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Abstract 

In this paper techniques to detect failures in a 

FPGA are presented and their application to SEU 

(Single Event Upset) emulation applications is 

discussed. SEU emulation in FPGAs consists on 

programming the device with a configuration file 

that has an erroneous bit, emulating the effect of a 

SEU. Once the device has been erroneously 

programmed a verification method is needed to 

evaluate the criticality of the modified bits. In this 

work two verification approaches (hardware 

verification and software verification) are 

implemented, experimental results are obtained 

and conclusions are taken. 

1. Introduction

Since smaller and smaller manufacturing 

technologies are being developed, electronic chips 

are becoming more and more vulnerable to 

radiation-induced SEUs. Due to radiation, a high-

energy particle can hit the semiconductor storing 

an erroneous value at a memory cell [3]. The 

continuous device-size reduction is making more 

likely for these particles to hit inverse-polarized p-

n junctions, which are the most sensitive parts of 

electronic devices. And thus, overall failure rate is 

getting higher. 

According to [2] a fault is a physical 

phenomenon that leads to an error. And an error is 

an incorrect part of the system that can lead to a 

failure, which means that the equipment does not 

deliver correctly the service it has been designed 

for. Electronic devices are widely used in systems 

called safety critical, where a failure can lead to 

environmental damage, injury or death. So 

measures have to be taken when a radiation-

induced SEU (fault) leads to a bit flip (error) that 

may provoke a malfunction (failure), which is not 

allowed in any way. 

SRAM based FPGAs are more vulnerable to 

SEUs than other semiconductor devices. In [3] it 

is mentioned that SEU events have a greater 

impact in SRAM cells than in DRAM or in Flash 

cells. In [7] the architecture of a SRAM based 

FPGA is presented and the effects produced by 

radiation are analyzed. The key element of a 

FPGA is the configuration memory, where the 

information about hardware resources is stored. 

When a used bit in this memory flips the 

implemented design’s functionality changes and it 

may provoke a failure.  

Knowing the failure rate of a system is always 

an issue of interest for both manufacturers and 

purchasers. The failure rate of a FPGA is not 

constant and is dependent on the implemented 

design.  

As it is mentioned in [4] the failure rate is 

directly proportional to the amount of critical bits 

of a design. A configuration memory bit is labeled 

as critical when a modification leads to a 

malfunction of the system. SEU emulation 

consists on configuring the device with a faulty 

configuration file emulating the effects of 

radiation. In order to know if the introduced error 

has provoked a failure, a verification system is 

needed. 

2. SEU emulation systems

SEU emulation systems in FPGAs are based on 

configuring the device with a corrupted 

configuration file emulating the effects of 

radiation-induced SEU. First of all one or more 

bits of the configuration file are modified. Then 

the FPGA is configured and finally the 

functionality of the device is tested so as to label 

the modified bit or bits as critical or non-critical. 
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At the following figure the functionality of a 

standard SEU emulation system is represented. 

A SEU emulation system can be used for two 

purposes; to compare fault tolerant architectures 

and to estimate the overall failure rate of the 

design. 100% accuracy is not an essential issue 

when the main objective is to compare different 

fault tolerant architectures. Just the comparison 

between them gives a result that is valid for the 

developers [6]. 

When failure rate estimation is done, accuracy 

is required to be as close to 100% as possible. 

This means that all the bits that modify the 

functionality of the design have to be labeled as 

critical, while bits not modifying it must be 

considered as non-critical [5]. 

3. FPGA failure verification methods

3.1. Characteristics of verification methods 

The desired characteristics for a failure detection 

method used for failure rate estimation are the 

following: 

 Coverage: It represents the depth of the test.

100% coverage means that all input

combinations are tested for all possible

internal states. A high coverage is not

mandatory when the SEU emulation system

is used to compare different architectures.

However, if it is used for estimating the

circuit failure rate, all bits modifying the

functionality of the circuit have to be

identified and a high coverage rate is

required.

 Speed: The time needed to perform a test. It is

related to test coverage. A deep test may be

slow, but it may be more accurate than a 

lighter test. 

 Integrity:  Introducing a verification system at

the design may introduce modifications at the

original design. UUT (Unit Under Test) has

to be as close as possible to the final design.

Failure rate is dependent on the

implementation, so verification methods

introducing circuit modifications are less

accurate.

 Universality: This is the easiness a certain

verification system has to be adapted to

different designs. A universal test system is

able to test different designs without

applying significant modifications.

3.2. Online FPGA fault detection methods 

Online fault detection methods are those that can 

detect faults during normal operation. Their main 

objective is to avoid the occurrence of a failure. 

These methods are usually redundancy based. 

This redundancy is achieved by duplicating 

hardware or processing redundant information 

(e.g. parity or hamming codes). These methods 

can also be able to mask the faults providing 

always a right output. This happens on TMR 

(Triple Modular Redundancy) type architectures. 

A summary is done at [8]. 

These methods are not suitable for critical bits 

estimation because substantial modifications have 

to be added to original design and overall failure 

rate is modified.  

3.3. Offline verification methods 

These methods are executed when operational 

function of the circuit is not being performed. Test 

vectors are sent to circuit’s inputs and circuit’s 

functionality is checked at outputs. 

Offline verification methods satisfy the 

characteristics mentioned at point 3.1 and they are 

widely analyzed at point 4. 

4. Offline verification methods

Test vectors are sent to circuit’s inputs and 

outputs are monitored so as to determine if the 

 system flow 



circuit fulfills the functionality it has been 

designed for. 

4.1.  Software offline verification 

A software sends input vectors to the circuit under 

test and monitors the outputs. In [1] it is 

mentioned that a purely software approach has a 

poor testability resolution. As a result a good 

software test can be very long and slow.  

As FPGAs are getting bigger and bigger, more 

and more complex circuits are being implemented 

in them. And the more complex a circuit is, the 

more difficult and expensive is to develop a good 

software test. 

Another drawback for software-based test is 

the universality. The software that decides if the 

circuit under test is working properly is fully 

application-dependent. In consequence, different 

circuits need different test softwares, and code 

can’t be reused. 

In [5] the test process is implemented at a PC, 

which communicates with the FPGA through 

RS232 interface. 

If a SoC combining FPGA and a hard 

microprocessor is used (e.g. Xilinx Zynq) 

software test can be done inside the chip. Due to 

the following reasons there is a small accuracy 

reduction. The implemented design has to be 

modified in order to route the signals towards the 

microprocessor. In addition, critical bits belonging 

to IOBs (Input-Output Blocks) are not detected.  

4.2. Hardware offline verification (BIST) 

Offline verification can also be done by hardware, 

which is named as BIST (Built-in Self Test). In 

[1] a summary is done about different kinds of

BISTs. In figure 2 the architecture of a basic BIST

scheme is represented.

Parts of a BIST are the following: 

 Unit Under Test (UUT): Is the circuit whose

functionality is being tested.

 Input generation: This part is responsible of

providing test vectors to the UUT. Vectors

can be stored at memories or generated by

hardware elements such as counters, adders

or FSMs (Finite State Machines)

 Output check: This part analyzes the outputs

of the UUT and decides if it is working

properly. It is usually based on comparing

the received output with a golden output.

 Control: Is the heart of the system. The Built-

in Self Test is activated by an external agent

using the START signal. Then the control

unit takes the control of the circuits and

activates the input multiplexer to send to the

UUT the test vectors. When the test is

finished it returns the control to the external

agent activating the DONE signal and

providing a result.

The main advantage of this approach is the 

universality. The output can be compared with the 

golden output at each clock cycle. So the output 

checker works regardless of the functionality of 

the circuit under test. In a software-based 

approach the software that decides if a certain 

circuit is working properly is fully application 

dependent. 

Simulation tools of FPGA manufacturers such 

as Xilinx allow doing a netlist-level simulation. In 

this way it is possible to know the activity rate of 

each net under a known input vector. As a result 

the coverage level of a certain input vector can be 

evaluated. To achieve a 100% coverage activity 

must be present at each net of the design. The test 

must have a duration that allows the activity of all 

the nets to propagate to outputs. For a software-

based approach it is difficult to estimate the 

coverage level of a test vector, and if it can’t be 

assured that the coverage-level is close to 100% 

the failure-rate results can’t be trusted.  

BIST is much faster than a software approach, 

which means that high levels of coverage are 

achieved at a much shorter time. 

The additional hardware needed to perform 

the verification test can be placed outside or inside 

the FPGA. If it is placed inside the FPGA during 

the validation process and then removed, validated 

design is different from the operating design. 
Figure 2: BIST architecture 



However, this circuitry can be very small. In that 

case the gap between the two implementations 

would be small and the result would be accurate.    

But validating an implementation different 

from the operating implementation is not 

recommended in any case. A solution is to keep 

the verification hardware at the operating 

implementation. It provides to the circuit a self-

test functionality and the results obtained from 

validation process are valid.  

Faults can be injected in the whole FPGA, so 

verification side errors may appear if a fault is 

injected at a bit belonging to verification 

hardware. If the verification subsystem is 

damaged it may never activate the done signal. If 

this happens, the agent controlling the verification 

hardware must take the flow control after having 

waited a prudential time. However, since this 

hardware is very small it is considered a minor 

effect. 

The other possibility is to place the BIST 

hardware outside the FPGA. To keep the 

characteristic of universality the verification 

hardware needs to have the same clock as the 

design at the FPGA. So this circuitry needs to be 

placed at the same board as the FPGA. But in 

many cases modifications at PCB level are not 

available.  

Design process is more complex for external 

validation than for internal validation for both 

hardware and software approaches. Configuring 

additional equipment and circuits means that 

different development tools and techniques have 

to be used adding complexity to the design. 

Additional pins and routing are needed so as to 

add this external equipment, so minimal 

modifications are added to the original design and 

results are not necessarily better. 

In the following table characteristics of 

different combinations of offline verification 

approaches are presented.  

Verification Coverage Speed Integrity Universality 

Internal HW High High Affected* High 

External HW High High 
Minimally 

affected 
High 

Internal SW Low Low 
Minimally 

affected 
Low 

External SW Low Low 
Minimally 

affected 
Low 

Table 1: Offline verification approaches 

*If test hardware is removed after performing the test the

integrity is affected. If it is not removed there is no trouble. 

5. Experimental tests

Two verification configurations have been 

implemented, internal hardware verification and 

internal software verification. Both are 

implemented at a Xilinx Zynq SoC, which 

combines a hard dual ARM microcontroller 

referred as PS (Processing System), with 

Programmable Logic (PL). 

In the PS runs a software that inserts faults at 

configuration file and configures the PL using 

PCAP (Processor Configuration Access Port). 

Communication between PS and PL is done 

through GPIO (General Purpose Input/Output) 

peripheral of the PS. 

5.1. Internal software verification 

Input vectors and output check are done at a 

software running at the PS. This software also 

controls the selection signal of input multiplexer 

and disables the circuit’s outputs when a test is 

being done. In the figure 3 the architecture of 

proposed internal software verification is shown. 

It may be possible to develop using a Zynq 

device a universal software verification system. 

For example, saving the outputs for all clock 

cycles at a memory and sending them to the PS 

through a DMA. Those outputs are compared at 

the PS with a previously saved golden output 

vector.  

Figure 3: Internal software verification 



But that is not much different from a hardware 

verification system. Note than the memory and the 

DMA are implemented at the PL, and only the 

comparison is done at the PS. This 

implementation is done so as to compare the 

coverage and speed level of a typical software 

implementation with a hardware implementation. 

A typical software verification system means that 

the test software is running at an agent (for 

example a PC) that can only access a few pins of 

the unit under test and does not have the same 

timing as the FPGA. 

5.2. Internal hardware verification 

Input generation and test check parts are 

implemented in hardware at the PL. The software 

stored at the PS activates a start signal in order to 

transfer the control to the verification hardware 

and waits until the test is finished. Then it reads 

the result and starts a new test. 

The input generation hardware consists on a FIFO 

where an input pattern is stored. The coverage 

level of this pattern has to be previously validated. 

The time needed to perform a test is the length of 

the FIFO multiplied by the clock frequency. 

For output check another FIFO is used. This 

FIFO has the same size as the input generation 

FIFO in order to check the outputs for the same 

time the inputs are generated. The content of this 

FIFO is fulfilled with the golden outputs of the 

circuit in case of no errors. While a test is being 

done these golden values are compared to circuit 

outputs and if a mismatch is observed during test 

time an error flag is activated. 

The interface between PS and PL has at least 

three signals. A start signal set by the PS that 

launches the verification system; a done signal set 

by the PL that indicates that the test has finished; 

and a result signal, which is active if a failure has 

occurred. 

The test time is limited to the size of the 

FIFOs. When a certain UUT needs a long vector 

to achieve a high coverage level the FIFOs can be 

too long. In that case other input generation and 

output check configurations would be more 

suitable. 

5.3. Units under test 

Two circuits have been tested applying this two 

configurations. The first is a bypass between the 

inputs and the outputs. This test is done in order to 

quantify the amount of errors provoked by the 

testing setup. The second tested circuit is an adder 

chain. 

If software verification is done, the output check 

software is fully application-dependent. The 

following figure illustrates the pseudo-code of the 

checking part for the two circuits. This 

demonstrates the lack of universality of this 

approach. On the other hand, the test setup is valid 

for both circuits when a hardware approach is 

applied. 

For this example it is quite simple to develop the 

code. The result is obtained just multiplying the 

input with the number of adders of the chain. But 

if the functionality is more complex it is not so 

simple. For example, the adder-chain can be used 

as a FIR filter. And it looks quite difficult to 

develop a software that checks if a FIR filter is 

working properly. 

Figure 4: Internal hardware verification 

 
Figure 5: Units Under Test

Figure 6: Software verification pseudocode 



5.4. Obtained results 

First the bypass design has been tested for both 

hardware and software configurations. Then the 

adder chain has been tested with 1500 adders.  

The adder chain has been tested with different 

vector sizes. The software approach has been 

tested with 10, 30 and 100 vector size and the 

hardware approach with sizes of 2048 and 16384.  

Error 

injections 

Detected 

errors 
time 

Bypass software 10 17782464 1219 8h 

Bypass software 30 1782464 1442 
10h 

15min  

Bypass hardware 128 17782464 2443 45min 

Bypass hardware 16384 17782464 5631 
2h 

30min 

Adder 

chain 
software 10 17782464 1698093 8h 

Adder 

chain 
software 30 17782464 1784175 

10h 

15min 

Adder 

chain 
software 65 17782464 1799464 12h 

Adder 

chain 
software 100 17782464 1815405 30h 

Adder 

chain 
hardware 2048 17782464 2494407 

1h 

15min 

Adder 

chain 
hardware 16384 17782464 2574836 

2h 

30min 

Table 2: Obtained results 

6. Conclusions

Both hardware and software verifications are 

valid when they are used in order to compare two 

different architectures. But for estimating critical 

bits accurately hardware verification is more 

suitable because the coverage level can be 

validated through simulation. Hardware 

verification is much faster than software 

verification. Software verification is fully 

application-dependent, which means that different 

testbenches are needed for testing different 

applications. Hardware verification can be used 

for testing different applications just modifying 

the vector generation part. 

Introducing a verification process modifies the 

implemented design and hardware verification 

introduces more errors than software verification, 

but the modification of the failure rate is low 

when verification hardware is small. The 

verification hardware gives the possibility to the 

system to perform an offline auto-test while it is in 

normal operation.  
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