upper gradients of f by D(f).
For p > 0 we denote by Ṁ1,p(σ) the space of Borel functions f which have a Hajłasz

upper gradient in Lp(σ), and we let M1,p(σ) be the space of functions f ∈ Lp(σ) which have
a Hajłasz upper gradient in Lp(σ), i.e., M1,p(σ) = Ṁ1,p(σ)∩Lp(σ). We define the semi-norm
(as it annihilates constants)

‖f‖Ṁ1,p(σ) = inf
g∈D(f)

‖g‖Lp(σ). (1.5)

If Σ is bounded then we define the norm

‖f‖M1,p(σ) = (diam Σ)−1‖f‖Lp(σ) + inf
g∈D(f)

‖g‖Lp(σ), (1.6)

while if Σ is unbounded we consider the space M1,p(σ) := Ṁ1,p(σ)/R. Observe that from
the uniform convexity of Lp(σ) for p ∈ (1,∞), one easily deduces that the infimum in the
definition of the norms ‖ · ‖Ṁ1,p(Σ) and ‖ · ‖M1,p(Σ) in (1.5) and (1.6) respectively, is attained
and is unique. We denote by ∇H,pf the function g which attains the infimum which we will
call the least Hajłasz upper gradient of f .

1.3 Maximal operators and Carleson functionals

Set δΩ(·) := dist(·,Ωc), Bx := B(x, δΩ(x)), and cBx := B(x, c δΩ(x)), for c ∈ (0, 1
2 ]. For

f ∈ L1
loc(µ) and x ∈ Ω we set

mq,c(f)(x) :=

mcBx(|f |q)1/q if 1 ≤ q <∞,
sup
y∈ cBx

|f(y)| if q =∞,

and
m],c(f)(x) := m∞,c(f −mcBxf)(x), x ∈ Ω (1.7)

We define the centered Hardy-Littlewood maximal operator for a function f ∈ L1
loc(σ) as

M(f)(x) := sup
r>0

mσ,B(x,r)(|f |), x ∈ Σ

while the non-centered Hardy-Littlewood maximal operator is defined to be

M̃(f)(x) := sup
B3x

mσ,B(|f |), x ∈ Σ,

where the supremum is taken over all balls B containing x. The dyadic Hardy-Littlewood
maximal operator with respect to a dyadic lattice Dσ on Σ2 will be denoted

MDσf(x) := sup
Q∈Dσ ,Q3x

mσ,Q(|f |).

If the measure is clear from the context we will just writeMDf in place ofMDσf . We also
set

Mf(Q) := sup
R∈Dσ
Q⊂R

mσ,R(|f |) (1.8)

2For the construction of dyadic lattices in this setting, see e.g. [Chr90].
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to be a truncated version ofMDf(x).

From now on, we assume that Ω ∈ AR(s) in Rn+1 and σ = Hs|∂Ω.

For α > 0 and ξ ∈ ∂Ω we define the cone with vertex ξ and aperture α > 0 to be the set

γα(ξ) := {x ∈ Ω : |x− ξ| < (1 + α)dist(x, ∂Ω)}.

and for a fixed aperture α > 0 the non-tangential maximal operator of a measurable function
f : Ω→ R by

Nα(f)(ξ) := sup
x∈γα(ξ)

|f(x)|, ξ ∈ ∂Ω. (1.9)

By a straightforward modification of the classical proof of Feffermann and Stein [FS,
Lemma 1], one can show the following.

Lemma 1.3. For Ω ∈ AR(s) for s ∈ (0, n] and β ∈ [0, 1), there holds ‖N (β)
α (f)‖Lp(σ) ≈α,β,s

‖Nβ(f)‖Lp(σ) for all α, β > 0 and p ∈ (0,∞).

For a fixed aperture α > 0, β ∈ [0, 1), and a constant c ∈ (0, 1
2 ], we also define the sharp

non-tangential maximal opeartor applied to a measurable function f : Ω→ R by

N (β)
],α,c(f)(ξ) := sup

x∈γα(ξ)
δΩ(x)−βm],c(f)(x), ξ ∈ ∂Ω. (1.10)

Setting ωs(x) := δΩ(x)s−n for x ∈ Ω, we define the Carleson functional of a function
F ∈ L1

loc

(
Ω, ωs(x) dx

)
by

C (β)
s (F )(ξ) := sup

r>0

1

rs+β

ˆ
B(ξ,r)∩Ω

|F (x)|ωs(x) dx, ξ ∈ ∂Ω. (1.11)

We define the modified Carleson functional of a locally bounded function F by means of

C(β)
s,c (F )(ξ) := C (β)

s

(
m∞,c(F )

)
(ξ), ξ ∈ ∂Ω. (1.12)

For q ∈ [1,∞), the q-Carleson functional of a function F ∈ Lqloc

(
Ω, dx

)
is defined to be

C(β)
s,q,c(F )(ξ) := sup

r>0

1

rs+β

ˆ
B(ξ,r)∩Ω

mq,σ,cBx(|F |)ωs(x) dx, ξ ∈ ∂Ω. (1.13)

Lemma 1.4. If Ω ∈ AR(s) for s ∈ (0, n], β ∈ [0, 1), q ∈ [1,∞), F ∈ Lqloc

(
Ω, dx

)
and

0 < c1 < c2 ≤ 1
2 then

C(β)
s,q,c2(F )(ξ) .c1,c2 C(β)

s,q,c1(F )(ξ) for every ξ ∈ ∂Ω. (1.14)

Proof. The case s = n and β = 0 was proved in [MPT22, Lemma 2.2] while the proof in the
other cases follows by a routine adaptation of the same arguments.
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CHAPTER 1. PRELIMINARIES AND NOTATION

If it is clear from the context and in view of Lemmas 1.3 and 1.4, we will suppress the
dependence of N (β)

α , N (β)
],α,c, C

(β)
s,q,c, and C(β)

s,c on α and c, and write N (β), N (β)
] , C(β)

s,q and C(β)
s .

If s = n and β = 0, we will drop the dependence on s and β as well.

For p ∈ (1,∞) we introduce the Banach spaces

Np(Ω) := {w : Ω→ R : w is measurable and N (w) ∈ Lp(σ)}, (1.15)

Cp
s,∞(Ω) := {~F ∈ C(Ω;Rn+1) : Cs(|~F |) ∈ Lp(σ)}, (1.16)

equipped with the norms ‖w‖Np(Ω) := ‖N (w)‖Lp(σ) , ‖~F‖Cps,∞(Ω) := ‖Cs(|~F |)‖Lp(σ), respec-
tively. For p =∞ we define

N∞(Ω) := {w : Ω→ R : w is measurable and sup
ξ∈∂Ω

N (w)(ξ) <∞}, (1.17)

C∞s,∞(Ω) := {~F ∈ C(Ω;Rn+1) : sup
ξ∈∂Ω

Cs(|~F |)(ξ) <∞}, (1.18)

N∞] (Ω) := {w : Ω→ R : w is locally bounded in Ω and sup
ξ∈∂Ω

N],c(w)(ξ) <∞}, (1.19)

and equip them, respectively, with the norms ‖w‖N∞(Ω) := supξ∈∂ΩN (w)(ξ), ‖~F‖C∞s,∞(Ω) :=

supξ∈∂Ω Cs(|~F |)(ξ), and with the semi-norm

‖w‖N∞] (Ω) := sup
ξ∈∂Ω

N],c(w)(ξ) = sup
x∈Ω

m],c(w)(x),

which is a norm modulo constants. We will prove in Lemma B.1 in Appendix that the quotient
space N∞] (Ω)/R is a Banach space. It is not hard to see that N∞(Ω) and C∞s,∞(Ω) are Banach
spaces. We also define the spaces

C1,p
s,∞(Ω) := {u ∈ C1(Ω) : ∇u ∈ Cp

s,∞(Ω)}, p ∈ (1,∞), (1.20)

C1,∞
s,∞(Ω) := {u ∈ C1(Ω) : ∇u ∈ C∞s,∞(Ω)}, (1.21)

and the semi-norms ‖u‖
C1,p
s,∞(Ω)

:= ‖∇u‖Cps,∞(Ω) and ‖u‖
C1,∞
s,∞(Ω)

:= ‖∇u‖C∞s,∞(Ω).

If G : Ω→ R is a measurable function in Ω, we define the area functional of G, for a fixed
aperture α > 0, as

A(α)G(ξ) :=

ˆ
γα(ξ)

|G(x)|δΩ(x)−n dx, ξ ∈ ∂Ω. (1.22)

The following lemma is proved in the Appendix A.

Lemma 1.5. Let Ω ∈ AR(s) for s ∈ (0, n], u ∈ L1
loc(Ω, ωs), p ∈ [1,∞) and α ≥ 1. There

exists C ≥ 1 such that for any ξ ∈ ∂Ω and r ∈ (0, 2 diam(∂Ω)) there holds

‖A(α)(u1B(ξ,r))‖Lp(σ,B(ξ,r)) . rβ‖C (β)
s (u1B(ξ,Cr))‖Lp(σ,B(ξ,Cr)). (1.23)

If β = 0 we also have that
‖A(α)(u)‖Lp(σ) . ‖Cs(u)‖Lp(σ). (1.24)
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We also introduce the modified non-tangential maximal operator Ñα,c,r for a given aperture
α > 0, a parameter c ∈ (0, 1/2] and r ≥ 1: for any u ∈ Lrloc(Ω) it is defined as

Ñα,c,ru(ξ) := sup
x∈γα(ξ)

(  
B(x,cδΩ(x))

|u(y)|r dy
)1/r

, ξ ∈ ∂Ω.

The Lp-norms of these non-tangential maximal functions with different apertures α or aver-
aging parameters c are comparable, see [MPT22, Lemma 2.1], and in order to simplify the
notation we will just write Ñr = Ñα,c,r when we do not need to specify neither α nor c.

For any q ≥ 1 and p > 1 we define the Banach space

Cs,q,p(Ω) := {H ∈ Lqloc(Ω) : Cs,q(H) ∈ Lp(σ)}

with norm ‖H‖Cs,q,p = ‖Cs.q(H)‖Lp(σ), and for r ∈ [1,∞], p > 1 we let

Nr,p(Ω) := {u ∈ Lrloc(Ω) : Ñr(u) ∈ Lp(σ)},

where we identify Ñ∞ = N with norm ‖u‖Nr,p(Ω) = ‖Ñr(u)‖Lp(σ); By the proof of [MPT22,
Proposition 2.4] it follows that if either Ω is bounded or ∂Ω is unbounded it holds Nq,p(Ω) =
(Cs,q′,p′(Ω))∗. When s = n we drop the subscript s from Cs,q,p.

If Ω ∈ AR(s) we define the tent spaces

T∞s,2(Ω) := {f ∈ L2
loc(Ω) : Cs(f

2 δ−1
Ω ) ∈ L∞(σ)} (1.25)

and
T p2 (Ω) := {g ∈ L2

loc(Ω) :
(
A(g2 δ−1

Ω )
)1/2 ∈ Lp(σ)}, for p ∈ (0,∞), (1.26)

and we equip them with the respective norms

‖f‖T∞s,2(Ω) =
∥∥Cs(f2 δ−1

Ω

)1/2∥∥
L∞(σ)

and ‖g‖T∞2 (Ω) =
∥∥ (A(g2 δ−1

Ω

)1/2 ∥∥
Lp(σ)

.

When s = n we drop the subscript s from T∞2,s and just write T∞2 .
The tent spaces were first introduced and studied in [CMS85] in the upper-half space Rn+1

+

and their definition was extended to AR(n) domains in [MPT13]. Note that the results are
stated in chord-arc domains but an easy inspection of the proofs in [MPT13] reveals that
neither the Harnack chain condition nor the exterior corkscrew condition are necessary. An
important result in this area is the duality between tent spaces. Namely, if Ω ∈ AR(n) then
the pairing

〈f, g〉 =

ˆ
Ω
f(x) g(x)

dx

δΩ(x)

realizes T∞2 (Ω) as the Banach dual of T 1
2 (Ω). Moreover, for p ∈ (1,∞), the same pairing

realizes T p
′

2 (Ω) as the Banach dual of T p2 (Ω), where 1/p + 1/p′ = 1. In this generality, this
follows from the proof of Theorem 4.2 and Remarks 4.3 and 4.4 in [MPT13]. By an inspection
of the proofs, one can easily show that if Ω ∈ AR(s) for s ∈ (0, n], then the pairing

〈f, g〉 :=

ˆ
Ω
f(x) g(x)

dx

δΩ(x)n+1−s

realizes T∞s,2(Ω) as the Banach dual of T 1
2 (Ω). Analogously, for p ∈ (1,∞) the same pairing

realizes T p
′

2 (Ω) as the Banach dual of T p2 (Ω), where 1/p+ 1/p′ = 1.
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1.4 Elliptic systems and Boundary value problems

In this section we consider domains Ω ∈ AR(n) with n ≥ 1. Let L be an elliptic operator
acting on column vector-fields u = (u1, . . . , um)T , where uβ : Ω → C for β = 1, 2, . . . ,m,
defined as follows:

Lu(x) = −
n+1∑
i,j=1

∂i(Aij(x)∂ju(x)) = −
m∑

α,β=1

n+1∑
i,j=1

∂i
(
aαβij (x) ∂ju

β(x)
)
, (1.27)

where ∂i = ∂
∂xi

, 1 ≤ i ≤ n + 1 and Aij are m × m matrix-valued functions on Rn+1 with
entries aαβij : Ω→ C, α, β ∈ {1, . . . ,m} for which there exists λ ∈ (0, 1] such that

m∑
α,β=1

n+1∑
i,j=1

|aαβij (x)|2 ≤ λ−2, for a.e.x ∈ Ω and (1.28)

Re

m∑
α,β=1

n+1∑
i,j=1

aαβij (x)ξβj ξ
α
i ≥ λ

m∑
α=1

n+1∑
i=1

|ξαi |2 for a.e.x ∈ Ω. (1.29)

For m = 1 and aij : Ω→ R, estimate (1.29) amounts to the standard accretivity condition

λ|ξ|2 ≤
n+1∑
i,j=1

aij(x)ξiξ̇j for a.e.x ∈ Ω, ξ ∈ Rn+1. (1.30)

Notice that the α-th component of the column vector Lu is given by

(Lu)α(x) := −
m∑
β=1

n+1∑
i,j=1

∂i
(
aαβij (x) ∂ju

β(x)
)
. (1.31)

We also define the adjoint operator of L by

L∗u(x) := −
m∑

α,β=1

n+1∑
i,j=1

∂i
(
aβαji (x) ∂ju

β(x)
)
),

that is L∗ = −divA∗∇ where A∗ = (Aij)
T or equivalently (aαβij )∗ = aβαji .

We assume that H : Ω → Cm is given by H = (H1, . . . ,Hm) and Ξ : Ω → Cm(n+1) is
given by Ξ := (~Ξ1, . . . , ~Ξm), where ~Ξα : Ω→ Cn+1 and ~Ξα = (Ξα1 , . . . ,Ξ

α
n+1) for α = 1, . . .m.

We are interested in solutions of the inhomogeneous equation Lu = −div Ξ + H in Ω in the
sense

Lu(x) = −
m∑
α=1

n+1∑
i=1

∂i Ξαi (x) +

m∑
α=1

Hα(x), for a.e. x ∈ Ω.

ForH ∈ L2∗
loc(Ω;Cm) and Ξ ∈ L2

loc(Ω;Cm(n+1)) we say that the vector field w ∈W 1,2
loc (Ω;Cm)

solves Lw = H − div Ξ in the weak sense, or that w is a weak solution to the equation
Lw = H − div Ξ, if for any Φ ∈ C∞c (Ω;Cm) we have that

m∑
α,β=1

n+1∑
i,j=1

ˆ
Ω
aαβij (x)∂jw

β ∂iΦα =

m∑
α=1

n+1∑
i=1

ˆ
Ω

Ξαi ∂iΦ
α +

m∑
α=1

ˆ
Ω
Hα Φα. (1.32)
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We say that the variational Poisson-Dirichlet problem for L is solvable in Ω if for every
H ∈ L2∗(Ω;Cm) and Ξ ∈ L2(Ω;Cm(n+1)) there exists u ∈W 1,2

loc (Ω;Cm) such that

(PDL
v ) =

{
Lu = −divA∇u = −div Ξ +H weakly in Ω,

u ∈ Y 1,2
0 (Ω).

(1.33)

By Lax-Milgram’s theorem this problem is always solvable, its solution is unique and it satisfies
the estimate

‖u‖
Y 1,2

0 (Ω)
. ‖H‖L2∗ (Ω;Cm) + ‖Ξ‖L2(Ω;Cm(n+1)).

We say that the variational Dirichlet problem for L is solvable in Ω if for every ϕ ∈
Lip(∂Ω;Cm) and Φ ∈ Ẇ 1,2(Ω;Cm) ∩ Lip(Ω;Cm) satisfying Φ|∂Ω = ϕ, there exists w ∈
Ẇ 1,2(Ω;Cm) such that

(DL
v ) =

{
Lw = −divA∇w = 0 weakly in Ω,

w − Φ ∈ Y 1,2
0 (Ω) on ∂Ω.

(1.34)

If u is the solution of (1.33) for Ξ = −A∇Φ ∈ L2(Ω;Cm(n+1))) and H = 0 then it is easy
to see that w = u+ Φ is the solution of (1.34).

We can consider the extended boundary ∂Ω∞ := ∂Ω ∪ {∞}. Since the set of compactly
supported Lipschitz functions on ∂Ω is dense in the set of compactly supported continuous
functions on ∂Ω, we can extend the definition of the Dirichlet problem to Cc(∂Ω). Namely,
for any ϕ ∈ Cc(∂Ω;Cm) and Φ ∈ Ẇ 1,2(Ω;Cm) ∩ C(Ω;Cm) satisfying Φ|∂Ω = ϕ, there exists
w ∈ Ẇ 1,2(Ω;Cm) satisfying (1.34).

Definition 1.6. For q ∈ (0,∞) we say that the Dirichlet problem with Lq boundary data is
solvable for L in Ω and write (DL

q ) is solvable in Ω, if there exists C ≥ 1 so that for each
g ∈ Lipc(∂Ω), the solution u of (1.34) for L with boundary data g satisfies the estimate

‖Ñ2∗(u)‖Lq(σ) ≤ C‖g‖Lq(σ), (1.35)

where 2∗ := 2(n−1)
n+1 . We also say that the Dirichlet problem with boundary data in BMO(σ)

is solvable for L in Ω and write that DL
BMO is solvable in Ω, if there exists C ≥ 1 so that for

each g ∈ Lipc(∂Ω), the solution u of (1.34) for L with boundary data g satisfies the estimate

‖δΩ∇u‖T∞2 (Ω) ≤ C‖g‖BMO(σ). (1.36)

Definition 1.7. For p ∈ (0,∞) we say that the (homogeneous) Dirichlet regularity problem
or just regularity problem with boundary data in Ṁ1,p(σ) is solvable for L in Ω (write (RL

p )
is solvable in Ω), if there exists C ≥ 1 so that for each f ∈ Lipc(∂Ω), the solution u of (1.34)
with boundary data f satisfies the estimate

‖Ñ2(∇u)‖Lp(σ) ≤ C‖f‖Ṁ1,p(σ). (1.37)

Following [MPT22], we introduce the Poisson-regularity problem with data in Cq,p(Ω).
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Definition 1.8. For p ∈ (1,∞) we say that the Poisson-Dirichlet problem (PDL
p ) is solvable

in Ω if there exists C > 0 so that for each H ∈ L∞c (Ω;Cm) and Ξ ∈ L∞c (Ω;Cm(n+1)), the
solution v of the problem (1.33) satisfies the estimate

‖Ñ2∗(u)‖Lp(σ) ≤ C
(
‖C2∗(δΩH)‖Lp(σ) + ‖C2(Ξ)‖Lp(σ)

)
. (1.38)

Similarly, we say that the Poisson-Dirichlet problem (PDL
∞) for H = 0 is solvable in Ω if there

exists C > 0 so that for each Ξ ∈ L∞c (Ω;Cm(n+1)), the solution u of the problem (1.33) for
H = 0 satisfies the estimate

‖δΩ∇u‖T∞2 (Ω) ≤ C ‖C2(Ξ)‖L∞(∂Ω). (1.39)

Definition 1.9. For any p ∈ (1,∞), we say that the Poisson-regularity problem (PRL
p ) is

solvable in Ω if there exists C > 0 so that for each H ∈ L∞c (Ω;Cm) and Ξ ∈ L∞c (Ω;Cm(n+1)),
the solution v of the problem (1.33) satisfies the estimate

‖Ñ2(∇v)‖Lp(σ) ≤ C
(
‖C2∗(H)‖Lp(σ) + ‖C2(|Ξ|/δΩ)‖Lp(σ)

)
. (1.40)

Similarly, we say that the Poisson-regularity problem (PRL
1 ) for H = 0 is solvable in Ω if there

exists C > 0 so that for each Ξ ∈ L∞c (Ω;Cm(n+1)), the solution v of the problem (1.33) for
H = 0 satisfies the estimate

‖Ñ2(∇v)‖L1(σ) ≤ C ‖Ξ‖T 1
2 (Ω). (1.41)

1.5 Geometry of domains

Following Jerison and Kenig, [JK82], we introduce the corkscrew and Harnack chain condi-
tions.

Definition 1.10. Let c ∈ (0, 1/2). We say that an open set Ω ⊂ Rn+1 satisfies the c-
corkscrew condition if for every ball B(ξ, r) with ξ ∈ ∂Ω and 0 < r < diam(Ω), there exists a
point x ∈ Ω ∩B(ξ, r) such that B(x, cr) ⊂ Ω ∩B(ξ, r).

Definition 1.11. Given two points x, x′ ∈ Ω and a pair of numbers M,N ≥ 1, an (M,N)-
Harnack Chain connecting x to x′, is a chain of open balls B1, . . . , BN ⊂ Ω with x ∈
B1, x

′ ∈ BN , Bk ∩ Bk+1 6= ∅ for every k ∈ {1, · · · , N} and M−1 diam(Bk) ≤ dist(Bk, ∂Ω) ≤
M diam(Bk). We say that Ω satisfies the Harnack Chain condition if there is a uniform con-
stant M such that for any two points x, x′ ∈ Ω, there is an (M,N)-Harnack Chain connecting
them, with N depending only on M and the ratio |x− x′|/

(
min

(
δΩ(x), δΩ(x′)

))
.

It is not hard to see that if E ⊂ Rn+1 is s-Ahlfors regular for s ∈ (0, n] then Rn+1\E satisfies
the c-corkscrew condition for some c ∈ (0, 1/2) depending only on the Ahlfors regularity
constants. In the case that s < n, the set Rn+1 \ E satisfies the Harnack chain condition as
well; see [DFM, Lemma 2.2].

Definition 1.12. Let λ ∈ (0, 1]. A connected rectifiable curve γ : [0, `] → Ω connecting
ξ ∈ ∂Ω and x ∈ Ω, parametrized by the arc-length s ∈ [0, `] and such that γ(0) = ξ and
γ(`) = x is called a λ-good curve or a λ-carrot path, if γ \ {ξ} ⊂ Ω and δΩ(γ(s)) > λs for
every s ∈ (0, `].
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Definition 1.13. An open set Ω ⊂ Rn+1 is said to satisfy the pointwise John condition
if there exists a constant θ ∈ (0, 1) such that for σn-a.e. ξ ∈ ∂Ω, there exist xξ ∈ Ω and
rξ > 0 satisfying xξ ∈ B(ξ, 2rξ) and δΩ(xξ) ≥ θrξ, and also there exists a θ-good curve
γξ ⊂ Ω ∩ B(ξ, 2rξ) connecting the points ξ and xξ with `(γξ) ≤ θ−1rξ. We will write that
ξ ∈ JC(θ) if the pointwise John condition holds for the point ξ with constant θ ∈ (0, 1).

Remark 1.14. Any domain Ω ∈ AR(n) with n-rectifable boundary satisfies the pointwise
John condition.

Following [HMT] we also introduce the notion of local John domains, which are also
examples of domains satisfying the pointwise John condition.

Definition 1.15. An open set Ω ⊂ Rn+1 is said to satisfy the local John condition if there
is θ ∈ (0, 1) such that the following holds: For all x ∈ ∂Ω and r ∈ (0, 2 diam(Ω)) there is
y ∈ B(x, r) ∩ Ω such that B(y, θr) ⊂ Ω with the property that for all z ∈ B(x, r) ∩ ∂Ω one
can find a rectifiable path γz : [0, 1]→ Ω with length at most θ−1|x− y| such that

γz(0) = z, γz(1) = y, dist(γz(t), ∂Ω) ≥ θ |γz(t)− z| for all t ∈ [0, 1].

If Ω ∈ AR(s) for 0 < s < n then it clearly satisfies the local John condition as it satisfies
the corkscrew and the Harnack chain conditions. If s = n, any semi-uniform and thus any
uniform domain has the local John condition.

Definition 1.16. Let Ω be a corkscrew domain, F : Ω→ R and f : ∂Ω→ R. We say that F
converges non-tangentially to f at ξ ∈ ∂Ω and write F → f n.t. at ξ, if there exists α > 0 such
that for every sequence xk ∈ γα(ξ) for which xk → ξ as k → ∞, it holds that F (xk) → f(ξ)
as k →∞. We will also write

nt-lim
x→ξ

F (x) = f(ξ).

We will say that F → f quasi-non-tangentially at ξ ∈ ∂Ω and write F → f q.n.t. at ξ if
there exist rξ > 0, a corkscrew point xξ ∈ Ω ∩ B(ξ, 2rξ), and a θ-good curve γξ ∈ B(ξ, 2rξ)
connecting ξ and xξ, such that for any xk ∈ γξ converging to ξ as k → ∞, it holds that
limk→∞ F (xk) = f(ξ). We will also write

qnt-lim
x→ξ

F (x) = f(ξ).

1.6 Dyadic lattices

Given an s-Ahlfors-regular measure µ in Rn+1 we consider the dyadic lattice of “cubes” built
by David and Semmes in [DS2, Chapter 3 of Part I]. The properties satisfied by Dµ are the
following. Assume first, for simplicity, that diam(suppµ) = ∞. Then for each j ∈ Z there
exists a family Dµ,j of Borel subsets of suppµ, the dyadic cubes of the j-th generation, such
that:

(a) each Dµ,j is a partition of suppµ, i.e. suppµ =
⋃
Q∈Dµ,j Q and Q ∩ Q′ = ∅ whenever

Q,Q′ ∈ Dµ,j and Q 6= Q′;

(b) if Q ∈ Dµ,j and Q′ ∈ Dµ,k with k ≤ j, then either Q ⊂ Q′ or Q ∩Q′ = ∅;

10
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(c) for all j ∈ Z and Q ∈ Dµ,j , we have 2−j . diam(Q) ≤ 2−j and µ(Q) ≈ 2−js;

(d) there exists C > 0 such that, for all j ∈ Z, Q ∈ Dµ,j , and 0 < τ < 1,

µ
(
{x ∈ Q : dist(x, suppµ \Q) ≤ τ2−j}

)
+ µ

(
{x ∈ suppµ \Q : dist(x,Q) ≤ τ2−j}

)
≤ Cτ1/C2−js.

(1.42)

This property is usually called the small boundaries condition. From (1.42) it follows
that there is a point xQ ∈ Q, the center of Q, such that dist(xQ, suppµ \Q) & 2−j ; see
[DS2, Lemma 3.5 of Part I].

We set
Dµ :=

⋃
j∈Z
Dµ,j .

In case that diam(suppµ) < ∞, the families Dµ,j are only defined for j ≥ j0, with 2−j0 ≈
diam(suppµ), and the same properties above hold for Dµ :=

⋃
j≥j0 Dµ,j .

Given a cube Q ∈ Dµ,j we say that its side-length is 2−j and we denote it by `(Q). Notice
that diam(Q) ≤ `(Q). We also denote

B(Q) := B(xQ, c1`(Q)), BQ := B(xQ, `(Q)), (1.43)

where c1 > 0 is some fixed constant so that B(Q) ∩ suppµ ⊂ Q for all Q ∈ Dµ. Clearly we
have Q ⊂ BQ. For λ > 1 we write

λQ =
{
x ∈ suppµ : dist(x,Q) ≤ (λ− 1) `(Q)

}
.

The side-length of a true cube P ⊂ Rn+1 is also denoted by `(P ). On the other hand, given
a ball B ⊂ Rn+1, its radius is denoted by r(B). For λ > 0 the ball λB is the ball concentric
to B with radius λ r(B).

1.7 The Whitney decomposition

Recall that a domain is a connected open set. In this thesis, Ω will be an open set in Rn+1

with n ≥ 1. We will denote the n-Hausdorff measure on ∂Ω by σ.
We consider the following Whitney decomposition of Ω assuming Ω 6= Rn+1: we have a

family W(Ω) of dyadic cubes in Rn+1 with disjoint interiors such that⋃
P∈W(Ω)

P = Ω

and, moreover, there exist constants Λ > 20 and D0 ≥ 1 such the following conditions hold
for every P ∈ W(Ω):

(i) 10P ⊂ Ω;

(ii) ΛP ∩ ∂Ω 6= ∅;

(iii) there are at most D0 cubes P ′ ∈ W(Ω) such that 10P ∩ 10P ′ 6= ∅. Furthermore, for
such cubes P ′ we have 1

2`(P
′) ≤ `(P ) ≤ 2`(P ′).

11



From the properties (i) and (ii) it is clear that dist(P, ∂Ω) ≈ `(P ) and so there exists Λ′ > 20
such that

dist(x, ∂Ω) ≤ Λ′`(P ) for every x ∈ P. (1.44)

We assume that the Whitney cubes are small enough so that

diam(P ) <
1

20
dist(P, ∂Ω). (1.45)

The arguments used to construct a Whitney decomposition satisfying the properties above
are standard.

Suppose that ∂Ω is s-Ahlfors-regular and consider the dyadic lattice Dσ defined above.
Then, for each Whitney P ∈ W(Ω) there is some cube Q ∈ Dσ such that

`(Q) = `(P ) and dist(P,Q) ≈ `(Q), (1.46)

with the implicit constant depending on the parameters of Dσ and on the Whitney decompo-
sition. We denote such a cube by Q = b(P ) and we say that Q is a boundary cube of P . For
every P ∈ W(Ω) there is a uniformly bounded number of cubes Q ∈ Dσ depending on n and
the s-Ahlfors regularity of ∂Ω, that satisfy the properties (1.46). Conversely, given Q ∈ Dσ,
we let

w(Q) =
⋃

P∈W(Ω):Q=b(P )

P. (1.47)

In the case of n-Ahlfors regular boundary, it is immediate to check that w(Q) is made up at
most of a uniformly bounded number of cubes P but it may happen that w(Q) = ∅.

In higher co-dimensions where s < n it is also true that for every boundary cube Q ∈ ∂Ω
there exists a uniformly bounded number of Whitney cubes P ∈ W(Ω) such that b(P ) = Q.
For the proof of this fact one can see [MP, Lemma 4.16, Lemma 4.18].

We also denote the fattened Whitney region of Q by

w̃(Q) =
⋃

P∈W(Ω):Q=b(P )

1.1P. (1.48)

Remark 1.17. If x ∈ P̄ ∈ W(Ω) then there exists a constant Cw > 1 depending only on n,
the constants of the Whitney decomposition and the s-Alhlfors regularity, so that for every
P ′ ∈ W(Ω) that has the property x ∈ 1.1P ′, there holds

b(P ′) ⊂ B(xb(P ), Cw`(P )) =: BP .
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Chapter 2

Regularized dyadic extension of
functions on the boundary

Let Ω ⊂ Rn+1, n ≥ 1, be an open set and letW(Ω) be the collection of Whitney cubes in which
Ω is decomposed as in Subsection 1.7. Let {ϕP }P∈W(Ω) be a partition of unity subordinate
to the open cover {1.1P}P∈W(Ω) such that

ϕP ∈ C∞(Rn), |∇ϕP | .
1

`(P )
, suppϕ ⊆ 1.1P

and ∑
P∈W(Ω)

ϕP (x) = 1Ω(x), x ∈ Ω.

For f ∈ L1
loc(σ), we define the regularized dyadic extension of f in Ω by

υf (x) :=


∑

P∈W(Ω)

mσ,b(P )f ϕP (x) if x ∈ Ω,

f(x) if x ∈ ∂Ω;

(2.1)

in the case that Ω is an unbounded domain with compact boundary we set b(P ) = ∂Ω for
every P ∈ W(Ω) with `(P ) ≥ diam(∂Ω).

The fact that υf is indeed an extension of f in Ω in the non-tangential sense is proved in
the following lemma.

Lemma 2.1. Let Ω ∈ AR(s) for s ∈ (0, n] and f ∈ L1
loc(σs). There exists α > 0 such that

nt-lim
x→ξ

υf (x) = f(ξ) for σ-a.e. ξ ∈ ∂Ω,

for some cone γα where α > 0 only depends on n, the Ahlfors regularity constant and the
constants of the corkscrew condition.

Proof. By [EG15, Theorem 1.33] it holds that

lim
r→0

mσ,B(ξ,r)(|f − f(ξ)|) = 0, for σ-a.e. ξ ∈ ∂Ω. (2.2)

Fix ε > 0 and let ξ ∈ ∂Ω be a point such that (2.2) holds. Let 0 < ε′ < ε to be chosen later.
Then there exists δ = δ(ε′, ξ) > 0 such that mσ,B(ξ,r)(|f −f(ξ)|) < ε′ for every r < δ. Let now
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0 < δ′ < δ be a small constant which will be chosen momentarily. For fixed x ∈ γα(ξ)∩B(ξ, δ′),
we have that

|υf (x)− f(ξ)| ≤
∑

P∈W(Ω)

|mσ,b(P )f − f(ξ)|ϕP (x).

Let P0 ∈ W(Ω) be a fixed cube such that x ∈ P̄0. Then the only cubes P ∈ W(Ω) that
contribute to the sum are the ones for which x ∈ 1.1P and, by Remark 1.17, b(P ) ⊂ BP0 =
B(xP0 , Cw`(P0)). By the properties of the Whitney cubes there exists a constant C ′w > Cw
such that BP ⊂ B(ξ, C ′w `(P )). Let δ′ > 0 be sufficiently small so that B(ξ, C ′w `(P )) ⊂
B(ξ, δ/2). We get that for any such P we have

|mσ,b(P )f − f(ξ)| . mσ,BP0
(|f − f(ξ)|) . ε′

which, in turn, by the bounded overlap of the Whitney cubes yields that there exists a constant
C > 1 such that

|υf (x)− f(ξ)| < C ε′.

This concludes the proof of the lemma once we choose ε = Cε′.

Lemma 2.2. Let Ω ∈ AR(s) for s ∈ (0, n]. Assume that f ∈ L1
loc(σ) and υf is the extension

defined in (2.1). For any P ∈ W(Ω) we have that

sup
x∈P̄
|∇υf (x)| . `(P )−1mσ,BP (|f |). (2.3)

If additionally f ∈ Λβ(∂Ω) for β ∈ [0, 1) then it holds that

sup
x∈P̄
|∇υf (x)| . `(P )β−1 ‖f‖Λβ(∂Ω), (2.4)

while if f ∈ Ṁ1,p(σ) we get that

|∇υf (x)| . mσ,BP (∇H,pf); (2.5)

above ∇H,pf is the least Hajłasz upper gradient of f . Moreover, for any ξ ∈ ∂Ω we have

Nα(υf )(ξ) .αMf(ξ). (2.6)

Proof. For fixed x ∈ P̄ ∈ W(Ω) we have

|∇υf (x)| .
∑

P ′∈W(Ω)
x∈1.1P ′

mσ,b(P ′)(|f |) `(P ′)−1 .D0 mσ,BP (|f |) `(P )−1,

where we used that `(P ) ≈ `(P ′) and that there are at most D0 Whitney cubes with such
property. If, in addition, f ∈ Λβ(∂Ω) then using the fact that ∇

(∑
P∈W(Ω) ϕP (x)

)
= 0 we

get

|∇υf (x)| =
∣∣∣ ∑
P ′∈W(Ω)

(mσ,b(P ′)f −mσ,b(P )f)∇ϕP ′(x)
∣∣∣

. `(P )−1
∑

P ′∈W(Ω)
x∈1.1P ′

|mσ,b(P ′)f −mσ,b(P )f |

. `(P )−1
∑

P ′∈W(Ω)
x∈1.1P ′

mσ,b(P ′)(|f −mσ,BP f |) .D0 ‖f‖Λβ(∂Ω)`(P )β−1.
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BOUNDARY

Now, let f ∈ Ṁ1,p(σ) and x ∈ P̄ . Then we have

|∇υf (x)| =
∣∣ ∑
P ′∈W(Ω)

mσ,b(P ′)f ∇ϕP ′(x)
∣∣ . ∑

P ′∈W(Ω)
x∈1.1P ′

1

`(P ′)
|mσ,b(P ′)f −mσ,b(P )f |

.
∑

P ′∈W(Ω)
x∈1.1P ′

1

`(P ′)

 
b(P ′)

 
b(P )
|x− y|[∇H,pf(x) +∇H,pf(y)] dσ(x) dσ(y)

.
∑

P ′∈W(Ω)
x∈1.1P ′

(mσ,b(P ′)(∇H,pf) +mσ,b(P )(∇H,pf)) .D0 mσ,BP (∇H,pf),

where BP was defined in Remark 1.17. Finally, fox fixed ξ ∈ ∂Ω and for every x ∈ γα(ξ), we
have

|υf (x)| ≤
∑

P ′∈W(Ω)
x∈1.1P ′

mσ,b(P )(|f |)ϕP (x) . mσ,BP (|f |) . mσ,B(ξ,C′w`(P ))(|f |) ≤Mf(ξ)

for some constant C ′w > Cw depending on α and the Whitney constants. This readily proves
(2.6) by taking supremum over all x ∈ γα(ξ).

Lemma 2.3. Let Ω ∈ AR(s) for s ∈ (0, n]. If f ∈ Λβ(∂Ω) for β ∈ [0, 1), then it holds that

sup
ξ∈∂Ω

N (β)
] (υf )(ξ) . ‖f‖Λβ(∂Ω). (2.7)

Proof. Fix ξ ∈ ∂Ω and take x ∈ γα(ξ) with x ∈ P̄0 for some P0 ∈ W(Ω). It is enough to
bound the quantity

sup
y∈B(x,cδΩ(x))

 
B(x,cδΩ(x))

|υf (y)− υf (z)| dz.

To this end, fix a point z ∈ B(x, cδΩ(x)) with z ∈ P̄1 ∈ W(Ω) and a point y ∈ B(x, cδΩ(x))
with y ∈ P̄2 ∈ W(Ω). Since c > 0 is small enough, the Whitney cubes P1, P2 and P0 are close
to each other in the sense that the intersection of a dilation of these cubes is non-empty. Then,
by the properties of Whitney cubes, we get that `(P1) ≈ `(P2) ≈ `(P0) ≈ δΩ(x). Thus, there
exists a large enough constant Λ0 > 1 such that for any P ∈ W(Ω) with 1.1P ∩ (P1 ∪P2) 6= ∅,
we have that

Bb(P ) ⊂ B0 := B(xb(P0),Λ0`(P0)).

It holds that ∑
P∈W(Ω)

P∩B(x,cδΩ(x)) 6=∅

(ϕP (z)− ϕP (y))mσ,B0f = 0,
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and so

|υf (y)− υf (z)| ≤
∑

P∈W(Ω)
P∩B(x,cδΩ(x)) 6=∅

|ϕP (y)− ϕP (z)||mσ,b(P )f −mσ,B0f |

.
∑

P∈W(Ω)
P∩B(x,cδΩ(x))6=∅

‖∇ϕP ‖L∞ |y − z||mσ,b(P )f −mσ,B0f |

.
∑

P∈W(Ω)
P∩B(x,cδΩ(x))6=∅

mσ,b(P )(|f −mσ,B0f |) . ‖f‖Λβ(∂Ω)`(P0)β,

since there are uniformly bounded many Whitney cubes P such that P ∩ B(x, cδΩ(x)) 6= ∅.
This readily implies (2.7).

Lemma 2.4. Let Ω ∈ AR(s) for s ∈ (0, n]. If f ∈ Λβ(∂Ω) for β ∈ (0, 1) then

sup
ξ∈∂Ω

C(β)
s (∇υf )(ξ) . ‖f‖Λβ(∂Ω). (2.8)

Proof. By (2.4) it is easy to see that for every ξ ∈ ∂Ω and r > 0, it holds that
ˆ
B(ξ,r)∩Ω

|∇υf |ωs(x) dx . ‖f‖Λβ(∂Ω)

∑
P∈W(Ω)

P∩B(ξ,r)6=∅

`(P )β−1`(P )s+1

. ‖f‖Λβ(∂Ω)

∑
P∈W(Ω)

P∩B(ξ,r)6=∅

`(b(P ))βσ(b(P ))

. ‖f‖Λβ(∂Ω)

∞∑
k=0

2−β krβ
∑

Q∈Dk,σ
Q⊂B(ξ,M0r)

σ(Q) . ‖f‖Λβ(∂Ω) r
β rs,

which implies (2.8).

If the boundary function is in Lipβ(∂Ω) for β ∈ (0, 1] then we can show that υf is Lipβ(Ω)
by arguments similar to the ones in [MT22, Lemma 4.2].

Lemma 2.5. Let Ω ∈ AR(s) for s ∈ (0, n]. If f ∈ Lipβ(∂Ω) for β ∈ (0, 1] and υf is the
regularized dyadic extension defined in (2.1), then it holds that υf ∈ Lipβ(Ω) with Lipβ(υf ) .
Lipβ(f).

Proof. We start by proving that υf ∈ Lipβ(Ω). Fix x, y ∈ Ω and let P1, P2 ∈ W(Ω) such that
x ∈ P̄1 and y ∈ P̄2. We split into cases.

Case 1: Suppose that 2P1 ∩ 2P2 6= ∅. In this case let P0 ∈ W(Ω) be the smallest cube
such that

2Bb(P ) ⊂ 2Bb(P0), for every P ∈ W(Ω) with 1, 1P ∩ (P1 ∪ P2) 6= ∅.
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By the properties of Whitney cubes then we get that `(P1) ≈ `(P2) ≈ `(P0). As

υf (x)− υf (y) =
∑

P∈W(Ω)

mσ,b(P )f (ϕP (x)− ϕP (y))

and ∑
P∈W(Ω)

(ϕP (x)− ϕP (y))mσ,b(P0)f = 0,

we can write

υf (x)− υf (y)

=
∑

P∈W(Ω)

mσ,b(P )f (ϕP (x)− ϕP (y))−
∑

P∈W(Ω)

mσ,b(P0)f (ϕP (x)− ϕP (y))

=
∑

P∈W(Ω)

(ϕP (x)− ϕP (y))
(
mσ,b(P )f −mσ,b(P0)f

)
.

Thus we get

|υf (x)− υf (y)| ≤
∑

P∈W(Ω)

|ϕP (x)− ϕP (y)|
∣∣mσ,b(P )f −mσ,b(P0)f

∣∣ . (2.9)

Observe now that

|ϕP (x)− ϕP (y)| ≤ |∇ϕP ||x− y| . `(P )−1|x− y|

while for fixed w ∈ 2Bb(P0) we can estimate∣∣mσ,b(P )f −mσ,b(P0)f
∣∣ ≤ mσ,b(P )(|f(z)− f(w)|) +mσ,b(P0)(|f(z)− f(w)|)
. Lipβ(f) `(P0)β.

To deal with the sum in the right hand side of the inequality (2.9), we may assume that the
cubes P appearing in the sum are such that either 1.1P ∩ P1 6= ∅ or 1.1P ∩ P2 6= ∅, since
otherwise the associated summand vanishes. We denote by I0 the family of such cubes. So
the cubes from I0 are such that Bb(P ) ⊂ 2Bb(P0) and they satisfy `(P ) ≈ `(P0). Combining
this observation with the last two estimates and the fact that |x− y| . `(P0), we obtain

|υf (x)− υf (y)| .
∑

P∈W(Ω)

1

`(P )
|x− y|Lipβ(f) `(P0)β .D0 Lipβ(f) |x− y|β. (2.10)

Case 2: Suppose that 2P1 ∩ 2P2 = ∅. In this case we have

υf (x)− υf (y) =
∑

P∈W(Ω)

mσ,b(P )f (ϕP (x)− ϕP (y))

=
∑

P∈W(Ω)

ϕP (x)(mσ,b(P )f−mσ,b(P1)f) +
∑

P∈W(Ω)

ϕP (y)
(
mσ,b(P2)f −mσ,b(P )f

)
+
(
mσ,b(P1)f −mσ,b(P2)f

)
=: S1 + S2 + S3.
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If we use that `(Pi) . |x − y| and the fact that |mσ,b(P )f − mσ,b(Pi)f | . Lipβ(f) `(Pi)
β for

i ∈ {1, 2}, we can show that

|S1|+ |S2| . Lipβ(f) |x− y|β.

It remains to bound S3. If w1 ∈ b(P1) and w2 ∈ b(P2) then

|S3| ≤
∣∣mσ,b(P1)f − f(w1)

∣∣+ |f(w1)− f(w2)|+
∣∣f(w2)−mσ,b(P2)f

∣∣ .
Since f ∈ Lipβ(∂Ω),

|f(w1)− f(w2)| ≤ Lipβ(f) |w1 − w2|β ≤ Lipβ(f)
(
|w1 − x|β + |x− y|β + |y − w2|β

)
. Lipβ(f)

(
`(P1)β + |x− y|β + `(P2)β

)
. Lipβ(f) |x− y|β,

while, for i ∈ {1, 2}, once again using that f ∈ Lipβ(∂Ω), it is easy to see that∣∣mσ,b(Pi)(f − f(wi))
∣∣ ≤ mσ,b(Pi)(|f − f(wi)|) ≤ Lipβ(f) `(Pi)

β . Lipβ(f) |x− y|β.

This implies that |S3| . Lipβ(f)|x− y|β . Combining the above estimates we get

|υf (x)− υf (y)| ≤ |S1|+ |S2|+ |S3| . Lipβ(f) |x− y|β,

in the second case as well and thus for all x, y ∈ Ω with x 6= y. This readily implies that
υf ∈ Lipβ(Ω) with Lipβ(υf ) ≤ Lipβ(f).

It remains to prove that

|υf (x)− υf (y)| . Lipβ(f) |x− y|β for any x ∈ ∂Ω and y ∈ Ω. (2.11)

To this end, we fix such x and y and estimate

|υf (x)− υf (y)| = |f(x)− υf (y)| =
∣∣∣f(x)−

∑
P∈W(Ω)

mσ,b(P )f ϕP (y)
∣∣∣

≤
∑

P∈W(Ω)

ϕP (y)|f(x)−mσ,b(P )f | ≤
∑

P∈W(Ω):
1.1P3y

ϕP (y)|f(x)−mσ,b(P )f |.

As f ∈ Lipβ(∂Ω) for every P ∈ W(Ω) such that y ∈ 1.1P , we have that

|f(x)−mσ,b(P )f | . Lipβ(f) `(P )β ≈ Lipβ(f) δΩ(y)β ≤ Lipβ(f) |x− y|β,

which implies (2.11) by the bounded overlap of the Whitney cubes that contain y, thus con-
cluding the proof of the lemma.

proof of Theorem 0.4. It follows by combining Lemmas 2.1, 2.2, 2.3, 2.4, and 2.5; see also
Remark 1.2.
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Chapter 3

A Corona decomposition for functions
in Lp or BMO

In this chapter we will assume that Ω ∈ AR(s) for s ∈ (0, n].

We say that a family of cubes F ⊂ Dσ satisfies a Carleson packing condition with constant
M > 0, and we write F ∈ Car(M), if for any S ∈ Dσ it holds that∑

R∈F :R⊂S
σ(R) ≤M σ(S). (3.1)

A family T ⊂ Dσ is a tree if it verifies the following properties:

1. T has a (unique) maximal with respect to inclusion element Q(T ) which contains all
the other elements of T as subsets of Rn+1. The cube Q(T ) is the “root” of T and we
will call it top cube.

2. If Q,Q′ belong to T and Q ⊂ Q′ then any cube P ∈ Dσ such that Q ⊂ P ⊂ Q′ also
belongs to T .

Definition 3.1. A corona decomposition of σ is a partition of Dσ into a family of good cubes,
which we denote by G, and a family of bad cubes, which we denote by B, so that the following
hold:

1. Dσ = G ∪ B;

2. there is a partition of G into trees, that is,

G =
⋃
T ⊂G
T ;

3. the collections of the maximal cubes Q(T ) of the trees T satisfies (3.1) for someM0 > 0;

4. the collection of cubes B satisfies (3.1) for some M1 > 0.

19



We can also define a localized Corona decomposition in a cube R0 ∈ Dσ if in the definition
above we replace Dσ by Dσ(R0).

We recall the definition of the truncated, at large scales, dyadic Hardy-Littlewood maximal
function

Mf(Q) = sup
R∈Dσ
Q⊂R

mσ,R|f |, f ∈ L1
loc(σ).

Given any R ∈ Dσ and a fixed ε > 0, we define the collection Stop(R) ⊂ Dσ(R) consisting
of cubes S ∈ Dσ(R) which are maximal, thus disjoint, with respect to the condition

|mσ,Rf −mσ,Sf | ≥

{
εMf(S) if f ∈ L1

loc(σ)

ε‖f‖BMO(σ) if f ∈ BMO(σ).
(3.2)

We fix a cube R0 ∈ Dσ and we define the family of the top cubes with respect to R0 as
follows: first we define the families Topk(R0) for k ≥ 0 inductively. We set

Top0(R0) := {R0}.

Assuming that Topk(R0) has been defined, we set

Topk+1(R0) =
⋃

R∈Topk(R0)

Stop(R),

and then we define
Top(R0) :=

⋃
k≥0

Topk(R0).

For R ∈ Top(R0) we also set

Tree(R) := {Q ∈ Dσ(R) : @ S ∈ Stop(R) such that Q ⊂ S}.

Notice that
Dσ(R0) =

⋃
R∈Top(R0)

Tree(R),

and this union is disjoint. This is a localized Corona decomposition in R0 and notice that in
this case we have that B = ∅.

For the rest of this chapter we will devote all our efforts to proving that Top(R0) satisfies
a Carleson packing condition.

Proposition 3.2. For any R0 ∈ Dσ, the family of cubes Top(R0) ∈ Car(Cε−2) for some
C > 0 depending on the Ahlfors-regularity constants.

To prove the proposition we first need some auxiliary lemmas.

Lemma 3.3. Let f ∈ L1
loc(σ) and Q ∈ Dσ. Then it holds

σ(Q)

Mf(Q)2
≤ 8

ˆ
Q

1

(MDσf(x))2 dσ(x) (3.3)
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Proof. This was proved in [HR18, Lemma 4.1] for the Lebesgue measure but the same proof
works for any non-atomic Radon measure and so we skip the details.

Recall that a nonnegative function w ∈ L1
loc(σ) is called a weight. For any measurable

E ⊂ ∂Ω we let w(E) :=
´
E w dσ. If for every cube Q ∈ Dσ there exists a constant c,

independent of a cube Q, such that

mσ,Qw dσ ≤ c ess inf
x∈Q

w(x),

we will call w an A1 weight. For p ∈ (1,∞), if for every cube Q ∈ Dσ there exists a constant
c, independent of a cube Q, such that

mσ,Qw (mσ,Q(w1−p′))p−1 ≤ c

with 1/p + 1/p′ = 1, w will be called an Ap weight. We say that w ∈ A∞(σ) if there exists
θ > 0 and a positive constant C0 < ∞ such that for every Q ∈ Dσ and every σ-measurable
E ⊂ Q, it holds that

w(E)

w(Q)
≤ C0

(σ(E)

σ(Q)

)θ
.

Let F ⊂ Dσ be any collection of dyadic cubes. Given any cube Q ∈ Dσ, define its stopping
parent Q∗ to be the minimal Q∗ ∈ F such that Q ( Q∗. If no such Q∗ exists we set Q∗ := Q.
Define the stopped square function

SFf(x) :=
( ∑
Q∈F
|mσ,Qf −mσ,Q∗f |21Q(x)

)1/2
, x ∈ ∂Ω. (3.4)

In the special case F = Top(R0) we will simply write Sf .

Lemma 3.4. If w ∈ A∞(σ) and 1 ≤ p <∞, then

‖SFf‖Lp(∂Ω;w) . ‖MDf‖Lp(∂Ω;w)

uniformly for any collection of dyadic cubes F .

Proof. This was proved in [HR18, Proposition 3.2] for the Lebesgue measure but the same
proof works verbatim for σ.

We will now proceed to the proof of Proposition 3.2 for f ∈ L1
loc(σ) which is based on the

one of [HR18, Theorem 1.2(3)].

Proof of Proposition 3.2 when f ∈ L1
loc(σ). We first fix S ∈ Top(R0). As for any R ∈ Top(R0)

it holds that
|mσ,Rf −mσ,R∗f | > εMf(R),

we have that∑
R∈Top(R0)

R⊂S

σ(R) ≤
∑

R∈Top(R0)
R⊂S

|mσ,Rf −mσ,R∗f |2

ε2Mf(R)2
σ(R)

.
∑

R∈Top(R0)
R⊂S

|mσ,Rf −mσ,R∗f |2

ε2

ˆ
S

1R(x)

MDσf(x)2
dσ =

ˆ
S

Sf(x)2

ε2

dσ(x)

MDσf(x)2
,
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where, in the second inequality, we used Lemma 3.3. We write

(MDσf)−2 = 1 ·
(
(MDσf)2γ

)1−q
for γ ∈ (0, 1/2) and q = 1 + 1

γ > 3. Since f ∈ L1
loc(σ) and 2γ ∈ (0, 1), using for example

[CG, Theorem 3.4, p.158], whose proof do works for doubling Borel measures, we get that
(MDσf)2γ ∈ A1(σ). As 1 ∈ A1 and q > 1 it follows from [CG, Theorem 2.16, p.407], whose

proof also works for doubling Borel measures, that 1 ·
(

(MDf)2γ
)1−q

∈ Aq(σ). Therefore,

(MDσf)−2 ∈ Aq(σ) ⊂ A∞(σ). We now apply Lemma 3.4 with the collection of cubes F̃ :=
{R ∈ Top(R0) : R ⊂ S} to the function

f̃(x) :=

{
f(x)−mσ,Sf if x ∈ S,
0 if x /∈ S,

for the weight w := (MDσf)−2 and p = 2 and obtain
ˆ
|SF̃ f̃ |

2w dσ .
ˆ
|MDf̃ |2w dσ =

ˆ
S
|MDf̃ |2w dσ .

ˆ
S
|MDf |2w dσ.

Thus, since |SF̃ f̃(x)|2 = |SF̃f(x)|2 for all x ∈ S, we infer that
ˆ
S
|Sf |2w dσ .

ˆ
S
|SF̃f |

2w dσ +

ˆ
S
|MDf |2w dσ ≤

ˆ
|SF̃ f̃ |

2w dσ +

ˆ
S
|MDf |2w dσ

.
ˆ
S
|MDf |2w dσ =

ˆ
S
|MDf |2

dσ

(MDf)2 = σ(S),

proving (3.1) in the case that S ∈ Top(R0).
If S ∈ Dσ(R0) \ Top(R0) then we can find a maximal collection F0 of cubes S̃ ∈ Top(R0)

such that
S =

⋃
S̃∈F0

S̃.

Then, ∑
R∈Top(R0)

R⊂S

σ(R) =
∑
S̃∈F0

∑
R∈Top(S̃):

R⊂S̃

σ(R) .
∑
S̃∈F0

σ(S̃) = σ(S)

and the proof is complete.

Proof of Proposition 3.2 when f ∈ BMO(σ). For any R ∈ Top(R0) there holds

|mσ,Sf −mσ,Rf | > ε‖f‖BMO(σ).

Define

fR(x) :=
∑

Q∈Tree(R)

∆Qf(x) :=
∑

Q∈Tree(R)

∑
Q′∈ch(Q)

(
mσ,Q′f −mσ,Qf

)
1Q′(x),
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where with ch(Q) we denote the dyadic children of the cube Q. If x ∈ P ∈ Stop(R) we have
that fR(x) = mσ,P f −mσ,Rf and so |fR(x)| > ε‖f‖BMO(σ). This implies that

ε2‖f‖2BMO(σ)

∑
P∈Stop(R)

σ(P ) ≤
∑

P∈Stop(R)

ˆ
P
|fR(x)|2 dσ(x)

=

ˆ
⋃
P

P∈Stop(R)

|fR|2 dσ ≤
ˆ
|fR|2 dσ.

By the above estimate and the orthogonality of ∆Qf we get∑
R∈Top(R0)

R⊂S

∑
P∈Stop(R)

σ(P ) ≤ 1

ε2

1

‖f‖2BMO(σ)

∑
R∈Top(R0)

‖fR‖2L2(σ)

=
1

ε2

1

‖f‖2BMO(σ)

∑
R∈Top(R0)

∑
Q∈Tree(R)

‖∆Qf‖2L2(σ)

≤ 1

ε2

1

‖f‖2BMO(σ)

∑
Q∈Dσ(R0)

‖∆Qf‖2L2(σ)

=
1

ε2

1

‖f‖2BMO(σ)

‖1R0(f −mσ,R0f)‖2L2(σ) . ε−2σ(R0).

This proves (3.1) in the case that S ∈ Top(R0). By the same argument as in the end of the
proof of Proposition 3.2 when f ∈ L1

loc(σ) we obtain (3.1) for any S ∈ Dσ(R0).

Remark 3.5. For the constructions in this chapter note that if suppσ is bounded, we can
choose R0 = suppσ. In the case that suppσ is not bounded we apply a technique described
in p. 38 of [DS1]: we consider a family of cubes {Rj}j∈J ⊂ Dσ which are pairwise disjoint,
whose union is all of suppσ and which have the property that for each k there at most C
cubes from Dσ,k which are not contained in any cube Rj . For each Rj we construct a family
Top(Rj) analogous to Top(R0). Then we set

Top :=
⋃
j∈J

Top(Rj)

and
B := {S ⊂ Dσ : there does not exist j ∈ J such thatS ⊂ Rj ∈ Top}.

One can easily check that the families Top and B satisfy a Carleson packing condition. See
[DS1, p. 38] for the construction of the family {Rj} and for additional details.
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Chapter 4

Lp and uniform ε-approximability of
the regularized dyadic extension

In this chapter we give the proof of Theorems 0.1 and 0.2;
Given A > 1, we say that two cubes Q1, Q2 are A-close if

1

A
diamQ1 ≤ diamQ2 ≤ AdiamQ1

and
dist(Q1, Q2) ≤ A(diamQ1 + diamQ2).

The following lemma was proved in [DS2, p. 60].

Lemma 4.1. If we have a Corona decomposition such that Top ∈ Car(M0) for some M0 > 0
then the collection of cubes

A0 :=
{
Q ∈ Dσ :Q ∈ Tree(R) for some R ∈ Top and

∃Q′ ∈ Tree(R′) for someR′ ∈ Top with R′ 6= R such thatQ′ isA-close toQ
}

is in Car(M1) for some M1 > 0 depending on M , A, and the Ahlfors-regularity constants.

Lemma 4.2 ([DS2], Lemma I.3.27, p. 59). If F ⊂ Dσ is in Car(M1) for some M1 > 0 then
the family

FA := {Q ∈ Dσ : Q isA-close to some Q′ ∈ F}

is in Car(M2) for some M2 > 0 depending on M1, A and the Ahlfors-regularity constants.

Recall that Ω ∈ AR(s) for s ∈ (0, n] and the corona decomposition that we constructed in
Chapter 3. Consider the subcollection of Whitney cubes

P0 :=
{
P ∈ W(Ω) : there existsP ′ ∈ W(Ω) such that 1.2P ∩ 1.2P ′ 6= ∅ and there exist
R,R′ ∈ Top(R0)withR 6= R′ such that b(P ) ∈ Tree(R) and b(P ′) ∈ Tree(R′)

}
.

Then, by the properties of Whitney cubes, for every P ∈ P0, the cubes P ′ ∈ W(Ω) such that
b(P ′) is not in the same tree as b(P ) have the following properties:
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• `(b(P ))/2 ≤ `(b(P ′)) ≤ 2`(b(P ))

• dist(b(P ), b(P ′)) ≤ C1`(b(P )).

If for fixed R ∈ Top we define

∂Tree(R) := {Q ∈ Tree(R) : there existsP ∈ P0 such that b(P ) = Q}

then there exists A > 1 sufficiently large depending only on C1 and n, such that⋃
R∈Top

∂Tree(R) ⊂ A0,

and, by Lemma 4.1,
⋃
R∈Top ∂Tree(R) ∈ Car(M1). If F is a family of “true” dyadic cubes in

Rn+1 we also define

N (F) :=
{
P ∈ W(Ω) : there existsP ′ ∈ F such that 1.2P ∩ 1.2P ′ 6= ∅

}
.

Then, for F = P0, we set

∂Tree∗(R) :=
{
Q ∈ Dσ : ∃P ∈ N (P0) such that Q = b(P ) ∈ Tree(R)

}
.

It is easy to see that

J :=
⋃

R∈Top
∂Tree∗(R) ⊂

( ⋃
R∈Top

∂Tree(R)
)
A

and, by Lemma 4.2, J ∈ Car(M2) for some M2 > 0. Finally, we define

B0 := {P ∈ W(Ω) : b(P ) ∈ B}.

We are now ready to define the approximating function of υf by

u(x) :=
∑
S∈B0

mσ,b(S)f ϕS(x) (4.1)

+
∑
R∈Top

[ ∑
P∈W(Ω)\P0

b(P )∈Tree(R)

mσ,Rf ϕP (x) +
∑
P∈P0

b(P )∈Tree(R)

mσ,b(P )f ϕP (x)
]
,

using the Corona decomposition constructed in Chapter 3. Note that when Ω is bounded,
Top = Top(∂Ω) and B = ∅, while if ∂Ω is unbounded then Top and B are the families
constructed in Remark 3.5. Finally, when Ω is an unbounded domain with compact boundary
∂Ω, we modify the definition of the approximating function as follows.

u(x) :=
∑

P∈W(Ω): `(P )≥diam(∂Ω)

mσ,∂Ωf ϕP (x) (4.2)

+
∑
R∈Top

[ ∑
P∈W(Ω)\P0

b(P )∈Tree(R)

mσ,Rf ϕP (x) +
∑
P∈P0

b(P )∈Tree(R)

mσ,b(P )f ϕP (x)
]
.

We will now prove Theorems 0.1 and 0.2.
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Theorem 4.3. Let f ∈ L1
loc(σ) and ε > 0. There exists α0 ≥ 1 such that for any α ≥ α0 and

any ξ ∈ ∂Ω we have
Nα(u− υf )(ξ) . εMf(ξ) (4.3)

and
Cs(∇u)(ξ) .εM(M̃(f))(ξ) +M(M̃(Mf))(ξ). (4.4)

Furthermore, for any ξ ∈ ∂Ω it holds that

Nα(δΩ∇u)(ξ) .M(f)(ξ) +M(M(f))(ξ). (4.5)

Here the ε-approximability constant cε is a positive and it is depending on ε and α0 depends
only on n, the Ahlfors regularity, the corkscrew, and the Whitney constants.

Let f ∈ BMO(σ) and ε > 0. Then, for any x ∈ Ω it holds that

|u(x)− υf (x)| ≤ ε‖f‖BMO(σ), (4.6)

δΩ(x)|∇u(x)| . ‖f‖BMO(σ), (4.7)

and for any ξ ∈ ∂Ω
Cs(∇u)(ξ) .ε ‖f‖BMO(σ). (4.8)

The implicit constants depend on the dimension, the Alhfors regularity, the corkscrew condi-
tion, and the Whitney constants.

Moreover, if f ∈ Lipc(∂Ω) then u ∈ Liploc(Ω) and for any x ∈ Ω we have

δΩ(x)|∇u(x)| . Lip(f) diam(supp f). (4.9)

Proof. We will only deal with the case that both Ω and ∂Ω are unbounded as the other cases
can be treated in a similar but easier way. Note first that if we choose α0 large enough,
depending on n, the constants of the corkscrew condition and the Whitney decomposition,
the cone is always non-empty and for every Q ∈ Dσ such that ξ ∈ Q, there exists P ∈ W(Ω)
such that b(P ) = Q and P ⊂ γα0(ξ).

For fixed ξ ∈ ∂Ω we let x ∈ γα(ξ) for a ≥ α0. There exists P0 ∈ W(Ω) such that x ∈ P̄0 and
we either have that P0 ∈ B0 or that there is a unique R0 ∈ Top such that b(P0) ∈ Tree(R0). If
either P0 ∈ P0 and there does not exist any P ∈ N (P0) \ P0 such that x ∈ 1.1P , or P0 ∈ B0,
it is easy to see that u(x)− υf (x) = 0. If P0 ∈ P0 and there exists some P̃ ∈ N (P0) \P0 such
that x ∈ 1.1P̃ , then

u(x)− υf (x) =
∑

P∈N (P0)\P0

b(P )∈Tree(R0)

(mσ,R0f −mσ,b(P )f)ϕP (x).

The same is true if P0 ∈ N (P0) \ P0 and there is P ∈ P0 such that x ∈ 1.1P . In any other
case we have that

u(x)− υf (x) =
∑

P∈W(Ω)
b(P )∈Tree(R0)

(mσ,R0f −mσ,b(P )f)ϕP (x). (4.10)

Therefore, since b(P ) ∈ Tree(R0), we get by (3.2) that

|u(x)− υf (x)| ≤ ε
∑

P∈W(Ω)
b(P )∈Tree(R0)

Mf(b(P ))ϕP (x).
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For any P ∈ W(Ω) such that x ∈ 1.1P ∩ γα(ξ), since |x− ξ| ≈ δΩ(x) ≈ `(P ), it holds that
P ⊂ B(ξ,M`(P )). The same is true for any S ∈ Dσ such that b(P ) ⊂ S, i.e., S ⊂ B(ξ,M ′`(S))
for a possibly larger constantM ′ > 0 depending also on the Ahlfors regularity constants. Thus

|u(x)− υf (x)| . ε sup
S⊃b(P )

mσ,B(ξ,M ′`(S))(|f |) . ε sup
r&δΩ(x)

mσ,B(ξ,r)(|f |), (4.11)

which implies (4.3) by taking supremum over all x ∈ γα(ξ). By the same arguments and the
fact that ∇ϕP (x) . `(P )−1 ≈ δΩ(x)−1, we conclude that

∇(u− υf )(x) . εM(f)(ξ)δΩ(x)−1,

which implies

Nα(δΩ∇(u− υf ))(ξ) . εM(f)(ξ). (4.12)

In the case that f ∈ BMO(σ), in view of (4.10) and the estimate ∇ϕP (x) . `(P )−1 ≈
δΩ(x)−1, we have that

|u(x)− υf (x)|+ δΩ|∇(u− υf )(x)| . ε‖f‖BMO. (4.13)

We now turn our attention to the proof of (4.4) and (4.8). Let x ∈ P̄0 ∈ W(Ω). Then,
once again, either there exists a unique R0 ∈ Top such that b(P0) ∈ Tree(R0), or there exists
B0 ∈ B0 such that b(P0) = B0. For the sake of brevity, we set

Bx := cBx = B(x, c δΩ(x))

for a small enough constant c > 0 to be chosen. Fix y ∈ Bx and if P ∈ W(Ω) is such that
y ∈ 1.1P then x ∈ 1.2P . Indeed, by (1.44) we always have that dist(x, 1.1P ) ≤ |x − y| ≤
c δΩ(x) ≤ cΛ′ `(P0). Thus if there exists P ∈ W(Ω) such that y ∈ 1.1P and x /∈ 1.2P then
it also holds that dist(x, 1.1P ) ≥ 0.1`(P ). Now, noting that 1

2`(P0) ≤ `(P ) ≤ 2`(P0) we get
that 1

2`(P0) ≤ cΛ′ `(P0) and if we choose c = 1
4Λ′ we reach a contradiction.

It is easy to see that ∇u(y) = 0 if there does not exist any cube P ∈ P0 or P ∈ B0 such
that y ∈ 1.1P . Using that

∑
∇ϕP (y) = 0, we get

∇u(y) =
( ∑
P∈B0

+
∑

P∈N (P0)
b(P )/∈Tree(R0)

)
(mσ,b(P )f −mσ,b(P0)f)∇ϕP (y) (4.14)

+
∑
P∈P0

b(P )∈Tree(R0)

(mσ,b(P )f −mσ,b(P0)f)∇ϕP (y)

+
∑

P∈N (P0)\P0

b(P )∈Tree(R0)

(mσ,R0f −mσ,b(P )f)∇ϕP (y).

Therefore, by Remark 1.17, arguing as in the proof of (4.11) and using (4.14), the fact that
`(P0) ≈ `(P ) for any P ∈ W(Ω) such that 1.1P 3 y, and the Carleson packing of the cubes
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in B0, for fixed ξ ∈ ∂Ω and r > 0, we can estimateˆ
B(ξ,r)∩Ω

sup
y∈Bx

|∇u(y)| dy

δΩ(y)n−s

.
( ∑
P∈B0

+
∑
R∈Top

∑
P∈N (P0)

b(P )/∈Tree(R)

)ˆ
P∩B(ξ,r)

mσ,B(xb(P ),Cw`(P ))(|f |)
dx

`(P )n+1−s

+ 2ε
∑
R∈Top

∑
P∈P0

b(P )∈Tree(R)

ˆ
P∩B(ξ,r)

sup
ρ&`(P )

mσ,B(xb(P ),ρ)(|f |)
dx

`(P )n+1−s

+ ε
∑
R∈Top

∑
P∈N (P0)\P0

b(P )∈Tree(R)

ˆ
P∩B(ξ,r)

sup
ρ&`(P )

mσ,B(xb(P ),ρ)(|f |)
dx

`(P )n+1−s

.
( ∑

P∈B0
P∩B(ξ,r)6=∅

+
∑
R∈Top

∑
P∈N (P0)

b(P )/∈Tree(R)
P∩B(ξ,r) 6=∅

)
σ(b(P ))mσ,B(xb(P ),Cw`(P ))(|f |)

+
∑
R∈Top

∑
P∈N (P0)

b(P )∈Tree(R)
P∩B(ξ,r) 6=∅

σ(b(P )) inf
ζ∈B(xb(P ),M`(P ))

M(f)(ζ)

≤
∑

Q∈B∪J
Q⊂B(ξ,C′r)

σ(Q)mσ,B(xQ,Cw`(Q))(|f |) +
∑
Q∈J

Q⊂B(ξ,C′r)

σ(Q)mσ,B(xQ,M`(Q))(Mf)

.
ˆ
B(ξ,Cr)

sup
Q3z

mσ,B(xQ,Cw`(Q))(|f |) dσ(z) +

ˆ
B(ξ,Cr)

sup
Q3z

mσ,B(xQ,M`(Q))(Mf) dσ(z)

.
ˆ
B(ξ,Cr)

M̃(f) dσ +

ˆ
B(ξ,Cr)

M̃(Mf) dσ.

Above M > 1 is a constant possible larger than Cw and where in the antepenultimate in-
equality we used that if P ∩ B(ξ, r) 6= ∅, then b(P ) ⊂ B(ξ, C ′r) for some large constant
C ′ > 0 depending on the Ahlfors-regularity and the Whitney constants, while the penultimate
inequality follows from Carleson’s embedding theorem, see [Tol, Theorem 5.8, p. 144], since
the families J = ∪R∈Top∂∗Tree(R) and B are Carleson families. This concludes the proof of
(4.4).

If f ∈ BMO(σ), using (4.14) for ξ ∈ ∂Ω and r > 0, we getˆ
B(ξ,r)∩Ω

sup
y∈Bx
|∇u(y)| dy

δΩ(y)n−s
.ε

∑
R∈Top

∑
P∈N (P0)

b(P ′)∈Tree(R)

ˆ
P∩B(ξ,r)

‖f‖BMO(σ) ωs(y) dy

+
( ∑
P∈B0

+
∑
R∈Top

∑
P∈N (P0)

b(P )/∈Tree(R)

)ˆ
P∩B(ξ,r)

‖f‖BMO(σ)
ωs(y)

`(P )
dy

. ‖f‖BMO(σ)

∑
P∈N (P0)∪B0

P∩B(ξ,r)6=∅

σ(b(P )) ≤ ‖f‖BMO(σ)

∑
Q∈J∪B

Q⊂B(ξ,Mr)

σ(Q)

. ‖f‖BMO(σ) r
s,
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for M > 1 sufficiently large depending on the Ahlfors regularity and the Whitney constants.
For the last inequality we used that the families of surface cubes J and B satisfy the Carleson
packing condition from Lemma 4.2. The above estimate obviously implies (4.8).

We proceed now to the proof of the estimates (4.5) and (4.7). Let ξ ∈ ∂Ω and x ∈ γα(ξ).
There exists P0 ∈ W(Ω) such that x ∈ P̄0. Then using (4.14) and the bounded overlap of the
Whitney cubes we get that

|∇u(x)| . `(P0)−1(mσ,BP0
(|f |) + ε sup

ρ&`(P0)
mσ,B(xb(P0),ρ)(|f |))

≤ δΩ(x)−1(mσ,B(ξ,C′`(P0))(|f |) + inf
ζ∈B(ξ,C′`(P0))

M(f)(ζ)
)

(4.15)

. δΩ(x)−1
(
M(f)(ξ) +M(M(f))(ξ)

)
.

By a similar but easier argument we can show that

|∇u(x)| . ‖f‖BMO(σ)δΩ(x)−1. (4.16)

Since supx∈Ω δΩ(x)|∇u(x)| = supξ∈∂Ω supx∈γα(ξ) δΩ(x)|∇u(x)|, it easily follows that the esti-
mates (4.15) and (4.16) imply the estimates (4.5) and (4.7) respectively.

It remains to prove (4.9) in the case that f ∈ Lipc(∂Ω). Using (4.14) and the bounded
overlap of the Whitney cubes we get that for any x ∈ Ω

|∇u(x)| . Lip(f) diam(supp f)`(P )−1 + ε
∑

P∈N (P0)\P0

b(P )∈Tree(R0)
x∈1.1P

Mf(b(P ))`(P )−1. (4.17)

Since f has compact support for ξ0 /∈ supp f and every Q ⊃ b(P ) it holds

mσ,Q(|f |) = mσ,Q(|f − f(ξ0)|) . diam(supp f) Lip(f).

Taking supremum over all cubes Q ⊃ b(P ) and using again the bounded overlaps of the
Whitney cubes together with (4.17) and the fact that δΩ(x) ≈ `(P ) for all P ∈ W(Ω) such
that x ∈ 1.1P , we infer that

|∇u(x)| . Lip(f) diam(supp f)δΩ(x)−1.

This completes the proof of (4.9) and thus that of Theorem 4.3.

As a corollary we get that if f ∈ Lp(σ), p ∈ (1,∞), (resp. f ∈ BMO(σ)), then υf is
ε-approximable in Lp (uniformly ε-approximable).

Theorem 4.4. If f ∈ Lp(σ) for some p ∈ (1,∞] then for any ε > 0 there exists u = uε ∈
C∞(Ω), α0 ≥ 1 and a constant cε > 1 such that for any α ≥ α0 it holds that

‖Nα(u− υf )‖Lp(σ) . ε ‖f‖Lp(σ), (4.18)

‖Cs(∇u)‖Lp(σ) . ε−2 ‖f‖Lp(σ), (4.19)

and
‖Nα(δΩ∇u)‖Lp(σ) . ‖f‖Lp(σ). (4.20)
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The implicit constants depend on s, n, p, and the constants of the Ahlfors regularity, the
corkscrew condition and the Whitney decomposition.

Similarly, if f ∈ BMO(σ) then for any ε > 0 there exists u = uε ∈ C∞(Ω), α1 ≥ 1 and a
constant cε > 1 such that, for any α ≥ α1 there holds

sup
ξ∈∂Ω

Nα(u− υf )(ξ) . ε‖f‖BMO(σ), (4.21)

sup
ξ∈∂Ω

Cs(∇u)(ξ) .ε ‖f‖BMO(σ), (4.22)

and
sup
ξ∈∂Ω

Nα(δΩ∇u)(ξ) . ‖f‖BMO(σ). (4.23)

The implicit constants depend on s, n and the constants of the Ahlfors regularity, the corkscrew
condition and the constants of the Whitney decomposition.

Proof. The proof is an immediate consequence of (4.3), (4.4) and (4.5) of Theorem 4.3, Lemma
1.3, and the fact thatM and M̃ are Lp(σ)→ Lp(σ)-bounded for any p ∈ (1,∞). In the case
that f ∈ BMO(σ) the result follows immediatelly by the estimates (4.6), (4.8) and (4.7) of
Theorem 4.3.

Remark 4.5. Note that since L∞(σ) ⊂ BMO(σ), the estimates (4.18), (4.19) and (4.20) for
p =∞ follow from (4.21), (4.22) and (4.23).
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Chapter 5

Varopoulos-type extensions of
compactly supported Lipschitz
functions

In this chapter we provide the proof of the Theorem 0.3. We begin by constructing an extension
of Lp-boundary functions in the next theorem.

Theorem 5.1. Let Ω ∈ AR(s) for s ∈ (0, n]. If f ∈ Lipc(∂Ω) then there exists a function
F : Ω→ R such that for every p ∈ (1,∞] the following hold.

(i) F ∈ C∞(Ω) ∩ Lip(Ω),

(ii) F |∂Ω = f continuously.,

(iii) ‖N (F )‖Lp(σ) + ‖Cs(∇F )‖Lp(σ) . ‖f‖Lp(σ),

(iv) ‖N (δΩ∇F )‖Lp(σ) . ‖f‖Lp(σ).

When p =∞ the norms on left hand-side of (iii) and (iv) are the sup-norms instead of L∞.

Remark 5.2. The trace F |∂Ω = f continuously means that the limit of F as we approach
the boundary exists and it is equal with f . This is because we construct an extension F
which is Lipschitz in Ω and equals with f on the boundary ∂Ω. Note that there is no need
for non-tangential limit or extra connectivity assumption for the domain in this case.

Proof. Let W(Ω) be a Whitney decomposition of Ω as the one constructed in 1.7. Let
{ϕP }P∈W(Ω) be a partition of unity of Ω so that each ϕP is supported in 1.1P and ‖∇ϕP ‖∞ .
1/`(P ). For each δ ∈ (0,diam(Ω)) we set

Wδ(Ω) := {P ∈ W(Ω) : `(P ) ≥ δ}

and
ϕδ =

∑
P∈Wδ(Ω)

ϕP .

From the properties of the Whitney cubes there exists C > 0 , depending on the parameters
of the construction of the Whitney cubes, such that

ϕδ(x) = 0 if dist(x, ∂Ω) ≤ δ/C
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and
ϕδ(x) = 1 if dist(x, ∂Ω) ≥ Cδ.

Consequently, for a suitable constant C ′ depending on C, we infer that

supp(∇ϕδ) ⊂ {x ∈ Ω : δ/C ≤ dist(x, ∂Ω) ≤ Cδ} =: Sδ ⊂
⋃
P∈Iδ

P (5.1)

where

Iδ :=
{
P ∈ W(Ω) :

1

2N0+12N1
≤ `(P ) ≤ 2N1

2N0

}
with N0 ∈ N such that 1

2N0+1 ≤ δ ≤ 1
2N0

and N1 ∈ N satisfies 2N1 ≤ C ≤ 2N1+1.
We define

F (x) := υf (x)(1− ϕδ(x)) + u(x)ϕδ(x), (5.2)

where u is the approximation function of υf as constructed in Theorem 4.4. It holds

Cs(∇F ) ≤ Cs(∇u) + Cs(∇ϕδ (u− υf )) + Cs(∇υf (1− ϕδ)). (5.3)

For fixed ξ ∈ ∂Ω and r > 0 we have
ˆ
B(ξ,r)∩Ω

|∇ϕδ (u− υf )| dx

δΩ(x)n−s
.

∑
P∈Iδ

P∩B(ξ,r)6=∅

ˆ
P
|u− υf |

dx

δΩ(x)n+1−s

.
∑
P∈Iδ

P∩B(ξ,r)6=∅

`(P )s inf
ζ∈b(P )

Nα(u− υf )(ζ) .
∑
P∈Iδ

P∩B(ξ,r)6=∅

ˆ
b(P )
N (u− υf ) dσ

.
N1∑

k=−(N1+1)

∑
`(P )=2k/2N0

P⊂B(ξ,Mr)

ˆ
b(P )
Nα(u− υf ) dσ .C

ˆ
B(ξ,Mr)

Nα(u− υf ) dσ,

for suitably chosen constants α > 1 and M > 1 sufficiently large. Thus, when p ∈ (1,∞) we
get that

Cs(∇ϕδ (u− υf ))(ξ) .M(Nα(u− υf ))(ξ), (5.4)

while, when p =∞, we get by (4.6) that supx∈Ω supy∈Bx |u(y)− υf (y)| ≤ 2ε‖f‖L∞(σ), which,
by similar arguments as above implies the estimate

ˆ
B(ξ,r)∩Ω

|∇ϕδ (u− υf )| dx

δΩ(x)n−s
. ‖f‖L∞(σ)

∑
P∈Iδ

P∩B(ξ,r) 6=∅

`(P )s (5.5)

. ‖f‖L∞(σ)

N1∑
k=−(N1+1)

∑
`(P )=2k/2N0

b(P )⊂B(ξ,Mr)

σ(b(P )) . rs‖f‖L∞(σ).

Thus
sup
ξ∈∂Ω

Cs(∇ϕδ (u− υf ))(ξ) . ‖f‖L∞(σ). (5.6)

34



CHAPTER 5. VAROPOULOS-TYPE EXTENSIONS OF COMPACTLY SUPPORTED
LIPSCHITZ FUNCTIONS

For the last term on the right hand side of (5.3) we have that f ∈ Ṁ1,p(σ) whenever
f ∈ Lipc(∂Ω) and p ∈ (1,∞). So for fixed ξ ∈ ∂Ω and r > 0, if ∇Hf is the least upper
gradient of f , we estimate in view of (2.5)

ˆ
B(ξ,r)∩Ω

|∇υf (x)||1− ϕδ(x)| dx

δΩ(x)n−s
≤

∑
P∈W(Ω)

P∩B(ξ,r)6=∅
`(P ).δ

ˆ
P
|∇υf (x)| `(P )s

`(P )n
dx

.
∑

P∈W(Ω)
P∩B(ξ,r) 6=∅
`(P )≤Cδ

mσ,b(P )(∇Hf) `(P )s+1 .
∑

P∈W(Ω)
P∩B(ξ,r)6=∅
`(P )≤Cδ

`(P )σ(b(P )) inf
ζ∈b(P )

M(∇Hf)(ζ)

≤
∑

k≥N0−N1

2−k
∑
Q∈Dσ

Q⊂B(ξ,Mr)

`(Q)=2−k

ˆ
Q
M(∇Hf) dσ . δ mσ,B(ξ,Mr)(M(∇Hf)) rs

which shows that
Cs(∇υf (1− ϕδ))(ξ) . δM(M(∇Hf))(ξ). (5.7)

For p =∞ we use Lemma 2.5 to get

Cs(∇υf (1− ϕδ))(ξ) . Lip(f)δ. (5.8)

Indeed, for ξ ∈ ∂Ω and r > 0 we have
ˆ
B(ξ,r)∩Ω

|∇υf ||1− ϕδ|
dx

δΩ(x)n−s
. Lip(f)

∑
P∈W(Ω)

P∩B(ξ,r) 6=∅
`(P )≤Cδ

ˆ
P

`(P )s

`(P )n
dx

. Lip(f)
∑

P∈W(Ω)
P∩B(ξ,r)6=∅
`(P )≤Cδ

`(P )s+1 ≤ Lip(f)
∑

k≥N0−N1

2−k
∑

P∈W(Ω)
P∩B(ξ,r)6=∅
`(P )=2−k

σ(b(P ))

. Lip(f)
∑

k≥N0−N1

2−k
∑
Q∈Dσ

Q⊂B(ξ,Mr)

`(Q)=2−k

σ(Q) . Lip(f) δ rs,

for M > 1 a sufficiently large constant depending on the Ahlfors regularity and Whitney
constants.

Combining (4.4), (5.3), (5.4), (5.6), (5.7), and (5.8) and choosing

δ :=

{
‖f‖L∞(σ)/Lip(f) if p =∞,
‖f‖Lp(σ)/‖f‖Ṁ1,p(σ) if p ∈ (1,∞),

it follows that
‖Cs(∇F )‖Lp(σ) . ‖f‖Lp(σ) for p ∈ (1,∞].
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For the non-tangential estimate note that, since υf = ϕδυf + (1− ϕδ)υf , we can write

υf − F = ϕδ(υf − u).

So, for every ξ ∈ ∂Ω we have

N (υf − F )(ξ) = sup
x∈γ(ξ)

|υf (x)− F (x)| ≤ sup
x∈γ(ξ)

|υf (x)− u(x)| = N (υf − u)(ξ)

and by (4.18) we get

‖N (υf − F )‖Lp(σ) . ε‖f‖Lp(σ) for p ∈ (1,∞).

Using this and (2.6) we get that for p ∈ (1,∞) there holds

‖N (F )‖Lp(σ) . ‖N (υf − F )‖Lp(σ) + ‖N (υf )‖Lp(σ) .ε ‖f‖Lp(σ).

Moreover, combining the estimates (2.3), (4.3) and (4.15), the fact that |∇ϕδ(x)| . δΩ(x)−1,
and using the Lp-boundedness of the Hardy-Littlewood maximal operator, we can easily infer
that

‖N (δΩ∇F )‖Lp(σ) . ‖f‖Lp(σ) for p ∈ (1,∞).

The estimates for p =∞ can be proved similarly and the routine details are omitted.
Note that the extension F is Lipschitz in Ω. Indeed, if E := supp f , in light of Lemmas

2.2 and 2.5 and of Theorem 4.3, we infer that for every x ∈ Ω we have

|∇υf (x)(1− ϕδ(x))| . Lip(f),

|∇u(x)ϕδ(x)| . δΩ(x)−1‖f‖L∞(σ)|ϕδ(x)| . 1

δ
Lip(f) diamE,

|(u(x)− υf (x))∇ϕδ(x)| . 1

δ
inf

ζ∈B(ξx,2δΩ(x))∩∂Ω
N (u− υf )(ζ) .ε

1

δ
‖M(f)‖L∞

.
‖f‖L∞(σ)

δ
.

Lip(f)

δ
diamE.

These estimates imply that ‖∇F‖L∞(Ω) .δ,diamE Lip(f). Moreover, since υf ∈ Lip(Ω), F =

υf in a neighborhood of ∂Ω, and υf |∂Ω = f , we deduce that F ∈ Lip(Ω) with F |∂Ω = f and
Lip(F ) .δ,diamE Lip(f), concluding the proof of the theorem.

Remark 5.3. Note that the convergence of F to the boundary function f is inherited from
the one of υf .

We now turn our attention to the construction of an extension of BMO-boundary functions.

Theorem 5.4. Let Ω ∈ AR(s) for s ∈ (0, n]. If f ∈ Lipc(∂Ω) then there exists an extension
F : Ω→ R such that

(i) F ∈ C∞(Ω) ∩ Lip(Ω),

(ii) F |∂Ω = f continuously,
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(iii) sup
ξ∈∂Ω

N](F )(ξ) + sup
ξ∈∂Ω

Cs(∇F )(ξ) . ‖f‖BMO(σ),

(iv) sup
x∈Ω

δΩ(x)|∇F (x)| . ‖f‖BMO(σ).

Proof. Let w be the approximation of υf given by Theorem 4.4 and define

F (x) := υf (x)(1− ϕδ(x)) + w(x)ϕδ(x). (5.9)

Then, for any ξ ∈ ∂Ω there holds

Cs(∇F )(ξ) ≤ Cs(∇υf (1− ϕδ))(ξ) + Cs(∇w)(ξ) + Cs((w − υf )∇ϕδ)(ξ). (5.10)

For the second summand in the right hand side of (5.10) we just use (4.22), while for the
first one, by (5.8), we have that

Cs(∇υf (1− ϕδ))(ξ) . δ Lip(f). (5.11)

The third summand can be bounded as in (5.5) and get

sup
ξ∈∂Ω

Cs(∇ϕδ(w − υf ))(ξ) . ‖f‖BMO. (5.12)

Combining (5.10), (5.11) and (5.12) and choosing δ := ‖f‖BMO/Lip(f), it follows that

sup
ξ∈∂Ω

Cs(∇F )(ξ) . ‖f‖BMO.

For the sharp non-tangential estimate note that since F − υf = ϕδ(w − υf ), using (2.7)
and (4.6), we get that for every ξ ∈ ∂Ω it holds that

N](F )(ξ) ≤ 2N (F − υf )(ξ) +N](υf )(ξ) ≤ 2N (w − υf )(ξ) +N](υf )(ξ) . ‖f‖BMO(σ).

It remains to prove that F ∈ Lip(Ω). We first show that

‖∇F‖L∞(σ) . Lip(f). (5.13)

To this end, we have by Lemma 2.5 that for every x ∈ Ω

|∇υf (x)(1− ϕδ(x))| . Lip(f).

By (4.6) and the fact that δ(x) ≈ δ in the support of ∇ϕδ, we obtain

|(w(x)− υf (x))∇ϕδ(x)| .ε δ(x)−1‖f‖BMO(σ) ≈ δ−1‖f‖BMO(σ) = Lip(f).

On the other hand, by (4.7) it holds that

|∇w(x)ϕδ(x)| . ‖f‖BMO(σ) δΩ(x)−1|ϕδ(x)| . δ−1‖f‖BMO(σ) = Lip(f),

which implies (5.13). By construction, F is continuous in a neighborhood of the boundary
and F |∂Ω = f continuously, which implies that F ∈ Lip(Ω) ∩ C∞(Ω) with Lip(F ) . Lip(f).
Moreover, combining the last two estimates above with (2.4), we get that

sup
x∈Ω

δΩ(x)|∇F (x)| . ‖f‖BMO(σ),

which concludes the proof of the theorem.
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Our last goal for this chapter is to modify that the extensions constructed in Theorems
5.1 and 5.4 so that they are also in Ẇ 1,2(Ω;ωs). This will conclude the proof of Theorem 0.3.
Recall that for x ∈ Ω, ωs(x) = δΩ(x)s−n.

Theorem 5.5. Let Ω ∈ AR(s) for s ∈ (0, n]. If f ∈ Lipc(∂Ω) then there exists an extension
F0 ∈ Ẇ 1,2(Ω;ωs) (resp. F̄0 ∈ Ẇ 1,2(Ω;ωs)) that satisfies the conclusions (i)-(iv) of Theorem
5.1 (resp. Theorem 5.4).

Proof. Let f ∈ Lipc(∂Ω), E := supp f , and r0 := diamE. Without loss of generality we may
assume that 0 ∈ E and so E ⊂ B(0, r0). Now let B = B(0,Mr0) for someM > 1 large enough
depending on the Whitney constants so that for every P ∈ W(Ω) satisfying `(P ) ≤ M−1r0

and 1.2P ∩ (2B \ B) 6= ∅ it holds that b(P ) ∩ E = ∅. We denote the collection of all such
Whitney cubes by Ps(E); s stands for small. We also denote by Pl(E) the collection of
P ∈ W(Ω) satisfying `(P ) > M−1 diamE and 1.2P ∩ (2B \ B) 6= ∅ ; l stands for large. It is
easy to see that ∑

Q⊂R:Q=b(P )
P∈Pl(E)

σ(Q) . rs0 . σ(R). (5.14)

Note that if x ∈ (2B \ B) ∩ Ω and there exists P ∈ Ps(E) such that x ∈ 1.1P then the
extension F of Theorem 5.1 satisfies F (x) = 0 (resp. F̄ of Theorem 5.4 satisfies F̄ (x) = 0).
We now define the cut-off function ψr0 ∈ C∞c (Rn+1) such that 0 ≤ ψr0 ≤ 1, ψr0 = 1 in B,
ψr0 = 0 in Rn+1 \ 2B and |∇ψr0 | . 1/r0. We set

F0(x) := F (x)ψr0(x) and F̄0(x) := F̄ (x)ψr0(x), x ∈ Ω

It is clear that F0|∂Ω = f (resp. F̄0|∂Ω = f) and observe that

supp(F∇ψr0)

supp(F̄∇ψr0)

}
⊂ Tr0 := {x ∈ Ω ∩ (2B \B) : dist(x, ∂Ω) ≥ c0r0} (5.15)

provided thatc0 ∈ (0, 1) is sufficiently small depending on M and the Whitney constants.
Therefore, for any ξ ∈ ∂Ω, ifB(ξ, r)∩supp(F∇ψr0) 6= ∅, we have that r ≥ c1 max{r0, dist(ξ, 2B\
B)} for some constant c1 ∈ (0, 1) depending on c0. Moreover,

|F (x)∇ψr0(x)| . δΩ(x)−1|F (x)| and |F̄ (x)∇ψr0(x)| . δΩ(x)−1|F̄ (x)|. (5.16)

We will only prove the theorem for F0 and unbounded domains Ω with unbounded boundary
since for domains with compact boundary the arguments are similar.

We first prove that F0 satisfies the conclusions of Theorem 5.1. It is easy to see that
‖N (F0)‖Lp(σ) . ‖f‖Lp(σ) since |F0| ≤ |F | and the same estimate holds for F . We have that
∇F0 = ∇F ψr0 +F ∇ψr0 and it is easy to see that ‖N (δΩ∇F0)‖Lp(σ) . ‖f‖Lp(σ) by (5.16) and
the estimates in (ii) and (iii) for F in Theorem 5.1. To prove the estimate ‖Cs(∇F0)‖Lp(σ) .
‖f‖Lp(σ) it is enough to show that ‖Cs(F ∇ψr0)‖Lp(σ) . ‖f‖Lp(σ). Thus, for any r as above,
we have that

ˆ
B(ξ,r)∩Ω

sup
y∈Bx

|F (y)∇ψr0(y)|ωs(x) dx . r−1
0

ˆ
B(ξ,r)∩(2B\B)∩Ω

sup
y∈Bx

|F (y)|ωs(x) dx.
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By (4.1), (3.2), (5.2) and the choice of the constant M , for any x ∈ B(ξ, r)∩ (2B \B)∩Ω and
for any y ∈ Bx, it holds that

|F (y)| ≤
∑
R∈Top

∑
P∈Pl(E)\P0

b(P )∈Tree(R)

|mσ,Rf −mσ,b(P )f |ϕP (y) +
∑

P∈Pl(E)

|mσ,b(P )f |ϕP (y)

≤ ε
∑
R∈Top

∑
P∈Pl(E)\P0

b(P )∈Tree(R)

Mf(b(P ))ϕP (y) +
∑

P∈Pl(E)

|mσ,b(P )f |ϕP (y),

which, in turn, implies that

r−1
0

ˆ
B(ξ,r)∩(2B\B)∩Ω

sup
y∈Bx

|F (y)|ωs(x) dx . r−1
0

∑
P∈Pl(E)

`(P )σ(b(P ))Mf(b(P ))

.
ˆ
CB
M(f) dσ ≤

ˆ
B(ξ,C′r)

M(f) dσ

for some constant C ′ > 1 depending on C and M . This readily yields that for every ξ ∈ ∂Ω

Cs(F ∇ψr0)(ξ) .M(M(f))(ξ)

and the desired estimate follows for any p ∈ (1,∞].
We will show now that F0 ∈ Ẇ 1,2(Ω;ωs) since it is clear that F0 ∈ C∞(Ω) ∩ Lip(Ω) and

F0|∂Ω = f . We only show the Carleson estinate since the non-tangential function estimates
are easy and we will omit their proofs. To this end, by the definition of F and the proof of its
Lipschitz property, we get that

ˆ
Ω
|∇F0|2ωs(x) dx ≤

ˆ
2B∩Ω

|∇F |2ωs(x) dx

.
((

1 +
r2

0

δ2

)
min(r0, δ) +

r3
0

δ2

)
rs0 (Lip f)2.

Moreover, using (5.15) and the fact that supp f = E we can show that
ˆ

Ω
|F∇ψr0 |2ωs(x) dx . r−2−n+s

0

ˆ
Tr0

|F |2 dx . rs−1
0 ‖f‖2L∞(∂Ω) ≤ r

s+1
0 (Lip f)2,

concluding the proof of the Theorem for Lp for p ∈ (1,∞].
It remains to demonstrate the theorem for F̄0. We will first prove the Carleson estimate.

By (5.15), (4.1), (3.2), (5.9) and the choice of the constantM , for any x ∈ B(ξ, r)∩(2B\B)∩Ω
and every y ∈ Bx it holds that

|F̄ (y)| ≤
∑
R∈Top

∑
P∈Pl(E)\P0

b(P )∈Tree(R)

|mσ,Rf −mσ,b(P )f |ϕP (y) +
∑

P∈Pl(E)

|mσ,b(P )f |ϕP (y)

≤ ε‖f‖BMO(σ) +
∑

P∈Pl(E)

|mσ,b(P )f |ϕP (y).
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It is not hard to see that for every P ∈ Pl(E) there exists P ∗ ∈ W(Ω) such that `(P ∗) ≈
dist(P ∗, P ) ≈ r0 and b(P ∗) ⊂ ∂Ω \ E, and that mσ,b(P ∗)f = 0. Thus, for any x ∈ B(ξ, r) ∩
(2B \B) ∩ Ω we have

|F̄ (y)| ≤ ε‖f‖BMO(σ) +
∑

P∈Pl(E)

|mσ,b(P )f −mσ,b(P ∗)f |ϕP (x) . ‖f‖BMO(σ),

which, arguing as above, implies that supξ∈∂Ω Cs(F̄ ∇ψr0)(ξ) . ‖f‖BMO(σ). The estimates for
the non-tangential maximal functions are easy and their proofs are omitted. This finishes the
proof of the theorem since the same argument as above shows that F̄0 ∈ Ẇ 1,2(Ω;ωs).
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Chapter 6

Construction of Varopoulos-type
extensions of Lp and BMO functions

In this chapter we prove Theorems 0.5 and 0.6. Recall the definitions of the Banach spaces
(1.15) and (1.16). For future reference we summarize a set of assumptions in the following
hypothesis;

Hypothesis [T]

(i) There exists a bounded linear trace operator

Tr : Np(Ω) ∩ C1,p
s,∞(Ω)→ Lp(σ)

such that ‖Tr(w)‖Lp(σ) ≤ ‖w‖Np(Ω) for every w ∈ Np(Ω) ∩ C1,p
s,∞(Ω).

(ii) If υf the regularized dyadic extension of f ∈ Lp(σ) then Tr(υf )(ξ) = f(ξ) for σ-a.e.
ξ ∈ ∂Ω and for any w ∈ Np(Ω) ∩ Cp

s,∞(Ω) there holds

‖f − Tr(w)‖Lp(σ) = ‖Tr(υf − w)‖Lp(σ) ≤ ‖υf − w‖Np(Ω). (6.1)

The proofs of the next two lemmas are standard but for the reader’s convenience we provide
them in Appendix B.

Lemma 6.1. Let B ⊂ Rn+1 be a bounded and convex open set and let {fn}n≥1 be a sequence
of differentiable (resp. C1) functions in B. Let x0 ∈ B such that fn(x0)→ f(x0). If ∇fn → ~F
uniformly in B for some ~F , then

f is differentiable (resp. C1) at x0 and ~F (x0) = ∇f(x0).

Lemma 6.2. If F ∈ L1
loc(Ω) then for any x ∈ Ω it holds that

|F (x)| . 1

δΩ(x)1+n/p
‖Cs(F )‖Lp(σ) for every p ∈ (1,∞)

and
|F (x)| . 1

δΩ(x)
sup
ξ∈∂Ω

Cs(F )(ξ).
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Theorem 6.3. Let Ω ∈ AR(s) for s ∈ (0, n] satisfying Hypothesis [T]. If f ∈ Lp(σ) for some
p ∈ (1,∞] then there exists a function u : Ω→ R such that

(i) u ∈ C1(Ω),

(ii) Tr(u)(ξ) = f(ξ) for σ-a.e. ξ ∈ ∂Ω,

(iii) ‖N (u)‖Lp(σ) + ‖Cs(∇u)‖Lp(σ) . ‖f‖Lp(σ),

(iv) ‖N (δΩ∇u)‖Lp(σ) . ‖f‖Lp(σ).

Proof. Fix some p ∈ (1,∞]. To construct the desired extension of f ∈ Lp(σ), we follow the
inductive scheme of Hytönen and Rosén [HR18]. Fix ε > 0 to be chosen. By Theorem 4.4
we construct u0, the ε-approximating function of υf , and by Hypothesis [T], the trace of u0

exists and satisfies Tr(u0) ∈ Lp(σ). We set

f1 := f − Tr(u0) ∈ Lp(σ).

We then let u1 be the ε-approximating function of υf1 and set

f2 := f1 − Tr(u1) ∈ Lp(σ).

Inductively, for every k ≥ 1, we define uk to be the ε-approximating function of υfk and set
fk+1 := fk − Tr(uk). Therefore, by (6.1) and (4.18) we have that

‖fk+1‖Lp(σ) ≤ ‖υfk − uk‖Np(Ω) ≤ C ε‖fk‖Lp(σ),

which implies that

‖fk+1‖Lp(σ) ≤ C ε ‖fk‖Lp(σ) ≤ · · · ≤ (Cε)k+1‖f‖Lp(σ). (6.2)

Thus, if we choose ε so that Cε ≤ 1
2 and set Sk :=

∑k
j=0 uj , then for k < m, using (4.18),

(2.6) and (6.2) we get that

‖Sk−Sm‖Np(Ω) ≤
m∑

j=k+1

(
‖N (uj − υfj )‖Lp(σ) + ‖Nυfj‖Lp(σ)

)
.

m∑
j=k+1

(
ε‖fj‖Lp(σ) + ‖fj‖Lp(σ)

)
≤ (1 + ε)

m∑
j=k+1

(Cε)j‖f‖Lp(σ)

≤ (2−k+1 − 2−m+1)‖f‖Lp(σ).

Thus, Sk is a Cauchy sequence in Np(Ω) and since Np(Ω) is a Banach space there exists
u ∈ Np(Ω) such that Sk → u in Np(Ω). It is easy to see that Sk → u uniformly in Bx, for any
x ∈ Ω, and so we define

u(x) :=
∞∑
k=0

uk(x) for all x ∈ Ω. (6.3)

Similarly, we can show that ∇Sk =
∑k

j=0∇uj is convergent in the Banach space Cp
s,∞(Ω)

(resp. Np(Ω)) since by (4.19) (resp. (4.20)) and (6.2) we have

‖∇Sk −∇Sm‖Cps,∞(Ω) + ‖δΩ∇Sk − δΩ∇Sm‖Np(Ω)

≤
m∑

j=k+1

‖Cs(∇uj)‖Lp(σ) +
m∑

j=k+1

‖N (δΩ|∇uj |)‖Lp(σ) ≤ C ε−2
m∑

j=k+1

‖fj‖Lp(σ).
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Thus, there exist ~F1 ∈ Cp
s,∞(Ω) (resp. ~F2 so that δΩ

~F2 ∈ Np(Ω)) such that ∇Sk → ~F1 in
Cp
s,∞(Ω) (resp. δΩ∇Sk → δΩ

~F2 in Np(Ω)). Hence, by Lemma 6.2 we have that for any fixed
x ∈ Ω that

sup
y∈Bx

|∇Sk − Fi|δΩ(y)→ 0 for i ∈ {1, 2},

which readily implies that ~F1 = ~F2 =: ~F in Ω. Thus, ∇Sk converges to
∑∞

k=0∇uk uniformly
in Bx for every x ∈ Ω and by Lemma 6.1 we deduce that u ∈ C1(Ω) with

∞∑
k=0

∇uk(x) = ∇u(x) for all x ∈ Ω.

In fact,

‖N (u)‖Lp(σ) + ‖N (δΩ∇u)‖Lp(σ) + ‖Cs(∇u)‖Lp(σ) . ‖f‖Lp(σ).

To show that u is an extension of f note first that in light of (6.2) we have

0 = lim
k→∞
‖fk+1‖Lp(σ) = lim

k→∞
‖f − Tr

( k∑
j=0

uj

)
‖Lp(σ).

Since, by construction,
∑k

j=0 uj − u ∈ Np(Ω), in light of Hypothesis [T] we get that

‖Tr
( k∑
j=0

uj

)
− Tr(u)‖Lp(σ) = ‖Tr

( k∑
j=0

uj − u
)
‖Lp(σ) ≤ ‖

k∑
j=0

uj − u‖Np(Ω)
k→∞−→ 0,

which entails
Tr(u)(ξ) = f(ξ) for σ-almost every ξ ∈ ∂Ω.

The proof is now complete.

We state [ST70, Theorem 2, p. 171] in the following lemma.

Lemma 6.4. Let E ⊂ Rn+1 be a closed set and δE be the distance function with respect to E.
Then there exist positive constants m1 and m2 and a function βE defined in Ec such that

(i) m1δE(x) ≤ βE(x) ≤ m2δE(x) for every x ∈ Ec;

(ii) βE is smooth in Ec and there exists Cα > 0 such that∣∣∣ ∂α
∂xα

βE(x)
∣∣∣ ≤ CαβE(x)1−|α|.

The constants m1, m2 and Cα are independent of E.

Following [HT21, Section 3], we define a kernel Λ(·, ·) : Ω × Ω → [0,∞] which will be
necessary in the proof of Theorem 6.6. To this end, let β = βΩ be the function constructed
in Lemma 6.4 and let ζ ≥ 0 be a smooth non-negative function supported on B(0, c

4m2
) and

satisfying ζ ≤ 1 and
´
ζ = 1. For every λ > 0 we set

ζλ(x) := λ−(n+1)ζ
(
x/λ

)
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and we define the mollifier

Λ(x, y) := ζβ(x)(x− y) =
1

β(x)n+1
ζ
(x− y
β(x)

)
.

Observe that, by construction, for every x ∈ Ω we have

supp(Λ(x, ·)) ⊂ B̃x := B(x, c δΩ(x)/4) and
ˆ

Ω
Λ(x, y) dy = 1. (6.4)

Moreover, it is easy to prove that

sup
y∈Bx

Λ(x, y) . δΩ(x)−n−1 and sup
y∈Bx

|∇xΛ(x, y)| . δΩ(x)−n−2. (6.5)

For any F : Ω→ R, we define the smooth modification of F by

F̃ (x) :=

ˆ
Ω

Λ(x, y)F (y) dy, x ∈ Ω. (6.6)

The next lemma was essentially proved in [HT21, Section 3] but we include the proof for
the reader’s convenience. Recall the Definition 1.16 of the non-tangential and the quasi-non-
tangential convergence.

Lemma 6.5. Let Ω ⊂ Rn+1 be an open set satisfying the corkscrew condition. If F ∈
C1(Ω;Rn+1) and F̃ is the smooth modification of F as defined in (6.6), then the following
hold.

(a) For any x ∈ Ω,
|F̃ (x)| . sup

2Bx

|F (y)|.

(b) For any x ∈ Ω,

|F̃ (x1)− F̃ (x2)| . |x1 − x2| δΩ(x)−1m],c(F )(x), for all x1, x2 ∈ Bx.

(c) For any x ∈ Ω,
m],c(F̃ )(x) . m],c(F )(x).

(d) For any ξ ∈ ∂Ω,
sup

x∈γα(ξ)
δΩ(x)|∇F̃ (x)| . Cs(∇F̃ )(ξ).

(e) For any ξ ∈ ∂Ω,
Cs,c(∇F̃ )(ξ) . Cs(∇F )(ξ).

(f) If qnt-limx→ξ F (x) = f(ξ) (resp. nt-limx→ξ F (x) = f(ξ)) for σ-a.e. ξ ∈ ∂Ω, then
qnt-limx→ξ F̃ (x) = f(ξ) (resp. nt-limx→ξ F̃ (x) = f(ξ)) for σ-a.e. ξ ∈ ∂Ω.
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Proof. (a) follows by definition of F̃ . For (b), we let x1, x2 ∈ Bx. Then, by triangle inequality,

B(x1, c δΩ(x1)/4) ∪B(x2, c δΩ(x2)/4) ⊂ Bx. (6.7)

Combining (6.4), (6.5), and (6.7), we get that

|F̃ (x1)− F̃ (x2)| =
∣∣∣∣ˆ (Λ(x1, y)− Λ(x2, y)) (F (y)−mBxF ) dy

∣∣∣∣
≤ |x1 − x2| sup

z∈Bx
|∇Λ(x, z)|mBx (|F −mBxF |) |Bx|

. |x1 − x2| δΩ(x)−1m],c(F )(x),

which proves (b) and thus (c). We turn our attention to the proof of (d) and fix ξ ∈ ∂Ω and
r > 0. For any z ∈ B(ξ, r) ∩ Ω and x ∈ Bz, using (6.4), (6.5) and the Poincaré inequality we
can write

|∇F̃ (x)| =
∣∣∣ ˆ ∇xΛ(x, y)F (y) dy

∣∣∣ =
∣∣∣ˆ ∇xΛ(x, y)

(
F (y)−m

B̃x
F
)
dy
∣∣∣

. δΩ(x)−n−2

ˆ
B̃x

∣∣F (y)−m
B̃x
F
∣∣ dy .

 
B̃x

|∇F | dy

which immediately implies (d). To prove (e), we first define

Ak(ξ, r) := {x ∈ B(ξ, r) ∩ Ω : 2−k−1r ≤ δΩ(x) < 2−kr},
A∗k(ξ, r) := {x ∈ B(ξ, r) ∩ Ω : 2−k−2r ≤ δΩ(x) < 2−k+1r},

and estimate
ˆ
B(ξ,r)∩Ω

sup
y∈Bx

|∇F̃ (y)| dy ≤
∞∑
k=0

ˆ
Ak(ξ,r)

sup
y∈Bx

|∇F̃ (y)| dy.

As ∪y∈BxBy ⊂ 2Bx, by Fubini’s theorem we have
ˆ
Ak(ξ,r)

sup
y∈Bx

|∇F̃ (y)| dy .
ˆ
Ak(ξ,r)

 
2Bx

|∇F (y)| dy .
ˆ
A∗k(ξ,r)

|∇F (y)| dy.

Summing over k and using that the sets A∗k(ξ, r) have bounded overlap we get (e). Finally,
(f) follows from [HT21, Lemma 3.14].

Let us now turn our attention to the case of BMO boundary data. Recall the definition
of the Banach spaces (1.17), (1.18) and (1.19). The suitable version of Hypothesis [T] in this
case is given below.
Hypothesis [T̃]

(i) There exists a bounded linear trace operator

Tr : C1,∞
s,∞(Ω)→ BMO(σ)

such that ‖Tr(w)‖BMO(σ) . ‖∇w‖C∞s,∞(Ω).
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(ii) If υf is the regularized dyadic extension of f ∈ BMO(σ) then Tr(υf )(ξ) = f(ξ) for σ-a.e.
ξ ∈ ∂Ω and for any w ∈ C∞s,∞(Ω), it holds that

‖f − Tr(w)‖BMO(σ) = ‖Tr(υf − w)‖BMO(σ) . sup
x∈Ω
|υf (x)− w(x)|. (6.8)

Theorem 6.6. Let Ω ∈ AR(s) for s ∈ (0, n] satisfying the Hypothesis [T̃]. If f ∈ BMO(σ)
then there exist a function u : Ω→ R and a constant c0 ∈ (0, 1

2 ] such that for every c ∈ (0, c0]
the following holds.

(i) u ∈ C1(Ω).

(ii) sup
ξ∈∂Ω

N],c(u)(ξ) + sup
ξ∈∂Ω

Cs,c(∇u)(ξ) . ‖f‖BMO(σ).

(iii) sup
x∈Ω

δΩ(x)|∇u(x)| . ‖f‖BMO(σ).

(iv) Tr(u)(ξ) = f(ξ) for σ-a.e. ξ ∈ ∂Ω.

Proof. We will argue as in the proof of Theorem 6.3. If f ∈ BMO(σ) and υf is its regularized
dyadic extension, we apply Theorem 4.4 and construct the ε-approximating function of υf
which we denote by u0. In light of (4.22) and Hypothesis [T̃], we have that the trace Tr(u0)
exists and it is in BMO(σ). We set

f1 := f − Tr(u0).

Inductively, for every k ≥ 1, we define uk to be the ε-approximating function of υfk and set

fk+1 := fk − Tr(uk).

Therefore, by (4.21) and (6.8) we have that

‖fk+1‖BMO(σ) . sup
ξ∈∂Ω

N (uk − υfk)(ξ) . ε‖fk‖BMO(σ)

which implies that

‖fk+1‖BMO(σ) ≤ Cε‖fk‖BMO(σ) ≤ · · · ≤ (Cε)k+1‖f‖BMO(σ). (6.9)

Assume that Cε ≤ 1/2 and set Sk :=
∑k

j=0 uj for any positive integer k. Using (4.21), (2.7)
and finally (6.9), we can estimate

‖Sk − Sm‖N∞] (Ω) .
m∑

j=k+1

(
sup
ξ∈∂Ω

N (uj − υfj )(ξ) + sup
ξ∈∂Ω

N](υfj )(ξ)
)

.
m∑

j=k+1

(ε‖fj‖BMO(σ) + ‖fj‖BMO(σ)) .
m∑

j=k+1

(Cε)j‖f‖BMO(σ)

≤ (2−k − 2−m)‖f‖BMO(σ).
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Thus, Sk is Cauchy sequence in the Banach space N∞] (Ω) \R (recall definition (1.19)) and so
there exists u ∈ N∞] (Ω) such that Sk → u in N∞] (Ω). In fact,

S̃k := Sk −
 
Bx

Sk → u uniformly in Bx, for any x ∈ Ω.

By (4.22) and (4.23), for any m > k, we have that

‖∇Sk−∇Sm‖C∞s,∞(Ω) + ‖δΩ∇Sk − δΩ∇Sm‖N∞(Ω)

≤
m∑

j=k+1

sup
ξ∈∂Ω

Cs,c(∇uj)(ξ) +

m∑
j=k+1

sup
ξ∈∂Ω

N (δΩ∇uj)(ξ) .
m∑

j=k+1

‖fj‖BMO(σ)

≤ (2−k − 2−m)‖f‖BMO(σ).

Thus, there exists ~F1 ∈ C∞s,∞(Ω) (resp. ~F2 so that δΩ
~F2 ∈ N∞(Ω)) such that ∇Sk → ~F1 in

C∞s,∞(Ω) (resp. δΩ∇Sk → δΩ
~F2 ∈ N∞(Ω)). By Lemma 6.2 we have that for any fixed x ∈ Ω,

sup
y∈Bx

|∇Sk −∇~Fi|δΩ(y)→ 0 for i ∈ {1, 2}

which implies that ~F1 = ~F2 =: ~F in Ω. Thus,

∇Sk = ∇S̃k → ~F =
∞∑
k=0

∇uk uniformly in Bx, for every x ∈ Ω.

By Lemma 6.1 we deduce that u ∈ C1(Ω) and

∇u(x) =

∞∑
k=0

∇uk(x) for all x ∈ Ω.

Furthermore, we have that

sup
ξ∈∂Ω

Cs(∇u)(ξ) ≤
∞∑
k=0

sup
ξ∈∂Ω

Cs(∇uk)(ξ) .ε

∞∑
k=0

‖fk‖BMO(σ) . ‖f‖BMO(σ). (6.10)

Similarly,

sup
ξ∈∂Ω

N](u)(ξ) + sup
ξ∈∂Ω

N (δΩ∇u)(ξ) (6.11)

≤
∞∑
k=0

(
sup
ξ∈∂Ω

N](uk)(ξ) + sup
ξ∈∂Ω

N (δΩ∇uk)(ξ)
)
. ‖f‖BMO(σ).

Finally, it holds that

0 = lim
k→∞

‖fk+1‖BMO(σ) = ‖f −
k∑
j=0

uj‖BMO(σ)
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and since, by construction,
∑k

j=0 uj − u ∈ C1,∞
s,∞(Ω), using the linearity of the trace and

Hypothesis [T̃], we have that

∥∥∥Tr(u)− Tr
( k∑
j=0

uj

)∥∥∥
BMO(σ)

.
∥∥∥u− k∑

j=0

uj

∥∥∥
C∞s,∞(Ω)

k→∞−→ 0.

This gives that u is an extension of f ∈ BMO(σ) with

Tr(u)(ξ) = f(ξ) for σ-almost every ξ ∈ ∂Ω (6.12)

and the proof is complete.

Remark 6.7. Note that by the proof of Theorem 6.6 it is immediate that the extension u
satisfies the estimate

sup
x∈Ω
|υf (x)− u(x)| . ‖f‖BMO(σ). (6.13)

Proposition 6.8. Let Ω ∈ AR(s) for s ∈ (0, n]. For s = n assume additionally that Ω
satisfies the pointwise John condition. Then, for any p ∈ (1,∞] there exists a bounded linear
trace operator Tr Ω : Np(Ω) ∩ C1,p

s,∞(Ω)→ Lp(σ) satisfying the Hypothesis [T]. Moreover, if Ω
satisifies the local John condition for s = n, then there exists a bounded linear trace operator
Tr Ω : C1,∞

s,∞(Ω)→ BMO(σ).

Proof. For any x ∈ Ω and fixed c ∈ (0, 1/2] we define

E(x) :=

 
B(x,cδΩ(x))

u(z) dz. (6.14)

Fix ξ ∈ ∂Ω such that ξ ∈ JC(θ) (see Definition 1.13). Then there exist rξ > 0 and xξ ∈
B(ξ, 2rξ) ∩ Ω such that δΩ(xξ) ≥ θrξ, and also there exists a good curve (recall definition
1.12) γ : [0, 1] → R in B(ξ, 2rξ) ∩ Ω connecting the points ξ and xξ such that |γ̇(t)| = 1
∀t ∈ [0, 1]. For any fixed pair of points x1, x2 ∈ γ there exist t1, t2 ∈ [0, 1] such that x1 = γ(t1)
and x2 = γ(t2). By a change of variables and an application of the mean value theorem, we
estimate

|E(x1)− E(x2)| =
∣∣∣ ˆ

B(0,1)

(
u(x1 + wcδΩ(x1))− u(x2 + wcδΩ(x2))

)
dw
∣∣∣

=
∣∣∣ˆ

B(0,1)

(
u(γ(t1) + wcδΩ(γ(t1)))− u(γ(t2) + wcδΩ(γ(t2)))

)
dw
∣∣∣

=
∣∣∣ˆ

B(0,1)

ˆ t2

t1

∇u(γ(t) + wcδΩ(γ(t))) · ∇δΩ(γ(t)) γ̇(t) dt dw
∣∣∣

≤
ˆ t2

t1

ˆ
B(0,1)

∣∣∇u(γ(t) + wcδΩ(γ(t))
∣∣ dw dt;

above we used that |γ̇(t)| = 1 and |∇δΩ(γ(t))| ≤ 1 since the function dist(· , ∂Ω) is 1-Lipschitz.
Note that for j ∈ {1, 2} there exists Mj ∈ N such that 2−Mj ≤ tj ≤ 2−Mj+1. By the
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Fundamental Theorem of Calculus, since u ∈ C1(Ω) and γ(t) +wcδΩ(γ(t)) is (1 + c)-Lipschitz
in t for any w ∈ B(0, 1), we have that there exists sk ∈ [2−k, 21−k] such that

ˆ t2

t1

ˆ
B(0,1)

∣∣∇u(γ(t) + wcδΩ(γ(t))
∣∣dwdt

=

M2∑
k=M1

ˆ 2−k+1

2−k

ˆ
B(0,1)

∣∣∇u(γ(t) + wcδΩ(γ(t))
∣∣dwdt

=

M2∑
k=M1

2−k
ˆ
B(0,1)

∣∣∇u(γ(sk) + wcδΩ(γ(sk))
∣∣dw

=

M2∑
k=M1

2−k
ˆ
B(γ(sk),cδΩ(γ(sk)))

|∇u(y)| dy

(cδΩ(γ(sk)))n+1

.
M2∑

k=M1

ˆ
B(γ(sk),cδΩ(γ(sk)))

|∇u(y)| dy

δΩ(y)n
,

where is the last inequality we used that δΩ(γ(sk)) ≈ sk ≈ 2−k and that δΩ(y) . δΩ(γ(sk)) for
any y ∈ B(γ(sk), cδΩ(γ(sk))). Therefore, there exists a cone γα(ξ), with apperture depending
on c and θ, such that B(γ(sk), cδΩ(γ(sk))) ⊂ γα(ξ), and by the bounded overlap of the balls
B(γ(sk), cδΩ(γ(sk))) we infer that

|E(x1)− E(x2)| .
ˆ
γα(ξ)∩B(ξ,CδΩ(x2))

|∇u(y)| dy

δΩ(y)n
.

By (1.24) we have that A(α)
s (∇u) ∈ Lp(σ) when p ∈ (1,∞) and A(α)

s (∇u) ∈ Lqloc(σ) for any
q ∈ (1,∞) when p = ∞. Thus, A(α)

s (∇u)(ξ) < ∞ for σ-almost every ξ ∈ ∂Ω and using the
fact that the above estimate holds for any pair of points x1, x2 ∈ γξ, we can assume that
x1, x2 ∈ B(ξ, ε) for some ε > 0 which is small compared to rξ. Therefore,

|E(x1)− E(x2)| .
ˆ
γα(ξ)∩B(ξ,Cε)

|∇u(y)| δΩ(y)−n dy . A(α)(∇u)(ξ) <∞.

By the dominated convergence theorem we get that |E(x1)−E(x2)| → 0 as ε→ 0, i.e., E(x)
is Cauchy on γξ and thus convergent. This shows that the quasi-non-tangential limit of E(x)
at ξ ∈ ∂Ω exists for σ-a.e. ξ ∈ ∂Ω and we can define the desired trace operator by

Tr Ω(u)(ξ) := qnt-lim
x→ξ

E(x) for σ-a.e. ξ ∈ ∂Ω. (6.15)

In the case that s < n, we just define Tr Ω(u)(ξ) = nt-limx→ξ E(x) since Ω has only one
connected component and any ξ ∈ ∂Ω can be connected to a corkscrew point by a good
curve. It is clear that Tr : C1,p

s,∞(Ω) → Lp(σ) is a linear operator while the fact that Tr :
Np(Ω) ∩ C1,p

s,∞(Ω) → Lp(σ) is bounded if p ∈ (1,∞] can be proved quite easily. Indeed, let
ξ ∈ ∂Ω such that ξ ∈ JC(θ). For fixed ε > 0 there exists δ > 0 such that, if x ∈ B(ξ, δ) ∩ γξ,
there holds

|Tr Ω(u)(ξ)| ≤ |Tr Ω(u)(ξ)− E(x)|+mσ,B(x,cδΩ(x))(|u|) < ε+N (u)(ξ).
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Letting ε→ 0 we infer that |Tr Ω(u)(ξ)| ≤ N (u)(ξ) for σ-a.e. ξ ∈ ∂Ω which readily yields the
validity of (i) of Hypothesis [T], while (ii) of Hypothesis [T] readily follows from Lemma 2.1.

Assume now that Ω satisfies the local John condition when s = n; in the case s < n this is
automatic. Fix ξ ∈ ∂Ω and r > 0. By the local John condition there exists a corkscrew point
xr ∈ B(ξ, r) such that any ζ ∈ B(ξ, r) ∩ ∂Ω can be connected to xr by a good curve. The
existence of the trace operator follows by the same argument as above and we define it in the
same way. It remains to show that Tr : C1,∞

s,∞(Ω)→ BMO(σ) is bounded. For u ∈ C1,∞
s,∞(Ω), if

Br := B(xr, cδΩ(xr)) is a corkscrew ball centered at xr with radius cδΩ(xr) ≈ r, by the same
proof as above we can show that∣∣Tr Ω(u)(ζ)−

 
Br

u(y) dy
∣∣ . As(∇u1B(ξ,C′r))(ζ), ∀ζ ∈ B(ξ, r) ∩ ∂Ω.

Thus, taking averages over the ballB(ξ, r) with respect to σ and applying (1.23) in L1(B(ξ, C ′r)),
whose proof is left to the interested reader, we conclude that

 
B(ξ,r)

∣∣Tr Ω(u)−
 
Br

u(y) dy
∣∣dσ .

 
B(ξ,C′′r)

Cs(∇u1B(ξ,C′′r)) dσ ≤ ‖Cs(∇u)‖L∞(σ).

This readily implies that ‖Tr Ω(u)‖BMO(σ) . ‖Cs(∇u)‖L∞(σ) which, combined with the esti-
mate ‖f‖BMO(σ) ≤ 2‖f‖L∞(σ), (6.13) and Hypothesis [T] (ii) (already proved above), proves
Hypothesis [T̃].

Proof of Theorem 0.5. It is an immediate consequence of Theorem 6.3, Proposition 6.8 and
Lemma 6.5.

Let us now turn our attention to the proof of Theorem 0.6. When s = n and Ω satisfies
the pointwise John condition but not the local John condition, we will need the following
generalization of Garnett’s Lemma, which was proved in [HT21, Lemma 10.1].

Lemma 6.9. Let Ω ∈ AR(n), Q0 ∈ Dσ, and let f ∈ BMO(σ) which vanishes on ∂Ω \ Q0

(if it is non-empty). Then, there exists a collection of cubes S̃(Q0) = {Qj}j ⊂ D(Q0) and
coefficients αj such that the following hold.

1. supj |αj | . ‖f‖BMO(σ).

2. f = g +
∑

j αj1Qj , where g ∈ L∞(σ) with ‖g‖L∞(σ) . ‖f‖BMO(σ).

3. S̃(Q0) satisfies a Carleson packing condition.

Proof of Theorem 0.6. Recall that if s < n then Ω ∈ AR(s) is uniform and thus it satisfies
the local John condition. Therefore, by Theorem 6.6, Proposition 6.8 and Lemma 6.5 we can
construct the desired extension of Theorem 0.6 when either s < n, or s = n and Ω satisfies,
in addition, the local John condition. We are left with the case s = n so that Ω satisfies the
pointwise John condition but not the local John condition. By Lemma 6.9, if f ∈ BMO(σ) with
compact support in Q0 ∈ Dσ then there exists g ∈ L∞(σ) and b =

∑
j αj1Qj ∈ BMO(σ) such

that f = g + b. We construct an extension G of g by Theorem 0.5 and so it remains to prove
the existence of the extension of b. By [HT21, Proposition 1.3] there exists B0 : Ω→ R such
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CHAPTER 6. CONSTRUCTION OF VAROPOULOS-TYPE EXTENSIONS OF Lp AND
BMO FUNCTIONS

that supξ∈∂Ω Cn(∇B0)(ξ) + supx∈Ω δΩ(x)|∇B0(x)| . ‖f‖BMO and B0 → b non-tangentially
for σ-a.e. ξ ∈ ∂Ω. By Lemma 6.5, if we set B = B̃0 (as defined in (6.6)) we get the desired
extension of b. The extension of f is then given by G+B.
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Chapter 7

Applications to boundary value
problems

Recall the definition of 1.27 of the elliptic operator L and that H : Ω → Cm is given by
H = (H1, . . . ,Hm) and Ξ : Ω→ Cm(n+1) is given by Ξ := (~Ξ1, . . . , ~Ξm), where ~Ξα : Ω→ Cn+1

and ~Ξα = (Ξα1 , . . . ,Ξ
α
n+1) for α = 1, . . .m. We define the variational co-normal derivative of

a solution v ∈ Ẇ 1,2(Ω;Cm) of Lv = −div Ξ +H in Ω, and denote it by ∂νAv, to be the linear
functional defined in terms of the sesquilinear form associated to L as follows:

〈∂νAv, ϕ〉 := `v(ϕ) := B(v,Φ) =

m∑
α,β=1

n+1∑
i,j=1

ˆ
Ω
aαβij (x) ∂jv

β(x)∂iΦ
α dx

−
m∑
α=1

n+1∑
i=1

ˆ
Ω

Ξαi (x)∂iΦ
α(x) dx−

m∑
α=1

ˆ
Ω
Hα(x)Φ(x)α dx,

where ϕ ∈ Lipc(∂Ω;Cm) and Φ ∈ Ẇ 1,2(Ω;Cm) ∩ Lip(Ω;Cm) such that Φ|∂Ω = ϕ.

Lemma 7.1. `v : Ẇ 1,2(Ω;Cm) ∩ Lip(Ω;Cm)→ R is unambiguously defined.

Proof. If Φ1,Φ2 ∈ Ẇ 1,2(Ω;Cm) ∩ Lip(Ω;Cm) are such that Φ1|∂Ω = Φ2|∂Ω = ϕ and Φ1 6= Φ2,
then Ψ := Φ1 − Φ2 ∈ Ẇ 1,2(Ω : Cm) ∩ Lip(Ω;Cm) and Ψ|∂Ω = 0, which implies that Ψ ∈
Y 1,2

0 (Ω), see 1.2 for the definition of Y 1,2
0 (Ω). Since Lv = − div Ξ+H, we have that B(v,Ψ) =

0 and thus B(v,Φ1) = B(v,Φ2). So any extension of ϕ belonging to Ẇ 1,2(Ω;Cm)∩Lip(Ω;Cm)
defines the same linear functional `v.

From now on, we assume that Ω ∈ AR(n), n ≥ 2, and that either Ω is bounded or
∂Ω unbounded. This is because we will use the duality Nq,p(Ω) = (Cs,q′,p′(Ω))∗ which is a
consequence of [MPT22, Proposition 2.4].

In the sequel, we will prove for simplicity our results just for real elliptic equations (i.e.,
m = 1). Nevertheless, the proofs for m > 1 and complex-valued coefficients are identical, see
also Remark 0.8.
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7.1 Some connections between Poisson Problems and Boundary Value
Problems

Proposition 7.2. If (PRL
p ) is solvable in Ω for some p > 1 (recall definition 1.9) then its

solution u satisfies the one-sided Rellich-type inequality

‖∂νAu‖Lp(σ) . ‖H‖C2∗,p(Ω) + ‖Ξ/δΩ‖C2,p(Ω). (7.1)

Moreover, if (PRL
1 ) is solvable in Ω with data H = 0 and Ξ ∈ L2

loc(Ω), then its solution
satisfies the one-sided Rellich-type inequality

‖∂νAu‖H1(σ) . ‖Ξ‖T 1
2 (Ω), (7.2)

where H1(σ) is the atomic Hardy space.

Proof. Suppose that u is the solution of (PRL
p ). Let ϕ ∈ Lipc(∂Ω) and F ∈ Ẇ 1,2(Ω)∩Lip(Ω)

be the Varopoulos extension of the Lp boundary data ϕ constructed in Theorem 0.3. Then,
by Lemma 7.1 we get

|`u(ϕ)| = |B(u, F )| ≤ ‖A‖L∞(Ω)

ˆ
Ω
|∇u||∇F |+

ˆ
Ω
|H||F |+

ˆ
Ω
|Ξ| |∇F |.

By duality (see [MPT22, Proposition 2.4]), (1.41) and the properties of the extension F we
infer thatˆ

Ω
|∇u||∇F | . ‖Ñ2(∇u)‖Lp(σ)‖C2(∇F )‖Lp′ (σ) . (‖H‖C2∗,p + ‖Ξ/δΩ‖C2,p(Ω))‖ϕ‖Lp′ .

By duality and using (ii) and (iii) of Theorem 0.3 we infer that
ˆ

Ω
|H||F |+

ˆ
Ω
|Ξ| |∇F |

. ‖H‖C2∗,p‖N2∗(δΩ∇F )‖Lp′ (σ) + ‖Ξ/δΩ‖C2,p(Ω)‖Ñ2(F )‖Lp′ (σ)

. (‖H‖C2∗,p + ‖Ξ/δΩ‖C2,p(Ω))‖ϕ‖Lp′ (σ).

Thus, by the above estimates, the density of Lipc(∂Ω) in Lp(σ) and duality we get (7.1).
For the endpoint case, let v be the solution of (PRL

1 ) and let ϕ ∈ Lipc(∂Ω). Arguing as
above for F̃ being the Varopoulos extension of BMO boundary data ϕ constructed in Theorem
0.3 and using Lemma 7.1 we get that

|`v(ϕ)| ≤ ‖A‖L∞(Ω)

ˆ
Ω
|∇v||∇F̃ |+

ˆ
Ω
|Ξ||∇F̃ |.

By duality, (1.41) and (ii) of Theorem 0.3 for BMO we have that
ˆ

Ω
|∇u||∇F̃ | . ‖Ñ2(∇u)‖L1(σ) sup

ξ∈∂Ω
C(∇F̃ )(ξ) . ‖Ξ‖T 1

2 (Ω)‖ϕ‖BMO(σ).

For the second term, since T∞2 (Ω) = (T 1
2 (Ω))∗ (this follows from the proof of Theorem 4.2

and Remarks 4.3 and 4.4 in [MPT13], see tent spaces in 1 for more details), it holds that
ˆ

Ω
|Ξ||∇F̃ | =

ˆ
Ω
|Ξ| δΩ(x)|∇F̃ | dx

δΩ(x)
≤ ‖Ξ‖T 1

2 (Ω)‖δΩ∇F̃‖T∞2 (Ω).
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CHAPTER 7. APPLICATIONS TO BOUNDARY VALUE PROBLEMS

Since, by (iii) of Theorem 0.3 for BMO, we have

δΩ(x)|∇F̃ (x)|2 . |∇F̃ (x)|‖ϕ‖BMO(σ),

it is easy to see that

‖δΩ∇F̃‖T∞2 (Ω) = ‖C (δΩ|∇F̃ |2)‖1/2L∞(σ) (7.3)

. ‖ϕ‖1/2BMO(σ) sup
ξ∈∂Ω

C(∇F̃ )(ξ)1/2 . ‖ϕ‖BMO(σ),

where in the last inequality we used again (ii) of Theorem 0.3 for the extension F̃ . Thus

|`(ϕ)| . ‖Ξ‖T 1
2 (Ω)‖ϕ‖BMO(σ)

which implies (7.2) since Lipc(∂Ω)
VMO(σ)

= VMO(σ) = (H1(σ))∗.

Theorem 7.3. If (PRL
p ) with Ξ = 0 is solvable in Ω for some p > 1 then (DL∗

p′ ) is also
solvable.

Proof. Let f ∈ Lipc(∂Ω) and let u be the solution to (1.34) for L∗ with data f . Using the
density of L∞c (Ω) in C2∗,p(Ω) and duality, we get that

‖N2∗(u)‖Lp′ (σ) . sup
H∈L∞c (Ω):
‖H‖C2∗,p(Ω)=1

∣∣∣ ˆ
Ω
uH
∣∣∣.

Fix such an H ∈ L∞c (Ω) and let w ∈ Y 1,2
0 (Ω) be the solution to (PRL

p ) with data Ξ = 0 and
H. Then, using the fact that L∗u = 0 and (7.1), we estimate∣∣∣ˆ

Ω
uH
∣∣∣ =

∣∣∣− ˆ
Ω
∇uA∇w +

ˆ
∂Ω
∂νAwf

∣∣∣ =
∣∣∣ˆ

∂Ω
∂νAwf

∣∣∣ . ‖C2∗(H)‖Lp(σ)‖f‖Lp′ (σ)

which readily implies the estimate

‖N2∗(u)‖Lp′ (σ) . ‖f‖Lp′ (σ),

thus concluding the proof of the theorem.

Now, we turn our attention to the endpoint case of Theorem 7.3.

Theorem 7.4. If (PRL
1 ) with H = 0 is solvable in Ω then both (PDL∗

∞ ) with H = 0 and
(DL∗

BMO) are solvable in Ω.

Proof. Let v1 be the solution of (1.33) with data Ξ ∈ L∞c (Ω;Rn+1) and H = 0 and let v2

be the solution of (1.34) with data ϕ ∈ Lipc(∂Ω); define w := v1 + v2. Using the tent space
duality (T∞2 (Ω))∗ = T 1

2 (Ω) along with the density of L∞c (Ω) in T 1
2 (Ω), we get that

‖δΩ∇w‖T∞2 (Ω) ≈ sup
Ψ∈L∞c (Ω):
‖Ψ‖

T1
2 (Ω)

=1

∣∣∣ˆ
Ω
δΩ(x)∇wΨ

dx

δΩ(x)

∣∣∣ = sup
Ψ∈L∞c (Ω):
‖Ψ‖

T1
2 (Ω)

=1

∣∣∣ˆ
Ω
∇wΨ

∣∣∣.
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Then, if u ∈ Y 1,2
0 (Ω) is the solution of (PRL

1 ) with data Ψ ∈ L∞c (Ω) and H = 0, by duality
and (7.2) we have∣∣∣ ˆ

Ω
Ψ∇w

∣∣∣ =
∣∣∣− ˆ

Ω
A∇u∇w +

ˆ
∂Ω
∂νAuf

∣∣∣ ≤ ∣∣∣ ˆ
Ω
A∗∇w∇u

∣∣∣+
∣∣∣ˆ

∂Ω
∂νAu f

∣∣∣
=
∣∣∣ˆ

Ω
Ξ∇u

∣∣∣+
∣∣∣ ˆ

∂Ω
∂νAu f

∣∣∣
. ‖C2(Ξ)‖L∞(σ)‖Ñ2(∇u)‖L1(σ) + ‖Ψ‖T 1

2 (Ω)‖f‖BMO(σ)

.
(
‖Ξ‖C2,∞(Ω) + ‖f‖BMO(σ)

)
‖Ψ‖T 1

2 (Ω)

which proves the desired estimates (1.36) and (1.39).

Recall the definitions 1.8 and 1.6.

Theorem 7.5. If (PDL
p ) (resp. (PDL

∞)) is solvable in Ω with H = 0 for p ∈ (1,∞), then the
Dirichlet problem (DL

p ) (resp. (DL
BMO)) is also solvable in Ω.

Proof. Let f ∈ Lipc(∂Ω) and let F be the Varopoulos extensions of boundary functions
f ∈ Lp(σ) given by Theorem 0.3. In the construction of the solution of (1.34) with data
f we can use F as the Lipschitz extension of f . If u is the aforementioned solution then
u = w + F where w is the solution of (1.33) with Ξ = −A∇F ∈ L2(Ω) and H = 0. Then, by
(ii) of Theorem 0.3 and (1.38) we have that

‖Ñ2∗(u)‖Lp(σ) ≤ ‖N (F )‖Lp(σ) + ‖Ñ2∗(w)‖Lp(σ) . ‖f‖Lp(σ) + ‖C2(Ξ)‖Lp(σ)

. ‖f‖Lp(σ) + ‖A‖L∞(Ω)‖C(∇F )‖Lp(σ) . ‖f‖Lp(σ).

Thus, u is the solution of the Dirichlet problem (DL
p ). By similar arguments, using F̃ , the

Varopoulos extension of f ∈ BMO(σ) given by Theorem 0.3 along with (7.3) and (1.39), we
get that

‖δΩ∇u‖T∞2 (Ω) ≤ ‖δΩ∇F‖T∞2 (Ω) + ‖δΩ∇w‖T∞2 (Ω) . ‖f‖BMO(σ)

which finishes the proof of the Theorem.

Proof of Theorem 0.9. It follows by combining Theorems 7.3, 7.4 and 7.5.

7.2 Conditional one-sided Rellich-type inequalities

Proposition 7.6. Suppose that (RL
p ) is solvable in Ω for some p ≥ 1. If u is the solution of

(1.34) for L∗ in Ω with data f ∈ Lipc(∂Ω), it holds that

‖∂νA∗u‖(Ṁ1,p(σ))∗ . ‖f‖Xp(σ) (7.4)

where (Ṁ1,p(∂Ω))∗ stands for the Banach space dual of Ṁ1,p(∂Ω)/R and Xp(σ) is equal to
Lp
′
(σ) if p > 1 and BMO(σ) if p = 1.
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Proof. By definition we have that

‖∂νA∗u‖(Ṁ1,p(∂Ω))∗ = sup
ϕ∈Lipc(∂Ω):
‖ϕ‖Ṁ1,p(σ)=1

|〈∂νA∗u, ϕ〉|.

Fix ϕ ∈ Lipc(∂Ω) such that ‖ϕ‖Ṁ1,p(σ) = 1 and let w be the solution of (RL
p ) with data ϕ.

Let also F ∈ Lip(Ω) be the Varopoulos extension of Lp′ boundary data f as constructed in
Theorem 0.3. By Lemma 7.1 we have that

〈∂νA∗u, ϕ〉 =

ˆ
Ω
A∗∇u∇w =

ˆ
Ω
A∇w∇(u− F ) +

ˆ
Ω
A∇w∇F =

ˆ
Ω
A∇w∇F

since u−F ∈ Y 1,2
0 (Ω) and Lw = 0. Therefore, by duality, conclusion (ii) of Theorem 0.3 and

(1.37), we infer that

|〈∂νA∗u, ϕ〉| =
∣∣∣ ˆ

Ω
A∇w∇F

∣∣∣ ≤ ‖A‖L∞(Ω)‖Ñ2(∇u)‖Lp(σ)‖C2(∇F )‖Lp′

. ‖ϕ‖Ṁ1,p(σ)‖f‖Lp′ (σ)

which shows (7.4) for p > 1. The proof in the case p = 1 is similar and we omit the details.

Proposition 7.7. Let q ≥ 1. If u is a solution of (1.32) for H ∈ L∞c (Ω) and Ξ ∈ L∞c (Ω;Rn+1)
such that Nq(∇u) ∈ Lp(σ) for p > 1, it holds that

‖∂νA∗u‖Lp(σ) . ‖∇u‖Nq,p(Ω) + ‖H‖C1,p(Ω) + ‖Ξ/δΩ‖C1,p(Ω). (7.5)

If u is a solution of (1.32) for H = 0 and Ξ ∈ L∞c (Ω;Rn+1) such that Nq(∇u) ∈ L1(σ), then

‖∂νA∗u‖L1(σ) . ‖∇u‖Nq,1(Ω) + ‖Ξ‖T 1
2 (Ω). (7.6)

Proof. It follows by the same arguments used in the proof of Proposition 7.2. We skip the
details.
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Appendix A

Appendix to Chapter 1

A.1 Proof of Lemma 1.5

Proof. We adapt the proof of the [HR18, Proposition 2.4] and argue by duality. Indeed, let
1/p+ 1/p′ = 1 and h ∈ Lp′(σ) be a non-negative function supported in B(ξ, r) and such that
‖h‖Lp′ (σ) = 1. Then,

‖A(u1B(ξ,r))‖Lp(σ,B(ξ,r)) =

ˆ
∂Ω

( ˆ
γα(ξ)∩B(ξ,r)

|u(y)|δΩ(y)−n dy
)
h(ξ) dσ(ξ)

≤
ˆ
B(ξ,r)

|u(y)|δΩ(y)s−n
(
δΩ(y)−s

ˆ
B(y,αδΩ(y))

h(ξ) dσ(ξ)
)
dy

=:

ˆ
B(ξ,r)

|u(y)|δΩ(y)s−nH(y) dy

=

ˆ ∞
0

ˆ
B(ξ,r)∩{H(y)>λ}

|u(y)|δΩ(y)s−n dy dλ,

where

H(y) := δΩ(y)−s
ˆ
B(y,αδΩ(y))

h(ξ) dσ(ξ).

For any y ∈ Ω ∩B(ξ, r) we let ŷ be a point in B(ξ, r) ∩ ∂Ω such that |y − ŷ| = δΩ(y) and we
set Bŷ := B(ŷ, (α+ 1)δ(y)) ⊃ B(y, αδΩ(y). Define

Eλ := {y ∈ B(ξ, r) ∩ Ω : H(y) > λ}

and note that for any y ∈ Eλ it holds that mσ,Bŷh > cλ for some c ∈ (0, 1) depending on α.
If we set

Êλ := {ζ ∈ ∂Ω : ζ = ŷ for some y ∈ Eλ} and Bλ = {Bŷ : y ∈ Eλ},

then there exists a sufficiently large constant C > 1 such that⋃
ζ∈Êλ

Bζ ∩ ∂Ω ⊂ {ζ ∈ ∂Ω :Mh(ζ) > cλ} ∩B(ξ, Cr).
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A.1. PROOF OF LEMMA 1.5

By Vitali’s covering lemma there exists a subcollection Gλ ⊂ Bλ of pairwise disjoint balls such
that ⋃

B′∈Bλ

B′ ⊂
⋃
B∈Gλ

5B.

It is clear that
Eλ ⊂

⋃
B∈Fλ

5B

and thus,
ˆ
Eλ

|u(y)|δΩ(y)s−n dy ≤
∑
B∈Fλ

ˆ
5B
|u(y)|δΩ(y)s−n dy

.
∑
B∈Fλ

σ(B) r(B)β inf
ζ∈B∩∂Ω

C (β)
s (u1B(ξ,Cr))(ζ)

. rβ
ˆ
B(ξ,Cr)∩{Mh>λ}

C (β)
s (u1B(ξ,Cr))(ζ) dσ(ζ).

Therefore, since ‖h‖Lp′ (σ) = 1, we have

‖As,α(u1B(ξ,r))‖Lp(σ,B(ξ,r)) . rβ
ˆ ∞

0

ˆ
B(ξ,Cr)∩{Mh>λ}

C (β)
s (u1B(ξ,Cr))(ζ) dσ(ζ) dλ

. rβ
ˆ
B(ξ,Cr)

C (β)
s (u1B(ξ,Cr))(ζ)Mh(ζ) dσ(ζ)

≤ rβ‖C (β)
s (u1B(ξ,Cr))‖Lp(σ,B(ξ,Cr)),

proving (1.23). The proof of (1.24) is similar and we omit the details.
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Appendix B

Appendix to Chapter 6

B.1 Proof of Lemma 6.1

Proof. 1Let x0 ∈ B be a point such that fn(x0)→ f(x0) as n→∞ and write

f(x)− f(x0)− ~F (x0)(x− x0)

|x− x0|
=
f(x)− f(x0)− (fn(x)− fn(x0))

|x− x0|

+
fn(x)− fn(x0)−∇fn(x0)(x− x0)

|x− x0|
+

(∇fn(x0)− ~F (x0))(x− x0)

|x− x0|
=: I + II + III.

In order to control I consider the difference

fm(tx+ (1− t)x0)− fn(tx+ (1− t)x0), t ∈ [0, 1],

for integers m,n > 0. By the mean value theorem there exists t0 ∈ (0, 1) such that

(fm(x)− fm(x0))− (fn(x)− fn(x0)) = (∇fm(z0)−∇fn(z0))(x− x0)

where z0 = t0x+ (1− t0)x0 ∈ B. By the uniform convergence of the gradients in B we have
that

|(fm(x)− fm(x0))− (fn(x)− fn(x0))|
|x− x0|

=
|(∇fm(z0)−∇fn(z0))(x− x0)|

|x− x0|
≤ 2ε.

Since B is bounded and the sequence {fn} converges at x0, there exists an integer n1 =
n1(ε, x0) > 0 such that for every n ≥ n1 the above inequality implies that

|fm(x)− fn(x)| ≤ |fm(x0)− fn(x0)|+ |x− x0|2ε ≤Mε,

for M > 1 a sufficiently large constant. So, {fn} is a uniformly Cauchy sequence and thus it
converges uniformly to function f . Letting m→∞, we get that for every n ≥ n1 it holds

|I| = |f(x)− f(x0)− (fn(x)− fn(x0))|
|x− x0|

≤ 2ε.

Using the fact that f is differentiable in x0 we get that there exists an integer n2 = n2(ε, x0) > 0
and δ = δ(ε) > 0 such that |II| ≤ 2ε for all x ∈ B with |x−x0| ≤ δ and all n > n2. Moreover,

1This proof was given by Professor Giovanni Leoni at math.stackexchange/gradient convergence.
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B.1. PROOF OF LEMMA 6.1

the sequence {∇fn}n≥1 converges to ~F uniformly in B. Thus, there exists an integer n3 > 0
such that, for all n ≥ n3, we have

|III| ≤ |∇fn(x0)− ~F (x0)| ≤ ε.

Finally, setting n0 := max{n1, n2, n3} and using the above estimates we get that for every
x ∈ B with |x− x0| ≤ δ and n ≥ n0, it holds∣∣∣f(x)− f(x0)− ~F (x0)(x− x0)

|x− x0|

∣∣∣ ≤ 5ε,

which implies that f if differentiable in x0, and thus in B, with ∇f(x0) = ~F (x0). Since this
holds for all x0 ∈ B and fn is differentiable in B, it is easy to see that f is differentiable in
B.
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APPENDIX B. APPENDIX TO CHAPTER 6

B.2 Proof of Lemma 6.2

Proof. Fix x ∈ Ω and note that if c′ = c
c+1 then for any z ∈ B(x, c′δΩ(x)) we have that

|z − x| ≤ c′ dist(x, ∂Ω) ≤ c′ dist(z, ∂Ω) + c′ |z − x|,

which implies that |z − x| ≤ c δΩ(z), i.e., x ∈ Bz. If ξx ∈ ∂Ω is the point such that δΩ(x) =
|x− ξx| then it is clear that Bx ⊂ B(ξ, 3δΩ(x)) ∩ Ω for every ξ ∈ B(ξx, δΩ(x)), and so

‖Cs(F )‖Lp(σ) =
(ˆ

∂Ω

[
sup
r>0

1

rn

ˆ
B(ξ,r)∩Ω

sup
y∈Bz

|F (y)| dz
]p
dσ(ξ)

)1/p

&
(ˆ

B(ξx,δΩ(x))∩∂Ω

[ 1

δΩ(x)n

ˆ
B(ξ,3δΩ(x))

sup
y∈Bz

|F (y)| dz
]p
dσ(ξ)

)1/p

≥
( ˆ

B(ξx,δΩ(x))∩∂Ω

[ 1

δΩ(x)n

ˆ
B(x,c′δΩ(x))

sup
y∈Bz

|F (y)| dz
]p
dσ(ξ)

)1/p

& δΩ(x)
1+n

p |F (x)|.

Note that for p =∞ the same argument implies that

sup
ξ∈∂Ω

Cs(F )(ξ) & δΩ(x)|F (x)|.

Lemma B.1. The quotient space N∞] (Ω)/R is a Banach space.

Proof. Note that the space N∞] (Ω)/R can be written as the direct product
⊗

x∈Ω Λx/R
equipped with the sup norm, where

Λx :=
{
u : Ω→ R : u ∈ L1

loc(Ω) and sup
y∈Bx

∣∣u(y)−
 
Bx

u
∣∣ <∞},

is equipped with the semi-norm ‖u‖Λx := supy∈Bx |u(y) −
ffl
Bx
u| which is a norm modulo

constants. By the theory of Banach spaces it is enough to prove that the space Λx/R is
Banach for any fixed x ∈ Ω2. To this end, let x ∈ Ω, ε > 0, and take {un}n∈N to be a Cauchy
sequence in Λx/R. Then there exists n0 ∈ N such that for every n,m ≥ n0 it holds that
‖un − um‖Λx < ε. So, for any y ∈ Bx we have∣∣un(y)− um(y)−

 
Bx

(un(z)− um(z)) dz
∣∣ < ε,

which means that the sequence
{
un−

ffl
Bx
un
}
n∈N is uniformly Cauchy in Bx and so it converges

to some u locally uniformly in Bx. Thus there exists a positive integer m0 = m0(ε, x) such
that for any m > m0 we have

sup
Bx

|um(y)−
 
Bx

um − u(y)| < ε/2.

2We would like to thank Professor Pandelis Dodos for providing us with a reference about this fact. See
math.stackexchange/infinite direct sum.
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Thus, for any n > max{n0,m0} we have

sup
Bx

|un(y)− u(y)−
 
Bx

(un − u)| =

sup
Bx

∣∣∣un(y)−
 
Bx

un − u(y)
∣∣∣+
∣∣∣ 

Bx

(u(z) + um(z)− um(z)) dz
∣∣∣

≤ sup
Bx

|un(y)−
 
Bx

un − u(y)|+
 
Bx

|um(z)−
 
Bx

um − u(z)| dz < ε.

We conclude that ‖un−u‖Λx < ε which means that un → u in Λx/R with respect to the norm
‖ · ‖Λx and so Λx/R is a Banach space for every x ∈ Ω. As a result, the space N∞] (Ω)/R is
Banach.

64



Bibliography

[AGMT] J. Azzam, J. Garnett, M. Mourgoglou, X. Tolsa. Uniform Rectifiability, Ellip-
tic Measure, Square Functions, and ε-Approximability Via an ACF Monotonicity
Formula. Int. Math. Res. Not. Volume 2023, Issue 13 (2023), 10837–10941. x

[AHMMT] J. Azzam, S. Hofmann, J.M. Martell, M. Mourgoglou, and X. Tolsa. Har-
monic measure and quantitative connectivity: geometric characterization of the
Lp-solvability of the Dirichlet problem. Invent. Math, 222 (2020), 881–993. x

[BOPT23] S. Bortz, B. Poggi, O. Tapiola, and X. Tolsa. The A∞ condition, ε-approximators,
and Varopoulos extensions in uniform domains Preprint, 26 February 2023,
arXiv:2302.13294. xvi

[BT19] S. Bortz and O. Tapiola, ε-approximability of harmonic functions in Lp implies
uniform rectifiability. Proc. Am. Math. Soc. , 147(5):2107–2121, 2019. x

[Chr90] M. Christ. A T (b) theorem with remarks on analytic capacity and the Cauchy
integral. Colloq. Math., 60/61(2):601–628, 1990. 3

[CG] J. García-Cuerva and J. L. Rubio de Francia, Weighted Norm Inequalities and
Related Topics. North Holland Math. Studies, 116, North Holland, Amsterdam,
1985. 22

[CMS85] R. R. Coifman, Y. Meyer, and E. M. Stein, Some new function spaces and
their applications to harmonic analysis. J. Funct. Anal., 62(2):304–335, 1985. 6

[CW77] R. R. Coifman and G. Weiss. Extensions of Hardy spaces and their use in analysis.
Bulletin of the American Mathematical Society 83, no. 4 (1977): 569–645. 2

[Dah80] B. E. J. Dahlberg. Approximation of harmonic functions. Ann. Inst. Fourier
(Grenoble), 30(2):vi, 97–107, 1980. x

[DaKe] B. Dahlberg and C. E. Kenig. Hardy spaces and the Neumann problem in Lp for
Laplace’s equation in Lipschitz domains. Ann. Math., 125: 437–465, 1987. xii

[DS1] G. David and S. Semmes, Singular integrals and rectifiable sets in Rn: Beyond
Lipschitz graphs. Astérisque No. 193 (1991). ix, 23

[DS2] G. David and S. Semmes, Analysis of and on uniformly rectifiable sets. Mathe-
matical surveys and monographs, 38, American Mathematical Society, Providence,
RI, 1993. ix, 10, 11, 25

65



BIBLIOGRAPHY

[DFM] G. David, J. Feneuil, S. Mayboroda. Elliptic theory for sets with higher co-
dimensional boundaries. Mem. Am. Math. Soc. 273 (2021), no 1346, iii+123 pp.
9

[EG15] L. C. Evans and R. F. Gariepy. Measure Theory and Fine Properties of Functions,
Revised Edition. Textbooks in Mathematics. New York: Chapman and Hall/CRC,
New York, 2015. 13

[Fed] H. Federer. Measure and area. Bull. AMS 58 (1952), 306–378

[FS] C. L. Fefferman and E. M. Stein. Hp spaces of several variables. Acta Math. 129
(1972), no. 3–4, p. 137–193. 4

[Gar81] J. B. Garnett, Bounded analytic functions, volume of Pure and Applied Mathe-
matics. Academic Press, Inc. [Harcourt Brace Jovanovich Publishers], New York-
London, 1981. iii, x, xiii

[GMT18] J. B. Garnett, M. Mourgoglou and X. Tolsa. Uniform rectifiability from Carleson
measure estimates and ε-approximability of bounded harmonic functions. Duke
Math. J., 167(8):1473–1524, 2018. x, xiv

[Ha] P. Hajłasz, Sobolev spaces on an arbitrary metric space. Potential Anal. 5 (1996),
no. 4, 403–415 2

[HKMP15] S. Hofmann, C. Kenig, S. Mayboroda, and J. Pipher. Square function/non-
tangential maximal function estimates and the Dirichlet problem for non-
symmetric elliptic operators. J. Amer. Math. Soc., 28(2):483–529, 2015. x

[HMM16] S. Hofmann, J. M. Martell, S. Mayboroda, Uniform rectifiability, Carleson
measure estimates, and approximations of harmonic functions. Duke Math. J. ,
165(12):2331–2389, 2016. x, xiv

[HMT] S. Hofmann, M. Mitrea, and M. Taylor, Singular integrals and elliptic boundary
problems on regular Semmes-Kenig-Toro domains. Int. Math. Res. Not. 2010, no.
14, 2567–2865. 10

[HT20] S. Hofmann and O. Tapiola, Uniform rectifiability and ε-approximability of
harmonic functions in Lp. Ann. Inst. Fourier (Grenoble), 70(4):1595–1638, 2020.
ix, x

[HT21] S. Hofmann and O. Tapiola, Uniform rectifiability implies Varopoulos extensions.
Adv. Math., 390:Paper No. 107961, 53, 2021. iii, xiii, xiv, xv, 43, 44, 45, 50

[HR18] T. Hytönen and A. Rosén, Bounded variation approximation of Lp dyadic martin-
gales and solutions to elliptic equations. J. Eur. Math. Soc. (JEMS), 20(8):1819–
1850, 2018. iii, v, ix, x, xii, xiv, xv, 21, 42, 59

[JK82] D. S. Jerison and C. E. Kenig. Boundary behavior of harmonic functions in
nontangentially accessible domains. Adv. Math., 46(1):80–147, 1982. 9

66



BIBLIOGRAPHY

[KKPT00] C. Kenig, H. Koch, J. Pipher, and T. Toro. A new approach to absolute continuity
of elliptic measure, with applications to non-symmetric equations. Adv. Math.,
153(2):231–298, 2000. x

[MS79] R. A. Macias and C. Segovia. Lipschitz functions on spaces of homogeneous type.
Adv. Math., 33(3):257–270, 1979. 2

[MP] S. Mayboroda and B. Poggi, Carleson perturbations of elliptic operators on
domains with low dimensional boundaries. Journal of Functional Analysis, 2021.
doi: 10.1016/j.jfa.2021.108930 12

[MiTa] M. Mitrea and M. Taylor, Potential theory on Lipschitz domains in Riemannian
manifolds: Lp Hardy, and Hölder space results. Commun. Anal. Geom., 9(2):
369–421, 2001. xii

[MPT13] E. Milakis, J. Pipher, and T. Toro, Harmonic analysis on chord arc domains.
J. Geom. Anal., 23(4):2091–2157, 2013. 6, 54

[MPT22] M. Mourgoglou, B. Poggi, and X. Tolsa, Lp-solvability of the Poisson-Dirichlet
problem and its applications to the regularity problem. Preprint, July 2022,
arXiv:2207.10554. ix, x, xv, xvi, 4, 6, 8, 53, 54

[MT22] M. Mourgoglou and X. Tolsa, The regularity problem for the Laplace equation in
rough domains. Preprint, February 2022, arXiv:2110.02205. ix, x, 16

[Sar75] D. Sarason, Functions of vanishing mean oscillation. Trans. Amer. Math. Soc. ,
207: 391–405, 1975. 2

[ST70] E. M. Stein. Singular Integrals and Differentiability Properties of Functions.
Princeton University Press, 1970. 43

[Tol] X. Tolsa, Analytic capacity, the Cauchy transform, and non-homogeneous
Calderón-Zygmund theory, volume 307 of Progress in Mathematics. Birkhäuser
Verlag, Basel, 2014. 29

[Var77] N. Th. Varopoulos, BMO functions and the ∂-equation. Pacific J. Math., 71(1):
221–273, 1977. iii, ix, x, xiii

[Var78] N. Th. Varopoulos, A remark on functions of bounded mean oscillation and
bounded harmonic functions. Addendum to: " BMO functions and the ∂-equation"
( Pacific J. Math. 71 (1977), no.1, 221–273). Pacific J. Math., 74(1): 257–259,
1978. ix, x, xiii

67


	Front page
	Contents
	Resumen de la tesis
	Introduction
	Related results

	Preliminaries and notation
	Preliminaries
	Function spaces
	Maximal operators and Carleson functionals
	Elliptic systems and Boundary value problems
	Geometry of domains
	Dyadic lattices
	The Whitney decomposition


	Regularized dyadic extension of functions on the boundary
	A Corona decomposition for functions in Lp or BMO 
	Lp and uniform -approximability of the regularized dyadic extension
	Varopoulos-type extensions of compactly supported Lipschitz functions
	Construction of Varopoulos-type extensions of Lp and BMO functions
	Applications to boundary value problems
	Some connections between Poisson Problems and Boundary Value Problems
	Conditional one-sided Rellich-type inequalities


	Appendix to Chapter 1
	Proof of Lemma 1.5

	Appendix to Chapter 6
	Proof of Lemma 6.1
	Proof of Lemma 6.2

	Bibliography

