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A B S T R A C T

Floating offshore wind turbines (FOWTs) show promise in terms of energy production, availability, and
sustainability, but remain unprofitable due to high maintenance costs. This work proposes a deep learning
algorithm to detect mooring line degradation and failure by monitoring the dynamic response of the publicly
available DeepCWind OC4 semi-submersible platform. This study implements an autoencoder capable of
predicting multiple forms of damage occurring at once, with various levels of severity. Given the scarcity of real
data, simulations performed in OpenFAST, recreating both healthy and damaged mooring systems, are used to
train and validate the algorithm. The novelty of the proposed approach consists of using a set of key statistical
metrics describing the platform’s displacements and rotations as input layer for the autoencoder. The statistics
of the responses are calculated at 33-minute-long sea states under a broad spectrum of metocean and wind
conditions. An autoencoder is trained using these parameters to discover that the proposed algorithm is capable
of detecting mild anomalies caused by biofouling and anchor displacements, with correlation coefficients up
to 98.51% and 99.16%, respectively. These results are encouraging for the continuous health monitoring of
FOWT mooring systems using easily measurable quantities to plan preventive maintenance actions adequately.
1. Introduction

Floating offshore wind (FOW) is one of the most rapidly growing
forms of green power. As of 2021 though, there were only 113 MW in
operation in Europe (REN21, 2021), although this figure is predicted to
triple by the end of 2024, and escalate up to 10 GW by 2030 (WindEu-
rope, 2021) and 150 GW by 2050 (IRENA, 2021). The current share
of floating offshore wind, however, is residual if compared to bottom-
fixed offshore and onshore wind, whose global operating capacities
stand at over 35 and 700 GW, respectively (GWEC, 2021). Controversy
around onshore wind turbines’ noise and visual pollution, as well as
potential for higher energy production, has encouraged governments
and institutions to issue challenging plans for further development in
the offshore sector (WindEurope, 2022). Spain (WindEurope, 2021;
OffshoreWind.biz, 2021, 2022), Norway (Reuters, 2019), South Ko-
rea (Green Tech Media, 2020b,a), Ireland Offshore Engineer Digital
(2021) and the UK (Quarz, 2020; Wind Power Monthly, 2020; CNBC,
2022) are only a few examples of countries already investing heavily
in floating wind projects, some of which are estimated to provide a
total capacity over 2 GW once completed. Major oil and gas companies
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are also applying their knowledge of floating offshore technologies on
wind power, partially aiming at shifting their public perception heading
towards a more sustainable world (Forbes, 2021).

Because of their reduced noise and visual impact, floating offshore
wind turbines are designed to be larger in size than their onshore
counterparts. This means that their swept area is also larger, in loca-
tions where wind is already faster and smoother. All of these factors
contribute to higher power output. However, excessive costs still keep
floating wind farms unprofitable. Although rapidly decreasing, the lev-
elized cost of energy (LCOE) of floating offshore wind varies between
e90/MWh and e120/MWh, that is, more than double the cost of
fixed offshore wind power (The Conversation, 2020). Approximately
one third of these costs are due to operation and maintenance (O&M)
and other associated activities (Nava et al., 2019). New technologies,
such as remotely operated vehicles, unmanned aerial vehicles (Sierra-
Garcia et al., 2019), and machine learning algorithms (Bishop, 2006),
become essential to automate inspection and maintenance tasks, thus
reducing operating costs and ultimately making FOW a commercially
viable business.
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In this work, we propose a method for the structural health mon-
itoring (SHM) of floating wind turbine mooring lines. These systems
are one of the most expensive components of FOWTs, and are much
less studied than other subsystems, such as their towers (Kim et al.,
2019) or blades (Ghoshal et al., 2000). This study formulates an inverse
problem, in which samples of measurements from the dynamics of the
floating platform are used to train a model, which can then make
predictions of the structural health status of mooring lines. Solving
inverse problems (Tarantola, 2005) allows for the early identification
of damage. This is critical for SHM purposes, as late notification and
maintenance lead to performance losses and increased downtime (Far-
rar and Worden, 2012). These factors crucially affect the overall budget
of a FOW project, and thus need to be optimized.

Deep learning (DL) algorithms (Bishop, 2006) are among the most
popular methods for solving forecasting and monitoring problems (Pe-
nalba et al., 2022). These models are usually represented by deep
neural networks (DNNs), and have been widely used for mooring
system design and SHM (García et al., 2010; Gordan et al., 2017;
Salehi and Burgueño, 2018; Azimi et al., 2020; Chalapathy et al., 2018)
because of their potential to approximate complex, highly non-linear
functions that go beyond the capabilities of simpler, more traditional
approaches. After training, DL algorithms can make instant predictions
of the health status of a system, which is crucial in the context of
damage detection.

Depending on the DNN’s layout, researchers have been able to
answer different questions. For instance, multi-layer perceptrons (MLP)
are popularly used to detect damage because of their simplicity for
implementation. Sidarta et al. (2018) used synthetic data, extracted
from 7.5-hour-long sea state simulations, to train an MLP to iden-
tify mooring line breakage for the Heave and VIM suppressed (HVS)
semi-submersible platform. The implemented DNN had four inputs,
specifically long drift periods and means for floater surge and sway; and
five outputs detecting damage for five different mooring lines. Because
of its network layout and the definition of its damaged scenarios, this
study detected ultimate failure rather than predicting mild damage
before the system’s performance was significantly affected.

Li and Choung (2017), Li et al. (2018) implemented an MLP to
detect wide-banded mooring line fatigue for FOWTs. Similarly to the
work presented here, they performed FAST (National Renewable En-
ergy Laboratory, 2021) simulations on the semi-submersible platform
developed within the DeepCWind project (Robertson et al., 2014; Wang
et al., 2021), assuming a mooring system with three catenary lines.
Their MLP had four environmental conditions as inputs and 121 outputs
representing mooring line tension. They obtained very positive results,
especially under severe sea states.

Bjø rni et al. (2021) tested the same turbine model studied in this
work, but supported on a spar-type floating platform. They used much
shorter simulations than those observed in aforementioned studies,
from which they computed floater motions in 6 degrees of freedom
(DOF), neglecting aerodynamic loads. Their MLP’s input layer consisted
of 360 neurons representing 60 s for each DOF. They applied sliding
window techniques to predict 30 s of mooring line tension for each
mooring line. Their network’s size caused high DNN training costs of up
to 250 h, which pose a series of challenges when extending the model
to different platforms and FOWT designs.

Chung et al. (2020) designed a DNN to detect cross-section losses at
different points on mooring lines for a tension leg platform (TLP). Their
DNN’s inputs were environmental conditions and floater responses for
all six DOFs, and its eight output nodes represented damage to each
of the TLP’s mooring lines. Their study is limited to very severe cross-
section changes happening to one individual line at a time. This, in
practical terms, implies detecting failure after significant performance
losses, and can result in inconsistencies when two or more mooring
lines are damaged simultaneously.

MLP-based algorithms are mostly used to detect damage rather
2

than predicting it. Other studies (Saad et al., 2021; Chen et al., 2020,
2021; Wang et al., 2022) apply convolutional neural networks to detect
failure using image recognition (Janas et al., 2021) or long short-term
memory (LSTM) networks to estimate future mooring damage (Xiang
et al., 2021). In particular, Saad et al. (2021) compared MLPs and
LSTMs to predict vessel mooring failure by inducing sudden line break-
age. Chen et al. (2021) coupled an LSTM network with an autoencoder
(AE) to detect anomalies in fixed-bottom offshore wind turbines. Using
these algorithms, they predicted which variables were the most relevant
for damage detection. Other machine learning techniques used for
FOWT condition monitoring are reviewed in Martinez-Luengo et al.
(2016), Joshuva et al. (2019), Ciuriuc et al. (2022), Fu et al. (2019)
and Hameed et al. (2009).

In this article, we detect mooring failure by implementing an au-
toencoder whose inputs are time and frequency-domain statistics ex-
tracted from the floater’s response in six DOFs. This approach, com-
monly referred to as Frequency Domain Decomposition (FDD) (Oliveira
et al., 2021; Peña-Sanchez et al., 2022), allows for a computationally
efficient analysis, as we describe the structural integrity of the mooring
system using a reduced set of easily measurable variables with known
physical meaning. Some examples of applications of FDD include SHM
for vessel mooring systems (Low and Langley, 2006), gearboxes for
onshore wind turbines (Feng and Liang, 2014; Feng et al., 2016;
Antoniadou et al., 2015) and spar-buoy floaters (Ruzzo et al., 2016)
using various predictive tools. Previous research by Gorostidi and Nava
(2021) and Gorostidi et al. (2022) implemented 1-DOF and 6-DOF
models, respectively, to predict one-hot encoded mooring failure using
MLPs. This means that only one type of damage, and of a given severity,
could be detected for each mooring line.

The main novelty of this study is to design a deep autoencoder,
fed by a reduced set of physically meaningful modal inputs describing
the response of the floater as in Gorostidi and Nava (2021), Gorostidi
et al. (2022). This type of network allows to (a) identify faults under
any combination of environmental conditions, and (b) detect mooring
line damage at an early stage. This is achieved by building a set of
faulty mooring systems with different severities, which are defined by
a set of continuous damage coefficients. These coefficients can take any
value in the interval [0, 1], and are sampled for each data point using
normal distributions centered around zero. This leads to a training
set containing mostly undamaged and mildly degraded samples. In
that way, the resulting model, whose architecture was optimized using
automated machine learning (AutoML) techniques (Shahriari et al.,
2022), is capable of detecting low-severity damages, common in early-
stage operation, with a much higher rate of accuracy. The network
is also capable of predicting more than one type of failure occurring
simultaneously, thus increasing its potential practical applicability.

In this initial study, we restrict to only two forms of degradation:
biological fouling and anchor shifts. Other forms of degradation will be
addressed in further research since they may be sensitive to different
input parameters other than the harmonic-like dynamic measurements
employed in this work.

FOW research stands at a much earlier stage than onshore wind, and
hence samples of real data are scarce. We are therefore forced to build a
synthetic training set, containing sea states representing different wind
and wave conditions. We perform simulations in OpenFAST (National
Renewable Energy Laboratory, 2021), a widely popular open-source
tool for wind turbine simulation, to recreate the floater’s response, and
calibrate the solver’s settings by comparing the obtained outcomes with
computational fluid dynamics (CFD) studies (Benitz et al., 2014; Liu
et al., 2019; Zhang and Kim, 2018; Lin and Yang, 2020; Galera-Calero
et al., 2021), free decay tests, (Lee et al., 2018; Li et al., 2019; Coulling
et al., 2013a; Liu et al., 2018; Stewart et al., 2012) and small-scale
experiments (Chen et al., 2018; Coulling et al., 2013b) available in
literature. Moreover, damages are synthetically modeled and imposed
to the FOWT’s mooring system. This means that its structural properties

are manually changed to fit a finite set of damage scenarios. For
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Fig. 1. NREL’s 5 MW Baseline FOWT mounted on the DeepCWind OC4 floater.
instance, the added mass due to biological fouling degradation was
considered to be uniform along the entire length of the mooring lines.

In this article, we considered a single model for our entire range
of environmental conditions. Some studies have found that introducing
different models for low and high-energy sea states may provide better
predictions, as anomalies frequently seen in low-energy scenarios may
be common to normal operation under high-energy sea states (Aizpurua
et al., 2022). Nonetheless, our algorithm takes all environmental mea-
surements as inputs. Thus, the resulting neural network is expected to
provide robust predictions of the health status of mooring lines, even
under low-energy sea states. The implementation of condition-informed
models or previous clustering steps to discretize energy conditions into
groups are left for future work.

The remainder of this article is structured as follows. In Section 2,
we detail the case study, we illustrate both the FOWT design we employ
and its floating platform, and we list the environmental conditions
and structural parameters defining the healthy and degraded mooring
systems. In this section, we also dive into the mathematical aspects of
the DNN training and validation steps. In Section 3, we address the
implementation of the described methodology, we discuss the program
we run to generate training and validation data, and we describe the
calibration process we carry out so that our results match those we have
observed in literature. In this section, we detail the method we used to
optimize the network’s architecture, and we assess the performance of
the model during the training stage. In Section 4, we discuss the out-
comes of the simulation process, and we analyze the floater’s response
both in time and frequency domains. In this section, we also present
the accuracy of the DNN after training. We finally extract some key
conclusions and propose further work from our research in Section 5.

2. Method

2.1. Problem description

In this work, we implement a deep learning model for the identifica-
tion of mooring line damage for floating offshore wind turbines. Let 
be the operator that solves the system of partial differential equations
(PDEs) governing the dynamics of the turbine’s floater, such that

𝑢 =  (𝑃 , 𝑟), (1)
3

where 𝑢 describes the floater’s response in the form of six degrees
of freedom (surge, sway, heave, roll, pitch, and yaw); 𝑃 denotes the
structural integrity of the platform’s mooring lines, and 𝑟 describes the
external conditions affecting the platform’s behavior, including wave
significant height 𝐻𝑆 , peak period 𝑇𝑃 , and wind velocity 𝑉 .

We assume that, for any fixed environmental conditions, different
structural properties yield different responses, and in that way we
intend to find a correlation between the floater’s response through time
and its structural integrity. This is a typical assumption on supervised
deep learning when no damaged data are available (Farrar and Worden,
2012). The approach we used is commonly referred to as inversion, as
it reverts the classic PDE modeling problem. Here, and as presented in
Fig. 1, an inverse operator  estimates the structural properties of the
turbine’s mooring system based upon the response of the platform such
that

𝑃 = (𝑢, 𝑟). (2)

2.2. Parametrization of the mooring system

We first propose to build a parametrization of the floater’s mooring
lines. That is, we define the health status of the mooring system using
two coefficients ranging from 0 to 1. Each of these describes the severity
of a specific form of structural degradation. In particular, we consider
two types of mooring line failure: a biological fouling coefficient value
of 1 represents a simultaneous 10% increase in both the lines’ mass per
unit length and diameter, and represents the attachment of mussels,
algae, and other marine organisms to the mooring lines. An anchoring
coefficient equal to 1 implies a 20-meter shift of a line’s anchor in
any direction, assuming a flat seabed. The result of this is a change
–either an increase or decrease– in the mooring system’ stiffness. Any
coefficient between 0 and 1 represents intermediate biofouling or an-
choring degradation following a linear interpolation. Because of the
current scarcity of experimental samples, we use OpenFAST (National
Renewable Energy Laboratory, 2021) simulations that estimate the
operator 𝐹𝐴𝑆𝑇 describing the dynamic response of the parametrized
floater 𝑖, that is:

𝑢 = 𝐹𝐴𝑆𝑇 (𝑃 , 𝑟 ). (3)
𝑖 𝑖 𝑖
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Fig. 2. Sketch of an autoencoder deep neural network for our SHM problem.
For an easier read, we hereinafter refer to 𝐹𝐴𝑆𝑇 as  , assuming the
difference between the actual and estimated operators is negligible. Due
to the facts that (a) we do not know the derivatives of  , and (b) we
want to detect damage at points not necessarily included in the training
set, we use a deep neural network (DNN) to estimate both forward and
inverse operators using a two-step loss function (Shahriari et al., 2021):

∗
𝜙(𝑃 , 𝑟) ∶ = argmin

𝜙∈𝛷

𝑁
∑

𝑖=1
‖𝜙(𝑃𝑖) −  (𝑃𝑖)‖2,

∗
𝜃 (𝑢, 𝑟) ∶ = argmin

𝜃∈𝛩
‖(∗

𝜙◦𝜃)(𝑢) − 𝑢‖2.
(4)

The training step consists on first finding a set of weights 𝜙∗ that
minimize the loss of the forward operator ∗

𝜙, then freezing all of its
weights and biases, and implementing the autoencoder architecture
presented in Fig. 2 to estimate the inverse operator ∗

𝜃 . The proposed
network includes the environmental conditions, 𝑟 ∶= {𝐻𝑆 , 𝑇𝑃 , 𝑉 }, as
inputs for both encoder and decoder. This makes the inverse problem
of detecting damage more unique, thus, helping the model distinguish
between samples which may represent similar platform motions. The
network calculates the total loss as the norm of the difference between
the reconstructed response properties, 𝑢̃, and the actual ones obtained
from simulations, 𝑢. The loss of the encoder side inherits the errors
obtained in the training of the decoder. Proper training of the forward
operator is therefore critical to maximize the accuracy of the inverse
operator. This two-step training model (Shahriari et al., 2021) allows
for the prediction of the health status of the turbine, 𝑃 , located in the
center of the autoencoder.

3. Implementation

3.1. Data set generation

The data set contains samples of responses obtained from OpenFAST
simulations under different wind and wave conditions, as described in
Table 1. The ranges of environmental conditions presented therein do
not correspond to a specific site, but represent the whole operational
region of FOWTs, as we include conditions that result in very low
wave energy fluxes (WEF) (under 5kW/m) and very high WEF values
(over 40kW/m) (Penalba et al., 2017; Blanco et al., 2021). We recreate
the displacements and rotations of the baseline 5 MW FOWT designed
by NREL, mounted on the semi-submersible floater developed within
the DeepCWind project (Robertson et al., 2014) (see Fig. 1). Data set
features include the statistical descriptors of the platform’s displace-
ments and rotations presented in Table 2. We described the stable time
4

domain signal, which we assume is stationary, with its mean, 𝑥̄, and
Table 1
Setup of our simulation process and ranges for environmental conditions.
Property Value Units

Simulation time 2000 s
Time step 0.025 s
Transient time 500 s
Significant height, 𝐻𝑆 2–15 m
Peak period, 𝑇𝑃 1–15 s
Wind Velocity, 𝑉 1–30 m/s

standard deviation, 𝜎. To sufficiently describe the frequency spectra, we
obtain two peak frequencies, 𝑓1 and 𝑓2, as one of the peaks corresponds
to the natural frequency of the system in the translational horizontal
DOFs, while the other is affected by environmental conditions (Low and
Langley, 2006; Benitz et al., 2014). Plus, we use the zero-th momentum,
𝑚0, of the response spectra to assess the magnitude of the frequency
peaks and the intensity of all frequencies in the spectra. This modal
approach (Ruzzo et al., 2016; Black et al., 2022) reduces the size of
the data set to just a few parameters for each sample, minimizing
storage requirements and training costs while describing the platform’s
dynamics within acceptable accuracy levels.

We select a combination of environmental conditions for each sim-
ulation by combining values of 𝐻𝑆 , 𝑇𝑃 , and 𝑉 , each of them being
defined as arrays of evenly-spaced values within the ranges presented in
Table 1. Damage is generated by choosing a combination of biofouling
(𝑦0) and anchoring (𝑦1) coefficients randomly within the set of sampled
points presented in Fig. 3. These combinations arise from coupling
normal distributions for both types of damage. These distributions are
centered around zero for both 𝑦0 and 𝑦1. The idea behind this is that, by
using this sampling technique instead of a completely random choice,
the data set contains many more samples of undamaged and mildly
damaged mooring lines. This, once the algorithm is trained, should
allow for the identification of damage at an earlier stage. Using a finite
number of damage severities, this process produces a surface similar
to the one displayed in Fig. 3a, which shows the probability 𝑝 for
the program to select each combination of damage coefficients. Once
these coefficients are defined, we use a set of preprocessing scripts
to manually adjust the corresponding structural parameters in Open-
FAST’s mooring dynamics module MoorDyn to fit specified mooring
system setup, whose baseline properties and coordinates are presented
in Tables 3 and 4, respectively.

Algorithm 1 details the process of generating the training, valida-
tion, and testing data sets. We performed a total of 102,229 OpenFAST
simulations in parallel batches, using 120 Intel Xeon (R) E5-2680,
2.70 GHz CPUs (Donostia International Physics Centre, 2022). We
found this number of cases to be sufficient to meet the minimum data
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Fig. 3. Damage parametrization (a) surface representing the probability of selecting each combination of coefficients 𝑦0 and 𝑦1, and (b) distributions of coefficients across the
ntire training set for biofouling and anchoring on top and bottom, respectively.
Table 2
Statistical descriptors of the floater’s response. The thresholds separating high
(𝑓1) and low (𝑓2) range frequencies are 0.016 Hz for all degrees of freedom.
Surge Sway Heave Roll Pitch Yaw

𝑥̄𝑠𝑢𝑟𝑔𝑒 𝑥̄𝑠𝑤𝑎𝑦 𝑥̄ℎ𝑒𝑎𝑣𝑒 𝑥̄𝑟𝑜𝑙𝑙 𝑥̄𝑝𝑖𝑡𝑐ℎ 𝑥̄𝑦𝑎𝑤
𝜎𝑠𝑢𝑟𝑔𝑒 𝜎𝑠𝑤𝑎𝑦 𝜎ℎ𝑒𝑎𝑣𝑒 𝜎𝑟𝑜𝑙𝑙 𝜎𝑝𝑖𝑡𝑐ℎ 𝜎𝑦𝑎𝑤
𝑓1,𝑠𝑢𝑟𝑔𝑒 𝑓1,𝑠𝑤𝑎𝑦 𝑓1,ℎ𝑒𝑎𝑣𝑒 𝑓1,𝑟𝑜𝑙𝑙 𝑓1,𝑝𝑖𝑡𝑐ℎ 𝑓1,𝑦𝑎𝑤
𝑓2,𝑠𝑢𝑟𝑔𝑒 𝑓2,𝑠𝑤𝑎𝑦 𝑓2,ℎ𝑒𝑎𝑣𝑒 𝑓2,𝑟𝑜𝑙𝑙 𝑓2,𝑝𝑖𝑡𝑐ℎ 𝑓2,𝑦𝑎𝑤
𝑚0,𝑠𝑢𝑟𝑔𝑒 𝑚0,𝑠𝑤𝑎𝑦 𝑚0,ℎ𝑒𝑎𝑣𝑒 𝑚0,𝑟𝑜𝑙𝑙 𝑚0,𝑝𝑖𝑡𝑐ℎ 𝑚0,𝑦𝑎𝑤

Table 3
Baseline mooring properties, assuming a three catenary line system.
Property Value Units

Number of lines 3 –
Segments per line 20 –
Line diameter 7.66 ⋅ 10-2 m
Mass density 1.13 ⋅ 102 kg/m
Line stiffness 7.54 ⋅ 108 N
Unstretched length 8.35 ⋅ 102 m

Table 4
Undamaged mooring line coordinates.

Point X (m) Y (m) Z (m)

Line 1 Anchor 418.80 725.38 −200.00
Line 1 Fairlead 20.43 35.39 −14.00
Line 2 Anchor −837.60 0.00 −200.00
Line 2 Fairlead −40.87 0.00 −14.00
Line 3 Anchor 418.80 −725.38 −200.00
Line 3 Fairlead 20.43 −35.39 −14.00

Table 5
Properties of the free decay tests for simulation validation.

Test Initial conds. Sim. length External conds.

Surge +22 m 20 min No wind, nor waves
Sway +22 m 20 min No wind, nor waves
Heave +6 m 5 min No wind, nor waves
Roll +8◦ 5 min No wind, nor waves
Pitch +8◦ 5 min No wind, nor waves
Yaw +8◦ 15 min No wind, nor waves

set size requirements for our problem (Alwosheel et al., 2018). The
elapsed time for all simulations was approximately 42 h.

3.2. Calibration of the solver

To calibrate our solver’s settings and the structural properties of
both turbine and floater, we carried out individual free decay tests for
5

Simulation step
Step Description
1 Generate as many subdirectories as CPUs to store simulation

files
2 Define number of simulations & copy baseline OpenFAST files
3 Check for damage (50% of the lines are healthy, 50% are

damaged)
→ if so, define damage coefficients (random within distribu-
tion)
→ if not, set damage coefficients as (0, 0)

4 Define environmental conditions (random within ranges)
5 Assign combinations of damage coefficients to simulation files
6 Simulation loop for each CPU: 𝑖 = 1

⋅ Rewrite MoorDyn, HydroDyn, and InflowWind files
⋅ Run OpenFAST simulation
⋅ Obtain time series and frequency spectra
⋅ Extract and write modal parameters in a CSV library
⋅ 𝑖 = 𝑖 + 1

7 Assemble libraries from all subdirectories into main CSV
library

Algorithm 1: Generation of training and validation samples using
OpenFAST.

each degree of freedom, comparing the obtained curves to reference
studies by Liu et al. (2018). In their research, they imposed the initial
conditions presented in Table 5 to test the behavior of the DeepCWind
floater with a single-point mooring (SPM) arrangement, characterized
by a single fairlead for all lines. They compared this design with respect
to the more common multi-point mooring (MPM) system, which is the
one we implement in this article.

The baseline (Jonkman et al., 2009) and calibrated properties are
shown in Table 6. Considering these properties, the results of the free
decay tests are presented in Fig. 4, where it can be seen that our
numerical results match the reference data with great accuracy. This
is especially critical for the surge and pitch degrees of freedom (see
Figs. 4a and 4e, respectively), as they are more affected by the assumed
𝑥-direction of the waves.

3.3. DNN training

In the training step, we use the data we have generated to minimize
the loss function given by Eq. (4), following the process shown on Al-
gorithm Section 3.3. For that purpose, we use TensorFlow 2.5.0 (Abadi

et al., 2015). After reading, scaling, and splitting the generated data
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Fig. 4. Results of the performed free decay tests with respect to reference studies (Liu et al., 2018) in (a) surge, (b) sway, (c) heave, (d) roll, (e) pitch, and (f) yaw.
Table 6
Setup of our simulation process and ranges for environmental conditions (RK4:
Runge–Kutta 4th order, ABM4: Adams–Bashforth–Moulton 4th order).

Property Original Value Units

Time step 0.0125 0.025 s
Interpolation Linear Quadratic –
Integration method RK4 ABM4 –
N blades 3 3 –
Tip radius 63 63 m
Hub radius 1.5 1.5 m
Overhang −5.02 −5 m
Tower height 87.6 90 m
Nacelle mass 2.4E+06 2.4E+06 kg
Hub mass 56,780 56,780 kg
Hub inertia 115,926 115,900 kg m2

Generator inertia 534.116 534.16 kg m2

into training, validation, and testing sets, we define the architecture of
the forward side of the autoencoder, as well as a set of hyperparameters
for its training. These include optimizer and initial learning rate (ILR).
6

We establish the training routine by defining its batch size and number
of epochs, and then we train the decoder.

Once the loss of the forward operator is minimized, we save the
decoder’s weights and biases. The idea behind this is that we can test
multiple architectures for the inverse side of the autoencoder without
having to retrain the forward side, thus increasing the computational
efficiency of the program.

Before training the complete network, we define the encoder’s ar-
chitecture and the hyperparameters describing its training in the same
way as for the decoder. We set the forward side’s weights and biases as
non-trainable and train the autoencoder. Once training is complete, the
program predicts both damage coefficients for all testing samples and
computes the correlation coefficient 𝑟2.

We use AutoML (Shahriari et al., 2022) techniques to train a number
of different architectures for both the network’s encoder and decoder.
We define a series of candidate architectures for  and  to find out
what combination best describes the data set’s variability. The tested
architectures vary in both number of hidden layers and neurons per
layer. The smaller networks usually underfit the data, behaving well



Ocean Engineering 287 (2023) 115862N. Gorostidi et al.

1
t
a
p
a
h
u
b
m

4

p
o
u
l

b
w
v
s
e
e
a
m

f
m
c
a
a
s
a
m
T
o
c
p
i
r
l
a
a
i
a
a

Training step
Step Description
1 Define architectures for  and 
2 Read data

⋅ Assign data set columns to 𝑢, 𝑃 , and 𝑟
⋅ Split in training (70%), validation (20%), and testing (10%)
sets
⋅ Scale data

3 Train forward operator 
⋅ Define architecture
⋅ Define hyperparameters (Adam optimizer, ILR=0.005)
⋅ Define training parameters (Batch size=512, 1,500 epochs)
⋅ Run training
⋅ Save weights
⋅ Plot and save losses

4 Train inverse operator 
⋅ Load forward model and weights and set as non-trainable
⋅ Define hyperparameters (Adam optimizer, ILR=0.005)
⋅ Define training parameters(Batch size=512, 1,000 epochs)
⋅ Run training
⋅ Plot and save losses
⋅ Compute correlation coefficient 𝑟2

5 Select combination of  and  with highest 𝑟2
6 Make predictions of damage coefficients for testing data using



Algorithm 2: DNN training algorithm.

from a numerical point of view but achieving lower accuracy rates. The
larger architectures usually cause overfitting, which leads to poor per-
formance against unseen data as the model obtains a function that is too
aligned with the specific training data. The architecture presented in
Table 7 provides the best performance metrics out of all the tested can-
didate layouts. The model’s encoder consists of six hidden layers, whose
inputs are the 30 statistical descriptors calculated from the floater’s
six displacements and rotations, plus the three parameters defining
external conditions. All the encoder’s neurons are fully-connected, and
the values they store are bounded by the rectified linear unit (ReLU)
activation function (Nair and Hinton, 2010). The encoder’s output layer
estimates the two coefficients describing the structural integrity of
the mooring system, 𝑃 , using a sigmoid function (Han and Moraga,
995). The decoder consists of six hidden layers of increasing width
o recreate the displacements and rotations of the floating platform. To
ddress potential overfitting issues, we have added two dropout layers
receding the last two layers of the decoder, each of them dropping
random 10% of their neurons on each iteration. Once again, the

idden layers are fully-connected among one another, and activated
sing the ReLU function. The sigmoid function bounds the values stored
y the decoder’s output neurons, which represent the recreated modal
easurements 𝑢̃. Although there are a few rules of thumb when it comes

to hyperparameter settings, e.g. related to activation functions, optimiz-
ers, initial learning rates, etc., the usual practice consists on testing the
performance of different educated guesses and finding a satisfactory
combination of hyperparameters both in terms of computational costs
and prediction accuracy (Yang and Shami, 2020).

After defining an adequate DNN architecture, we carry out longer
training and validation processes to minimize the network’s loss. Proper
monitoring of the model’s performance as training progresses is key
to identify any undesired behaviors, including overfitting, divergences,
numerical instabilities, etcetera. Fig. 5a shows the evolution of the de-
coder’s losses as its training takes place. Fig. 5b presents the algorithm’s
losses after freezing the forward operator’s weights and biases and
plugging them into the decoding side of the model, as stated in Eq. (4).
The results presented in Fig. 5 denote the following characteristics
7

regarding the network’s behavior as training progresses: f
Table 7
Characteristics of the selected encoder–decoder architecture.

Autoencoder architecture

Architecture design

Input neurons 33
Encoder layers 6 (46, 62, 48, 24, 12, 6)
Bottleneck neurons 5
Decoder layers 6 (7, 18, 36, 60, 90, 85)
Output neurons 30
Layer connection Fully-connected layers

Test results

 training time 14 min 57 s
 training time 11 min 10 s
Training time 26 min 07 s
r2 0.9288

Hyperparams.

Activation functions ReLU, Sigmoid
Optimizer Adam
Epochs (forward) 1,500, 1,000
Lrn. rate (forward, total) 0.005, 0.005

(a) the expected, asymptotic decrease of the network’s losses as
training progresses, which indicates a successful loss minimiza-
tion process for both forward and inverse operators;

(b) a stabilized minimum loss at the end of the training stage, which
implies that training is complete; and

(c) an adequately similar behavior of the model’s losses for both
training and validation sets, which suggests we successfully
avoid overfitting issues.

. Results and discussion

Once the autoencoder is trained, we employ a new set of data to
redict the health status of the DeepCWind mooring system, 𝑃 , based
n the statistical descriptors of the floater’s response, 𝑢. This implies
sing the weights and biases of the network’s encoder only, that is, the
eft half of the DNN presented in Fig. 2.

Figs. 6a and 6b display crossplots corresponding to predictions of
iofouling and anchoring failure, respectively. These represent how
ell the algorithm understands each kind of structural damage indi-
idually, regardless of the presence of other forms of damage in the
amples. We observe an adequate correlation between the actual co-
fficients, usually referred to as ground truth, and the predicted values,
specially in the case of anchor displacements. The model itself exhibits
squared correlation coefficient 𝑟2 of 0.9288, which implies that the
odel explains nearly a 93% of the data set’s variability.

To simplify the interpretation of these results, we categorized each
orm of damage into five classes. Using this approach, we may observe a
inimum severity threshold at which significant performance losses oc-

ur and therefore maintenance operations should be performed. Figs. 7a
nd 7b present the behavior of this model for both biofouling and
nchoring issues, respectively. In these figures, we assign the testing
et samples to five severity categories according to their predicted
nd true damage coefficients: very mild (up to and including 0.2),
ild (0.4), intermediate (0.6), severe (0.8), and very severe (1.0).
he diagonal formed by the white squares shows that the majority
f samples are classified correctly, and the fact that lower severity
ategories include more data proves that we have trained the model
rimarily with undamaged and mildly damaged scenarios, as presented
n Fig. 3. The confusion matrices displayed on Fig. 7 show promising
esults when dealing with undamaged or severely damaged mooring
ines. In the case of biological fouling, the precision for both very mild
nd very severe classes stand at 91.2% and 93.2%, respectively. For
nchoring issues, predictions are even more precise, with these metrics
ncreasing to 95.9% and 96.3%, respectively. Intermediate classes show
more disperse behavior, with mild, intermediate, and severe damage

ccuracy rates all under 80% for biofouling damage, and under 90%

or anchor shifts.
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Fig. 5. Loss evolution for training and validation data sets as training progresses for both (a) forward operator and (b) total network.
Fig. 6. Crossplots for the testing data set for both (a) biological fouling and (b) anchor displacements.
However, there are cases that have been wrongly assigned to differ-
ent degradation classes. This is more noticeable in the case of biofouling
predictions, where it can be seen that, in contrast with estimations
of anchor displacements, the percentages of large errors are non-zero
for almost all damage classes. More importantly, the coefficients of a
1.13% of samples with severe degradation and a 0.77% of samples
with very severe damage were underestimated by at least 0.2. These
cases are particularly worrying, as this implies there might be certain
circumstances where significant mooring damage goes unnoticed.

To improve the model’s interpretation of damage, we had to find
out what data points were in this situation. In particular, we found
one point for which the model estimated very mild biofouling damage
(0.036), while its true coefficient represented very severe conditions
(0.96). This sample is highlighted in red in Table 8, which shows test
samples with similar environmental conditions.

In order to determine the reason for this, we compared its features
with those of a different data point within Table 8. More specifically,
we chose the point highlighted in bold, as its health status coefficients
are very close to the ones defining our outlier. We plotted every input
for both points to find out that, while most features showed little-to-no
difference between the two cases, their high-range peak frequencies of
heave and low-range frequencies of roll are significantly apart from one
another. This is shown in Fig. 8c and 8d, respectively, where the values
of all the input features are plotted for both points.

To identify the cause of these discrepancies, we study the time
and frequency domain response of the floater in these two cases. in
8

Table 8
Test samples with similar environmental conditions to the outlier found in the classifier
(8.0 ≤ 𝐻𝑆 ≤ 10.0, 4.0 ≤ 𝑇𝑃 ≤ 6.0, 5.0 ≤ 𝑉 ≤ 9.0).
𝐻𝑆 (m) 𝑇𝑃 (s) 𝑉 (m/s) 𝑦𝑏𝑖𝑜𝑓 ,𝑡𝑟𝑢𝑒 𝑦𝑏𝑖𝑜𝑓 ,𝑝𝑟𝑒𝑑 𝑦𝑎𝑛𝑐ℎ,𝑡𝑟𝑢𝑒 𝑦𝑎𝑛𝑐ℎ,𝑝𝑟𝑒𝑑
9.333 5.441 8.000 0.00 0.000 0.00 0.001
9.667 5.586 9.000 0.03 0.038 0.81 0.810
9.000 5.138 7.000 0.96 0.036 0.02 0.011
8.000 4.241 8.000 0.49 0.447 0.43 0.416
9.333 5.586 9.000 0.71 0.827 0.15 0.104
... ... ... ... ... ... ...
... ... ... ... ... ... ...
8.000 4.690 7.000 0.33 0.360 0.41 0.386
9.000 4.690 8.000 0.75 0.805 0.37 0.336
9.667 4.676 9.000 0.95 0.884 0.00 0.033
9.000 4.294 5.000 0.05 0.057 0.40 0.377
8.667 4.241 7.000 0.19 0.205 0.23 0.236

In red, the poorly classified sample. In bold, a data point with similar damage
coefficients.

Fig. 9, we observe that both heave and roll show similar time domain
behavior, with slight differences due to disparities in the external condi-
tions of both cases. The frequency spectrum of heave presents a similar
shape for the two simulations, with the poorly classified case showing
higher frequency peaks and a slightly lower frequency band, while the
spectrum of roll looks essentially identical for both simulations, with
a somewhat lower peak for the poorly classified case. The problem is
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Fig. 7. Confusion matrices for the classification model for both (a) biological fouling, and (b) anchor point displacements.
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hat both frequency spectra show only one significant frequency peak,
ather than the two peaks we initially contemplated. In the case of
eave, it appears that the frequency bands caused by the structural
ondition and the external stimuli range around similar values, thus
resenting only one distinct peak in the frequency spectra. The high-
ange roll frequency, however, seems to be uncorrelated to the severity
f biofouling, as the range between the minimum and maximum peaks
mong the cases presented in Table 8 is almost negligible, as later
9

roved by Figs. 8 and 9. The reason for this lies in the fact that we m
have considered ocean waves to be cylindrical and collinear with the 𝑥-
irection. This, combined with the mechanical symmetry of the system
onsisting of both platform and mooring configuration, causes some
f the degrees of freedom, such as roll or yaw, to be less excited by
xternal conditions than others.

We therefore train a new autoencoder, bringing the total number
f features down to 28, as we drop the two recently discussed vari-
bles. We ran the architecture optimizer again to find out that the
odel presented in Table 9 provided the best results. Since we have a
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Fig. 8. Scaled values of all input features for the poorly classified sample (in red) and the similar, properly classified point (black) for (a) surge, (b) sway, (c) heave, (d) roll, (e)
pitch, and (f) yaw.
lower number of input features, it makes sense that the most accurate
architecture is simpler than that of the original, 30-feature model. In
particular, we employ shallower architectures for both operators, which
are now formed by only 5 hidden layers each. These layers are also
thinner than those of the original network, with the widest of the
encoder’s layers having 25 neurons, whereas the 30-feature model’s
encoder had layers of 46, 48, and even 62 neurons. This is also observed
in the decoder, which originally had layers up to 90-neurons wide,
whereas the widest layers of the new decoder have 52 and 70 neurons.
This simpler architecture also leads to lower training times, with the
total training time decreasing from slightly over 26 min to 21 min and
33 s for the original and new networks, respectively.

The evolution of training and validation losses when we train the
new model are presented in Fig. 10, showing equally appropriate
behavior, with the total network loss this time reaching values under
10−3, which were not obtained with the original, 30-feature model.
We observe crossplots for predictions of both biofouling and anchoring
damage using the new model in Fig. 11, with a complete model
squared correlation coefficient 𝑟2 of 0.9459, almost a 2% increase with
10
Table 9
Characteristics of the selected encoder–decoder architecture.

Autoencoder architecture

Architecture design

Input neurons 31
Encoder layers 5 (25, 20, 16, 16, 12)
Bottleneck neurons 5
Decoder layers 5 (6, 11, 30, 52, 70)
Output neurons 28
Layer connection Fully-connected layers

Test results

 training time 11 min 27 s
 training time 10 min 06 s
Training time 21 min 33 s
r2 0.9459

Hyperparams.

Activation functions ReLU, Sigmoid
Optimizer Adam
Epochs (forward, total) 1,500, 1,000
Lrn. rate (forward, total) 0.005, 0.005

respect to the original network. It can be appreciated that, while the
prediction of anchoring damage shows similar results with respect to
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Fig. 9. Response of the floater for the misclassified sample (in red) and the similar case (black) for (a) heave in time domain, (b) heave in frequency domain, (c) roll in time
domain, and (d) roll in frequency domain.
Fig. 10. Loss evolution for training and validation data sets as training progresses for both (a) forward operator and (b) total network using the 28-feature dataset.
he initial model, the correlation coefficient between predicted and true
iofouling damage increases to 0.9851, an increase of over 5% with
espect to the original network.

Fig. 12 shows the classification into five classes according to the
everity of each kind of damage. We observe that this time, in contrast
ith the results of the 30-feature model, there are no cases with large
ver or underestimations of the damage coefficients for either form
f failure. This implies that the removed features introduced some
andomness in the network’s interpretation of damage, primarily due
o overlapping frequency peaks or independence between a feature and
11
degradation coefficient. The new figures show improved results, with
precision values up to 92.8% and 95.4% for very mild and very severe
biofouling issues, respectively, and 94.3% and 97.8% for very mild and
very severe damage caused by anchor shifts, respectively. In fact, all
damage classes are very accurately represented, with precision metrics
over 90% for all categories in the case of biofouling, and over 94%
in the case of anchor displacements. These are much more promising
results compared to those obtained with the original model, which
in some intermediate cases dropped down to the mid 70s and mid
80s.
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Fig. 11. Crossplots obtained using the 28-feature dataset for (a) biological fouling, and (b) anchor point displacements.
Table 10
Predictions on the testing data set after training the 28-feature model.
Biofouling, pred. Biofouling, true Match? Error Anchoring, pred. Anchoring, true Match? Error

0.191 VM 0.20 M NO 0.009 0.550 I 0.56 I YES
0.286 M 0.28 M YES 0.622 S 0.67 S YES
0.472 I 0.46 I YES 0.288 M 0.28 M YES
0.019 VM 0.00 VM YES 0.001 VM 0.00 VM YES
0.448 I 0.45 I YES 0.032 VM 0.00 VM YES
0.000 VM 0.00 VM YES 0.000 VM 0.00 VM YES
0.208 M 0.20 M YES 0.502 I 0.50 I YES
0.809 VS 0.80 VS YES 0.313 M 0.30 M YES
0.155 VM 0.14 VM YES 0.624 S 0.70 S YES
0.077 VM 0.06 VM YES 0.003 VM 0.06 VM YES
0.000 VM 0.00 VM YES 0.000 VM 0.00 VM YES
0.795 S 0.80 VS NO 0.005 0.677 S 0.70 S YES
0.597 I 0.60 S NO 0.003 0.057 VM 0.05 VM YES
0.307 M 0.30 M YES 0.238 M 0.26 M YES
0.596 I 0.60 S NO 0.004 0.399 M 0.40 I NO 0.001
0.000 VM 0.00 VM YES 0.000 VM 0.00 VM YES
0.067 VM 0.00 VM YES 0.000 VM 0.00 VM YES
0.000 VM 0.00 VM YES 0.000 VM 0.00 VM YES
0.211 M 0.25 M YES 0.190 VM 0.20 M NO 0.010
0.000 VM 0.00 VM YES 0.000 VM 0.00 VM YES
0.678 S 0.72 S YES 0.949 VS 0.97 VS YES
0.123 VM 0.10 VM YES 0.277 M 0.25 M YES
0.755 S 0.75 S YES 0.386 M 0.35 M YES
0.064 VM 0.00 VM YES 0.000 VM 0.00 VM YES
0.541 I 0.58 I YES 0.475 I 0.49 I YES
0.000 VM 0.00 VM YES 0.002 VM 0.00 VM YES
0.470 I 0.45 I YES 0.745 S 0.75 S YES
0.892 VS 1.00 VS YES 0.020 VM 0.00 VM YES
0.197 VM 0.20 M NO 0.003 0.117 VM 0.10 VM YES
0.291 M 0.20 M YES 0.926 VS 0.95 VS YES
0.059 VM 0.00 VM YES 0.229 M 0.26 M YES
0.137 VM 0.05 VM YES 0.408 I 0.40 I YES
0.236 M 0.30 M YES 0.039 VM 0.00 VM YES
0.920 VS 0.85 VS YES 0.359 M 0.25 M YES
0.161 VM 0.15 VM YES 0.242 M 0.25 M YES
0.193 VM 0.15 VM YES 0.104 VM 0.10 VM YES
0.190 VM 0.10 VM YES 0.988 VS 1.00 VS YES
0.000 VM 0.00 VM YES 0.000 VM 0.00 VM YES
A subset of the model’s predictions is displayed in Table 10, wherein
we observe the algorithm’s behavior when predicting both damage
coefficients and classes. Mismatches between the predicted and true
classes, as it can be seen in the table, always occur when the true
damage coefficients are equal to the threshold separating consecutive
categories. Small errors can therefore cause the model to assign a
sample to the wrong class. We therefore recommend to observe both the
predicted damage classes, as well as the predicted damage coefficients
and the error estimate, which in Table 10 never even goes past 0.01.
12
5. Conclusions and future work

This article studies the use of predictive models for the inversion of
complex engineering problems, focusing on structural health monitor-
ing. In particular, we propose an algorithm for the early identification
of damage in mooring systems for floating offshore wind turbines.
This approach could help cut down costs massively by optimizing
maintenance operations, e.g. minimizing unnecessary commissioning
and decommissioning tasks, measurement tools, and trial-and-error
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Fig. 12. Confusion matrices for the classification model for both (a) biological fouling, and (b) anchor point displacements.
inspection methods. In this work, we implement a deep neural network
structure known as encoder–decoder, or autoencoder, to recreate a
series of modal parameters describing the DeepCWind floater’s response
to a set of external conditions, including significant wave height, peak
period and wind speed. With this approach, we intend to estimate
two damage coefficients, which represent the severity of two different
kinds of mooring line damage, including biological fouling and anchor
displacement issues. Since experimental and real data are very scarce,
we perform OpenFAST simulations to generate a set of training data.
We then employ a portion of this data set to approximate the weights
and biases of our algorithm, and another subset to test the model’s
13
performance when facing previously unseen samples. The training
process includes two stages, the first of which covers the training
of the decoder side, i.e. the forward operator. This step predicts the
floating platform’s response from the target damage coefficients, much
like a classic partial differential equation modeling problem. We then
freeze the decoder and plug it right after the encoder, which represents
the inverse operator. Then, we train the entire model to optimize the
parameters of the encoder, which predicts the structural integrity of the
platform based on the statistical descriptors extracted from its response
in 6 degrees of freedom. After designing and training an optimized

encoder–decoder layout, we observe a correlation coefficient of nearly
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93% between the predicted and true damages, with better accuracy for
failure due to anchoring displacements. We propose a categorization
approach to classify damage according to its severity, which could
help users decide at which point maintenance operations should be
performed. We analyze the features causing the algorithm to misclassify
some samples to find out that the low range frequency of heave and
high range frequency of roll introduce uncertainty in the network’s
prediction. We drop these features and retrain the network, obtaining
improved 98.51% and 99.16% squared correlation coefficients and no
relevant mismatches in the classifier.

As further research, we intend to generalize our tool by including a
wider range of failure modes, such as line loss, mooring entanglement,
mooring misalignment, fatigue due to cyclic loading, and corrosion.
We also contemplate extending our predictor to more designs for
both FOWT and floater, as well as to other components of FOWTs,
such as their towers or blades, which might affect the dynamics of
the FOWT and floater assembly. Another potential study consists on
studying the influence of faulty sensors in the network’s predictions.
We also aim at implementing probabilistic deep learning algorithms,
such as Gaussian mixture models or Bayesian neural networks (BNNs),
to estimate uncertainty when predicting the severity of each kind of
damage. This would be of great use when extending our data set to
cover not only synthetic but also experimental and real data samples.
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