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a b s t r a c t

This work describes a mesh-free collocation formulation for the acoustic fluid–fluid coupling among
non-homogeneous bounded and unbounded fluid domains. The proposed formulations use series
of functions that are generated using the analytical solutions of Helmholtz equation in spherical
coordinates, and coefficients of the series are calculated from applying the boundary conditions. The
technique is able to calculate the acoustic pressure in any bounded or unbounded non-spherical
domain. The accuracy, efficiency and robustness of the model is tested by using as benchmark classical
analytic solutions of radiation and scattering from spheres.
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1. Introduction

Traditionally, the method for solving scattering problems have
een FEM (Finite Element Method) [1–3] and BEM (Boundary
lement Method) [4–6]. The great advantage of BEM over FEM
s that, instead of the whole domain 3D mesh, only a 2D mesh
t the boundary is needed, substantially reducing the size of the
roblem. Its main shortcomings are that they are computation-
lly costly, that they present non-uniqueness of the solution at
ertain characteristic frequencies and, what is more important for
he problems here posed, that they cannot handle systems with
bjects of different mass properties.
Another strategy is the use of IEM (Infinite Element Method)

7–9] or hybrid FEM/IEM, dividing the whole domain into two:

∗ Corresponding author.
E-mail address: gorka.garate@ehu.eus (Gorka Garate).

a bounded one, meshed using classical 3D FEM, and the outer
domain, meshed using specific 3D meshes (Mapped IEM [10,11],
Wave Envelope IEM [12,13], etc.). The advantage is that the
techniques of FEM can be applied (variational formulation, ba-
sis functions, numerical integration, etc.). Recently, Isogeometric
Analysis has been coupled to IEM [14], and IEM still remains
a field of research. IEM methods do have the capacity of deal-
ing with systems with objects of different mass properties; but,
whenever a new object is added, it must be included using a
3D finite mesh, increasing significantly the number of degrees of
freedom of the global system to be solved. Another increase in the
size of the system is due to the inclusion of additional degrees of
freedom in the radial direction at the infinite elements.

Due to the imperative of reducing the global size of the system,
several methods have followed the strategy of truncating the
domain and including artificial Absorbing Boundary Conditions
(ABC) [15–19], Non-Reflecting Boundary Conditions (NRBC) [20]
or Perfectly Matched Layers (PML) [21,22]. PMLs are typically
ttps://doi.org/10.1016/j.softx.2022.101111
352-7110/© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

nc-nd/4.0/).
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ormulated in Cartesian, cylindrical, spherical and recently ellip-
oidal geometries and coupled to FE [23,24]. Although all three
ethods do reduce the computational cost and storage require-
ents, all of them lack inherently the capacity of calculating
ressure in the domain outside the artificial boundary or layer.
More recently, Scaled Boundary Finite Element Method

SBFEM) has been applied to 3D unbounded vibro-acoustic do-
ains [25–27]. To deal with unbounded domains, the whole
omain is usually split into a bounded and a unbounded domain,
ut both domains are coupling the domains via the nodal flux
n a outside boundary that is necessarily spherical. The method
28] is able to deal with complex geometries, but still, even if for
he outer unbounded domain 2D elements can used, the inner
ounded domain must be meshed using 3D elements.
The work here presented is the sequel of a previous work [29].

collocation method using function series is presented. The main
dvantages of the method are:

• Only 2D meshes at the boundaries of the objects are needed,
and it uses fewer degrees of freedom that other methods.

• It is able to solve Helmholtz equation in bounded and un-
bounded domains containing objects not only with different
properties, but with different formulations (series expan-
sions) as well.

The method is based on classical theoretical acoustics [30,31].
n sound radiation, when theoretical physics analyzes the case
f radiation from spheres, it studies sound waves caused by the
ibration pattern of a sphere. The radiated pressure is expressed
s a series of Hankel and Legendre functions; the coefficients
f the series are determined using the known radiation pattern
n the sphere. Some researchers have already been developing
odels to obtain the exact solutions of the scattering by elastic
pheres [32].
ADITU implements a numerical method for the calculation of

ound pressure levels in bounded and unbounded fluid domains.
t is an Object-Oriented C++ software that stores objects as ASCII
ext files. Each ObjektuPuntu class object is generated from an
individual file with a list of points and properties generated by the
pre/postprocessor GiD.1 The software is split into two sequential
pplications:

• The first one (aurre.cpp) takes as input several files of
extension pun generated by preprocessor GiD correspond-
ing the coupled fluid objects of the model, and it creates
and stores an ObjektuPuntu class object for each file. Af-
ter the calculations its output consists of an ObjektuAdi
class object for each of the fluid objects. These ObjektuAdi
class objects contain the result for each object as a series
expansion of the solution.

• The second one (ondoren.cpp) takes as input the Objek-
tuAdi class objects generated and generates the solution
based on series expansions. Its output consists of a text file
of extension flavia.res that can be directly postprocessed
by GiD.

All headers with the class definitions as well as examples are
rovided within the code at directory [33].
The main contribution of the method presented here is that

t splits the entire domain into subdomains (called objects) and
roposes a different type of series expansion for the acoustic
ressure in each of the objects. The method then imposes the
ulfillment of the Boundary Conditions (BC) at the boundary of
ach of the objects and enforces the Coupling Conditions (CC)
f the acoustic pressure at the interfaces between objects. The
esulting code presented in this work can be found at this web
epository2:

1 https://www.gidhome.com.
2 https://github.com/GorkaGarate01/Helmholtz-Series-Formulation.

The paper is structured as follows. Section 2 shows the pro-
posed solution of Helmholtz equation for bounded and unbounded
domains. The method takes as input two types of data:

• A set of nobj objects, which are domains in space, bounded
(finite) or unbounded (infinite), together with the specific
physical properties of the object. In the case here presented
of homogeneous, isotropic fluids the specific physical prop-
erties are wave speed c and density ρ.

• the explicit BCs at the boundaries of the objects and the CCs
among the set of objects of the model.

Section 3 contrasts the numerical results obtained by the
model with two benchmark analytical results: the radiation of a
pulsating sphere and the scattering of a plane wave that strikes
a rigid sphere.

Finally, Section 4 enumerates the main conclusions and the
future lines of work of the authors.

2. Analytical solution in fluid domains

When acoustic waves propagate in a homogeneous, isotropic
fluid, the classical general analytical solution of the homogeneous
Helmholtz equation in spherical coordinates [31] is based on a
separation of variables r , θ and ϕ. The general solution is

p (r, θ, ϕ) =

∞∑
m=0

H1
m (k, r)

m∑
n=0

Pn
m (cos θ)

×
(
a1mn cos (nϕ) + b1mn sin (nϕ)

)
+

∞∑
m=0

H2
m (k, r)

m∑
n=0

Pn
m (cos θ)

×
(
a2mn cos (nϕ) + b2mn sin (nϕ)

)
,

(1)

where H1
m stands for the spherical Hankel function of the first

kind and H2
m stands for the spherical Hankel function of the sec-

ond kind (their arguments, (k, r), have been dropped for the sake
of brevity), and Pn

m stands for the nth derivative of the Legendre
polynomial of degree m (its argument, cos θ , has been dropped
for the sake of brevity). a1mn, a

2
mn, b

1
mn and b2mn are coefficients to

be determined.

2.1. Formulation for bounded fluid objects

The Boundary-Value problem that must be solved for the
bounded fluid object i is⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∇
2pi + k2pi = 0 (a)

pi = g at Γg (b)
pi,jnj = h at Γh (c)

pi = pl at Γil (d)
pi,j = pl,j at Γil, (e)

(2)

where (2a) is the governing Helmholtz equation inside the do-
main Ω , (2b) stands for the enforcement of the essential BCs
applied on the part of the boundary Γg , (2c) stands for the en-
forcement of the natural BCs applied on the part of the boundary
Γh and (2d) and (2e) stand for the enforcement of the CC condi-
tions in the part of the boundary Γkl common to objects i and l
(C1 continuity). Index l is to be extended to d objects coupled to
object i. That is, Γ = Γg ∪ Γh ∪

∑r
l=1 Γil. The numerical solution

proposed for the acoustic pressure in the bounded fluid object i
uses pattern (1) to build for each object a series of functions such
as

pi =

∞∑
m=0

m∑
n=0

{
[
H1

mP
n
m cos nϕ

]
a1mn +

[
H2

mP
n
m cos nϕ

]
a2mn+[ 1 n ] 1 [ 2 n ] 2

(3)
HmPm sin nϕ bmn + HmPm sin nϕ bmn},
2
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hich fulfills automatically Helmholtz Eq. (2a). Partial derivatives
f the acoustic pressure can be calculated differentiating series
3):

Series (3) and their partial derivatives are used to enforce
he specific BCs (2b) and (2c) and the CCs (2d) and (2e) on the
oundary of each bounded fluid object.

.2. Formulation for unbounded fluid objects

Similarly as in bounded fluid objects, the Boundary Differential
roblem that must be solved for the unbounded fluid object i is⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∇
2p + k2p = 0 (a)⏐⏐⏐⏐∂p∂ n⃗

− ikp
⏐⏐⏐⏐ = O

(
1
r2

)
(b)

pi = g at Γg (c)
pi,jnj = h at Γh (d)
pi = pl at Γil (e)
pi,j = pl,j at Γil. (f)

(4)

In the case of unbounded objects, the only difference with
bounded objects is the Sommerfeld radiation condition (4b),
which removes the Hankel functions of the second kind. There-
fore, the solution proposed for the acoustic pressure in the un-
bounded object i is similar to (3), using in the function series only
the Hankel functions of the first kind.

pi =

∞∑
m=0

m∑
n=0

[
H1

mP
n
m cos nϕ

]
amn +

[
H1

mP
n
m sin nϕ

]
bmn, (5)

which fulfills automatically Helmholtz Eq. (4a) and Sommerfeld
radiation condition (4b). The partial derivatives of the acoustic
pressure can be calculated differentiating series (5):

Series (5) and their derivatives are used to enforce the specific
BCs (4c) and (4d) and the CCs (4e) and (4f) on the boundary of
each unbounded fluid object. Post-processing of acoustic pressure
(i.e. intensity, directivity, etc.) at any point inside the correspond-
ing object can be done calculating series (3), (5) and their partial
derivatives using the calculated coefficients a1mn, a

2
mn, b

1
mn and b2mn

of the bounded objects and amn and bmn of the unbounded objects.

2.3. System of equations

The particularity of the method lies on being partly analytic.
The analytic part lies in the fact that any combination of the
series (3) or (5) fulfills automatically Helmholtz Eq. (2a) or (4a).
Therefore, the only system of equations that must be solved is
the one generated by the enforcement of the BCs and the CCs for
all objects of the model. This enforcement leads eventually to a
complex, non-symmetric and linear global system of equations
Ax = c of size s, where s is the total number of collocation points
at which BCs and CCs are applied. The number of collocation
points is considerably greater than the number of coefficients
(s ≫ nc). The vector of nc unknowns, x, contains the coefficients
for the whole set of objects of the model, a1mn, a

2
mn, b

1
mn and b2mn

for the bounded finite objects and amn and bmn for the unbounded
fluid objects.

As each column of the matrix of the system of equations
contains the values of a specific function assigned to a specific co-
efficient, the iterative technique of resolution takes the following
steps:

Previously, a minimum acceptable residual error

norm [c − Ax] /norm [c] (6)

is preset, and the iteration variable h is set to 0. h stands for the
harmonic at which all series will be truncated (m in Eqs. (3) and
(5)).

• At each iteration h an s × nq rectangular submatrix Anq
is calculated. s stands for the total number of collocation
points for all the BCs and CCs for all objects of the whole
model. Each row represents either the enforcement of one
of the BCs at the collocation point on the boundary of one
of the objects, either the enforcement of one of the CCs
between two of the objects of the system at the collocation
point on the boundary common to both. nq stands for the
total number of terms (coefficients) of series (3) and (5) up
to spherical harmonic of truncation h, corresponding to all
the objects of the model.

• The overdetermined rectangular complex non-symmetric
system Anqx ≈ c is solved by the (discrete) least squares
method, using an direct LU decomposition with partial piv-
oting in the square complex symmetric system

(
AT
nqAnq

)
xnq

= AT
nqc.

• The residual (6) for solution xnq is calculated.
• The harmonic of truncation h is increased by one and the

iteration continues until the residual error (6) is smaller
than the acceptable minimum preset, until the velocity of
convergence is smaller than a given minimum or until nq
reaches size s of the whole system, whichever happens first.

After having solved the global system for the coefficients a1mn,
a2mn, b

1
mn, b

2
mn (for the bounded fluid objects) and amn and bmn (for

the unbounded fluid objects), each set of coefficients is stored
separately for each object of the model for further postprocessing.

3. Numerical experiments

Two theoretical benchmark models have been used to test the
accuracy of the method: one of radiation, the simple pulsating
sphere, and another of scattering, the scattering of a plane wave
that encounters on its way a rigid sphere.

3.1. Simple pulsating sphere

In the case of a simple pulsating sphere, the particle velocity
in a fluid of density ρ at the surface of the source is equal to the
velocity of the sphere at its boundary. Taking a sphere of radius
r0 and a boundary velocity u0 exp iωt the boundary condition is

∂p
∂r

= ρu0 exp (iωt) . (7)

3.1.1. Analytical solution
Establishing the time dependence of the boundary velocity

of the sphere as exp iωt and using the general solution for an
outgoing wave, the pattern of the acoustic pressure in the fluid is

p = −
ρiωA
r

exp (i (ωt + kr)) , (8)

where k = ω/c is the wave number in the fluid. Applying
boundary condition (7) yields

A =
u0r20 exp (−ikr0)

1 − ikr0
. (9)

For the results of the present analytical model we will set
iρωu0 = 1. This yields the following pressure in the radial
direction for r ≥ r0:

p (r, t) = −
r20 exp (−ikr0) exp (i (ωt + kr)) . (10)

r (1 − ikr0)

3
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.1.2. Numerical models used
To solve the simple pulsating sphere problem two different

xperimental models have been used. The first one contains one
bject of air of infinite fluid type (in Section 2.2) whose domain is
he outside of a sphere of radius 1 m. To apply Neumann BC (7) at
he sphere r = 1 m 4050 points on the sphere have been chosen.
ranslating the center of the spherical coordinate system to point
0.3,0,0), we can test the ability of the method to solve problems
osed on domains without spherical symmetry comparing the

numerical results with the analytical results of Section 3.1.
The second experimental model consists in a coupled model

with two objects of air of different types: one of finite fluid
type (in Section 2.1), whose domain is the space between an
inner sphere of radius 1 m and an outer sphere of radius 1.1 m,
and a second object of infinite fluid type (in Section 2.2) whose
domain is the outside of a sphere of radius 1.1 m. A total of 8100
points have been chosen to apply the BCs, 4050 points at the
inner surface and other 4050 points at the outer surface. Besides
Neumann BC (7) at the sphere r = 1 m, at the coupling sphere
r = 1.1 m equality of acoustic pressures and gradients of the
acoustic pressure in the two objects has been enforced. Again,
in order to check the ability of the method to solve problems
posed on domains without spherical symmetry, the center of the
spherical coordinate system is translated to the point (0.3,0,0) for
the first object and to point (0,0.3,0). Thus, we can test comparing
the numerical results with the analytical results of Section 3.1.

3.1.3. Results obtained
For the first model with a single object, frequencies ranging

from 16 Hz (k = 0.29) to 2 kHz (k = 36.62) have been tested.
Compared to the analytical solution, the model has attained an
maximum relative error of 0.04% at frequency 1 kHz. Fig. 1
displays the relative errors obtained in percentage for the SPL
(Sound Pressure Level) in decibel scale (dB) at frequencies 1 kHz
and 2 kHz, respectively.

For the second model with two objects coupled to each other,
the range of frequencies from 16 Hz (k = 0.29) to 1 kHz
(k = 18.31) has been tested. Compared to the analytical solution,
the model has attained an maximum relative error of 1.87% at
frequency 1 kHz. Fig. 2 displays the relative errors obtained in
percentage for the SPL in dB at frequencies 500 Hz and 1 kHz,
respectively.

3.2. Scattering from a rigid sphere

3.2.1. Analytical solution
In this section, the analytical model used to verify the results

given bay the method is the scattering of an incident plane wave
that encounters in its way a rigid sphere of radius 1. Supposing
the plane wave to travel in the z-direction, the goal is to find the
acoustic pressure of the scattered wave ps.

For a plane wave of amplitude 1, the acoustic pressure is [31]

pinc (r, θ) =

∞∑
m=0

(2m + 1) imPm (cos θ) jm (k, r) , (11)

where Pm (cos θ) is the Legendre polynomial of degree m and
jm (k, r) is the mth spherical Bessel function of the first kind.

The relation between the incident and the scattered wave is

−
∂ps

∂r
=

∂pinc

∂r
at r = 1, (12)

here

∂pinc

∂r

⏐⏐⏐⏐
r=1

=

∞∑
m=0

(2m + 1) imPm (cos θ)
∂ jm (k, r)

∂r

⏐⏐⏐⏐
r=1

=

∞∑ m∑
Pn
m (cos θ)

(̃
amn cos (nϕ) + b̃mn sin (nϕ)

)
.

(13)

Fig. 1. Graphical representation of the relative errors in percentage obtained for
the SPL (Sound Pressure Level) in decibel scale (dB) at frequencies 1 kHz and
2 kHz, respectively.

Fig. 2. Relative error (%) in pressure values for f = 500 Hz and f = 1 kHz.

Taking into account the Neumann boundary condition and the
n

m=0 n=0 orthogonality properties that Legendre functions Pm(cos θ ), cos
4
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Fig. 3. Relative error (%) in pressure values for f = 250 Hz and f = 1 kHz.

nd sin functions fulfill, the following values of the coefficients
re obtained:

mn = 0 ∀m, n

mn = 0 ∀n ≥ 1

m0 = ãm = (2m + 1) im
∂ jm (k, r)

∂r

⏐⏐⏐⏐
r=1

∀m ≥ 1

Finally, recalling Eq. (1), we can write down the expression of
coustic pressure the scattered wave as

s (r, θ) =

∞∑
m=0

H1
m (k, r) Pm (cos θ) am, (14)

here

m =
− (2m + 1) im ∂ jm(k,r)

∂r

⏐⏐
r=1

∂H1
m(k,r)
∂r

⏐⏐⏐
r=1

∀m ≥ 1.

3.2.2. Models used
The second check problem of scattering of an incident plane

wave uses the same two models used in Section 3.1.2. The differ-
ence is that the origins of the spherical coordinate systems used
are (0.2,0,0) for the model with an only object and (0.2,0,0) and
(0,0.2,0), respectively, for the second model with two objects. In
both cases the sums of Eqs. (11) and (14) have been truncated at
m = 15.

3.2.3. Results obtained
For the first model with a single object, frequencies ranging

from 16 Hz (k = 0.29) to 1 kHz (k = 18.31) have been tested.
Fig. 3 displays the errors obtained in percentage for the SPL in
dB at frequencies 250 Hz and 1 kHz. Compared to the analytical

Fig. 4. Relative error (%) in pressure values for f = 250 Hz and f = 1 kHz.

solution, the model has attained an maximum relative error of
9.73% at frequency 250 Hz.

For the second model with two objects coupled to each other,
frequencies ranging from 16 Hz (k = 0.29) to 1 kHz (k = 18.31)
have been tested. Fig. 4 displays the relative errors obtained in
percentage for the SPL in dB at frequencies 250 Hz and 1 kHz.
Compared to the analytical solution, the model has attained an
maximum error of 9.55% at frequency 250 Hz.

4. Conclusions

This paper discusses a meshless global collocation formulation
for the acoustic fluid–fluid coupling intended to solve problems
of radiation and scattering in bounded and unbounded domains.

The main outcome of the study here presented is that the
patterns of solutions proposed fulfill automatically Helmholtz
equation and all BC for bounded and unbounded domains, includ-
ing Sommerfeld BC. This means that all is reduced to the task of
solving a linear system of equations.

Furthermore, the following observations are made:

• The only pre-processing needed is a classified list of points
lying on the surfaces on the boundaries of the objects of the
model; therefore, no 3D meshing is needed, and the num-
ber of degrees of freedom is substantially reduced, which
results in a lower computational cost than that of element-
based methods. The presented two formulations work well
on complex acoustic scattering models at high frequencies
using few degrees of freedom.

• In the examples presented, for the highest frequency ana-
lyzed, k = 18.31, corresponding to a wavelength of 0.343 m,
the method has been able to obtain good results using a
minimum of 4 degrees of freedom per wavelength.
5
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Fig. 5. Exact and calculated modulus for f = 1 kHz.

• The maximum relative errors take place at points where
the value of acoustic pressure is small, and the patterns of
modulus and phase are very similar, even for the example
of scattering from a rigid sphere (see Fig. 5).

The main open issues of the method are, first, an analysis of
he error propagation in the outer domain for complex patterns
f acoustic pressure; second, a faster resolution of the rectangular
omplex, dense and non-symmetrical system of equations. The
uthors are already working on the former, and the latter should
e explored in future research.
Another line of work of the authors is to extend the method

ere proposed to propagation of elastic waves in other media,
uch as structures.

. Impact overview

• The method is an alternative to Finite Element Method, with
the advantage that it uses fewer degrees of freedom and
therefore is less hardware-demanding.

• The premises of the work are, first, to minimize the size of
the system using the fewer degrees of freedom as possible;
second, to be able to solve Helmholtz equation in bounded
and unbounded domains containing objects with different
mass properties (different fluids such as air, water, etc.).

• The software is a further development of the previous work
published [29].
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