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Abstract

A method for optimizing an automatic selection of values for parameters that feed

segmentation algorithms is proposed. Evolutionary optimization techniques in combi-

nation with a fitness function based on a mutual information parameter have been

used to find the optimal parameter values of region growing, fuzzy c-means and

graph cut segmentation algorithms. To validate the method, the segmentation of two

transmission electron microscopy tomography reconstructed volumes of a carbon

black-reinforced rubber and a polylactic acid and clay nanocomposite is carried out

(i) using evolutionary optimization techniques and (ii) manually by experts. The results

confirm that the use of evolutionary optimization techniques, such as genetic algo-

rithms, reduces the computational operation cost needed for a total grid search of

segmentation parameters, reducing the probability of reaching a false optimum, and

improving the segmentation quality.

Highlights

• A new approach to optimize 3D segmentation algorithms.

• Methodology to optimize segmentation parameters and improve segmentation quality.

• Improvement on the results when using region growing, fuzzy c-means and graph

cuts algorithms.
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INTRODUCTION

Quantitative microscopy characterization of material or biological

samples requires the segmentation of images (in 2D) or stacks of

images (in 3D). Usually, the quality and contrast in the images is fre-

quently poor, making it difficult to define the limits of an object, even

for an expert. For this reason, manual segmentations in most cases

are time-consuming and subjective. These problems worsen in
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transmission electron microscopy (TEM) tomographic reconstructions

(Frank, 2006), where the reconstruction process of the sample volume

creates artifacts that blur the images and change some of the dimen-

sions of the object, making it difficult to differentiate the object from

the background, even for an expert (Midgley et al., 2007;

Volkmann, 2010).

Due to this problem, image segmentation topic has been studied

over the last few years in different fields. Several algorithms have

been implemented to perform segmentation tasks in 2D images col-

lected within the area of artificial vision (Adams & Bischof, 1994;

Bezdek et al., 1993; Boykov et al., 2001). This area includes the seg-

mentation of 2D microscopy images, showing how in these images

the lack of sharpness of the acquired images complicates the segmen-

tation task. Different specific solutions for each type of characteriza-

tion problem have been proposed for different microscopy techniques

(Kan, 2017; Magliaro et al., 2019; Salahuddin & Qidwai, 2020) and

specifically for TEM micrographs (Cao et al., 2019; Groom et al., 2018;

Kotrbová et al., 2019).

Semiautomatic segmentation try to overcome these problems,

and during the last few years, several solutions have been proposed in

this sense. However in this type of segmentation, the process must be

guided by the user in several stages, and although quite accurate

results have been obtained, the process depends considerably on the

user subjectivity (Masubuchi et al., 2020; Mirzaei & Rafsanjani, 2017;

Oktay & Gurses, 2019). Semiautomatic segmentation algorithms usu-

ally require the selection of the value of one or more parameters that

feed the algorithm. Segmentation results for the same algorithm and

the image or stack of images can be much more precise if the optimal

parameter values are selected. However, the suitable parameter value

in every image or stack is not always evident or easy to determine.

Due to the inherent problems of the TEM tomographic recon-

struction technique mentioned above (low contrast, blurred images,

and artifacts) the intervention of an expert in the semiautomatic seg-

mentation process of this type of 3D image stacks gains more weight

and complexity. At the same time some other problems appear.

Checking all the possible parameter values to apply in the algorithm

by an expert is not affordable due to the high time interval of this pro-

cess. The number of possible options to evaluate in the case of 3D

image stacks is greatly increased compared a 2D image. The problem

is intensified even more when advanced algorithms are applied since

the computational cost increases considerably. And performing a com-

parison of segmentation results, usually based on a visual inspection,

after using different parameter values become a complex task and

sometimes difficult to evaluate. In the case of some algorithms, spe-

cific methods have been proposed that make it possible to determine

a suitable range of values or even a specific value of the parameters

that optimizes the result (Jing et al., 2014; Peng & Veksler, 2008; Yu

et al., 2004), though this is not always the case.

When the semiautomatic segmentation process is not performed

optimally, it is difficult to achieve a reliable quantitative result or to

compare results between different algorithms to choose the most

suitable one for each kind of image or image stack. The aim of this

work is to find a general methodology to overcome these problems,

that is, a methodology to perform the optimal segmentation determin-

ing the optimal parameter values of any segmentation algorithm

within a reasonable time interval.

The classical selection of the optimal values of these segmenta-

tion parameters frequently fails since the segmentation process has

many local optimums. To overcome these issues, there is a need to

extend further powerful optimization techniques to obtain the global

optimum (Aslam & Santhi, 2020). One of the most widely used optimi-

zation techniques is evolutionary optimization, since they usually cal-

culate an optimal solution in problems with multiple solutions,

assigning a fitness value to each solution, forming a ranking and gen-

erating a solution with a high probability of being around the correct

solutions in the population (Simon, 2013). These techniques have

been applied in several engineering applications to solve similar prob-

lems (Ant�onio & Hoffbauer, 2017; Lostado et al., 2012; Sanz-García

et al., 2012; Xiao et al., 2020). As well as in problems related to image

processing but far from the cases under study in this work, 3D TEM

tomographic reconstruction (Abdel-Khalek et al., 2017; Elaziz &

Lu, 2019; Hilali-Jaghdam et al., 2020).

In this work, these techniques have been used to determine the

optimal parameter values for three segmentation algorithms that have

been used to segment two stacks of images obtained by the TEM

tomography technique. The use of optimization techniques is consid-

ered necessary to work with stacks of images of considerable size,

since achieving the optimal parameter values for the most accurate

segmentation by performing a grid search through all points of the

stack can be immeasurable in terms of time consumption and compu-

tational cost. The proposed evolutionary optimization is based on

genetic algorithm (GA) techniques. The parameters that define the

segmentation process of each segmentation algorithm are utilized to

form the chromosome. These chromosomes define each individual of

each generation. The quality of each individual is evaluated through a

fitness function. The process is mainly focused on the mutation and

the crossover between individuals of different generations, where

only the individuals who obtain accurate segmentations can be part of

the next generation, while getting new generations that improve

results generation by generation (Simon, 2013). The selection of indi-

viduals of this evolutionary methodology is based on a fitness func-

tion that provides the value of a mutual information coefficient, MI

(Okariz et al., 2017). The segmentations with higher values of MI are

the segmentations with higher accuracies and, consequently, define

the individuals for the following generation.

And finally, in order to measure the computational cost that

allows analyzing the time interval necessary to achieve an optimal

segmentation, three techniques to select optimal segmentations are

compared: analysis of all possible combinations of each algorithm (grid

search), the search for the optimal values using GA (GA-based), and

search for the optimum by a semimanual segmentation (manual

segmentation).

Summarizing, the main idea of this work is to verify following the

proposed methodology (i) that the optimum values of segmentation

parameters of any algorithm can be obtained in an automatic way

improving the segmentation quality; (ii) that the time interval in
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comparison with the one required to check the whole space of possi-

bilities can be reduced; and (iii) that the results obtained improve the

quality of those obtained by experts using the same algorithm.

The results show that the GA-based optimization achieves the

best computational cost and segmentation accuracy ratio. The compu-

tational cost needed to find the optimal value is considerably reduced

in comparison with the cost needed to evaluate all possible combina-

tions according to the grid search process. In addition, the segmenta-

tion quality improves the manual segmentation results.

1 | MATERIALS AND METHODS

The most accurate segmentation defined by the optimum parameter

values of three segmentation algorithms for two different stacks of

images was performed by evolutionary optimization based on GA tech-

niques, as well as manually by experts. To evaluate the results, (i) the

time needed to perform the segmentation and (ii) the segmentation

quality is measured. This methodology is described in detail below.

1.1 | Stacks of images

The methodology proposed in this work has been evaluated in two

image stacks corresponding to the following TEM tomographic

reconstructions:

• Stack 1: a stack of gray images of a carbon black (CB) (N330)-

reinforced EPDM rubber. The stack dimensions are 182 � 164 � 182

px. The sample (10 phr of CB) was prepared in an internal mixer and a

cryo-microtome into 120 nm thick slices. The TEM tomography recon-

struction and some orthoslices are shown in Figure 1. The Fiji package

(Rueden et al., 2017; Schindelin et al., 2012) was used to visualize the

orthoslices. The reconstruction was calculated from images acquired in

a TEM operated in bright field mode (BF-TEM) with TOMO3D soft-

ware (Agulleiro & Fernandez, 2011). The tilted images were acquired

from �60� to 60� every 1� in an FEI Tecnai G2 20 TWIN microscope

at 200 kV, with a pixel size of 0.91 nm.

• Stack 2: a stack of gray images of a polylactic acid (PLA)/clay nano-

composite (details about the sample in Iturrondobeitia et al., 2017)

for TEM tomography reconstruction (Figure 2) calculated from

images acquired in TEM operated in BF-TEM mode with Inspect

3D software and the SIRT algorithm (five iterations). The stack

dimensions are 169 � 268 � 137 px. The tilted images were

acquired from �70� to 70� every 2� in a Zeiss EM 912 Omega

microscope at 120 kV, with a pixel size of 1.1 nm.

1.2 | Segmentation algorithms

The stacks of images have been segmented with three segmentation

algorithms implemented in MATLAB scripts (MATLAB, 2020): region

growing (RG) (Adams & Bischof, 1994), fuzzy c-means (FCM) (Bezdek

et al., 1984), and graph cuts (GC) (Boykov et al., 2001).

1.2.1 | Region growing

This is a clustering-based algorithm. Clustering is a process where

objects are classified in such a way that items in the same cluster are

as similar as possible, while items belonging to different clusters are as

dissimilar as possible. The RG algorithm examines neighboring pixels

of a selected initial seed point and determines whether the pixel

neighbors should be added to the region to which the seed belongs

according to similarity constraints (Adams & Bischof, 1994). The pro-

cess is iterative, and it is continued until all pixels belong to a region.

Each step of the algorithm involves the addition of one pixel to

one of the A1, A2, …, An sets defined for image segmentation. Let N xð Þ
be the set of immediate neighbors of pixel x. If we assume that N xð Þ
meets just one of the Ai, then we define i xð Þ� 1,2,…nf g to be that

index such that N xð Þ\Ai xð Þ≠ � and define δ xð Þ to be a measure of

how different x is from the region it adjoins. The simplest definition

for δ xð Þ is δ xð Þ¼ jg xð Þ�meany � Ai xð Þ g yð Þ½ �j, where g xð Þ is the gray value

of the image point x. If N xð Þ meets two or more of the Ai, i xð Þ is taken
to be a value of i such that N xð Þ meets A and δ xð ) is minimized. The

pixel with the smallest difference measured this way is allocated to

the region.

The suitable selection of seed points is a decisive factor in the

quality of the segmentation. In the algorithm implementation that has

been used in this work (Daniel, 2021), another two parameters must

be chosen: the maximum distance to the initial position and the abso-

lute threshold level to be included in the segmentation. The

F IGURE 1 TEM tomography reconstruction of a CB(N330)-
reinforced EPDM rubber (sample 1). The stack of the tomography
reconstruction and the orthoslices indicated in the volume are shown.
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optimization of the segmentation results for this algorithm requires

the appropriate selection of these three values (the coordinates of a

seed point, the maximum distance to the initial position and the

threshold) (Table 1). The range of these parameters must be delimited

to make the selection process of their optimum value possible by

using the method proposed in this work. All the pixels of the image

are eligible as seed points, and the threshold value range is the image

gray value range, that is, [0,250]. The maximum distance has been

estimated as the largest dimension of the object to be segmented in

all cases.

1.2.2 | Fuzzy c-means

The FCM algorithm is another clustering-based algorithm. In fuzzy

clustering, data points can potentially belong to multiple clusters, and

membership grades are assigned to each of the data points (tags).

Among the fuzzy clustering methods, the FCM algorithm is the most

popular method used in image segmentation because it has robust

characteristics for ambiguity (Bezdek et al., 1993).

This iterative clustering method produces an optimal c partition

of the image in different regions by minimizing the weighted within-

group sum of the squared error objective function JFCM (Equation 1)

(Bezdek et al., 1984).

JFCM ¼
Xn

k¼1

Xc

i¼1
uikð Þ2d2 xk ,við Þ, ð1Þ

where uik is calculated as shown in Equation (2).

uik ¼ 1
Pc

j¼1
dik
djk

� � 2
q�1ð Þ

, ð2Þ

where X¼ x1,x2,…,xn,f g⊆RP is the dataset in the p-dimensional vec-

tor space, n is the number of data items, c is the number of clusters

with 2 ≤ c< n, uik is the degree of membership of xk in the ith cluster, q

is a weighting exponent on each fuzzy membership, vi is the prototype

of the centre (the mean of all points, weighted by their degree of

belonging to the cluster) of cluster i, dik is the Euclidean distance

between xk and vi , and d2 xk ,við Þ is a distance measurement between

object xk and cluster centre vi.

In this work, the c number of clusters is two (object and back-

ground), and the q weighting exponent on each fuzzy membership must

be adjusted to find the best segmentation result. This weighting expo-

nent is a parameter that greatly influences the performance of the algo-

rithm, and some rules and algorithms have been proposed for selecting

it (Jing et al., 2014; Okeke & Karnieli, 2006; Yu et al., 2004) (Table 1).

The application of these rules and methods allows obtaining a possible

range of values for the exponent, but not with a specific value. In the

algorithm implementation that has been used (Semechko, 2021), this

weighting exponent has to be a minimum value of 1.1.

TABLE 1 Summary of the parameters that feed the segmentation algorithms.

Segmentation algorithm Parameter Brief definition

Region Growing (RG) Seed Coordinates of an initial point of the object

Threshold value Absolute threshold level to be included in the segmentation

Distance Maximum distance to the seed

Fuzzy c-Means (FCM) Weighting exponent Weighting exponent on each fuzzy membership

Graph Cuts (GC) Smoothing weight Smoothing factor of the boundaries between the object and background

Threshold value Absolute threshold level to be included in the segmentation

Note: Detailed information about the characteristics of the algorithms can be found in Adams and Bischof (1994) for RG, Bezdek et al. (1984) for FCM, and

Boykov and Kolmogorov (2004) for GC.

F IGURE 2 TEM tomography reconstruction of a PLA/clay
nanocomposite (sample 2). The stack of the tomography
reconstruction and the orthoslices indicated in the volume are shown.
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1.2.3 | Graph cuts

The GC algorithm is a combinatorial graph theory algorithm (Boykov

et al., 2001). Each pixel in an image is considered a node in a graph

and added to two terminal nodes connected to every pixel, named S

(source) and T (sink). Each of these two nodes would be associated

with an object or a background label. Once the graph is built, the

labelling of the pixels is carried out through a cut on the graph. This

cut will sever two types of links:

• t-links: a cut removes one of the two edges that connects a pixel

with a terminal S or T node, associating it this way to the object or

background class.

• n-links: a cut removes the links between pairs of pixels associated

with different terminals.

Boykov and Jolly (2001) defined the cut among all the possible solu-

tions using the max-flow min-cut theorem, which was originally formu-

lated on a flow network. This type of graph models a flow distribution

network from a source S to a sink T, where each edge is labeled with a

certain capacity. In the context of the GC, these capacities are called

weights or costs. The cost of n-links is determined by a function that only

penalizes neighboring pixels assigned to different labels, which take large

values when those pixels are similar. The cost of t-links is usually associ-

ated with a penalty that reflects how the pixel intensity fits into an esti-

mated model of the object or background. The flow that circulates

through this network must satisfy two constraints:

• Each edge in the graph has an associated capacity (cost) that limits

the maximum flow that can circulate through it.

• The sum of the flow entering a node must correspond to the sum

of the exit flow.

The weighting of the graph edges allows the definition of a cost

function E Að Þ that combines the defined weights given a certain label-

ling of the pixels and is represented by a binary vector A. We consider

an arbitrary set of data elements P and some neighborhood system

represented by a set N of all unordered pairs p,qf g of neighboring ele-

ments in P. The constraints imposed on the boundary and the region

properties of A are described by the cost function E Að Þ (Equation 3) as

follows:

E Að Þ¼ λR Að ÞþB Að Þ, ð3Þ
where

R Að Þ¼
X

pϵP

Rp Apð Þ

B Að Þ¼
X

p,qf gϵN
B p,qf g �δ Ap,Aqð Þ ð4Þ

and

δ Ap,Aqð Þ¼ 10 if Ap ≠Aq otherwise:f ð5Þ

The coefficient λ specifies the relative importance of the region

properties term R Að Þ versus the boundary properties term B Að Þ. Coef-
ficient B p,qf g should be interpreted as a penalty for a discontinuity

between p and q. The minimisation of this E Að Þ cost function corre-

sponds to the resulting labelling of the min-cut on the graph.

A MATLAB script is developed to implement this algorithm. In

this implementation two parameters must be adjusted: (a) a threshold

value to be included in the segmentation and (b) the smoothness

degree of the boundaries between the segmented regions (smoothing

weight) (Table 1). The gray range of the image stack ([0,250]) has been

considered the range of the threshold values with a [0,15] range for

the smoothing weight.

1.3 | Automatic segmentation: Optimization using
genetic algorithms

GA combined with the studied segmentation algorithms are selected

to obtain the optimum segmentation of 3D stacks of images. The main

idea of the GA is biological evolution. By applying replication, cross-

over, mutation and selection, the next generations of the population

are generated, evolving to solve the problem. This evolution is defined

by a fitness function (MI) that is used to eliminate individuals with

lower environmental adaptability to obtain the most suitable

offspring.

In this case, the parameters that define each individual are the

parameters that define each of the segmentation algorithms. The

values and the ranges of these parameters are obtained according to

the operation process of each segmentation algorithm, and they

determine the starting point of the optimization process. This process

is performed in six stages: population initialization, encoding/decod-

ing, evaluation, selection, crossover and mutation. A flow chart show-

ing how these six steps explain the GA methodology can be seen in

Figure 3. The specific steps that define the GA process are as follows.

• Population initialization: To generate an initial population with indi-

viduals formed by different properties, a random initialization of

each parameter value is performed to define the segmentation

algorithms, and subsequently, the individuals.

• Encoding/decoding: Each individual of the population is defined by

some characteristic information, in this case, the value of the main

parameters that define the segmentation algorithms. During the

encoding stage, this information is transformed into binary code

forming the chromosome that defines each individual (Figure 4).

During the decoding, the binary information of the chromosome is

transformed to obtain the information of the parameters that

define the segmentation algorithms. During these two stages, the

process is limited to values that are defined within the operating

range of the parameters of each segmentation algorithm.

• Evaluation: The segmentation algorithms, defined with a proper

parameter setting, must be evaluated using a fitness function. This

process determines which individuals of the studied generation

FERNANDEZ MARTINEZ ET AL. 1241
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provide more precise segmentations, and therefore, it can help to

select these elite individuals to be part of the next generation. In

this case, the fitness function to evaluate the solution domain is

defined by the MI function (see Section 2.5), which allows evaluat-

ing the quality of the performed segmentation.

• Selection: The individuals of the current generation who have per-

formed more accurately when evaluated by the fitness function

are selected to form the next population of possible solutions to

the problem. In this case, it was defined that 25% of individuals of

the next generation come from this selection process.

• Crossover: Recombination between chromosomes of two of the

parents that are part of the current generation allows the creation

of the new offspring. The portion of the chromosome that is taken

from each of the parents is defined by a random selection. This

selection is defined according to two positions and two lengths,

which select a random number of bits of the chromosomes of the

chosen parents to obtain offspring of future generations (Figure 3).

This selection makes it possible to create new offspring with part

of the chromosomes from both parents. In this case, it was defined

that 25% of individuals of the next generation come from this

crossover process.

• Mutation: The goal of applying mutations in this evolutionary pro-

cess is to generate diversity among the individuals of the popula-

tion. In this way, convergence in local minima is avoided. This

process selects a number of random bits at random positions on

the chromosome, flipping the value of the selected bits. In this

case, it was defined that 50% of individuals of the next generation

come from this mutation process. These mutations are performed

from 25% of the selected individuals and from 25% of the cross-

over individuals.

F IGURE 3 Flow chart that follows the GA methodology. Details of the crossover process based on the segmentation algorithm RG.

F IGURE 4 Encoding process
and generation of chromosomes
of an individual in the three
segmentation algorithms studied.
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Furthermore, during the process when any of the variables that

form the chromosome of new offspring are outside of the range of

admissible values, these offspring are removed from the population,

and the process is repeated until a complete generation is generated.

This automatic process is used for the optimization of the seg-

mentation of the two image stacks defined in Section 2.1. In both

cases, the population size per generation is set to 100 individuals for

the FCM and GC algorithms and 200 individuals for RG. The first gen-

eration is completely random, and the following generations maintain

the same population for each case. During the methodology adjust-

ment, the number of generations necessary to converge to a solution

is analyzed, finding the global optimum in each case. Initial tests are

carried out to evaluate the ratio between the improvement of the MI

coefficient and the computational cost of the process, concluding that

the number of generations to be used is 25 for the RG algorithm,

5 for the FCM algorithm and 15 for the GC algorithm.

1.4 | Manual segmentation

Manual segmentation depends on many factors: the software, the

methodology for selecting the parameters, the criteria for selecting

the final segmentation, and so forth. In addition, experts do not usu-

ally perform real manual segmentation; iterative or repetitive tasks are

usually performed semi-automatically using specific programs

designed for these tasks. In this work, a semiautomatic segmentation

process has been employed, that is, a process that resembles the

user's workflow in the segmentation operation and that only requires

the user's intervention to choose the initial set of parameter values to

test the segmentation algorithm. A specific script implemented in

MATLAB asks for these values, checks the segmentation results for

these parameters, refines the search for their optimal value and pro-

vides the final segmentation result in the same way as the user would.

The methodology for selecting the parameters is as follows:

the user selects a series of n initial values for the parameters

s1,s2,…,sn, and the corresponding n segmentations are calculated.

The segmentation quality is evaluated using the same fitness func-

tion, MI. The si segmentation parameter or set of parameters

with the highest value of the fitness function are then selected, and

the search is refined in the si,siþ1½ � interval. This refining process is

carried out by calculating the segmentations corresponding to

si�1þΔs,si�1þ2Δs,…,siþ1�2Δs,siþ1�Δs values, where Δs¼ siþ1�si
3 . In

case the same maximum is obtained for several parameter values, the

refining process is carried out in all the intervals centered on each of

them. The initial seed coordinates of the RG algorithm are the exception

to this issue, which remain unchanged. The quality of the segmentations

is again evaluated, and the process is repeated iteratively until the value

of the fitness function no longer increases. The final segmentation is the

segmentation with the highest fitness function value.

In Table 2, the initial parameter values used for the three segmen-

tation algorithms are shown. To select the initial threshold values, the

gray value profile is plotted along a straight line across the object. The

range of values corresponding to the transition area between the

object and the background is used as the threshold range. The initial

seeds used in RG are selected by an expert choosing pixels that clearly

belong to the object.

1.5 | Time interval and quality measurements

This work is focused on find an adequate ratio between the time

required to find the optimal segmentation solution and the precision

of this segmentation.

The requested time to find the optimal segmentation parameter

values (computational cost) is measured for GA-based optimization

and manual segmentation. Since testing all the possible combinations

would take too long, in the grid search optimization, this time has

been estimated from the mean times obtained during the application

of evolutionary computation. All computational cost measurements

are measured on the same server.

The segmentation accuracy is evaluated with the MI coefficient.

This coefficient has been previously used successfully by Okariz et al.

(2017) to segment TEM images. The MI coefficient (Cover &

Thomas, 1991; Shannon & Weaver, 1949) calculates the accuracy of a

segmentation comparing the original TEM images of a sample and

their corresponding Radon projections computed from different seg-

mentations (Equation 6).

MI¼
X

a,b

PAB a,bð Þ log PAB a,bð Þ
PA að ÞPB bð Þ , ð6Þ

where PA að Þ and PB bð Þ are the normalized marginal histograms of

images A and B, respectively PAB a,bð Þ is their joint histogram, and a

and b are the intensity values of a pair of voxels in images A and B

(Maes et al., 1997). Higher MI values indicate a larger reduction in

uncertainty (high match between images), and a 0 value means the

variables (images) are statistically independent.

Both the quality of all the segmentations and the fitness functions

for evaluating the GA evolution and the manual segmentation pro-

cesses have been measured based on this function, which is calculated

as follows:

• First, the segmentation of the stack of images of the tomographic

reconstruction is carried out with the chosen parameter values for

the selected segmentation algorithm.

• Then, the Radon transform of the segmented volume is calculated

to simulate the microscope image of the sample.

• Finally, the MI coefficient is calculated between the original TEM

image at 0� tilt and this Radon transform.

2 | RESULTS AND DISCUSSION

The validation of the proposed automatic methodology has been

based on the segmentation of the two image stacks described in

Section 2.1.
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2.1 | Stack 1: CB(N330)-reinforced EPDM rubber

For the first stack of images, the parameters that define the three seg-

mentation algorithms and their ranges are shown in Table 3. These

values must be defined in advance since determine the possible

options to perform a segmentation, and also the search space for the

optimal segmentation.

As previously mentioned, this search has been analyzed by three

ways (Grid search, GA-based, and manual) focused into obtain the opti-

mal segmentation of each of the studied image stack. In Table 4, the

computational cost or time interval required to choose the segmenta-

tion parameter values that leads to the optimal segmentation as well as

the number of cases that have been compared in the process are shown

for each algorithm. The results show that two of the optimization

methods (manual and GA-based) reduce the computational cost signifi-

cantly when it is compared with the grid search analysis, particularly in

the case of RG algorithm where its application is really time consuming.

It can be concluded, based on the results, that both the number

of analyzed cases and the time needed to obtain the optimal segmen-

tation are higher in the automatic evolutionary optimization technique

process than in the manual process, although the search is more

exhaustive in the first process. In this case, Figure 5 shows that high-

precision segmentations are reached based on MI results in a reduced

number of generations.

TABLE 2 Initial values of the
parameters that feed the segmentation
algorithms in the manual segmentation.Segmentation algorithm Parameter

Initial values selected by the user

Sample 1: CB Sample 2: PLA

RG Seed 5 seeds 4 seeds

Threshold value 75, 100, 125, 150 100, 150, 170, 200

FCM Weighting exponent 2, 3, 6, 12, 25, 50

GC Smoothing weight 0, 0.5, 1, 2, 4, 8, 15

Threshold value 75, 100, 125, 150 100, 150, 170, 200

TABLE 3 Segmentation parameters
design for stack 1 (CB).

Segmentation algorithm Variable Lower bound Upper bound Increment

RG Position X 1 181 1

Position Y 1 163 1

Position Z 1 181 1

Threshold value 0 255 1

Region size 10 100 1

FCM Weighting exponent 1.1 100 0.1

GC Smoothing weight 0 15 0.1

Threshold value 0 255 1

TABLE 4 Time interval to complete the segmentation process and the number of performed segmentations.

Segmentation algorithm

Computational time (minutes) Number of iterations

Grid search (estimation) GA (measured) Manual (measured) Grid search GA Manual

RG 728�109 28,350 590.35 128�109 5,000 41

FCM 227.47 115 0.50 989 500 13

GC 187,042.50 7,335 48.12 38,250 1,500 93

Note: Comparison between the three algorithms in study case 1 (Carbon black).

F IGURE 5 Evolution of the objective function (MI) during the GA
evolutionary process. Study case 1: Carbon black stack and RG
segmentation algorithm.
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Time reduction is not the only important aspect of this process;

the accuracy level of segmentation is also studied. Tables 5–7 show

the quality results, as well as the optimal parameter values for each

segmentation algorithm. The values of the fitness function (MI) are

higher for the GA-based optimization method for the three proposed

algorithms, especially for the GC algorithm.

In this case, where CB stack of images is analyzed, the GA-based

optimization algorithm improves the segmentation accuracy when the

three studied algorithms are applied. Moreover the computational

cost is not excessively higher in comparison with of the manual opti-

mization, especially when both are compared with the search process

based on the grid search analysis.

2.2 | Stack 2: PLA/clay nanocomposite

In a similar way than with the stack of images 1, Table 8 defines

the parameters than define the three segmentation algorithms

and their ranges. In addition, the same three methods to search

for the optimal segmentation are analyzed. Table 9 shows the

results for the computational cost and the number of performed

segmentations. As in the previous stack, it can be observed that

the computational time is considerably reduced in manual and

GA-based optimization methods in comparison with the grid

search analysis.

TABLE 5 Optimal parameters and segmentation quality
measurements (MI) for the RG algorithm according to the automatic
(GA-based) and manual optimization processes.

Position X Position Y Position Z Threshold MI

Manual 117 61 78 150 0.6876

GA 146 149 123 89 0.6997

Note: Study case 1.

TABLE 6 Optimal parameters and segmentation quality
measurements (MI) for the FCM algorithm according to the automatic
(GA-based) and manual optimization processes.

Weighting exponent MI

Manual 2 0.5235

GA 81.9 0.5300

Note: Study case 1.

TABLE 7 Optimal parameters and segmentation quality
measurements (MI) for the GC algorithm according to the automatic
(GA-based) and manual optimization processes.

Smoothing weight Threshold MI

Manual 0 75 0.3184

GA 0.1 100 0.7150

Note: Study case 1.

TABLE 8 Segmentation parameters
design for stack 2 (PLA/clay
nanocomposite).

Segmentation algorithm Variable Lower bound Upper bound Increment

RG Position X 1 154 1

Position Y 1 267 1

Position Z 1 181 1

Threshold value 0 255 1

Region size 10 100 1

FCM Weighting exponent 1.1 100 0.1

GC Smoothing weight 0 15 0.1

Threshold value 0 255 1

TABLE 9 Time interval to complete segmentation process and number of segmentations performed.

Segmentation algorithm

Computational time (minutes) Number of iterations

Grid search (estimation) GA (measured) Manual (measured) Grid search GA Manual

RG 178�109 32,050 9,913.17 1147�109 5,000 1,865

FCM 217.58 110 0.49 989 500 13

GC 182,070.00 7140 10.80 38,250 1,500 30

Note: Comparison between the three algorithms in the study case 2 (PLA/clay nanocomposite).

TABLE 10 Optimal parameters and segmentation quality measurements (MI) for the RG algorithm according to the automatic (GA-based) and
manual optimization processes.

Position X Position Y Position Z Threshold MI

Manual 188 51 60 58 0.6033

GA 94 115 86 44 0.6051

Note: Study case 2.
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As in the previous case, the optimal segmentations based on evo-

lutionary techniques obtain higher quality results than the manual seg-

mentations (Tables 10–12), although they require more time for the

calculations. Again, the segmentation accuracy is greater for the GA-

based optimization method and the three algorithms, especially with

the GC algorithm.

2.3 | Comparison of manual and automatic
segmentation methods

According to the previous results, it can be concluded that in both

stacks, the computational cost is lower in terms of the manual process

for the three algorithms (as was expected, since the number of per-

formed segmentations is lower) and that the segmentation quality is

higher in terms of the GA-based segmentation results.

Two examples of the segmentation results are shown in Figures 6

and 7. In Figure 6 (Stack 1: CB(N330)-reinforced EPDM rubber), a

substantial improvement is observed since the manual method does

not allow us to obtain coherent segmentation, while the GA-based

segmentation does obtain more precise segmentation. In Figure 7

(Stack 2: PLA/clay nanocomposite), it is observed that the improve-

ment is not evident from visual inspection, although once again, the

segmentation based on generic algorithms improves the manual seg-

mentation according to the MI fitness function.

TABLE 11 Optimal parameters and segmentation quality
measurements (MI) for the FCM algorithm according to the automatic
(GA-based) and manual optimization processes.

Weighting exponent MI

Manual 2 0.4568

GA 1.5 0.4633

Note: Study case 2.

TABLE 12 Optimal parameters and segmentation quality
measurements (MI) for the GC algorithm according to the automatic
(GA-based) and manual optimization processes.

Smoothing weight Threshold MI

Manual 0 100 0.0719

GA 2 166 0.7942

Note: Study case 2.

F IGURE 6 Details of the OXY central section of the two GC final segmentations of stack 1. The figure on the left corresponds to the result
obtained by manual selection of the segmentation parameters, and the figure on the right corresponds to the result obtained by GA. The central
image is the corresponding slice of the TEM tomographic reconstruction.

F IGURE 7 Detail of the OXY
central section of the two FCM
final segmentations of stack
2. The figure on the left
corresponds to the result
obtained by manual selection of
the segmentation parameters,
and the figure on the right
corresponds to the result
obtained by GA. The central
image is the corresponding slice
of the TEM tomographic
reconstruction.
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GA-based optimization requires a higher computational cost in

comparison with manual optimization. However, this computational

cost is acceptable considering (i) that both methods greatly reduce the

cost needed to perform a total grid search, especially when using RG

and GC segmentation methods, and (ii) that the obtained segmenta-

tion accuracy using GA improves manual segmentation in all cases.

Consequently, it can be concluded that GA-based optimization gener-

ates higher quality segmentations. In addition, this technique can be

applied to any other automatic segmentation algorithm to search for

the optimum segmentation parameters because it does not depend

on the specific algorithm used for segmentation. Only minor adjust-

ments should be made to use with another segmentation algorithm:

(i) the number of parameters to be analyzed and (ii) their respective

value ranges.

3 | CONCLUSIONS

Evolutionary optimization techniques based on GAs can be used to

evaluate segmentation algorithms in a more efficient way than a man-

ual evaluation because a larger number of parameter values can be

considered in an affordable time interval. In addition, the results cor-

roborate that the segmentation quality improves using a GA-based

optimization of segmentation parameters. These results not only vali-

date the method but also prove that an automatic optimization of seg-

mentation parameter values leads to more accurate segmentations

with an affordable computational cost, while avoiding the subjectivity

problems of manual segmentation procedures.
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