
Fuel 327 (2022) 125148

0016-2361/© 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
nc-nd/4.0/).

Kinetic modeling and reactor design of the direct synthesis of dimethyl 
ether for CO2 valorization. A review 

A. Ateka *, P. Rodriguez-Vega , J. Ereña , A.T. Aguayo , J. Bilbao 
Department of Chemical Engineering, University of the Basque Country, UPV/EHU, P.O. Box 644, 48080 Bilbao, Spain   

A R T I C L E  I N F O   

Keywords: 
DME 
CO2 valorization 
Fuels 
Kinetic modeling 
Deactivation 
Membrane reactor 

A B S T R A C T   

The direct synthesis of dimethyl ether (DME) is considered one of the most attractive routes for valorizing CO2 
and syngas on a large scale. DME has a high cetane number and its properties are similar to those of liquefied 
petroleum gases (LPG). It can be used directly as fuel, selectively converted into hydrocarbons (olefins, aro-
matics) or used as H2 vector. This review explains briefly the advances in the study of the thermodynamics of 
DME synthesis and in the preparation of suitable catalysts. Subsequently, analyzes in detail the studies regarding 
the kinetic modeling, reactors design and reaction strategies. Extensive information is given on the kinetic 
models described in the literature, indicating the catalysts and reaction condition ranges for which the models 
were proposed. These kinetic models were whether based on those previously proposed separately for methanol 
synthesis and methanol dehydration stages on monofunctional catalysts, or models specifically proposed for 
bifunctional catalysts and conditions of the integrated process. Coke deposition is considered the main cause for 
catalyst deactivation and is quantified with different kinetic models. The presence of H2O in the reaction medium 
is a limiting factor for the thermodynamics and for the extent of the reactions. This problem is overcome using 
hydrophilic membrane reactors, whose behavior has been studied by simulation and recently with an experi-
mental system (with an LTA zeolite membrane). Finally, an analysis of the advantages and limitations of the 
different reactors and the challenges to progress towards the implementation of the direct CO2 to DME synthesis 
process have been addressed.   

1. Introduction 

To respond to the challenge of reversing climate change, various 
agreements (Kyoto Protocol, Paris Agreement, Copenhagen Accord, 
Cancun Agreements, Climate Action Summit, among others) are focused 
on the mitigation of greenhouse gas emissions (GHG, primarily CO2). 
The efficient use of energy, the circular economy, the rational symbiosis 
of the industrial development and the preservation of the natural envi-
ronment are the main strategies to achieve the objective of net zero 
carbon emissions by 2050 [1,2]. Unfortunately, the setting up of these 
initiatives does not progress as the urgency and magnitude of the 
problem require. The causes that may hinder its implementation are 
mainly socioeconomic factors, such as the increased industrial activity 
in the developed countries, the difficulties transitioning away from the 
oil economy, the relocation of industries to developing countries, and 
the discovery of fossil fuel deposits, particularly of natural gas. This 
circumstance leads to estimate that in the next 20 years, fossil fuels will 
still be the main energy source all around the world [3]. Tao et al., [4] 

established a future scenario (Fig. 1) in which captured CO2, together 
with biomass and wastes from the consumer society (plastics, tires), 
emerge as sustainable raw materials for manufacturing chemicals and 
fuels. The success of this change of raw materials requires developing 
new technologies, and intensifying the use of renewable energy sources, 
within the framework of the strategic sectors of Bio-Refinery [5,6], 
Waste-Refinery [7] and recycling (capture and use) of CO2. 

The limitations for the large-scale installation of the technologies for 
CO2 capture and storage/sequestration (CCS) are their high cost and 
safety risks related to CO2 leakage. There are currently 26 CCS projects 
in operation in the world (mainly in North America, Australia, China and 
Western Europe) and 21 in early stages of development [8]. Taking into 
account the environment in which the storage of CO2 is carried out on a 
large scale, it can be done in [9–11]: i) Saline aquifers, ii) depleted oil 
and gas reservoirs, iii) coal beds, iv) deep ocean, and v) deep-sea sedi-
ments and minerals. 

To finance the expensive investments required by CCS technologies, 
it is essential to promote CO2 upgrading generating an economic benefit. 
Thus, the carbon capture, utilization and storage (CCUS) strategies 
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constitute the heart of a circular economy, integrating technologies of 
CO2 capture and storage with CO2 valorization technologies towards 
products of commercial interest, through net energy generation pro-
cesses [12,13]. The utilization of non-fossil energy generation technol-
ogies (like solar energy) for H2O electrolysis, allows the reduction of CO2 
net emission within the integrated processes [14]. 

The routes for upgrading CO2 have received a great deal of attention 
in the literature, and different reviews have collected the fundamentals 
and advances of the different technologies, the modeling/simulation of 
the different processes and the energy and economic considerations that 
determine their installation [12–27]. Among these routes, the catalytic 
processes are of greater interest and have achieved remarkable tech-
nological development. In the following sections, these catalytic pro-
cesses for valorizing CO2 into fuels and chemicals are briefly described, 
highlighting the thermodynamic advantages of the direct synthesis of 
dimethyl ether (DME) and the interest of its applications as fuel and as 
raw material. Subsequently, this review analyzes in detail the main 
advances in two fundamental aspects for the implementation of the 
direct synthesis of DME from CO2 hydrogenation, that is, the kinetic 
modeling and reactor design, where the hydrophilic membrane reactor 
currently draws attention. 

2. Catalytic processes for CO2 conversion 

Due to the relevance of H2 consumption in the economic viability of 
the CO2 conversion process, Tao et al., [4] distinguished the processes 
for CO2 transformation requiring H2 as a reactant and those not 
requiring H2. 

2.1. Without H2 as reactant 

Some of these reactions (summarized in Fig. 2) are of great interest in 
the current energy transition period, but this interest will diminish when 
increasing the large-scale availability of H2, generated by electrolysis of 
H2O. 

2.1.1. Oxidative coupling (OC) 
This reaction is suitable for valorizing burgeoning natural gas re-

serves, in which CO2 content may reach 10 % [28,29], and can be ori-
ented towards the production of ethane (Eq. (1)) or ethylene, (Eq. (2)). 

2CH4 +CO2→CH3CH3 +CO+H2O (1)  

Nomenclature 

a Activity 
Ci Concentration of i compound 
D Gas effective dispersion coefficient, m2 h− 1 

d Sub index for deactivation 
dR Reactor diameter, m 
De,i Effective diffusion coefficient of i compound, m2 h− 1 

fi Fugacity of i compound, atm or bar 
Ki Adsorption equilibrium constant of i compound, atm-1 or 

bar− 1 

KN Equilibrium constant of N reaction step 
kN Kinetic constant of N reaction step 
P, Pi Total pressure and partial pressure of i compound, 

respectively, bar or atm 
PR, PP Total pressures at the reaction and permeation sections, 

respectively, atm 
p Vector of permeances of each i compound, mol m− 2 h− 1 

bar− 1 

r Radial position in the catalyst particle 

rc Vector containing the reaction rates of each i compound 
and the deactivation rate 

ri Formation rate of each i compound, typically molC g− 1 h− 1 

si Source term, bar h− 1 

T Temperature, ◦C or K 
uR, uP Vectors of dependent variables on reaction and permeate 

sections, respectively, in packed bed membrane reactors 
yi Molar fraction of i compound 
z Longitudinal position in the catalytic bed 

Greek symbols 
ΔP Vector of pressure differences between the reaction and 

permeate sections for each i compound in packed bed 
membrane reactors, bar 

β Specific term defined for certain kinetic equations 
ε Effective porosity of the catalytic bed 
θi, θd,i Term related to the attenuation of the reaction rate by i 

compound adsorption, and equivalent for deactivation 
ν Gas linear velocity, m h− 1  

Fig. 1. Change in raw materials to meet foreseeable energy demand in 2070, without increasing GHG emissions. 
Reproduced from [4] 
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2CH4 + 2CO2→CH2CH2 + 2CO+ 2H2O (2)  

2.1.2. Oxidative dehydrogenation (OD) 
The production of light olefins through oxidative dehydrogenation of 

their corresponding paraffins (ODP) (Eq. (3)), being ethane and propane 
the most studied, is an alternative to steam cracking, with lower energy 
requirement, and lower deactivation of the catalyst by coke [30,31]. 

CnHn+2 +CO2→CnHn+CO+H2O (3) 

The oxidative dehydrogenation of ethylbenzene (ODE) to styrene 
(Eq. (4)) avoids the high steam requirement of the conventional indus-
trial process without oxidant agent [32,33]. 

C6H5CH2CH3 +CO2→C6H5CH = CH2 +H2O+CO (4)  

2.1.3. Dry reforming (DR) 
The energy requirement is lower than in the steam reforming. It has 

been extensively studied for methane (MDR, Eq. (5)) [34–36] and has 
extended to the conversion of oxygenates derived from biomass (as 
ethanol (Eq. (6)), glycerol (Eq. (7)) and bio-oil). 

CH4 +CO2→2H2 + 2CO (5)  

C2H5OH+CO2→3CO+ 3H2 (6)  

C3H8O3 +CO2→4CO+ 3H2 +H2O (7) 

These reactions have received less attention than bio-oxygenates 
steam reforming and the main challenge has been achieving catalyst 
stability [37,38]. 

2.1.4. Chemicals production 
Among these reactions, the production of acetic acid (by the reaction 

of CO2 with CH4) and that of benzoic acid (with benzene) are relevant. 
Furthermore, acrylic acid production through the direct carboxylation 
of ethylene (Eq. (8)) is interesting to valorize the CO2 generated in the 
ethylene production units by steam cracking of naphthas [39]. 

+  CO2

O

OH

[Ni(0)]
(8) 

Dimethyl carbonate (DMC) (CH3O)2CO is produced by reacting with 
methanol (Eq. (9)) [40].   

Cyclic carbonates (of ethylene, propylene, cyclohexane, styrene and 
others) are produced by the addition of CO2 to an epoxy (Eq. (10)) [41]. 

O

CO2  + R
O

O

O
R

R = H for ethylene carbonate
R = CH3 for propylene carbonate

(10) 
Besides, CO2 is valorized in the NH3 production industry itself for the 

Acetic acid

Ethane
Ethylene

Light olefins

Styrene

H2 + CO

Urea

Carbonates

Benzoic acid

Acrylic acid

CO2

Fig. 2. Routes for CO2 conversion without H2 as reactant.  

CO2 +  2CH3OH

O

O

H3C CH3 + H2O

O

(9)   
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synthesis of urea (carbamide, (NH2)2CO) in two stages, Eqs. (11) and 
(12) [42]. 

2NH3 +CO2⇌H2N − COONH4 (11)  

H2N − COONH4⇌(NH2)2CO+H2O (12)  

2.2. CO2 hydrogenation 

The routes for the catalytic hydrogenation of CO2, schematized in 
Fig. 3, are receiving increasing attention [43–49]. According to the 
target products the routes can be classified as: with C1 compounds as 
products (methane, carbon monoxide, methanol, formaldehyde); and 
those that form compounds with 2 or more carbon atoms (hydrocarbons 
and oxygenates). The state of technological development and industrial 
implementation is different, and conditioned by the different demand of 
the products on the market. Here below, a brief analysis of the main 
routes is conducted, and in Section 3, attention is focused on DME 
synthesis. 

2.2.1. Methanation 
CO2 conversion and CH4 selectivity in this reaction (Eq. (13)) are 

favored at high pressure and low temperature, and the results are good 
(almost complete conversion and selectivity close to 100 %) with the 
appropriate catalyst [50,51] according to the stoichiometry: 

CO2 + 4H2⇌CH4 + 2H2O ΔH0
298K = − 165.0kJ mol− 1 (13) 

The improvement of the process using reactors with hydrophilic, 
steam-selective sodalite (SOD) membranes to replace conventional 
packed- or fluidized-bed reactors is relevant. The objectives are to 
reduce the thermodynamic limitations of the reaction and avoid catalyst 
deactivation by sintering [52,53]. 

2.2.2. Reverse water gas shift (rWGS) 
The conversion of CO2 by the rWGS reaction (Eq. (14)) is an endo-

thermic reaction requiring high temperature (above 700 ◦C) to obtain 

considerable CO2 conversion. The selection of the catalysts is condi-
tioned by stability and selectivity requirements [54], and these associ-
ated with: i) The presence of oxygen vacancies; ii) the capability for 
adsorbing CO2 and generating formate active species, and; iii) a weak 
binding energy of CO [55,56]. 

CO2 + H2CO2⇌CO+ C2O ΔH0
298K = − 41.2kJ mol− 1 (14)  

2.2.3. Synthesis of Methanol 
The thermodynamics of the exothermic synthesis of methanol from 

CO2 (Eq. (15)) require low temperature and high pressure to attain 
remarkable conversion. However, given the low reactivity of CO2, 
temperatures above 240 ◦C are required with conventional catalysts as 
to obtain notable reaction rate values. The challenges are oriented to-
wards developing new, active, selective and stable catalysts [57–60], 
reactors and operating strategies [61]. The industrial reference, from the 
sustainability point of view, is the plant in Reykjavik (Iceland). Using 
geothermal energy, this plant has an annual capacity of 4,000 metric 
tons, valorizing 5,600 tons of CO2 [62]. 

CO2 + 3H2⇌CH3OH + H2O ΔH0
298K = − 49.5kJ mol− 1 (15)  

2.2.4. Synthesis of Ethanol 
This reaction (Eq. (16)) proceeds through a more complex mecha-

nism than that for methanol synthesis [49] and requires selective 
multifunctional catalyst of complex composition [63]. 

2CO2 + 6H2⇌C2H5OH + 3H2O ΔH0
298K = − 86.7kJ mol− 1 (16)  

2.2.5. Synthesis of hydrocarbons 
In the direct production of hydrocarbons from CO2 tandem catalysts 

are used in the same reactor, favoring the thermodynamic displacement 
and selectivity. The alternative routes comprise [45,64]: i) Modified 
Fischer-Tropsch synthesis (MFTS), incorporating a zeolite to the FT 
catalyst, and; ii) with methanol/DME as intermediates (Eq. (17)), 
combining a methanol/DME synthesis catalyst with a zeolite for their 
conversion into hydrocarbons [65]. The composition of the metal oxide 
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Fig. 3. Catalytic routes for CO2 hydrogenation (adapted from the work by Vu et al., [47]. Copyright 2021, Elsevier).  
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and in particular, its content of oxygen vacancies, is a key feature for the 
adsorption of CO2 [58], while the selection of the shape selectivity and 
acidity of the zeolite allows the selective formation of light olefins, ar-
omatics or isoparaffinic gasoline [66,67]. 

CO2 + H2⇒CH3OH/DME + H2O⇒

⎧
⎨

⎩

Light olefins
Aromatics

Light paraffins
(17)  

3. Dimethyl ether synthesis 

The interest of DME synthesis stands out among the alternative 
routes for CO2 valorization in Fig. 3, due to the applications of DME and 
the thermodynamic advantages for CO2 conversion through the direct 
DME synthesis process. 

3.1. Properties and economy of DME 

DME (CH3-O-CH3) is a non-toxic oxygenate, with no impact on the 
environment, and with interesting properties for multiple applications 
[68–70]. It is widely used as aerosol, pesticide, ecological refrigerant, 
propellant (substituting chlorofluorocarbons), organic solvent [71] and 
as household fuel in Asian developing countries. Moreover, it has a great 
potential as automotive fuel since it can be easily adapted (similar to 
LPG) to compression ignition engines [72]; and gives way to lower 
greenhouse gas emissions than other fuels (CNG, LPG, Gasoline) [69]. 
The interest of DME as fuel for diesel engines is based on its properties. 
Its cetane number (CN), around 55, is higher than that of diesel (40–50) 
and its autoignition temperature (235 ◦C) and the air/fuel mass ratio (9) 
are lower (250 ◦C and 14.6, respectively for diesel). Consequently, it is 
usually used in mixture with LPG or diesel. A common mixture of 
10–30% of DME in diesel has the advantage of reducing CO2, soot and N 
and S oxide emissions [73]. 

The interest of DME as a raw material is growing, given its advan-
tages over methanol in different fuels and raw materials (olefins and 
aromatics) production processes. Thus, DTO (dimethyl ether-to-olefins) 
process may replace or complement the MTO processes (methanol-to- 
olefins) of UOP Norsk Hydro [74] and MTP process (methanol-to-pro-
pylene) of Lurgi [75]. Among the advantages of the DTO process: i) It is 
performed at lower temperature because the DME is more reactive than 
methanol [76]; ii) HZSM-5 is suitable as catalyst, and its deactivation is 
slower than that of SAPO-34 in the conversion of methanol [77,78]. In 
addition, in the DTO process, the well-established technology for the 
MTO process can be used, with reactor-regenerator systems with cata-
lyst circulation between units [79]. 

DME is also adequate as H2 vector, through steam reforming using 
bifunctional catalysts [80]. Due to its characteristics, it can be used in 
proton exchange membrane fuel cells (PEMFC) [81] and solid oxide fuel 
cells (SOFC) [82], as well as for energy storage, through a cycle 
comprising DME synthesis from CO2 (exothermic) and DME reforming 
to H2 (endothermic), using energy intermittently generated from 
renewable sources [83]. 

3.2. Synthesis in two stages 

The production of DME (10 Million tons/year, mostly in Asian 
countries) has been carried out using syngas feeds in a two-step process, 
that is, the synthesis of methanol and its dehydration towards DME [84]. 
The technology is currently revamping towards valorizing CO2, with the 
encouragement that the cost of DME production is lower than that of 
alcohols (methanol, ethanol, butanol, octanol) and hydrocarbons (gas-
oline, diesel, kerosene) [85]. The conventional catalyst of the methanol 
synthesis unit is based on CuO-ZnO-Al2O3, and that of methanol dehy-
dration in γ-Al2O3, of low manufacturing cost [86–88]. Catalysts with 
higher acidity and activity than γ-Al2O3 have also been studied, and the 
greatest research effort has focused on zeolites. HZSM-5 zeolite has 

received special attention, and its acidity has been modified as to 
minimize the presence of strong acidic sites [89,90]. Catizzone et al., 
[91,92] proposed ferrierite (FER) and reported higher reaction rates and 
lower coke deposition than with nano-sized HZSM-5 (MFI structure). 

3.3. Direct synthesis 

3.3.1. Thermodynamics 
The reactions involved in the process comprise: methanol synthesis 

(Eqs. (15) and (18)), methanol dehydration (Eq. (19)), reverse water gas 
shift (rWGS) (Eq. (14)), and the secondary reaction of paraffins (mainly 
methane) formation (Eq. (20)). 

CO+ 3H2⇌CH3OH+H2O (18)  

2CH3OH⇌CH3OCH3 +H2O (19)  

nCO+ (2n+ 1)H2⇌CnH2n+2 + nH2O (n = 1 − 3) (20) 

The main interest of performing methanol dehydration (Eq. (19)) in 
the same reactor as methanol synthesis (Eqs. (15) and (18)) is the 
displacement of the thermodynamic equilibrium of these reactions, and 
as a consequence, easing the conversion of CO2 [93]. Another conse-
quence is that the process can be carried out at a higher temperature 
(higher reaction rate) and with a lower H2/COx ratio than methanol 
synthesis, facilitating the joint valorization of CO2 and syngas derived 
from biomass [94]. 

Ateka et al., [95] delved into the capacity of methanol synthesis (MS) 
and direct DME synthesis (DS) processes for the valorization of CO2 and 
studied the effect of the reaction conditions (H2 + CO + CO2 mixture 
composition in the feed, temperature, pressure) on CO2 conversion, 
MeOH and DME yield and selectivity, and on the heat generated. The 
study determined that effective CO2 valorization was feasible both in MS 
and DS processes for CO2/COx ratios in the feed over 0.5 within 
250–300 ◦C range (Fig. 4). The study evidenced that the effect of the 
reaction conditions on DME yield differed from that on CO2 conversion 
(opposite trends). Therefore, the optimal conditions corresponded to a 
compromise between the interest of DME production and CO2 
valorization. 

3.3.2. Catalysts 
The bifunctional catalysts for the direct synthesis of DME from CO2 
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or CO2 co-fed with syngas have been developed using as a basis the 
experience on catalysts for the stages of methanol synthesis and meth-
anol dehydration to DME, and for the direct synthesis of DME from 
syngas (H2 + CO), and taking into account the differences required in 
the reaction conditions and composition for this approach. These dif-
ferences affect the composition and properties required for the activity, 
selectivity, stability and regenerability of the catalyst. Stability has 
received a great deal of attention because it is significantly relevant for 
the viability of the catalyst. Focusing on bi-functional catalysts for the 
direct synthesis of DME from syngas, Dadgar et al., [96] distinguished as 
main causes of deactivation: i) Coke deposition in the metallic catalyst, 
in the acid catalyst or in both; ii) sintering of the metallic catalyst, and 
iii) interactions between components of the metallic and acid catalysts. 
The challenge in the preparation of the catalyst is to minimize deacti-
vation by avoiding irreversible deactivation (sintering or composition 
change), minimizing the effect of coke deposition (to prolong the life-
time prior to regeneration) and providing the catalyst the required hy-
drothermal stability for the complete recovery of its activity after 
regeneration by coke combustion. 

In the direct synthesis of DME temperature is higher than in the 
synthesis of methanol, CO2 conversion is favored, and the concentration 
of H2O in the reaction medium is higher. This latter feature affects 
negatively the activity of the metallic function (usually based on CuO- 
ZnO-Al2O3), reducing the reaction rates of CO and CO2 hydrogenation 
and of the WGS reaction [97–99], and favoring Cu oxidation and sin-
tering [100]. The effect of H2O on the activity of the acid dehydration 
catalyst (γ-Al2O3 and HZSM-5 are the most used) is complex. On the one 
hand, H2O displaces the thermodynamic equilibrium and adsorbs 
competitively on the active sites diminishing their activity, but on the 
other hand, the presence of H2O attenuates coke formation [101]. 

3.3.2.1. Catalysts for methanol synthesis. Multiple modifications of the 
CuO-ZnO-Al2O3 (CZA) catalysts, conventionally used for methanol 
synthesis, have been widely studied to favor the conversion of CO2. ZnO 
has been replaced by La2O3, MgO, Fe2O3 and CeO2 [102–105] as to 
promote CuO dispersion, catalyst stability and COx conversion. Al2O3 
has also been replaced, partially or totally, by MnO [106], ZrO2 
[107–111], Ga2O3 [112,113] and TiO2 [114]. And the favorable 
contribution of noble metals (Au, Pt, Pd, Rh) for promoting hydroge-
nation [115–121], and of the confinement in mesoporous matrixes 
[122] to boost the stability of Cu-ZnO catalysts has also been 
ascertained. 

Moreover, Cu-based catalysts have been replaced by other alterna-
tives, more active for CO2 hydrogenation and without sintering prob-
lems. Among them, ZnO-ZrO2 [123], In2O3, In2O3-ZrO2 and In2O3-Ga 
[124–126] catalysts and those based on Co [127] or on novel metals 
with different supports and promoters [128,129]. A relevant challenge 
in the catalysts used for CO2 conversion is to minimize the extent of CO 
formation by means of the rWGS reaction. For this purpose, among the 
transition metal catalysts, those containing Co [130] are interesting. 
Among those composed with noble metals Pd-Zn [131,132] and also 
In2O3 have a selective performance [133]. 

3.3.2.2. Catalysts for methanol dehydration. Due to its low cost and high 
selectivity, γ-Al2O3 has been commonly used [87,134], although the 
studies are oriented to the use of other less hydrophilic acid catalysts of 
limited acid strength, as to avoid the formation of hydrocarbons [135]. 
Framework types as BEA, EUO, FER, MOR, MTW, TON [136,137] and 
more frequently MFI type (HZSM-5) [138,139] and silicoaluminophos-
phates (SAPO-11, − 18, − 34) are used [140]. Indeed, a great deal of 
effort has been placed on tailoring HZSM-5 catalysts, pursuing hydro-
thermal stability and deactivation resistance [140–142]. SAPO-11 
[108,143] and ferrierite [136,144,145] catalysts are also suitable for 
these purposes. 

3.3.2.3. Configuration of the bifunctional catalyst. The configuration of 
the bifunctional catalyst has received a great deal of attention as to 
promote the synergy advantages of the tandem catalysts while avoiding 
their problems [146]. The arrangement in a single hybrid catalyst par-
ticle favors the rapid dehydration of methanol in sites adjacent to those 
where it was formed [147], although the blockage of the inlet of the 
zeolite pores by the metallic function in the extrusion/pelletizing stage 
must be avoided [148]. Besides, an intimate contact between both 
functions may lead to ionic transport phenomena (of Cu+ and Al3+) 
contributing to deactivation [149]. 

The core–shell structure (depositing one function over a nucleus of 
the other) has been explored as an alternative to hybrid catalysts 
[150,151]. Sánchez-Contador et al., [152,153] tested a CuO-ZnO- 
ZrO2@SAPO-11 core–shell catalyst and ascertained that this configu-
ration prevented the partial blockage of SAPO-11 mesopores by CuO- 
ZnO-ZrO2 particles in the pelletizing step used for preparing hybrid 
catalysts. Feeding H2 + CO2 + CO mixtures in a CO2/COx ratio of 0.5, a 
DME yield ~ 9 % per pass and selectivity over 80 % were achieved with 
this core–shell catalyst, whereas 7 % and 77 %, respectively, for the 
hybrid system composed of the same metallic and acid function at 325 
◦C, 30 bar and 7.6 gcat h molC-1. 

3.3.3. Reactors for syngas conversion 
The synthesis of DME has been studied with different reactors of 

conventional configuration and successively innovations have been 
carried out to improve the yield and selectivity of DME and the energy 
efficiency of the process [70,154]. 

3.3.3.1. Conventional configuration. The interest of slurry phase (stirred 
or bubbling) reactors in the direct synthesis of DME and in other 
exothermic gas–liquid-solid reactions lies in their simple construction 
and temperature control, avoiding hot spots generation, due to the 
efficient heat transfer in the slurry with the heat exchanger tubes. 
Various authors have used this technology for the direct synthesis of 
DME from syngas in studies aimed at preparing suitable catalysts [155], 
kinetic modeling [156], design of the reactor and catalyst recirculation 
system [157,158] and optimizing operating conditions [159–161]. 
However, the slurry reactor presents mass transfer limitations and dif-
ficulties for the catalyst, which requires wettability conditions, me-
chanical resistance and non-aggregatibility [162]. Aoki et al., [163] 
provided the operating conditions of a pilot plant with a capacity of 100 
tons per day of DME from syngas. 

In the packed bed reactor, the heat transfer between phases is 
favored by the relative velocity of the flow with respect to the catalyst. 
The facility to operate in adiabatic regime or with heat transmission are 
other advantages. These allow for establishing a decreasing temperature 
profile, suitable for exothermic reactions as has been optimized for the 
conversion of methanol to DME [164]. However, the packed bed reactor 
requires precise control of the reaction conditions to avoid the formation 
of hot spots and the consequent sintering of the catalyst. Thus, the 
conversion is reduced to avoid excessive heat generation, requiring high 
syngas recycling. The heat transfer capacity increases using multitubular 
reactor systems (parallel packed beds) as simulated by Peláez et al., 
[165]. Song et al., [166] established a one-dimensional model to 
simulate a pilot-scale plant of DME synthesis, with shell and packed bed 
reactors, with capacity of 25–28 Nm3 h− 1 of syngas, determined the 
effect of the operation variables and validated the results 
experimentally. 

The use of the fluidized bed reactors has also been studied by means 
of simulation and experimentally [167]. In this reactor, temperature is 
uniform due to the catalyst mixing regime, avoiding the formation of hot 
spots. In addition, the rate of heat transfer between phases is high. 
Abashar et al., [168] studied the potential capacity to increase the 
performance and selectivity of a dual-bed reactor with two fluidized 
beds in series. Koyunoğlu et al., [169] determined by Computation Fluid 
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Dynamics (CFD) a bed density of 2200 kg m− 3 for maximum solid–gas 
contact. The limitations of the fluidized bed reactor are the need for a 
catalyst with high mechanical resistance to avoid mass losses due to 
attrition, and the demanding control of fluid dynamics to avoid any flow 
by-pass. 

3.3.3.2. Innovative reactors. The advances in the design of the reactor 
for the direct synthesis of DME seek to increase energy efficiency and 
simplify the process, by integrating the reaction, heat exchange and 
separation stages. In the innovations studied through simulation (mainly 
from syngas as reactant) the following can be distinguished [70,154]: 
Coupled and dual type reactors, catalytic distillation reactors, mem-
brane reactors, spherical reactors, microreactors and microchanell 
reactors. 

Yousefi et al., [170] relied on the heat exchange capacity of the 
multitubular reactors, to reduce the thermodynamic barrier of DME 
synthesis from syngas in a dual reactor system, consisting of fluidized 
bed reactors. The strategy consisted of disposing the catalyst in the 
vertical tubes of the first reactor (water-cooled) and in the shell side of 
the second, where the reactions take place, producing methanol. To this 
second reactor syngas was fed together with the output stream of the 
first reactor, where it was preheated by flowing in counter-current with 
reacting gas mixture in the shell side. Thus, an autothermal regime was 
generated in the system, and in the second reactor a decreasing tem-
perature profile with the reactor length, which favored the conversion of 
syngas and methanol into DME. Vakili et al., [171] designed a thermally 
coupled multitubular heat exchanger reactor, performing an endo-
thermic reaction (cyclohexane dehydrogenation) in the shell side and 
the synthesis of DME in the inside tubes, with packed beds on both sides. 
Catalytic distillation is another process intensification strategy that has 
been studied for methanol dehydration, proving that intensifies DME 
production, reduces the energy requirement and avoids the costs of the 
separation unit [172,173]. 

Farsi et al., [174] studied a dual membrane reactor for DME pro-
duction from syngas. The reaction system had three concentric tubes, 
being the catalytic bed placed in the intermediate tube. Water circulated 
to the inner tube’s sweeping zone through a permselective membrane, 
and H2 circulated from the outer sweeping zone to the reaction zone 
through a hydrogen permselective membrane. The external tube was 
surrounded by boiling water in order to remove the generated heat. The 
interest of feeding H2 through a permselective Pd-based membrane was 
analyzed by Mardanpour et al., [175]. Farniaei et al., [176] integrated 
the two membranes with the dual reactor in the same reaction unit, 
using the heat generated in the synthesis of DME to provide the energy 
required for the dehydrogenation of cyclohexane. Bakhtyari et al., [177] 
integrated methyl formate production as endothermic reaction in the 
dual membrane reactor together with DME synthesis. Yasari et al., [178] 
addressed theoretically the unfavorable effect of H2O separation on 
intensifying catalyst deactivation by coke and paraffin formation (trade- 
off); together with the favorable effect of increasing DME yield. This 
proves the advantages of a multi- stage double shell-and-tube reactor 
compared to the conventional single-stage packed bed reactor due to the 
improved heat removal and H2O removing capacity. Bayat and Asil 
[179] designed a multifunctional moving bed reactor in which H2O was 
adsorbed in situ with a regenerative 4A zeolite fed together with syngas, 
calculating a 31% increase in DME yield compared to a conventional 
packed bed reactor. The use of adsorption and of hydrophilic membrane 
strategies for the separation of water from the reaction medium takes a 
relevant importance when increasing the concentration of CO2 in the 
feed, and therefore, greater attention is paid to this strategy in section 
5.3. 

The use of spherical reactors has advantages over tubular packed 
beds, such as lower pressure drop and smaller catalyst particle size 
(minimizing diffusion limitations). Samimi et al., [180], established a 
simulation model for the conversion of methanol to DME in a spherical 

membrane reactor. Subsequently, these same authors studied the con-
version of methanol into DME in a system of two spherical reactors of 
axial flow arranged in series [181]. Farsi et al., [182] optimized the 
conditions for the production of DME from methanol in a multi-stage 
spherical reactor with axial flow and compared the performance of 
this configuration with the conventional tubular reactor. Farsi [183] 
quantified the advantages integrating hydrophilic membranes in each 
stage of a multi-stage radial flow spherical reactors for the production of 
DME from methanol, due to the shift of the thermodynamic equilibrium 
limitation. 

Microchannel reactors are suitable for exothermic reactions that 
require good temperature control and contact between phases. Their 
high contact surface area to volume ratio facilitates mass and heat 
transfer and increases productivity. Hu et al., [184] studied experi-
mentally the effect of the reaction conditions (temperature, pressure, 
residence time) on the direct synthesis of DME from syngas using a 
microchannel reactor. The higher yield, compared to a conventional 
packed bed reactor, was attributed to the shortening of bulk diffusion 
length, minimizing back mixing and increased accessibility of the gas to 
the catalyst surface. Hayer et al., [185] established and experimentally 
validated a 2D pseudo-homogeneous simulation model of these micro-
channel reactors in the direct synthesis of DME from syngas. The same 
authors [186] studied the effect of the fluid dynamics of different micro- 
packed bed reactor-heat exchanger configurations on their performance. 
The high DME yields attained evidence the potential of these reactors 
and their ability to be improved by optimizing their fluid dynamics, 
which also depends on the reaction conditions. Pérez Miqueo et al., 
[187] compared the performance of different structured analytic re-
actors, verifying that the mass and heat transfer is independent of the 
substrates nature and shape (parallel cell, monoliths and open foams) 
and that these reactors allow working in isothermal regime with a 
volumetric productivity up to 0.20 (L of DME) h− 1 cm− 3 at 573 K. 

4. Kinetic modeling 

The first kinetic models established for the direct synthesis of DME 
combined the models proposed in the literature for the stages of meth-
anol synthesis (mainly from syngas) and methanol dehydration to DME 
[156,167,188,189]. For methanol synthesis, Natta [190] proposed a 
pioneering model for ZnO/CrO3 catalysts, and the model proposed by 
Leonov et al., [191] is considered the first for Cu based catalysts (CuO- 
ZnO-Al2O3). These models have continuously been improved, either 
considering the contribution of CO2 conversion [192–194] and of the 
WGS reaction [195–197]; and various comparisons among the different 
available models have also been reported [198]. Likewise, different ki-
netic models have been proposed for methanol dehydration, based 
either on the Langmuir-Hinshelwood [199] or Eley-Rideal [200] pos-
tulates, or of empirical nature. For instance, those considering the 
inhibiting effect of H2O in the reaction medium on the reaction rate 
expressions [201]. These models have been gathered and compared 
mainly for γ-Al2O3 and HZSM-5 based catalysts [202,203]. 

Nonetheless, the direct DME synthesis process is conducted under 
different conditions to those settled as optimal for each individual step. 
Indeed, the direct synthesis process is performed at higher temperature 
than methanol synthesis and higher pressure than that required for its 
dehydration. Bearing these in mind, specific models for the direct pro-
cess have been developed [204,205]. Besides, deactivation has been 
considered [100,206], and modifications have been introduced for 
accurately describing the performance of catalysts with different con-
figurations [97–99,207]. The kinetic models are described below, dis-
tinguishing those based on models proposed in the literature for 
individual stages (Section 4.1) from those specifically proposed for the 
direct process using new kinetic expressions (Section 4.2). In Table 1 the 
operating conditions for the application and main considerations of 
these models are summarized. For an overall view, the kinetic param-
eters along with the reactions considered in each scheme are gathered in 
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Table A.1 in the Supporting Information. 

4.1. Based on combining models proposed for the individual reaction 
stages 

The pioneering model of Ng et al., [188] for the direct synthesis of 
DME in a dual bed of commercial CuO-ZnO-Al2O3 and γ-Al2O3 catalysts 
was a combination of the: i) Kinetic model proposed by Vanden Bussche 
and Froment [194] for methanol synthesis (Eq. (21)), established 
considering the sequential reaction of CO to CO2 to methanol (MeOH) 
through surface carbonates; with ii) that proposed by Berčič and Levec 
[208] for methanol dehydration (Eq. (22)) proceeding through disso-
ciative adsorption. In the model, the kinetics of the rWGS reaction (Eq. 
(23)), was considered but not the methanation reaction (Eq. (13)) nor 
catalyst deactivation. The accuracy of the model was tested for fitting 
the experimental results obtained in a gradientless internal-recycle 
continuous reactor at 250 ◦C and 5 MPa for a variety of feedstock 
compositions (various CO2 concentrations and H2/COx ratios in the 
feed) and catalyst loadings. Except for high space velocities and large 
acid catalyst/metallic catalyst ratios, the model simulated quite satis-
factorily. Ng et al., [188] reported for the first time the strong synergy 
obtained in the direct process, specially with CO rich feeds, due to the 
effective removal of methanol by dehydration and the product H2O by 
the WGS reaction; whereas the extent of the synergy declined with 
increasing CO2 concentration in the feed, since the reverse water–gas- 
shift reaction was favored leading to large amounts of H2O. 

rCO2 to MeOH =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

k1(PH2PCO2 )

⎛

⎝1 −
PMeOHPH2O

Keqm1

(
PCO2 P

3
H2

)

⎞

⎠

(
1 + K2(PH2O/PH2 ) +

̅̅̅̅̅̅̅̅̅̅̅̅̅
K3PH2

√
+ K4PH2O

)3

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

(21)  

rMeOH dehydration =

⎡

⎢
⎢
⎣

k6K3
CH3OH

[
C2
MeOH −

(
CH2OCDME
Keqm3

) ]

(
1 + 2

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
KMeOHCMeOH

√
+ KH2OCH2O

)4

⎤

⎥
⎥
⎦ (22)  

rrWGS =

⎡

⎢
⎢
⎣

k5pCO2

(

1 −
PCOPH2O

Keqm2(PCO2 PH2)

)

(
1 + K2(PH2O/PH2 ) +

̅̅̅̅̅̅̅̅̅̅̅̅̅
K3PH2

√
+ K4PH2O

)

⎤

⎥
⎥
⎦ (23) 

The kinetic parameters and equilibrium constants were defined ac-
cording to Eq. (24), and the values for A(i) and B(i) are listed in Table 
A.1. 

ki = A(i)exp
[
B(i)
RT

]

(24) 

Lu et al., [167] addressed the kinetic modeling of the hybrid Cu-ZnO- 
Al2O3/HZSM-5 catalysts performance on laboratory scale fluidized bed 
reactor for CO hydrogenation. The model (Table A.1) considered 
methanol formation through CO2 (Eq. (25)), methanol dehydration (Eq. 
(26)) and WGS reaction (Eq. (27)), and used the (CO2, H2, CO) 
adsorption constants established by Vanden Bussche and Froment [194] 
but neglected those for methanol and water, based on the low amount 
registered in the product stream in the experimental data. The model 
demonstrated to fit the experimental data obtained within the following 
conditions: 250–270 ◦C, 20–40 bar, H2/CO ratio between 0.75 and 2, for 
SV of 3000 mL gcat

-1 h− 1. 

rCO2 to MeOH =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

K1(PCO2PH2 )

⎛

⎝1 −
PH2OPMeOH

KP,1

(
PCO2 P

3
H2

)

⎞

⎠

(
1 + KCO2PCO2 + KCOPCO +

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
KH2PH2

√ )3

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

(25)  

rMeOH dehydration = K2

(
P2
MeOH

PH2O
−
PDME
KP,2

)

(26)  

rWGS =

⎡

⎢
⎢
⎣

K3

(
PH2O −

PCO2 PH2
KP,3PCO

)

(
1 + KCO2PCO2 + KCOPCO +

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
KH2PH2

√ )

⎤

⎥
⎥
⎦ (27) 

Nie et al., [209] presented a Langmuir-Hinshelwood (LHHW) 
mechanism based model (Table A.1) from the results obtained in a 
packed bed integral reactor at 220–260 ◦C and 30–70 bar, for a 
bifunctional catalyst composed of commercial methanol synthesis and 
dehydration catalysts. The reaction rates considered in the model 
correspond to: methanol formation from CO (Eq. (28)) and from CO2 
(Eq. (29)) separately, methanol dehydration (Eq. (30)) and that for the 
WGS reaction (Eq. (31)). For the calculation of the kinetic parameters 
best fitting the experimental results the simplex method and genetic 
algorithm were combined. The model resulted reliable for describing the 
performance of the catalyst even for N2 containing syngas feeds. Shim 
et al., [205] applied the model proposed by Nie et al., [209] and 
recalculated the kinetic parameters to best fit their experimental results 
obtained at industrial operating conditions. 

rCO to MeOH =

[
k1fCOf 2

H2
(1 − β1)

(
1 + KCOfCO + KCO2 fCO2 + KH2 fH2

)3

]

being : β1 =
fMeOH

Kf1 fCOfH2
2

(28)  

rCO2 to MeOH =

[
k2fCO2 f

3
H2
(1 − β2)

(
1 + KCOfCO + KCO2 fCO2 + KH2 fH2

)4

]

being : β2 =
fMeOHfH2O

Kf2 fCO2 fH2
3

(29)  

rMeOH dehydration =

[
k3fMeOH(1 − β3)

(
1 +

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
KMeOHfMeOH

√ )2

]

being : β3 =
fDMEfH2O

Kf3 fMeOH
2

(30)  

rWGS =

[
k4fH2O(1 − β4)

1 + KCOfCO + KCO2 fCO2 +
̅̅̅̅̅̅̅̅̅̅̅̅̅
KH2 fH2

√

]

(31) 

Hadipour et al., [189] (Table A.1) combined and recalculated the 
models proposed by Graaf et al., [196,197] for the transformation of 
syngas into methanol and that proposed by Berčič and Levec [208] for 
describing the rate of methanol dehydration to DME over a conventional 
CuO-ZnO-Al2O3/γ-Al2O3 hybrid catalyst. In both stages LH mechanisms 
were therefore assumed. In the methanol synthesis reaction rate (Eq. 
(32)), hydrogen was supposed to be dissociatively adsorbed in certain 
active sites competing with H2O, whereas CO on different type of active 
sites competing with CO2. On the other hand, in the dehydration stage 
(Eq. (33)), a LH surface controlled reaction with dissociative adsorption 
of methanol was found to best represent the experimental results. In the 
latter stage, DME adsorption term was neglected and the term 
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considering methanol partial pressure considered the driving force term. 
The model was capable for describing the experimental results in an 
agreement degree of 90–95 % for 230–300 ◦C range, 8 bar and space 
time values between 206 and 2240 g mol-1min− 1. 

rCO to MeOH =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

k1

⎛

⎝PCOP
1/2
H2

− PMeOH

KP1

(
pCO2 P

1/2
H2

)

⎞

⎠

(1 + k2PCO + k3PCO2 )
(
P1/2
H2

+ k4PH2O

)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

(32)  

rMeOH dehydration =

⎡

⎢
⎢
⎣

k5

(
P2
MeOH −

PH2OPDME
KP2

)

(
1 + 2(k6PMeOH)1/2

+ k7PH2O

)4

⎤

⎥
⎥
⎦ (33) 

Likewise, Moradi et al., [156] (Table A.1) considered the kinetics 
proposed by Graaf et al., [196,197] and Berčič and Levec [208], in this 
case for studying the intrinsic kinetics for DME synthesis from syngas in 
liquid phase (LPDME) over CuO-ZnO-Al2O3/HZSM-5 hybrid catalysts. 
Neglecting mass transfer resistance, gas- and liquid-phases were 
assumed to be in thermodynamic equilibrium and so, the kinetic rate 
expressions were based on components fugacity. Here the reactions of 
CO hydrogenation to methanol (Eq. (34)), WGS and methanol dehy-
dration to DME (Eq. (35)) were considered, and the reparameterizing of 
the kinetic coefficients (following Arrhenius and Vantt́ Hoff equations) 
permitted obtaining apparent activation energies, reported to be 115 kJ 
mol− 1 and 82 kJ mol− 1 for methanol synthesis and dehydration, 
respectively. 

rCO to MeOH =

⎡

⎢
⎢
⎢
⎢
⎣

k1KCO
(

fCOf
3/2
H2

− fMeOH
f 1/2
H2
KfCO

)

(
1 + KCOfCO + KCO2 fCO2

)
(

f 1/2
H2

+
KH2OfH2O

K1/2
H2

)

⎤

⎥
⎥
⎥
⎥
⎦

(34)  

rMeOH dehydration =

⎡

⎢
⎢
⎣

k2K2
MeOH

(
C2
MeOH −

CH2OCDME
KfDME

)

[
1 + 2(KMeOHCMeOH)1/2

+ KH2OCH2O

]4

⎤

⎥
⎥
⎦ (35) 

In the same line, the model proposed by An et al., [210] (Table A.1) 
for describing the performance of CuO-ZnO-Al2O3-ZrO2/HZSM-5 hybrid 
catalyst considered the model proposed by Graaf et al., [196,197] for 
methanol synthesis (Eq. (34)) the best for fitting their experimental re-
sults. Given the addition of ZrO2 promoter to the catalyst lead to the 
generation of more active sites (of the same nature), the kinetic pa-
rameters established by Graaf et al., [196,197] for CZA catalysts were 
recalculated for CO hydrogenation to methanol (Eq. (26)), WGS (Eq. 
(36)), and CO2 hydrogenation to methanol (Eq. (37)) reactions. Besides, 
for describing methanol dehydration these authors used the model 
proposed by Tao et al., [211] instead (Eq. (38)). For parameter esti-
mation, fugacity was assumed to be equal to partial pressure and Nelder- 
Mead algorithm was used, achieving a good fit with an average devia-
tion of about 6 %. Application range: 210–270 ◦C, 20–50 bar, SV 
1000–10000 mL g-1h− 1. 

rrWGS =

⎡

⎢
⎢
⎢
⎢
⎣

k2KCO2

(
fCO2 fH2 −

fH2OfCO
Kf2

)

(
1 + KCOfCO + KCO2 fCO2

)
(

f 1/2
H2

+
KH2OfH2O

K1/2
H2

)

⎤

⎥
⎥
⎥
⎥
⎦

(36)  

rCO2 to MeOH =

⎡

⎢
⎢
⎢
⎢
⎣

k3KCO2

(

fCO2 f
3/2
H2

−
fMeOH fH2O

f 3/2
H2
Kf3

)

(
1 + KCOfCO + KCO2 fCO2

)
(

f 1/2
H2

+
KH2OfH2O

K1/2
H2

)

⎤

⎥
⎥
⎥
⎥
⎦

(37)  

rMeOH dehydration =

⎡

⎢
⎢
⎣

k4

(
fMeOH2 −

fDMEfH2O
Kf4

)

(
1 + K’H2OfH2O + KMeOHfMeOH

)

⎤

⎥
⎥
⎦ (38) 

The kinetic equation established by Park et al., [212] in their model 
(Table A.1) differed from that proposed by Graaf et al., [196,197], and 
detailed elementary steps were considered for CO (Eq. (39)) and CO2 
(Eq. (40)) hydrogenation and for the adsorption of the latter. No internal 
or external diffusion was considered, and the adsorption equilibrium 
constants reported by Graaf et al., [196,197] and Ng et al., [188] were 
used together with the adsorption coefficient calculated for H2O. Eq. 
(41) was considered for WGS reaction and an expression equivalent to 
Eq. (35) for methanol dehydration to DME. 

rCO to MeOH =

⎡

⎢
⎢
⎢
⎢
⎣

k’AKCO
(

fCOf 1.5
H2

− fMeOH
f 0.5H2
KP,A

)

(1 + KCOfCO)
(

1 + K0.5
H2
f 0.5
H2

+ KH2OfH2O

)

⎤

⎥
⎥
⎥
⎥
⎦

(39)  

rCO2 to MeOH =

⎡

⎢
⎢
⎢
⎢
⎣

k’CKCO2

(

fCO2 f
1.5
H2

−
fMeOH fH2O

f 1.5H2
KP,C

)

(
1 + KCO2 fCO2

)(
1 + K0.5

H2
f 0.5
H2

+ KH2OfH2O

)

⎤

⎥
⎥
⎥
⎥
⎦

(40)  

rWGS =

⎡

⎢
⎢
⎣

k′BKCO2

(
fCO2 f 1.5

H2
−
fCOfH2O
KP,B

)

(
1 + KCO2 fCO2

)(
1 + K0.5

H2
f 0.5
H2

+ KH2OfH2O

)

⎤

⎥
⎥
⎦ (41)  

4.2. Specific models for the direct synthesis process 

Aguayo et al., [204] proposed a kinetic model (Eqs. (42)-(45)) for the 
direct synthesis of DME over CuO-ZnO-Al2O3/γ-Al2O3 catalyst appli-
cable either for H2 + CO or H2 + CO2 feeds, in a wide range of operating 
conditions: 225–325 ◦C, 10–40 bar, 1.6–57 gcat h− 1 molH2

-1 . In this model, 
methanol formation was considered to proceed through CO hydroge-
nation and being the rate limiting step. The WGS reaction was consid-
ered to be in equilibrium and methanol to DME dehydration considered 
to proceed very fast. CO2 hydrogenation was proven to be of minor 
significance. That is, for H2 + CO2 feeds, CO2 was believed to be pre-
viously converted to CO through the rWGS reaction. Unlike the previous 
models, hydrocarbons (mainly methane) formation reaction was also 
considered and the inhibiting effect of H2O adsorption also taken into 
account with a θ term in the reaction rates of methanol formation and 
hydrocarbons formation. This term was related to the H2O content by 
means of a hyperbolic equation (Eq. (46)), where KH2O was associated to 
the H2O adsorption equilibrium constant. 

The same group proceeded seeking for a more accurate model 
widening the operating condition range and considering coke deposition 
on the metallic function the main responsible for catalyst deactivation 
(Sierra et al., [206]). The deactivation was quantified with an activity 
term (a) (Eq. (47)). Coke formation was proven to have oxygenates 
(dimethyl ether and methanol) as precursors. Consequently, the deac-
tivation rate was quantified with an expression of the evolution of 
catalyst activity with time on stream, dependent on the concentration of 
methanol and DME (Eq. (48)), based on the hypothesis of coke forma-
tion through methoxy ion intermediates. Along with the statements 
proposed by Aguayo et al., [204], this model proved that the adsorption 
of H2O also had an inhibiting effect on coke formation. The effect on the 
deactivation rate was quantified with a term θd related to the concen-
tration of H2O by the Eq. (49). Peláez et al., [213] used in their model for 
the direct synthesis of DME from syngas over a CuO-ZnO-Al2O3/γ-Al2O3 
catalyst the Eq. (48) for the deactivation kinetic equation. As a next step 
for improving the kinetic model, besides the contribution of H2O 
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Table 1 
Operating conditions for application and main considerations of the DME synthesis kinetic models.  

Catalyst Config. Reactor Application range Feedstock Kinetic equations and 
considerations 

Author Ref 

CuO-ZnO-Al2O3/ 
δ-Al2O3

a  
Dual 
bed 

Internal-recycle 250 ◦C 
50 bar 
H2/COx = 4 
GHSV 27500–200000 
h− 1 

H2 + CO +
CO2 

CO2 to MeOH 
WGS 
MeOH to DME 

Ng et al., (1999) [188] 

Cu-ZnO-Al2O3/ 
HZSM-5 

Hybrid Fluidized bed 250–270 ◦C 
20–40 bar 
H2/CO = 0.75–2 
SV 3000 mL gcat

-1 h− 1 

H2 + CO+

(CO2 trace) 
CO2 to MeOH 
WGS 
MeOH to DME 

Lu et al., (2004) [167] 

Commercial MeOH synthesisa +

MeOH dehydrationa 
Hybrid Packed bed 220–260 ◦C 

30–70 bar 
H2/CO = 0.8–4.6 
SV 1000 mL gcat

-1 h− 1 

H2 + CO+

(CO2 trace) 
CO to MeOH 
CO2 to MeOH 
MeOH to DME 

Nie et al., (2005) [209] 

Cu-ZnO-Al2O3/ 
δ-Al2O3 

Hybrid Packed bed 230–300 ◦C 
8 bar 
H2/CO = 1.8 
260–2240 g mol- 
1min− 1 

H2 + CO  CO to MeOH 
MeOH to DME 

Hadipour et al., 
(2008) 

[189] 

Cu-ZnO-Al2O3/ 
HZSM-5 

Hybrid Slurry 200–240 ◦C 
20–50 bar 
H2/CO = 1–2 
SV 1000 mL gcat

-1 h− 1 

H2 + CO  CO to MeOH 
MeOH to DME 

Moradi et al., 
(2008) 

[156] 

CuO-ZnO-Al2O3-ZrO2/HZSM-5 Hybrid Packed bed 210–270 ◦C 
20–50 bar 
H2/CO = 3 
SV 1000–10000 mL gcat

- 

1h− 1 

H2 + CO2 CO to MeOH 
CO2 to MeOH 
WGS 
MeOH to DME 

An et al., (2008) [210] 

Cu-ZnO-Al2O3/ 
HZSM-5  

Hybrid Packed bed 220–350 ◦C 
5–85 bar 
H2/COx = 0.25–3 
SV 1000–10000 mL gcat

- 

1h− 1 

H2 + CO+

(CO2 trace) 
CO to MeOH 
CO2 to MeOH 
WGS 
MeOH to DME 

Shim et al., 
(2009) 

[205] 

Cu-ZnO-Al2O3, Süd-Chemie, 
MegaMax700 
commercial a  

Hybrid Packed bed 
Microreactor 

220–340 ◦C 
50–90 bar 
H2/COx = 2–7 
CO2/COx = 0–1 
SV 8000–40000 mL gcat

- 

1h− 1 

H2 + CO +
CO2 

CO to MeOH 
CO2 to MeOH 
WGS 
MeOH to DME 

Park et al., 
(2014) 

[212] 

CuO-ZnO-Al2O3/ 
γ-Al2O3 

Hybrid Packed bed 225–325 ◦C 
10–40 bar 
H2/CO = 2–4 
1.6–57 gcat h molH2

-1 

H2 + CO 
H2 + CO2 

CO to MeOH* 
WGS 
MeOH to DME 
HC formation* 

Aguayo et al., 
(2007) 

[204] 

CuO-ZnO-Al2O3/ 
γ-Al2O3 

Hybrid Packed bed 225–325 ◦C 
20–40 bar 
H2/CO = 2–4 
0.1–68 gcat h molC-1 

H2 + CO CO to MeOH*^ 

WGS 
MeOH to DME 
HC formation* 

Sierra et al. 
(2010) 

[206] 

CuO-ZnO-Al2O3/ 
γ-Al2O3 

Hybrid Packed bed 225–325 ◦C 
20–40 bar 
H2/CO2 = 2–4 
42 gcat h molC-1 

H2 + CO2 CO to MeOH*+^ 

WGS 
MeOH to DME 
HC formation*+

Ereña et al. 
(2011) 

[100] 

CuO-ZnO-MnO/ 
SAPO-18 

Hybrid Packed bed 250–350 ◦C 
10–40 bar 
CO2/COx = 0–0.5 
H2/COx = 3–4 
1.25–20 gcat h molC-1 

H2 + CO +
CO2 

CO to MeOH*+^ 

WGS 
MeOH to DME 
HC formation*+

Ateka et al. 
(2018) 

[97] 

CuO-ZnO-ZrO2 

@SAPO-11 
Core- 
shell 

Packed bed 250–325 ◦C 
10–50 bar 
CO2/COx = 0–1 
H2/COx = 2.5–4 
1.25–20 gcat h molC-1 

H2 + CO +
CO2 

CO to MeOH*^ 

CO2 to MeOH*^ 

WGS+^ 

MeOH to DME^ 

HC formation (constant) 

Ateka et al. 
(2021) 

[99] 

CuO-ZnO-ZrO2/ 
SAPO-11 

Hybrid Packed bed membrane 
reactor 

275–325 ◦C 
20–40 bar 
CO2/COx = 0–1 
H2/COx = 3 
1.25–20 gcat h molC-1 

H2 + CO +
CO2 

CO to MeOH*^ 

CO2 to MeOH*^ 

WGS+^ 

MeOH to DME 
HC formation (constant) 

Ateka et al. 
(2021) 

[207]  

a commercial catalyst. 
* considering the attenuation of the reaction rate by H2O adsorption. 
+ considering the attenuation of the reaction rate by CO2 adsorption. 
^ Considering catalyst deactivation. 
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adsorption for attenuating the reaction rates, that of CO2 adsorption was 
also considered by Ereña et al., [100] in the methanol and hydrocarbons 
formation rates, and also on deactivation (Eqs. (50) and (51), respec-
tively). For this, the kinetic parameters were readjusted (Table A.1) for 
fitting experimental data obtained from H2 + CO2 feeds in similar re-
action conditions and for equal catalysts as those used by Aguayo et al., 
[204]. 

rCO to MeOH = k1

[

fCOf 2
H2

−
fMeOH
K1

]

θ (42)  

rMeOH dehydration = k2

[

f 2
CH3OH −

fMeOHfH2O

K2

]

(43)  

rrWGS = k3

[

fCOfH2O −
fCO2 fH2

K3

]

(44)  

rHC = k4

[

fCOf 3
H2

−
fHCfH2O

K4

]

θ (45)  

θ =
1

1 + KH2OfH2O
(46)  

rCO to MeOH = k1

[

fCOf 2
H2

−
fMeOH
K1

]

θa (47)  

−
da
dt

= kdθd(fMeOH + fDME)a (48)  

θd =
1

1 + KH2OfH2O
(49)  

θ =
1

1 + KH2OfH2O + KCO2 fCO2

(50)  

θd =
1

1 + KH2O,dfH2O + KCO2 ,dfCO2

(51) 

Subsequently, the utilization of this model was broadened for a va-
riety of H2 + CO + CO2 mixture feeds in a wide range of operating 
conditions using for instance CuO-ZnO-MnO/SAPO-18 hybrid catalyst 
[97]. An improvement of the model consisted of considering a d order in 
the deactivation kinetic equation: 

−
da
dt

= kdθd(PMeOH +PDME)ad (52) 

This kinetic model was later tuned for describing the performance of 
a core–shell structured CuO-ZnO-ZrO2@SAPO-11 catalyst [98]. Bearing 
in mind the characteristics of this catalyst, a macro-kinetic model was 
developed considering: i) The confinement of the individual reactions of 
the kinetic scheme in different regions of the catalyst particle; and ii) 
that the diffusion of the components through the catalyst particle in-
fluences the reaction rates [99]. At this point, in the model, methanol 
formation from CO (Eq. (53)) and CO2 (Eq. (54)), rWGS (Eq. (55)), 
methanol dehydration (Eq. (43)) and hydrocarbon formation (Eq. (56)) 
reactions were considered, and the hydrocarbons formation rate was 
considered to be constant. It must be noted that the contribution of CO2 
to methanol formation was significant in this case. The attenuation of 
the WGS reaction rate by the adsorption of CO2 was quantified with a 
θCO2 term defined in Eq. (57). The reactants diffusion limitation in each 
region of the catalyst particle was introduced (the effective diffusion 
coefficients are listed in Table A.1) and the concentration profile of each 
component determined by the expression of the mass balance consid-
ering spherical geometry (Eq. (58)). All in all, this model allowed for 
accurately describing the activity, quantifying the performance of CuO- 
ZnO-ZrO2@SAPO-11 catalyst, and studying the influence of particle size 
and so, of scaling-up, on DME production and CO2 conversion. 

rCO to MeOH =

[

k1

(

fCOf 2
H2

−
fMeOH
K1

)]

θH2O⋅a (53)  

rCO2 to MeOH =

[

k4

(

fCO2 f
3
H2

−
fMeOHfH2O

K4

)]

θH2O⋅a (54)  

rrWGS = k3

[

fCOfH2O −
fCO2 fH2

K3

]

θCO2 ⋅a (55)  

rHC = β (56)  

θCO2 =
1

1 + KH2OfH2O
(57)  

De,i
(
d2yi
dr2

+
2
r
dyi
dr

)

= riρ (58) 

It must be noted that considering the thermodynamic equilibrium is 
necessary in all models afore described. Bearing in mind such relevance, 
Behloul et al., [203] summarized the main correlations for the calcula-
tion of the equilibrium constants for the reactions of methanol synthesis, 
methanol dehydration and WGS, doing a comparative analysis of its 
application in kinetic modeling. 

5. Reaction strategies and reactors for CO2 conversion 

Besides the reduced reactivity of CO2, its conversion gives way to 
higher H2O concentration. Consequently, the main advances in reactors 
design for the direct synthesis of DME from CO2, or from its mixture with 
syngas, address the presence of H2O in the reaction medium as the main 
factor limiting the thermodynamic equilibrium and the rate of the rWGS 
(Eq. (14)), methanol synthesis (Eqs. (15) and (18)) and methanol 
dehydration (Eq. (19)) reactions. Behloul et al., [203] simulated the 
performance of a packed bed reactor under different thermal regimes 
(isothermal, adiabatic and with heat transfer (shell-and-tube)) using a 
pseudo-homogeneous and a heterogeneous plug-flow model, with 
different kinetic models from the literature for the direct synthesis of 
DME from CO2. Among the results, the authors stood out the importance 
of considering the concentration of H2O in the kinetic model and its 
effect on the performance of the reactor, highlighting the relevance of a 
H2O elimination strategy. As technologies for removing H2O, reactive 
distillation [214], adsorption and integration of hydrophilic membranes 
have been proposed, among which the last two alternatives outstand. 

For an overview of the reactors and strategies of interest for the 
direct synthesis of DME from CO2, or from its mixture with syngas, the 
outstanding contributions in the literature on the strategies studied for 
H2O separation by in situ adsorption are listed in section 5.1. In section 
5.2, an analysis of the potential capacities of the different types of 
reactor for the direct DME synthesis process is carried out (emphasizing 
the H2O removal). Section 5.3 describes the advances in the simulation 
and in the experimental installation of membrane reactors. 

5.1. Adsorption for H2O separation 

Sorption enhanced DME synthesis (SEDMES) consists of the removal 
of H2O in situ by a solid adsorbent. This process, like the sorption- 
enhanced synthesis of CO from CO2 (SECO) and the sorption-enhanced 
methanol synthesis (SEMES), has a reaction-regeneration cycle [215]. 
A cycle comprises, a reaction and adsorption stage (in a hydrophilic 
zeolite mixed with the catalyst) and a stage for the regeneration of the 
adsorbent (using temperature swing adsorption (TSA), pressure swing 
adsorption or a combination of both techniques) [47]. Iliuta et al., [216] 
modeled the SEDMES process based on the kinetics of DME synthesis 
with a bifunctional Cu-ZnO-Al2O3/HZSM-5 catalyst and the adsorption 
properties of a 4A type zeolite. Among the results, an increase in CO2 
conversion up to 50 % was calculated, being 10 % without adsorbent. 
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Van Kampen et al., [217] calculated by simulation and experimentally 
verified the results of the SEDMES process with a Cu-ZnO-Al2O3/ γ 
-Al2O3 catalyst and an LTA zeolite as adsorbent. As key factors, the 
optimum reaction temperature of around 250 ◦C, pressure above 20 bar 
and the catalyst to adsorbent ratio in the 1/8 to 1/4 range were estab-
lished. Under these conditions, for a CO2/CO ratio of 2, a DME selec-
tivity of 80 % was attained (Fig. 5), with negligible catalyst deactivation 
[217,218]. Guffanti et al., [219] developed a heterogeneous two- 
dimensional dynamic model of a multitubular packed bed reactor 
externally cooled. The results were validated with adsorption/reaction 
experiments in a bench scale SEMDES packed bed reactor (2 m length, 
3.8 cm internal diameter) located in the TNO facilities (Petten, 
Netherlands), using LTA zeolite 3A as sorbent and a bifunctional catalyst 
composed of CuO-ZnO-Al2O3 and γ -Al2O3. The results confirmed a high 
yield of DME (65–70%) in the SEMDES process. According to the pre-
diction of the model, the CO/CO2 ratio in the feed had little effect on the 
yield of DME but affected the temperature profile in the reactor. Thus, 
the maximum temperature in a given longitudinal position increased 
with increasing this ratio. However, the use of an adsorbent reduced the 
temperature increase due to the effect of catalyst dilution. This improves 
the stability of the catalyst and facilitates scaling-up, making it possible 
to use larger diameter reactors. 

Guffanti et al [220] used the multitubular reactor simulation model 
to study the effect of the adsorbent/catalyst ratio, particle diameter, 
catalyst configuration (mechanical mixing, hybrid, core–shell) and 
operating variables (space velocity and pressure) on DME production 

and on temperature profile. Among the results, the advantage of the 
core–shell catalyst to moderate the maximum temperature in the reactor 
and therefore, to favor the stability of the catalyst stands out. In addi-
tion, the performance of the SEDMES process improved by increasing 
the space velocity and pressure, although these conditions required 
reducing the diameter of the reactor to prevent the temperature from 
exceeding the limit value (300 ◦C). 

5.2. Advantages and limitations of different reactors 

In Table 2 the advantages and drawbacks of conventional and 
innovative reactors are compared for the reaction from CO2 or mixtures 
of CO2 and syngas. These reactors have been studied (by simulation and 
experimentally) mainly with syngas feeds (section 3.3.3) and as afore-
mentioned in this section, they require the integration of strategies to 
remove H2O efficiently. 

The tubular packed bed reactor is the most studied reactor due to its 

Fig. 5. Carbon selectivity for the conventional direct DME synthesis (thermo-
dynamic equilibrium) and for sorption enhanced DME synthesis (modeled and 
experimental). Reproduced from the work by van Kampen et al., [217], with 
permission from the Royal Society of Chemistry, copyright 2021. 

Table 2 
Characteristics of different reactors for DME synthesis from CO2.  

Reactor Advantages Drawbacks 

Packed bed 
(tubular) 

Simple design 
Low cost 
High mass and heat transfer 
rate between phases 
Easy to integrate external 
membranes (tubular) 

Large catalyst particle size (>1 
mm) with diffusional limitations 
High pressure drop (lower in 
spherical reactor) 
Temperature profiles and hot 
spots for high conversion 
Gas recycling requirement for low 
conversion 
Difficulties for scaling up (using a 
multi-tubular reactor) 
Need to stop to replace 
deactivated catalyst and 
adsorbents 

Slurry Simple design 
Isothermal 
Operation in autothermic 
regime 
Catalyst circulation capacity 
Low pressure drop 
Ease of circulating H2O 
adsorbents 

Reduced particle size (<0.5 mm) 
High mechanical resistance of the 
catalyst required 
Low mass and heat transfer rate 
between phases 
Limitations of internal diffusion in 
the catalyst 
Higher volume than the tubular 
(packed bed) reactor in the stirred 
slurry 
Catalyst separation required (with 
catalyst circulation) 
Difficult integration of 
membranes to separate H2O 

Fluidized bed Isothermal 
Operation in autothermic 
regime 
High mass and heat transfer 
rate between phases 
Ease of energy recovery 
Low pressure drop 
Catalyst circulation capacity 
Low residence time (high 
selectivity) 
Easy to scale up 
Easy to incorporate H2O 
adsorbents 

Complex equipment to operate at 
high pressure 
Reduced catalyst particle size (<1 
mm) 
High mechanical resistance of the 
catalyst required 
Fluid dynamic limitations (gas 
flow restrictions) 
Difficult integration of 
membranes to separate H2O 

Micro- and 
structured 

Higher mass and heat 
transfer than the 
conventional reactors 
Easy to operate with 
different temperature 
regimes 
Low pressure drop 
Low residence time (high 
selectivity) 
Flexibility to optimize 
different objectives 
High performance in ideal 
conditions 

Difficult design and control 
High cost of manufacture and 
operation 
Difficult to scale up 
Need to stop to replace the 
catalyst 
Difficult integration of H2O 
separation strategies (adsorption 
or membranes)  
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simple construction and its common use in laboratory-scale experiments 
for kinetic modeling. Compared to other reactors, such as slurry or flu-
idized bed reactors, the smaller volume required for the same produc-
tion is explained by the gas plug-flow approach. In addition to a simple 
design and low cost, the mass and heat exchange are favored by the high 
rate of the gas flow with respect to the catalyst. The heat removal 
required in this exothermal process takes place through the wall (shell- 
tube or shell-double tube configurations) [178]. 

The limitations are those inherent to packed bed reactors for 
exothermic reactions. Thus, large catalyst particle size (>1 mm) is 
required to avoid a high pressure drop. As a consequence, the limitations 
to intra-particle mass and heat transport are unavoidable, resulting in 
concentration and temperature gradients [203] and plug-flow de-
viations due to preferential circulation of the gas in the vicinity of the 
reactor wall. Moreover, longitudinal temperature profiles are generated, 
with the risk of generating hot spots and catalyst deactivation by sin-
tering. To avoid these profiles, controlling the heat transmission to the 
outside is important, and working at low conversion values is necessary 
(attenuating the rate of heat generation), which requires catalyst cir-
culation. Furthermore, the diameter of the reactor must be limited to 
avoid radial temperature gradients. Hence, the scale-up is carried out by 
arranging multiple tubes in parallel (multitubular reactor) with external 
cooling [165,166], with the consequent cost increase. Operating in 
adiabatic regime with heat exchange units between sections of the 
reactor allows operating with an optimal temperature profile 
(decreasing with the axial position) [221]. 

From the perspective of the use of solid adsorbents to remove the 
H2O formed, the arrangement in packed beds (SEMDES process) re-
quires periodically stopping the process to regenerate the adsorbent by 
means of pressure swing [217] and the catalyst by coke combustion, 
when necessary. Consequently, to keep DME production constant, hav-
ing several multitubular reactors in operation would be necessary while 
one would be shut down for regeneration. However, the presence of the 
adsorbent together with the catalyst contributes to diminishing the 
maximum temperature in the reactor [219]. 

The tubular configuration of the packed bed reactors (with high 
external surface/volume ratio) is suitable for placing a hydrophilic 
membrane inside (with the catalyst between the membrane and the 
reactor wall) [222]. 

The arrangement of spherical packed beds, with the catalyst retained 
between concentric spheres, has been studied by simulation for the 
synthesis of methanol and for methanol dehydration to DME, using a 
membrane in both cases [183,223]. This reactor is also of potential in-
terest for the direct synthesis of DME, but, although pressure drop is 
lower than in tubular packed beds, construction and handling costs are 
high. These difficulties are greater with increasing scale (requiring 
numerous reactors in parallel) and for operating in reaction- 
regeneration cycles, where loading and unloading catalyst to the re-
actors (and solid adsorbent if used) would be very complex tasks. 

The slurry reactors can operate as CSTR (stirred reactor, easy to 
design and build) as in the LPDME process [224] or as bubbling bed. In 
both cases, the contact between gas reactants and the solid catalyst takes 
place in a liquid medium [225], although the CSTR requires a larger 
volume than the packed bed reactor, since the reactant gas flow ap-
proaches a well-mixed system. Its main advantages are the possibility to 
operate isothermally, in a wide range of operating conditions (particu-
larly the CSTR) and with circulation of the catalyst. Indeed, operating in 
autothermal regime is possible with adequate control of the extent of the 
reaction. Nevertheless, the restrictions for the catalyst are important. 
Reduced particle size (<0.5 mm) and high mechanical resistance are 
required. In addition, a catalyst separation unit (by decantation) is 
required, for its continuous recirculation to the reactor. The fact that the 
relative velocity of the liquid with respect to the catalyst is very small 
limits the rate of mass and heat transfer between phases [226]. The 
scaling-up capacity is moderate, and accordingly, increasing production 
requires the installation of several units. The circulation of a solid for the 

adsorption of H2O is feasible (with the catalyst), but this reactor is un-
suitable for implementing hydrophilic membranes. 

The main advantages of the fluidized bed reactor over the packed 
bed are the isothermal conditions, good contact between phases, low 
pressure drop, and ease of scale-up by catalyst circulation [227]. It is 
especially suitable for strongly exothermic reactions, where the gener-
ated heat can be recovered by means of heat exchangers immersed in the 
bed. However, the operation at high H2 pressure limits this scaling-up 
for safety reasons. In this reactor, the catalyst must have high mechan-
ical resistance to minimize the loss of material by attrition. Additionally, 
ideal fluid dynamics (avoiding the formation of stagnant bed zones and 
bubbles) require particle size being uniform, smaller than 1 mm and the 
gas flow being controlled at a value slightly higher than that of mini-
mum fluidization [169]. The high velocity of the ascending gas and the 
random movement of the catalyst facilitate the mass and heat transfer 
between phases and the uniformity of the temperature in the bed, 
contributing (along with the small particle size) to minimize internal 
concentration and temperature gradients. The capacity of the fluidized 
reactor to operate with catalyst circulation is remarkable, and this fa-
cilitates its regeneration in a separate interconnected fluidized bed 
[228]. This capacity is interesting for the co-circulation of the H2O 
adsorbent solid, although its separation from the catalyst at the reactor 
outlet would be required for the individual regeneration of both solids. A 
similar approach was simulated by Bayat and Asil [179] with a moving 
bed reactor. Conceptually, there is also potential for the integration of 
membranes inside the fluidized bed, which would be located perpen-
dicularly to the distributor plate and parallel to each other (as in heat 
exchangers). Nevertheless, materials highly resistant to erosion would 
be required due to the collisions caused by the moving catalyst particles. 
The regeneration of these materials when saturated with H2O would also 
be difficult. 

There is a well-established opinion in the literature on the interest to 
progress in the technological development of micro-channel and struc-
tured reactors for DME synthesis based on their potential [229]. With 
these innovative reactors, whose study is in an incipient phase of 
simulation or experimentation on laboratory scale, the aim is to avoid 
limitations of mass and heat transport between phases, minimize pres-
sure drop, optimize the temperature profile (adapting it to the extent of 
the reaction), minimize the residence time to avoid secondary reactions 
(methanation, rWGs, formation of hydrocarbons and coke), and increase 
the flexibility to address the process to the production of DME or to the 
conversion of CO2. For these purposes, high mass and heat transfer be-
tween phases is achieved due to the high surface/volume ratio. It is also 
remarkable the capacity for the integration of the microreactors with a 
heat exchange unit [230], and the integration of hydrophilic mem-
branes, combining the reaction and separation zones in the same unit 
[231]. 

5.3. Membrane reactors 

The membrane reactor design is an interesting implementation 
within the concept of processes integration, using a selective membrane 
to modify the composition of the reaction medium. In this sense, the 
thermodynamic limitations inherent from the composition in the me-
dium are reduced, the reaction rate and/or selectivity enhanced and, 
furthermore, energy requirement decreases. 

Diban et al., [232] reviewed the application of membranes in cata-
lytic reactors. Generally the catalyst was placed in a packed bed and the 
membrane located co-axially, with the following roles: 1) Longitudinally 
and selectively separating a component from the reaction medium, 
decreasing thereby its concentration in the medium [233]; and 2) lon-
gitudinal distribution and control of a reactant, for which the membrane 
is selective (reactor “crossed” flows concept). Conversely, the concentric 
tube with the membrane can be on the outer or the inner part of the 
catalytic bed. Fig. 6 shows the scheme of the two strategies for methanol 
synthesis with the membrane in the middle of the reactor. A hydrophilic 
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membrane, H2O permselective, which facilitates the removal of H2O is 
used in Fig. 6a. In the permeate section, the H2O formed in the reaction 
is continuously removed by the sweep stream (with the same composi-
tion as the reactor inlet stream), favoring the displacement of the 
equilibrium of methanol formation reactions [233,234]. In Fig. 6b a H2 
permselective Pd membrane is applied. Synthesis gas is injected within 
the catalytic bed and the gas product is compressed and recycled to-
wards the permeation central region, allowing feeding H2 with the 
suitable concentration in each longitudinal position [235]. Furthermore, 
Diban et al., [232] distinguished between inert and catalytic membranes 
(with an embedded catalyst or with catalytic activity), combining the 
actions of component separation and the activation of one of the re-
actions, in order to intensify the selective formation of products. 

The use of membrane reactors in the direct synthesis of DME pursues 
to displace the thermodynamic equilibrium of methanol synthesis, rWGS 
and methanol dehydration reactions. The thermodynamic equilibrium 
of these reactions is disfavored by co-feeding CO2 with synthesis gas, 
given the resulting higher H2O content in the reaction medium than for 
syngas feeds. Consequently, a hydrophilic membrane is required to 
separate H2O from the reaction medium. 

5.3.1. Hydrophilic membranes 
The main requirements to integrate a hydrophilic membrane in a 

catalytic reactor are: 1) Thermal stability at high temperature and under 
high pressure; 2) great H2O selectivity, and; 3) high H2O flux and 
permeability. H2O permselective membranes have been extensively 
used in processes at low temperatures (<150 ◦C), in desalination, and in 
natural gas, air or organic compounds dehydration. Focusing on the 
required conditions for DME synthesis (>200 ◦C and high pressure), 
polymeric membranes have been discarded, since their performance 
diminishes when increasing the temperature from 50 to 200 ◦C 
(permeability from 4⋅10− 7 to 4⋅10− 8 mol s− 1 m− 2 Pa− 1 and H2O/H2 
selectivity from 150 to 18) [236]. Above 200 ◦C, amorphous micropo-
rous membranes (supported on ceramic materials) have moderate 
permeability (around 10− 7 mol s− 1 m− 2 Pa− 1) and low H2O/H2 

selectivity (<10) [237]. Sea and Lee [238] used a silica-alumina mem-
brane (permeability of 10− 7 mol s− 1 m− 2 Pa− 1 and H2O/H2 selectivity of 
8.4) in methanol dehydration towards DME, achieving a methanol 
conversion of 82.5 % (68 % in packed bed reactor without membrane). 
Nevertheless, the thermal stability of these membranes is limited. 

Microporous zeolites, crystalline, with a uniform pore size, high 
mechanical resistance, and chemical and thermal stability are consid-
ered to be the most adequate membranes to operate above 200 ◦C. 
Moreover, with the selection of the zeolite and its composition (partic-
ularly controlling Si/Al ratio), properties such as permeability or 
selectivity can be modeled. H-SOD (sodalite) and MOR (mordenite) can 
achieve a permeability within the 10− 7 to 10− 6 mol s− 1 m− 2 Pa− 1 range 
and a H2O/H2 selectivity higher than 10 at 250 ◦C [239–241], although 
it was tested that H-SOD had limited thermal stability above 200 ◦C. 
Fedosov et al., [242] tested a LTA membrane (NaA zeolite) for methanol 
dehydration towards DME, achieving a methanol conversion of 88 % (80 
% without membrane) at 250 ◦C. 

The fuel production processes wherein the utilization of zeolite 
membranes has received more attention, are the Fischer-Tropsch (FT) 
synthesis [240,243] and, to a lesser extent, the WGS reaction [244] and 
methanol synthesis [235]. Gallucci et al., [245] experimentally 
demonstrated the higher yield of methanol synthesis using a LTA 
membrane reactor, and Lee et al., [246] used polyamide hollow fiber 
membranes for the same purpose. Gorbe et al., [247] analyzed the ca-
pacity for H2O separation of zeolite A from H2, CO2 and H2O mixtures 
within a wide range of pressure (100–270 kPa), temperature (160–260 
◦C) and H2O partial pressure, observing a remarkable limitation of this 
separation capacity above 240 ◦C. 

5.3.2. Simulation of DME synthesis in a packed bed membrane reactor 
Iliuta et al., [248] were pioneer determining the importance of the 

increase of CO2 ratio in the feed on membranes efficiency, in order to 
favor the enhancement in methanol yield and DME selectivity, justified 
by the displacement of the rWGS reaction. These authors considered gas 
plug-flow in both reaction and permeate regions and isothermal bed 

Fig. 6. Methanol synthesis schemes with H2O (a) and H2 (b) permselective membranes. Adapted from the work by Bayat et al., [235]. Copyright 2014, Elsevier.  
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conditions, using the kinetics of a CuO-ZnO-Al2O3/HZSM-5 catalyst and 
considering only H2O and H2 involved through the membrane transport. 

Diban et al., [232] studied in more detail the utilization of a packed 
bed membrane reactor (PBMR) design model. This research study eval-
uated the effect of the membrane transport properties (H2O permeability 
and H2O/H2, H2O/CO, H2O/CO2, H2O/CH3OH, H2O/DME, H2O/hy-
drocarbons selectivity) using the kinetics of a CuO-ZnO-Al2O3/γ-Al2O3 
catalyst. Gas plug-flow and isothermal reactor conditions were consid-
ered in this model. Based on HZSM-5, MOR and SIL zeolite membrane 
properties, an increase in CO2 conversion of 34 % was reported. Unfor-
tunately, the limited selectivity of these membranes decreased DME yield 
comparing to the values obtained without using a membrane. This 
decrease was due to the permeation of methanol, which can be reduced 
using the same reactants partial pressure both in the reaction and 
permeate sections. Therefore, Diban et al., [232] defined the required 
permeability range (for “ideal” membranes) between 0.5⋅10− 7 to 
1.2⋅10− 7 mol s− 1 m− 2 Pa− 1 for obtaining considerable enhancement both 
in CO2 conversion and DME yield, which requires the improvement of the 
permeation properties of these microporous materials. The simulation 
allowed Diban et al., [249] to study the effect of the sweeping conditions, 
such as the flow (within the range from 0.06 to 1.80 molCO h− 1) and the 
gas recirculation factor (0 < α < 1). CO2 conversion was reported to be 
favored upon increasing the sweep stream flow above 0.18 molCO h− 1. 
Additionally, the need for controlling the sweep stream recirculation was 
reported, give its effect on DME yield, as a result of the synergy between 
H2O and methanol removal from the reaction medium. Poto et al., [250] 
used a non-isothermal phenomenological 1D model of a PBMR to study 
the effect of the properties of the membrane. They established that the 
maximum DME yield (64 %, reached with a co-current circulation of the 
sweep gas) required the following membrane properties: water perme-
ability of 4⋅10-7 mol s− 1 m− 2 Pa− 1, and selectivities towards H2, CO2/CO 
and methanol of 50, 30 and 10, respectively. 

Fig. 7 shows a block diagram of the membrane reactor system and 
CO2 flow separation and recycling units. In this scheme proposed by De 
Falco et al., [251,252], condensation and gas separation systems are 
described. Two recirculation loops are established through a H2O 
condensation unit from the permeate flow and non-condensable gases 
(H2, CO2 and CO) separation unit from the reaction flow. Methanol, 
DME and H2O vapors are condensed, from which subsequently DME and 
methanol are successively separated in each distillation step. In the 
simulation of these authors a CO2 flow in the sweeping stream was 
incorporated, connected to the permeate section, in contrast to the 
approach of Iliuta et al., [248] and Diban et al., [232,249] of main-
taining the same H2/COx ratio in the feed to the reaction section and the 

sweep stream. The equations in the model included the mass balances 
for the components in the reaction medium and the heat balance 
(different from previous models considering isothermal reactors), 
assuming plug-flow (1 m length and 0.038 m diameter) and used the 
kinetics of a CuO-ZnO-Al2O3/γ-Al2O3 catalyst [100]. The studied vari-
ables were: temperature, 200–300 ◦C; pressure, 5-7⋅106 Pa; space ve-
locity (GHSV), up to 7⋅103h− 1; CO2/COx ratio in the feed, 0.5–0.8; H2/ 
CO2 ratio, 1–3; and, sweep flow (in co-current to the reaction flow). The 
following were determined as optimal reaction conditions: inlet tem-
perature, 200 ◦C; pressure, 7⋅106 Pa; space velocity (GHSV), 7⋅103h− 1; 
CO2/COx ratio in the feed, 3; H2/CO2 ratio, 0.7; and, sweep stream/total 
stream ratio, 5. At these conditions, DME yield achieved 75 % (57 % in 
the conventional reactor), DME selectivity 99 % (88 % in the packed bed 
reactor), CO2 conversion 69 % (53 %) and COx conversion 75 % (65 %). 

Ateka et al., [253] studied theoretically the implementation of a H- 
SOD membrane (with H2O permeability of 1⋅10− 7 mol s− 1 m2 Pa− 1 and a 
H2O/H2 selectivity of 4) in a PBMR for the direct synthesis of DME from 
H2 + CO + CO2 mixtures ranging from CO2/COx 0 (that is, H2 + CO, 
syngas) to 1 (H2 + CO2). The kinetic model previously established for a 
CuO-ZnO-MnO/SAPO-18 catalyst [97] was used, and various sweeping 
strategies where studied (N2, H2 and H2 + CO + CO2, in co-current and 
counter-current mode). Coinciding with Iliuta et al., [248] and Diban 
et al., [232,249], the best results were obtained using as sweeping 
stream a mixture with the same composition as that fed to the reaction 
section. According to the results, with this strategy a gain in CO2 con-
version between 3.5 and 5 % and DME yield ~ 25 % could be achieved 
over that in a packed bed reactor (PBR) (Fig. 8) [253]. These results, 
corresponding to per pass values, can be further improved by recycling 
the non-converted reactants, given this strategy (typical for industrial 
methanol synthesis) boosts in PBR CO2 conversion up to 70 % and DME 
yield to 60 % with a recirculation factor of 0.95 (for a CO2/COx ratio in 
the feed of 0.50, at 275 ◦C, 30 bar, space time of 5 gcat h molC) [253]. 

Hamedi and Brinkmann [222] used a pseudo-homogeneous model to 
simulate the direct synthesis of DME from CO2 in a multitubular reactor 
with a membrane in the wall of each tube and using H2 as sweeping gas. 
Focusing the attention on the role of the membrane in the energy 
requirement for the reaction at 75 bar, the authors determined a reduc-
tion of 1.5%, 44.5% and 69.4% in power, heating and cooling utilities, 
respectively, which corresponds to a decrease of CO2 emissions of 7.3%. 

Behloul et al., [203] proposed to advance in the simulation of PBMR 
by considering the Damköhler numbers (a high thermal number implies 
a high heat transfer rate and a low separative number a deficient 
permeation through the membrane) to establish the optimal conditions, 
maximizing the synergy between the reaction, heat exchange and 

Fig. 7. Layout of the membrane reactor and the separation and recirculation units for the direct synthesis of DME (Reproduced from the work by De Falco et al., 
[252], copyright 2017, Elsevier). 
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membrane separation. The limitations in the mass and heat transfer in 
the PBR and PBMR reactors are minimized using microchannel units 
with a surface/volume ratio up to 50 times higher, which allows 
working in near-siothermal conditions, eliminating the hot spots in the 
reactor. Koybasi et al., [254] compared through simulation two inten-
sified reactor systems, consisting of microchannels with the catalyst 
accompanied by cooling channels and adiabatic packed bed reactors in 
cascade with microchannel heat exchangers (cascade reactors). For 
certain conditions (CO2/COx of 0.2, H2/COx of 2, feeding at 493 ◦C, 50 
bar and space time of 1.05 kgcat s mol− 1), CO and CO2 conversions and 
DME yield were 27. 4, 6.6 and 18.8 %, respectively, in the micro-
channels system; and 23.3, 4.6 and 13.8 %, respectively, in the cascade 
system. In addition, the lower pressure drop in the microchannels sys-
tem was highlighted. 

Koybasi and Avci [231] advanced in the study of process intensifi-
cation by simulating the use of a SOD membrane integrated catalytic 
microreactor for the efficient production of DME from CO2 containing 
syngas. In this approach, a membrane integrated and wall-coated cata-
lytic microchannel reactor was presented. Differing from the former, this 
simulation (based on the work by Ji et al., [255]) was conducted 
considering the conservation of momentum and mass of the fluid phases 
in two dimensions (within the porous washcoat and channels, and cross- 
membrane) along with the chemical reactions. Membrane permeability 
of H2O was assumed to be of 3⋅10-8 mol m− 2 s− 1 Pa− 1 based on literature 
information [255–257] and H2O to H2 permeation selectivity to remain 
constant (4.6) within the studied operating condition range. The cross- 
membrane transport of the other components in the medium was 
considered negligible. In the kinetic model the reaction rates defined by 
Vakili et al., [258] were used for CO and CO2 hydrogenation to methanol 
and for methanol dehydration reactions for a Cu-ZnO-Al2O3/γ-Al2O3 
catalyst, and that defined by Hu et al., [259] for the case using HZSM-5 
as acidic catalyst. For computing, non-reactive transport along the gas 
phases of the permeate channels was assumed, while reactive transport 
within the catalytic zone, and laminar flow regime. Coinciding with the 
results of Ateka et al., with a LTA PBMR [207] (described in section 
5.3.3), the achieved gain in DME production and CO2 conversion was 
reported to be greater upon increasing reaction temperature within the 
studied 220–300 ◦C range. Dosing pure H2 as permeate fluid improves 
CO2 conversion and DME yield; whereas reducing permeate channel 
pressure, pursuing to increase the gradient of steam concentration, did 
not lead to positive results to Koybasi and Avci [231]. As reported, for 
H2 + CO + CO2 ternary mixtures in H2/COx ratio of 2 and CO2/COx ratio 
of 0.5 at 300 ◦C and 50 bar, DME yield might be improved by 11 % with 
using the SOD membrane, and CO2 conversion by 20 %. 

5.3.3. Experimental PBMR system 
The suitability of using LTA membrane reactors for boosting the 

production of DME in a single step from CO2 and synthesis gas mixtures 
was experimentally ascertained in a wide range of operating conditions 
(275–325 ◦C, 10–40 bar, CO2/(CO + CO2) ratio in the feedstock within 
0–1 range) using a CuO-ZnO-ZrO2/SAPO-11 hybrid catalyst by 
Rodriguez-Vega et al., [260]. A diagram of the experimental equipment 
is provided in Fig. 9. The LTA membrane was selected among other 
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options (LTX, SOD) regarding its permeation properties and mechanical 
resistance. The study revealed that, even the gas permeances were 
penalized at such high temperatures required for the process, the use of a 
LTA membrane resulted in an upgrade of 57 % on oxygenates yield 
(from 6.27 % for PBR to 9.87 % for PBMR) in a single pass at 275 ◦C and 
30 bar (Fig. 10). Indeed, upon increasing reaction temperature the dif-
ference was more noticeable. At 325 ◦C, a gain of 86 % was achieved for 
oxygenates yield and of 20 % for CO2 conversion from H2 + CO2 feeds. 

These same authors established a model for the simulation of their 
experimental equipment. In the model the kinetics for the individual 
reactions were considered as described in Eqs. (43) and (53)-(56) 
aforementioned for the kinetic model of Ateka et al., [99]. In addition, it 
must be said, that besides deactivation, the effect of H2O and CO2 
adsorption on attenuating the reaction rates activated by the metallic 
function (Eqs. (53)-(55)), and also on attenuating deactivation were 
considered (Eq. (52)). In Table A.1 (Supporting Information) the pa-
rameters used for the simulation of the PBMR are listed. The kinetic 
parameters were obtained in experiments without using any membrane 
and membrane permeability data were also experimentally determined 
and assumed to fit a reparameterized exponential tendency with tem-
perature [207] (Table A.1). 

The simulation of the PBMR was based on solving the con-
vection–dispersion equation for each compound of the reaction medium 
and demonstrated to fit accurately the experimental data and the evo-
lution with time on stream. Expressed as partial pressure, the one- 
dimension convection–dispersion equation for the concentration of 
each compound i in a porous catalytic bed was defined as: 

ε ∂(Pyi)∂t = −
∂
∂z

[

υPyi − D
∂(Pyi)
∂z

]

+ si (63) 

where ε states for the effective porosity of the bed, P for total pres-
sure, yi for molar fraction of i compound, D for the gas effective 
dispersion coefficient and si for the source term. The linear velocity (ν) 
was assumed to be a function of the drop of pressure in the porous bed 
according to Darcy’s law, and the variation of the partial pressure with 
time (t) and longitudinal position (z), dependant on the consumption, 
generation and diffusion of all gaseous compounds besides convective 
transport. 

For the computation, a vectorized form of the conservation equations 
(in each section, reaction (Eq. (64)) and permeation, Eq. (65)) allowed 
for simultaneously modeling the chemical reaction and the deactivation 
of the catalyst [261]: 

Reaction section: 

ε ∂(PRuR)

∂t = −
∂
∂z

[

υPR
∂PR
∂z uR ∓ D

∂(PRuR)

∂z

]

+RT
(

ρrc −
4
dR

p◦ΔP
)

(64) 

Permeate section: 

ε ∂(PPuP)

∂t = −
∂
∂z

[

υPP
∂PP
∂z uP ∓ D

∂(PPuP)

∂z

]

+RT
4
dR

p◦ΔP (65)  

where uR and uP state for vectors of dependent variables for the reaction 
and permeate sections, respectively; PR and PP to the total pressure in 
the reaction and permeate sections, respectively (bar); p for the vector of 
permeances of the i compounds (mol m− 2 h− 1 bar− 1); rc for the vector 
containing the reaction rates of each component i and deactivation rate; 
ΔP for the vector of pressure differences between the reaction and 
permeate sections for each i component (bar); and dR for the diameter of 
the reactor (m). 

Note that in both sections, the source term considered the diffusion 
of the compounds from one section to the other, and for the reaction 
section, the generation by chemical reaction was also taken into ac-
count. Therefore, the simulation results fit the experimental results 
(Fig. 11) and provided plenty information on the process proceeding. 
Using the model for simulation, a maximum DME yield of 68 % was 
reported for synthesis gas feeds, and surpassed 5 % for CO2 + H2 at 325 
◦C and 40 bar, reaching a 17 % of CO2 conversion for ternary mixtures of 
H2 + CO2/CO in the feed (CO2/COx = 0.5). 

6. Challenges and perspectives 

Dieterich et al., [221] made a review gathering the commercial 
technologies for DME synthesis in one- or two-stages, developed for 
syngas feeds. Some technologies for the two-stage synthesis (Haldor 
Topsøe, Lurgi, Toyo Engineering Corporation (TEC), Mitsubishi Gas 
Chemical, Johnson Matthey) are based on methanol synthesis, to which 
a packed bed reactor for the methanol dehydration stage is incorporated. 
More recent ones, marketed by Chinese companies (China Energy, Tia-
nyi, ENN), address methanol recycling. 

The direct synthesis of DME has been developed on pilot plant scale 
with different technologies. Thus, Haldor Topsøe’s technology is based 
on that of methanol synthesis but using bifunctional catalysts. These 
catalysts are placed in a multitubular reactor (packed beds with external 
cooling) in the technology of Korea Gas Corporation (KOGAS). Other 
companies (Japanese Corporation JFE (NKK), Air products and Chem-
icals Inc.) use stirred slurry reactors due to the heat transfer capabilities. 
The scaling limit of this reactor (considered 100 ton day− 1) can be 
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increased with a bubbly flow. Unitel Technologies in Australia (https:// 
www.uniteltech.com) has developed the use of liquidized reactors with 
the challenge of adapting their fluid dynamics to operate under high 
pressure. 

The direct synthesis of DME is also receiving renewed interest from 
other companies (Linde AG, BASF SE) for the prospects of CO2 
upgrading. The implementation of this process is conditioned by the 
need for scientific and technological advances in the development of 
catalyst, kinetic modeling and design of new reactors. The kinetic 
modeling faces the challenge of comprising the characteristics of a 
complex reaction scheme under specific reaction conditions (different 
from those of methanol synthesis and dehydration), where the presence 
of H2O (at higher concentration than in the direct synthesis of DME from 
syngas) plays a relevant role: i) As a reactant displacing the thermody-
namic equilibrium of methanol synthesis and dehydration; ii) 

attenuating the activity of the metallic and acid sites of the catalyst; iii) 
promoting deactivation by sintering of the metallic sites and; iv) 
attenuating coke deposition. Consequently, considering the role of H2O 
in the deactivation mechanism and in the kinetic modeling is necessary 
[97,100,204,262]. For the process scale-up, it is important to point out 
the relevance of quantifying the deactivation of the catalyst with ki-
netics considering different causes and the corresponding mechanism. In 
addition, for quantifying adequately the deactivation kinetics, the ki-
netic models must be established using rigorous data analysis method-
ologies of results obtained in long time on stream (TOS) experiments in 
reactors with well-defined flows. 

The technological development of the direct synthesis of DME from 
CO2 also relies on the remarkable knowledge on the reactor design 
strategies for its synthesis from syngas (section 3.3.3). Thereby, the 
lower reaction heat when co-feeding CO2 together with syngas [95] is an 
advantage for using a bench of adiabatic packed bed reactors in series or 
a multitubular reactor externally cooled (technologies developed for 
methanol synthesis). However, the relevance of the presence of H2O on 
limiting the thermodynamics and hydrogenation kinetics, leads to the 
conclusion that the development of the membrane reactor is a priority 
alternative. The progress in the development of membrane reactors 
simulation models is important and the potential of these reactors to 
shift the thermodynamic equilibrium of the reactions of methanol and 
DME synthesis, WGS and methanol dehydration has been well estab-
lished in the literature [232,248,249,251–253]. In addition, the ad-
vances in the preparation of hydrophilic ceramic membranes are 
remarkable, and the capacity of a LTA zeolite membrane in this process 
has been experimentally verified [207,260]. However, there are 
important challenges for the industrial implementation of this technol-
ogy. Among these: i) Improving the properties of the membranes, H2O 
permselectivity in particular; ii) developing pilot- and demonstration 
plant- scale equipment to facilitate research conducting long-term ex-
periments and optimizing sweeping strategies. Although the per-pass 
conversion with the membrane reactor is much higher than that ob-
tained in conventional packed bed reactors, the need for recirculation of 
the non-reacted gas stream (CO + CO2 + H2) must also be considered. By 
means of simulation models, it has been verified that the advantages of 
the microchannel reactors, that is, favoring the mass and heat transfer 
between phases (discussed in section 3.3.3 for syngas feeds), are also 
interesting for the direct synthesis of DME from CO2 together with 
syngas [263,264]. The simulation results of the integration of supported 
sodalite (SOD) membranes in a micro-channel reactor are also inter-
esting as DME yield of 17 % and CO2 conversion of 15.8 % can be 
achieved dosing pure H2 as permeate gas [231]. 

The future of the direct synthesis of DME from CO2 also depends on 
socio-economic aspects surrounding the activities of the energy sector. 
In particular, the availability of H2 obtained with renewable energies is 
crucial for the viability of the process. However, to the current high costs 
of water electrolysis (partially mature technology [265,266]), the 
technical difficulties inherent to H2 transport and to the safety of its 
handling at high pressure (due to the hazard of explosion in the presence 
of air) must be added [267]. In this sense, the integration of processes for 
the production of DME from methane can play an important role, 
feeding directly into the synthesis reactor the stream generated in the 
methane tri-reforming (with CO2, O2 and steam) [268]. The production 
of hydrogen from biomass, by means of bio-oil reforming or directly by 
on-line pyrolysis-reforming [269]) is specially interesting in the short 
and medium term to be integrated with gasification, in order to obtain 
an adequate H2/COx ratio for DME synthesis with biomass as only source 
of carbon and hydrogen. 

Another determining factor for the economic viability of DME as fuel 
and as a raw material for the production of hydrocarbons (fuels and 
chemicals as light olefins and BTX aromatics) is the value of these 
products in their corresponding markets. The qualities of DME as a fuel 
for domestic use, in the automotive industry and in steam generating 
boilers have been widely proven (Section 3). It is a “green” fuel obtained 
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from sustainable sources, easy to handle and with high cetane number. 
DME is therefore one of the “green” candidates for replacing conven-
tional fuels and the relevance of its implementation in the fuel market 
will be conditioned by the competition within the energy sector for the 
replacement of petroleum derivatives. With well-defined specifications, 
and whose commercialization could be carried out using the current LPG 
distribution facilities. Its use as fuel, when obtained by co-feeding syngas 
derived from non-edible biomass, represents a sustainable valorization 
route of lower technological difficulty than directly using bio-oil as a 
fuel, which requires expensive physical and thermochemical treatment 
stages. 

A fundamental feature of the DME economy is its relationship with 
the CO2 economy. Hence, it is noteworthy that in the direct synthesis of 
DME, the production of DME and the conversion of CO2 have opposite 
evolutions. The optimal operating conditions for DME production 
correspond to a CO2/CO ratio below 1/3 and for boosting CO2 conver-
sion values above 3 are adequate [262]. This requires establishing in-
termediate operating conditions to achieve a balanced compromise 
between both objectives. That is, obtaining high yield of DME with net 
conversion of CO2. Furthermore, the progressive increase in CO2 emis-
sion taxes will be a determining factor for the economy of the process, 
suggesting to increase the CO2 content in the feed, favoring its 
conversion. 

Besides, the technology for DME production (although not 
completely mature, as shown in this review) only has some minor 
additional difficulties compared to the already mature technology of 
methanol synthesis (including those related to the co-feeding of CO2 in 
high concentration together with the syngas). The use of DME as a raw 
material for the production of light olefins, aromatics or gasoline offers 
good prospects. DME (with a greater capacity to generate methyl oxo-
nium species on Brønsted sites) is more active than methanol for the 
production of light olefins [76], and allows using HZSM-5 as catalyst 
(with slower coke deactivation than industrially used SAPO-34 in the 
MTO (methanol-to-olefins) process) [74]. Therefore, the industrial 
implementation of the DTO (DME-to-olefins) process could be carried 
out using the mature technology of the MTO process, consisting of an 
interconnected reactor-regenerator system (fluidized bed) [228]. Like-
wise, the implementation of DME steam reforming technology for the 
production of H2 for fuel cells is a mature technology [83,270], with 
advantages over the valorization of other oxygenates (as bio-oil, bio- 
ethanol or glycerol), inherent to the properties of DME (Section 3). 
Based on this capacity, DME is considered a H2 vector, the production of 
which can be a suitable way to “store” renewable energies in periods of 
production excess [83]. 

7. Conclusions 

During the last two decades the interest of DME production in one 
step, using bifunctional catalysts, has increased with the perspective of 
valorizing CO2. Moreover, the perspectives of using DME as “green” fuel, 
raw material for the production of light olefins or aromatics and as H2 
vector are promising, and consequently, these reactions are receiving 
great attention, and new catalysts, kinetic models and reactors are being 
developed. 

The direct synthesis of DME offers thermodynamic advantages over 
methanol synthesis and is more energy efficient and of lower production 
cost than either methanol synthesis or the two-step synthesis of DME. 
These advantages favor the conversion of CO2 and its co-feeding with 
syngas. The requirement of a moderate H2/COx ratio makes feasible 
using syngas derived from the gasification of biomass and wastes as feed. 

In particular, it has aroused the need for performing significant in-
novations in the catalyst, kinetic modeling and in the reactor design, due 
to the effect of co-feeding CO2 on the conversion, selectivity and stability 
of the catalyst, and in the decrease of the yields in comparison to the 
values obtained from synthesis gas feeds. 

The challenges in the direct synthesis of DME when feeding CO2 are 

related to two particular factors conditioning the process: i) The low 
reactivity of CO2 hydrogenation, and; ii) the increase of H2O content in 
the reaction medium with respect to using syngas feeds, being WGS 
reaction displaced, and consequently, disfavoring methanol synthesis 
and dehydration reactions. Furthermore, H2O is adsorbed in the metallic 
sites of the catalyst decreasing their activity and, additionally, favoring 
the irreversible deactivation (by sintering) of these sites. The activity of 
the acid sites also diminishes, to a greater extent when the acidic func-
tion is hydrophilic. Therefore, as to overcome these limitations a great 
deal of effort has been placed in two lines: i) On the catalysts, tailoring 
conventional catalysts and proposing new alternatives and configura-
tions, that seek to favor the synergy of the proximity of the methanol 
synthesis and dehydration reactions, minimizing deactivation, and; ii) 
on the operation, developing new reaction strategies and reactor de-
signs. For which developing kinetic models, capable for a precise 
description of the performance of the process with the applied catalyst 
and in a wide range of operating conditions is very helpful. 

The kinetic models developed combining those established in the 
literature for the synthesis of methanol and its dehydration, offer good 
performance in literature studies to predict products yields in the direct 
synthesis of DME with CO2 in the feed, although the original models 
were proposed for optimal conditions (temperature, pressure) for each 
of these stages, and generally for methanol synthesis from syngas. 

Considering that the suitable conditions for the direct synthesis of 
DME are different (intermediate temperature and pressure) from those 
suitable for each of the two stages integrated, new kinetic models have 
been proposed. These models were also based on LHHW premises, and 
their validity has been tested for different conventional catalysts, with 
hybrid and core–shell configurations. 

For a more accurate simulation of the process, it is important to 
consider in the kinetic model the deactivation of the catalyst (mainly by 
coke) and the concentration of H2O in the reaction medium, since the 
adsorption of the latter attenuates the activity of the metallic and acid 
sites. Moreover, the role of H2O must be considered also in the deacti-
vation kinetics, as it contributes to attenuate the deactivation by coke, 
by inhibiting the condensation of its precursors. 

To overcome the thermodynamic limitation of CO2 conversion, 
different strategies for the in situ adsorption of H2O in the reactor have 
been studied. However, the effectiveness of these strategies is condi-
tioned by their difficult experimental implementation on a large scale. 
Membrane reactors are crucial for the industrial implementation of DME 
synthesis, since H2O can be selectively separated using hydrophilic 
membranes. Different theoretical works have established simulation 
programs for these reactors, but the experimental implementation relies 
on the difficulty of not having a membrane with the required stability at 
the severe pressure and temperature conditions used in the process. In 
this sense, the results obtained with a packed bed reactor and an LTA 
zeolite membrane are encouraging. 

The level of knowledge achieved in the fundamental aspects 
(collected in this review) allows considering that the CO2 to DME syn-
thesis process can effectively contribute to the mitigation of climate 
change. Even if the state of the required technology is more mature than 
that of other alternatives for the catalytic upgrading of CO2, achieving 
the necessary challenges for this objective requires a multidisciplinary 
work at different scales (catalyst, kinetic modeling, reactor design and 
scaling). 
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Appendix A. Supplementary data 

The kinetic equations discussed in Section 4 and the corresponding 
kinetic parameters have been gathered in Table A.1. Supplementary 
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Mechanisms and kinetics of CO2 hydrogenation to value-added products: A 
detailed review on current status and future trends. Renew Sustain Energy Rev 
2017;80:1292–311. https://doi.org/10.1016/j.rser.2017.05.204. 

[65] Tan L, Zhang P, Cui Y, Suzuki Y, Li H, Guo L, et al. Direct CO2 hydrogenation to 
light olefins by suppressing CO by-product formation. Fuel Process Technol 2019; 
196:106174. https://doi.org/10.1016/j.fuproc.2019.106174. 

[66] Ramirez A, Chowdhury AD, Dokania A, Cnudde P, Caglayan M, Yarulina I, et al. 
Effect of Zeolite Topology and Reactor Configuration on the Direct Conversion of 
CO2 to Light Olefins and Aromatics. ACS Catal 2019;9:6320–34. https://doi.org/ 
10.1021/acscatal.9b01466. 

[67] Wei J, Ge Q, Yao R, Wen Z, Fang C, Guo L, et al. Directly converting CO2 into a 
gasoline fuel. Nat Commun 2017;8:1–9. https://doi.org/10.1038/ncomms15174. 

[68] Semelsberger TA, Borup RL, Greene HL. Dimethyl ether (DME) as an alternative 
fuel. J Power Sources 2006;156:497–511. https://doi.org/10.1016/j. 
jpowsour.2005.05.082. 

[69] Arcoumanis C, Bae C, Crookes R, Kinoshita E. The potential of di-methyl ether 
(DME) as an alternative fuel for compression-ignition engines: A review. Fuel 
2008;87:1014–30. https://doi.org/10.1016/j.fuel.2007.06.007. 

[70] Azizi Z, Rezaeimanesh M, Tohidian T, Rahimpour MR. Dimethyl ether: A review 
of technologies and production challenges. Chem Eng Process Process Intensif 
2014;82:150–72. https://doi.org/10.1016/j.cep.2014.06.007. 

[71] Khalifi M, Zirrahi M, Hassanzadeh H, Abedi J. Concentration-dependent 
molecular diffusion coefficient of dimethyl ether in bitumen. Fuel 2020;274: 
117809. https://doi.org/10.1016/J.FUEL.2020.117809. 

[72] Fleisch TH, Basu A, Sills RA. Introduction and advancement of a new clean global 
fuel: The status of DME developments in China and beyond. J Nat Gas Sci Eng 
2012;9:94–107. https://doi.org/10.1016/j.jngse.2012.05.012. 

[73] Ying W, Longbao Z, Hewu W. Diesel emission improvements by the use of 
oxygenated DME/diesel blend fuels. Atmos Environ 2006;40:2313–20. https:// 
doi.org/10.1016/J.ATMOSENV.2005.12.016. 

[74] Tian P, Wei Y, Ye M, Liu Z. Methanol to olefins (MTO): From fundamentals to 
commercialization. ACS Catal 2015;5:1922–38. https://doi.org/10.1021/ 
acscatal.5b00007. 

[75] Khadzhiev SN, Kolesnichenko NV, Ezhova NN. Manufacturing of lower olefins 
from natural gas through methanol and its derivatives (review). Pet Chem 2008; 
48:325–34. https://doi.org/10.1134/S0965544108050010. 

[76] Cordero-Lanzac T, Martínez C, Aguayo AT, Castaño P, Bilbao J, Corma A. 
Activation of n-pentane while prolonging HZSM-5 catalyst lifetime during its 
combined reaction with methanol or dimethyl ether. Catal Today 2020;383: 
320–9. https://doi.org/10.1016/j.cattod.2020.09.015. 
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[106] Ateka A, Pérez-Uriarte P, Sánchez-Contador M, Ereña J, Aguayo AT, Bilbao J. 
Direct synthesis of dimethyl ether from syngas on CuO-ZnO-MnO/SAPO-18 
bifunctional catalyst. Int J Hydrogen Energy 2016;41(40):18015–26. 

[107] Sánchez-Contador M, Ateka A, Rodriguez-Vega P, Bilbao J, Aguayo AT. 
Optimization of the Zr Content in the CuO-ZnO-ZrO2/SAPO-11 Catalyst for the 
Selective Hydrogenation of CO+CO2 Mixtures in the Direct Synthesis of Dimethyl 
Ether. Ind Eng Chem Res 2018;57:1169–78. https://doi.org/10.1021/acs. 
iecr.7b04345. 

[108] Ateka A, Sierra I, Ereña J, Bilbao J, Aguayo AT. Performance of CuO–ZnO–ZrO2 
and CuO–ZnO–MnO as metallic functions and SAPO-18 as acid function of the 
catalyst for the synthesis of DME co-feeding CO2. Fuel Process Technol 2016;152: 
34–45. https://doi.org/10.1016/j.fuproc.2016.05.041. 

[109] Frusteri F, Cordaro M, Cannilla C, Bonura G. Multifunctionality of Cu–ZnO–ZrO2/ 
H-ZSM5 catalysts for the one-step CO2-to-DME hydrogenation reaction. Appl 
Catal B Environ 2015;162:57–65. https://doi.org/10.1016/j.apcatb.2014.06.035. 

[110] Jiang X, Koizumi N, Guo X, Song C. Bimetallic Pd–Cu catalysts for selective CO2 
hydrogenation to methanol. Appl Catal B Environ 2015;170–171:173–85. https:// 
doi.org/10.1016/J.APCATB.2015.01.010. 

[111] Arena F, Barbera K, Italiano G, Bonura G, Spadaro L, Frusteri F. Synthesis, 
characterization and activity pattern of Cu–ZnO/ZrO2 catalysts in the 
hydrogenation of carbon dioxide to methanol. J Catal 2007;249:185–94. https:// 
doi.org/10.1016/J.JCAT.2007.04.003. 

[112] Li M-M-J, Zeng Z, Liao F, Hong X, Tsang SCE. Enhanced CO2 hydrogenation to 
methanol over CuZn nanoalloy in Ga modified Cu/ZnO catalysts. J Catal 2016; 
343:157–67. https://doi.org/10.1016/J.JCAT.2016.03.020. 

[113] Sanguineti PB, Baltanás MA, Bonivardi AL. Copper–gallia interaction in 
Cu–Ga2O3–ZrO2 catalysts for methanol production from carbon oxide(s) 
hydrogenation. Appl Catal A Gen 2015;504:476–81. https://doi.org/10.1016/J. 
APCATA.2014.11.021. 

[114] Xiao J, Mao D, Guo X, Yu J. Methanol Synthesis from CO2 Hydrogenation over 
CuO–ZnO–TiO2 Catalysts: The Influence of TiO2 Content. Energy Technol 2015;3: 
32–9. https://doi.org/10.1002/ENTE.201402091. 

[115] Pasupulety N, Driss H, Alhamed YA, Alzahrani AA, Daous MA, Petrov L. Studies 
on Au/Cu–Zn–Al catalyst for methanol synthesis from CO2. Appl Catal A Gen 
2015;504:308–18. https://doi.org/10.1016/J.APCATA.2015.01.036. 
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[208] Berčič G, Levec J. Catalytic Dehydration of Methanol to Dimethyl Ether. Kinetic 
Investigation and Reactor Simulation. Ind Eng Chem Res 1993;32:2478–84. 
https://doi.org/10.1021/ie00023a006. 

[209] Nie Z, Liu H, Liu D, Ying W, Fang D. Intrinsic Kinetics of Dimethyl Ether Synthesis 
from Syngas. J Nat Gas Chem 2005;14:22–8. 

[210] An X, Zuo YZ, Zhang Q, Wang DZ, Wang JF. Dimethyl ether synthesis from CO2 
hydrogenation on a CuO-ZnO-Al2O3-ZrO2/HZSM-5 bifunctional catalyst. Ind Eng 
Chem Res 2008;47:6547–54. https://doi.org/10.1021/ie800777t. 

[211] Tao KY. Reaction kinetic study of methanol dehydration to dimethyl ether. J Fuel 
Chem Technol 1993;4:387. 

[212] Park N, Park MJ, Lee YJ, Ha KS, Jun KW. Kinetic modeling of methanol synthesis 
over commercial catalysts based on three-site adsorption. Fuel Process Technol 
2014;125:139–47. https://doi.org/10.1016/J.FUPROC.2014.03.041. 
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