
Functional Verification for SEU Emulation in FPGA Designs

Igor Villata, Unai Bidarte, Uli Kretzschmar, Gorka Santos, Asier Matallana
Department of Electronics and Telecommunications

University of the Basque Country UPV/EHU
Bilbao, Spain

Abstract

In this paper techniques to detect failures in a

FPGA are presented and their application to SEU

(Single Event Upset) emulation applications is

discussed. SEU emulation in FPGAs consists on

programming the device with a configuration file

that has an erroneous bit, emulating the effect of a

SEU. Once the device has been erroneously

programmed a verification method is needed to

evaluate the criticality of the modified bits. In this

work two verification approaches (hardware

verification and software verification) are

implemented, experimental results are obtained

and conclusions are taken.

1. Introduction

Since smaller and smaller manufacturing

technologies are being developed, electronic chips

are becoming more and more vulnerable to

radiation-induced SEUs. Due to radiation, a high-

energy particle can hit the semiconductor storing

an erroneous value at a memory cell [3]. The

continuous device-size reduction is making more

likely for these particles to hit inverse-polarized p-

n junctions, which are the most sensitive parts of

electronic devices. And thus, overall failure rate is

getting higher.

According to [2] a fault is a physical

phenomenon that leads to an error. And an error is

an incorrect part of the system that can lead to a

failure, which means that the equipment does not

deliver correctly the service it has been designed

for. Electronic devices are widely used in systems

called safety critical, where a failure can lead to

environmental damage, injury or death. So

measures have to be taken when a radiation-

induced SEU (fault) leads to a bit flip (error) that

may provoke a malfunction (failure), which is not

allowed in any way.

SRAM based FPGAs are more vulnerable to

SEUs than other semiconductor devices. In [3] it

is mentioned that SEU events have a greater

impact in SRAM cells than in DRAM or in Flash

cells. In [7] the architecture of a SRAM based

FPGA is presented and the effects produced by

radiation are analyzed. The key element of a

FPGA is the configuration memory, where the

information about hardware resources is stored.

When a used bit in this memory flips the

implemented design’s functionality changes and it

may provoke a failure.

Knowing the failure rate of a system is always

an issue of interest for both manufacturers and

purchasers. The failure rate of a FPGA is not

constant and is dependent on the implemented

design.

As it is mentioned in [4] the failure rate is

directly proportional to the amount of critical bits

of a design. A configuration memory bit is labeled

as critical when a modification leads to a

malfunction of the system. SEU emulation

consists on configuring the device with a faulty

configuration file emulating the effects of

radiation. In order to know if the introduced error

has provoked a failure, a verification system is

needed.

2. SEU emulation systems

SEU emulation systems in FPGAs are based on

configuring the device with a corrupted

configuration file emulating the effects of

radiation-induced SEU. First of all one or more

bits of the configuration file are modified. Then

the FPGA is configured and finally the

functionality of the device is tested so as to label

the modified bit or bits as critical or non-critical.

Comunicación presentada en XIV Jornadas de Computación Reconfigurable y Aplicaciones (JCRA14). Valladolid,
17-19 Septiembre 2014

At the following figure the functionality of a

standard SEU emulation system is represented.

A SEU emulation system can be used for two

purposes; to compare fault tolerant architectures

and to estimate the overall failure rate of the

design. 100% accuracy is not an essential issue

when the main objective is to compare different

fault tolerant architectures. Just the comparison

between them gives a result that is valid for the

developers [6].

When failure rate estimation is done, accuracy

is required to be as close to 100% as possible.

This means that all the bits that modify the

functionality of the design have to be labeled as

critical, while bits not modifying it must be

considered as non-critical [5].

3. FPGA failure verification methods

3.1. Characteristics of verification methods

The desired characteristics for a failure detection

method used for failure rate estimation are the

following:

 Coverage: It represents the depth of the test.

100% coverage means that all input

combinations are tested for all possible

internal states. A high coverage is not

mandatory when the SEU emulation system

is used to compare different architectures.

However, if it is used for estimating the

circuit failure rate, all bits modifying the

functionality of the circuit have to be

identified and a high coverage rate is

required.

 Speed: The time needed to perform a test. It is

related to test coverage. A deep test may be

slow, but it may be more accurate than a

lighter test.

 Integrity: Introducing a verification system at

the design may introduce modifications at the

original design. UUT (Unit Under Test) has

to be as close as possible to the final design.

Failure rate is dependent on the

implementation, so verification methods

introducing circuit modifications are less

accurate.

 Universality: This is the easiness a certain

verification system has to be adapted to

different designs. A universal test system is

able to test different designs without

applying significant modifications.

3.2. Online FPGA fault detection methods

Online fault detection methods are those that can

detect faults during normal operation. Their main

objective is to avoid the occurrence of a failure.

These methods are usually redundancy based.

This redundancy is achieved by duplicating

hardware or processing redundant information

(e.g. parity or hamming codes). These methods

can also be able to mask the faults providing

always a right output. This happens on TMR

(Triple Modular Redundancy) type architectures.

A summary is done at [8].

These methods are not suitable for critical bits

estimation because substantial modifications have

to be added to original design and overall failure

rate is modified.

3.3. Offline verification methods

These methods are executed when operational

function of the circuit is not being performed. Test

vectors are sent to circuit’s inputs and circuit’s

functionality is checked at outputs.

Offline verification methods satisfy the

characteristics mentioned at point 3.1 and they are

widely analyzed at point 4.

4. Offline verification methods

Test vectors are sent to circuit’s inputs and

outputs are monitored so as to determine if the

 system flow

circuit fulfills the functionality it has been

designed for.

4.1. Software offline verification

A software sends input vectors to the circuit under

test and monitors the outputs. In [1] it is

mentioned that a purely software approach has a

poor testability resolution. As a result a good

software test can be very long and slow.

As FPGAs are getting bigger and bigger, more

and more complex circuits are being implemented

in them. And the more complex a circuit is, the

more difficult and expensive is to develop a good

software test.

Another drawback for software-based test is

the universality. The software that decides if the

circuit under test is working properly is fully

application-dependent. In consequence, different

circuits need different test softwares, and code

can’t be reused.

In [5] the test process is implemented at a PC,

which communicates with the FPGA through

RS232 interface.

If a SoC combining FPGA and a hard

microprocessor is used (e.g. Xilinx Zynq)

software test can be done inside the chip. Due to

the following reasons there is a small accuracy

reduction. The implemented design has to be

modified in order to route the signals towards the

microprocessor. In addition, critical bits belonging

to IOBs (Input-Output Blocks) are not detected.

4.2. Hardware offline verification (BIST)

Offline verification can also be done by hardware,

which is named as BIST (Built-in Self Test). In

[1] a summary is done about different kinds of

BISTs. In figure 2 the architecture of a basic BIST

scheme is represented.

Parts of a BIST are the following:

 Unit Under Test (UUT): Is the circuit whose

functionality is being tested.

 Input generation: This part is responsible of

providing test vectors to the UUT. Vectors

can be stored at memories or generated by

hardware elements such as counters, adders

or FSMs (Finite State Machines)

 Output check: This part analyzes the outputs

of the UUT and decides if it is working

properly. It is usually based on comparing

the received output with a golden output.

 Control: Is the heart of the system. The Built-

in Self Test is activated by an external agent

using the START signal. Then the control

unit takes the control of the circuits and

activates the input multiplexer to send to the

UUT the test vectors. When the test is

finished it returns the control to the external

agent activating the DONE signal and

providing a result.

The main advantage of this approach is the

universality. The output can be compared with the

golden output at each clock cycle. So the output

checker works regardless of the functionality of

the circuit under test. In a software-based

approach the software that decides if a certain

circuit is working properly is fully application

dependent.

Simulation tools of FPGA manufacturers such

as Xilinx allow doing a netlist-level simulation. In

this way it is possible to know the activity rate of

each net under a known input vector. As a result

the coverage level of a certain input vector can be

evaluated. To achieve a 100% coverage activity

must be present at each net of the design. The test

must have a duration that allows the activity of all

the nets to propagate to outputs. For a software-

based approach it is difficult to estimate the

coverage level of a test vector, and if it can’t be

assured that the coverage-level is close to 100%

the failure-rate results can’t be trusted.

BIST is much faster than a software approach,

which means that high levels of coverage are

achieved at a much shorter time.

The additional hardware needed to perform

the verification test can be placed outside or inside

the FPGA. If it is placed inside the FPGA during

the validation process and then removed, validated

design is different from the operating design.
Figure 2: BIST architecture

However, this circuitry can be very small. In that

case the gap between the two implementations

would be small and the result would be accurate.

But validating an implementation different

from the operating implementation is not

recommended in any case. A solution is to keep

the verification hardware at the operating

implementation. It provides to the circuit a self-

test functionality and the results obtained from

validation process are valid.

Faults can be injected in the whole FPGA, so

verification side errors may appear if a fault is

injected at a bit belonging to verification

hardware. If the verification subsystem is

damaged it may never activate the done signal. If

this happens, the agent controlling the verification

hardware must take the flow control after having

waited a prudential time. However, since this

hardware is very small it is considered a minor

effect.

The other possibility is to place the BIST

hardware outside the FPGA. To keep the

characteristic of universality the verification

hardware needs to have the same clock as the

design at the FPGA. So this circuitry needs to be

placed at the same board as the FPGA. But in

many cases modifications at PCB level are not

available.

Design process is more complex for external

validation than for internal validation for both

hardware and software approaches. Configuring

additional equipment and circuits means that

different development tools and techniques have

to be used adding complexity to the design.

Additional pins and routing are needed so as to

add this external equipment, so minimal

modifications are added to the original design and

results are not necessarily better.

In the following table characteristics of

different combinations of offline verification

approaches are presented.

Verification Coverage Speed Integrity Universality

Internal HW High High Affected* High

External HW High High
Minimally

affected
High

Internal SW Low Low
Minimally

affected
Low

External SW Low Low
Minimally

affected
Low

Table 1: Offline verification approaches

*If test hardware is removed after performing the test the

integrity is affected. If it is not removed there is no trouble.

5. Experimental tests

Two verification configurations have been

implemented, internal hardware verification and

internal software verification. Both are

implemented at a Xilinx Zynq SoC, which

combines a hard dual ARM microcontroller

referred as PS (Processing System), with

Programmable Logic (PL).

In the PS runs a software that inserts faults at

configuration file and configures the PL using

PCAP (Processor Configuration Access Port).

Communication between PS and PL is done

through GPIO (General Purpose Input/Output)

peripheral of the PS.

5.1. Internal software verification

Input vectors and output check are done at a

software running at the PS. This software also

controls the selection signal of input multiplexer

and disables the circuit’s outputs when a test is

being done. In the figure 3 the architecture of

proposed internal software verification is shown.

It may be possible to develop using a Zynq

device a universal software verification system.

For example, saving the outputs for all clock

cycles at a memory and sending them to the PS

through a DMA. Those outputs are compared at

the PS with a previously saved golden output

vector.

Figure 3: Internal software verification

But that is not much different from a hardware

verification system. Note than the memory and the

DMA are implemented at the PL, and only the

comparison is done at the PS. This

implementation is done so as to compare the

coverage and speed level of a typical software

implementation with a hardware implementation.

A typical software verification system means that

the test software is running at an agent (for

example a PC) that can only access a few pins of

the unit under test and does not have the same

timing as the FPGA.

5.2. Internal hardware verification

Input generation and test check parts are

implemented in hardware at the PL. The software

stored at the PS activates a start signal in order to

transfer the control to the verification hardware

and waits until the test is finished. Then it reads

the result and starts a new test.

The input generation hardware consists on a FIFO

where an input pattern is stored. The coverage

level of this pattern has to be previously validated.

The time needed to perform a test is the length of

the FIFO multiplied by the clock frequency.

For output check another FIFO is used. This

FIFO has the same size as the input generation

FIFO in order to check the outputs for the same

time the inputs are generated. The content of this

FIFO is fulfilled with the golden outputs of the

circuit in case of no errors. While a test is being

done these golden values are compared to circuit

outputs and if a mismatch is observed during test

time an error flag is activated.

The interface between PS and PL has at least

three signals. A start signal set by the PS that

launches the verification system; a done signal set

by the PL that indicates that the test has finished;

and a result signal, which is active if a failure has

occurred.

The test time is limited to the size of the

FIFOs. When a certain UUT needs a long vector

to achieve a high coverage level the FIFOs can be

too long. In that case other input generation and

output check configurations would be more

suitable.

5.3. Units under test

Two circuits have been tested applying this two

configurations. The first is a bypass between the

inputs and the outputs. This test is done in order to

quantify the amount of errors provoked by the

testing setup. The second tested circuit is an adder

chain.

If software verification is done, the output check

software is fully application-dependent. The

following figure illustrates the pseudo-code of the

checking part for the two circuits. This

demonstrates the lack of universality of this

approach. On the other hand, the test setup is valid

for both circuits when a hardware approach is

applied.

For this example it is quite simple to develop the

code. The result is obtained just multiplying the

input with the number of adders of the chain. But

if the functionality is more complex it is not so

simple. For example, the adder-chain can be used

as a FIR filter. And it looks quite difficult to

develop a software that checks if a FIR filter is

working properly.

Figure 4: Internal hardware verification

Figure 5: Units Under Test

Figure 6: Software verification pseudocode

5.4. Obtained results

First the bypass design has been tested for both

hardware and software configurations. Then the

adder chain has been tested with 1500 adders.

The adder chain has been tested with different

vector sizes. The software approach has been

tested with 10, 30 and 100 vector size and the

hardware approach with sizes of 2048 and 16384.

Error

injections

Detected

errors
time

Bypass software 10 17782464 1219 8h

Bypass software 30 1782464 1442
10h

15min

Bypass hardware 128 17782464 2443 45min

Bypass hardware 16384 17782464 5631
2h

30min

Adder

chain
software 10 17782464 1698093 8h

Adder

chain
software 30 17782464 1784175

10h

15min

Adder

chain
software 65 17782464 1799464 12h

Adder

chain
software 100 17782464 1815405 30h

Adder

chain
hardware 2048 17782464 2494407

1h

15min

Adder

chain
hardware 16384 17782464 2574836

2h

30min

Table 2: Obtained results

6. Conclusions

Both hardware and software verifications are

valid when they are used in order to compare two

different architectures. But for estimating critical

bits accurately hardware verification is more

suitable because the coverage level can be

validated through simulation. Hardware

verification is much faster than software

verification. Software verification is fully

application-dependent, which means that different

testbenches are needed for testing different

applications. Hardware verification can be used

for testing different applications just modifying

the vector generation part.

Introducing a verification process modifies the

implemented design and hardware verification

introduces more errors than software verification,

but the modification of the failure rate is low

when verification hardware is small. The

verification hardware gives the possibility to the

system to perform an offline auto-test while it is in

normal operation.

Acknowledgements

This work was carried out in the R&D Unit

UFI11/16 of the UPV/EHU, and supported by the

Ministerio de Ciencia e Innovacion of Spain

within the projects TEC2011-28250-C02-01/2,

and by the Basque Governments Department of

Education, Universities and Research within the

research fund of the Basque university system

IT394-10.

References

[1] Agrawal, V.D.; Kime, C.R.; Saluja, K.K., A

tutorial on built-in self-test. I. Principles,

Design & Test of Computers, IEEE , vol.10,

no.1, pp.73,82, Mar 1993

[2] Avizienis, A; Laprie, J.C; Dependable

Computing: From Concepts to Design

Diversity, Proceedings of the IEEE, Volume

74, Issue 5, pp 629-638, 1986

[3] Baumann, R.C. Radiation-Induced Soft Errors

in Advanced Semiconductor Technologies,

IEEE Transactions on Device and Materials

Reliability, Volume 5, no. 3, pp 305-316, Sept

2005

[4] Chapman, K. Virtex-5 SEU Critical Bit

Information Extending the capability of the

Virtex-5 SEU controller, Feb 2010

[5] Kretzschmar, U. ; Astarloa, A.; Jimenez, J.;

Garay, M.; Del Ser, J. Compact and Fast Fault

Injection System for Robustness

Measurements on SRAM-Based FPGAs,

Industrial Electronics, IEEE Transactions on ,

vol.61, no.5, pp.2493,2503, May 2014

[6] Sterpone, L. ; Violante, M. A new partial

reconfiguration-based fault-injection system

to evaluate SEU effects in SRAM-based

FPGAs, IEEE Transactions on Nuclear

Science, Volume 54 , Issue: 4, pp. 965 – 970,

August 2007

[7] Sterpone, L. Electronics System Design

Techniques for Safety Critical Applications,

Lecture Notes in Electrical Engineering,

Volume 26, 2008

[8] Stott, E.; Sedcole, P.; Cheung, P. Y K, Fault

tolerant methods for reliability in FPGAs,

Field Programmable Logic and Applications,

2008. FPL 2008. International Conference on ,

vol., no., pp.415,420, 8-10 Sept. 2008,

	PORTADA
	CopyRight ISBN
	Comités
	Prólogo
	Conferencia Plenaria
	ÍNDICE
	sesión 1: IP Cores y Tolerancia a Fallos
	Arquitectura de DSP con unidad de aceleración HW reconfigurable por el programador
	Diseño de una librería de módulos IP de interfaces con el bus AMBA
	Medida del Architectural Vulnerability Factor en un sistema inalámbrico de comunicaciones Intra-Satélite
	Functional Verification for SEU Emulation in FPGA Designs

	sesión 2: Codiseño y HLS
	Codiseño hardware/software de aplicaciones de procesado de video sobre una plataforma reconfigurable
	Implementación del algoritmo de Jacobi para el cálculo de autovalores y autovectores, utilizando herramientas de síntesis de alto nivel
	Algoritmo de síntesis para mejorar la implementación de puertas lógicas de muchas entradas sobre FPGAs
	Vivado HLS aplicado a la docencia: Implementación de un módulo CORDIC

	sesión3: Aplicaciones I
	Diseño e implementación en FPGA de una unidad de cálculo para posicionamiento angular de un UAV (Quadcoper)
	Servidor Web basado en Linux Embebido sobre FPGA aplicado a Redes de Sensores
	FPGAs para computación móvil de alto rendimiento y eficiente: un caso de estudio usando una aplicación de Reversi
	Procesador criptográfico compacto para comunicaciones inalámbricas en instrumentación portátil para FECG
	Acelerador FPGA para el cálculo de la calidad de biclústers en Bioinformática
	Arquitectura multiprocesador SIMD en FPGA para cálculo científico en instrumentación espacial

	sesión 4: Aplicaciones II
	Implementation of a spiking digital neuron in reconfigurable hardware
	Implementación de un operador por hardware para la estimación de flujo óptico por el método de correlación
	LIM Real Time Transients Simulation on FPGA
	Implementación hardware de un controlador de memoria cache de reconfiguraciones
	Acelerador reconfigurable para procesamiento de algoritmos en paralelo

