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A B S T R A C T

Natural Language Processing (NLP) based on new deep learning technology is contributing to the emergence
of powerful solutions that help healthcare providers and researchers discover valuable patterns within
insurmountable volumes of health records and scientific literature. Fundamental to the success of such solutions
is the processing of negation and speculation. The article addresses this problem with state-of-the-art deep
learning approaches from two perspectives: cue and scope labelling, and assertion classification. In light of the
real struggle to access clinical annotated data, the study (a) proposes a methodology to automatically convert
cue-scope annotations to assertion annotations; and (b) includes a range of scenarios with varying amounts
of training data and adversarial test examples. The results expose the clear advantage of Transformer-based
models in this regard, managing to overpass a series of baselines and the related work in the public corpus
NUBes of clinical Spanish text.
1. Introduction

Natural Language Processing (NLP) based on new deep learning
technology is contributing to the emergence of powerful informa-
tion extraction and retrieval solutions for healthcare providers and
researchers [1], for instance, to discover valuable patterns within the
ever increasing volumes of health records and scientific medical lit-
erature. Fundamental to the success of such solutions in the medical
domain is the processing of negation and speculation. This work fo-
cuses on the automatic detection of negation and speculation in health
records.

Negation is the universal linguistic phenomenon that reverses the
polarity of statements or clauses, most typically by the usage of words
like ‘‘no’’ or ‘‘not’’. Speculation has to do with modality. In this work
and the related studies, it is an umbrella term that refers broadly to
linguistic phenomena related to hedging, evidentiality, uncertainty, and
factuality [2]. To put it simply, we construe speculation as explicit
language that signals a speaker is unsure whether a statement is true
or lacks evidence to commit fully to it.

Several clinical corpora descriptions [3–8] report incidences of
negation and speculative language in, respectively, 10%–35% and 5%–
15% of the analysed sentences. That is, up to half the sentences of

∗ Corresponding author at: HiTZ Basque Center for Language Technologies, University of the Basque Country (UPV-EHU), Manuel Lardizabal Ibilbidea 1,
Donostia/San Sebastián, 20018, Spain.
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clinical narrative could potentially contain these type of linguistic con-
structs, which transform entirely the meaning of the texts they appear
in. Properly detecting and handling them is thus a crucial feature of
any NLP solution aimed at assisting the clinical practice through the
exploitation of clinical narrative.

The NLP community has proposed multiple models to represent the
problem of negation and speculation detection:

On the one hand, there is the task of detecting cues and scopes, the
constituent parts of negation and speculation, as pictured in Fig. 1.
Cues (also called markers or triggers) are words or phrases that express
negation or speculation. Scopes are the clauses affected by a cue, that
is, whose propositional values are somehow modified. The detection
of cues and/or scopes is usually addressed as a sequence labelling
problem. Some works focus exclusively on finding the scopes of given
pre-annotated cues; this task is known as negation and/or speculation
scope resolution.

The second common way of modelling negation and uncertainty
detection in the biomedical field is as a text classification task known as
assertion classification. In this case, the text to analyse is pre-annotated
with medical entities, whose assertion category – present, absent, or
possible – needs to be determined. The sentences of Fig. 1 are depicted
in Fig. 2 framed as entity assertion annotations.
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Fig. 1. Annotations of negation and speculation cues and scopes.

Fig. 2. Annotations of medical entities and their assertion category (see translations
in Fig. 1).

While the automatic processing of negation is a well-studied prob-
lem, the detection of speculation has received much less attention in
general. Furthermore, the vast majority of studies focus on English text,
as is usually the case [9,10]. Here, we address both the problems of
detecting negation and speculation. The study focuses in Spanish text
of the health domain through the public corpus NUBes [8]. Spanish
is the official language of 21 countries and the second most spoken
language in the world by number of native speakers (around 493
million), surpassing English [11]. Thus, accurately processing the large
volumes of digital health records in Spanish is of the most importance.
The specific contributions of our work are the following:

• Addressing the task of assertion classification (in addition to cue
and scope detection), which has not been tackled in Spanish
clinical text since the surge of deep learning in NLP. As a novelty,
we tackle both tasks through the same corpus. To that end, we
propose a series of steps to convert a corpus such as NUBes,
annotated with cues and scopes, to a corpus suitable for assertion
classification purposes.

• Exploiting a diverse set of Transformer models and Flair models
in both tasks, the performance of which we compare to baseline
results and related work. We manage to improve the state of
the art in the detection of cues and scopes in the NUBes corpus,
most markedly in regards with speculation, the most challenging
category.

• Analysing the performance of said models in a range of scenarios
of varying difficulty:

a) In addition to the overall performance a given model may
yield, being able to achieve competitive results with as
little data as possible is a most desirable trait, given that
clinical data is notably hard to obtain. For this reason,
we analyse the performance of the models with decreasing
2

amounts of training data, from thousands of examples
down to a few dozen.

b) It has been widely reported that a few negation markers
(e.g., ‘‘no’’ and ‘‘sin’’) are responsible for most of the
negation instances in Spanish free text [5,8,12,13]. While
previous studies on negation and uncertainty detection
report overall acceptable results in multiple scenarios and
datasets, it has not been studied how well predictive mod-
els perform specifically on the less frequent surface forms
of negation, which are equally important in real usage
scenarios.

• Providing a comprehensive survey of the related work and ex-
posing its lack of comparability. As is well-known, clinical NLP
suffers from a generalised impossibility to make data public due
to privacy issues, which is in itself the major impediment for
comparability. On top of that, there is a lack of consensus in pre-
vious related work regarding the evaluation metrics. To compare
ourselves to others, and to facilitate future comparisons, we report
our results following 3 distinct evaluation methodologies.

2. Background

Several survey articles report, particularly for English, on the re-
search of automatic negation and speculation processing [14–16]. In
the last years, the processing of negation in Spanish text has also
gained attention encouraged by the NEGES (Negation in Spanish) work-
shops [17,18] and the publications of several freely available corpora:
IULA-SCRC [7], SFU ReviewSP-NEG [19], NUBes [8], NewsCom [20],
and T-MexNeg [21], These corpora differ in text genre and domain, and
conform to divergent guidelines for string-level annotations of negation
cues, scopes and events. IULA-SCRC [7] and SFU ReviewSP-NEG [19]
are the most used in the literature, the former being from the clinical
domain and the latter from the product-reviews domain. NewsCom [20]
is a corpus of online comments posted in response to news articles,
and T-MexNeg [21] is made of tweets written in Mexican Spanish.
NUBes [8], curated from medical reports, is the only one that also
considers speculation along with negation.

Several approaches have been applied to the automatic process-
ing of negation and speculation in Spanish, including hand-crafted
heuristics, shallow machine learning and, more recently, deep learning.
Table 1 offers a summary of this work, which we present below;
of note, the table also exposes how fragmented this research field
is, the only comparable results being those pertaining to the NEGES
workshops [17,18] or having been authored by the same researchers.

The earliest related studies [22–26] consist of different adaptations
and/or extensions of NegEx [27] to the Spanish language. NegEx is
an algorithm originally based on English lexicons that categorises pre-
annotated medical entities as present or absent given the contexts the
entities occur in. These Spanish adaptations obtain F1-scores 0.64 to
0.78.

Koza et al. [28] worked on the recognition of negated medical
findings in radiological reports by means of rules based on morpho-
syntactic and semantic information. They report an F1-score of 0.98 on
an evaluation against their own private corpus, but acknowledge that
the test data set lacks variability in the negation structures it includes.

The task of recognising negated findings has also been undertaken
by Santiso et al. [29,30], but with machine learning techniques and
modelling the problem as a sequence labelling task. They first assess
Conditional Random Fields (CRFs) [31] over symbolic features and
features derived from word embeddings, achieving 0.82 and 0.75 span-
level F1-score (partial match) in IULA-SCRC [7] and their private
corpus IxaMed-GS [32], respectively. Next, they implement a Recur-
rent Neural Network (RNN) featuring character embeddings, bidirec-
tional Long Short-Term Memory (bi-LSTM) layers and a CRFs classifier,
surpassing their previous results on IxaMed-GS.
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Table 1
Literature review on negation and uncertainty detection in Spanish text. *SEM 2012 F1 is the evaluation metric proposed by Morante and Blanco [39] for the *SEM 2012 shared
task on resolving the scope and focus and negation. ZS stands for zero-shot performance. Notice that scores are only comparable if they result from the same evaluation corpus,
task and metric. An extensive discussion of the different evaluation metrics can be consulted in Sineva et al. [40].

Evaluation corpus Ref Task System Metric Score

SFU ReviewSP-NEG [19] [33] neg cue detection CRF *SEM 2012 F1 0.86
[34] neg cue detection bi-LSTM *SEM 2012 F1 0.68
[35] neg cue detection bi-LSTM *SEM 2012 F1 0.83
[36] neg cue detection CRF *SEM 2012 F1 0.84
[37] neg cue detection CRF *SEM 2012 F1 0.81
[38] neg cue detection bi-GRU *SEM 2012 F1 0.23
[41] neg cue detection CRF *SEM 2012 F1 0.87
" neg scope resolution CRF *SEM 2012 F1 0.81
[42] neg scope resolution Transformer (ZS) token F1 0.78
[43] neg scope resolution Transformer (ZS) token F1 0.79
[44] neg cue and scope detection Transformer *SEM 2012 F1 0.88

IULA-SCRC [7] [45] neg scope resolution Transformer (ZS) *SEM 2012 F1 0.94
[26] neg cue and scope detection Rules sentence F1 0.92
[44] neg cue and scope detection bi-LSTM + CRF CoNLL-2010 scope F1 0.85
[29] negated entity detection CRF inexact span F1 0.82
[46] neg scope detection Transformer BIO-weighted token F1 0.88

NUBes [8] [45] neg scope resolution Transformer (ZS) *SEM 2012 F1 0.90
[8] neg cue detection bi-LSTM + CRF token F1 0.96
" unc cue detection bi-LSTM + CRF token F1 0.85
" neg scope detection bi-LSTM + CRF token F1 0.91
" unc scope detection bi-LSTM + CRF token F1 0.79
[46] neg cue detection Transformer BIO-weighted token F1 0.95
" unc cue detection Transformer BIO-weighted token F1 0.84
" neg scope detection Transformer BIO-weighted token F1 0.88
" unc scope detection Transformer BIO-weighted token F1 0.72

Private corpora [22] assertion classification Rules F1 0.74
[23] assertion classification Rules F1 0.67
[28] negated entity detection Rules sentence F1 0.98
[24] negated entity detection CRF + Rules inexact span F1 0.74
[29] negated entity detection CRF inexact span F1 0.75
[30] negated entity detection bi-LSTM + CRF inexact span F1 0.82
[46] neg cue detection Transformer (ZS) BIO-weighted token F1 0.90
" unc cue detection Transformer (ZS) BIO-weighted token F1 0.81
" neg scope detection Transformer (ZS) BIO-weighted token F1 0.84
" unc scope detection Transformer (ZS) BIO-weighted token F1 0.74
Systems based on CRFs and bi-LSTMs were also the most popular
mong the participants of the shared task about negation cue detec-
ion in the NEGES workshops [33–38]. The corpus provided in both
orkshop editions to train and test the competing systems was SFU
eviewSP-NEG [19]. The best overall results (0.86 span-level F1-score)
ere obtained by Loharja et al. [33] with a CRFs classifier over lexical
nd morphological features.

The organisers of NEGES implemented another CRFs classifier im-
roving the state of the art on negation cue detection in SFU ReviewSP-

NEG with an F1-score of 0.87 [41]. This is also the first work in the
literature that tackles the problem of negation scope resolution along
with cue detection in Spanish text. Specifically, they follow a 2-stage
setup with two separate classifiers, where the first detects cues, whose
scopes are determined by the second. The classifier of scopes yields
F1-scores of 0.81 and 0.73 with gold and predicted cues as input,
respectively.

In view of the across-the-board success of the Transformer archi-
tecture [47] and the availability of pre-trained neural language models
steadily increasing in number and size, the focus of works about nega-
tion detection has recently shifted towards studying how these large
pre-trained language models behave and what advantages they offer.

Rivera Zavala and Martínez [44] compare a RNN-based classifier
and a Transformer-based classifier in the task of negation cue detection
and scope resolution in the corpora IULA and SFU ReviewSP-NEG. The
RNN classifier combines character, word and sense embeddings as input
to a bi-LSTM network, whose output is fed to a CRFs classifier. The
BERT-based system follows the conventional setup of a pre-trained
language model (Multilingual BERT o mBERT2) with a softmax output

2 https://github.com/google-research/bert/blob/master/multilingual.md
3

layer. Both systems tackle the problem of cue and scope detection
jointly. They achieve 0.81 and 0.85 token-level F1-score with BERT and
the RNN, respectively, in the IULA-SCRC corpus. In SFU ReviewSP-NEG,
the results are 0.92 and 0.88.

Shaitarova et al. [42], Shaitarova and Rinaldi [43] explore the trans-
ferability of negation scope resolution models between the languages
English, French, Spanish and Russian. Their work is built on Neg-
BERT [48], a system originally built for English that performs negation
cue detection and scope resolution in a 2-stage fashion using BERT.
These works adapt NegBERT to the cross-lingual setting by replacing
BERT with mBERT and XLM-RobERTa [49]. They achieve token-level
F1-scores ∼0.78 when zero-shot testing English and French models
on the SFU ReviewSP-NEG corpus, with XLM-RobERTa outperforming
mBERT by a narrow margin.

Hartmann and Søgaard [45] also study zero-shot cross-lingual trans-
fer approaches for negation scope resolution. Specifically, they explore
how to best exploit disparate available datasets (in their work, multiple
datasets in English) to overcome the lack of training data on the target
languages (here, Spanish). They propose the application of a Multi-Task
Deep Neural Network (MT-DNN) [50], where each dataset available for
training is treated as an independent task. This approach is compared to
the simple concatenation of the training datasets, which they find works
slightly better overall when evaluated in IULA-SCRC [7] and NUBes [8],
among others. They report *SEM 2012 scope token F1-scores [39] of
0.94 and 0.90 in these datasets, respectively.

Notably, the processing of speculation is yet to be thoroughly ad-
dressed in Spanish text (clinical or otherwise). This task is consider-
ably more challenging than the detection of negation cues and scopes
[3,8,46,51], due the context-dependent subtlety, lexical variety, and

gradation of cues for uncertainty, which are also less frequent than

https://github.com/google-research/bert/blob/master/multilingual.md
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Fig. 3. Experimentation flowchart, starting from the NUBes corpus, on cue and scope labelling (Task A) and assertion classification (Task B).
negation. Lima-López et al. [8] report the first exploratory experiments
with the NUBes corpus using the biLSTM + CRF architecture over a
rich set of morphosyntatic and lexical features. This work has recently
been extended to incorporate the first published experiments with a
Transformer-based model on the NUBes corpus [46], achieving similar
results to Lima-López et al. [8].

In this work, we test on NUBes the latest and more competitive
neural language models for Spanish. We compare them to multiple
baselines and the related work [8,45,46], which we manage to overpass
in the setting of supervised negation and uncertainty cue and scope
detection. In order to be able to compare ourselves with these works,
we report our results in the various corresponding metrics. Most in-
terestingly, we use the NUBes corpus to study the task of assertion
classification as well, which has not been tackled in Spanish clinical
text since the surge of deep learning in NLP.

3. Materials and methods

This article describes two sets of parallel experiments on the detec-
tion of negation and speculation:

• Task A: cue and scope detection (introduced in Fig. 1), framed as
a sequence labelling problem.

• Task B: assertion classification (Fig. 2), framed as a text classifi-
cation problem.

In each case, a series of systems are fine-tuned, trained or adapted
with the training set of the NUBes corpus [8], to be next evalu-
ated against the testing set of the same corpus. That is, we focus on
supervised techniques and report in-domain results.

In addition, we assess the data requirements of the models by ob-
serving their learning curves, that is, by training or fine-tuning them on
4

decreasing amounts of data. This is particularly relevant in the medical
domain, where accessing clinical narrative, annotated or otherwise, is
generally problematic.

Furthermore, the above mentioned evaluations include two testing
sets, henceforth referred to as Full and Adv (from ‘‘adversarial’’). As is
explained in detail below, Adv contains exclusively the less common
surface forms of negation and speculation, while Full is a regular
random sample of NUBes.

The accompanying flowchart (Fig. 3) visually outlines the various
stages of this experimentation process. In the upcoming subsections,
we will delve into the specifics of the training and test data, elaborate
on the evaluated systems (with architectures, implementation, and
training specifics), and finally, outline the performance metrics used
to measure the models’ performance.

3.1. Data

The experiments are conducted with the NUBes corpus [8]. It con-
sists of a collection of sentences extracted from anonymous Spanish
clinical records and manually annotated with negation and uncertainty
cues and their scopes. That is, originally, this corpus is meant to be
used for Task A. The next section describes the corpus as is, while
Section 3.1.2 explains how we generated a new corpus from NUBes for
the assertion classification experiments (Task B).

3.1.1. Data of Task A: cue and scope detection
For this set of experiments we use the original train, development

and testing splits of the NUBes corpus,3 which already come tokenised
and tagged with 4 types of entities:

3 https://github.com/Vicomtech/NUBes-negation-uncertainty-biomedical-
corpus

https://github.com/Vicomtech/NUBes-negation-uncertainty-biomedical-corpus
https://github.com/Vicomtech/NUBes-negation-uncertainty-biomedical-corpus
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Table 2
Size of the corpus for Task A – cue and scope detection.

Train Dev Test

Full Adv

Sentences 13,802 1,840 2,762 1,838
with negation 5,265 694 1,041 240
with uncertainty 1,272 162 249 206
with both 364 64 91 11

Negation cue (NC) 6,976 919 1,423 265
Negation scope (NS) 6,379 847 1,322 233
Uncertainty cue (UC) 1,866 263 400 251
Uncertainty scope (US) 1,886 260 400 249
Total 17,107 2,289 3,545 998

Table 3
Cues with relative frequency > 2% on the train set of Task A.

Type # % C%

‘‘no’’ negation 3,046 34.35 34.35
‘‘sin’’ negation 1,820 20.53 54.88
‘‘probable’’ uncertainty 264 2.98 57.86
‘‘afebril’’ negation 190 2.14 60.00
‘‘asintomático’’ negation 187 2.11 62.11

• NC: negation cue,
• NS: negation scope,
• UC: uncertainty cue, and
• US: uncertainty scope.

The NUBes annotations follow the BIO scheme [52], in which B
marks the beginning of a span, while the subsequent tokens of the span
receive the tag I (from ‘‘in’’) and tokens that do not belong to any span
are marked with O (‘‘out’’). This setting yields a total of 9 possible tags
per token. The sentences of Fig. 1 would be encoded as follows with
the presented tagset:

(3.1). From Fig. 1(a):
CyC . . . . . . . . . . . . . . . . . . . . . . . . . . .O
: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .O
Rigidez . . . . . . . . . . . . . . . . . . . . . . . .O
de . . . . . . . . . . . . . . . . . . . . . . . . . . . . O
nuca . . . . . . . . . . . . . . . . . . . . . . . . . . O
, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .O
no . . . . . . . . . . . . . . . . . . . . . . . .B-NC
ingurgitación . . . . . . . . . . . . . .B-NS
yugular . . . . . . . . . . . . . . . . . . . I-NS
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . O

(3.2). From Fig. 1(b):
Los . . . . . . . . . . . . . . . . . . . . . . . . . . . O
hallazgos . . . . . . . . . . . . . . . . . . . . . .O
descritos . . . . . . . . . . . . . . . . . . . . . . O
son . . . . . . . . . . . . . . . . . . . . . . . . . . . O
sugestivos . . . . . . . . . . . . . . . . .B-UC
de . . . . . . . . . . . . . . . . . . . . . . . .I-UC
pielonefritis . . . . . . . . . . . . . . . B-US
aguda . . . . . . . . . . . . . . . . . . . . I-US
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . O

The total size of each data split can be consulted in Table 2. To
compute the train curves, we create increasingly smaller training data
subsets by randomly extracting 1/3 of the examples for 5 iterations, for
a total of 6 decremental training datasets (see Appendix A).

To create the difficult or adversarial test data set, Adv, we remove
from the original test data set (Full) the examples that contain frequent
egation or speculation cues, being frequent any cue with relative
requency in the training set higher than 2%, which together constitute
2.11% of the cues (see Table 3). That is, Adv is a subset of the regular

test set.
As can be seen, negation instances are more than thrice more likely

to occur than speculation in this corpus; furthermore, speculation cues
are lexically more variable, as evidenced by the smaller drop from the
regular to the difficult test set.

3.1.2. Data of Task B: assertion classification
In the task of assertion classification, each instance consists of the

medical entity to be classified presented in context. The categories of
5

the task are the following: m
• absent or abs: negated medical entity,
• possible or pos: uncertain medical entity, and
• present or pre: positive medical entity.

From the examples in Fig. 2, we would get the following instances
(one per medical entity):

(3.3). CyC: <e>Rigidez de nuca</e>, no ingurgitación yugular. pre

(3.4). CyC: Rigidez de nuca, no <e>ingurgitación yugular</e>. abs

(3.5). Los hallazgos [...] sugestivos de <e>pielonefritis aguda</e>. pos

(3.6). <e>Tumoraciones faciales</e> en paciente [...] . . . . . . . . .pre

(3.7). [...] en paciente <e>transplantada hepatica</e> . . . . . . . pre

At the moment of executing the experiments described here, there is
no publicly available dataset in Spanish annotated with medical entities
and their assertion category. Thus, in order to conduct this experiment,
we automatically construct a new corpus from NUBes, with the help
of the original cue, scope and entity annotations.4 The transformation
process is as follows:

First, we automatically annotate the entire corpus with medical
entities. To that end we exploit UMLSmapper [53,54], a tool for an-
notating medical entities in Spanish texts and linking them to the
UMLS Metathesaurus [55]. Specifically, we annotate mentions of the
following types of entities: clinical findings and disorders, procedures,
chemicals and drugs, physiological phenomena, and some living beings
(namely viruses, bacteria, and fungi).5

Then, we automatically assign the categories absent, possible
or present to each annotated entity depending on whether they occur
within the scope of a negation cue, an speculation cue or neither,
respectively.

To be specific, however, not all the entities that fall within the scope
of a negation or speculation cue are directly affected by it. Consider
the sentence in Fig. 4. While ‘‘secuela quirurgica’’ is a clinical finding
under the scope of an uncertainty cue, the speculation is rather about
the facial paresis than the surgical sequelae or the relation of the former
to the latter. NUBes comes with manual annotations of entities, but only
of those most prominently affected by the corresponding cue. Based on
this information, we remove the entities that fall within the scope of
a cue but that do not overlap with a manually annotated entity in the
cases there is one. This way, we avoid incorrectly annotating as negated
or uncertain entities such as ‘‘secuela quirurgica’’ in Fig. 4.

Even then, we have manually revised the testing portion of the
dataset, which allows us, on the one hand, to measure the validity of
the proposed data conversion and, on the other hand, to ensure the
reliability of the reported results and conclusions drawn therefrom. The
manual revision led to correcting the assertion category of 38 instances
and removing 7 instances out of the 2,474 revised examples.

Finally, each annotated entity must be converted to the text clas-
sification format presented earlier (see Example 3.3 to 3.7). The two
entity annotations in Fig. 4(c) would yield the following instances:

(3.8). En la <e>EF</e> parece apreciarse una paresia facial [...] pre

4 The resulting dataset can be found at the NUBes repository.
5 The classification of types is given by the UMLS semantic groups [56].

otice that we do not care about the correctness of the UMLS links established
y UMLSmapper nor of the entity types assigned thereof, which we simply use
o filter the annotations. The task the classification models need to learn is to
stablish a relation between the entity and the context it occurs in, in order to
mit a prediction regarding whether the entity is present, absent, or possible.
he type of the entity (disorder, drug, and so on) is irrelevant to the task, even

ore so its link to the UMLS Metathesaurus.
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Fig. 4. Steps to transform a NUBes instance for the entity classification corpus.
Translation: ‘‘In the P[hysical] E[xamination], a peripheral right facial paresis is
seemingly noticed in relation to surgical sequelae’’..

Table 4
Size of the corpus for Task B – assertion classification.

Train Dev Test

Full Adv Man

negated 2,399 331 460 95 973
uncertain 1,001 140 197 125 327
present 8,708 1,188 1,810 1,287 0
out-of-scope 3,912 534 818 295 0
from assertion 4,796 654 992 992 0
Total 12,108 1,659 2,467 1,507 1,300

(3.9). En la EF parece apreciarse una <e>paresia facial</e> [...] pos

In this experiment set, we also work with the original training,
development and test splits of the NUBes corpus, as in [8]. The resulting
dataset is described quantitatively in Table 4. We applied the same
methodology as for Task A to generate incremental training subsets
(1∕1 through 1∕35) and the more difficult testing set, Adv, as explained
in the previous Section 3.1.1.

In addition, Task B also exploits the original entity annotations of
the NUBes corpus, that is, the manual (Man) annotations of entities.
This test set is simply added for the sake of completeness, although it
does not include present annotations—which is why the corpus had
to be automatically re-annotated.

Of note, Table 4 breaks down examples of present findings into
two categories: out-of-scope and from assertion. The former are examples
of entities mentioned in the context of a negation or speculation cue,
but that are not affected by it (e.g., ‘‘EF’’ in Fig. 4(c)); the latter
are examples generated from sentences without negation nor uncer-
tainty. Without out-of-scope examples, the models would simply learn
to detect the presence or absence of negation and uncertainty cues,
regardless of whether they affect or not the target entity to be classified.

3.2. Systems

Cue and scope detection (Task A) has been framed as a sequence
labelling problem. The trained sequence labellers learn to detect jointly
the 4 span types as a single task, emitting for each input token one of
the 9 defined labels (see Section 3.1.1). On the other hand, assertion
classification (Task B) is a text classification task, where each medi-
cal entity whose assertion status needs to be predicted is presented
in context one by one to the systems (see Examples 3.8 and 3.9).
Each experiment set involves a baseline system, a Flair-based sys-
tem and several Transformer-based systems, which we present below.
Implementation details are given at the end of the section.
6

3.2.1. NCRF++
The baseline for cue and scope detection (Task A) was set by Lima-

López et al. [8] with the NCRF++ [57] sequence tagger. In few words,
the system consists of a Convolutional Neural Network (CNN) layer for
character sequence representations, which are concatenated to word
and feature embeddings, then fed to a bi-LSTM layer and an output
CRF layer. The character, word, and feature embeddings are initialised
randomly and trained on the given corpus. Here, we report the results
of the best variant produced by Lima-López et al. [8], which operates on
a set of lexical and morpho-syntactic features automatically extracted
from the input text.

3.2.2. NegEx
As is customary in assertion classification, the NegEx [27] system

serves as a baseline in our experiments of Task B. NegEx is a rule-based
system that leverages hand-crafted lexicons in order to determine the
assertion categories of the given entities.

The lexicons define 4 types of words or expressions: conjunctions,
pseudo-negation cues, negation cues and speculation cues. The first two
are used to find the boundaries of scopes and to discard false cues,
respectively. Negation and speculation cues are further divided into
two groups each, depending on whether they precede (PRE) or follow
(POST) their scopes.

Although NegEx has been adapted to Spanish in several occasions
(see Section 2), only one adaptation is publicly available [25]. Unfor-
tunately, it does not consider speculation. Thus, we use the original
NegEx Python implementation6 with cues automatically extracted from
our training data sets. The categories of the cues (PRE or POST) are
automatically determined by choosing the most frequent position in
the corpus.7 The conjunction and pseudo-negation lexicons have been
taken from Santamaría [25] as is.

3.2.3. Flair
Flair is a NLP Python framework [58] that features a specific

type of character-based contextualised word embeddings of the same
name [59]. Here we train Flair’s sequence tagger for Task A and
text classifier for Task B following the official documentation recipes,8
which we explain briefly below.

Both architectures have in common the input embedding mecha-
nism: we use Flair’s pre-trained embeddings for Spanish (es-forward
and es-backward) in combination with the fastText embeddings [60]
Biomedical Word Embeddings for Spanish9 (BWES) [61]. Both are
updated during training.

Then, the sequence tagger passes the embeddings to a bi-LSTM layer
and an output CRF layer. In short, the main differences of this system
with respect to the baseline sequence labeller are that (a) it uses pre-
trained contextual character embeddings instead of static embeddings
trained from scratch, and (b) it starts off with language and domain
knowledge.

In the case of the text classifier, the computed embeddings are
fed into a Gated Recurrent Unit (GRU) layer to produce a document
level representation, which is then passed to a classification layer to
make the assertion category prediction. A simplified diagram of the
Flair-based text classifier for Task B is shown in Fig. 5.

6 https://github.com/chapmanbe/negex
7 PRE and POST lexicons are also available at the NUBes repository.
8 https://github.com/flairNLP/flair/tree/master/resources/docs
9 https://github.com/TeMU-BSC/Embeddings (v2.0, Skip-gram,

SciELO+Wiki, uncased)

https://github.com/chapmanbe/negex
https://github.com/flairNLP/flair/tree/master/resources/docs
https://github.com/TeMU-BSC/Embeddings
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Fig. 5. Diagram of the Flair-based assertion classifier. S (sequence length); H1 = 128
r 256 (Flair embedding size); H2 = 300 (fastText embedding size).

.2.4. Transformer
The bulk of the experimentation involves Transformer [47] models.

t includes a diverse set of BERT- [62] and RoBERTa-like [63] pre-
rained language models, both monolingual and multilingual, as well as
eneral-purpose and domain-specific. Further, each of the selected pre-
rained language models serves to train a sequence tagger and a text
lassifier for Task A and Task B, respectively. We used HuggingFace’s
rainer implementations,10 which we explain briefly below.

The architecture of the sequence tagger follows the standard layer
tack: the BERT encoder is followed by a dropout layer and one
lassification head consisting of a linear transformation layer, which
mits the logits per token for the 9 possible categories. The models
re trained on the cross-entropy loss of the classification head over
he first subword of each input token. For inference, the label with
he maximum probability is chosen for each token after applying the
oftmax function to the logits. Subwords in suffix positions are ignored,
hat is, the label for each token is assigned from the prediction for
he first subword. Fig. 6 illustrates this architecture with a simplified
iagram.

As for the text classification architecture, it differs from the se-
uence tagger in that the classifier head is fed the pooled output of
he encoder. The pooled output is computed over the special token at
he beginning of each sequence (i.e., BERT’s [CLS] and RoBERTa’s
s>) by passing its embeddings to a dense linear layer and a tanh
ctivation function. The result is then fed to a dropout layer and the
inal dense linear layer, which outputs the logits for the 3 assertion
ategories. For this task, we added the special tokens <e> and </e>,

which mark the start and end of the medical entity, to the vocabularies
of the pre-trained models.

The full list of tested pre-trained models can be consulted in Table 5.
Table 6 describes those models in terms of their vocabulary overlap
with NUBes. For comparison purposes, the same table reports the
vocabulary overlap with SFU ReviewSP-NEG [19], a corpus of product
reviews in Spanish. As can be seen, the greatest vocabulary coverage,
provided by SpanBERTa, is 28.47%. That is, 28.47% of the set of words
occurring in NUBes have their own embedding. When weighted by
word frequency, the coverage rises to 69.67% of the corpus (ignoring

10 https://github.com/huggingface/transformers/blob/main/examples/
ytorch
7

Fig. 6. Diagram of the BERT-based cue and scope tagger. SO (original sequence length);
SB = 220 (sequence length after BERT tokenisation and padding); H = 768 (BERT
embedding size); C = 9 (number of output labels).

stopwords). The worst model in this regard is, unsurprisingly, SciB-
ERT [66]—a monolingual English model—, with just 6.02% vocabulary
overlap with NUBes.

3.2.5. Implementation and training setup
We have optimised some hyperparameters of the Transformer vari-

ants and Flair in each task and training data subset with 25 trials each.
The Transformer models have been implemented with HugginFace’s
transformers Python library [69] and optimised using Ray’s tune
Python library [70]. In the case of Flair, the Python library comes
with a wrapper11 of Hyperopt [71] for hyperparameter optimisation.
In each case, the trial with the best F1-score on the development data
set has been used to compute the results on the testing data sets. The
hyperparameter search spaces are reported in Appendix B.

As for the baseline systems, in the case of NegEx, we compute the
learning curve by extracting the negation and speculation cues only
from the corresponding training data subset at each point. The NCRF++
tagger is the same as that described by Lima-López et al. [8]. We also
include its hyperparemeter setup in Appendix B for convenience.

3.3. Evaluation

Both tasks are evaluated in terms of F1-score (𝐹1), the harmonic
mean of Precision (𝑃 ) and Recall (𝑅):

𝑃 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑃

𝑅 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁

𝐹1 = 2 ⋅ 𝑃 ⋅ 𝑅
𝑃 + 𝑅

(1)

where the true positives (TP), false positives (FP) and false negatives
(FN) are defined differently for each task, as explained below. The
three metrics reach their best value at 1. Intuitively, Recall measures
how many gold instances have been correctly predicted, while Precision
measures how correct the predictions made are.

In the case of negation and uncertainty cue and scope detection
(Task A), we report strict span-level metrics as computed by the pub-
licly available, open-source Python library seqeval.12 The token-level

11 https://github.com/flairNLP/flair/blob/master/resources/docs/
TUTORIAL_8_MODEL_OPTIMIZATION.md

12 https://github.com/chakki-works/seqeval.

https://github.com/huggingface/transformers/blob/main/examples/pytorch
https://github.com/huggingface/transformers/blob/main/examples/pytorch
https://github.com/flairNLP/flair/blob/master/resources/docs/TUTORIAL_8_MODEL_OPTIMIZATION.md
https://github.com/flairNLP/flair/blob/master/resources/docs/TUTORIAL_8_MODEL_OPTIMIZATION.md
https://github.com/chakki-works/seqeval
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Table 5
Pre-trained language models tested in the experimentation.

Language Domain Corpus Params Vocabulary

BERTs BETO𝐵𝑎𝑠𝑒 Cased [64] es generic Spanish Corporaa 110M 31,002
mBERT𝐵𝑎𝑠𝑒 Casedb multi (104) generic Wikipedia 178M 119,547
IXAmBERT𝐵𝑎𝑠𝑒 Cased [65] es, en, eu generic Wikipedia 178M 119,101
SciBERT𝑠𝑐𝑖𝑣𝑜𝑐𝑎𝑏 Cased [66] en scientific Semantic Scholar 110M 31,116

RoBERTas SpanBERTa𝐵𝑎𝑠𝑒 Casedc es generic OSCAR [67] 125M 50,265
MarIA RoBERTa𝐵𝑎𝑠𝑒 BNE [68] es generic BNE selective crawlsd 125M 50,262
XLM-RoBERTa𝐵𝑎𝑠𝑒 [49] multi (100) generic Common Crawl 278M 250,002

a https://github.com/josecannete/spanish-corpora.
b https://github.com/google-research/bert/blob/master/multilingual.md.
c https://github.com/chriskhanhtran/spanish-bert.
d http://www.bne.es/en/Colecciones/ArchivoWeb/Subcolecciones/selectivas.html.
.

Table 6
Vocabulary coverage by the pre-trained language models. unk is the percentage of
unique words in the corpus for which the tokenizer yielded the special token [UNK]
(or analogous). sha is the percentage of unique words in the corpus that is covered by
the vocabulary. wsh is the percentage of all the words in the corpus (i.e., frequency
weighted unique words) that is covered by the vocabulary, after removing stopwords.
The models are shown by weighted coverage in the NUBes corpus in descending order

NUBes SFU ReviewSP-NEG

unk sha wsh unk sha wsh

SpanBERTa 0.00 28.47 69.67 0.00 55.44 86.47
IXAmBERT 0.73 25.63 66.84 0.55 49.10 79.41
BETO 0.78 21.72 62.25 0.30 41.05 77.12
MarIA 0.00 26.17 51.71 0.00 51.42 63.13
mBERT 0.00 12.97 50.56 0.04 25.32 63.75
XLM-R 0.00 14.40 38.68 0.00 26.00 49.65
SciBERT 0.24 6.02 29.93 0.11 7.99 33.12

predictions are first converted to span-level predictions, that is, the
BIO tags are interpreted to obtain predictions consisting of a span
boundaries (offset and end) and the predicted category for the span.
Then, TP, FP and FN are computed per category 𝑐 ∈ {NC NS, UC, US}
as follows:

• TP: number of predicted spans of category 𝑐 that match exactly
in boundaries with a gold span of category 𝑐.

• FP: number of predicted spans of category 𝑐 that do not match
exactly in boundaries with any gold span or that match with a
gold span of a category other than 𝑐.

• FN: number of gold spans of category 𝑐 that do not match exactly
in boundaries with any predicted span or that match with a
predicted span of a category other than 𝑐.

This is the strictest evaluation methodology possible for this task.
n order to be able to compare the results with the related work, we
lso report the performances of the trained sequence labelling systems
ollowing two additional evaluation methodologies, namely *SEM 2012
cores [39] and BIO-weighted token-level scores [46]. We refer the
eader to the corresponding literature for detailed explanations of these
etrics.

As for the assertion classification task (Task B), we use the well-
nown Python package sklearn,13 to calculate P, R and F1 scores.

TP, FP and FN are computed per category 𝑐 ∈ {absent posssible}
s follows:

• TP: number of medical entities of type 𝑐 correctly classified as 𝑐.
• FP: number of medical entities of a type other than 𝑐 incorrectly

classified as 𝑐.
• FN: number of medical entities of type 𝑐 incorrectly classified as

a type other than 𝑐.

13 https://scikit-learn.org
8

As average metrics of the different categories, we report micro-
average scores (𝜇). The micro-average scores are obtained by applying
the same Eqs. (1) to the sums of the TP, FP and FN of the different
categories.

4. Results

4.1. Results of Task a: cue and scope detection

The main results of Task A, cue and scope detection, are shown in
Table 7. We report per-category and micro-average F1-score results (see
*SEM 2012 scores in Appendix C) of models trained in the full train set
and one of the train subsets, with ∼ 1% of examples.

Overall, we observe that the detection of cues (NC and UC) is easier
than that of scopes (NS and US), and that speculation (UC and US)
is more difficult to detected than negation (NC and NS). This is to be
expected given the nature and distribution of each category, and was
also noted by Lima-López et al. [8].

Regarding the differences among the systems trained on the full
dataset, little difference among the Transformers is noted, although
MarIA stands out with an average F1-score of 0.910, followed by BETO
and XLM-RoBERTa (hereafter, XLM-R) – both 0.905 –. MarIA and XLM-
R in particular achieve the greatest gains with respect to the uncertainty
scope (US) scores of the baseline set by NCRF++, which presented the
biggest opportunity for improvement in previous work. Unsurprisingly,
SciBERT falls behind the other Transformers, but its performance is
similar to Flair’s. Still, both improve the baseline across all categories
and manage to overpass prior state of the art [46] (see Table C.16 in
Appendix C).

Looking at the performance of the models with the smaller train set,
we see very significant gains of the Transformer models and Flair with
respect to the baseline, particularly for uncertainty cues and scopes (UC
and US respectively). It is remarkable that with only 169 examples of
training, all the Transformer models yield F1-scores above 0.5 in the
detection of uncertainty cues. It is noteworthy as well that the models
that fare best with this smaller training set, BETO and IXAmBERT, are
not the ones that achieve the best results when presented with the full
training set. The behaviour of the models with increasing amounts of
training data will be analysed in greater depth in a later Section 4.3.

4.2. Results of Task b: assertion classification

Table 8 shows the main results of Task B, assertion classification.
Again, we report per-category and micro-average F1-results of models
trained in the full train set and one of the train subsets (with ∼ 1% of
examples).

Similarly to Task A, MarIA obtains the best overall results (0.937
F1-score), followed by a multilingual model – mBERT in this case
(0.935) – and BETO (0.934). Nevertheless, the differences between the
Transformer models are narrower still than in the previous task, and
even SciBERT manages to outperform some of the multilingual and

https://github.com/josecannete/spanish-corpora
https://github.com/google-research/bert/blob/master/multilingual.md
https://github.com/chriskhanhtran/spanish-bert
http://www.bne.es/en/Colecciones/ArchivoWeb/Subcolecciones/selectivas.html
https://scikit-learn.org
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Table 7
F1-scores of Task A – cue and scope detection in the Full test set. The best and second-best scores are highlighted in bold and dotted underlines,
respectively. N is the number of training examples.

1/34 train set (N = 169) Full train set (N = 13,802)

𝜇 NC NS UC US 𝜇 NC NS UC US

NCRF++ 0.604 0.770 0.626 0.093 0.088 0.881 0.952 0.866 0.849 0.698
Flair + fastText 0.690 0.851 0.685 0.434 0.218 0.892 0.960 0.877 0.849 0.740
BETO 0.735 0.861 .. . . . . .0.728 0.616 0.320 .. . . . . .0.905 0.963 0.900 . . . . . . .0.870 0.759
SpanBERTa 0.691 .. . . . . .0.865 0.650 0.537 0.207 0.898 0.960 0.894 0.850 0.743
MarIA 0.708 0.855 0.699 0.529 0.283 0.910 0.968 . . . . . . .0.897 0.875 0.781
IXAmBERT .. . . . . .0.730 0.854 0.736 . . . . . . .0.609 .. . . . . .0.322 0.901 .. . . . . .0.965 0.888 0.865 0.755
mBERT 0.714 0.866 0.701 0.567 0.254 0.898 0.960 0.887 0.851 0.760
XLM-R .. . . . . .0.730 0.864 0.726 0.577 0.324 . . . . . . .0.905 0.962 0.896 0.863 .. . . . . .0.780
SciBERT 0.678 0.859 0.642 0.502 0.113 0.890 0.959 0.868 0.861 0.750
Table 8
F1-scores of Task B – assertion classification. The best and second-best scores are highlighted in bold and dotted underlines, respectively. N is
the number of training examples.

Full test set Man test set

1/34 train set (N = 148) Full train set (N = 12,108) Full train set (N = 12,108)

𝜇 abs pos 𝜇 abs pos 𝜇 abs pos

NegEx .. . . . . .0.647 0.698 0.469 0.683 0.700 0.638 0.890 0.922 0.783
Flair + fastText 0.003 0.004 0.000 0.889 0.892 0.882 0.939 0.951 0.903
BETO 0.612 0.729 0.409 0.934 0.943 0.914 0.972 0.979 0.952
SpanBERTa 0.660 . . . . . . .0.759 0.330 0.927 0.937 0.905 0.967 0.971 0.955
MarIA 0.588 0.716 0.258 0.937 . . . . . . .0.940 .. . . . . .0.929 0.971 .. . . . . .0.979 0.950
IXAmBERT 0.586 0.697 0.248 0.925 0.934 0.902 0.957 0.967 0.929
mBERT 0.635 0.731 .. . . . . .0.438 .. . . . . .0.935 0.939 0.925 .. . . . . .0.973 0.978 0.960
XLM-R .. . . . . .0.647 0.812 0.292 0.934 0.934 0.934 0.978 0.984 . . . . . . .0.959
SciBERT 0.458 0.586 0.149 0.927 0.931 0.916 0.967 0.975 0.943
w
p
t
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n
l
w

Spanish models. The system based on Flair falls in average 3 F1-score
points behind the worst Transformer.

All these systems outperform by far the baseline set by the rule-
based system NegEx when allowed to exploit the whole training set, but
mostly lag behind in the ∼ 1% training set scenario. Only SpanBERTa is
capable of topping NegEx in this case. This issue will also be discussed
in the next section.

In general, the task of assertion classification seems to be easier than
cue and scope detection. The drop in performance from the negative
class (absent) to the uncertainty class (possible) is also smaller.

It must be noted that none of the models with bigger vocabulary
verlap with NUBes (i.e., SpanBERTa, IXAmBERT and BETO) nor the
iggest models XLM-R, mBERT and IXAmBERT are absolute winners
n either of the tasks. Although these models follow closely MarIA,
one of the mentioned criteria seem to be decisive predictors of the
erformance of the models in these tasks.

.3. Learning curves and adversarial examples

Regarding the learning curves for Task A (Fig. 7), NCRF++ shows
he biggest gap between the scores for negation in the full test set and
he rest of the scores along the whole curve, which evinces the greater
apability of generalisation of the Transformer models and Flair.

It is striking that the most Spanish models set off with great advan-
age over the rest of the models where negation detection is concerned,
lthough when looking at the scores for the most difficult examples,
t becomes evident that all they are doing in practice is detecting
he words ‘‘no’’ and ‘‘sin’’ (‘‘without’’). Given enough data, the other
ransformers are capable of reaching the same performance quite
uickly.

Most models (NCRF++, Flair, SciBERT and SpanBERTa most
arkedly) show an upwards trend still towards the end of the curve,
hich indicates they might be able to reach the results of the best
odels if given more data.

As for the learning curves of Task B (Fig. 8), we observe quite a
9

ifferent landscape. The gap between the full and harder test sets is
much narrower than in the previous Task (except for NegEx), and the
systems seem to reach a plateau with around a third of the training set.
Furthermore, monolingual and multilingual models do not have such
markedly different behaviours in this case. Most of all, Fig. 8 clearly
demonstrates the problem of rule-based systems such as NegEx. Even
if it is has a very good start at classifying the easiest negated instances,
the system is just not capable of generalising to unseen cases even as
the available data to enrich the tool lexicons increases.

4.4. Error analysis

We conclude the inspection of the results with an error analysis. We
present the confusion matrices of the two tasks, and illustrate the most
salient incorrect predictions.

For Task A (Fig. 9), the matrices have been computed at token level
ithout taking into account the BIO tag of the tokens. The values are
resented in relative terms ignoring true positive O predictions (being
he majority class, it would render the matrices uninformative). That
s, each matrix adds up to 1.

What the matrices show is that the most common errors are false
egative errors of scopes, both for negation and speculation. The base-
ine NCRF++ is the system that commits this error more frequently,
hich accounts for ∼11% of its predictions (again, not considering the

true Out tokens), while with BETO and XLM-R we manage to cut these
errors by more than half. Still, the systems struggle to annotate scopes
properly in the same contexts. We identified the following: sentences
with coordination (Example 4.1), sentences with scopes preceding the
cues (which typically involve relative clauses; Example 4.2), and sen-
tences with negation or uncertainty reinforcement through multiple
markers (4.3).14

(4.1). Ausencia de factores de riesgo vascular, cardiopatía etc, ..
‘‘Absence of vascular risk factors, heart disease, etc’’.

14 In the next examples, cues are highlighted in boldface and scopes in
italics.
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Fig. 7. Selected learning curves of Task A – cue and scope detection.
Fig. 8. Selected learning curves of Task B – assertion classification.
Fig. 9. Selected confusion matrices of Task A – cue and scope detection.
a
i

(4.2). [...] componente psiquiátrico añadido que justificara la crisis.
‘[...] an added psychiatric component that could justify the crises’’.

(4.3). Intepreto el cuadro clínico como probable pericarditis ‘‘I interpret
the clinical picture as probable pericarditis’’

Although to a lesser extent, the systems make false positive er-
rors as well when it comes to the detection of scopes. The most
common of these errors stems from the inability of the systems to
recognise as separate syntactic constituents a phrase or clause affected
by negation/uncertainty and a following adjunct, as are ‘‘sobreinfec-
tado’’ (‘‘overinfected’’) and ‘‘en el lado derecho’’ (‘‘on the right side’’)
in Example 4.4:

(4.4). Se observa hidrocele [...] probablemente sobreinfectado en lado
dcho. ‘‘Probably overinfected hydrocele [...] observed on the right side’’.

Even human annotators find these cases challenging, because the
sentences may be syntactically ambiguous and must be interpreted
mindfully to capture the physician’s intended meaning in the annota-
tions.
10

c

Finally, there seems to be a little confusion with some negation
and speculation scopes among most systems: in ∼1% of the tokens,
some systems emit the tag US (uncertainty scope) when it should be
NS (negation scope). Upon manual analysis of these cases, we consider
that the systems are actually not committing errors but correcting what
appear to be incorrect – or at best debatable – manual annotations, as
exemplified in Table 9.

Regarding cues, some false negative errors involve infrequent lex-
ical expressions that the systems were not able to generalise. This is
particularly the case for uncertainty cues (UC). Here are a two examples
undetected by the majority of the systems:

(4.5). Hay que asumir que está infectada ‘‘It must be presumed that she
is infected’’

(4.6). Dice haber ingerido lorazepam [...] con ideación, al parecer,
utolitica ‘‘They refer having ingested lorazepam [...] with apparent suicidal
deation’’

Further, a minor source of false negative cue annotations are errors

aused by factors unrelated to the systems themselves, and that have
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Table 9
Gold annotations and predictions on the sentence extract ‘‘unable to specify whether
there was a loss of consciousness or not’’. The fact that the phrase contains what
are typically negative cues (‘‘unable to’’, ‘‘loss of’’) and that the uncertainty cue is
discontinuous (‘‘whether [...] or not’’) makes this example specially difficult to predict
correctly. While the manual annotations interpret the phrase as a negation cue and
scope, most of the systems (except Flair) retract their predictions midway in favour of
speculation.

Token Gold NCRF++ MarIA BETO Flair

incapaz B-NC B-NC B-NC B-NC B-NC
de I-NC I-NC I-NC I-NC I-NC
precisar B-NS I-UC B-NS I-UC B-NS
si I-NS I-UC I-UC I-UC O
hubo I-NS I-UC I-UC B-US O
o I-NS I-UC B-UC B-UC O
no I-NS I-UC I-UC I-UC B-NC
perdida I-NS B-US B-US B-US B-NS
de I-NS I-US I-US I-US I-NS
conocimiento I-NS I-US I-NS I-US I-NS

to do with the limitations of the NUBes corpus. First, a few expressions
are inconsistently annotated throughout the corpus, such as the verb
‘‘evitar’’ (‘‘avoid’’); the systems have learned not to interpret it as a
negation cue, but it is annotated in the reference corpus in a minority
of occurrences. Second, tokenisation errors in sentences with ungram-
matical usage of punctuation marks induce errors in the post-processing
of the predicted labels by the Transformers, as only the prediction of
the first subword is taken as final label for a word. Take the following
example:

(4.7). Comenzar tolerancia oral.Asintomática. ‘‘Start oral tolerance.
Asymptomatic’’.

While the systems may be able to detect properly that ‘‘Asin-
tomática’’ (asymptomatic) is a negation cue, it will not be annotated
as such because the word in the NUBes corpus is ‘‘oral. Asintomática’’
(sic) and only the label produced for the first subword (e.g., ‘‘oral’’) is
taken to account to produce the final labels.

In this case, the Flair sequence labeller produces the least false
negative cues, missing out just 2% of the negation cues (NC) and 6% of
the uncertainty cues (UC). NCRF++ is again the worst system, doubling
the false prediction rates of Flair.

As for false positive predictions of cues, they actually stem for the
most part from human errors, that is, these predictions capture cues
overlooked by the human annotators. Interestingly, the error rates are
inverted for this error set, with NCRF++ committing the least false
positives and XLM-R leading the rank, followed closely by SpanBERTa.
Pending an example-by-example manual revision, it seems sound to
assume that XLM-R and SpanBERTa are not committing actual errors
but simply detecting more human errors of the type just explained than
the rest of the systems.

Regarding the confusion matrices of Task B (Fig. 10), false positive
errors are much more frequent and, in fact, constitute the bulk of
errors made by the systems overall. A manual analysis of these errors
revealed that they primarily involve entities near cues but that are not
in focus, as in the following examples (starred categories indicate that
the predictions are incorrect):

(4.8). No mejoró con la toma de <e> Paracetamol </e> . . . . . *abs
‘[The patient] did not improve with Paracetamol’’.

(4.9). Cuadro confusional de probable caracter reactivo al <e> proceso
nfeccioso </e> *pos ‘‘Confusional state of probable reactive character to the
nfectious process’’.

(4.10). Se aconseja TAC para valorar la causa de la <e> obstrucción
e la vía biliar </e> . . *pos ‘‘CT is advised to assess the cause of bile duct
bstruction’’
11

t

In Example 4.8, the focus of the negation is in the improvement
f the patient, who did take Paracetamol. In Example 4.9, the relation
etween the confusional state and the infectious process is uncertain,
ot whether an infectious process took place (the use of determinate
rticle ‘‘the’’ in ‘‘the infectious process’’ makes it clear that it is a
eference to a known past event). Finally, in Example 4.10, what is
nknown is the origin of the obstruction, not the existence of the
bstruction itself (the same rationale applies here). These examples are
articularly tricky because they require deeper understanding of the
entences than that needed to simply find cues and scopes. Even then, it
s likely that fewer of this type of errors might occur if the models were
rained on gold standard corpora instead of the automatically generated
orpus described in this work.

As for false negative errors, we found two main types of instances
hat confuse the models:

. Sentences that express a change of state, such as disappearance of
ymptoms or modifications in a treatment:

(4.11). Presenta <e> fiebre </e> elevada que cede con tratamiento
antibiótico . *pre ‘‘[The patient] has high fever that goes down with antibiotic
treatment’’.

(4.12). Le pautaron <e> Diclofenaco </e> que no está tomando *pre
‘[The patient] was prescribed Diclofenaco which she does not take’’

In these cases, the symptom or treatment is asserted in the main
lause of the sentence but negated in the relative clause. Although
ebatable, the guidelines of the NUBes corpus indicate that these
xamples should be explicitly annotated as negations, but the models
eem to struggle with such instances.

. Long sentences where the scope precedes a negation cue, which
ccurs towards the end of the sentence:

(4.13). Se obtienen muestras de <e> cultivo de sangre </a> 𝑦 [...]
iendo negativos . . *pre ‘‘Blood culture and [...] were obtained with negative
esult’’.

The long distance between the cue and the scope, as well as their
ess common order in the sentence, appears to make it more difficult
or the systems to establish a relation between the two.

In the case of assertion classification, there does not seem to be
uch confusion between instances of negated and possible entities as

here was in the cue and scope detection task.
Finally, as part of the error analysis, we studied whether the er-

ors that the systems are making in the two separate tasks coincide
omehow in the same examples, given that the corpora for the two
asks originate from the same collection of sentences. Out of the 2,762
entences for testing in Task A, 272 have errors (made by any of the
valuated models). In Task B, the ratio is 196 out of 2,467. A significant
mount, 92 sentences, are common to both tasks and involve most of
he situations discussed in this section, with a prominent presence of
entences with relative clauses where scopes are discontinuous and may
urround their cue.

. Discussion

The presented results and their analysis lead to the discussion of
hich framework, assertion classification or cue and scope detection,

s better suited and when. While the tasks’ results are not strictly
omparable and the decision of using one framework over the other
epends of course on the application objective of the system and the
esources at hand to implement it, a few observations can be made on
his subject:
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Fig. 10. Selected confusion matrices of Task B – assertion classification.
• First, the task of assertion classification may seem to be easier
to learn, as systems reach a plateau with less training data,
said plateau actually surpassing the best metrics obtained for
the sequence labelling task. However, it must be acknowledged
that the synthetic nature of the assertion classification corpus is
likely playing a role in this regard. Further, as a trade-off, the
entities to be classified must be annotated beforehand, which,
if done automatically, would inject errors in the pipeline and
potentially render this approach equally or more challenging than
the detection of cues and scopes through sequence labelling.

• Similarly, the annotation effort could be said to be smaller for
assertion classification: less data is required, and the annotation
of assertion classification is easier for humans than that of cues
and scopes. However, again, it requires that the corpus be an-
notated for the entities of interest. If such corpus does not exist,
the manual annotation effort is increased substantially, unless
automated methods are devised such as those described in this
work (Section 3.1.2).

• While it may seem that a cue and scope sequence labeller can
resolve the assertion classification task as a side-effect (by simply
marking as negated or uncertain any entity under a detected
scope), we have shown that this approach leads to false positives.
At the same time, it is easier to convert a corpus annotated with
cues and scopes to a corpus for assertion classification than the
other way around.

Yet a third logical approach to the processing of negation and
speculation could consist in an end-to-end assertion classification, that
is, a sequence labeller for medical entities that would jointly detect the
entities of interest and assign them an assertion category. This scenario
exceeds the scope of this work and, to the best of our knowledge, has
not been tested in the literature (closely related work exists [24,29,
30] but it only focuses on detecting negated entities). Such a system
would be more efficient than a pipeline composed of a medical entity
recogniser and an assertion classifier, because it would solve the task
in a single pass over the input text. The assertion classifier, in contrast,
must be invoked as many times as entities to be categorised. On the
other hand, in taking on the challenges of the two tasks, the asser-
tion sequence labeller could require more and better data to achieve
comparable results. Furthermore, the knowledge about negation and
speculation captured by such a model would be harder to transfer to
other domains, as it would be inextricably bound with the entity types
the model was trained to detect.

Requiring a more elaborate architecture, multi-task learning offers
another avenue of research. In this setup, the tasks of cue and scope
detection and assertion classification would be learned jointly by the
same model in separate classification heads, possibly benefiting one
another. Interestingly, [45] find that learning to classify events into the
affirmed or negated categories as an auxiliary task to negation scope
resolution does not help and can even be detrimental. However, their
setup exploits a different corpora per task and those corpora involve
different languages. Furthermore, they do not look into how the task
of negation scope resolution affects assertion classification.

Following the paradigm shift in the NLP community [72,73], future
work may address the processing of negation and speculation with
yet other emergent approaches, such as sequence-to-sequence and/or
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prompt-based learning, leveraging perhaps bigger language models
(e.g., GPT3 [74], BART [75], T5 [76]). In this regard, while sev-
eral works [77,78] demonstrate that language models are not good
at capturing how negation changes the meaning the sentences they
appear in, others [79,80] found evidence for some form of encoding of
negation at the syntactic level (to the best of our knowledge, similar
studies have not been conducted in regards to speculation). As the
processing of negation and speculation, as addressed in this paper, is
rather influenced by syntax than by semantics—i.e., the objective of
the proposed systems is, in a nutshell, to decide if, not how, certain
parts of a given sentence are affected by the presence of a negation or
speculation cue—, these new paradigms may be found to be viable and
even competitive for this task, as have been for others.

6. Conclusions

While the processing of negation has enjoyed much attention for
years, the processing of speculation has not been studied to the same
degree, most of all in languages other than English. In this work, we
have evaluated multiple state-of-the-art models for sequence labelling
and text classification in the tasks of negation and speculation cue
and scope detection as well as assertion classification. The experiments
have been conducted in a public corpus, NUBes [8], of health records
written in Spanish. The evaluated systems include multiple BERT-
and RoBERTa-like Transformer-based models, Flair, and two baseline
systems.

The task of cue and scope detection was learned jointly by the
systems. The Transformed-based model with the MarIA pre-trained
model [68] achieved the best overall results (0.91 micro-average F1-
score), advancing the state of the art previously set by Lima-López
et al. [8] and Solarte Pabón et al. [46]. The system is closely followed
by most of the other Transformer-based models, while SciBERT and
the Flair sequence labeller fall slightly behind (still improving the
baseline and previous state of the art). The improvement is brought
predominantly by a better detection of speculation scopes as well as of
the least frequent negation instances.

Regarding the assertion classification task, we first introduced an
approach to convert the NUBes corpus, originally annotated for cues
and scopes, to a corpus suitable for this task. A manual revision of
the testing portion of the resulting corpus, as well as a manual error
analyses of the results, suggest that this technique yields acceptable
results and can be useful in scenarios were there is no such corpus
available, as was the case in this work. In this task too, MarIA obtained
the best results (0.937 micro-average F1-score), followed even more
closely by the other Transformers, including SciBERT.

We observed that, in both tasks, neither the models with most vo-
cabulary overlap with NUBes nor the biggest models obtained the best
results, although they did follow closely MarIA. Further, the learning
curves showed that, while monolingual Spanish models start off with
certain advantage, being able to correctly emit predictions for the most
frequent and repetitive instances, all the Transformer models manage
to obtain similar results when allowed to exploit the entire training
sets. The learning curves also suggested that less labelled data may be
necessary for the assertion classification task than for the cue-scope
detection task, although the results for the latter may be artificially
inflated due to the corpus being synthetic.

A manual error analysis revealed that the most common errors in

the cue and scope detection task are false negative errors involving
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Table A.10
Dataset subsets for the training curves of Task A.

1/31 1/32 1/33 1/34 1/35

Sentences 4,600 1,533 510 169 56
with negation 1,761 576 210 78 24

with uncertainty 386 127 44 16 6
with both 127 53 16 4 1

Negation cue 2,337 775 273 97 31
Negation scope 2,135 708 251 91 31
Uncertainty cue 586 212 67 24 11
Uncertainty scope 590 211 66 24 10
Total 5,648 1,906 657 236 83

Table A.11
Dataset subsets for the training curves of Task B.

1/31 1/32 1/33 1/34 1/35

negated 782 277 92 34 11
uncertain 332 118 39 14 5
present 2,921 949 316 100 33

out of scope (OOS) 1,317 436 140 43 9
from assertion 1,604 513 176 57 24

Total 4,035 1,344 447 148 49

scopes, that is, the predicted scopes tend to fall short compared to the
gold annotations. This is particularly true in relative clauses, where part
of the scope of a cue might precede the cue. In the case of the assertion
classification task, the most common errors involve false positive errors,
where medical entities under the scope of cues but not in focus are
incorrectly tagged as absent or possible instead of present. The manual
error analysis also uncovered several incorrectly annotated instances,
which will help us improve the quality of NUBes.

Finally, this study is limited to the most common paradigms when
it comes to the processing of negation and speculation, and it fo-
cuses on a single corpus for analysis. Future work may explore new
ways of addressing the problem, such as combining the two presented
paradigms in a single multi-task architecture or adopting the rapidly
evolving paradigm of prompt-based learning. Furthermore, future work
should also address an extrinsic evaluation scenario to study whether
the proposed method indeed benefits the downstream cases that rely
on negation and uncertainty detection. Lastly, it is essential that future
research validates these conclusions across different corpora to ensure
broader applicability.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgements

This work is partly supported by the projects DeepText (KK-2020-
00088, SPRI, Basque Government, Spain) and DeepReading (RTI2018-
096846-B-C21, MCIU/AEI/FEDER, UE).

Appendix A. Data subset sizes for training curves

Tables A.10 and A.11 show, respectively, the size of each training
subset used to compute the training curves of Task A (Fig. 7) and Task
B (Fig. 8), respectively.

Appendix B. Hyperparameters

Tables B.12–B.14 report the hyperparameters of the neural sequence
taggers and text classifiers. Values between squares brackets are options
or ranges for the hyperparameter optimisation. Any hyperparameter
not reported here takes the default value given by the corresponding
13

training API.
Table B.12
Transformer sequence taggers and text classifiers.
Hyperparameter Value

Pre-trained model see Table 5
Batch size 8
Maximum input length 220
Optimiser AdamW [81]
Learning rate [1e-5 - 1e-4]
Warmup steps [0 - 500]
Weight decay [0.0 - 0.3]
Maximum epochs 30

Table B.13
Flair sequence tagger and text classifier.
Hyperparameter Value

Pre-trained word emb. BWES [61]
Pre-trained Flair emb. es-forward,

es-backward
bi-LSTM/GRU layers 1
Hidden dimensions [128, 256]
Dropout rate [0.0 - 0.5]
Batch size [8, 16, 32]
Optimiser SGD
Learning rate [0.05 - 0.15]
Minimum learning rate 1e−4
Weight decay [0.0 - 0.05]
Maximum epochs 60

Table B.14
NCRF++ sequence tagger (from [8]).
Hyperparameter Value

Character emb. dimensions 30
Character CNN layers 1
Character hidden dimensions 50
Word emb. dimensions 300
Word bi-LSTM layers 1
Word hidden dimensions 200
Dropout rate 0.5
Batch size 16
Optimiser SGD
Learning rate 0.005
L2 regularisation 1e−8
Weight decay 0.001
Momentum 0
Maximum epochs 40

Appendix C. Additional metrics for cue and scope detection re-
sults

Table C.15 reports the performance of the sequence labelling models
in terms of the metrics described by Morante and Blanco [39] for the
*SEM 2012 shared task on resolving the scope and focus of negation,
later also employed in the NEGES workshops [17,18], among others.
The evaluation script is publicly available from the official website of
the shared task.15 Notice that the script is prepared to count one type
of cues and one type of scopes (namely, negation cues and scopes).
In order to report separate scores for negation and speculation, we
post-processed the outputs of the systems to contain just negation or
uncertainty predictions, then applied the evaluation script.

Table C.16 reports the performance of the sequence labellings mod-
els in terms of the metric described by Solarte Pabón et al. [46], to
which we refer as ‘‘BIO-weighted token-level’’ scores throughout this
paper.

15 https://www.clips.uantwerpen.be/sem2012-st-neg

https://www.clips.uantwerpen.be/sem2012-st-neg
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Table C.15
*SEM F1 scores of Task A – cue and scope detection in the Full test set. The best and second-best scores are highlighted in bold and dotted underlines, respectively. We refer the
reader to Morante and Blanco [39] for an explanation of each metric. We include the results of Hartmann and Søgaard [45], who tackle the resolution of negation scopes. SU is a
supervised Multilingual BERT model. ZS STcat refers to zero-shot performance of a Multilingual BERT model trained on the BioScope corpus [3] and the SFU Review Corpus [82]

Negation Uncertainty

Cues Scopes Glob %CNS Cues Scopes Glob %CNS

CM NCM Token CM NCM Token

NCRF++ 94.68 88.38 88.85 90.51 88.67 81.54 84.68 75.39 75.60 75.52 75.00 64.41
Flair + fastText 95.38 89.49 90.01 91.58 89.38 83.22 85.71 77.89 78.69 78.67 77.83 69.71
BETO 95.78 90.86 .. . . . . .91.76 93.27 90.88 .. . . . . .85.42 86.44 .. . . . . .80.32 .. . . . . .81.07 81.62 .. . . . . .80.32 74.41
SpanBERTa 95.50 90.63 91.37 92.81 90.57 84.81 85.19 78.18 78.97 79.86 77.92 70.59
MarIA 96.31 91.42 92.03 93.17 91.48 85.78 86.72 . . . . . . .80.32 80.91 .. . . . . .82.36 80.13 72.94
IXAmBERT .. . . . . .96.06 90.32 90.94 92.81 90.47 84.72 85.93 78.47 79.87 81.53 78.42 70.00
mBERT 95.49 90.62 91.20 92.51 90.66 84.89 86.19 78.83 79.80 79.31 78.64 71.47
XLM-R 95.77 .. . . . . .90.98 91.66 .. . . . . .93.24 .. . . . . .90.97 .. . . . . .85.42 .. . . . . .86.58 80.71 81.85 83.02 80.77 . . . . . . .74.12
SciBERT 95.40 89.05 89.74 91.83 89.21 82.51 86.19 77.83 78.83 79.58 77.65 70.00

[45] SU – – – 95.66 – – – – – – – –
[45] ZS STcat – – – 90.24 – – – – – – – –
Table C.16
BIO-tag weighted token-level scores (from Solarte Pabón et al. [46]) of Task A – cue and scope detection in the Full test set. The best and
second-best scores are highlighted in bold and dotted underlines, respectively. In principle, the only difference between the Multilingual BERT
(mBERT) model reported here and that of Solarte Pabón et al. [46] is the optimisation of some hyperparameters (see Section 3.2.5), whose
impact is most noticeable for uncertainty scopes, the most challenging category of all.

Negation Uncertainty

Cues (NC) Scopes (NS) Cues (UC) Scopes (US)

P R F1 P R F1 P R F1 P R F1

NCRF++ 0.95 0.94 0.95 0.93 0.88 0.90 .. . . .0.87 0.82 0.85 0.84 0.69 0.76
Flair + fastText 0.95 0.97 . . . . .0.96 0.92 0.90 0.91 0.84 0.87 0.86 0.80 0.79 0.79
BETO 0.95 0.97 . . . . .0.96 .. . . .0.94 0.92 0.93 0.86 .. . . .0.88 .. . . .0.87 0.80 .. . . .0.84 0.82
SpanBERTa 0.95 0.97 . . . . .0.96 .. . . .0.94 0.91 0.92 0.85 0.87 0.86 0.80 0.82 0.81
MarIA 0.97 0.97 0.97 0.95 0.91 0.93 0.88 . . . . .0.88 0.88 0.84 0.82 .. . . .0.83
IXAmBERT .. . . .0.96 0.97 . . . . .0.96 .. . . .0.94 0.91 0.93 0.86 0.87 .. . . .0.87 0.85 0.78 0.81
mBERT .. . . .0.96 0.96 .. . . .0.96 .. . . .0.94 0.91 0.92 0.86 0.87 0.86 0.80 0.81 0.81
mBERT [46] 0.95 0.93 0.95 0.90 0.86 0.88 0.86 0.83 0.84 0.75 0.70 0.72
XLM-R 0.95 0.97 . . . . .0.96 0.93 0.92 0.93 0.85 0.89 . . . . .0.87 0.82 0.85 0.84
SciBERT 0.95 0.96 .. . . .0.96 0.92 0.91 0.91 0.86 .. . . .0.88 .. . . .0.87 0.81 0.81 0.81
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