
Dual Artificial Potential Field (d-APF) Based Control for Safe

and Efficient Robotic Operation on Industrial Collaborative

Scenarios

Diego Rodríguez Guerra

October 2023
Version: First Version

(c)2023 DIEGO RODRIGUEZ GUERRA

University of the Basque Country (UPV/EHU)

Department of Automatic Control and Systems Engineering
Virtual Sensorization Research Group

Documentation

Dual Artificial Potential Field (d-APF) Based Control for Safe

and Efficient Robotic Operation on Industrial Collaborative

Scenarios

Diego Rodríguez Guerra

1. Supervisor Itziar Cabanes Axpe

Department of Automatic Control and Systems Engineering

University of the Basque Country

2. Supervisor Gorka Sorrosal Yarritu

Department of Intelligent Control (KAU)

IKERLAN S. COOP

October 2023

Diego Rodríguez Guerra

Dual Artificial Potential Field (d-APF) Based Control for Safe and Efficient Robotic Operation on Industrial Collaborative Scenarios
Documentation, October 2023

Supervisors: Itziar Cabanes Axpe and Gorka Sorrosal Yarritu

University of the Basque Country (UPV/EHU)

Virtual Sensorization Research Group
Department of Automatic Control and Systems Engineering

Plaza Ingeniero Torres Quevedo, 1

48013 , Bilbao (Bizkaia)

Disclaimer

You can edit this page to suit your needs. For instance, here we have a no copyright statement, a colophon

and some other information. This page is based on the corresponding page of Ken Arroyo Ohori’s thesis,

with minimal changes.

No copyright

cz This book is released into the public domain using the CC0 code. To the extent possible under law, I

waive all copyright and related or neighbouring rights to this work.

To view a copy of the CC0 code, visit:

http://creativecommons.org/publicdomain/zero/1.0/

Colophon

This document was typeset with the help of KOMA-Script and LAT
E
X using the kaobook class.

The source code of this book is available at:

https://github.com/fmarotta/kaobook

(You are welcome to contribute!)

Publisher

First printed in July 2023 by publishers

http://creativecommons.org/publicdomain/zero/1.0/
https://sourceforge.net/projects/koma-script/
https://www.latex-project.org/
https://github.com/fmarotta/kaobook/
https://github.com/fmarotta/kaobook

Abstract

This Ph.D. proposes two main contributions for the safe and efficient collaborative manufacturing on modern

industrial environments. On the one hand, a novel d-APF controller is proposed to avoid simultaneously

singularities and collisions while operating in a shared environment. This contribution leans on the second

novelty proposed in this Ph.D., a decoupled kinematic model for non-spherical wrist cobot. Without the last

contribution or any similar singularity characterization, the d-APF controller cannot be implemented due to

the lack of a set of characterized singular configurations.

With the aim of explaining the controller, the initial chapters of this document explain the theoretical

fundamentals to implement the novel kinematic model, the reference controller and the proposed one. The

main advantage of the decoupled kinematic model proposed relies in the wrist spherification technique to

obtain a quasi-spherical wrist, which is a non-spherical wrist that kinematically behaves as if it was spherical.

Based on this new kinematic model, a set of closed solutions for the inverse kinematics and the singularities

are obtained. Indeed, the joint dependent singularity characterization obtained is the key to implement the

proposed d-APF controller, enabling the measure of the closeness to the singularity to compute a repulsive

response and a limiting velocity index for each singular joint. In addition to the controller and the kinematic

model, the reference or benchmarking controller is also implemented, the DLS-APF controller. This controller

is not only utilized as a reference controller that integrates the singularity handling throught a DLS kinematic

model, but also sets the basics for the collision avoidance components of the d-APF controller.

Then, the implementation of the model and both controllers is regarded for a UR10e robot and the SUPSI

robot. In the case of the UR10e robot, the manipulator behavior for both controllers has been tested for both,

a combined Gazebo-MoveIt simulated environment and real demonstrator environment. Complementary,

the SUPSI robot has adopted a more supportive role to verify and extend the conclusions obtained from

the first robot experimentation to other non-spherical wrist cobots with similar structure. Therefore, only

simulation behavioral tests have been executed for this robot. This implementation for both robots relies on a

generic software control architecture developed in this Ph.D. that creates a RTT Controller Manager and a

hardware interface bridge to integrate ROS Control capabilities into Orocos components. On top of that, a

specific RTT ROS Controller is implemented for each robot and each studied controller (the DLS-APF and the

d-APF ones), achieving a hardware agnostic real time capable ROS controller.

Subsequently, several tests on the implemented controller have been implemented to test the real time and

collaborative application suitability of the proposal. The results shows an improvement of a rough 17% in the

computational time to compute a singularity free collision avoidance response with respect to the reference

controller. Moreover, the real time encapsulation of the ROS Control capabilities allows sending commands

to the robot at frequency rates above 500Hz, enabling the response of the robot to obstacles in very short

times. It means that, depending on the application requirements, the determinism of a safe response can be

assured favouring the real time capabilities of the robotic control system. Finally, some trajectory execution

tests have been executed with and without obstacles, ending with positive results where a reduction of about

the 40% of the required execution time have been appreciated compared to a fully manually developed

strategy. Therefore, the proposed approach after a thoughtfull analysis has been determined as suitable

to improve current manufacturing efficiency on collaborative scenarios (roughly 11% of reduction in time)

without disregarding the safety aspects due to the simultaneous collision and singularity avoidance that

allows evading collisions in a smoother manner.

Resumen

El presente trabajo de tesis propone dos contribuciones principales para la fabricación colaborativa segura y

eficiente en entornos industriales modernos. Por un lado, se propone un novedoso controlador para evitar

simultáneamente singularidades y colisiones mientras se opera en un entorno compartido. Esta contribución

se apoya en la segunda novedad propuesta, un modelo cinemático desacoplado para robots colaborativos

de muñeca no esférica. Sin esta última contribución o una caracterización similar de las singularidades del

manipulador, el controlador d-APF propuesto no puede implementarse debido a la falta de un conjunto

cerrado de configuraciones singulares caracterizadas.

Con el objetivo de explicar el controlador, en los capítulos iniciales de este documento se explican los

fundamentos teóricos para implementar el novedoso modelo cinemático, el controlador de referencia y el

propuesto. La principal ventaja del nuevo planteamiento para el modelo cinemático desacoplado radica

en la técnica de la esferificación de muñeca para obtener una muñeca quasi-esférica. O lo que es lo mismo,

una muñeca no esférica que cinemáticamente se comporta como si lo fuera. A partir de este nuevo modelo

cinemático, se obtiene un conjunto de soluciones cerradas para la cinemática inversa y las singularidades.

De hecho, la caracterización de la singularidad dependiente de la articulación obtenida es la clave para

implementar el controlador d-APF propuesto, permitiendo la medida de la cercanía a la singularidad

para calcular una respuesta repulsiva y un índice de velocidad límite para cada articulación. Además del

controlador y el modelo cinemático, también se ha detallado el controlador de referencia o controlador

DLS-APF. Este controlador no sólo se utiliza como referencia sino que integra el manejo de la singularidad

a través del modelo cinemático DLS y también establece las bases para los componentes de evasión de

colisiones del controlador propuesto. Para validar la solución propuesta se considera la implementación del

modelo y ambos controladores para un robot UR10e y el robot SUPSI. En el caso del robot UR10e, se ha

evaluado el comportamiento del manipulador para ambos controladores tanto en un entorno combinado

de Gazebo y MoveIt en simulacion, como en un demostrador dentro de un entorno controlado real. Para

apoyar y extender los resultados obtenidos en el anterior robot a otros robots de estructuras de muñeca no

esférica semejantes, se han probado tan sólo en simulación ambos controladores para el robot SUPSI. Esta

implementación en ambos robots se basa en una arquitectura de control de software genérica desarrollada

en esta tesis doctoral que crea un RTT Controller Manager y un hardware interface bridge para integrar

las capacidades de ROS Control en los componentes de Orocos. Además de eso, un RTT ROS Controller

específico es implementado para cada robot y caso de estudio (los controladores DLS-APF - Damped Least

Square y Artificial Potential Field - y d-APF - dual Artificial Potential Field).

Posteriormente, para comprobar la idoneidad de la propuesta en tiempo real y en aplicaciones colaborativas

se han realizado ensayos en simulación y en entorno real. Los resultados muestran una mejora aproximada del

17% en el tiempo computacional para calcular una respuesta de evasión de colisiones libre de singularidades,

con respecto al controlador de referencia. Además, la encapsulación de las capacidades de ROS Control en

tiempo real permite enviar comandos con frecuencias superiores a los 500Hz, posibilitando la respuesta

a los obstáculos en periodos cortos de tiempo. Esto quiere decir que, dependiendo de los requisitos de la

aplicación, se puede garantizar el determinismo y capacidades de tiempo real del sistema de control del robot.

Finalmente, se han efectuado algunas pruebas de ejecución de trayectorias con y sin obstáculos, finalizando

con resultados positivos donde se han apreciado hasta un 40% de reducción en los tiempos requeridos para

ejecutar de forma semi-automatizada frente al proceso de fabricación totalmente manual. Asímismo, en

comparación con otros controladores para la gestión de singularidades y obstáculos, la mejora en eficiencia

se corresponde con un 11% de ahorro en tiempos para ejecutar el proceso de fabricación gracias al control

propuesto en la presente tesis doctoral. Esto es indicativo de que se consigue mantener la seguridad del

operario en todo momento, alcanzando un proceso más fluido de fabricación debido a la evasión simultánea

de colisiones y singularidades.

Acknowledgement

I would like to give a big shout-out to everyone that had helped me overcomming all the difficulties found

during the Ph.D. bringing me their support. Firstly, I would like to thank my family (specially to my dad

Miguel, my mum Isabel, and older brother Jorge) and loved ones (in special my girlfriend Ana) for their daily

support and love, which had helped me keeping motivated everytime during these three years and a half of

Ph.D. thesis.

I cannot forget also to thank Ikerlan S. Coop for the financial support given to develop my Ph.D. under their

guidance. Specially, I would like to thank Gorka Sorrosal, my supervisor from there who has suffered me the

most. Luckily, I have learned lot of things from him and I consider him not only as a mentor but a friend, too.

From Ikerlan too, I would like to thank Karlos Calleja, my back up supervisor, whose had also helped in my

apprenticeship. For me, it also has been a real pleasure to have the chance of working alongside and under

the guidance of Itziar Cabanes, my supervisor from the UPV/EHU (Euskal Herriko Unibersitatea) whom I

also like to thank all her efforts, the technical guidance and emotional support given. I truly believe that

without the guidance of them, the results of this research would have been different.

In addition, I really appreciate the welcome received by the SUPSI and their people during my Ph.D. research

stay. In this period, not only good results from the research are obtained, but I also made a lot of friends. I

would like to give a special shout-out to Alessio Mosca, my personal mentor and friend there, whom without

his help, this work could not be possible.

Lastly, I cannot forget either my closest friends from Álava/Araba and La Rioja who had suffered my many

complains and my very worst down in the dumps moments. In special, I really appreciate the help and

emotional support of Ignacio Trojaola who is not only a very good friend, but a good mentor in the Ph.D. and

life too.

Contents

Abstract v

Acknowledgement ix

Contents xi

Motivation, State of the Art, Hypothesis and Methodology 1

1 Introduction 3

1.1 Motivation . 4

1.2 Thesis structure . 5

2 State of the Art and Objectives 7

2.1 State of the Art . 7

2.1.1 Introduction . 7

2.1.2 Challenges of current collaborative scenarios . 9

2.1.3 Environment recognition and segmentation . 12

2.1.4 Advanced control algorithms to avoid collisions . 14

2.1.5 Non-spherical wrist robots current limitations on control algorithms 16

2.1.6 Conclusion . 19

2.2 Hypothesis . 20

2.3 Objectives . 21

3 Research Challenges, Methods and Equipments 23

3.1 Challenges of the Research . 23

3.2 Research Method Proposal . 24

3.3 Data Collection and Analysis . 25

3.4 Materials and Equipment . 25

3.4.1 Validation Environments . 26

3.4.2 Simulation Environments . 27

Kinematic Behavior of Non-Spherical Wrist Robots 29

4 Non-Spherical Wrist Robots Decoupled Modeling 31

4.1 Model Fundamentals . 32

4.2 Forward Kinematics . 35

4.3 Inverse Kinematics . 36

4.4 Differential velocity limitations . 38

4.4.1 Velocity behavior and implications . 39

4.4.2 Singularity general study . 40

4.5 Conclusion to Chapter 4 . 41

Controller Design and Implementation 43

5 Obstacle and Singularity Handling Reference Controller 45

5.1 Design Basics . 45

5.1.1 Requirements . 46

5.1.2 Control Architecture . 47

5.2 APF Based Obstacle Avoidance Controller . 48

5.2.1 Advanced Scene Segmentation . 48

5.2.2 Distance to the Obstacle Computation . 50

5.2.3 Collision Risk Indexes Computation . 53

5.2.4 Repulsive Component Computation . 54

5.2.5 Damped Least-Square (DLS) Kinematic Model . 55

5.2.6 Dynamics Handling: Ruckig . 56

5.3 Conclusions to Chapter 5 . 57

6 Dual Artificial Potential Field (d-APF) Based Controller 59

6.1 Design Basics . 59

6.1.1 Requirements . 60

6.1.2 Control Architecture . 60

6.2 APF Based Obstacle Avoidance Component . 61

6.2.1 Decoupled Kinematic Model . 62

6.2.2 Dynamics Handling: Ruckig . 63

6.3 APF Based Singularity Avoidance Component . 63

6.3.1 Singularity Distance Computation . 64

6.3.2 Singularity Proximity Risk Index Computation . 66

6.3.3 Singularity Repulsive Component Computation . 67

6.4 Conclusions to Chapter 6 . 69

7 Controllers Implementation 71

7.1 Controllers Software Architecture . 71

7.1.1 Real time Management: Hardware Interface/Orocos encapsulation 72

7.1.2 ROS network data structure . 78

7.2 UR10e particularization . 80

7.2.1 Kinematic behavioral study . 80

7.2.1.1 Forward and Inverse Kinematics . 82

7.2.1.1.1 Forward Kinematics . 82

7.2.1.1.2 Inverse Kinematics . 83

7.2.1.2 Singularity Study and characterization . 85

7.2.2 Hardware Interface and RTT ROS controller . 87

7.2.3 Vision algorithm . 89

7.3 SUPSI robot particularization . 93

7.3.1 Kinematic behavioral study . 94

7.3.1.1 Forward and Inverse Kinematics . 94

7.3.1.1.1 Forward kinematics . 94

7.3.1.1.2 Inverse kinematics . 95

7.3.1.2 Singularity Study and characterization . 95

7.3.2 Hardware Interface and RTT ROS controller . 97

7.3.3 Vision algorithm . 98

7.4 Conclusions to Chapter 7 . 99

Tests, Results and Conclusion 101

8 Performance Tests and Results 103

8.1 Kinematic behavior implications . 103

8.2 RTT ROS Controllers performance tests in simulation . 107

8.3 Real time suitability tests . 115

8.4 Holding position performance . 116

8.5 Trajectory tracking performance . 119

8.5.1 Without repulsion . 119

8.5.2 During obstacles repulsion . 122

8.6 Conclusions to Chapter 8 . 124

9 Conclusion 127

9.1 General Conclusion . 127

9.2 Research Outcomes . 130

9.3 Future Work . 130

Appendix 133

Bibliography 135

Notation 145

Glossary 149

List of Figures

2.1 Different integration levels and challenges of industrial collaborative scenarios. 10

2.2 Architecture model for human-robot collaboration by Malik et al. [61]. 11

2.3 Classification of the environment segmentation techniques. 12

2.4 Example of a colour and depth combined segmentation [66]. 13

2.5 Groups and techniques to handle singularities while avoiding collisions for non-spherical wrist

robots. 16

3.1 Ikerlan laboratory (Digiliab): collaborative assembly cell. 26

3.2 SUPSI laboratory: collaborative assembly cell. 27

3.3 Ikerlan laboratory (Digilab) virtualization/Digital Twin: MoveIt RViz visualization (left-hand

side) and Gazebo simulator visualization (right-hand side). 27

3.4 SUPSI laboratory virtualization/Digital Twin: MoveIt RViz visualization (left-hand side) and

Gazebo simulator visualization (right-hand side). 27

4.1 Spherical (left-hand side) and non-spherical (right-hand side) wrist industrial manipulators

examples (combined and modified from sources [119, 130]) . 32

4.2 Simplified position and orientation transformation schema between the decoupling point and the

end effector for the non-spherical wrist decoupled kinematic model 34

4.3 Transformed model for kinematic decoupling for a generic 6 or 7 DoF cobots. 37

5.1 Overview of the control diagram for the reference DLS-APF controller for collision avoidance and

singularity handling. 47

5.2 Detail on the Vision Processing control component for the DLS-APF controller. 49

5.3 Example of an advanced scene segmentation of the robot environment 49

5.4 Representation of the depth space. 50

5.5 Example of Control Points distribution . 51

5.6 Depth space distance evaluation by pixel corner projection line. 52

5.7 Depth space distance evaluation by pixel frustum projection. 52

5.8 DLS-APF Controller: collision risk index computation blocks. 54

5.9 Sample profile of the repulsive vector magnitude function. 55

5.10 DLS-APF Controller: repulsive vector computation blocks. 55

5.11 Final control loop of the reference controller. 57

6.1 Overview of the control loop of the d-APF controller . 60

6.2 Singularity proximity risk indexes control loop . 66

6.3 Sample profile of the singularity risk index. 67

6.4 Singularity repulsive component of the control loop . 68

6.5 Singularity vector computation visualization . 68

6.6 Overview of the detailed control loop of the d-APF controller 70

7.1 General diagram of the tools for implementing complex real time control loops in ROS Control. 72

7.2 Steps of the ROS Control control loop [134]. 73

7.3 Class diagram of the real-time controller manager. 74

7.4 Orocos component lifecycle state machine. 75

7.5 Generic ROS Controller encapsulation on Orocos components. 75

7.6 RTT Robot Controller initialization routine. 77

7.7 Real time encapsulation of a generic ROS control controller into Orocos components. 77

7.8 ROS Master data flow. 79

7.9 Software interfaces and internal structure of the designed controller. 79

7.10 Kinematic model of the UR10e vendors package. 81

7.11 Decoupled kinematic model of the UR10e robot. 81

7.12 Representation of the zeros for the arm singularities in the UR10e robot. 86

7.13 Representation of the zeros for the wrist singularities in the UR10e robot. 86

7.14 ROS Control class diagram for the UR10e robot developed hardware interface. 87

7.15 Block Diagram of the RTT ROS Control integration. 88

7.16 Software packages that contain the ROS controllers and their dependencies for the DLS-APF

controller. 89

7.17 Software packages that contain the ROS controllers and their dependencies for the d-APF controller. 89

7.18 Example of the first realtime URDF filter. 90

7.19 Flow chart of the final advanced scene segmentation algorithm. 91

7.20 Final scene segmentation. 91

7.21 ROS Control encapsulation on Orocos for the UR10e. 92

7.22 Kinematic model of the SUPSI robot. 93

7.23 Decoupled kinematic model of the SUPSI robot. 94

7.24 Representation of the zeros for the arm singularities in the SUPSI robot. 96

7.25 Representation of the zeros for the wrist singularities in the SUPSI robot. 96

7.26 ROS Control class diagram for the SUPSI robot developed hardware interface. 97

7.27 Green filter for the SUPSI robot vision algorithm in simulation. 99

8.1 Matrix equivalence theoretical explanation . 104

8.2 Cobot workcell layout with the numbered core process steps. 107

8.3 Battery cell sorting after battery pack disassembly process. 107

8.4 Collision avoidance during RTT ROS controllers simulated test with the SUPSI robot. 107

8.5 Results of the task execution with and without obstacle in the RTT ROS controllers simulated test. 110

8.6 Results of the timing performance of the Component and the Controller in the RTT ROS controllers

simulated test for the SUPSI robot (static obs.). 111

8.7 Results of the timing performance of the Component and the Controller in the RTT ROS controllers

simulated test for the UR10e robot (static obs.). 112

8.8 Results of the timing performance of the Component and the Controller in the RTT ROS controllers

simulated test for the SUPSI robot (dynamic obs.). 113

8.9 Results of the timing performance of the Component and the Controller in the RTT ROS controllers

simulated test for the UR10e robot (dynamic obs.). 114

8.10 Real time suitability tests timing histograms. 116

8.11 Real time suitability tests timing boxplots. 116

8.12 Sequence of a non pivoting static collision avoidance (d-APF Controller). 117

8.13 Collision and singularity avoidance test for holding a reference. 117

8.14 Virtualization environment of RViz during the collision avoidance. 118

8.15 Trajectory tracking performance without repulsion. 119

8.16 Error on position tracking at a 30% speed of the manipulator. 120

8.17 Error on position tracking at a 100% speed of the manipulator. 121

8.18 Sequence of a pivoting dyanmic collision avoidance (d-APF Controller). 123

8.19 Collision and singularity avoidance test during trajectory tracking. 123

List of Tables

7.1 Parameters for the kinematic model of the UR10e vendors package. 81

7.2 Parameters for the proposed decoupled FK model of UR10e . 82

7.3 Parameters for the kinematic model of the SUPSI robot ROS package. 94

7.4 Parameters for the proposed decoupled FK model for the SUPSI robot ROS package 95

7.5 Required struct to communicate with the KEBA Controller. 98

8.1 Statistics and singularity matching for the case 𝑓 (𝑞3). 105

8.2 Statistics and singularity matching for the case 𝑔(𝑞5). 105

8.3 Statistics and singularity matching for the case ℎ(𝑞2 , 𝑞3). 105

8.4 Results summary of the RTT ROS Controllers simulated performance tests. 108

8.5 Results summary of the RTT ROS Controllers real time suitability tests. 115

Motivation, State of the Art,

Hypothesis and Methodology

Introduction 1

1.1 Motivation 4

1.2 Thesis structure 5

The current industrial manufacturing environments still present several

production tasks and operations that are not automated yet, leading to

non-ergonomic manufacturing environments without high demanding

quality standards and productivity. On the one hand, some of those

tasks are really expensive to automate on a single technological upgrade.

On the other hand, other types of processes require a very specific

knowledge and expertise of their operations to fully automate the tasks

with the desired degree of automation (only achievable by the most

experienced operators with the required skills). These two reasons make

this technological upgrade unaffordable in several senses, impeding the

development of fully autonomous manufacturing systems (also known

as dark or lights-out factories).

In this panorama, collaborative robots or cobots have emerged to face

the limitations of the current automation and autonomous systems by

allowing shared workspaces and tasks with human operators. Thus,

operator safety became the first issue to guarantee when a human worker

shared the workspace with a robotic manipulator in a secure fence-free

environment. In these scenarios where humans and cobots share not

only the workspace but also the working task or operation, also known

as industrial collaborative scenarios, every aspect of the manufacturing

application matters and should be regarded. For instance, if the cobot

carries a heavy or sharp load, the load could hurt the operator in case

of a collision. Therefore, to avoid non-desired contact situations that

might compromise the safety of the operator, not only the robot should

be intrinsically safe (collaborative), but the application itself too.

Moreover, non-desired collisions lead to continuous safety stops during

collaborative manufacturing processes. This safety behavior, which is

indeed required, waste several manufacturing time due to the continuous

rearm of the robot arm for the operator. Therefore, avoiding non-desired

contacts, or collisions, can also increase the performance of the manu-

facturing processes by dodging non-required continuous safety stops,

making collision avoidance in collaborative scenarios a widely studied

topic. However, it is relevant to remember that to achieve a control tech-

nique that allows the real time response to a human operator, the control

algorithms selected should avoid heavy demanding computational work-

loads with continuous re-planning of the robot trajectory to seek for a

new safe (collision-free) path. Among these dynamic real time response

control algorithms, the Artificial Potential Field (APF) based controller

arises as a suitable tool to implement safe and efficient collaborative

manufacturing processes.

Nevertheless, these dynamic response control algorithms present the

major drawback of disregarding the configurations where the robot

kinematics is ill-conditioned while avoiding the collision. So whenever

an operator is being avoided, there is a chance of activating the safety

emergency systems of the robot due to excessive torque control signals.

In this situation, the robot is stopped, and the risks for the operator

4 1 Introduction

might increase. Similarly, the efficiency of the manufacturing process is

decreased due to the required rearm after the safety stop.

Therefore, this first chapter of this Ph.D. thesis in collaborative robotics

pretends to clarify the challenges to beat and potential improvements

for introducing cobots in current manually executed manufacturing

processes. Moreover, it is also explained the structure of the thesis into

which the content of each of the chapters has been divided, as well as the

subject matter of each of the chapters and the topics they will address.

1.1 Motivation

In the introduction of this chapter, cobots are presented as a suitable

tool to address some of the limitations of current manual manufacturing

tasks and operations [1]. On the one hand, thanks to the semi-automated

processes approach, adequate successive technological partial upgrades

can be executed instead of fully automating an industrial manufacturing

process at once. On the other hand, their integration allows the automation

of repetitive operations to keep manufacturing quality standards while

the operator brings flexibility through its experience and cognitive

processes [2, 3]. However, the aforementioned advantages of shared

manufacturing environments must deal with some areas for improvement

to properly implement these scenarios at industrial processes. These

disadvantages are linked to two main aspects: the safety of the operator

and adequate time management [4].

Therefore, whenever a human worker is integrated into an automated

manufacturing system surrounded by robotic systems without any pro-

tection fence, its safety must be guaranteed [5]. This aspect is partially

achieved through industrial collaborative robots, which are indeed in-

trinsically safe designed robotic manipulators [6]. Nevertheless, just

employing collaborative robots is not enough to guarantee operators’

safety. Other aspects should be regarded, such as which tool is installed

in the manipulator or which load it should operate with [7]. I.e., shearing

or dangerous tools or loads (e.g. a welding actuator) require additional

safety measures to make the whole application collaborative [8]. Other-

wise, they cannot be considered collaborative applications and would

require the installation of safety fences or any other similar technology

to avoid the risks of sharing spaces [9, 10].

Moreover, regarding adequate time management, the first issue that

comes to mind consists of the limited working speeds and forces of

cobots [11]. Thus, whenever a collaborative application is designed to be

coordinated with other autonomous manufacturing processes, it should

be borne in mind that the cycle time of the collaborative subprocesses

will be higher [12]. Additionally, the primary safety function of cobots

to ensure the safety stops, which generates elevated time wasted due to

safety reasons. So the safety bottlenecks should be regarded too [13, 14].

Likewise, robot movements and the operator itinerary must be scheduled

collaboratively to avoid excessive production bottlenecks. Thus proper

management of the task sequence is required. However, the randomness

in human actions makes it hard to model operator behavior into control

loops or automation systems [15–17].

1.2 Thesis structure 5

In this manner, achieving a plausible industrial collaborative scenario

where the production is safe while operations are adequately distributed

to avoid excessive time wasted due to safety stops requires the combina-

tion of collaborative robots with advanced automation or control systems.

Therefore, this work aims to develop an advanced control system that

allows safe and collaborative manufacturing without disregarding the

timing aspects that could generate relevant production bottlenecks. Thus,

real industrial collaborative scenarios can be implemented on existing

manufacturing shop floors that could synchronize themselves with the

autonomous manufacturing tasks of a complete industrial production

process.

1.2 Thesis structure

The current Ph.D. thesis is organized into nine different chapters. Each

of these chapter addresses the following topics:

Chapter 1, as seen along this chapter, is dedicated to display the need for

the Ph.D., exposing a preview on the State of the Art and the Motivation

of the doctorate. It also addressed briefly the content of each chapter and

what can be expected to be found inside each chapter.

Chapter 2 dives deeper into the state of current industrial collaborative

scenario through a detailed State of the Art on the topic. This study leads

then to present the hypothesis and objectives that are addressed in the

research.

Chapter 3 describes the main aspects about the selected research method-

ology, data collection, and analysis techniques that better suits the objec-

tive of the thesis. Moreover, it is also presented the different scenarios

and validation environments for both, simulated and real laboratories

tests.

Chapter 4 begins with a little preamble of how and why classic kinematic

models of non-spherical wrist cobots are not optimal for modern collision

avoidance reactive algorithms. In order to address the presented limita-

tions, a new approach to model non-spherical wrist cobots is described

in this chapter. The proposed kinematic model allows the computation

of a simplified forward and inverse kinematics for this type of robots for

both position and velocity. Therefore, a singularity theoretical study and

the implications of the usage of the proposed model is also included in

this chapter.

Chapter 5 describes the reference controller and the modification done

with respect to original version of the control algorithm from [18]. This

reference controller introduces the Damped Least Square (DLS) kineamtic

model to handle the singularity while avoiding obstacles, and a new

library to handle more efficiently the dynamics of the robot. These two

features complements the behavior of the obstacle avoidance based on

an Artificial Potential Field (APF) based controller.

Chapter 6 deals with the design of the novel controller for simultaneous

collision and singularity avoidance, the dual Artificial Potential Field

(d-APF) controller proposed in this Ph.D. The aspects detailed in this

chapter are related to the specific design of the controller to apply the

6 1 Introduction

characterized closed set of singularities found by the application of the

methodology displayed in Chapter 4.

Chapter 7 exposes the considerations and key points of the implementa-

tion in both controllers, from Chapter 5 and Chapter 6, for a UR10e robot

and the available deliberative manipulator at SUPSI (Scuola Universitaria

Professionale della Svizzera Italiana, where took place the research stay

period). The implementation aspects displayed in this chapter are related

to a simulation environment based on MoveIt and Gazebo for both robots,

and also to a real robot implementation in the case of the UR10e.

Chapter 8 displays the different results for several tests executed in

simulation and for the real robots. These tests address different aspects

as timing performance of the controller, required time to compute a

new singularity and collision free control signal, and the performance

of tracking a trajectory for regular scenarios and the ones where the

collision is avoided. All the results are presented for both robot models.

A conclusion on the obtained results is also presented in this chapter.

Chapter 9 ends this document showing the conclussion obtained of the

research as well as the developed research outcomes. Finally, it also

indicates possible lines for future research on the field.

State of the Art and Objectives 2

2.1 State of the Art 7

2.1.1 Introduction 7

2.1.2 Challenges of current

collaborative scenarios . . 9

2.1.3 Environment recognition

and segmentation 12

2.1.4 Advanced control algo-

rithms to avoid collisions 14

2.1.5 Non-spherical wrist

robots current limitations

on control algorithms . . . 16

2.1.6 Conclusion 19

2.2 Hypothesis 20

2.3 Objectives 21

This chapter aims to set the basics for the research objectives and goals.

To do so, it starts with a detailed State of the Art where the problematic

of non-spherical wrist cobots when working with reactive collision

avoidance strategies for industrial collaborative scenarios is shown. Then

the hypothesis to improve the current State of the Art through the

developments of this Ph.D. is presented, leading to specific objectives to

address in order to accomplish the proposed goals.

2.1 State of the Art

2.1.1 Introduction

Current industrial manufacturing environments are characterized for an

increasing demand on flexible and autonomous processes that can adapt

to both unexpected or different manufacturing scenarios, and failures

in the machines to keep producing [1]. On the one hand, autonomous

manufacturing environments have shown a great performance and

improvement in manufacturing quality thanks to automatically adapt to

manufacturing standards (i.e. Iterative Learning Controllers - ILC [19]),

or adapt to failures to keep production unstopped (i.e. Fault Tolerant

Controllers - FTC [20, 21]). On the contrary, achieving the desired level

of flexibility to adapt the manufacturing production cycle to unexpected

situations is still limited [22].

To overcome these limitations, modern manufacturing environment

requires of the combined efforts of human operators with robots to keep

up with the flexibility without disregarding manufacturing quality [23].

However, due to the dangers and risks of traditional robot manipulators

this type of relation is hardly achievable because the safety cannot be

guaranteed for the operators. This panorama, leads to a novel type of

robot manipulators that are intrinsically safe designed to allow the human

operator share spaces and collaborate with robots, the collaborative robots

or cobots [24].

Moreover, the new type of robotic manipulators comes along with a new

industrial manufacturing paradigm, the semi-automation of processes

[25]. The semi-automation of processes consists of combining human

skills and robotic capabilities in manufacturing by partially automating

tasks of a collaborative work cell, so the human will develop some

operations and the remaining will be done by the robot [2]. This working

philosophy also benefits current manufacturing industrial environments

where some tasks cannot be yet fully automated in a single step due to

economic or technical reasons [26]. In this manner, instead of automating

directly an industrial task once, their are planned successive technical

upgrades until the desired level of automation is achieved [27]. Thus, not

only the technical complexity is reduced on each automation gap covered

but also the required financial support to do them are reduced [1].

8 2 State of the Art and Objectives

Despite the benefits the semi-automation and cobots bring to industrial

manufacturing environment, there are still aspects to be regarded to

achieved the desired smooth flexible industrial manufacturing [2]. Firstly,

their intrinsically safe design generates production bottlenecks due to

excessive non-critical safety stops due to unexpected collisions between

human and operators [28]. In addition, a collaborative application cannot

be considered safe if any component involves any risk for the human

operator. In other words, if the cobot carries heavy, sharp or pointy objects

that might endanger the safety of the operator, the application cannot

be considered a collaborative one, so additional safety measures must

be installed [7, 9]. Lastly, it is also relevant to bear in mind how the task

are distributed among the human operator and the robot in order not to

disturb between each other and create additional risky situations [29, 30].

An optimal distribution between human and robots of the operations

can also increase the productivity avoiding collisions through a right

scheduling technique [26]. The methods proposed in the literature to

face this issues are further addressed in Subsection 2.1.2, where five

challenges are proposed by this work in [31] to enable real industrial

collaborative scenarios.

From all the different types of approaches and challenges to enable

the industrial collaborative scenarios of [31], the collision avoidance

techniques respond to the necessity of guaranteeing operator safety

when they can move freely on a shared fence-free environment [32].

These techniques do not only implies increasing the safety level for

operators due to the avoidance of potential risky situations, but they can

also improve manufacturing efficiency on these scenarios [33]. Because

of this dual benefit from avoiding collision, it has become one of the most

commonly explored topic of HRC [18]. However, there are two main

aspects to bear in mind while developing advanced control algorithms:

having a reliable environment modelling and utilizing a light weighted

control algorithm.

Having a reliable environment modelling is required to know information

about the robot surroundings in order to interact properly with each of

the detected elements [34]. In collaborative robotics, these interactions are

not just limited to picking and placing objects or recognizing their relative

positioning, recognizing the human position or intention is also required

to allow a safe human-robot interaction [35, 36]. Therefore, 3D recognition

systems or visions systems gain relevance in this environments to allow

the safe interaction between the robot and each element of its surrounding.

From among them, it is remarkable that the ones that are the most

commonly used are the vision based algorihtms due to the quantity and

great versatility of information that they give [28].

In this way, the vision algorithms should work together with advanced

light weighted control algorithms for allowing safe human-robot shared

manufacturing spaces. Some of the most commonly used control al-

gorithms such as the Artificial Potential Field (APF) based controllers

strongly relies in the kinematic model of the robot. However, some

of the common commercial collaborative manipulators present a non-

spherical wrist structure [37–40]. This type of robot structure makes more

complicated to find optimal solutions to the Inverse Kinematic (IK) of

these robotics manipulators, impeding the computation of a closed set

of solutions for the IK nor the singular configurations. Therefore, the

2.1 State of the Art 9

performance of some types of advanced control algorithms for robotics

can be reduced due to these new robotic structures that brings with some

types of collaborative robots [41].

The following subsections will cover in detail each of the mentioned

aspects during the introduction. Subsection 2.1.2 addresses the current

challenges in industrial collaborative scenarios to allow the safe human

interaction at all levels of a manufacturing environment. In addition,

Subsection 2.1.3 exposes the different vision based techniques to recognize

and segment the human in these shared environments from different

types of pictures formats. Then, several control algorithms these vision

based techniques can be coordinated to are going to be reviewed in

Subsection 2.1.4. In addition, this section will cover up also the most

commonly techniques to avoid colliding with the operator. Then, the

main limitations of the kinematics model due to a non-spherical wrist

robot structure are exposed in Subsection 2.1.5. Lastly, a brief conclussion

is included that reviews the main points of the exposed information in

this State of the Art.

2.1.2 Challenges of current collaborative scenarios

As stated in the introduction, the collaborative robotics was born to face

the production flexibility limitations of traditional manufacturing plants

[22]. The reason behind the success of the aforementioned improvement

for autonomous systems corresponds to the fact that they are generally

applied on already working industrial automations [20]. However, there

are still several examples of manufacturing processes that cannot be fully

automated [26], so no autonomy can be applied. This processes generally

coincide with intricate manual manufacturing processes where their fully

automation is complex due to technical or economic reasons [2, 25].

Thanks to cobots some fully manual non-automated processes can be

partially automated. The usage of cobots on industrial manufacturing

processes combines the advantages of both: automated and hand-made

processes. On the one hand, as the cobot is an intrinsically safe designed

robot that allows sharing spaces with human workers, novel techniques

to achieve an autonomous manufacturing can be applied without risking

human safety. On the other hand, the fact that an operator is continuously

helped by a robot assistant (as a partner), allows the desired level

of flexibility through the added value of human cognitive processes to

manufacturing cycles [1, 42, 43]. In this manner, the proposed combination

of autonomous and manually-driven operations achieves the desired

level of flexibility while maintaining the automation implementation and

operation costs under the desired profitable thresholds [44].

The cornerstone to allow these shared manufacturing environment (also

known as industrial collaborative scenarios) between workers and robots

on current industrial plants is the intrinsically safe design of industrial

cobots. Nevertheless as shown in Figure 2.1, the mechano-electrical design

of the robot from the first level of the pyramid is just the first step to

achieve the industrial collaborative scenarios on industrial processes.

The industrial collaborative scenarios also demands for safety during

any type of shared operation, safe work cell task schedulling, and safe

coordination with other autonomous or automated industrial systems and

10 2 State of the Art and Objectives

1: A more detailed explanation about

this levels and different application ex-

amples can be found in the first formal

contribution of this Ph.D. thesis [31].

machines. In this manner, the enabling challenges to achieve the industrial

collaborative scenarios can be divided into four levels of achievement

according to their closeness to the robot design and their integration

with modern industrial processes (Task Design Level, Operation Level,

Work cell Level, and Industrial Process Level, from Figure 2.1)
1
.

The top and bottom levels, Task Design Level and the Industrial Process

Level, correspond to aspects related to safe design of the cobot and its

coordination with other components or machines of a modern industrial

manufacturing plant, respectively. While the safe design of cobots and

the coordination with other parts of the industrial processes through

different communication protocols are quite well achieved, there are a

number of challenges in the middle levels that need to be solved for

the optimal implementation of these scenarios on current industrial

manufacturing plants [45–47].

Figure 2.1: Different integration levels and challenges of industrial collaborative scenarios.

These challenges which address five different aspects, also depicted

on Figure 2.1, correspond to the Physical contact management [48–50],

the Object handling techniques [51–54], the Environment Avoidance

[18, 35, 55], the Task scheduling and management [29, 56, 57], and the

Task scheduling optimization [30, 58]. They have been born to deal

with the necessity of guaranteeing the whole application safety aspects

at every moment to allow real fence-free shared workspaces [31]. The

last referenced work, the first contribution of this work, responds to

2.1 State of the Art 11

the non existing guidelines of how to implement safety on every level

of a collaborative scenario, easing the integration of future collabora-

tive working cells. In other words, allowing a real fence-free industrial

environment between robots and workers, aspects as "which tool is

the robot carrying?", "is the tool sharp?", "does the tool present a hot

end?", or "does the load the robot is carrying is edgy or heavy?" should

be also regarded. In fact, if all these elements cannot guarantee a safe

application, additionally safety measures are required, reducing the

movement freedom and flexibility of industrial shared scenarios [7, 9].

This could lead from fully developing collaborative applications (directly

bounded to the Human-Robot Collaboration, HRC [59]) for industrial

collaborative scenarios to develop partially fenced working areas where

Human-Robot Cooperative (HRCp) [2], or Human-Robot Coexistence

(HRCx) [60] working modes are required instead [61].

The different levels of collaborations (HRC, HRCp, and HRCx) takes into

account other two dimensions to define a collaborative working team

[61]. As shown in Figure 2.2, there are two additional level regarding

the HRC interaction levels which are referred to the isolation (the robot

working alone) and the synchronization which is somewhere in between

the HRCp and the HRCx. However, the relevant fact is that to describe a

collabotive applications and its implications the HRC safety implications

and the HRC team composition should also beared in mind [45, 61]. In

this manner, the HRC safety implications are bounded to how the robot

interacts directly with the human operator and determines whether it

should stop or reduce its velocity according to the ISO-TS 15066 [2, 5,

62]. In addition it is also relevant for the application how many members

interacts in the collaborative application, since more than one robot or

human is harder to synchronize and manage safely properly. Hence,

an adequate combination of these factors will end up in a suitable

collaborative application that is optimal also in terms of manufacturing

efficiency [26, 61].

Figure 2.2: Architecture model for human-robot collaboration by Malik et al. [61].

To achieve the HRC on industrial shared environments, each of the afore-

mentioned challenges pretends to face one of the relevant dimensions to

enable industrial collaborative scenarios from the physical interaction

with objects and operators, to the optimization of tasks distribution be-

tween human workers and robots to avoid as much as possible bottlenecks

during production [12]. Thus, by addressing the different challenges

12 2 State of the Art and Objectives

in a coordinate manner in current industrial manufacturing environ-

ment from the lower to the upper level a safe and efficient collaborative

manufacturing could be achieved.

2.1.3 Environment recognition and segmentation

Vision algorithms to segment and recognize the elements of the robots

surrounds take on an additional dimension when applied to collaborative

robotics [63]. In this environments, being capable of recognizing human

motions or, even, their intentions is a key factor to avoid collisions between

human and robots to preserve shop floor safety [34]. With the aim to

preserve the operator safety, this vision based algorithms are usually

focused on identifying just dynamic obstacles, considering the static

elements of the pictures as part of the robot scene [64].

In order to do this differentiation between dynamic and static elements

of the scene different type of techniques are employed by several authors

in the literature. Depending on the aim of the segmentation, these

techniques can be divided into three groups as shown in Figure 2.3:

the ones based just in extracting the environment (static components)

[65–67], the techniques to detect movement (dynamic elements) [68–70],

and the techniques to recognize both static and dynamic elements of the

scene [71, 72].

Figure 2.3: Classification of the environment segmentation techniques.

The first group, the techniques for static environment segmentation,

are divided again into three subgroups: the Artificial Intelligence (AI)

based location techniques, the traditional segmentation ones, and the

AI based segmentation. The AI based location techniques serves to

know the location of a particular object, however, the full segmentation

of the scene is not executed [73]. Even though this method is faster

than a full scene segmentation thanks to the usage of AI, the received

information might be not enough for robotics application. To obtain

more information from the vision sensors, there are also the traditional

segmentation techniques where it can be found colour segmentation

approaches [65], contour detection solutions [74], and the combination

of colour and depth images segmentation (see Figure 2.4) [66]. Among

these techniques, the most interesting is the last one since it offers

depth information of a segmented environment. Lastly, there are also

employed tecnhiques based exclusivelly on AI algorithms that after a

proper training, can segment easily the trained object from a picture [67]

or from a video [75]. The main drawbacks of these techniques is that

whenever they are based on colour filter exclusively they does not bring

enough information about the environment. In addition, if the depth

filter is used, the resultant algorihtm is to heavy reaching up to 11s to

perform a full image segmentation when its crowded of elements [66].

2.1 State of the Art 13

Figure 2.4: Example of a colour and depth combined segmentation [66].

Regarding the standalone techniques to detect movement, it has being

identified three categories of techniques to detect movement as displayed

in Figure 2.3: the frame difference method, the optical flow algorithm,

and the background subtraction technique. The frame difference method

relies in generating a temporal buffer of images to analyze the difference

between each frame, in this way, the differences between frames represent

moving obstacles [68]. Consequently, the optical flow algorithm is based

on studying the movement directions of the image or optical flow [76].

Thus, whenever there is an obstacle moving in the camera, the value of

optical flow from those pixels will differ from the rest of the picture [69].

The last technique, the background subtraction, is based in subtraction of

a first picture with moving objects to one with a pregenerated model of

the background, leaving a mask that contains only the moving obstacles

of the picture [70, 77]. The main advantage of the presented algorithms

is their capability to detect movement with a lightweight algorithm form

a picture. However, they present the disadvantages of requiring a good

model of the background or comparison image as well as not giving any

additional information about the positioning of the moving object.

Due to the limitations of the previously explained vision algorithms, it is

required the last group, the techniques for recognizing static and dynamic

elements of the scene. From among these techniques, the single step

algorithms and the three step algorithms can be distinguished. The first

group of algorithms is not very common and they do the location of the

objects while detecting if they are static or dynamic simultaneously in a

single step [71]. On the contrary, the three step algorithms use three steps

to locate the objects, then analyze the movement of the image, and lastly,

combining both results to obtained the segmented static and dynamic

obstacles [72, 75, 78]. These algorithms can employ a combination of

colour and depth segmentation combined with a frame difference [72], or

a Convolutional Neural Network (CNN) based segmentation combined

with an optical flow technique [78], among other solutions [75]. Since

these filters are the ones that give information about positioning of

segmented objects, they seem suitable for standard robot applications.

However, just by segmenting and positioning the static and dynamic

obstacles of a set of images or a video is not enough for collaborative

applications [56]. To enable a real collaborative scenario, is also required

to detect from the static elements of the scene which objects is the robot

allow to interact or grab. Therefore, additional segmentation steps or

algorithms are still required. Moreover, a precise information about

the robot surrounding is required by the control algorithms based on

14 2 State of the Art and Objectives

vision techniques or distance measurements to compute adequate control

responses in time to evade risky situations. For this reason, the following

section will analyze the most commonly employed algorithms that avoids

collisions using information from the closest environment to the robot.

2.1.4 Advanced control algorithms to avoid collisions

As stated in the introduction (Subsection 2.1.2), the collision avoidance

approach is considered one of the most suitable challenges to keep safety

while assuring manufacturing efficiency due to avoid non-required

safety stops. The collision avoidance approaches belong to the challenges

presented in Subsection 2.1.3, more specifically to the Environment

avoidance challenge [31]. It consists of a set of techniques and algorithms

to avoid dynamically the collision on a changeable environment [79].

Nevertheless, managing robot movements is a complicated topic due

to the possible randomness in the movements of the operators [80–82].

Additionally, the performance of the robot tasks can also be affected by

the trust of the human operator in the robot, offering a worst performance

the lower the confidence is [43, 83]. Because of this intricate external

factors that influence directly the performance of the manufacturing

process, the collision avoidance is still a field that requires some efforts

on research [84, 85].

To cope with avoiding collision on shared environments where the

surroundings of the robot are on a continuous evolution, current col-

lision avoidance techniques are mainly based on two types of reactive

techniques: heavy and light computationally algorithms [86]. On the

one hand, the heavy computationally algorithms involve vision based-

techniques to predict human behavior combined with the calculation of

new collision-free trajectories [87]. On the other hand, the light computa-

tional algorithms rely on techniques to directly react to changes in the

surroundings of the robot, mainly composed by different approaches of

Artificial Potential Fields (APFs) [79].

Among the heavy computationally techniques it is worth mentioning

Kalman Filters (KFs) [88] or probabilistic based methods such as the

Hidden Markov Models (HMMs) [35] or the Gaussian Mixture Regression

(GMR) [62], among other techniques to predict human intention [34, 36].

Even though these techniques can predict with sufficient consistentency

the operator intentions to get ahead of the collision, one of their main

issues corresponds to the necessity of several vision sensors to avoid the

occlussion problem [89]. These need of several vision devices to monitor

and model the surroundings of the robot implies heavier algorithms to

process the industrial environment [28]. Moreover, once the intention of

the operator has been predicted, then a collision-free planning technique

is applied to find a new safe path that the robot should track [90]. These

techniques typically involve an Online Trajectory Generator (OTG) to

compute a singularity free trajectory working in the joint space through

polinomial smoothed trajectories [91, 92], or in the task space through the

manipulability optimization [93, 94]. In the end, these techniques present

heavy computational algorithms not just because some re-planning

algorithms are computationally demanding, but also for the continuous

computation of new trajectories for every change detected in the scene or

in the human intention by the vision systems [85].

2.1 State of the Art 15

2: Even though information relative

each specific application can be found in

the given reference, the risk fields are the

ones that employed risk distance mea-

sured following the guidance of ISO-TS

15066; the dynamic fields correspond to

the approaches that also takes into ac-

count the velocity of the obstacles; and,

lastly, evolutionary fields which com-

bines APF methods with genetic algo-

rithms to derive optimal potential func-

tions.

3: Some examples of cobot with speri-

cal wrist are the LBR iiwa [107], the CR

model of FANUC [39], among other mod-

els.

4: The advantage of this simplified Jaco-

bian relies on a J
12

= 0 matrix, easing

determinant computation as block ma-

trices.

J =

[
J
11

0

J
21

J
22

]
5: Some collaborative manipulators

models that lack of spherical wrist are

the URX/URXe from Universal Robots

[37], the Omron Collaborative robot [38],

or the CRXi robot models from FANUC

[39], among other robots

Regarding the light computational algorithms, several approaches of

APF based techniques can be found as the classic standalone obstacle

avoidance [92, 95, 96], the risk fields [97, 98], the dynamic fields [99, 100],

the evolutionary fields [101, 102], or simplifications through minimum

distances fields [89, 103]
2
. Since on an changeable environment the

operator is not static, one of the most commonly employed methods

are the dynamic APFs, which avoid colliding with the human worker

without the need of heavy computational algorithms to predict human

intention [96]. Some examples of these type of dynamic APFs algorithms

are the ones that relies on Dynamic Movement Primitives (DMPs) [99],

those utilizing a tangent vector to the tool velocity combined with a risk

field [100], or the ones using the memory of the lastest positions of the

obstacle to compute a mixed response for that set of last positions [18],

among other solutions. Even though they seem like a suitable option

due to their quicker response to changes in the environment, because of

their direct dependency on the robot jacobian to compute the different

responses and control signals, these algorithms could lead the robot to a

singular region [104].

The main drawback of leading a cobot to any of these configurations is

that the robot will stop due to excessive velocities of torques computed as

control signals [105]. When this occurs, the cobot will trigger its safety stop

mechanisms to avoid injuring the operator while generating a window

of non-productive time during manufacturing. Therefore, not only the

safety of the operator will be compromised but also the manufacturing

efficiency will be reduced [40]. To avoid such negative effects during

manufacturing processes, some approaches proposed the combination

of APF-based controller to avoid collision with a inverse kinematics

generalized model bounded to a potential function to compensate the

misbehavior of the robot when is on a singular region [106]. However,

the potential function can only be computed if the singularities of the

robot are known, otherwise they will require a singularity study [105].

This is possible only for some modern collaborative robots, more specifi-

cally to those who present an spherical wrist
3
. The forward and inverse

kinematics (FK and IK) solutions for these type of industrial collabo-

rative manipulators are far well-known and a singularity analysis for

these robots can be found in [41, 108, 109]. The importance of having an

spherical wrist relies in the capability of decoupling the positioning and

orienting problem of the robot, what leads to a more simple velocity

kinematic model with a simplified Jacobian
4
. This simpler Jacobian is the

enabling key to compute the full set of singular configurations for these

type of cobots, allowing the subsequent application of inverse kinematics

generalized models to manage the null space configurations dynamically

[105, 110]. Nevertheless, some of the latest commercial are non-spherical

wrist cobots instead
5
, so these advantages are not present on the FK and

IK models of those cobots [40, 111]. The following subsection will go

deeper in the analysis of the limitations of non-spherical wrist kinematics

model for control algorithms.

16 2 State of the Art and Objectives

2.1.5 Non-spherical wrist robots current limitations on

control algorithms

To cope with the limitations of APF control algorithms for non-spherical

wrist cobots for handling the singularities while avoiding collisions,

complementary control techniques have emerged [109, 112, 113]. These

techniques to handle singularities and avoiding collision simultaneously

can be divided into two big groups as shown in Figure 2.5: those that relies

on inverse kinematics generalized models to handle the singularities [114,

115], and the ones that tries to somehow simplify the cobots kinematics

to handle computationally the characterization of singularities [116].

Figure 2.5: Groups and techniques to handle singularities while avoiding collisions for non-spherical wrist robots.

The approaches that relies on inverse kinematics generalized models are

those which rely on the Jacobian pseudoinverse (J
†
) to handle the null

space configurations when computing the IK. The general mathematical

description of this type of models is typically similar to the expression

displayed in equation 2.1. In this equation, it can be appreciated how these

inverse kinematic generalized models are composed by, at least, a term

to compute the regular velocity from the task space (J
† ¤x𝑒), and another

one to compute the compensation due to the singular configuration or

other parametrizable objective ((I𝑛 − J
†
J) ¤q

0
) [41, 108, 109].

¤q = J
† ¤x𝑒 + (I𝑛 − J

†
J) ¤q

0
(2.1)

Nevertheless, the general formulation displayed in the equation above

can be modified for more specific approaches such as the Damped

Least Square (DLS)-based controllers [114, 115], the computation of the

Condition Number (CN) to calculate and maximize the distance to

singularity [41, 108], and the maximization of the manipulability (�),

among other solutions that also rely on inverse kinematics generalized

models.

In the case of the controllers that utilize the DLS inverse kinematic model,

the general formulation from equation 2.1 is transformed into the one

of equation 2.2. As displayed in the equation, the difference with the

original inverse kinematic generalized model is the damping coefficient

(�) introduce to compensate the velocities whenever the manipulator

is in its null space. This way, the manipulator avoids having a Jacobian

which is not full rank so the velocities around the singular configurations

of the manipulator are under desired thresholds [108]. However, since

this algorithms are characterized by the successive product of Jacobian

matrices, they increase considerably the demanded computational cost of

2.1 State of the Art 17

the controller. In addition, they neither solve solve the singularity problem

since the singular configuration are shifted from a set of configurations

to a newer set [115, 117]. Therefore, this approaches are not desired to be

applied in collision avoidance reactive algorithms since blockages due to

singularities can occur.

¤q = J
𝑇(JJ𝑇 + �2

I𝑛)−1 ¤x𝑒 (2.2)

The other two approaches, the CN and the manipulability, both are

methods that requires the continuous computation of the Singular Value

Decomposition (SVD) [118]. While the CN is defined as the quotient of the

smallest (𝜎𝑙𝑜𝑤𝑒𝑠𝑡) and the biggest (𝜎ℎ𝑖𝑔ℎ𝑒𝑠𝑡) singular values of the Jacobian

determinant matrix (see equation 2.3) [41, 108], the Manipulability is the

product of each singular value (𝜎𝑖) of the Jacobian matrix (see equation

2.4) [93, 109]. Both strategies computes repeatedly the singular values to

compute a singularity free optimized path. These continuous calculations

are even heavier bearing in mind that the computation should be executed

each cycle to found a new collision free path that maximize either of both

[119]. Moreover, these two techniques present an additional blind spot

due to the possibility of falling into singularities whenever elongated

manipulability ellipsoids has short axis [41]. Therefore, similar to the

DLS based controller case, these techniques does not seems suitable for

its online application to complement reactive collision avoidance control

strategies.

𝐶𝑁 =
𝜎𝑙𝑜𝑤𝑒𝑠𝑡
𝜎ℎ𝑖𝑔ℎ𝑒𝑠𝑡

(2.3)

�(q) =
𝑛∏
𝑖=1

𝜎𝑖(J) , or �(q) =
√

JJ
𝑇

(if redundant) (2.4)

Contrary to the first group of solutions, the group of approaches that

simplifies the cobots kinematics pretend to solve the computationally

demanding problem of the previous algorithms during the handling

of singular configurations. Even though some kinematic simplifications

through the DH convention can be achieved for this kind of robots,

they are not enough to fully decouple the positioning and orienting

problem of the robot or, at least, compute a characterized set of singular

configurations [105]. Some classic examples of approaches that serves to

obtain a parametrization on the singular configurations are the SVD and

the Ordinary Differential Equation (ODE) combined with boundaries

conditions [109].

The SVD method relies on the singular value decomposition of the

Jacobian matrix (see equation 2.5) [118]. From among the terms of the

SVD equation, the term 𝚺 corresponds to the diagonal singular values

(or eigenvalues, 𝜎𝑖) matrix [41]. In light of this relationship, it could

be reasonable to think that it can be possible to obtain a singularities

parametrization based on the analytical solution for each of the singular

values. However, there is no analytical method to obtain a variable (joint

in this case) dependant characterization of the singular values whenever

the rank of the Jacobian is equal or greater to 6 (𝑟𝑎𝑛𝑘(J) ≧ 6) [118].

18 2 State of the Art and Objectives

J = U · 𝚺 · V
∗

(2.5)

Another strategy to characterize singular configurations consists of

utilizing an ODE and a boundary condition to obtain a set of solutions

for the contour equations. In this case, the contour equations corresponds

to the established limits between singular configurations and regular

positions. As the analytical Jacobian of the manipulator can be defined

as shown in equation 2.6, it could be thought to study the singularity as

an ODE, obtaining an implicit ODE system that for the condition of non-

singularity will be transformed into an explicit ODE system [120]. With

this general solution, a particular solution could be found applying a set of

initial conditions that fits the definition of singular region (mathematical

definition can be found in equataion 2.7). However, similar to what

happens with the approach based on the SVD computation, whenever

the manipulator present more than 6 DoF, the parametrization cannot be

executed due to the exponential explosion of the possible solutions [120].

Therefore, this approach is neither suitable to implement for advanced

robot controller to avoid dynamically the collisions.

J𝑎 =
𝜕k(q)
𝜕q

(2.6)

Ψ = {q ∈ ℝ𝑛
: |J(q)| ≤ 𝑠0} (2.7)

To overcome the limitations of traditional approaches to characterize

singular configurations, there are more modern techniques directly inte-

grated into control algorithms. The main utilized techniques correspond

to Riemannian geometric characterizations of the robot [121], the sequen-

tial quadratic square programming control barrier functions [122], and

the sum-of-squares programming control techniques [123], among other

solutions. These techniques add constraints to the robot kinematics in dif-

ferent formats. In the case of the Riemannian geometric characterization

the constraint is based on a novel singularity distance index [121]. The

constraints for the Sequential Quadratic Square Programming (SQSP)

are described through a control barrier function in the task space [122].

Lastly, in the Sum-of-Squares Programming approach, it is proposed two

polynomially described ellipsoids to create a constrained singularity-free

workspace [123].

For the two first approaches, the constraints pretend to compensate

the end effector velocity within singular regions [121, 122]. However,

in the case of the last solution, the constraint describes an inner and

outer volume of a limited and approximate singularity-free workspace

to compute a smoother velocity for the end effector [123]. Since these

approaches relies on kinematic additional constraints, the computational

power demanded by the controllers is still elevated due to additional

calculations to introduce the restrictions [116]. This leads to a local

handling of the singularity each cycle instead of having a characterized

set of solutions for these configurations [112]. Therefore, the velocity is

handled within the singular regions, but those regions are not avoided

so they are not candidates to be applied reliably into advanced reactive

control algorithms for robotics.

2.1 State of the Art 19

The presented algorithms above have the main problem of being too

demanding in computational power or being unable to obtains a param-

eterized set of singular configurations. On the one hand, the solutions of

the first group (the ones that relies on inverse kinematics) rely on heavy

matrix products computation or the calculation of the singular values of

the Jacobian [115]. Since typical collaborative manipulators are 6 or 7 DoF

[45], the analytical solutions for these approaches cannot be obtained

because there is no analytical method to do this, forcing the robot task

programmer to apply some numerical approximations [118]. On the

other hand, the solutions that simplifies the kinematic model are not

either suitable due to the high DoF of non-spherical wrist manipulators

[116]. This leads, as displayed in the robotics theory literature [41, 108,

109], to the study of the analytical solutions directly from the Jacobian

determinant of a 6 or 7 DoFs. This solutions can only be obtained if the

Jacobian matrix has a J
12

= 0 block matrix for robots with greater than 6

DoFs. In other words, it requires the kinematic model to be decoupled to

achieve that the lineal velocity of the kinematic model is independent

from the last three joints of the manipulator [109].

2.1.6 Conclusion

Collaborative industrial scenarios are a complex environment where

it must be taken into account several agents from the human operator,

going through the vision systems and sensors, to the robot. Regarding the

human operator, the main issue to guarantee is its safety. Otherwise these

environments that lacks of additional protection measures cannot be

achievable, impeding reaching the desired level of autonomy. However,

this could only be achieved by a proper used of the vision systems and

external sensors, to recognize precisely the surrounding of the robot,

combined with advanced control algorithms to keep the safety while

maximizing the manufacturing efficiency. This only could be achieved by

addressing adequately the proposed challenges from Subsection 2.1.2.

Moreover, some of the most advanced current vision algorithms are able

to segment the environment of a picture while giving information about

the position of each element. Nevertheless, they lack on distinguishing

between static elements that are relevant to the robot application from the

components of the picture that are just a mere part of the scene (the robot

should not interact directly with them). The static elements of the scene

should be avoided during the offline phases of the planning stages, while

the remaining static elements correspond to work pieces or objects the

robot should carry from one place to another. Not giving any information

about this last type of static elements of the scene, might end up in a

misbehaviour or mishandling of the work pieces during the application.

Therefore, there is still required a segmentation algorithms capable of

distinguishing between the scene of the robot, the static elements, and

the obstacles to be avoided dynamically.

Then, this information should be feed to the robot controllers to handle

efficiently the collision avoidance operations in order not to waste man-

ufacturing time with continuous non-required safety stops. However,

these algorithms present the chance of fall into a singular configuration,

endangering the operator or blocking the robot if the safety stop is

triggered enough soon. Even though the management of singularities

20 2 State of the Art and Objectives

and collisions simultaneously seems a task solved long ago, current

solutions to handle simultaneously collisions and singularities on dy-

namic environments lack on a closed set of solutions for the IK and

the singular configurations of non-spherical wrist cobots. This leads to

computationally demanding control algorithms that cannot avoid the

singular configurations, increasing the chances of a safety stop due to

falling into singularities.

In this manner, to achieve a more efficient industrial collaborative scenario

that cares for the operator safety without disregarding manufacturing

performance, a simplified kinematic model is required for non-spherical

wrist cobots. These required necessities can be summed up into a suitable

kinematic model that allows the decoupling of non-spherical wrist

manipulators to have a simplified but efficient kinematic model. This

simplified model, if based on a decoupled kinematic model, can enable

the computation of an analytical closed set of solutions for the IK, a result

that is still not achieved. Moreover, this simplification of the kinematic

model will come along with a simplification of the Jacobian matrix of

the non-spherical wrist cobot. In this way, the singularities can be easily

studied allowing the desired characterization that current approaches

lacks of. Then, this results can be combined into advanced APF based

controllers to avoid simultaneously collisions and singularities instead

of just hanlding them. By reaching this three millestones safer and more

efficient collaborative environments can be obtained, being one step

closer to the desired industrial collaborative scenario.

2.2 Hypothesis

Among all the solutions displayed in the State of the Art, the APF-based

controllers are considered one of the most suitable methods to achieve

real time safe reactive scenarios. As this kind of controller does not

require a planning phase to react to changes in the environment, they

seem suitable to keep the production performance while maintaining

safety of the operators in industrial collaborative scenarios.

Regarding collision avoidance, theAPF-based controllers are one of the

most employed techniques to dynamically avoid collisions in environ-

ments that are in continuous evolution. This is because it relies directly

on the distance from each obstacle to the distributed control points

along the structure of the manipulator. The distances computed are

employed to build a virtual velocity or force potential field. Subsequently,

this field is employed to emulate a virtual damping system between

the robot and the environment, allowing the robot to avoid collisions.

However, to transform or compute the virtual repulsive velocities or

forces (joint commands), it is required the inverse of the jacobian of the

robot structure.

Due to these reasons, when the control command is being computed, and

the robot is in a kinematic ill-conditioned state, the computed response

can be excessive, increasing the application risks and triggering a non-

desired safety stop [105]. Thus, these controllers are usually combined

with auxiliary methods to handle singularities based on projections over

the null space, such as the Damped Least Square (DLS) based controllers;

2.3 Objectives 21

or kinematic simplifications through additional constraints, as the Rie-

mannian geometric characterizations. Even though these approaches can

be employed to handle obstacle avoidance and singularity simultaneously,

they do not fully solve the singularity problem for non-spherical wrist

cobots. What these controllers intend to do is to compensate the end

effector velocity within singularities, or shift the singular configurations

to other configurations away from the original ones. Therefore, the robot

control is not free to fall into ill-conditioned configurations that triggers

a safety stop, wasting time and money. To avoid falling into singular

regions, a complete knowledge of the solutions to the IK that characterize

the singularities is required [105]. Since this set of solutions is only avail-

able with low time-cost for spherical wrist cobots, some of the current

commercial cobots models, being of 6 or 7 Degrees of Freedom (DoFs)

non-spherical wrist robots, cannot benefit from the current collision

avoidance controllers efficiently.

Because of the panorama exposed above and regarding the motivation

of this research, the following statement is proposed as the hypothesis of

this doctorate:

Hypothesis

Through the coordinated action of two different Artificial Potential

Field (APF) controllers, one for avoiding collisions and the other

for repelling singular configurations, and its combination into a

novel dual Artificial Potential Field (d-APF) based controller for

simultaneous collision and singularity avoidance, it is pretended to

keep the required safety levels without disregarding manufacturing

cycle times.

Thus, responding to the presented hypothesis is expected to go forward

in the development of real industrial collaborative scenarios where

safety is kept (through the collision avoidance) without falling into

blocking configurations (which increases non-desired manufacturing

bottlenecks).

2.3 Objectives

The global objective of the current doctorate study is aligned with the

motivation of the research, as well as it tries to get an answer to the

hypothesis with a suitable advanced control strategy. Therefore, the main

objective of this work can be summed up in the statement presented

below:

Global objective

This Ph.D. aims to achieve an industrial collaborative environment

where collisions are avoided while dodging other risky situations

to preserve the safety of the operators and reduce the production

bottlenecks due to safety stops of industrial collaborative robots (6 or

7 DoFs) through APF-based controllers.

22 2 State of the Art and Objectives

6: Complementary to the presented par-

tial objectives a proper environment seg-

mentation to distinguish between human

workers or obstacles, workpieces to op-

erate with, and static components of the

scene is also needed. Even though a good

segmentation of the environment is re-

quired for a successful implementation

of this type of advanced robot controllers,

the vision algorithms are based on the

work of previous authors. Since they can-

not be considered as a novelty of this

work, they are not presented as a partial

objective to achieve. However, it is worth

mentioning the importance of the vision

system as a key component for the proper

execution of these kind of applications.

Achieving such a goal requires the attainment of several partial objectives.

Each of the partial objectives presented below pretends to face at least

one of the aspects detected that make the implementation of fluid

manufacturing processes on collaborative tasks difficult
6
.

▶ Objective I - Safe collision avoidance controller: The first

partial objective of the Ph.D. consists of a suitable real time im-

plementation of an APF-based controller to avoid the collisions

between robots and operators. Thus, this first development is re-

lated to handling the safety issues for shared environments and

avoiding risky situations between operators and robots by modi-

fying the proposed reference controller that can be found in [18,

63]. The challenge is to adapt its behavior to classic singularity

handling algorithms such as the DLS-APF based controllers.

▶ Objective II - Singularity characterization: as stated before, im-

plementing an APF-based controller to avoid singularities requires

knowing them in advance. In this manner, they can be treated as if

they were obstacles from the surroundings of the robot, allowing

dynamic avoidance while evading obstacles. Therefore, one of the

major partial objectives of this Ph.D. consists of a kinematic sin-

gularity approach that allows the parametrization of the singular

configurations depending on the joints of the manipulator.

▶ Objective III - Safe singularity avoidance controller: Once

the singular configuration has been parameterized, the APF-based

controller for collision avoidance should be modified to integrate

the solutions of the singularity characterization, resulting in the

proposed dual Artificial Potential Field (d-APF). In this manner, the

chosen strategy to carry out the singularity avoidance integration

should repel the singular configurations as if they were obstacles.

▶ Objective IV - Performance test on collaborative application:

This last partial objective pretends to test the performance of the

proposed controller based on APF. Therefore, some collaborative

assembly or operation should be executed to check the behavior of

the controller in real or simulated manufacturing scenarios. This test

will also help evaluate the chances of implementing collaborative

scenarios in current industrial manufacturing environments.

By managing the partial objectives presented above, it is pretended to

provide a solution to the problem stated in the hypothesis.

Research Challenges, Methods

and Equipments 3

3.1 Challenges of the Re-

search 23

3.2 Research Method Pro-

posal 24

3.3 Data Collection and

Analysis 25

3.4 Materials and Equipment 25

3.4.1 Validation Environments 26

3.4.2 Simulation Environments 27

In this chapter a quick overview of the challenges and why the simulta-

neous avoidance of collisions and singularities is considered a novelty

under the method proposed in the hypothesis. Consequently, the em-

ployed research method to carry out the investigation on the field of

collaborative robotics for advanced industrial shared scenarios is showed.

Lastly, this chapter also shows the available material and equipment to

accomplish the research objectives.

3.1 Challenges of the Research

This thesis pretends to go one step forward in the development of

industrial collaborative scenario through the implementation of a dual

Artificial Potential Field (d-APF) advanced controller to guarantee the

safe operation in the surroundings of the robot without disregarding

manufacturing efficiency. Therefore, the main challenge to address by

completing the objectives of this work correspond to dealing with the

singularity on non-spherical wrist cobots while avoiding efficiently and

dynamically the collision with operators or obstacles.

Since the part of a safe collision avoidance is already achieved for both

spherical wrist and non-concatenated cobots, the real deal of this research

is to avoid singularities when the non-spherical wrist cobots is avoiding

an obstacle. During the planning phases of a robot task, the controller

plans the trajectory handling singularities. However, when applying

reactive collision avoidance control algorithms, the most efficient methods

avoid continuous re-planning of the trajectory. In this manner, the robot

can respond quicker to changes in the environment. These avoidance

strategies commonly relies in the Jacobian to compute new reference

control signals.

Due to these reasons, while avoiding the obstacle the robot does not track

the original trajectory which was prepared to handle singularities, com-

puting a new set of velocity reference signals dynamically. It is precisely

this dynamic calculation of the velocites through the Jacobian what can

lead the robot to a singular configuration. As shown in Section 1.2, if

the robot does not has an non-spherical wrist, the available singularity

handling algorithms does not solve efficiently the problem. Therefore,

one of the challenge of this research relies in the necessity of modifying

the current solving of the kinematics of non-spherical wrist cobots to

obtain a more simple FK and IK model.

This model should allow the kinematic decoupling of the positioning

and orienting problem to enable the computation of simpler forms of the

Jacobian that guarantees the parametrization of the singular configura-

tion for the non-spherical wrist cobots. Indeed, this characterization of

singularities can be considered as another contribution to address by this

Ph.D. thesis.

24 3 Research Challenges, Methods and Equipments

3.2 Research Method Proposal

The followed research method is based on a quantitative set of proce-

dures to evaluate the advantages of the proposed d-APF controller over

traditional methods to avoid collision while handling singularity on an

hybrid environment. This means that the chosen methods to measure

the performance and suitability of this proposal have been tested first on

a simulated environment and then, on a real laboratory scenario.

This hybrid approach to test the effectiveness of the proposed controller

relies on the virtualized (simulated) environments to test the performance

of the developments made. In this manner, a safe and controlled first trials

can be executed without risking the integrity of any machine or worker.

Once the approach has been validated on this simulated environment,

it is tested on a real scenario without risk any for the real laboratory

equipment or any laboratory assistant helping in the experimentation

phases.

In order to assure the success of the proposed hybrid method the mi-

gration of the implemented simulated application to the real system

should be transparent. This means that the implementation of the con-

troller in simulation should be as closed as possible to a plug and play
integration for the real robot controller. To achieve this type of implemen-

tation, guarantee the code re-usability between robot applications, and

develop hardware agnostic advanced robotic controllers, from among

other benefits, the proposed research method relies on Robot Operating

System (ROS) [124], more specifically the Melodic Morenia distribution.

This particular distribution has been chosen because it was the latest

maintained ROS distribution by the time the Ph.D. started. Due to how

ROS internally works, by choosing this hardware agnostic framework

it is ensured for both, the simulated and the real scenario, to share

the developed controllers without further modifications than a typical

controller parameter tuning. Even thought ROS simplifies the task of

sharing simulated and real robot controllers, this seamless switch can

only be achieved if the simulation environment is reliable.

In order to achieved the aforementioned interchangeability between

simulated and real application, the behavior and placement of each

simulated component should emulate its real world mirror component

as similar as possible. Thus, in addition to just copy the distribution of

the different components configuration and distribution, each element

should also be modeled to simulate their physical dynamic behavior.

Indeed, the idea is to create a reliable virtual model of the robot and

its environment. In order to model virtually the robot scene, ROS is

supported by two complementary softwares already integrated with

it: MoveIt [125] and Gazebo [126]. In this manner, MoveIt will handle

the kinematics and trajectory execution of the robot, while Gazebo will

be in charge of simulating the physics of the robot model and its joints.

Therefore, while MoveIt will be active in both environments, Gazebo will

only be active while simulating the robot, being the natural replacement

of the robot controller in simulated application.

This research method has also been selected because it can help reducing

commisioning times on real collaborative robotics applications. On the

one hand, the fact that the controller can be tested first on a simulated

3.3 Data Collection and Analysis 25

1: E.g. the Universal Robots ROS driver

[127], the KUKA IIWA ROS drivers [128],

among other available robot repositories.

2: An actual member of the BRTA

(Basque Research and Technology Al-

liance) for the development of advanced

technical solutions in the Basque coun-

try.

environment makes possible to develop advanced control application

even when a real robot is not available at the moment. Moreover, if the

Gazebo simulation is accurate and emulates a similar behavior to the real

robot, the controller parameter tuning process is a straightforward task to

do without further complications when switching to the real robot. Since

the ROS-ready robot repositories generally come prepared with tuned

drivers to make them work, this last task of parameter tuning can be more

easily executed when using ROS-ready commercial cobots
1
. Therefore,

this research method seem suitable not only for research but also for a

future application and development on real industrial scenarios.

3.3 Data Collection and Analysis

For the data collection, ROS based nodes and functionalities have been

employed. One of the versatilities ROS is is that each data generated

in every node can be broadcasted to be listened by other node of the

"ROS communication graph". These broadcasted data sets are stored,

and once all the data have been collected, the Matlab
®

R2018b version

has been utilized to process and analyze the captured data. This software

version has also been used for computing all the theoretical model

and simulation tests required during the Ph.D. thanks to the Symbolic

Toolbox. All the results and graphs obtained by this data analysis will be

presented in Chapter 8 followed by the corresponding discussion, also in

this chapter.

3.4 Materials and Equipment

The equipment and material employed to reach the aim can be divided

into two different groups: the validation environment and the simulation

environment groups. This classification is aligned with the research

research method explained at Section 3.2. In this manner, the simulation

environments collects the different devices required for the simulated

tests in the two different scenarios. The first test scenario corresponds

to the collaborative work cell of the research laboratories of Ikerlan S.

Coop.
2
. Additionally, the second validation environments is related to

the collaborative cell from SUPSI (Scuola Universitaria Professionale

della Svizzera Italiana). In this way, the UR10e from the collaborative

work cell at Ikerlan serves as the testing subject of all the proposed d-APF

controller in simulation as well as in the real scenario, while the SUPSI

robot from this laboratory has been utilized as a support to verify and

test that the designed control algorithms are suitable also for other

deliberative robots.

In order to carry out the simulations for both scenarios, the tests have

been executed in the same computer as no particular hardware setup is

required. In addition to these results, the laboratory tests executed are

collected in the validation environments category. Unlike in simulation

environments, their specific equipment and material for the real tests is

presented for each of the scenarios. For this reason, for both environments

the collaborative work cell from Ikerlan and the SUPSI will be respectively

addressed in the subsections below.

26 3 Research Challenges, Methods and Equipments

3: The control PC is a DELL OptiPlex

3040 D11S equiped with an Intel
®

Core

i7-7700 CPU (@ 3.60𝐺𝐻𝑧 × 8 cores), in-

tegrated intel graphics card (Intel
®

HD

Graphics 630 - KBL GT2), 8𝐺𝐵 of mem-

ory, and internal storage of 256 HDD.

4: The application PC is a DELL Opti-

Plex 9020 D13M workstation and has the

following specifications: Intel
®

Xeon(R)

CPU E3-1270 (@ 3.60𝐺𝐻𝑧×8 cores), ded-

icated graphics card (NVIDIA Quadro

K2200/PCIe/SSE2), 16𝐺𝐵 of memory,

and internal storage of 256 HDD.

5: The control and application

PC is Lenovo ThinkCentre M720q

10T700AAMZ with an Intel
®

Core

i9-9900T (@ 4.4𝐺𝐻𝑧𝑥8 cores), integrated

intel graphics card (Intel
®

UHD

Graphics 630), 32𝐺𝐵 of memory, and

512𝐺𝐵 of SDD internal storage

6: The vision processing PC specifica-

tions correspond to a Intel
®

Core i9-

9900K (@ 4.8𝐺𝐻𝑧𝑥8 cores), dedicated

graphics card (NVIDIA RTX 3070), 64𝐺𝐵

of memory, and 1𝑇𝐵 of SDD internal stor-

age

3.4.1 Validation Environments

The first of the facilities presented corresponds to the Digilab laboratory

at Ikerlan, the available resources correspond with the following listed

elements:

▶ 1× UR10e robot from Universal Robot.

▶ 1× Robotiq 2F-140 gripper.

▶ 1× Intel
®

Realsense D435 depth camera sensor.

▶ 1× Harting Ha-VIS eCon 2000 industrial switch.

▶ 1× Omron S9VK-G12024 DC power supply.

▶ 1× External control PC with an Ubuntu 18.04 OS patched with the

PREEMPT_RT kernel [129] and ROS Melodic distribution
3
.

▶ 1× Application PC with an Ubuntu 18.04 OS with regular kernel

and ROS Melodic distribution
4
.

All the elements listed above are displayed and highlighted in Figure 3.1.

This figure represents the position of every component in the collabo-

rative working assembly cell available at the laboratory of Ikerlan from

different perspectives. Thus, the available space to develop collaborative

applications can be better understood.

Figure 3.1: Ikerlan laboratory (Digiliab):

collaborative assembly cell. The image

displays the same robot from two differ-

ent perspectives.

In the case of the collaborative scenario of the SUPSI University, the

available equipment and materials are listed below:

▶ 1× SUPSI 6 DoFs self-developed cobot.

▶ 1× Robotiq Hand-E gripper.

▶ 2× Intel
®

Realsense D455 depth camera sensor.

▶ 1× Control and application PC with an Ubuntu 18.04 OS patched

with the PREEMPT_RT kernel and ROS Melodic dstribution
5
.

▶ 1× Vision processing PC with an Ubuntu 20.04 OS with regular

kernel and ROS 2 Humble distribution
6
.

In Figure 3.2 a clear view of the collaborative assembly cell of the

SUPSI laboratory can be appreciated. In this figure, it has also been

highlighted the different devices listed above to ease the understanding

of the collaborative work well distribution.

3.4 Materials and Equipment 27

Figure 3.2: SUPSI laboratory: collabora-

tive assembly cell. The image displays

the same robot from two different per-

spectives.

7: The simulation PC is a DELL latitude

E5570 with the following specifications:

Intel
®

Core i7-6600U CPU (@ 2.60𝐺𝐻𝑧×
4 cores), integrated intel graphics card

(Intel
®

HD Graphics 520 - SKL GT2), 8𝐺𝐵

of memory, and internal storage of 512

HDD.

8: Note that the blue walls of Figure 3.4

that appear exclusively on the RViz side

are non-real world elements that have

been included to delimit the movements

when computing trajectories with RViz

to guarantee operators and other equip-

ment integrity during offline planning

phases.

3.4.2 Simulation Environments

The only device employed for the simulation of both scenarios is a laptop

with an Ubuntu 18.04 OS patched with the PREEMPT_RT kernel and

ROS Melodic distribution
7
.

The two laboratories have been virtualized independently to fit with each

scenario. Since components like the switch or the power supplies are

only required in the physical environment, those devices and connectors

are not mirrored. Therefore, the only components represented in the

simulation will be the robot, the stand where they are fixed, and other

additional sensors required, as displayed in Figure 3.3 and Figure 3.4
8
.

Figure 3.3: Ikerlan laboratory (Digi-

lab) virtualization/Digital Twin: MoveIt

RViz visualization (left-hand side) and

Gazebo simulator visualization (right-

hand side).

Figure 3.4: SUPSI laboratory virtualiza-

tion/Digital Twin: MoveIt RViz visual-

ization (left-hand side) and Gazebo sim-

ulator visualization (right-hand side).

Kinematic Behavior of Non-Spherical

Wrist Robots

Non-Spherical Wrist Robots

Decoupled Modeling 4

4.1 Model Fundamentals . . . 32

4.2 Forward Kinematics 35

4.3 Inverse Kinematics 36

4.4 Differential velocity

limitations 38

4.4.1 Velocity behavior and

implications 39

4.4.2 Singularity general study 40

4.5 Conclusion to Chapter 4 . 41

In classical robotics theory, modifying the arrangement of the reference

systems to find a robotic system whose kinematics is more advantageous

is a common practice. An example of these strategies to obtain a simpler

kinematic model is the kinematic decoupling (with or without DH

convention applied) [41, 108, 109], among other available simplifications

seen in the State of the Art (Section 2.1). Nevertheless, since the last three

joints shafts of non-spherical wrist cobots does not meet at the same

spot of the robot structure, their kinematic model cannot be naturally

decoupled, so the orientation and positioning problem cannot be handled

independently. This inability to naturally decouple the kinematic model

of non-spherical wrist cobots impedes the computation of both, a closed

set of solutions for the IK, and a full joint dependant characterization of

singular configurations.

Moreover, even though some kinematic simplifications through the

DH convention can be achieved for this kind of robots, they are not

enough to fully decouple the positioning and orienting problem as

displayed in Chapter 2. On top of that, due to the existing limitation of

analytic methods to solve the determinant of matrices with rank greater

than 5, the parametrization of the singular configurations for a 6-th or

greater DoF robot is not doable [REF]. Therefore, approaches such as the

numerical zeroing of the manipulability, a parametrization depending

on the SVD, or an Ordinary Differential Equation (ODE) and a boundary

condition strategy, or even a straightforward study of the solutions of the

Jacobian matrix determinant cannot be applied to obtain a parametrized

set of singular configurations. In other words, this restriction in the

mathematical calculation of the singularities causes the necessity of a

decouple kinematic model to obtain a kinematic model where the linear

velocity of the manipulator is independent from its last three joints.

As can be seen from the State of the Art and the paragraphs above, in

order to achieve a closed set of solutions for the IK and the singular

configurations, the 6 and 7 DoF non-spherical wrist cobots require a

novel kinematic model that could decouple the position and orientation

of these robot structures. Therefore, the first contribution this chapter

addresses is the design of a suitable decoupled kinematic model for 6

and 7 DoFs robot. For this aim, the fundamental features and requisites

to apply the kinematic decoupling for non-spherical wrist cobots are

presented. It is also displayed the FK and IK of the proposed kinematic

model for both, the positioning and orienting, and for the velocities of

the manipulator. Lastly, another contribution is discussed related to the

kinematic behavioral implications and singularities simplification when

employing the proposed model instead, leading to a brief conclusion of

the specific topic addressed in Chapter 4.

32 4 Non-Spherical Wrist Robots Decoupled Modeling

4.1 Model Fundamentals

The aim of the proposed decoupled kinematic model is to emulate the

kinematic behavior of the decoupled model displayed in the literature

[109] applicable only to spherical wrist robots but for non-spherical wrist

cobots instead. In this manner, the positioning and orientation of the

end effector becomes independent, so they can be treated separately

while doing the IK computations on planning stages of the robotic task.

Moreover, the kinematic decoupling also alleviates the computational

workload for computing dynamic responses or control signals through a

simplified Jacobian matrix for the spherical wrist robots, enabling the

computation of a closed set of solutions for the IK and the singularities.

Both analytical solutions can be latter applied to achieved more efficient

advanced control algorithms in industrial collaborative scenarios.

The kinematic decoupling works because the last three joint shafts meet at

a point of the robot structure, allowing the computation of the kinematic

model from this spot instead. This phenomena can be appreciated at

the left-hand side of Figure 4.1 on a traditional industrial spherical wrist

robot. Both constant distances are represented by 𝑟1 and 𝑟2 corresponding

to the 𝐹𝐴 and 𝐴𝐸 vectors, respectively. This point of the robot where

the three joint shafts meet is also known as the decoupling point. How

to select a suitable point along the robot structure to be the decoupling

point is a critical aspect of decoupling the robot kinematics because it

allows to relate the wrist positioning with the position of the Tool Center

Point (TCP) automatically, and vice versa
1

1: This relationship can be better appre-

ciated in the representations above the

left-hand side manipulator with the kine-

matic schematics of two spherical wrist

examples.

.

Figure 4.1: Spherical (left-hand side) and non-spherical (right-hand side) wrist industrial manipulators examples (combined and modified

from sources [119, 130])

4.1 Model Fundamentals 33

2: For instance, for the Figure 4.1, the

selected point along the robot structure

on the right-hand side is the B point.

3: In these equations, R
0

𝛽 ∈ ℝ3𝑥3
is the

rotation matrix of the 𝛽 auxiliary ref-

erence system according to the world,

p

𝛽
𝐵𝐸

∈ ℝ3
corresponds with the 𝐵𝐸 vec-

tor expressed in 𝛽 reference frame, and

R
0

𝐵
(q) ∈ ℝ3𝑥3

and R
0

𝐸
(q) ∈ ℝ3𝑥3

repre-

sent the orientation as rotations matrix

of the decoupling point and the TCP,

respectively.

With the intention of replicate this behavior, two new 𝑟1 and 𝑟2 constant

distances should be selected for the non-spherical wrist structure. These

two distances, also displayed at the right-hand side of Figure 4.1, are

the responsible of creating the required constant relationships to build

the proposed kinematic decoupling for non-spherical wrist cobots: the

distance between the last joint prior to the wrist and the decoupling point

(distance 𝐹𝐵), and the one between the decoupling point and the TCP

(distance 𝐵𝐸). Any point in the robot structure that gather the criteria of

keeping these two distances constant can be chosen as the decoupling

point
2
. This process of selecting the two constant distances to establish a

univocal relationship between the arm position, the decoupling point,

and the TCP correspond to one of the main contributions proposed by

this Ph.D. and is denoted as wrist spherification. The aim of this technique

is to obtain a quasi-spherical wrist, or in other words, a non-spherical

wrist that kinematically behaves as an spherical one.

In order to apply the proposed wrist spherification the cooplanarity

between F with B, and B with E, respectively, must be kept. This condi-

tion guarantees that the selected 𝐹𝐵 and 𝐵𝐸 vectors remains constant

independently of the robot configuration. It means that both parameters

are linked to the robot design structure, and can be considered structural

parameters. In this manner, the 𝐵𝐸 vector is always pointing to the TCP,

positioning the end effector in the contour of a constant radius sphere

centered around the decoupling point B. Moreover, the fact that 𝐵𝐸 is a

structural parameter makes it possible to relate the decoupling point (B)

and the TCP (E) through the 𝛽 angle also represented in Figure 4.1. The 𝛽
angle can be defined as the one formed between the parallel axis to 𝐶𝐸

that goes through the B point and the 𝐵𝐸 vector. Thus, the 𝛽 angle and

its modulus (𝐵𝐸 vector) can be computed as shown in equation 4.1.

𝛽 = tan

(
ℎ

𝑙

)
; |𝐵𝐸 | = 𝑟2 =

√
ℎ2 + 𝑙2 (4.1)

The aim of selecting a decoupling point B is enabling the reconfiguration

of the positioning of the reference frames of the wrist of the cobot.

This way, the 4-th, 5-th and the 6-th reference frames (O4, O5 and O6,

respectively) can be moved into the decoupling point. In general, the

decoupling point B coincides with O5, if so, only O4 and O6 should be

displaced. Bearing in mind these considerations, the proposed kinematic

model for non-spherical wrist cobots will behave as the decoupled one for

spherical wrist robots. In Figure 4.2 a simplified closed kinematic chain is

shown where this relationships can be appreciated. In this simplification

it can be seen how the TCP shares the orientation with the decoupling

point, and both are related with the constant know distance of 𝐵𝐸,

where 𝐵𝐸 = p
0

𝐵𝐸
= p

0

𝐸𝐵
. These orientation and positioning relations are

described mathematically by the equations 4.2a and 4.2b
3
.

p
0

𝐸 = p
0

𝐵 + p
0

𝐵𝐸 = p
0

𝐵 + R
0

𝛽p

𝛽
𝐵𝐸

(4.2a)

R
0

𝐸(q) = R
0

𝐵(q) (4.2b)

The model and relationships displayed in equation 4.2 correspond to the

relations required for the FK. In other words, they express how to relate

34 4 Non-Spherical Wrist Robots Decoupled Modeling

Figure 4.2: Simplified position and ori-

entation transformations between the de-

coupling point and the end effector for

non-spherical wrist decoupled kinematic

model. In this representation, the 0-th ref-

erence system is the robot base reference

system, the 𝐵 reference system is referred

to the last reference sysstem after apply-

ing all the joints to the model, the 𝑒𝑒
reference system corresponds to the one

of the end effector, and 𝛽 reference sys-

tem is related to the pointing reference

auxiliary system that bounds the decou-

pling point with the end effector.

the position of the TCP from the decoupling point where the kinematic

model is solved. This implies that to compute the IK model, the inverse

relation should be computed. This inverse relation is detailed below in

equation 4.3

p
0

𝐵 = p
0

𝐸 + R
0

𝛽(−p

𝛽
𝐵𝐸
) (4.3a)

R
0

𝐵(q) = R
0

𝐸(q) (4.3b)

By using the expressions from equations 4.3a and 4.3b, the position and

orientation can be computed to fit the position and orientation of the

real world workpiece. This is relevant, because naturally, human workers

and engineers are more used to work in the task space instead of the

joint space. Therefore, the ultimate goal of the mathematical formulation

fundamentals consists on obtaining a compact and suitable expression

to express the desired position and orientation of the decoupling point.

Thus, to describe the decoupling point pose it is employed the equation

4.4, where p
0

𝐵
represent the Cartesian position of the decoupling point,

and o
0

𝐵
correspond to the minimal expression of the orientation expressed

as the roll, pitch and yaw angles (corresponding to the latter expression

f(R0

𝐵
(q))).

x
0

𝐵 =

[
p

0

𝐵
(𝑞1 , 𝑞2 , 𝑞3)
o

0

𝐵
(q)

]
=

[
p

0

𝐸
+ R

0

𝛽(−p

𝛽
𝐵𝐸
)

f(R0

𝐵
(q))

]
(4.4)

With the combinations of equation 4.4 in with equations 4.2 or 4.3,

whether it is desired to address the FK or the IK, respectively, the

kinematic model is ready to address generically the formulation of both,

FK or IK.

4.2 Forward Kinematics 35

4: It means that O𝑛−2 = O𝑛−1 = O𝑛 , so

it is also held that p
0

𝑛 = p
0

𝑛−1
= p

0

𝑛−2
.

5: In the case of a 6 DoF robot 𝑛 − 3 = 3,

while in the case of a 7 DoF robot 𝑛− 3 =

4.

6: The angles of roll (𝜓0

𝐵
), pitch (�0

𝐵
), and

yaw (𝜙0

𝐵
), which corresponds to rotations

about the 𝑋, 𝑌, and 𝑍 axes, respectively.

7: In this equation ¤x0

𝐵
∈ ℝ𝑛

, J(q) ∈ ℝ6𝑥𝑛
,

and ¤q ∈ ℝ𝑛
.

4.2 Forward Kinematics

The Forward Kinematic (FK) of a non-spherical wrist cobot pretend to fill

the desired position and orientation given by the joint configuration of

the robot (for a 6 and 7 DoF robot). On a decoupled kinematic model these

position and orientation is computed according to the decoupling point

instead. Therefore, in order to compute the decoupling point pose (x
0

𝐵
),

it is first required the calculation of the homogeneous transformation

matrix (T
0

6
∈ ℝ4×4

) as shown in equation 4.5

T
0

𝑛 = T
0

1
· T

1

2
· · ·T𝑛−2

𝑛−1
· T

𝑛−1

𝑛 =

[
(R0

𝑛)3𝑥3 (p0

𝑛)3𝑥1

(0)1𝑥3 1

]
(4.5)

Due to the kinematic fundamentals in the previous subsection for carrying

out the kinematic decoupling of non-spherical wrist cobot, the last three

origins of the reference systems coincide and positioned in the selected

decoupling point
4
. Consequently, the position of the decoupled point

will also be coincident with the previous reference frames origins (see

equation 4.6).

p
0

𝐵(𝑞1 , · · · , 𝑞𝑛−3) = p
0

𝑛−2
(𝑞1 , · · · , 𝑞𝑛−3) (4.6)

From the equation above (equation 4.6), it is remarkable that the position

of the decoupling point is only dependent of the first joints of the

manipulator
5
.

On the other hand, computing the minimal parameter expression for the

orientation of the robot (o
0

𝐵
(q)) requires solving the ZYX Euler rotation

angles
6
. Hence, these angles can be computed as displayed in equation

4.7, where 𝑛 corresponds to the DoFs of the cobot (in this case, the model

is presented generically for 6 or 7 DoFs), and the (𝑅0

𝑛)(𝑖 , 𝑗) ∈ ℝ3×3
terms

represent the 𝑖-th row and 𝑗-th column of the corresponding rotation

matrix.

𝜓0

𝐵 = arctan

(
(𝑅0

𝑛)(3,2)
(𝑅0

𝑛)(3,3)

)
(4.7a)

�0

𝐵 = arctan

©«
−(𝑅0

𝑛)(3,1)√
(𝑅0

𝑛)2(3,2) + (𝑅0

𝑛)2(3,3)

ª®®¬ (4.7b)

𝜙0

𝐵 = arctan

(
(𝑅0

𝑛)(2,1)
(𝑅0

𝑛)(1,1)

)
(4.7c)

Thanks to equations 4.6 and 4.7 the forward kinematic model can be

considered fully addressed. Nevertheless note that, once the position

and orientation is computed, the relationships from equation 4.2 should

be applied to compute the position and orientation of the end effector.

Once the positioning and orienting problems are addressed through the

FK, the velocities aspects of the FK can also be handled. The general

formulation for FK can be computed as displayed in equation 4.8
7
. This

36 4 Non-Spherical Wrist Robots Decoupled Modeling

8: Bear in min that 𝝎
𝛽
𝑛 ∈ ℝ𝑛−3

, R

𝛽
𝑛 =

(R𝑛
𝑛−1

R
𝑛−1

𝛽)−1 ∈ ℝ3𝑥3
, and 𝝎𝑛

𝑛 ∈ ℝ𝑛−3
.

expression is obtained after deriving the decoupling point pose (x
0

𝐵
). For

that reason, as well as for position and orientation, the FK velocity model

is referred to the decoupling point instead of the end effector.

¤x0

𝐵 = J(q) · ¤q (4.8)

Unlike traditional coupled kinematic models, to take into account the

end effector influence when computing the velocities for the decoupled

point, the computation of the Jacobian matrix should be modified. To do

so, the angular velocity of the 𝑛-th joint should be decomposed into their

components over the auxiliary reference system 𝛽8
(how to compute it is

shown below at equation 4.9).

𝝎
𝛽
𝑛 = R

𝛽
𝑛𝝎

𝑛
𝑛 (4.9)

Once the components of the angular velocity of the 𝑛-th reference system

are computed, the unit vector of the joint axis for each joint are required

(z𝑖−1 ∈ ℝ3
). Each joint axis unitary vector represent the contribution

into the speed of the manipulator according to the decoupling point for

each axis expressed as an unitary vector. Since to maintain and take into

account the end effector in the decoupling, the angular velocity of the

𝑛-th joint has been decomposed into the auxiliary 𝛽 reference system.

This consideration generates a variation on the Jacobian computation as

displayed in equation 4.10 that makes it dependant on the unit vector of

the Joint 𝑛 in the 𝛽 reference system (z𝛽 ∈ ℝ3
, computed as displayed in

equation 4.11).

J =

[
z0 × (p𝑒 − p

0
) · · · z𝛽 × (p𝑒 − p𝐵)

z0 · · · z𝛽

]
(4.10)

z𝛽 = R
0

1
(𝑞1) · · ·R𝑛−2

𝑛−1
(𝑞5) · R

𝑛−1

𝛽 (𝛽) · 𝝎𝛽
𝑛 (4.11)

By applying the previous equations, the computation of the Jacobian

matrix should result into a similar expression of the one displayed in

equation 4.12, where 𝑎 can be 𝑎 = 3 in case of a 6 DoF robot, or 𝑎 = 4

in case of a 7 DoF one. Thus, the linear velocity of the end effector is

independent of the last three joints, achieving the desired 03×3 matrix

that simplifies the kinematic behavior of the non-spherical wrist cobot.

In this manner, for any given joint configuration a corresponding linear

and angular velocity can be computed for the decoupling point.

J =

[
(J

11
)3×𝑎 (0)3×3

(J
21
)3×𝑎 (J

22
)3×3

]
(4.12)

4.3 Inverse Kinematics

The real advantage of a decoupled kinematic model lies in the computa-

tions of the Inverse Kinematic (IK) solution instead of the FK formulation.

These kind of kinematic models allows the robot control engineers to

extract a closed set of analytical solutions for the inverse kinematics.

4.3 Inverse Kinematics 37

9: Note that R
𝑛−3

𝑛 (𝑞𝑛−2 , 𝑞𝑛−1 , 𝑞𝑛)
should be computed in the 4-th step. In

that step, it is fulfilled:

R
𝑛−3

𝑛 (𝑞𝑛−2 , 𝑞𝑛−1 , 𝑞𝑛) = (R0

𝑛−3
)𝑇 · R

0

𝑛 =

= R
𝑛−3

𝑛 (𝜓𝑛−3

𝑛 , �𝑛−3

𝑛 , 𝜙𝑛−3

𝑛).

Allowing the usage of more optimal or specific control solutions for a

particular type of manipulator.

In order to compute the aforementioned set of closed solutions for the

IK of a generic 6 and 7 DoF non-spherical wrist cobot, the kinematic

decoupled model has to be solved to match with the expression displayed

in equation 4.3. For such aim, in Figure 4.3 is represented a generic

structure for this type of robots from which the kinematic modelling

should start.

Z0
X 0

Y0

Z1
X 1

Y1
Z2

X 2

Y2

Zn−3

X n−3Yn−3

F

r1≡cte

A

Zn−2≡Zn−1≡Zn

X B ≡X n−2≡X n−1≡X n≡X β
Yn−2≡Yn−1≡Yn

B≡On−2≡On−1≡On≡Oβ

Zβ
Yβ

r 2
≡
ct
e

β

C

Zee
X ee

Yee
E≡Oee

Figure 4.3: Transformed model for kinematic decoupling for a generic 6 or 7 DoF cobots.

In Figure 4.3, it can be appreciated that the criteria of constant radius

and a pointing auxiliary reference system to the end effector exposed in

Section 4.1 are gathered for the decoupling point B. Once the reference

systems are placed along the robot structure, the proposed contribution

to compute the inverse kinematic model is a method that relies in

positioning first the decoupling point, to solve latter the orientation of

the decoupling point that should be shared by the end effector too (as

generally do in the IK algorithms). To obtain a general formulation for a

a 6 (𝑛 − 3 = 3) or 7 (𝑛 − 3 = 4) DoF robot, the following steps should be

followed:

1. Compute the decoupling point position (p
0

𝐵
(𝑞1 , · · · , 𝑞𝑛−3)) as in

the FK (see equation 4.6).

2. Solve analytically the IK for 𝑞1 , · · · , 𝑞𝑛−3.

3. Compute the corresponding R
0

𝑛−3
(𝑞1 , · · · , 𝑞𝑛−3) for the previous

step solutions.

4. Compute numerically the R
𝑛−3

𝑛 (𝑞𝑛−2 , 𝑞𝑛−1 , 𝑞𝑛) = (R0

𝑛−3
)𝑇 · R

0

𝑛 .

5. Solve analytically the IK for (𝑞𝑛−2 , 𝑞𝑛−1 , 𝑞𝑛) as a ZYX Euler rotation.

In order to address the steps from 1 to 3, the ones related to the IK of the

decoupling point positioning problem, several examples of how to solve

the IK for different manipulator structures can be found in traditional

robotics theory references [41, 108, 109]. Consequently, the computation

of steps 4 and 5, the ones related to solve the IK of the orientation of the

decoupling point, a similar strategy to the one seen at equation 4.7 can

be employed. In this way, the Euler rotation angles should be computed

referred to R
𝑛−3

𝑛 (𝑞𝑛−2 , 𝑞𝑛−1 , 𝑞𝑛)9 where the roll (𝜓𝑛−3

𝑛), pitch (�𝑛−3

𝑛), and

38 4 Non-Spherical Wrist Robots Decoupled Modeling

yaw (𝜙𝑛−3

𝑛) angles correspond to the last three joints (𝑞𝑛−2 , 𝑞𝑛−1 , 𝑞𝑛) as

shown in equation 4.13.

[𝑞𝑛−2 , 𝑞𝑛−1 , 𝑞𝑛]𝑇 = [𝜓𝑛−3

𝑛 , �𝑛−3

𝑛 , 𝜙𝑛−3

𝑛]𝑇 (4.13)

Addressing the step 5 and the equation 4.13 the IK for the position and

orientation problem can be considered fully solved.

Similar to the strategy followed in the previous section, Section 4.2

Forward Kinematics, the velocity aspects of the proposed decoupled

kinematic model for non-spherical wrist cobot should also be addressed.

In this case, the velocity IK expression can be computed through the

equation 4.14.

¤q = J(q)−1 · ¤x0

𝐵 (4.14)

Therefore, to compute a response based on the inverse kinematics, the

Jacobian matrix computed with equation 4.10 must exist. Otherwise,

the computation of the joint velocities could not be possible. In order

to assure the existence of the jacobian matrix, the determinant of the

Jacobian should differ from zero (∃J
−1 ⇐⇒ |J| ≠ 0). This fact leads

to the problem and discussion of whether the Jacobian exists or not.

Those configurations where the inverse of the Jacobian matrix cannot

be computed because the determinant is zero are known as singular

configuration. A first study of this configurations, will be theoretically

discussed in more depth in the following section.

4.4 Differential velocity limitations

As hinted at the end of the previous section, the IK can only provide a

solution whenever the solution exist. In other words, for the IK closed set

of solutions computed, there are more than a single configuration that

satisfies the Cartesian position. If this happens, the robot misbehaves,

leading to excessive velocities or even, stopping the robot movements

to make the safety prevail. These configurations where the IK has no

solution are the singular configurations.

The knowledge of this configurations beforehand is relevant to avoid

excessive velocities or forces that could risk both the operators safety

and the task execution performance. Therefore, this section presents the

analysis of the behavioral implications of selecting the decoupling point as

the kinematic reference instead of the end effector, as traditionally done for

non-spherical wrist cobot. Moreover, it also faces the problem of knowing

beforehand the singular configurations of this type of robots in a generic

manner that allows its latter particularization for two different models.

This two contributions helps in understanding how the robot should move

and which configurations might block the robot due to trespassing the

safety thresholds of the application compared to traditional non-spherical

wrist robot kinematic models.

4.4 Differential velocity limitations 39

10: Remembar that the velocity model re-

lies on the jacobian computation, which

can be expressed generically as:

J =

[
(J

11
)3×𝑎 (0)3×3

(J
21
)3×𝑎 (J

22
)3×3

]
,

where 𝑎 can be 𝑎 = 3 in case of a 6 DoF

robot, or 𝑎 = 4 in case of a 7 DoF one.

11: Attention: It does not mean that the

three first joint does not contribute to the

angular velocity of the manipulator. But

the contribution to the angular velocity

is a mixed of all the joints of the robot. So

the movement of all robot structure as a

whole is still possible and coordinated.

12: Recalling from equation 4.14:

¤q = J(q)−1 · ¤x0

𝐵

.

4.4.1 Velocity behavior and implications

There are several aspects to be discuss about the theoretical model and

its usage implications of the proposed decoupled kinematic model. This

section will start with the most trivial concerns about the positioning

and orienting problems from the FK, moving on to the discussion of the

FK model of velocity, and ending with the implications for solving the

inverse kinematics of position and velocity. In this manner, this subsection

pretends to highlight the benefits and drawbacks of employing the

decoupling proposed model instead of a traditional one for non-spherical

wrist cobots.

Firstly, the proposed approach is suitable to apply to real industrial

manipulator offering a model that is expected to compute efficiently the

position and orientation of the collaborative manipulator for a given set

of joint positions. In this manner planning techniques can be efficiently

applied to the decoupled kinematic model to compute the trajectories to

track. It is also remarkable that contrary to what happens with traditional

approaches as the DH convention based ones, the position and the

orientation are computed according to the decoupling point instead. It

is worth to highlight that in general the decoupled FK models are more

efficient in computation than its analogue coupled models, since the

desired posed and orientation of the TCP can be calculated independently.

Therefore, this behavior is also expected to be appreciated in Chapter

8.

In addition, it has been obtained a simplified FK model formulation

for the velocity of the manipulator according to the decoupling point
10

.

Relative to this simplified velocity kinematic model, the first remarkable

fact is the independence from 𝑞4 when computing velocities due to the

03×3 block matrix from the Jacobian. It means that the first wrist joint

would not contribute to the lineal velocity of the decoupling point, unlike

other traditional model does. This is not necessarily a misbehavior of the

kinematic model, but it is relevant to bear in mind while designing robot

tasks. Consequently, the position and orientation decoupling is also a

characteristic of computing the velocities for the decoupled kinematic

models. In other words, the lineal velocity of the manipulator depends

only on the arm positioning related joints, leaving the angular velocity

to be handled additionally by the last three ones to move all the robot

structure as a whole
11

.

This chapter also presents a general inverse kineamtic modelling for non-

spherical wrist cobots. In Chapter 7 an example that particularized the

proposed kinematic decoupled model for the UR10e and the SUPSI robot

is presented. However, due to the diversity of different robot structures,

the solutions presented in this work might slightly vary from the ones

for other robot structures. Moreover, by following the steps presented in

Section 4.3 it can be decoupled the position and the orientation for the

IK too. In this manner, the problem of dimensionality when the robot

present a high order of DoF is reduced, enabling the computation of a

closed set of analytical IK solutions. Fact that seems very convenient to

compute more efficiently the desired joint configurations while applying

task space planning techniques.

Lastly, the velocity IK model
12

main problem relies in the study of the

40 4 Non-Spherical Wrist Robots Decoupled Modeling

13: In order to check the existence of the

Jacobian matrix, the required computa-

tion is simplified because the determi-

nant of the Jacobian can be reduced as

shown below:

|J| = |J
11
| · |J

22
|

The equation above, will be better de-

tailed in the subsection 4.4.2.

14: Durign the modeling design phases

of a robotic application.

15: As the singular configurations are

known beforehanded, more optimal han-

dling strategies can be applied to avoid

those configurations.

singular configuration that will be addressed in the following subsection.

However, the fact that the Jacobian matrix has a 03×3 block matrix, sim-

plifies the computation required to calculate a velocity-based response

for the controllers
13

. This last issue also reduces the demanded com-

putational power when computing the singular configurations of the

manipulator, and enables the computation of a closed set of singular

configurations to be applied online more efficiently.

4.4.2 Singularity general study

As stated in the previous subsection, Velocity behavior and implications,

the main problem of the velocity IK is the singularity handling. One

advantage the decoupled kinematic model present over other approaches

for non-spherical wrist cobot is that the singular configurations can be

computed beforehanded
14

to be more efficiently applied online
15

. In the

following paragraphs, the demonstration to prove that all singularities are

taken into account by using the proposed kinematic model is presented

for both 6 and 7 DoF cobot.

In both situation, the theoretical study of singularities starts with equation

4.15:

|J| =
���� [(J11

)3×𝑎 (J
12
)3×3 = (0)3×3

(J
21
)3×𝑎 (J

22
)3×3

] ���� (4.15)

For a 6 DoF robot (𝑎 = 3), since the (J
12
)3×3 = (0)3×3, the singular

configurations dependent of the Jacobian determinant can be computed

as follows (see equation 4.16):

|J| = |J
11
· J

22
− 0 · J

21
| = 0 ⇒ |J| = |J

11
| · |J

22
| = 0 (4.16)

In equation 4.16 can be observed that the Jacobian of the decoupled

model will only be singular whenever the |J
11
| = 0 or the |J

22
| = 0.

Moreover, for the case of 7 DoF (𝑎 = 4), a similar strategy can be followed

as shown in equation 4.17:

|J| = |(J
11
)3×4 | · |(J22

)3×3 − (J
21
)3×4 · (J−1

11
)4×3 · 0| = 0 ⇒ (4.17a)

⇒ |J| = |(J
11
)3×4 | · |(J22

)3×3 | = 0 (4.17b)

As in the previous case, the Jacobian model will only be singular whenever

the |(J
11
)3×4 | = 0 or the |(J

22
)3×3 | = 0. Since the determinant of a non-

square matrix does not exist, someone might think that there is no

solution for the case of J
11

. However, as it is only desired to know when

the model does not have an inverse,the pseudoinverse Jacobian is used as

in for the manipulability. Therefore, for the case |(J
11
)3×4 | = 0, it will be

equivalent to check whether

√
|J

11
J
𝑇
11
| = 0. So the singular configurations

can also be computed and parameterized for this use case.

It is remarkable that even though it could happen that J
11

and J
22

can be

singular at the same time, they do not represent coupled singularities.

4.5 Conclusion to Chapter 4 41

In other words, by chance, it can happen a dual singular configuration,

but each one is independent and not bounded to the other. Moreover,

due to the simplifications into block matrices and the fact that the

decoupled kinematic model seeks for nullifying one of those block

matrices ((J
12
)3×3 = (0)3×3), it can be assured that the velocity behavior

of the proposed model is different from the traditional of the literature.

With this mathematical characterization of the kinematic model a more

simplified robot velocity and position kinematics is obtained allowing

the extraction of a closed set of singular configurations as displayed in

Chapter 7 for two different robots.

4.5 Conclusion to Chapter 4

In this chapter a suitable expression for the position and velocity FK and

IK model has been explained in the form of mathematical fundamentals

and general formulation to be applied to any 6 or 7 DoF non-spherical

wrist cobots. The proposed model seems to be accurate enough to reduce

the computational performance of current collision avoidance techniques

under the right algorithm. As this section focuses on theoretical aspects of

the kinematic model proposed, all the statements given by the discussion

of Section 4.4 will be mathematically addressed in the particularization

of Chapter 8. Lastly, the singular configuration not only can be parame-

terized due to simpler expression of the Jacobian matrix, but it is also

guaranteed that the singular configuration of the arm are independent

of the wrist ones and limited in both cases.

Controller Design and Implementation

Obstacle and Singularity

Handling Reference Controller 5

5.1 Design Basics 45

5.1.1 Requirements 46

5.1.2 Control Architecture . . . 47

5.2 APF Based Obstacle

Avoidance Controller . . . 48

5.2.1 Advanced Scene Segmen-

tation 48

5.2.2 Distance to the Obstacle

Computation 50

5.2.3 Collision Risk Indexes

Computation 53

5.2.4 Repulsive Component

Computation 54

5.2.5 Damped Least-Square

(DLS) Kinematic Model . 55

5.2.6 Dynamics Handling:

Ruckig 56

5.3 Conclusions to Chapter 5 57

As discussed in Chapter 2, State of the Art and Objectives, current singu-

larity handling methods combined with collision avoidance controllers

cannot guarantee avoiding singular configurations that activates the

emergency safety stops of cobots. Due to that reason, the prior chapter

(Chapter 4) develops a novel kinematic decoupling technique, the wrist

spherification, to achieve a decoupled kinematic model for non-spherical

wrist cobots.

In order to test the advantages of utilizing the decoupled kinematic model

proposed in this work, this chapter exposes the design principles of the

reference controller. This reference controller is based on currently used

DLS kinematic based controller for collision avoidance. It will also be the

reference controller to which the performance of the d-APF controller

explained in Chapter 6 will be tested against. Another particularity of

the reference controller proposed in this chapter is that it is based on the

developments of Flacco and De Luca from [18]. In this way, the reference

controller corresponds to the starting point from which the proposed

d-APF is developed (detailed in Chapter 6). The common aspects of

both controllers leads to a more accurate comparison of the controllers

behavior (addressed in Chapter 8).

Therefore, this chapter explains the requirements and the control ar-

chitecture employed to design the reference controller. These design

principles explains the adaptation of the Flacco and De Luca approach

from [18] to fit a DLS kinematic model while avoiding obstacles. Since the

employed hardware is not the same as they utilized, some modifications

have been also made to the algorithms to compute the closest distance to

the obstacle, and how the robot dynamics are handled. This modified

version of the controller that is utilized as the reference controller is called

DLS-APF controller and each of the required variations are covered from

the theoretical design point of view in the following sections.

5.1 Design Basics

In this section, the design requirements are presented as well as an

overview of the proposed control architecture that allows the latter

implementation of the controller in Chapter 7. In this manner, the design

requirement presents the criteria to bear in mind to achieve not only a

well performance of the controller but also a safe and trustworthy human-

robot shared environment. Additionally, the control architecture section

details the adjustments made on the control loop and the functionalities

of each of these modified control blocks, leaving the software architecture

aside for Chapter 7.

46 5 Obstacle and Singularity Handling Reference Controller

1: More or less, it is expected to update

the scene status between 5 and 10 times

each second, at least.

2: This requirement is obtained from

[37] datasheet. Another way to state this

requirement is the following:

𝑓𝑐𝑡𝑟𝑙 < 1𝐾𝐻𝑧.

3: This timing parameter is referred to

the required amount of time to process

the raw data given by the different sen-

sors of the scene.

4: This timing parameter is referred to

the time required by the external sensors

to obtain a full cycle of information of

the robot environment.

5: In a more compact statement, the re-

quirement can be summarized as follows:

𝑓𝑝𝑒𝑟𝑐 > 𝑓𝑝𝑟𝑜𝑐 > 𝑓𝑐𝑡𝑟𝑙 .

6: More specifically that a MoveIt Digital

Twin, it is referred to the pseudo-Digital

Twin generated in the ROS Parameter

Server. However, as it is MoveIt the one

in charge of the robot kinematics, it has

been employed MoveIt in the main text

instead.

7: A component can either be a software

functionality or new sensor information

of the collaborative task.

5.1.1 Requirements

The requirements presented in this section are exclusively related to the

developed controller requirement and the collaborative application. Since

auxiliary components as the vision systems are used as an additional

tool to test the controllers but they are not a goal of the Ph.D., their

requirements are not exposed
1
. Therefore, the requirements that the

controller have to meet are the following:

▶ Guarantee of safety at any time: the implemented controller cannot

violate the instrincis safety of the commercial cobot.

▶ Real time control cycle: the controller execution frequency must be

adequate to respond to robot application risks by communicating

with the robot controller without dropping any message (at least

of 500 Hz
2
).

▶ Avoiding any type of collision or non-critical safety stops: addi-

tional risk, collisions or singularity blocking conditions due to the

closest obstacle avoidance are not allowed.

▶ Adequate to perception and processing update rates: the percep-

tion data processing time
3

must be lower than the environment

perception time
4
, and the controller execution frequency must be

lower than both
5

to provide enough information of the environment

each control cycle.

▶ The controller should allow the simulation of the robot behavior:

the controller should also be a valid one for its Gazebo and MoveIt
6
,

allowing the simulation testing without risking components.

▶ Easy configurable collision avoidance parameters: the specific pa-

rameters as the maximum repulsive velocity must be easily tuneable

to adapt the controller to different collaborative applications.

▶ Tracking of the precomputed offline trajectory: while the robot is

not repelling a collision, the trajectory tracking during robot task

should minimize position and velocity errors.

Complementary to the controller requirements, the application require-

ments should fulfill the following criteria:

▶ Safe for the operator: under any circumstances the operator might

result endangered or harmed by any robot trajectory tracking or

collision avoidance movement.

▶ Movement without endangering other components: it means that

the application must allow robot movements without disregarding

the integrity of other device or sensor in the scene.

▶ Increase the efficiency of manual tasks: the process must be faster

than the manually done industrial task, though it is slower than a

fully automated one.

▶ Avoidance of non-critical safety stops: when the integrity of an

operator is not at risk, the controller safety breaks should not be

triggered.

▶ Modular and integrated application: the solution requires to be

versatile and flexible, allowing the quick integration of new com-

ponents
7

and enabling the synchronization with other machines.

By addressing both types of requirements the application and controller

requisites can be handled, enabling an efficient and safer interaction

between human and robots. In the section below, the proposed control

5.1 Design Basics 47

architecture proposed to fulfill all the presented requirements will be

detailed.

5.1.2 Control Architecture

The main modification made to the controller proposed at [18] is related

to the usage of a DLS kinematic model instead for the APF controller

proposed by those authors. This controller that combines a DLS kinematic

model whithin a APF controller for collision avoidance is denoted as DLS-

APF controller. This proposed control architecture can be appreciated in

Figure 5.1. As shown in this figure, the controller is divided into five big

blocks of functionalities, each one corresponding to one specific color.

Figure 5.1: Overview of the control diagram for the reference DLS-APF controller for collision avoidance and singularity handling.

From the five colour code, the control boxes coloured in dark green include

auxiliary capabilities for the DLS-APF controller such as the camera

driver manager, the trajectory planner, and the high level PID controller to

guarantee following a trajectory. The aim of this control boxes is to process

the environment of the robot and generate offline computed collision-free

trajectories to plan the reference trajectories for the robot operation. These

control boxes are the one in charge of feeding the controller with the

reference trajectory in the joint space(Q𝑡𝑟𝑎 𝑗 = {q𝑡𝑟𝑎 𝑗 , ¤q𝑡𝑟𝑎 𝑗 , ¥q𝑡𝑟𝑎 𝑗}), the

different raw depth maps and color images taken by the camera (D1 ·D𝑛),

and the attractive component of the APF (¤q𝑎𝑡𝑡) obtained from a negative

feedback control loop of the reference trajectory and the current state

of the robot (q, ¤q, ¥q for the angular position, velocity and acceleration,

respectively).

The light green coloured box is similar to the previous group because

it corresponds to the capabilities to command a specific robot. In other

words, it corresponds to the specific driver of the robot that communicates

a PC-based control architecture with the robot controller. Therefore, it

is in charge of creating a specific communication with the robot that

fits the application and its requirements. As latter exposed in Chapter 7,

two different drivers are going to be used for each of the uses cases (the

UR10e robot and the SUPSI robot).

In the case of the light blue box, the aim of this controller components is

to execute all the tasks relative to the environment segmentation. The

aim of this control box is to first filter the robot from the images and

then, analyze the remaining environment to segment the rest of the

elements of the picture depending on the desired interaction. In this way,

the static elements of the scene, the work piece and the obstacle can be

discerned to obtain different depth maps (D 𝑓 𝑖𝑙𝑡𝑒𝑟,1 · · ·D 𝑓 𝑖𝑙𝑡𝑒𝑟,𝑛) to allow

48 5 Obstacle and Singularity Handling Reference Controller

the interaction in the first two cases and avoid the collision in the last

case. A more in-depth view is given at the Subsection 5.2.1.

The yellow box corresponds to the DLS-APF Controller. This element of

the control loop computes the distance to the obstacle, the collision risk

index, the repulsive vector and the compensation due the DLS kinematic

model (addressed at Subsections 5.2.2, 5.2.3, 5.2.4, and 5.2.5, respectively)

in order to generate a suitable and reachable response for the robot for

avoiding obstacles. From the signals mentioned earlier, this component

feeds the control loop with the different repulsive joint velocities due to

the obstacle (¤q𝑟𝑒𝑝,𝑜𝑏𝑠), and top and bottom thresholds for limiting the

joint velocities to assure the safe operation (¤q−′
, ¤q+′

).

Lastly, the orange coloured box is related to the dynamics handling control

components. The aim of this control block is to introduce the dynamics

of the robot by limiting the torques, acceleration and velocities of the

robot according to its specifications. Therefore, the reactive kinematic

response is accommodated to robot reachable velocities for each control

cycle through a Bang-Bang Jerk Controller. Further details of how this

component works are given at Subsection 5.2.5 Damped Least-Square

(DLS) Kinematic Model.

5.2 APF Based Obstacle Avoidance Controller

In this section the modifications with respect to the Flacco and De Luca

controllers are explained. The contributions can be summed up into a

new scene segmentation algorithm to take advantage of the distance

measurement method, the usage of a DLS kinematic model instead,

the computation of the repulsive vector and its limiting thresholds,

and the new dynamics handler employed. Thus, this section covers the

general formulation and theoretical commonalities of the improvements

proposed for the reference controller. All the specific implementation

details of each component are addressed in Chapter 7.

5.2.1 Advanced Scene Segmentation

An adequate scene segmentation is a key component for the success of the

APF controller, though it is not an research objective of the Ph.D. Without

it, these type of controllers can misbehave, resulting in risk increase for

the operator. Since the particular implementation and available cameras

determine the selected vision algorithm, the specific vision algorithm

employed will be detailed in each implementation of Chapter 7. Therefore,

this section exposes the general considerations of the vision based filter

and segmentation that the selected algorithm must gather.

The Advanced Scene Segmentation algorithm aims to both: obtaining

a new depth map from which the robot is already filtered (D
∗
1
, · · · ,D∗

𝑛)

from the original pictures (D1 , · · · ,D𝑛), and utilizing the robot filtered

depth map to extract a set of new depth maps with relevant features

for the application (D 𝑓 𝑖𝑙𝑡𝑒𝑟,1 , · · · ,D 𝑓 𝑖𝑙𝑡𝑒𝑟,𝑛). Therefore, the control loop

from Figure 5.1 can be more detailed expanding the functionalities as

displayed in Figure 5.2.

5.2 APF Based Obstacle Avoidance Controller 49

Figure 5.2: Detail on the Vision Process-

ing control component for the DLS-APF

controller.

8: This last group, is the one where the

operators of a manufacturing process are

included

9: In case this last fact is not possible,

they should be included in the obstacle

related depth map to avoid crashes that

can break the robot, the gripper or any

other element or sensor.

In this manner, the first challenge that the Advanced Scene Segmentation

algorithm faces is to filter the robot from the depth scene. As seen in the

Chapter 2 State of the Art and Objectives, the main problem filtering the

robot lies in the fact that it corresponds to an element of the scene that

can be dynamic or static according to the part of the manufacturing task

that is executing. This duality bounded to the randomness of a reactive

collision avoidance environment forces the usage of Digital Twin based

filters or Artificial Intelligence (AI) based filter to delete the robot from

the colour or depth image [64].

Subsequently, the depth map should be processed to extract from the

remaining elements of the scene the features as how many and where are

the workpieces or static elements, or where and how are the obstacles

moving
8
. This type of image processing filter usually combines colour

images with depth images to generate a segmentation similar to the one

appreciated in Figure 5.3. In this Ph.D., at least the information relative to

the dynamic obstacles have to be extracted from the depth map to feed the

controller with it in order to avoid them as risky objects that compromises

the safety of the application. However, it is also convenient to segment the

workpieces and the static elements of the scene to allow the manipulation

and the approach of the robot without being repelled
9
. More detail about

how the advanced scene segmentation filter can be found in Chapter 7

while describing the implemented vision algorihtms.

Figure 5.3: Example of an advanced scene segmentation of the robot environment: (a) Raw data obtained from the camera sensor. (b)

Static elements of the scene and workpieces segmentation. This segmentation helps in selecting which elements of the scene are static to

interact with them for planning and grasping tasks (c) Dynamic obstacle (operator) segmentation. In this control algorithms, they are

considered as the obstacles to be avoided.

50 5 Obstacle and Singularity Handling Reference Controller

Once this image processing has been done, the obtained depth map are

fed to the DLS-APF Controller component to interact as desired with the

environment.

5.2.2 Distance to the Obstacle Computation

The first of the components in which the DLS-APF Controller component

can be decomposed is in charge of computing how far the obstacle

is to the robot through the information given by the aforementioned

segmented depth maps. A depth map image is a projective space in ℝ3

that represents the projection of a Cartesian point onto a plane and the

distance between the point and the plane (see Figure 5.4). The conversion

is facilitated by the intrinsic an extrinsic parameters camera parameters.

On the one hand, the intrinsic parameters corresponds to the focal lengths

for both axes (𝑓𝑠𝑥 , 𝑓𝑠𝑦) and the optical center pixel coordinates (𝑐𝑥 , 𝑐𝑦).
On the other hand, the extrinsic parameters correspond to the rotation

matrix between the camera reference and the global reference frame

(R
𝑐
𝑟 ∈ ℝ3×3

), and the translation between both reference frames (t
𝑐
𝑟 ∈ ℝ3

).

By utilizing the intrinsic parameters (the projection matrix specifically,

P ∈ ℝ3×3
) the transform between a point in the optical frame and the

camera frame can be computed as follows:

Figure 5.4: Representation of the depth space within the 3D Cartesian space, illustrating the projection process and frames involved.

P =

𝑓𝑠𝑥 0 𝑐𝑥
0 𝑓𝑠𝑦 𝑐𝑦
0 0 1

 (5.1a)

𝑥𝑑 =
𝑥𝑐 𝑓𝑠𝑥
𝑧𝑐

+ 𝑐𝑥 , 𝑦𝑑 =
𝑦𝑐 𝑓𝑠𝑦

𝑧𝑐
+ 𝑐𝑦 , 𝑑 = 𝑧𝑥 (5.1b)

Furthermore, with the extrinsic parameters the position of a point accord-

ing to the optical frame can be calculated thanks to the transformation

between the optical frame and the camera (H
𝑐
𝑟 ∈ ℝ4×4

):

5.2 APF Based Obstacle Avoidance Controller 51

H
𝑐
𝑟 =

[
R
𝑐
𝑟 t

𝑐
𝑟

0 1

]
, p𝑐 = R

𝑐
𝑟p𝑟 + t

𝑐
𝑟 (5.2)

In addition to the segmented environment depth images, the controller

lies on the Control Points (𝑐𝑝𝑖) to compute the distances to the obsta-

cle. The control points are spots virtually positioned equidistantly and

distributed along the robot structure that will help in measuring the

distances between the robot and the different obstacles that surrounds

it. Figure 5.5 includes an example of distances and Control Points dis-

tribution to help understanding this concept. Therefore, the computed

distances to feed the DLS-APF Controller are computed according to the

distance from the obstacle to 𝑖-th control point in the depth map.

Figure 5.5: Example of Control Points

distribution along the SUPSI robot.

Since the extrinsic and intrinsic parameters of the camera are known, the

transform of the Control Points reference frames position (from the ROS

Parameter Server virtualization) to the depth space is straightforward to

obtain. In this manner, the pixel location of the Control Points is known

in the depth space. The main consideration to compute these distances

(d = (𝑑𝑥 , 𝑑𝑦 , 𝑑𝑧)) from a depth image are the occlusions as only the first

pixel is read in the depth image. To come up with a solution, Flacco et

al. solve this issue by computing the distance to the pixel projection line

instead [63]. Therefore, the collision will be likewise avoided because if

the obstacle is occluded, the minimum distance cannot be lesser than

the distance with the closest projection line that masks the obstacle

behind the pixel. The calculation of the distance between the obstacle

(o = (𝑜𝑥 , 𝑜𝑦 , 𝑜𝑧)) and the control point (p = (𝑝𝑥 , 𝑝𝑦 , 𝑝𝑧)) is computed as

indicated in equation 5.3 (visually represented in Figure 5.6).

𝑑𝑥 =
(𝑜𝑥 − 𝑐𝑥)𝑜𝑑 − (𝑝𝑥 − 𝑐𝑥)𝑝𝑑

𝑓𝑠𝑥
(5.3a)

𝑑𝑦 =
(𝑜𝑦 − 𝑐𝑦)𝑜𝑑 − (𝑝𝑦 − 𝑐𝑦)𝑝𝑑

𝑓𝑠𝑦
(5.3b)

𝑑𝑧 = 𝑜𝑑 − 𝑝𝑑 (5.3c)

A problem with this approach is that modelling an obstacle as a single

point leads to inaccurate distance measurement as identified in their

52 5 Obstacle and Singularity Handling Reference Controller

Figure 5.6: Depth space distance evalua-

tion by pixel center projection line. Show-

ing examples of the two possible cases

𝑜𝑑 < 𝑝𝑑 (O1) and 𝑜𝑑 ≥ 𝑝𝑑 (O2). Figure

from [63].

second work [18]. To solve this issue, in their later work they propose

to compute the minimum distance to the occluded volume by the pixel

(shaped as a rectangular frustum). Thus, the closest distance to the

obstacle is computed on a two steps process which computes first the

closest subpixel along the edge of the 2D pixel grid (ô = (ô𝑥 , ô𝑦 , ô𝑧)) and,

subsequently, substitutes the original p = (𝑝𝑥 , 𝑝𝑦 , 𝑝𝑧) from equation 5.3

by ô = (ô𝑥 , ô𝑦 , ô𝑧). This two-step process is visualized in Figure 5.7 while

the computation of ô is observed in equation 5.4.

Figure 5.7: Depth space distance evalua-

tion by pixel frustum projection. Show-

ing examples of the two possible cases

�̄�𝑑 < 𝑝𝑑 (Ô1) and �̄�𝑑 ≥ 𝑝𝑑 (Ô2). Figure

from [18].

�̂�𝑥 =

�̂�𝑥 if 𝑝𝑥 < �̄�𝑥

�̂�𝑥 + 1 if 𝑝𝑥 > �̄�𝑥 + 1

𝑝𝑥 otherwise

(5.4a)

�̂�𝑦 =

�̄�𝑦 if 𝑝𝑦 < �̄�𝑦

�̄�𝑦 + 1 if 𝑝𝑦 > �̄�𝑦 + 1

𝑝𝑦 otherwise

(5.4b)

�̂�𝑑 = �̄�𝑑 (5.4c)

Once these distances are computed, to perform a more efficient depth

space search of the closest obstacle, it has been defined a region of interest

(ROI) around each Control Point. In this manner, instead of searching

in the whole depth map for the obstacle, it only will be searched in

the vicinity of the Control Point according to a configurable maximum

5.2 APF Based Obstacle Avoidance Controller 53

10: The upper and lower limit joint ve-

locities are denoted as ¤q+′
, and ¤q−′

, re-

spectively

11: In other words, each risk index com-

puted can only limit the previous joints

from where it is place in the robot struc-

ture.

12: Corresponding to 𝑞+
𝑖

or ¤𝑞−
𝑖

whether

it is referred to the upper or the lower

limit.

distance parameter (𝜌). This region of interest is defined as a frustum in

the depth space whose corners are given by equation 5.5.

ROI = [𝑝𝑥 −
𝑥𝑠

2

, 𝑝𝑥 +
𝑥𝑠

2

] × [𝑝𝑦 −
𝑦𝑠

2

, 𝑝𝑦 +
𝑦𝑠

2

] × [𝑝𝑑 − 𝜌, 𝑝𝑑 + 𝜌]

(5.5a)

where: 𝑥𝑠 = 𝜌
𝑓𝑠𝑥

𝑝𝑑 − 𝜌
, 𝑦𝑠 = 𝜌

𝑓𝑠𝑦

𝑝𝑑 − 𝜌
(5.5b)

Lastly, it is convenient to note that the distances still need to be checked

to be smaller than 𝜌, otherwise the region of interest in the depth

map can include pixels further from the limit depth value. Once these

distances are computed, they are shared with the Collision Risk Indexes

and the Repulsive Component control block as shown in the following

subsections.

5.2.3 Collision Risk Indexes Computation

The collision risk indexes (𝑓𝑐𝑝𝑖) are one of the main parts that compose

the DLS-APF controller proposed. The collision risk indexes are the

responsible to limit the joint velocities
10

, preventing the robot body from

colliding accidentally with another obstacle of the scene while avoiding

the collision with the closest obstacle to the TCP. These indexes are

nourished by the information given from the Distances Computation

component, more specifically they utilize the minimum distance to the

closest obstacle from the 𝑖-th Control Point (see equation 5.6).

𝑓𝑐𝑝𝑖 =
1

1 + 𝑒(𝑑
𝑐𝑝𝑖
𝑚𝑖𝑛

2/𝜌−1)𝛼
(5.6)

After computing the collision risk indexes, their influence have to be

applied into each joint they are related to. To do so, the collision risk

indexes have to be scaled by the minimum distance unitary vector to

each control point (d

∗,𝑐𝑝
𝑚𝑖𝑛

). Subsequently, they are also projected into

the joint space through the Jacobian of each of the control point (J𝑐𝑝𝑖
)
11

.

Both operation have been joined below into a single step in equation 5.7

where the influence of each control point into the joint limits (s𝑜𝑏𝑠) is

computed.

s𝑜𝑏𝑠 = J𝑐𝑝𝑖
d

∗,𝑐𝑝𝑖
𝑚𝑖𝑛

𝑓𝑐𝑝𝑖 (5.7)

Finally, the joint velocity limits are then obtained for the 𝑖-th joint thanks to

combination the specific collision risk index, the joint risk influence, and

the design joint velocity limit to guarantee operator safety
12

(see equation

5.6. The computed joint velocity limit will downscale the computed

response given by the repulsive vector.

if 𝑠𝑖 ≥ 0, ¤𝑞+′
𝑖 = ¤𝑞+𝑖 (1 − 𝑓𝑐𝑝𝑖),

else, ¤𝑞−′
𝑖 = −¤𝑞+𝑖 (1 − 𝑓𝑐𝑝𝑖)

(5.8)

54 5 Obstacle and Singularity Handling Reference Controller

13: As the repulsive vector comes from

the depth map computed distances and

the easiest way to interpret it is a twist

according to the closest distance to the

TCP.

14: d𝑚𝑖𝑛 = min
d∈D𝑒𝑒 |d| .

15: The higher value 𝛼 takes, the more

abrupt slope will present the sigmoid

function

The computation of the joint velocity limits (equations from 5.6 to 5.8)

can be express as a control block diagrams as shown in Figure 5.8.

Figure 5.8: DLS-APF Controller: collision risk index computation blocks.

5.2.4 Repulsive Component Computation

The repulsive component or the repulsive joint velocity due to the obstacle

avoidance (v𝑟𝑒𝑝,𝑜𝑏𝑠 ∈ ℝ3
) aims to generate a virtual repulsive velocity

field which pushes the robot away from the path of the obstacle to

avoid. Since the repulsive vector (t) is computed in the task space
13

, the

obtention of the repulsive joint velocity requires the Inverse Kinematic

(IK) of the manipulator. In this way, the repulsive joint velocity vector

also relies in the pseudo-inverse Jacobian (J
†
) from the DLS kinematic

model (further addressed in Subsection 5.2.5) as displayed in equation

5.9.

¤q𝑟𝑒𝑝,𝑜𝑏𝑠 = J(q)†t where: t =

[
v𝑟𝑒𝑝,𝑜𝑏𝑠

0

]
(5.9)

The general approach to compute the repulsive vector, is by using the

direction of the average location of the surrounding obstacles and the

magnitude based on the minimum distance among all obstacles. The

average distance (d𝑚𝑒𝑎𝑛) is computed as the mean distance taking into

account all the distances between the outside pixels of the obstacle in the

depth map and the TCP (D𝑒𝑒) as calculated in equation 5.10. The average

distance vector is also employed to compute the unitary vector of the

repulsive velocity, since they coincide (i.e. v𝑟𝑒𝑝∗ = d
∗
𝑚𝑒𝑎𝑛). This averaging

strategy has been selected to make the system more resistant to noise

when the end effector is partially surrounded.

d𝑚𝑒𝑎𝑛 =

∑
d∈D𝑒𝑒

d

𝑛(D𝑒𝑒)
(5.10)

The module of the repulsive velocity vector is afterwards computed for

the smallest distance to the end effector
14

. It creates a velocity mapping

ruled by a sigmoid function, similar to the one from Figure 5.9 (it can

vary depending on the selected parameters), presented in equation 5.11

where the saturation limit correspond to a user set maximum velocity

parameter (|v𝑚𝑎𝑥,𝑜𝑏𝑠 |). This sigmoid function also leans in the threshold

distance set to compute the ROI from the previous subsection and a

shaping factor (𝛼15
), both parameterized by the user according to the

application.

|v𝑟𝑒𝑝,𝑜𝑏𝑠 | =
𝑣𝑚𝑎𝑥,𝑜𝑏𝑠

1 + 𝑒(|d𝑚𝑖𝑛 |
2

𝜌−1)𝛼
(5.11)

5.2 APF Based Obstacle Avoidance Controller 55

Figure 5.9: Sample profile of the repulsive vector magnitude function. Parameters used: |v𝑚𝑎𝑥 | = 3m/s, 𝜌 = 0.4m and 𝛼 = 6. Figure from

[18].

17: Since the State of the Art has shown

that it is the most widely used option.

The computed velocity repulsive vector is computed in the end effector

frame, however it is desired to know the influence from the world

reference frame, the repulsive vector should be rotated employing the

corresponding rotation matrix as shown in equation 5.12.

v𝑟𝑒𝑝,𝑜𝑏𝑠 = R
𝑟
𝑒𝑒v𝑟𝑒𝑝 𝑒𝑒

(5.12)

Where v𝑟𝑒𝑝,𝑜𝑏𝑠 correspond to the repulsive velocity due to the obstacle

in the task space computed in the robot base reference frame, R
𝑟
𝑒𝑒 is the

rotation matrix from the end efector to the robot base frame, and v𝑟𝑒𝑝 𝑒𝑒

corresponds to the repulsive velocity of the obstacle in the task space

computed in the end effector reference frame.

By implementing the equations above in the control algorithm, the robot

will move in a straight line away from the obstacle whenever it is close

enough to activate the repulsion policy. In [63], the authors also provide

a pivoting repulsive vector to take into account the variations of the

direction in the velocity of the obstacle
16

16: Note that it can be computed as fol-

lows:

¤v𝑟𝑒𝑝,𝑜𝑏𝑠 =
Δ𝑢

Δ𝑡
v𝑟𝑒𝑝,𝑜𝑏𝑠 ,

where ¤v𝑟𝑒𝑝,𝑜𝑏𝑠 is the pivoting vector ve-

locity,
Δ𝑢
Δ𝑡

represents the variation of the

direction of the velocity with respect to

the time, and v𝑟𝑒𝑝,𝑜𝑏𝑠 is the computed

repulsive velocity due to the obstacle.

. With all this equations, the

control block diagram of DLS-APF Controller can include the following

blocks displayed in Figure 5.10.

Figure 5.10: DLS-APF Controller: repulsive vector computation blocks.

5.2.5 Damped Least-Square (DLS) Kinematic Model

The Jacobian matrices utilized in Subsections 5.2.3 and 5.2.4 project the

computed Cartesian components from the task space to the joint space. To

make this conversion possible, the APF based controller uses the IK model.

Contrary to the Jacobian right-pseudo inverse as proposed in the reference

work [18], this work promotes the usage of the DLS kinematic model

56 5 Obstacle and Singularity Handling Reference Controller

18: Mathematical formulation of DLS

kinematic models:

¤q = J
𝑇 (JJ𝑇 + �2

I𝑛)−1 ¤x𝑒 .

19: It means their inverse will coincide

with their regular matrix. For further

knowledge about the wDLS and other

generalized inverse kinematic models

check out [132].

instead
17

. This contribution to the reference controller has been made

to simultaneously handle the singular configurations while avoiding

obstacles through a APF based controller. More specifically, this work

proposes the usage of a weighted Damped Least Square (wDLS) algorithm

from [131] instead of a basic DLS one.

The selected wDLS kinematic algorithm differs from the traditional DLS
18

in that it encapsulates the resultant matrix that multiplies the Cartesian

velocity in a single weighted pseudo inverse Jacobian (J
†
). Therefore, the

inverse kinematics algorithms is based on a weighted pseudo inverse

with damped least-square to calculate the transformation from the task

space to the joint space. The computation of the weighted pseudo inverse

Jacobian is presented in equation 5.13.

J
† = (M𝑞)−1

B(M𝑥)−1

(5.13)

Bearing in mind that B corresponds to the SVD decomposition perse

(B = U𝐵𝚺𝐵V
′
𝐵
), and that both joint space weighting symmetric matrix

(M𝑞) and task space weighting symmetric matrix (M𝑥) are symmetric

matrices
19

, the equation 5.13 can be transformed into the expression

displayed in equation 5.14 [131].

J
† = M𝑞B𝐵𝚺𝐵U

′
𝐵M𝑥 (5.14)

Consequently, the IK model output for the joint velocities can be computed

thanks to the Jacobian obtained from the wDLS kinematic model and

the current task space velocities (linear and angular) of the end effector

as in equation 5.15.

¤q = J
† · ¤x (5.15)

5.2.6 Dynamics Handling: Ruckig

The final layer prior to the ROS-based robot driver is computing a suitable

control signal to be followed by the robot. This implies computing a

control signal that can be tracked by the low-level controllers of the robot

control box. Therefore, the dynamics of the robot must be taken into

account. Instead of building the whole dynamic model of the robot, due

to be more efficient, the Ruckig Library has been employed instead of the

original Reflexxes Type IV Motion Library as proposed in [18].

The joint velocities signals (¤q𝑡) that arrives to the Bang-Bang Jerk Con-

troller component (the one that integrates the usage of Ruckig library)

are the addition of the attractive component of the velocity (¤q𝑎𝑡𝑡) and

the repulsive velocity (¤q𝑟𝑒𝑝,𝑜𝑏𝑠). On the one hand, the attractive joint

velocity is computed by MoveIt and goes though a Proportional-Integral-

Derivative (PID) controller to track the precomputed trajectory. On the

other hand, as seen in Subsection 5.2.4, the repulsive component is

computed utilizing from equation 5.9 to 5.12. These relation between

both velocities is expressed in equation 5.16.

¤q𝑡 = ¤q𝑎𝑡𝑡 + ¤q𝑟𝑒𝑝 (5.16)

5.3 Conclusions to Chapter 5 57

On top of this, as explained in Subsection 5.2.3, the joint velocity limits

downgrade the velocity obtained from equation 5.16. Consequently, the

velocity that arrives to the Bang-Bang Jerk Controller will be the one

filtered according to the APF to avoid the collision. At this point, the

Ruckig library will take the physical joint limits of each robot actuator

(the maximum jerk, acceleration, velocity and position) and compute a

suitable state for each controller step. This is possible since Ruckig is

an Online Trajectory Generator (OTG) library which interpolates with a

time optimal joint space trajectories from a given joint state to the desired

joint state [133]

5.3 Conclusions to Chapter 5

In Chapter 5 the reference controller design considerations are exposed.

The original control loop exposed in Figure 5.1 has been detailed along all

the chapter. On the one hand, the advanced scene segmentation filter has

been decoupled into the robot filter and the scene features segmentation

components. In addition to that, the mathematical formulation of the APF

based controller has been exposed, addressing topics as the computation

of the distance to the obstacle, the collision risk indexes and repulsive

component calculation, and also the wDLS kinematics and the dynamics

handled by Ruckig, leading to the DLS-APF controller. With all these

considerations and formulations, the final control architecture results

as shown in Figure 5.11. However, the presented controller still have the

drawback not avoiding singular configurations [117, 131], a solution is

proposed in Chapter 6.

Figure 5.11: Final control loop of the reference controller based on a wDLS control architecture.

Dual Artificial Potential Field

(d-APF) Based Controller 6

6.1 Design Basics 59

6.1.1 Requirements 60

6.1.2 Control Architecture . . . 60

6.2 APF Based Obstacle

Avoidance Component . . 61

6.2.1 Decoupled Kinematic

Model 62

6.2.2 Dynamics Handling:

Ruckig 63

6.3 APF Based Singularity

Avoidance Component . . 63

6.3.1 Singularity Distance

Computation 64

6.3.2 Singularity Proximity

Risk Index Computation . 66

6.3.3 Singularity Repulsive

Component Computation 67

6.4 Conclusions to Chapter 6 69

As exposed in Chapter 2, State of the Art and Objectives, current singu-

larity handling techniques combined with collision avoidance controllers

do not guarantee avoiding singular configurations that activates the

emergency safety stops of cobots. The reference controller explained

in Chapter 5 is no exception of this [117, 131]. In order to face these

limitations, a novel kinematic model is proposed in Chapter 4 to sim-

plify the cobots kinematics through the decoupling of the position and

orientation. However, the model by itself does not avoid the singular

configurations, it does require an specific controller that take advantage

of the closed set of solutions for the IK and the singular configurations to

avoid simultaneously the collision and the singularities.

For these reasons, this chapter presents the theoretical bases to imple-

ment a novel controller that addresses both simultaneously. This novel

controller can be considered other main contribution of the current

work. The followed strategy consists of combining two APF: the first one

for avoiding the obstacle while the remaining APF is for evading the

singularities. Thanks to the proposed kinematic model from Chapter 4,

the obtainable joint dependent singularity characterization is utilized to

compute the distances to the singularity and the virtual potential func-

tions to avoid them. Then, the repulsive component computed with this

characterization is added up to the repulsive vector due to the obstacle,

allowing the simultaneous avoidance of singularities and collisions. Due

to this dual behavior, the proposed controller has been named as the

dual Artificial Potential Field (d-APF) controller.

Consequently, Chapter 6 addresses how to obtain the aforementioned

joint dependent characterization of the distance to the singularity and

how to compute the repulsive component due to the singularity (based

on the prior joint dependent characterization). On top of this, Chapter 6

also explains the main contribution to the robotics control algorithms

of this work which based on the combination of two different APF,

one for avoiding the collisions with obstacles and one for repelling the

manipulator from the singular (or blocking) configurations. This novel

control architecture, denoted as dual Artificial Potential Field (d-APF)

controller, is obtained through the required modifications to the reference

DLS-APF controller from Chapter 5 by substituting the wDLS kinematic

model for the proposed in Chapter 4. As in the previous chapter, the

implementation aspects on specific hardware have been reserved for

Chapter 7.

6.1 Design Basics

The Design Basics section presents an overview on the controller require-

ments and the control architecture. Since the proposed novel approach

lies in the reference controller, the aspects explained below are restricted

to the contribution of the d-APF controller. In other words, there will be

60 6 Dual Artificial Potential Field (d-APF) Based Controller

explained the contribution of adding up two different potential fields

to avoid singularities and obstacles simultaneously to keep shop floor

safety without disregarding the manufacturing efficiency.

6.1.1 Requirements

Regarding the requirements for the d-APF controller, they are, indeed, the

same as the ones presented in Chapter 5 to allow the proper comparison

between the reference controller (DLS-APF controller) and the proposed

one (d-APF controller). As a reminder, the controller requirements can

be found at Subsection 5.1.1.

Achieving these requirements will aid enabling an efficient and safer

interaction between human and robots on industrial collaborative scenar-

ios. The following section proposed the modified control architecture to

fulfill the aim of this work: achieving safe and efficient robotic operation

for industrial collaborative scenarios. In other words, to keep a robot pro-

ducing alongside human operators without harming them nor reducing

the manufacturing performance on protection-free spaces.

6.1.2 Control Architecture

The proposed control architecture for the d-APF controller in big block

of functionalities can be appreciated in Figure 6.1. It might seem that

the purple control block is the only difference according to the reference

controller; however, the utilization of a singularity avoidance APF implies

slight variations on some of the remaining control blocks. Therefore, this

section highlights briefly the required modification with respect to the

DLS-APF reference controllers in order to help a better understanding of

the main contribution of this work.

Figure 6.1: Overview of the control diagram for the proposed d-APF controller for collision avoidance and singularity handling.

From among the coloured control blocks of Figure 6.1, the ones that

received some modification correspond to the yellow and purple control

boxes (relative to the obstacle and singularity avoidance, respectively). On

top of that, the orange control block (the one referred to the Bang-Bang

Jerk Controller to handle inherently the dynamics of the robot, does not

received a modification as if, but the signals that arrives to that control

block are modified. Instead of receiving just a single repulsive component

due to the obstacles (¤q𝑟𝑒𝑝,𝑜𝑏𝑠) and the limiting joint velocities vectors

6.2 APF Based Obstacle Avoidance Component 61

(¤q+′
, ¤q−′

), it also receives the repulsive component to avoid the singular

configurations (¤q𝑟𝑒𝑝,𝑠𝑖𝑛𝑔) to be added to the attractive component of the

APF (¤q𝑎𝑡𝑡). The differences with the previous Bang-Bang Jerk controller

are addressed in Subsection 6.2.2.

Consequently the purple control box has been proposed as a contribution

to the original control loop to integrate the simultaneous collision an

singularity avoidance. This component, so called Singularity Avoidance

APF, aims to generate a suitable singularity avoidance control response

that can be added to the response due to the obstacle avoidance block.

To synchronize the obstacle avoidance component with the singularity

avoidance one, two signals are employed: the activation factor (f𝑎𝑐𝑡) that

will activate the singularity repulsion only whenever the robot is avoiding

and obstacle, and the singularity proximity risk index (f𝑐𝑝,𝑠𝑖𝑛𝑔) which

measures how close is each control point or joint to the singular config-

uration. The behavior of the purple control box and the improvements

required in the obstacle avoidance APF are addressed along Section

6.3.

The integration of the Singularity Avoidance APF control block to the

control loop brings some modifications to the regular control behav-

ior exposed in the previous chapter. First of all, it is remarkable that

the kinematic model to compute the responses is no longer the DLS

kinematic model, instead, the proposed decoupled kinematic model for

non-spherical wrist cobots from Chapter 4 is employed. This change

simplifies the complexity of the employed kinematic model reducing the

required computational cost and allowing the computation of a closed set

of singular configurations. These changes in the behavior of the controller

due to utilizing another kinematic model are explained in Subsection

6.2.1.

Through all the contributions proposed to the reference controller, the

new control loop helps in the computation of the controller velocity limits

to downscale the control velocity setpoing while avoiding singularities

during the collision avoidance in a more efficient and safer way.

6.2 APF Based Obstacle Avoidance Component

From the control architecture presented in Chapter 5, the scene segmen-

tation algorithm and the measure of the distances to the obstacle, as well

as the computation of the collision risk indexes and the repulsive vector

have been kept. On the contrary, the employed kinematic model for the

collision risk indexes and the repulsive vector, and the preparation of the

data before entering the dynamics manager (Rucking Bang-Bang Jerk

Controller control block) have been slightly adapted to adapt its behavior

to a simultaneous singularity and collision avoidance without saturating

the joint velocity control set point. Therefore, the implications in the

behavior of the control loop due to such changes are explained in the

following subsections.

62 6 Dual Artificial Potential Field (d-APF) Based Controller

1: Note that if the robot already has

an spherical wrist such as, for exam-

ple, in the case of the LBR IIWA cobot,

the required modification is even more

straightforward because it can be applied

the classic decoupled kinematic model

for spherical wrist robots instead.

2: Note that the proposed changes are

not a modification per se. The equations

both parameters employs are not mod-

ified as if, the only required change is

based on the usage of another Jacobian

model. Therefore, both parameters are

affected by the change of the kinematic

model, but their mathematical formula-

tion remains constant.

3: Equation 5.7 reminder:

s𝑜,𝑠 = J𝑐𝑝𝑖
d

∗,𝑐𝑝𝑖
𝑚𝑖𝑛

𝑓𝑐𝑝𝑖 .

4: Equation 5.8 reminder:

if 𝑠𝑖𝑜,𝑠 ≥ 0, ¤𝑞+′𝑖 = ¤𝑞+𝑖 (1 − 𝑓𝑐𝑝𝑖),

else, ¤𝑞−′𝑖 = −¤𝑞+𝑖 (1 − 𝑓𝑐𝑝𝑖).

5: Equation 5.9 reminder:

¤q𝑟𝑒𝑝,𝑜𝑏𝑠 = J(q)†t, where: t =

[
v𝑟𝑒𝑝,𝑜𝑏𝑠

0

]
.

6.2.1 Decoupled Kinematic Model

The main modification referred to the kinematic model employed is

that it employs the decoupled kinematic model for non-spherical wrist

robots intead of the DLS one. Since the decoupled kinematic model for

non-spherical wrist cobot is already in-depth explained in Chapter 4,

no additional notes will be given relative to the kinematic behavior of

the model
1
. However, this change in the kinematic model affects the

computation of both the collision risk indexes and the repulsive compo-

nent of the obstacle avoidance related control blocks, their mathematical

formulation remains unchangeable though
2
. Thus, the main contribution

of using the proposed decoupled kinematic model for cobots relies on

the simplification of the Jacobian matrix which enables the computation

of a closed set of solutions for both IK and singular configurations. These

solutions provide, on the one hand, more efficient computations during

trajectory planning operations, while they also avoid being trapped into

singular configurations during the collision avoidance phases. Thus, the

efficiency of the manufacturing processes is cared while the safety for

the operator is maintained.

Beginning with the risk collision index, the equation that is affected by

the change of the kinematic model is equation 5.7
3
. This mathematical

expression relies in the Jacobian matrix for each control point (J𝑐𝑝𝑖
) to

calculate the influence of each joint collision risk indexes. Therefore, the

new Jacobian matrices for each control point will be calculated with

respect to the non-spherical wrist decoupled kinematic model, instead.

Subsequently, this influence is utilized to compute the velocity limits

required to avoid crashing with the obstacle (see equation 5.8
4
).

As the velocity limits computation is exclusively referred to the collision

avoidance, their calculation will remain the same. However, the risk index

employed to compute the velocity limits will be modified to conform to

the singularity avoidance additional requirements. In this manner, the

global risk index will be a combination of each collision risk index: the

one due to the collision (check equation 5.6) and the collision risk index

due to singularity (explained section Subsection 6.3.2). The mathematical

relationship to combine both risk indexes can be appreciated in equation

6.1.

𝑓𝑐𝑝𝑖 = 𝑓𝑐𝑝𝑖 ,𝑜𝑏𝑠 + 𝑓𝑐𝑝𝑖 ,𝑠 𝑖𝑛𝑔 , where if 𝑓𝑐𝑝𝑖 > 1 ⇒ 𝑓𝑐𝑝𝑖 = 1 (6.1)

On top of this, given that equation 5.9
5

projects the repulsive vector

due to the obstacle avoidance into the joint space, the computation of

the obstacle avoidance repulsive vector is also affected by the change of

kinematic model. In this particular case, the equation is transform as

shown in equation 6.2.

¤q𝑟𝑒𝑝,𝑜𝑏𝑠 = J
−1(q)t where: t =

[
v𝑟𝑒𝑝,𝑜𝑏𝑠

0

]
(6.2)

From the equation below, and comparing its kinematic behavior with

the expression from equation 5.9 (the equivalent one from the reference

controller), the reader should note that for the new obstacle avoidance

repulsive vector, there is no treatment of the singularity yet. Up to this

6.3 APF Based Singularity Avoidance Component 63

6: Quick reminder, in the previous chap-

ter it arrives the expression from equa-

tion 5.16:

¤q𝑠𝑢𝑚 = ¤q𝑎𝑡𝑡 + ¤q𝑟𝑒𝑝 .

point, it is relevant to highlight that the advantage of the proposed

controller is to evade the singularity, not to handle it to change the robot

behavior in the nearby configurations. Therefore, to avoid falling into

a singular region where the robot misbehave kinematically, the d-APF

controller proposes a repulsive component that pushes the robot away

from those configurations. Therefore, no singularity handling technique

is required in the Jacobian matrix as the robot does not goes around the

vicinities of a singular configuration.

The calculation of both, the singularity risk index and the singularity

repulsive force, are further addressed in the following section (Section

6.3) where all the components to repell the robot from the singularities

are explained in detail.

6.2.2 Dynamics Handling: Ruckig

With respect to the dynamics handled by the Ruckig the Online Trajectory

Generator (OTG) minimal changes have been made. These modifications

can be summed up into two main amendments. The aim of these changes

is to prepare the robot dynamic handler to limit properly the robot joints

velocities due to the combined action of the repulsive responses.

The first variation is related to the downscale control block utilized to

limit the velocities to avoid the collision in the reference controller. Since

in the d-APF controller the risk index is a combination of the singularity

proximity risk index and the collision risk index (see equation 6.1), the

downscaling obtained prior to the bang-bang jerk controller control block

is referred to both. It means that the downscaling can limit the movement

of any joint depending on how close is to a collateral collision and to

a singular configuration simultaneously. This behavior is expected to

increase the safety and efficiency of the application as no controller box

safety stop is required to handle it dynamically.

The other modification is referred to the control signal that arrives to

the downscaling block
6
. In the d-APF controller, two repulsive forces

are computed that must be added up to the attrative potential reference.

Therefore, the expression to compute the resultant component to be

handled by the downscale control block before downscaling the velocities

is shown below in equation 6.3.

¤q𝑡 = ¤q𝑎𝑡𝑡 + ¤q𝑟𝑒𝑝 = ¤q𝑎𝑡𝑡 + J
−1 ·

([
v𝑟𝑒𝑝,𝑜𝑏𝑠

0

]
+

[
v𝑟𝑒𝑝,𝑠𝑖𝑛𝑔

0

])
(6.3)

How to implement and configure the Ruckig library is further addressed

in the following chapter (Chapter 7) where all the implementation details

are displayed.

6.3 APF Based Singularity Avoidance

Component

In the previous section, it has been hinted that the potential of the pro-

posed approach (the d-APF controller) relies in the capabilities of pushing

64 6 Dual Artificial Potential Field (d-APF) Based Controller

7: Where there is a collision risk prox-

imity index to limit the joint velocities,

evading non-desired collisions with the

body of the manipulator, and a repulsive

force due to the closest obstacle to the

end effector.

8: Note that there is not a specific dis-

tance to define a singular region even. In

this thesis the criterion exposed in [105]

has been chosen. However, the authors

generally refers as a singular region to

those configurations where the manipu-

lability ellipsoid collapses and the robot

misbehaved, but they do not give any

particular specification.

9: As seen in the State of the Art, it is

considered one of the most utilized.

10: In this case, 𝑛 is the DoFs of the robot,

so it can be 6 or 7.

the robot away from the singularity instead of applying any singularity

handling technique. This behavior brings two main advantages: on the

one hand, no additional singularity handling algorithms is required for

the kinematics of the robot and, on the other hand, since the decoupled

kinematic model presents a simpler version of the Jacobian matrix, the

computations of the responses will be more efficient. These two advan-

tages have been tested in Chapter 8. Nevertheless, in the current section

the mathematical formulation to implement the singularity avoidance

component is detailed.

The proposed controller can be split into two big functionality blocks:

the singularity proximity risk indexes and the singularity repulsive

component. This division is similar to the one found for the obstacle

avoidance component
7
. Therefore, the singularity proximity risk will be

in charge of limiting the joint velocities to avoid entering in a singular

configuration while avoiding the obstacle. Moreover, the singularity

repulsive component handles the evasion of the singular configuration

pushing the robot away from those positions.

In order to put these two functionalities to work, the distance to the

singularity has to be measured. This can be a controversial point because

there is no standardized way to measure how close the robot is to the

singular region
8
. This work establishes a method to measure the distance

to the singularity based on the joint dependent singular configurations

characterization obtained from the robot kinematic decoupling (for

further knowledge check Subsection 6.3.1).

Once the distance to the singularity has been evaluated, the singularity

proximity risk index computation and the singularity repulsive vector

control blocks are fed with this data. In the following subsections, each

of the aforementioned aspects will be specifically addressed from the

singularity distance computation, to the singularity repulsive vector

calculation.

6.3.1 Singularity Distance Computation

As stated, the measurement of how close or far the robot is to a singular

configurations is not univocally defined. This issue can be solved by

different measures such as the manipulability computation
9
. However,

this method brings the drawback of continuously computing the deter-

minant of the Jacobian, which in a case of a 6 or 7 DoFs robot introduces

a high computational load to the control algorithm, as shown in the

literature (Section 2.1 State of the Art). Since with the proposed kinematic

model, from Chapter 4, a close set of joint dependent solutions for the

inverse kinematics can be obtained, the d-APF controller proposes a

more efficient measure of the distance to the singularity based on this

characterization.

Ideally, from the joint dependent characterization of the singular con-

figurations a set of 𝑛10
equations should describe the conditions to

check whether the robot is in a singularity or not. In addition, the

joint dependant singularity expressions correspond to a combination

of trigonometric functions described by the coupling of different joints.

Bearing this two facts in mind, this Ph.D. proposes the usage of a distance

to the singularity vector (d𝑠𝑖𝑛𝑔 ∈ ℝ𝑛
) defined by the gradient or the

6.3 APF Based Singularity Avoidance Component 65

11: In order to compute this value, a typ-

ical advanced calculus study involving

the second order derivative is required.

This study can be executed offline to

lighten the computational load of the

singularity distance computation block.

12: In general, both equations can be

summarized as follows:

|J| = |J
11
| · |J

22
| = 0.

13: This variation rate is relevant be-

cause sin and cos trigonometric func-

tions present a slow variation when

they are close to 1. Indeed, the closer

the ∇ 𝑓𝑖(𝑞𝑖) function is closer to 1, the

grater slope is in the non-derived func-

tion (𝑓𝑖(𝑞𝑖)). In other words, whenever

the derivative (sin or cos) is equal to 1,

the original function has maximum gra-

dient or slove, and will be a candidate to

be singular.

slope of the normalized singularity characterized functions (see equation

6.4).

d𝑠𝑖𝑛𝑔 =
[
𝑓 (|J

11
|)𝑞1

· · · 𝑓 (|J
22
|)𝑞𝑛−2

𝑓 (|J
22
|)𝑞𝑛−1

𝑓 (|J
22
|)𝑞𝑛

]𝑇
(6.4)

The key for the success of the proposed singularity distance measurement

lies in a suitable definition of the normalized singularity characterized

functions (𝑓 (|J𝑖𝑖 |)𝑞 𝑗 , Where 𝑖𝑖 is referred to the respective Jacobian block

matrix, and 𝑗 is related to the joint number from which is computed

the singularity function; in other words, the joint that is characterized

for the resultant expression to nullify the |J|). By normalized is meant

that each function has its image limited in the [0, 1] interval. To do

so, each of the singularity characterized functions will be divided by

its maximum possible value
11

. Moreover, the singularity characterized

functions correspond to the parametric expression where each solution

of equations 4.16 (for 6 DoFs) and 4.17 (for 7 DoFs)
12

can be found. In

this manner, each of Jacobian block matrix can be studied independently,

obtaining a function for each one. Since the proposed model allows

the kinematic decoupling, the characterization for the first 𝑛 − 3 joints

corresponds to the J
11

Jacobian block matrix (see equation 6.5a), and the

remaining three to the J
22

Jacobian block matrix (check equation 6.5b).

|J
11
| = 𝑓 (𝑞1 , · · · , 𝑞𝑛−3) = 0 (6.5a)

|J
22
| = 𝑓 (𝑞𝑛−2 , 𝑞𝑛−1 , 𝑞𝑛) = 0 (6.5b)

Subsequently, the joint dependant characterization is computed extracting

the common terms for each joint of the expressions as displayed below

in equation 6.6.

|J
11
| = 𝑓 (𝑞1 , · · · , 𝑞𝑛−3) = 𝑓1(𝑞1) · 𝑓2(𝑞2) · · · 𝑓𝑛−3(𝑞𝑛−3) (6.6a)

|J
22
| = 𝑓 (𝑞𝑛−2 , 𝑞𝑛−1 , 𝑞𝑛) = 𝑓𝑛−2(𝑞𝑛−2) · 𝑓𝑛−1(𝑞𝑛−1) · 𝑓𝑛(𝑞𝑛) (6.6b)

By analyzing the gradient of each characterize function (∇ 𝑓𝑖(𝑞𝑖)) the

variation rate for each expression according to the desired joint can be

studied
13

. Furthermore, with the second order derivative with respect to

the desired joint of ∇ 𝑓𝑖(𝑞𝑖), the position of the maximum value can be

obtained. This last step enables the computation of equation 6.7 where the

general formulation of the normalized joint dependant characterization

is presented.

𝑓 (|J𝑖𝑖 |)𝑞𝑖 =
∇ 𝑓𝑖(𝑞𝑖)

max(∇ 𝑓𝑖(𝑞𝑖))
(6.7)

As presented in equation 6.7, the general formulation for each normalized

singularity distance function strongly depends on the particular joint

dependent singular characterization for each robot structure. Therefore,

further details on the implementation can be found at Chapter 7 where

two examples of application are presented for each laboratory robot.

66 6 Dual Artificial Potential Field (d-APF) Based Controller

14: The mathematical expressions that

defines the behavior of both control

blocks correspond to equations 5.7 and

5.8.

15: Remember that equation 6.1 is de-

fined as:

f𝑐𝑝 = f𝑐𝑝,𝑜𝑏𝑠 + f𝑐𝑝,𝑠𝑖𝑛𝑔 ∈ [0, 1]𝑛 .

6.3.2 Singularity Proximity Risk Index Computation

The goal of the singularity proximity risk is to aid the collision risk

indexes to limit and downscale the combined response of the attractive

and the repulsive potentials. For such aim, the singularity avoidance

APF is connected to control blocks from the obstacle avoidance APF.

More specifically, as displayed in Figure 6.2, the signals that connects

both APFs correspond to the activation factor for each joint (f𝑎𝑐𝑡) and the

singularity proximity risk indexes (f𝑐𝑝,𝑠𝑖𝑛𝑔). This influence between the

singularity and obstacle avoidance APFs modifies the global risk index

(f𝑐𝑝 from equation 6.1) that feeds the previously explained (in Chapter 5)

Joint Influence Computation and Joint Velocity Constraints Computation

control boxes to compute the upper and lower joint velocities limits
14

.

Figure 6.2: Singularity proximity risk indexes control loop of the d-APF controller.

To calculate the singularity proximity risk indexes, the information

referred to the distance to the singularity (d𝑠𝑖𝑛𝑔) has to be received first.

Then, a sigmoid function according to the distance to the singularity

for each control point (𝑑𝑠𝑖𝑛𝑔,𝑖) is employed to compute each singularity

proximity risk index (𝑓𝑐𝑝𝑖 ,𝑠 𝑖𝑛𝑔). Similar to the case of the collision risk

index, this sigmoid function is also bounded between 0 and 1 as described

in equation 6.8. Since the form factor of equation 6.8 is negative, the slope

of the sigmoid function will be negative. It will present a similar form to

one from the example in Figure 6.3. In equation 6.8, there are also two

adaptable parameters that should fit the interest of the application and

the safety, being configurable by the user. They correspond to the lower

threshold (𝑙𝑡) and upper threshold (𝑢𝑡). These two limits are the ones in

charge of defining the distance to start applying the limitation due to

the singularity and the value where the actuator should be saturated (its

movement is completely blocked).

𝑓𝑐𝑝𝑖 ,𝑠 𝑖𝑛𝑔 =

0 , if 𝑑𝑠𝑖𝑛𝑔,𝑖 < 𝑙𝑡

1

1+𝑒−𝛼𝑠 (𝑑𝑠𝑖𝑛𝑔,𝑖−𝜌0,𝑠)
, if 𝑙𝑡 < 𝑑𝑠𝑖𝑛𝑔,𝑖 < 𝑢𝑡

1 , if 𝑑𝑠𝑖𝑛𝑔,𝑖 > 𝑢𝑡

(6.8)

Once the singularity risk index is computed for each control point, it is

sent to the joint influence computation control box (see Figure 6.3) where

it is added up to the collision risk index as displayed in equation 6.1
15

.

This change in the global risk index that arrives to the joint influence and

the joint velocity constraints control blocks, modifies the computation of

equations 5.7 and 5.8 however their mathematical formulation remains

6.3 APF Based Singularity Avoidance Component 67

Figure 6.3: Sample profile of the singular-

ity risk index function. Parameters used:

𝜌0,𝑠 = 0.9440, 𝛼 = −100, 𝑙𝑡 = 0.890, and

𝑢𝑡 = 0.998

constant. Substituting the equation 6.1 into these equations, the expanded

general formulation for computing the joint influence and constraints is

presented in equation 6.9 for each control point.

s𝑜,𝑠 = J𝑐𝑝𝑖
d

∗,𝑐𝑝𝑖
𝑚𝑖𝑛

𝑓𝑐𝑝𝑖 = J𝑐𝑝𝑖
d

∗,𝑐𝑝𝑖
𝑚𝑖𝑛

(𝑓𝑐𝑝𝑖 ,𝑜𝑏𝑠 + 𝑓𝑐𝑝𝑖 ,𝑠 𝑖𝑛𝑔)

(6.9a)

if 𝑠𝑖𝑜,𝑠 ≥ 0, ¤𝑞+′
𝑖 = ¤𝑞+𝑖 (1 − 𝑓𝑐𝑝𝑖) = ¤𝑞+𝑖 (1 − (𝑓𝑐𝑝𝑖 ,𝑜𝑏𝑠 + 𝑓𝑐𝑝𝑖 ,𝑠 𝑖𝑛𝑔)),

else, ¤𝑞−′
𝑖 = −¤𝑞+𝑖 (1 − 𝑓𝑐𝑝𝑖) = −¤𝑞+𝑖 (1 − (𝑓𝑐𝑝𝑖 ,𝑜𝑏𝑠 + 𝑓𝑐𝑝𝑖 ,𝑠 𝑖𝑛𝑔))

(6.9b)

where s𝑜,𝑠 corresponds to the computed joint influence due to the obstacle

and singularity, J𝑐𝑝𝑖
is the geometric Jacobian relative to the 𝑖-th control

point, d

∗,𝑐𝑝
𝑚𝑖𝑛

is the minimum distance unitary vector to each control point,

(𝑓𝑐𝑝𝑖 , 𝑓𝑐𝑝𝑖 ,𝑜𝑏𝑠 , 𝑓𝑐𝑝𝑖 ,𝑠 𝑖𝑛𝑔) correspond to the global, obstacle and singularity

proximity risk index for the 𝑖-th control point, respectively, and (¤𝑞−′
𝑖
, ¤𝑞+′

𝑖
)

are the computed upper and lower limit for the 𝑖-th joint joint velocity.

6.3.3 Singularity Repulsive Component Computation

The singularity repulsive component is in charge of computing a dynamic

response to push the robot away from the singular configurations while

avoiding the obstacle. It is remarkable that it has to be active only while

avoiding the obstacles because during the offline trajectory planning

stages of the task, the singularity avoidance is already applied. To achieve

this goal, the previous components from the obstacle avoidance APF are

combined with the new control blocks from the singularity avoidance

APF as shown in Figure 6.4.

Beginning with the calculation of the singularity avoidance APF control

blocks components, the first one of the displayed loop in Figure 6.4

corresponds to the singularity distance computation control block (check

68 6 Dual Artificial Potential Field (d-APF) Based Controller

Figure 6.4: Singularity repulsive component of the control loop of the d-APF controller.

16: The computation of the distance to

the singularity is addressed in equation

6.4:

d𝑠𝑖𝑛𝑔 =
[
𝑓 (|J

11
|)𝑞

1
· · · 𝑓 (|J

22
|)𝑞𝑛

]𝑇
.

17: The mathematical relationship be-

tween the angular and the linear velocity

is defined by:

𝝎 × r = v

Or just the relation between their mod-

ules if it is a planar problem:

𝜔 · 𝑟 = 𝑣

d𝑠𝑖𝑛𝑔 from equation 6.4 for further references
16

). With this input (d𝑠𝑖𝑛𝑔)

and an activation factor (f𝑎𝑐𝑡), the repulsive vector can be computed in the

task space (v𝑟𝑒𝑝,𝑠𝑖𝑛𝑔). For this singularity repulsive Cartesian component,

the virtual repulsive velocity is contrary to the instant joint velocity of the

joint that is converging to the singular configuration and it is applied to

the tip of the corresponding link as shown in Figure 6.5. Then, the virtual

Cartesian velocity can be transformed into its joint influence (¤q𝑟𝑒𝑝,𝑠𝑖𝑛𝑔)
by applying classical mechanics relationships between lineal and angular

velocity on a solid rigid
17

. This relationship is mathematically described

for each joint in equation 6.10 where −𝑔𝑛(𝑞𝑖) is the sign function of joint

velocity, 𝑓𝑎𝑐𝑡 corresponds to the activation factor later explained in this

section, 𝑣𝑟𝑒𝑝,𝑠𝑖𝑛𝑔,𝑚𝑎𝑥 is the module of the maximum allowed velocity due

to the singularity repulsion, and 𝑙𝑖 is the length of the link.

Figure 6.5: Visualization in RViz (ROS

visualization) of a UR10e in a random

configuration where the singularity re-

pulsive vector is computed.

¤𝑞𝑟𝑒𝑝,𝑠𝑖𝑛𝑔,𝑖 = −𝑠𝑔𝑛(𝑞𝑖) · 𝑓𝑎𝑐𝑡 · 𝑣𝑟𝑒𝑝,𝑠𝑖𝑛𝑔,𝑚𝑎𝑥 · 𝑓𝑐𝑝𝑖 ,𝑠 𝑖𝑛𝑔(𝑑𝑠𝑖𝑛𝑔,𝑖) ·
1

𝑙𝑖
(6.10)

Note that each joint will create only a repulsive signal that will be applied

the same in all the control points that belongs to the link where the

repulsive component is applied. Subsequently, the computed vector of

joint repulsive forces is transformed into the task space as shown in

equation 6.11. This step is required to the latter computation of the global

repulsive velocity that should be projected back into the joint space (¤q𝑟𝑒𝑝).

6.4 Conclusions to Chapter 6 69

18: Remember that equation 6.2 for-

mules the following relationship:

¤q𝑟𝑒𝑝,𝑜𝑏𝑠 = J
−1(q)t where: t =

[
v𝑟𝑒𝑝,𝑜𝑏𝑠

0

]
.

This process is executed in the repulsive vector control block from the

singularity avoidance APF.

¤x = J · ¤q =
[
v𝑟𝑒𝑝,𝑠𝑖𝑛𝑔 𝝎𝑟𝑒𝑝,𝑠𝑖𝑛𝑔

]𝑇
(6.11)

Since it is desired to maintain the orientation of the TCP while avoiding

the collision and the singularity, from the repulsive twist computed

in equation 6.10 it will be only employed the first three components

corresponding to the linear velocity of the manipulator (v𝑟𝑒𝑝,𝑠𝑖𝑛𝑔). This

criteria guarantees the controller to avoid loosing the load due to a change

in the orientation of the manipulator gripper.

In addition to the specific components for the singularity avoidance

APF, two modifications have been applied into the obstacle avoidance

APF control blocks from Figure 6.4. Firstly, the pivot repulsive vector

component feeds the signularity repulsive vector with an activation factor

(𝑓𝑎𝑐𝑡). This parameter is employed to check whether the robot is avoiding

a collision due to a dynamic obstacle or not. It can be computed as follows

in equation 6.12. In this way, as shown in equation 6.10, the robot will

avoid singularity only when the activation factor is different than 0.

𝑓𝑎𝑐𝑡 =

{
0 , if | ¤v′

𝑟𝑒𝑝,𝑜𝑏𝑠
| = 0

1 , otherwise

(6.12)

Lastly, the projector of the repulsive vector onto the task space has also

been updated. In this occasion, the mathematical formulation to project

the Cartesian velocity of the robot into the joint space is described in

equation 6.2
18

. However, as the input of the control block is the addition

of the repulsive velocity due to the singularity and to the obstacle, the

prior mathematical expression is substituted for the one appreciated in

equation 6.13 instead.

¤q𝑟𝑒𝑝 = J
−1(q)t where: t =

[
v𝑟𝑒𝑝,𝑜𝑏𝑠 + v𝑟𝑒𝑝,𝑠𝑖𝑛𝑔

0

]
(6.13)

6.4 Conclusions to Chapter 6

In this chapter the mathematical formulation to implement the d-APF

controller are exposed. The equations present throughout the chapter

can be summarized in the control loop of Figure 6.6. In addition, the

modifications required to transform the reference controller into the

proposed one are also presented. In this manner, some improvements are

theoretically observed such as a reduction of the required computational

load to compute the repulsive responses, or the fact that the singular con-

figurations are limited so these positions can be repelled more efficiently.

These benefits come from the alternative method presented due to the

change in the kinematic model of the original controller. Moreover, the

control algorithm presented keeps the orientation of the TCP to assure

that no load is lost due to a change in the orientation while avoiding a

collision. This behavior is also a more safer one because when carrying

large objects, the object could hit the operator if the orientation of the

70 6 Dual Artificial Potential Field (d-APF) Based Controller

end effector varies. The advantages of the d-APF controller are tested

against the DLS-APF in Chapter 8.

Figure 6.6: Overview of the detailed control diagram for the proposed d-APF controller for collision avoidance and singularity handling.

Controllers Implementation 7

7.1 Controllers Software

Architecture 71

7.1.1 Real time Management:

Hardware Interface/Oro-

cos encapsulation 72

7.1.2 ROS network data struc-

ture 78

7.2 UR10e particularization . 80

7.2.1 Kinematic behavioral

study 80

7.2.2 Hardware Interface and

RTT ROS controller 87

7.2.3 Vision algorithm 89

7.3 SUPSI robot particulariza-

tion 93

7.3.1 Kinematic behavioral

study 94

7.3.2 Hardware Interface and

RTT ROS controller 97

7.3.3 Vision algorithm 98

7.4 Conclusions to Chapter 7 99

In the previous chapters (Chapters 4, 5, and 6) the theoretical aspects

about the novel decoupled kinematic model for non-spherical wrist

cobots, the DLS-APF controller and the d-APF controller are covered.

To be able to test the proposed controller performance, this chapter

addresses how to go from the mathematical fundamentals of previous

chapters to the practical implementation into real hardware. In this way,

by following the considerations displayed in this chapter to implement

both controllers on the UR10e and the SUPSI robot, the proposed control

architecture could be utilized on industrial plants.

In order to implement a suitable system to be applied on industrial

collaborative applications several aspects have to be regarded. These

issues are mainly related to the real time management of the controller

and the safety assurance. To address both aspects simultaneously it

is proposed a combined software architecture based on ROS Control

combined with Orocos (Open Robot control Software). In this manner,

the ROS based controller implements the advanced control capabilities

of the Hardware Interface [134], while the Orocos middleware manages

transparently the real time capabilities of the OS where the application is

implemented [135]. With this software architecture, the robot engineer

can focus on developing the high-level skills of the controller instead of

managing the RT aspects.

In the following sections the software control architecture to encapsulate

ROS Control capabilities inside Orocos components is exposed. In ad-

dition, the particular Hardware Interface employed for each of the test

robots is also detailed in this chapter. Since the d-APF controller requires

the decoupled kinematic model from Chapter 4, the particularization of

each kinematic model as well as its specific singularity study are detailed

for each robot structure. This will lead to a set of closed solutions for the

singular configurations of the arm and its IK. Lastly, the data structure

and communications required to put up to work the controllers inside

the ROS network are also described.

7.1 Controllers Software Architecture

In this section common aspects of the ROS based advanced controller are

detailed. In particular, a suitable real time capability to encapsulate ROS

control capabilities and the ROS network data structure are presented

in detail. The first of the topics addresses the implementation of a

generic software architecture to integrate different developed ROS based

controller into Orocos to handle transparently the real time capabilities.

The remaining subsection present the data structure used for sending

information between the different ROS nodes of the network.

72 7 Controllers Implementation

1: RTT means Real Time Toolkit and cor-

responds to the part of the Orocos library

in charge of handling the real time ca-

pabilities of the component in order to

make them transparent and easy to use

for the user [135].

7.1.1 Real time Management: Hardware Interface/Orocos

encapsulation

As stated along the preamble of the chapter and the section, in order to

embed the ROS Control capabilities into software units that works on real

time it is proposed the utilization of Orocos library. Orocos is a portable

C++ library for advanced machine and robot control which encapsulates

the real time capabilities of an operating systems into components. In

this way, thanks to this encapsulation the user can focus in programming

an advanced controller that fits the application instead of taking care of

the real time management of the control cycle. For such a purpose, the

software architecture presented in Figure 7.1 is employed.

Figure 7.1: General diagram of the tools

for implementing complex real time con-

trol loops in ROS Control by integrating

it into Orocos. The real time Control man-

ager is the central element where the ROS

controller manager is wrapped into an

Orocos component. On the right side of

the diagram the plugin based controller

loading process is represented together

with the internal structure of regular con-

troller as opposed to real time controllers

using the RTT ROS Control Bridge.

The aim of this software architecture is to complement the real time ready

capabilities of ROS Control integrating the ROS Controller Manager

into a real time Orocos component. The ROS Controller Manager is a

software component that manages the execution of robot controllers,

providing an interface with them. Therefore, it handles two important

aspects: connecting the controller to its specific Hardware Interface

to send correct command to a specific robot model in real time, and

managing the load, stop and start processes of the loaded ROS controllers.

This last issue is relevant because whenever a controller is load into the

ROS Controller Manager it does not mean it is active. By default, if there

is no other active controller it will be active. If on the contrary, there

are more than one controller loaded and available compatible with the

Hardware Interface of the controller, only one will be active at a time.

This architecture allows commanding the robot without loosing any

control signal, even when the controller manager is switching from one

controller to another.

This encapsulation process of the Controller Manager ends up in a real

time controller manager embedded inside an Orocos component, the

RTT Controller Manager
1
. This modification allows the read()-update()-

write() operations from the Hardware Interface to run into real time

software component in a transparent way for the user. Hence, the depicted

ROS Control lifecycle depicted in Figure 7.2 allows, in a periodic and

7.1 Controllers Software Architecture 73

deterministic manner inside an Orocos component, the cyclic read of the

data from the sensors, the periodic update of the control signal, and the

continuous writing of the setpoint references into the robot actuators.

Figure 7.2: Steps of the ROS control loop [134].

Just by implementing the RTT Controller Manager is not enough to

create a real time controller for the robot. This wrapper also requires

a real time Hardware Interface instance called, the RobotHW, and a

ROS controller to implement advanced control loop. In this manner,

the RobotHW will implement the specific communications to read and

write the signals from the sensors and the actuators respectively. In other

words, it manages the data transmission between ROS and the robot

control box. Additionally, the ROS controller implements the update

function to compute the desired reference state for each joint of the

manipulator. These relationship can be appreciated in Figure 7.3 where

class diagram structure and inheritance are displayed. This encapsulation

into classes of the ROS control capabilities is proposed specifically to fit

the requirements of real time capabilities of the controller while allowing

the hardware agnostic behavior of ROS framework.

Thanks to the class structure integrated as shown in Figure 7.3, the ROS

74 7 Controllers Implementation

Figure 7.3: Class diagram of the real-time controller manager.

2: In case the controller is implemented

on a non-real time machine, the behavior

of the controller will not trigger any error,

but the determinism required for the

read() and write() functions cannot be

guaranteed. This behavior could lead

to a fault or even stopping the robot

movement due to an unstable command

streaming.

Control loop runs in the update function of a Task Context (running an

Orocos component lifecycle as the one displayed in Figure 7.4) which

is executed in a real time periodic activity that manages the control

loop frequency as shown in Figure 7.5. In this manner, the controller

manager is forced to go through the configure state transition of the

Orocos component from Figure 7.4. Also, in Figure 7.5 it is shown that

parallel threads can be launched to encapsulate additional ROS control

based features into the Orocos components architecture. Hence, the RTT

Task Context wraps the ROS control loop by having a reference to both:

the RobotHW and the regular ROS instances as shown in Figure 7.3.

Lastly, in order to communicate the ROS control encapsulated controller

with the remaining nodes of the ROS network, the regular ROS spinner

is also launched in a parallel thread, becoming the supervisor to check

for the messages and events arriving at the ROS node exposed by the

controller manager.

Then the wrapped component is configured to be in an Orocos ready

state as seen in Figure 7.5 where each ROS control component has its own

Orocos lifetime cycle. Thus, whenever the RTT activity is executing, the

control loop will periodically call the read, write and update functions

periodically in real time. In this part of the process, thanks to the ROS-

Orocos integration package (the rtt_rosclock package), all the timing

inputs for those functions are filled accessing to the ROS clock. It is worth

mentioning that the real time capabilities of the control loop are bounded

to the OS running in the control machine. If the OS does not present a real

time kernel patch or a real time OS, the controller loop would not run in

real time
2
. Therefore, this implementation has been made on an Ubuntu

preempted kernel version, more specifically in the PREEEMT_RT kernel

patch.

The main advantage of the proposed control architecture is that it keeps

7.1 Controllers Software Architecture 75

Figure 7.4: Orocos component lifecycle state machine [135].

the hardware agnostic software architecture from ROS, while combining

it with transparent for the user real time capabilities given by Orocos.

Thus, by utilizing the proposed control architecture, real time capabilities

are provided to ROS Control controller seamless, allowing the inter-

changeability between controllers independently of the robot which is

being used without the need for the programmer to worry about synchro-

nizing real time software threads. In this manner, the proposed control

Figure 7.5: Generic ROS Controller encapsulation on Orocos components.

76 7 Controllers Implementation

3: In this way, specific Hardware Inter-

face can be implemented or reutilized if

they came from a vendor ready online

package to be run in this architecture.

architecture offers a hardware agnostic software architecture to reutilize

for different types and brands of commercial and non-commercial cobot.

To keep on with the reusability of the code, the required knowledge

about Orocos required has been reduced by the encapsulation of the

instance of the RTT Controller Manager and the RobotHW in real time.

This structure can be seen in the code below (Listing 1) where the func-

tion controller_manager_main() is implemented. This function requires

a RobotHW instance to launch the corresponding controller manager

containing it, fact that guarantees the re-usability of the RTT Controller

Manager for different types of robots
3
.

The process of instantiation a RobotHW that integrates the RTT Controller

Manager to run the ROS Control lifetime cycle in real time can be

appreciated in Figure 7.6. Fisrt of all, if there is any RTT Controller

already running, it will be directly instantiated the RobotHW interface

managed by the RTT Controller Manager. Otherwise, the ROS network

will be initialized as well as the Orocos OCL (Orocos Component Loader)

Deployment Component. In this manner, the system is ready to load the

RTT ROS Control capabilities and encapsulate them into the different

Orocos components that would be created. At this point, the system is

ready to load the RTT Controller Manager by instantiating an specific

RobotHW Interface that runs the write() and read() methods of the ROS

Control loop. Before running the RTT ROS Controller, the scheduler is

configure to set the priority, the frequency of that Orocos component,

or the capability to run in soft or hard real time, among other options.

Once the Orocos component is configured, it can be finally launch the

hardware agnostic RTT ROS Controller managed by the Orocos Task

Browser.

Listing 1: Example usage of the setup

tools for the real-time controller manager

with a generic ROS-based robot Hard-

ware Interface.

1 #include <rtt/os/main.h>

2 #include <rtt_controller_manager/main.h>

3

4 // Use the ORO_main macro to set up some platform

5 // specific settings

6 int ORO_main(int argc, char* argv[])

7 {

8 // Substitute with implementation of RobotHW

9 MyRobotHW robothw;

10

11 // Start the controller manager Node

12 RTT::ros_control::controller_manager_main(

13 &robothw, // RobotHW instance

14 0.2, // Control loop Period

15 "ControllerManager", // Name of the RttControllerManager component

16 // & ROS node

17 false // Interactive mode (use TaskBrowser

18 // component)

19);

20 }

Due to the generic Controller Manager encapsulation into Orocos imple-

mented that enables the hardware agnostic ROS Control architecture, any

of the target Hardware Interfaces for the UR10e or the SUPSI robot can be

implemented. As it can be appreciated in Figure 7.2, the Hardware Inter-

face is the one in charge of sending commands to the robots and reading

7.1 Controllers Software Architecture 77

Figure 7.6: RTT Robot Controller initial-

ization routine.

the robot current state. On top of that, a ROS Control controller should

be implemented to gave capabilities such as the APF based repulsion

to the robot. In this way, the part of the controller that gives the control

architecture the specific hardware driver to communicate with each robot

is the Hardware Interface, while the ROS Control controller brings the

robot agnostic control laws. Therefore, implementing a compatible ROS

Control controller is still required. To do so, the proposed software archi-

tecture relies on the usage of Orocos components to allow complex data

and execution logic flows while allowing for highly modular approaches

as shown in Figure 7.7. In general, these intrincated data flows require

that the controller runs on a set of parallel tasks executed simultaneously.

To face the required parallelism, it is convenient for the control loop to

have separate threads with different configurable control frequencies.

The synchronization of the different data flows and control signals to

allow this modular behavior on the controller has been made through

the RTT Orocos package by the implementation of a specific software

component, the hardware interface bridge.

This hardware interface bridge designed also pretends to convey the

information contained in the Hardware Interface from ROS Control

instance to be available for the rest of the Orocos components that

Figure 7.7: Real time encapsulation of a generic ROS control controller into Orocos components. The real time controller structure, in

which the controller contains the hardware interface bridge component. The bridge component takes the hardware interface that is given

to the controller when it is loaded and forwards the variables contained in it by exposing them to the rest of the Orocos components.

78 7 Controllers Implementation

integrates parallel blocks of the controller. Consequently, as presented

in Figure 7.7, a bridge component is required, providing RTT data ports

to connect other Orocos components, and also, synchronizing all the

Control Logic RTT components.

The bridge is a generic class that extends from the Orocos RTT Task

Context and needs to be implemented for each specific hardware. It is

a simple component that is instantiated during the loading process of

a controller into the controller manager. Subsequently, the hardware

interface bridge for the specific Hardware Interface compatible with

the real time controller has to be implemented. Even though this imple-

mentation is specific for each Hardware Interface, every implementation

shares the basic structure for instantiating the reference and loading

all the configurations. Since the lifecycle of the ROS Controller coexist

with the lifecycle of the Orocos component, the behavior of both have

to be entwined and synchronized in a defined manner. Therefore, the

conventions during the controllers lifetime are the followings:

▶ Controller Stopped: When the controller is instantiated as a plugin

into the controller manager the bridge object is created within

the init() function of the controller. During this stage, the Bridge

component is also configured which takes it to its stopped state.

The configuration done in this step includes registering the Orocos

data ports and preparing the component for execution. This way

of transmitting data guarantees real-time performance by avoiding

dynamic memory allocation.

▶ Controller Started: When the controller is started the bridge is also

started and goes into the running states. When the bridge is started

checks are made on the data ports to make sure that they are con-

nected, since, if they were not connected, the controller may incur

in undefined behaviour. Connecting the data ports of the hardware

interface bridge is a task that each controller implementation has to

carry out by connecting the bridge component to the components

that contain its control logic.

With all this considerations, a real time controller class is provided with

generic references to a hardware interface bridge and pointers to the

deployment controller and real time controller manager of the current

process. This two last references allow the loading and registering of

controller components that may not already be loaded into the system

on the basic initialization. Subsequently, specific components that add

functionalities to the original trajectory tracking controller can be imple-

mented to run in parallel. In this thesis, these particular functionalities

correspond to the specific APF implementation detailed in the following

subsection of this chapter for each use case.

7.1.2 ROS network data structure

There are two types of data types among the data structure utilized in this

work that correspond to real time data and the non-real time data. The

real time data correspond to the ROS Control data and Orocos data ports

to assure the deterministic response of the different components of the

control architecture explained in the prior subsection. On the contrary,

the non-real time data are related to ROS natural communication where

7.1 Controllers Software Architecture 79

the determinism in the data exchange is not necessary. This second

scenario that can be observed in Figure 7.8 under the Master-Slave ROS

communication architecture is referred to ROS topics, services, actions,

and the ROS Parameter Server stored configuration.

Figure 7.8: ROS Master data flow for

nodes communication.

This combined data structure allows us to send control signals between

the different components of the ROS controller while keeping the regular

communication between nodes without violating the determinism in

the control signal when required. To achieve these desired behaviors, all

the different data matching the real time and non-real time distribution

are shown in Figure 7.9, corresponding the blocks from the Trajectory

Follower Component to the first group and the remaining components

to the last one.

Figure 7.9: Software interfaces of the designed controller, greyed out to the left the sources for the configuration of the controller and on

the right the internal structure of the controller and their data interfaces.

In the Trajectory Follower Controller block of Figure 7.9, it can be

appreciated that the corresponding signals to this block are the ones

related to the limiting repulsive joint velocities, the projected repulsive

vector and the trajectory references. The representation from Figure 7.9 is

a minimal parameter representation. However, all the signals described in

Chapters 5 and 6 are grouped in this block. In addition, the data structured

contained in the Trajectory Follower Controller that allows the robot

to track a trajectory, also read from the ROS network the depth images

processed to compute the repulsive signals, and the current configuration

of the robot from the ROS Parameter Server. After computing a suitable

control signal, all these data are packed into a compatible structure to feed

80 7 Controllers Implementation

the robot controller via network communication, receiving the current

state to be publish in the ROS Parameter Server.

The non-control related data correspond to the non-real time data division.

The data structures that can be found are related to the ROS Parameter

Server, the transformation between the different reference systems (ROS

TF block from Figure 7.9, and the different ROS topics as the camera info

ROS topics. This data types are required to load the robot configuration

and create a virtual model of the robot that is a mirror of the current

state of the robot and the different devices connected in the application.

This information network allows the share of information and data

between the different nodes, enabling the development of application

that integrates the control aspects with the robot task and environment

management.

7.2 UR10e particularization

The UR10e robot particularization is supported by the previous data

structure, the RTT Controller Manager and the Hardware Interface

bridge to implement a specific solution for this commercial robot. Since

the proposed controller requires the particularization of the decoupled

kinematic model proposed to allow the singularity repulsive components

to be computed, this section addresses the particularization of the FK and

IK, the singularity study, the specific hardware interface implemented,

and, lastly, the software packages and dependencies for building the

controller are also reviewed.

Regarding the FK and the IK, both are presented in the particularized

kinematic behavioral study (kinematics and singularity) for each Univer-

sal Robot UR10e or similar structure robot in the first subsection. The goal

of this first part is to obtained the closed set of solutions for the IK and

the singular configurations during an offline study to apply this results

to online simultaneous collision and singularity avoidance controllers.

Subsequently, this solutions will be implemented in the specific hardware

interface instance in the form of a RTT ROS Controller in the middle

subsection. To aid this real time controller a set of libraries and software

dependencies are required, being the ones belonging to the software pack-

ages and dependencies subsection. The following subsections addresses

each of these aspects for the case of the UR10e robot.

7.2.1 Kinematic behavioral study

Since the proposed kinematic decoupling modifies the original robot

kinematics for each specific cobot structure, Figure 7.10 shows the original

reference system distribution from the ROS driver packages of each

vendor. Figure 7.10 is also accompanied by Table 7.1 where the kinematic

parameter distribution to build this model is presented. This structure

will be employed for the implementation of the DLS-APF controller.

However, as no kinematic modification is required in the URDF (Unified

Robot Description Format) or configuration package, the DLS kinematic

model is considered already explained in Subsection 5.2.5.

7.2 UR10e particularization 81

Figure 7.10: Kinematic model of the UR10e vendors package displayed in its resting position.

𝑋 [m] 𝑌 [m] 𝑍 [m] �𝑥 [rad] �𝑦 [rad] �𝑧 [rad]

0 0 𝑑1 0 0 𝑞1

0 𝑎2 0 0 𝑞2 + 𝜋/2 0

0 −𝑎3 𝑑3 0 𝑞3 0

0 0 𝑑4 0 𝑞4 + 𝜋/2 0

0 𝑎5 0 0 0 𝑞5

0 𝑎6 𝑑6 𝑞6 0 0

a
This table does not follow regular Denavit Hartenberg (DH)

convention as normally do.

b
The 𝑋 , 𝑌, and 𝑍 coordinates represent the Cartesian trans-

lation between reference systems.

c
The �𝑥 , �𝑦 , and �𝑧 rotations reprents the rotations along

the corresponding subindexed axes.

Table 7.1: Parameters for the kinematic

model of the UR10e vendors package.

4: Being 𝑟 =
√
𝑎2

6
+ 𝑑2

6
,

and 𝛽 = 𝑎𝑡𝑎𝑛2

(
𝑑

6

𝑎
6

)
.

From the model presented above, by moving the 4-th and 6-th refer-

ence frames to O5 = B (the decoupling point), the kinematic reference

distribution is transformed as follows as presented in the steps from

Chapter 4. The decoupled kinematic model for non-spherical wrist cobots

is displayed at Figure 7.11 with it bounded parameters from Table 7.2
4
.

Figure 7.11: Decoupled kinematic model of the UR10e robot.

In the following subsubsection, the forward and inverse kinematics for

the reference frame distribution of Figure 7.11 and Table 7.2 are addressed,

as well as the particular singularity study.

82 7 Controllers Implementation

Table 7.2: Parameters for the proposed

decoupled FK model of UR10e

𝑋 [m] 𝑌 [m] 𝑍 [m] �𝑥 [rad] �𝑦 [rad] �𝑧 [rad]

0 0 𝑎0 0 0 𝑞1

0 𝑑1 0 0 𝑞2 + 𝜋/2 0

0 −𝑑2 𝑎2 0 𝑞3 0

0 𝑑3 𝑎3 0 𝑞4 + 𝜋/2 0

0 0 0 0 0 𝑞5

0 0 0 0 𝑞6 0

Parameters of the 𝑂𝛽 reference frame

𝑋 [m] 𝑌 [m] 𝑍 [m] �𝑥 [rad] �𝑦 [rad] �𝑧 [rad]

0 𝑟 𝛽 0 0 𝜋/2

a
This table does not follow regular Denavit Hartenberg (DH)

convention as normally do.

b
The 𝑋 , 𝑌, and 𝑍 coordinates represent the Cartesian trans-

lation between reference systems.

c
The �𝑥 , �𝑦 , and �𝑧 rotations reprents the rotations along

the corresponding subindexed axes.

5: Quick reminder of equation 4.2:

p
0

𝐸
= p

0

𝐵
+ p

0

𝐵𝐸
= p

0

𝐵
+ R

0

𝛽p

𝛽
𝐵𝐸

R
0

𝐸
(q) = R

0

𝐵
(q).

7.2.1.1 Forward and Inverse Kinematics

In this subsection, the developments and theoretical formulation from

Chapter 4 are employed to particularized the general purpose equations

into the UR10e use case. The proposed decoupled kinematic model relies

in the 𝛽 auxiliary orientation from the Table 7.2 to obtain a vector that is

always pointing to the end effector. Therefore, the correct usage of this

auxiliary orientation angle will be displayed in the following section.

7.2.1.1.1 Forward Kinematics For the position and orientation forward

kinematics, it is only required the traditional matrix postmultiplication

between all the reference frames systems. In this manner, the position

and orientation of the TCP can be straightforward computed as shown

in previous equation 4.2
5
. By applying the aforementioned matrix post-

multiplication, the whole model homogeneous transformation matrix

can be computed as follows in equation 7.1.

T
0

6
= T

0

1
· T

1

2
· · ·T4

5
· T

5

6
=

[
(R0

6
)3𝑥3 (p0

6
)3𝑥1

(0)1𝑥3 1

]
(7.1)

Since for the decouple model the desired position is the one from the

decoupling point, it is held that p
0

6
= p

0

𝐵
, the arm position can be

calculated as displayed in equation 7.2. In equation 7.2, all the parameters

can be obtained from Table 7.2. In addition, the terms 𝑐𝑖 and 𝑠𝑖 represent

the cosine and sine functions of the 𝑖-th joint, respectively. Being the

𝑐𝑖 ,··· , 𝑗 or 𝑠𝑖 ,··· , 𝑗 the addition of a cosine or a sine from the 𝑖-th to the

𝑗-th joint. Moreover, the parameter 𝑑0 = 𝑑1 + 𝑑2 + 𝑑3 corresponds to the

arm-shoulder-wrist misalignments, and 𝑍0,∗
𝐵

= 𝑧0

𝐵
+ 𝑎0 is the world-base

frame 𝑍 axis translation whenever the world frame is not coincident with

the robot base one.

p
0

𝐵 =

𝑥0

𝐵

𝑦0

𝐵

𝑧0,∗
𝐵

 =

−(𝑑0) · 𝑠1 + (𝑎2𝑐2 + 𝑎3𝑐2,3) · 𝑐1

𝑑0 · 𝑐1 + (𝑎2𝑐2 + 𝑎3𝑐2,3) · 𝑠1

−𝑎2𝑠2 − 𝑎3𝑠2,3 · 𝑐1

 (7.2)

Additionally, the rotation matrix obtained from T
0

6
is computed as in

equation 7.3. This rotation matrix results in a function dependant of all

7.2 UR10e particularization 83

6: Remember that the following expres-

sion is held:

R
0

6
= R

0

3
· R

3

6

So it can be easily computed the R
0

6
from

equations 7.4 and 7.5.

7: Similar to what happens with the FK,

the consequence of this fact is due to the

following relationships from equation

4.3:

p
0

𝐵
= p

0

𝐸
+ R

0

𝛽(−p

𝛽
𝐵𝐸

)

R
0

𝐵
(q) = R

0

𝐸
(q).

8: Remember that 𝑥0

𝐵
, 𝑦0

𝐵
and 𝑧0

𝐵
are the

positioning component of x
0

𝐵
from equa-

tion 4.4. This component corresponds

to p
0

𝐵
. Moreover, the component 𝑧

0,∗
𝐵

=

𝑧0

𝐵
− 𝑎0 to compensate the world-base

reference frame displacement.

In addition, the following simplifica-

tions has been considered in equations

from 7.7 to 7.9: 𝑏1 = 𝑎2

2
+ 𝑎2

3
+ 𝑑2

1
+

2(𝑑1𝑑2 + 𝑑1𝑑3) + (𝑑2 + 𝑑3)2, 𝑏2 = 2𝑎2𝑎3,

� = (𝑥0

𝐵
)2 + (𝑦0

𝐵
)2 − 𝑑2

0
, 𝛼1 = 𝑎2 + 𝑎3𝑐3,

𝛼+
2
= 𝑎3𝑠

+
3

, and 𝛼−
2
= 𝑎3𝑠

−
3

, being 𝑠+
3

or

𝑠−
3

the positive or negative solution of

equation 7.9d, respectively.

the joints of the manipulator. However, since for the resolution of the

IK only the reduced version for the arm orientation (R
0

3
) and the wrist

orientation (R
3

6
) are employed, both symbolic expressions are evaluated

instead, corresponding to equations 7.4 and 7.5
6
, respectively in their

most simplified format.

R
0

6
= R

0

6
(𝑞1 , · · · , 𝑞6) =

(R0

6
)11 (R0

6
)12 (R0

6
)13

(R0

6
)21 (R0

6
)22 (R0

6
)23

(R0

6
)31 (R0

6
)32 (R0

6
)33

 (7.3)

R
0

3
=

−𝑠2,3𝑐1 −𝑠1 𝑐2,3𝑐1

−𝑠2,3𝑠1 𝑐1 𝑐2,3𝑠1

−𝑐2,3 0 −𝑠2,3

 (7.4)

R
3

6
=

−𝑐4𝑠6 − 𝑐5𝑐6𝑠4 𝑠4𝑠5 𝑐4𝑐6 − 𝑐5𝑠4𝑠6

𝑐6𝑠5 𝑐5 𝑠5𝑠6

𝑠4𝑠6 − 𝑐4𝑐5𝑐6 𝑐4𝑠5 −𝑐6𝑠4 − 𝑐4𝑐5𝑠6

 (7.5)

Once the position and orientation are computed in terms of the joints

of the manipulator, the velocity computation can be addressed. For the

velocity computation, the Jacobian matrix of the manipulator should be

computed as displayed in equation 4.10. The symbolic evaluation of the

Jacobian matrix for the UR10e robot is displayed below in equation 7.6:

J(q) =
[
(J

11
)3×3 03×3

(J
21
)3×3 (J

22
)3×3

]
(7.6)

Since the jacobian computation is straightforward and the evaluation

contains large terms, the symbolic evaluation has been excluded from

this document. This expresion of the jacobian will be latter employed on

Subsubsection 7.2.1.2.

7.2.1.1.2 Inverse Kinematics In order to solve the IK of the manipulator

and find a suitable set of closed solutions, it is relevant to keep in mind

that the solutions are related to the decoupling point
7
. Following the steps

presented in Chapter 4, the first thing to do is to calculate the algebraic

solutions for the arm positioning. For such a purpose, the following three

relationships has been applied leading to their corresponding solutions

for each joint
8
:

1. (𝑥0

𝐵
)2 + (𝑦0

𝐵
)2 + (𝑧0,∗

𝐵
)2 for the solutions related to 𝑞3 (equation 7.9).

2. Combining of (𝑥0

𝐵
)2 + (𝑦0

𝐵
)2 with 𝑧0,∗

𝐵
to solve the solutions of 𝑞2

(equation 7.8).

3. The study standalone of 𝑥0

𝐵
and 𝑦0

𝐵
for the solutions corresponding

to 𝑞1 (equation 7.7).

𝑞1,𝐼 = 𝑎𝑡𝑎𝑛2(𝑦0

𝐵

√
� − 𝑥0

𝐵𝑑0 , 𝑦
0

𝐵𝑑0 + 𝑥0

𝐵

√
�) (7.7a)

𝑞1,𝐼𝐼 = 𝑎𝑡𝑎𝑛2(−𝑦0

𝐵

√
� − 𝑥0

𝐵𝑑0 , 𝑦
0

𝐵𝑑0 − 𝑥0

𝐵

√
�) (7.7b)

84 7 Controllers Implementation

9: Note that 𝛾 = +
√
𝑠2

2,1
+ 𝑠2

2,3
where

𝑠𝑚,𝑛 represents the 𝑚-th row and 𝑛-th

column of the genereic (Euler ZYZ) R
3

6

matrix.

𝑞2,𝐼 = 𝑎𝑡𝑎𝑛2(−𝑧0,∗
𝐵
𝛼1 − 𝛼+

2

√
�, 𝛼1

√
� − 𝑧0,∗

𝐵
𝛼+

2
) (7.8a)

𝑞2,𝐼𝐼 = 𝑎𝑡𝑎𝑛2(−𝑧0,∗
𝐵
𝛼1 + 𝛼+

2

√
�,−𝛼1

√
� − 𝑧0,∗

𝐵
𝛼+

2
) (7.8b)

𝑞2,𝐼𝐼𝐼 = 𝑎𝑡𝑎𝑛2(−𝑧0,∗
𝐵
𝛼1 − 𝛼−

2

√
�, 𝛼1

√
� − 𝑧0,∗

𝐵
𝛼−

2
) (7.8c)

𝑞2,𝐼𝑉 = 𝑎𝑡𝑎𝑛2(−𝑧0,∗
𝐵
𝛼1 + 𝛼−

2

√
�,−𝛼1

√
� − 𝑧0,∗

𝐵
𝛼−

2
) (7.8d)

𝑞3,𝐼 = 𝑎𝑡𝑎𝑛2(𝑠3 , 𝑐3) (7.9a)

𝑞3,𝐼𝐼 = −𝑞3,𝐼 = 𝑎𝑡𝑎𝑛2(−𝑠3 , 𝑐3) (7.9b)

𝑐3 =
(𝑥0

𝐵
)2 + (𝑦0

𝐵
)2 + (𝑧0,∗

𝐵
)2 − 𝑏1

𝑏0

(7.9c)

𝑠3 = ±
√

1 − 𝑐2

3
(7.9d)

Though there are a total of 10 solutions divided in 2 solutions for 𝑞𝐼 , 4

solutions in the case of 𝑞𝐼𝐼 , and others 4 solutions in the case of 𝑞𝐼𝐼𝐼 , not

every combination is possible. Indeed, the only possible combinations

corresponds to the i) shoulder-right/elbow-up, ii) shoulder-left/elbow-

up, iii) shoulder-right/elbow-down, and iv) shoulder-left/elbow-down

configurations. It means that only the four possible combinations are

allowed:

1. Solution for i): [𝑞1,𝐼 , 𝑞2,𝐼 , 𝑞3,𝐼].
2. Solution for ii): [𝑞1,𝐼 , 𝑞2,𝐼𝐼𝐼 , 𝑞3,𝐼𝐼].
3. Solution for iii): [𝑞1,𝐼𝐼 , 𝑞2,𝐼𝐼 , 𝑞3,𝐼].
4. Solution for iv): [𝑞1,𝐼𝐼 , 𝑞2,𝐼𝑉 , 𝑞3,𝐼𝐼].

It is also remarkable, that for the solutions of equations 7.7 to 7.9, when

there is no arm-shoulder-wrist misaligment between the reference frames

(𝑑0 = 𝑑1 = 𝑑2 = 𝑑3 = 0), and the world-base offset is null (𝑎0 = 0), the

solution matches is similar in form to the ones given by [109] for the

anthropomorphic arm, so it can be seen as an additional verification of

the adequacy of the obtained solution.

Moreover, to address the IK for the orientation, the equation 7.5 is

required. Combining the several terms from different rows and columns

of the expression that relates a generic ZYZ Euler rotation to the wrist

joints, the solutions for the inverse kinematics of the orientation can be

obtained. Therefore, applying these considerations for the positive or

negative root of 𝛾 whether 𝑞5 ∈ (0,𝜋) or 𝑞5 ∈ (−𝜋, 0), respectively, these

solutions can be found
9

as shown in 7.10.

𝑞4,𝐼 = 𝑎𝑡𝑎𝑛2(𝑠1,2 , 𝑠3,2); or 𝑞4,𝐼𝐼 = 𝑎𝑡𝑎𝑛2(−𝑠1,2 ,−𝑠3,2) (7.10a)

𝑞5,𝐼 = 𝑎𝑡𝑎𝑛2 (𝛾, 𝑠2,2) ; or 𝑞5,𝐼𝐼 = 𝑎𝑡𝑎𝑛2 (−𝛾, 𝑠2,2) (7.10b)

𝑞6,𝐼 = 𝑎𝑡𝑎𝑛2(𝑠2,3 , 𝑠2,1); or 𝑞6,𝐼𝐼 = 𝑎𝑡𝑎𝑛2(−𝑠2,3 ,−𝑠2,1) (7.10c)

In this occasion, the results can only be gather between the analogous

solutions. It means that 𝑞𝑖 ,𝐼 represent the same set of correlated solutions,

and 𝑞𝑖 ,𝐼𝐼 also replicates this behavior.

7.2 UR10e particularization 85

10: Note that the correspondence be-

tween the functions is as follows:

𝑓 (𝑞3) = sin(𝑞3)

ℎ(𝑞2 , 𝑞3) = 0.19986 cos(𝑞2+𝑞3)+0.21456 cos(𝑞2)

Lastly, since solving the IK for the case of the velocity (the inverse

function of the Jacobian), the relevant results are strictly bounded to the

singular configurations. Therefore, the following subsubsection addresses

specifically the singularity study for the UR10e with the aim of obtaining

an applicable set of closed solutions for the singular configurations of

the robot.

7.2.1.2 Singularity Study and characterization

The characterization and study of the singularities arises from equation

7.6 where it can be seen that the results of the singularities cna only

be a function of the |(J
11
)3×3 | or the |(J

22
)3×3 |. More specifically, the

manipulator will be on a singular configuration whether |(J
11
)3×3 | = 0 or

|(J
22
)3×3 | = 0 as appreciated in equation 7.11.

|J| = 0 ⇒ |(J
11
(𝑞1 , 𝑞2 , 𝑞3))3𝑥3 | · |(J22

(𝑞4 , 𝑞5 , 𝑞6))3𝑥3 | = 0 (7.11)

Since the robot will be in a singular configuration whether the first or the

second term of the right-hand side of equation 7.11, the singularities can

be split into two groups: the arm singularities and the wrist singularities.

The first kind are referred to the solutions of |(J
11
(𝑞1 , 𝑞2 , 𝑞3))3𝑥3 | = 0.

Therefore, they depend exclusively in the first three joints of the manipu-

lator. Furthermore, the second type are related to the wrist singularities.

Since they correspond to the solutions of |(J
22
(𝑞4 , 𝑞5 , 𝑞6))3𝑥3 | = 0, they

depend on the last three joints of the manipulator.

Starting with the arm singularities, for the particular use case of the

UR10e robot, the solutions from equation 7.12 can be computed for the

relation described above. In addition, Figure 7.12 represent a heat map

where the zeros of the equations are coloured in red (for the solutions

relative to 𝑞3 strictly) and in black (for the solutions involving non clear

dependency of 𝑞2 and 𝑞3). The zeros from the figure are found using

mathematical methods and a grid of values for 𝑞2 and 𝑞3.

|J
11
| = 𝑓 (𝑞2 , 𝑞3) = 0.21 cos(𝑞2) sin(𝑞3) − 0.19 sin(𝑞2)+

+ 0.19 cos
2(𝑞3) sin(𝑞2) + 0.19 cos(𝑞2) cos(𝑞3) sin(𝑞3) (7.12)

From the two types of solutions in Figure 7.12, the red coloured ones

corresponds to solutions of {−𝜋, 0,𝜋}. These solutions are referred to

the solutions of the sine function (𝑓𝑞3,𝑠 𝑖𝑛𝑔
= sin(𝑞3)). Extracting the sine

of the third joint from equation 7.12 as a common factor, the remaining

expression still depends on 𝑞2 and 𝑞3 as displayed in equation 7.13
10

.

|J
11
| = 𝑓 (𝑞3) · ℎ(𝑞2 , 𝑞3) = sin(𝑞3) · (0.19986 cos(𝑞2 + 𝑞3) + 0.21456 cos(𝑞2))

(7.13)

Any combination that nullifies 𝑓 (𝑞3) or ℎ(𝑞2 , 𝑞3) is considered a singular

configuration of the arm. Furthermore, if the wrist singularities are

studied in a similar way, after computing and simplifying the determinant

of |(J
22
(𝑞4 , 𝑞5 , 𝑞6))3𝑥3 | = 0, the solution from equation 7.14 is calculated.

86 7 Controllers Implementation

Figure 7.12: Graphical representation

of the found zeros for the case of

|(J
11
(𝑞1 , 𝑞2 , 𝑞3))3𝑥3 | = 0 in the UR10e

robot decoupled kinematics.

Analogous to the previous case, the Figure 7.13 depicts the solutions

for this equation. In this case, the solutions found are simpler than the

previous case, since |J
22
| = 𝑔(𝑞5).

|J
22
| = 𝑔(𝑞5) = − sin(𝑞5) (7.14)

Figure 7.13: Graphical representation

of the found zeros for the case of

|(J
22
(𝑞4 , 𝑞5 , 𝑞6))3𝑥3 | = 0 in the UR10e

robot decoupled kinematics.

In this manner, the parametrization of the singular configurations corre-

spond to the joint dependant functions that nullyfies the Jacobian matrix

or, in other words, the solutions of ℎ(𝑞2 , 𝑞3), 𝑓 (𝑞3) and 𝑔(𝑞5). To sum

up and gather the singular configurations on a single expression, the

equation 7.15 is utilized.

|J| = 0 ⇐⇒

ℎ(𝑞2 , 𝑞3) = 0.19986 cos(𝑞2 + 𝑞3) + 0.21456 cos(𝑞2))
𝑓 (𝑞3) = sin(𝑞3) = 0

𝑔(𝑞5) = − sin(𝑞5) = 0

(7.15)

From the characterized solutions of equation 7.15, there are two types of

solutions that matches with the ones of the literature from [109]. These

7.2 UR10e particularization 87

11: The RTDE Client library is the ven-

dors official library to send commands

to the robot through the Real Time Data

Exchange interface through a standard

TCP/IP connection. This interface is also

employed to read the current status of

the robot.

12: It has been placed at the end of the

section in favour of the comprehension

for the reader.

solutions corresponds to the functions 𝑓 and 𝑔. However, the remaining

kind does not apparently match with any know type of singularity.

Therefore, in Chapter 8 a singularity study comparison is executed

against the driver model to check whether they can be consider a new

type of singularity or not. These solutions are the ones implemented in

equation 6.4 to compute the distance to the singularity. In the case of no

joint related to any singularity the function 𝑓 (|J𝑖𝑖 |)𝑞𝑖 = 0, while for the

ℎ function the distance will be studied according the the second joint

(𝑞2).

Lastly, it is also worth mentioning that even though the singularities of J
11

and J
22

may happen simultaneously, they are not coupled singularities. It

means that even though there is a case where both determinant are in a

singularity, each singular configuration is independent from the other.

7.2.2 Hardware Interface and RTT ROS controller

The specific Hardware Interface implemented on top of the hardware

interface bridge for the specific use case of the UR10e robot is based

on the original Universal Robots ROS Drivers for ROS Melodic [127].

This ROS driver is a real time ready ROS Controller, which means that

it has real time capabilities but no real time management inside. To

add the real time capabilities, the original Universal Robots ROS driver

has been embedded into a RTT ROS Controller employing the software

architecture explained prior in this chapter. This encapsulation has been

made following the class diagram from Figure 7.14.

Figure 7.14: ROS Control class diagram

for the UR10e robot developed hardware

interface.

As it can be appreciated above in Figure 7.14, the proposed Hardware

Interface inherits from a scaled_trajectory_controller to create a interface

to command in position or velocity the UR10e. Then the commands

are sent to the robot through the RTDE Client library
11

. This hardware

interface is implemented on an Orocos component as displayed in Figure

7.21
12

thanks to the hardware interface bridge. More specifically the ros_-

control::update() component is in charge of coordinating the trajectory

references from MoveIt with the downscaling and repulsive magnitude

coming from the APF RTT Component, and computing then with the

Ruckig library a suitable signal for the robot controller.

88 7 Controllers Implementation

13: The aim of this ROS node is to read

the status of the different joints states of

the manipulator to compute the trans-

form of each joint related refernce sys-

tems.

In parallel to this first component runs the RTT APF Orocos component.

This component is responsible of computing the repulsive influence due

to the obstacle and the singularity (in the case of the d-APF controller),

as well as the limiting velocities due to obstacle and singularity risk.

With the following coordination of ROS components it is achieved the

load of the RTT ROS Controller into the RTT ROS Controller Manager as

displayed in Figure 7.15.

Figure 7.15: Block Diagram of the RTT

ROS Control integration showing the

RTT Controller Manager and the model

of an RTT ROS Controller.

RTT ROS Controller Manager

RTT Component

ROS Control Controller Manager
loaded into

RTT ROS Controller

RTT Component

Controller Logic

RTT Component

Controller Logic

To implement each of the components above, several libraries and tools

independent of ROS and Orocos have been employed for each controller

parallel component. First, for the vision processing purpose the most

well known vision library is employed, the OpenCV [136]. In addition,

for the implementation of the matrix calculation, the Eigen3 library

is employed [137]. Moreover, the Boost C++ libraries [138] have been

utilized for managing general convenience utilities as the smart pointer,

or containers, among other utilities. To ease the integration of the robot

kinematics and dynamics the KDL library has been used [139]. And lastly,

as mentioned earlier, to handle the online dynamics of the robot the

Ruckig library has been used.

With all this software packages and libraries two software components

have been developed: the apf_algorithms library and the rtt_ur_con-

trollers package. The apf_algorithms package is a self-developed library

that implements the different control algorithms to compute the refer-

ences related to the collision and the singularity avoidance explained

in Chapters 5 and 6. This library increases the overall flexibility of the

software implementation, since changes can be directly done in the algo-

rithms without modifying the behavior of the ROS Control controllers.

This library is then utilized by the rtt_ur_controllers package to imple-

ment both Orocos based ROS control components from above inheriting

from the ur_controllers of the original Universal Robots ROS drivers.

This last package also relies in the kdl_parser to load the KDL kinematic

model from the URDF files loaded into the ROS Parameter Server. In

Figures 7.16 and 7.17, both software packages and dependencies can be

appreciated for the DLS-APF controller and the d-APF one, respectively.

In the case of the DLS-APF controller, an additional component is appre-

ciated that corresponds to the wdls_algorithms library to implement the

DLS kinematic model from the Orocos based packages. Moreover, it is

not a package per se but the robot_state_publisher
13

has been modified for

the d-APF controller, resulting in the decoupled_robot_state_publisher.

The goal of this modification is to compensate the influence of modifying

directly the URDF of the UR10e to implement a new reference frame

distribution (what generates an eccentric rotation on the 6-th axis). In

this way, the kinematic description of the robot will be automatically

updated by the ROS Parameter Server when loading the robot.

Lastly, the Hardware Interface still requires a particular RobotHW inter-

face to be simulated in Gazebo. This virtual RobotHW interface aims to

7.2 UR10e particularization 89

Figure 7.16: Software packages that con-

tain the ROS controllers and their depen-

dencies for the DLS-APF controller.

Figure 7.17: Software packages that con-

tain the ROS controllers and their depen-

dencies for the d-APF controller.

14: Bear in mind that if no new RobotHW

interface is created, the standard ROS

Control Hardware Interface can bu di-

rectly used, required no modified version

of the gazebo_ros_packages and plugins.

expose the right ports to which connect the scaled_joint_interface created

in the ROS controller. To do so, the URRobotHWSim has been imple-

mented using as reference model the generic DefaultRobotHWSim from

Gazebo. Therefore, our version of the gazebo_ros_packages has also been

implemented and compiled including the new simulated interface
14

.

7.2.3 Vision algorithm

Complementary to the kinematic modelling exposed in Subsection 7.2.1

and the Hardware Interface for the implementation of a RTT ROS Con-

troller of Subsection 7.2.2, the proposed approach could not be complete

without a proper scene segmentation to avoid just what is considered as

an obstacle. The aim of the vision algorithm employed is to distinguish

between what is part of the scene, which elements are workpiece to inter-

act with, and what can be considered as an obstacle (typically a human

operator) that must be avoided. The main contribution of the employed

vision algorithm consists of a lightweight robot filter based on the virtual

information of the URDF combined with the current configuration of

the robot, followed by a dynamic/static image filter that segments the

remaining components of the scene into the three aforementioned groups.

Indeed, this is also a novel contribution which faces the fact that the

robot can be either a moving or a stuck element of the scene that must be

filtered prior to analyse the rest of the scene.

In order to address the vision processing from the depth maps given

by the Intel Realsense D435, three different vision algorithms have been

implemented. First, an algorithms for simulation purposes has been

created. This segmentation algorithm is based in a simple HSV colour

filter to filter an green sphere that can be static or dynamic without

stressing the device where the simulation is running. This simple but

effective filter allows to test in simulation the suitability and behavior of

the controller before testing the algorithms in the real robot. Consequently,

90 7 Controllers Implementation

this lightweight filter even though it is a simple one it suits perfect the

aim of the simulation. Furthermore, two additional filtering algorithms

have been implemented for the real scenario. Both approaches are based

on a filter that combines the information of the URDF description or the

transformation of the robot to filter the robot from the depths maps.

The first of the two approaches, is based on the already real time urdf

filter from github [140]. This filter uses the information of the URDF

and the ROS Parameter Server to create a virtual mask containing the

information where the robot is expected to be. This virtual based mask is

then applied to the real depth map to filter out the robot. To make it work

properly in our implementation, some timing filtering parameter was

added to avoid the robot of repelling itself while moving. Even though

this filter works well as displayed in Figure 7.18, it makes no segmentation

between the scene, the static workpieces, and the obstacles. This behavior

treat everything in the surroundings of the robot as an obstacle evading

the workpiece, so it does not suit the application requirement.

Figure 7.18: Example of the first realtime URDF filter:(a) Sample frame filtered by the URDF filter, where the gray shadow around the

filtered parts of the robot is unwanted. (b) Example the mask generated during the postprocessing stage of the depth image filtering

where the robot silhouette is dilated. (c) Frames that visualize the postprocessing stage of the depth image filtering process.

To overcome the aforementioned limitation of discerning from among

the dynamic and the static elements of the scene, another virtual URDF

segmentation filter has been proposed. In this occasion, the filter has

been fully implemented with the aim of segmenting the robot from the

depth map but the dynamic and the static elements too. This algorithm

is supported by the colour image of the camera, so the depth map has

been aligned to the colour frame. As it can be seen in Figure 7.19, the

algorithm starts reading the colour image to create a model or update the

model of the background reference image. Then, the depth image that

arrives from the ROS camera driver nodes is read to virtually compute

the position of the homogeneous transformation matrices (tf) of each link

reference system and represented into this depth picture. By knowing the

depth information of each link thanks to the previous positioning task,

the robot can be filtered from the image. In this way, the remaining depth

image contains the scene, workpiece, and the obstacle (as displayed in

Figure 7.20). To perform the desired advanced segmentation desired into

these three aforementioned groups, the background model is utilized

as a mask to know the static elements of the depth map that belongs to

the scene. Then, thanks to a image buffer filter, the static work pieces

and the dynamic obstacles are distinguish and segmented. Thus, three

different depth images are generated one with only the scene information,

another one with the positioning data of the workpieces, and the last one

containing the obstacles of the surroundings of the robot. These depth

7.2 UR10e particularization 91

maps are forwarded into the ROS network to be utilized by the controller

or any other node.

Figure 7.19: Flow chart of the final advanced scene segmentation algorithm. In the figure tf means transformation and is referred to the

homogeneous transformation matrix that contains the information of each joint and link positioning of the robot.

The main problem both filters present is the strong dependency on a

good camera positioning in the virtual environment according to the real

world scenario. Therefore, a calibration package (camera_autopos) has

been created to automatically obtain the position and orientation of the

cameras with respect to a ArUco marker [141] thanks to a created diamond

marker. With this relative positioning, the description of the URDF can

be modified so the real and the simulated environment matches.

Figure 7.20: Final scene segmentation. The segmentation can be divided into static background, work pieces and dynamic obstacles to

avoid.

92 7 Controllers Implementation

Figure 7.21: ROS Control encapsulation on Orocos for the UR10e. At the bottom and the top it has been included the corresponding

components of the control loops implemented for the ros_control::update() and the RTT APF components, respectively. Note that this

representation is for the d-APF controller, being a similar one for the DLS-APF controller without the control boxes referred to the

singularity avoidance (check Figure 5.11 and the considerations from Chapter 5).

7.3 SUPSI robot particularization 93

15: Being 𝑟 =
√
𝑑2

6
+ (𝑏6 + 𝑑𝑒𝑒)2,

and 𝛽 =

(
(𝑏

6
+𝑑𝑒𝑒)
𝑑

6

)

7.3 SUPSI robot particularization

The SUPSI robot particular implementation is based on the previous

controller developed for the UR10e. Since it is a self-developed robot, the

first task to do was integrate the robot into the ROS Control combined

with Orocos architecture. Therefore, the implemented interface is a mirror

of the one modified for the UR10e. Despite the similarities between both

robots, it is worth mentioning that the structure of the SUPSI robot is

distributed differently for the resting position than in the UR10e case.

Because of that reason, the kinematic model of the SUPSI manipulator

differs from the UR10e one. Therefore, it is considered also interesting

to analyze this other structure to test and verify if the results and

implementation made for the UR10e robot are also applycable to other

non-spherical wrist manipulators. In the current subsections only the

specific modifications with respect to the final version of the UR10e

drivers are explained.

Similar to the UR10e case, two models have to be presented for the SUPSI

robot: one for applying to the DLS-APF controller, and another model

for the d-APF controller. The traditional kinematic model implemented

in the robot by the SUPSI correspond to the one displayed in Figure 7.22

and Table 7.3. In this case, since the kinematic model and the structure

is very similar to the UR10e robot, the table with all the parameters has

been avoided as it is considered enought expalined with the anotations

of the figure.

Figure 7.22: Kinematic model of the SUPSI vendors package displayed in its resting position. At the right-hand side the RViz simulation,

and at the left-hand side the kinematic model.

To apply the proposed decoupled kinematics for non-spherical wrist

cobot, the 4-th and the 6-th reference frames should be moved to the

decoupling point (𝐵). This modification leads to a similar kinematics

to the one shown in Figure 7.23. This configuration corresponds to the

parameter table of the decoupled kinematics gathered in Table 7.4
15

.

94 7 Controllers Implementation

Table 7.3: Parameters for the kinematic

model of the SUPSI robot ROS package.

𝑋 [m] 𝑌 [m] 𝑍 [m] �𝑥 [rad] �𝑦 [rad] �𝑧 [rad]

0 0 𝑑1 0 0 𝑞1

0 0 𝑑2 𝜋/2 𝜋/2 𝑞2

−𝑎3 0 0 0 0 𝑞3 − 𝜋/2

−𝑎4 0 0 0 0 𝑞4 − 𝜋/2

0 0 𝑑5 0 −𝜋/2 𝑞5 + 𝜋/2

0 𝑏6 𝑑6 −𝜋/2 𝜋 𝑞6

a
This table does not regular Denavit Hartenberg (DH) con-

vention as normally do.

b
The 𝑋, 𝑌, and 𝑍 coordinates represent the Cartesian trans-

lation between reference systems.

c
The �𝑥 , �𝑦 , and �𝑧 rotations reprents the rotations along

the corresponding subindexed axes.

Figure 7.23: Decoupled kinematic model of the SUPSI robot in the resting position with a zoom on the wrist decoupling.

16: Note that 𝑧
0,∗
𝐵

= 𝑧0

𝐵
− 𝑑1 − 𝑑2.

7.3.1 Kinematic behavioral study

As appreciated in the preamble of this section (Section 7.3), the robot

structure of the SUPSI robot is practically identical to the one the UR10e

has. In fact, they share the same non-spherical wrist structure. However,

they are different between the 2nd and 3rd reference frames. In the case

of the SUPSI robot, there is a 𝜋/2 additional rotation between these two

joints. Therefore, the kinematic model will behave similar with slight

differences due to the𝜋/2 displacement between joints 2 and 3. Therefore,

minimal anotations are given during the analysis, highlighting only the

differences. In this subsection, first the FK and IK are studied, leading to

a posterior singularity study and characterization due to the Jacobian

analysis.

7.3.1.1 Forward and Inverse Kinematics

7.3.1.1.1 Forward kinematics For the case of the forward kinematics of

the robot, the results obtained to compute the homogeneous transforma-

tion matrix of the decoupled model (T
0

6
) shows the following position

and rotational equations (see from equation 7.16
16

to 7.18).

7.3 SUPSI robot particularization 95

𝑋 [m] 𝑌 [m] 𝑍 [m] �𝑥 [rad] �𝑦 [rad] �𝑧 [rad]

0 0 𝑑1 0 0 𝑞1

0 0 𝑑2 𝜋/2 𝜋/2 𝑞2

−𝑎3 0 0 0 0 𝑞3 − 𝜋/2

−𝑎4 0 𝑑5 0 0 𝑞4 − 𝜋/2

0 0 0 0 −𝜋/2 𝑞5 + 𝑝𝑖/2

0 0 0 −𝜋/2 𝜋 𝑞6

Parameters of the 𝑂𝛽 reference frame

𝑋 [m] 𝑌 [m] 𝑍 [m] �𝑥 [rad] �𝑦 [rad] �𝑧 [rad]

0 𝑟 𝜋/2 − 𝛽 0 0 𝜋/2

a
This table does not follow regular Denavit Hartenberg (DH)

convention as normally do.

b
The 𝑋, 𝑌, and 𝑍 coordinates represent the Cartesian transla-

tion between reference systems.

c
The �𝑥 , �𝑦 , and �𝑧 rotations reprents the rotations along the

corresponding subindexed axes.

Table 7.4: Parameters for the proposed

decoupled FK model for the SUPSI robot

ROS package

17: In this equation, the mathematical

functions utilized to decompose |𝐽11 | cor-

respond to:

𝑓 (𝑞3) = − cos(𝑞3)

ℎ(𝑞2 , 𝑞3) = 𝑎3𝑎4(𝑎4 cos(𝑞2+𝑞3)−𝑎3 sin(𝑞2)).

p
0

𝐵 =

𝑥0

𝐵

𝑦0

𝐵

𝑧0,∗
𝐵

 =

−𝑑5𝑠1 + 𝑐1(−𝑎3𝑠2 + 𝑎4𝑐2,3)
−𝑑5𝑐1 − 𝑠1(𝑎3𝑠2 − 𝑎4𝑐2,3)

𝑎3𝑐2 + 𝑎4𝑠2,3

 (7.16)

R
0

3
=

−𝑐2,3𝑐1 𝑠2,3𝑐1 𝑠1

−𝑐2,3𝑠1 𝑠2,3𝑠1 −𝑐1

−𝑠2, 3 −𝑐2,3 0

 (7.17)

R
3

6
=

−𝑐4𝑠6 + 𝑐6𝑠4𝑠5 𝑐5𝑠4 −𝑐4𝑐6 − 𝑠4𝑠5𝑠6

−𝑠4𝑠6 − 𝑐4𝑠5𝑐6 −𝑐4𝑐5 −𝑠4𝑐6 + 𝑐4𝑠5𝑠6

−𝑐5𝑐6 𝑠5 𝑐5𝑠6

 (7.18)

In addition, for the velocity, the calculated Jacobian matrix also presents

the 03×3 matrix that simplifies the study of the inverse kinematics.

J(q) =
[
(J

11
)3×3 03×3

(J
21
)3×3 (J

22
)3×3

]
(7.19)

7.3.1.1.2 Inverse kinematics Since the positioning and orienting equa-

tions are similar to the ones seen for the UR10e case, the closed set of

solutions for the inverse kinematics of the SUPSI robot do not differ much

according to the previous ones (equations 7.7, 7.8, 7.9 and 7.10). Moreover,

as the IK of the positioning and orientation does not influence directly

the kinematic singularities that has to be parameterized to implement

the d-APF Controller, so it is not presented in this document.

7.3.1.2 Singularity Study and characterization

Regarding the IK for the velocity of the robot, the singular configurations

correspond to the configurations where the determinant of the Jacobian

matrix turns 0 (|J| = 0). Once again, the solutions for the singularity

analysis can be split into the solutions for the each of both cases |(J
11
)3𝑥3 | =

𝑓1(𝑞1 , 𝑞2 , 𝑞3) = 0 or |(J
22
)3𝑥3 | = 𝑓2(𝑞4 , 𝑞5 , 𝑞6) = 0. The solutions for

each situation are presented in equation 7.20
17

and 7.21, respectively.

96 7 Controllers Implementation

Moreover, these equations have been also represented to allow a more

clear understanding of the zeros of both cases in Figures 7.24 and 7.25.

|J
11
| = 𝑓 (𝑞3) · ℎ(𝑞2 , 𝑞3) = − cos(𝑞3) · (𝑎3𝑎4(𝑎4 cos(𝑞2 + 𝑞3) − 𝑎3 sin(𝑞2)))

(7.20)

Figure 7.24: Graphical representation

of the found zeros for the case of

|(J
11
(𝑞1 , 𝑞2 , 𝑞3))3𝑥3 | = 0 in the SUPSI

robot decoupled kinematics.

Figure 7.24 displays a similar singularity distribution for the arm singu-

larities group into two different solutions types: the red coloured ones

and the black coloured ones. The first ones are bounded to 𝑓 (𝑞3) while

the black coloured ones are linked to ℎ(𝑞2 , 𝑞3). Nevertheless, due to

the structural change in the distribution of the joints of the robot in its

resting position, the 𝜋/2 displacement relative to this modification is

also present in the closed set of solutions for the singular configurations.

This matching between models (the UR10e and the SUPSI robot one)

is positive because it can be seen as a check for the good and stable

behavior of the proposed decoupled kinematic model for non-spherical

wrist robots.

|J
22
| = 𝑔(𝑞5) = − cos(𝑞5) (7.21)

Figure 7.25: Graphical representation

of the found zeros for the case of

|(J
22
(𝑞4 , 𝑞5 , 𝑞6))3𝑥3 | = 0 in the SUPSI

robot decoupled kinematics.

7.3 SUPSI robot particularization 97

With the solutions appreciated above the singularity characterization of

the joints can be described in a general formulation that gathers all the

cases as shown in equation 7.22. This parameterization of the singular

configurations ends up in the equation 7.23 where the calculation of the

vector of distances to singularities is displayed for the SUPSI robot.

|J| = 0 ⇐⇒

ℎ(𝑞2 , 𝑞3) = 𝑎3𝑎4(𝑎4 cos(𝑞2 + 𝑞3) − 𝑎3 sin(𝑞2))
𝑓 (𝑞3) = − cos(𝑞3)
𝑔(𝑞5) = − cos(𝑞5)

(7.22)

d𝑠𝑖𝑛𝑔 =
[
0 𝑓 (|J

11
|)𝑞2

𝑓 (|J
11
|)𝑞3

0 𝑓 (|J
22
|)𝑞5

0

]𝑇
(7.23)

7.3.2 Hardware Interface and RTT ROS controller

The implementation of the Hardware Interface is also a mirror of the

ROS Control implementation for the UR10e robot. Figure 7.26 displays

the controller class diagram for the implemented Hardware Interface

where, once again, it can be appreciated that the position and velocity

joint interfaces inherits from a self-developed scaled_joint_trajectory

interface. Unlike to the UR10e which relies on the RTDE library to

communicate with the robot, for the SUPSI robot a library to encapsulate

the real time TCP/IP communication has been developed, the so called

supsi_hardware_interface::SupsiHardwareInterface.

Figure 7.26: ROS Control class diagram

for the SUPSI robot developed hardware

interface.

One of the advantages of employing the SUPSI robot for implementing

the controller is that since it is a self-developed, there is a lot of versatility

for implementing the communication capabilities. The SUPSI robot comes

with a KEBA controller where the SUPSI engineers and researchers have

implemented the low level controllers of the robot, the safety measures,

and the starting procedure and sequence, among other capabilities of the

deliberative robot. Therefore, to implement an specific program to allow

the communication with the robot, two additional automation tasks to

send and received the desired and current joint states, respectively, was

implemented in the KEBA controller.

98 7 Controllers Implementation

This two programs were required from the KEBA controller side to allow

sending the current position and velocity states to the ROS Controller,

and receiving the target position and velocity to be applied as references

in the low level controllers of the robot. In addition to both task, a circular

buffer was also implemented to avoid loosing any received command.

Moreover, several flags where also utilized to manage the movement

in a new jogging mode that executes the commands received from the

ROS side. Fact that also requires additional flags to coordinate this new

working mode for the robot with its regular behavior to guarantee the

trigger of the essential safety measurements already implemented. By

doing so, the already integrated safety of the controller would never be

violated guaranteeing the operator safety since the ROS Controller never

bypasses the robot control box.

In the ROS side, for the implementation of the supsi_hardware_inter-

face::SupsiHardwareInterface, a TCP/IP library for communication in

Ubuntu was developed. This communication library was then encapsu-

lated inside a self-developed Hardware Interface. On top of that, the RTT

ROS Controller was implemented by inheriting from an adapted scaled_-

trajectory_controller interface for the SUPSI robot and the hardware

interface bridge of the proposed control architecture. This considera-

tions allows the implementation of the rtt_supsi_apf_controller for both

controllers: the DLS-APF and the d-APF ones. The software package

dependencies coincides with the one showed for the UR10e due to their

mirror implementation.

Lastly, to guarantee the proper communication between the ROS and the

robot control box sides a communication structure was defined in both

sides to allow the understanding of the different data types. The SUPSI

robot is a 6 DoF manipulator, so the minimum required information for

the ROS controller are the identification number of the message, and

the position and velocity of each joint. To ease the understanding of the

compact structure of data sent from and to the robot control box, the

Table 7.5 is included below.

Table 7.5: Required struct to communi-

cate with the KEBA Controller.

Message field Data size ROS format KEBA format

id 2 Bytes int16 UINT

pos[6] 24 Bytes (6 × 4 Bytes) float DWORD

vel[6] 24 Bytes (6 × 4 Bytes) float DWORD

Taking into account this modifications and with the implementation

displayed in Subsection 7.3.1, the Hardware Interface can be considered

fully implemented for the SUPSI robot.

7.3.3 Vision algorithm

With respect to the vision algorithm, there are just a filter to detect

the obstacle from the scene for the simulated scenario. In this case, the

vision filter utilized corresponds to the exact same HSV green filter

used for the UR10e simulated scenario (see Figure 7.27). In this way, a

green sphere emulates the random and static behavior of the human

operator depending on the type of simulation that is running. Once

the green obstacle is filtered, the remaining depth map is published so

the controller can compute the distance between the obstacle and the

7.4 Conclusions to Chapter 7 99

different control points of the body of the robot. To emulate a human

behavior is enough with this method, however, for a real scenario the

filter should employ the proposed algorithm for the UR10e robot or any

pretrained Neural Network based algorithm instead. In this manner, the

vision filter is considered a black box that suits the objective of giving a

segmented environment to the ROS Controller.

Figure 7.27: Green filter for the SUPSI

robot vision algorithm in simulation. (a)

Colour image of the Gazebo environ-

ment. (b) Filtered depth map after apply-

ing the green colour filter.

7.4 Conclusions to Chapter 7

In this chapter all the considerations regarding the physical and virtual

implementation of the controllers have been presented. Firstly, the real

time encapsulation of ROS Control into Orocos is addressed. This devel-

opment leads to the implementation of a generic RTT Controller Manager

to enable the ROS Control loop cycle and a generic hardware interface

bridge to share data between Orocos components and ROS Controllers.

In addition, the data structure to allow the coordination of the hybrid

ROS-Orocos controllers with the remaining elements of the ROS network

is exposed.

On top of the common software architecture, each DLS-APF and d-APF

controllers (RTT ROS controllers, in general) have been implemented for

each robot (the UR10e and the SUPSI robot). In the case of the SUPSI

robot, additional considerations such as a self-defined message for the

communications or a program for the KEBA controllers were required,

since it is a self-developed robot. Moreover, the implementation of the

d-APF controller requires a full kinematic behavioral study, also included

in this chapter. From this study, similarities between both structures

has been found highlighting positive aspects in the implementation of

the decoupled kinematic model proposed for non-spherical wrist cobot.

This analysis ends up in a suitable closed set of solutions for the inverse

kinematics and the singular configurations of each robot.

Lastly, it is worth mentioning that the whole implementation has been

made keeping the safety of the application since the programmed in-

trinsic safety measures can never be violated by the external RTT ROS

controller.

Tests, Results and Conclusion

Performance Tests and Results 8

8.1 Kinematic behavior

implications 103

8.2 RTT ROS Controllers

performance tests in

simulation 107

8.3 Real time suitability tests115

8.4 Holding position perfor-

mance 116

8.5 Trajectory tracking

performance 119

8.5.1 Without repulsion 119

8.5.2 During obstacles repul-

sion 122

8.6 Conclusions to Chapter 8 124

Until this point, all the theoretical developments and the implementation

have been regarded from Chapter 4 to 7. Throughout all the presented

developments, the conclusions of each chapter highlight a set of advan-

tages that, a priori, were fulfilled by both main contribution: the novel

decoupled kinematic model for non-spherical wrist cobot and the d-APF

controller. To test the validity of the aforementioned statements about

the advantages, Chapter 8 analyze the behavior of the main contributions

of this work.

Due to the presented research method in Chapter 3 this chapter offers a

combination of simulated test with real world tests. On the one hand, the

aspects more related to the kinematics modeling or the first performance

test are executed in simulation. On the contrary, the real time suitability

of the proposed controller as well as the study of the trajectory tracking

errors, among other results, are studied in a real scenario. In general,

both robots, the UR10e robot and the SUPSI one, have been employed to

test the performance of the controller in simulation, while only the UR10e

robot has been utilized to test the performance on a real collaborative

work cell.

Each of the proposed tests is described in its corresponding section,

where then the collected data from the experimentation phases as well

as a quick first analysis about the results are exposed. The first observed

results correspond to an analysis of the singularity behavior between

the proposed novel model and other typically employed models of the

literature. Then, these analyzed kinematic models are implemented into

its respective controller (DLS-APF and d-APF controllers), allowing a

performance test in simulation for each of the RTT ROS controllers and

robot. Subsequently, the suitability of the real time performance of the

implemented controller is measured for the UR10e and both controller

implemented (DLS-APF and d-APF controllers). The last results included

are about the efficiency and error while tracking trajectories with the

proposed controller based on several scenarios of static and dynamic

elements, only tested on the UR10e robot. Finally, to conclude Chapter 8,

a brief conclusion is presented summing up all the most relevant results

of the chapter.

8.1 Kinematic behavior implications

In this section, the suitability of the kinematic behavior of the decou-

pled kinematic model for non-spherical wrist cobots is checked. This

section uses the UR10e because since it is a commercial robot, there are

more kinematic models examples to test against in the literature. More

specifically, it is employed the ROS based from the Universal Robots ROS

drivers [127] and the Denavit-Hartenberg (DH) from [111] as reference

models. The aim of the test is to check whether it is expected the same

104 8 Performance Tests and Results

1: In linear algebra, two rectangular 𝑚-

by-𝑛 matrices A and B are called equiva-

lent if

B = Q
−1

AP

where Q is an 𝑚-by-𝑚 invertible matrix

and P is an 𝑛-by-𝑛 invertible matrix.

As shown in Figure 8.1, equivalent matri-

ces represent the same linear transforma-

tion𝑉 →𝑊 under two different choices

of a pair of bases of𝑉 and𝑊 , with 𝑃 and

𝑄 being the change of basis matrices in𝑉

and 𝑀, respectively. Equivalent matrices

is an equivalence relation of the space

of rectangular matrices characterized by

the following properties:

1. Equivalent matrices have the

same rank.

2. Equivalent matrices are a linear

combination of their rows and

columns. Therefore, they might

have or might not have the same

determinants.

2: Assumption 1: A square block sub-

matrix determinant can be computed as

stated in the following equation:���� [A B

C D

] ���� = |AD − BC|

3: Assumption 2: Let the jacobian matrix

(J) be an 6-by-6 block matrix generically

defined as:

J =

[
(J

11
)3×3 (J

12
)3×3

(J
21
)3×3 (J

22
)3×3

]
In general, for a jacobian matrix, it is true

the following statement:

(J
21
)3×3 =

[
z0 · · · z𝑚−3

]
≠ (J

12
)3×3

where:

(J
12
) =

[
z𝑛−2 × Δ𝑝𝑛−2

· · · z𝑛 × Δ𝑝𝑛

]
Δ𝑝𝑖 = (p𝑒 − p𝑖)

4: Assumption 3: Let J𝐷 and J𝐶 be two

geometric jacobian matrices of different

kinematic models (different reference

system distribution). If and only if the ge-

ometric Jacobian is employed to describe

the kinematic behavior of the robot and

both models include the same rotations

and share the orientation of their refer-

ence frames, then the following relations

are also true:

(J𝐷,21
)3×3 = (J𝐶,21

)3×3 and

(J𝐷,22
)3×3 = (J𝐶,22

)3×3

This happens because the geometric ja-

cobian is related to the angular velocity

around 𝑋, 𝑌, and 𝑍 axis. Thus, if two

kinematic models present the same joint

turns, the angular velocity should be

equal (only held true if the world frame

is same oriented).

kinematic behavior or not, in a theoretical manner. Thus, the tests is a

simulation based test.

V W

V’ W’

B

Q
−1

A

P

Figure 8.1: Matrix equivalence theoreti-

cal explanation.

To check the kinematic behavior equivalence between the proposed

model (for this section, it is generically called the decoupled model)

and the other two from the literature (called the coupled ones). This

thesis has implemented a proof based on the matrix equivalency [118]
1
.

This method has been selected because matrix equivalency is similar to

the SVD and allows to compare directly whether two matrices shares

singular values matrices or not. The aim of the proposed test is to check

whether the decoupled model shares the null space with the coupled

models of the literature or, in other words, to validate if their singular

configurations coincide. This proof is selected since two matrices are

equivalent if they share the null space, what means in this particular use

case that their singular configurations are the same [142]. Therefore, their

decomposition into singular values should be the same [118]. However,

if they are not equivalent, their kinematic behavior will be different,

presenting different unstable configurations for the control.

The first part of the comparison relies in two generic Jacobian matrices

for the decoupled and coupled models, J𝐷 and J𝐶 , respectively. Both

expressions can be appreciated in equation 8.1.

J𝐷 =

[
(J𝐷,11

)3×3 (0)3×3

(J𝐷,21
)3×3 (J𝐷,22

)3×3

]
(8.1a)

J𝐶 =

[
(J𝐶,11

)3×3 (J𝐶,12
)3×3

(J𝐶,21
)3×3 (J𝐶,22

)3×3

]
(8.1b)

Computing the Jacobian determinant as square block matrices
2
, the

expression from below (equation 8.2) is obtained. Note that, since the

utilized Jacobian is the geometrical one, this result is truth only according

to the following assumptions: J𝐷,22
= J𝐶,22

= J
22

3
, and J𝐷,21

= J𝐶,21
=

J
21

4
.

|J𝐷 | = |J𝐷,11
| |J

22
| (8.2a)

|J𝐶 | = |J𝐶,11
J
22
− J𝐶,12

J
21
| (8.2b)

This first theoretical analysis on the Jacobians determinant of the coupled

and decoupled models highlights that they should not be equivalent.

It might occur that with a proper selection of the reference frames

distribution, the following conditions turns true: (J𝐶,12
)(J

21
) = 0 and

|J𝐷,11
| = |J𝐶,11

|. In case this scenario does not happen, the general

consideration is that |J𝐷 | ≠ |J𝐶 |5.

This theoretical result has been checked with a simulation for each of

the aforementioned model in a statistical way. For each characterized

singularity
6

a set of 10000 random valid configurations have been tested.

The aim is to check whether or not these three kinematic models shares the

same null space. Therefore, Tables 8.1, 8.2 and 8.3 gathers the evaluation

of the singularity for each of the singularity parameterizations, which

corresponds to 𝑓 (𝑞3), 𝑔(𝑞5), and ℎ(𝑞2 , 𝑞3), respectively.

8.1 Kinematic behavior implications 105

5: Note that this demonstration is also

applicable for a 7 DoF by applying As-

sumption 4 instead: A rectangular matrix

which meets the condition of having an

invertible block submatrix A (and simi-

larly D is invertible), its determinant can

be computed in the following way:���� [A B

C D

] ���� = |A| · |D − CA
−1

B|

.

6: Kind reminder of equation 7.15:

|J| = 0 ⇐⇒

ℎ(𝑞2 , 𝑞3) = 0

𝑓 (𝑞3) = 0

𝑔(𝑞5) = 0

7: In this paper it is considered as a sin-

gular configuration each configuration

that meets:

Ψ = {q ∈ ℝ𝑛
: |J(q)| ≤ 𝑠0},

where 𝑠0 is a close to zero threshold

defined by the user.

Each of the presented Tables executes a singularity matching, a singularity

checking of boundary singularity, and an statistical study distribution

of the computed data for each tested configuration. The goal of the

singularity matching test is to check the percentage of configurations

that can be considered singular for each use case. The selected criterion

to consider a configuration in a singularity has been chosen following

the guidance of [105]
7
. The boundary singularity test is to check whether

the robot is in a boundary singularity or not, to understand the nature of

the singularity. And lastly, the statistical analysis of the values obtained

from each Jacobian determinant pretends to show the variability in the

computed results.

Singularity Matching

Dec [%] ROS [%] DH [%]

Dec 100.00 100.00 100.00

ROS − 100.00 100.00

DH − − 100.00

All models match [%] Boundary Sing. [%]

100.00 0.00

Statistics

Mean (J) Std (J) Max (J) Min (J)

Dec 3.33 · 10
−20

1.30 · 10
−17

1.35 · 10
−16 −1.05 · 10

−16

ROS 7.94 · 10
−20

1.66 · 10
−17

1.49 · 10
−16 −1.94 · 10

−16

DH 2.61 · 10
−20

1.31 · 10
−17

1.15 · 10
−16 −1.05 · 10

−16

Table 8.1: Statistics and singularity

matching for the case 𝑓 (𝑞3).

Singularity Matching

Dec [%] ROS [%] DH [%]

Dec 100.00 100.00 100.00

ROS − 100.00 100.00

DH − − 100.00

All models match [%] Boundary Sing. [%]

100.00 0.00

Statistics

Mean (J) Std (J) Max (J) Min (J)

Dec −4.08 · 10
−21

6.43 · 10
−18

4.66 · 10
−18 −5.30 · 10

−17

ROS −1.40 · 10
−20

4.89 · 10
−18

4.90 · 10
−17 −4.41 · 10

−17

DH −3.96 · 10
−20

4.84 · 10
−18

3.99 · 10
−17 −4.72 · 10

−17

Table 8.2: Statistics and singularity

matching for the case 𝑔(𝑞5).

Singularity Matching

Dec [%] ROS [%] DH [%]

Dec 99.84 2.71 2.67

ROS − 2.71 2.62

DH − − 2.67

Three models matching

2.62

Boundary Sing. [%] Shoulder Sing. [%]

0.00 0.00

Statistics

Mean (J) Std (J) Max (J) Min (J)

Dec −5.08 · 10
−07

3.51 · 10
−05

1.01 · 10
−04 −1.01 · 10

−04

ROS −2.58 · 10
−04

0.0149 0.0418 −0.0419

DH −2.57 · 10
−04

0.0149 0.0420 −0.0418

Table 8.3: Statistics and singularity

matching for the case ℎ(𝑞2 , 𝑞3).

The first fact appreciated is that for the first two cases (𝑓 (𝑞3) and 𝑓 (𝑞5))
there is full matching of the testing singular configurations. On the

contrary, for the case of singularities due to 𝑞2 (ℎ(𝑞2 , 𝑞3)) there is a

mismatching between the three models. This behavior is appreciated in

both sections of the tables, the Singularity Matching and the Statistics.

106 8 Performance Tests and Results

8: Terminology from [109].

Moreover it is also remarkable that none of them corresponds to a

boundary singularity nor a shoulder singulary. So in a first glimpse,

the proposed decoupled kinematic model for non-spherical wrist cobot

behaves correctly and suit the desired purpose.

Focusing the attention again on the first two tables, these singularities

are already known in the literature as shown in [109]. Therefore, it can

be assumed that the proposed model adopts the singularities due to the

structural distribution of the robot joints. It is worth noting that thanks

to this matching, the decoupled kinematic model is considered well

developed since the singularities due to constructive reason will remain

in the kinematic model independently how the reference systems are

distributed.

On the contrary, for the case of ℎ(𝑞2 , 𝑞3) this matching is not present

in the Singularity Matching section of Table 8.3 nor the Statistics one.

From the Statistics section it is appreciated that there is around a 3-

rd order of magnitude difference according to the literature models.

This relevant mismatch in the models is also supported by the fact

that even between the DH and the ROS models, the computed singular

configurations differs from one another. In this manner, this behavior

highlights the importance of a good selection of reference systems while

modelling the robot. A more favorable or simpler model can lead to

more efficient computation, or even to a closed set of solutions for the

singular configurations as seen in this work. Due to this observed strong

dependency on the reference frame distribution, this thesis proposes

a new type of singularity belonging to the internal singularities of the

robot
8
, the model singularities. These singular configurations are the

ones directly linked to the reference frames distribution (i.e. ℎ(𝑞2 , 𝑞3)),
and are generated due to the mathematical coupling of trigonometric

relationships.

In addition to the results of the singularity analysis, the difference in

the kinematic behavior can also be appreciated since equation 8.1. In

this equation the coupled models present a full Jacobian structure while

the decoupled models relies on a simplified zero block matrix structure

(03×3). This fact is relevant because it means that at least the task space

control of the robot looses the dependency of the fourth and fifth (𝑞4 and

𝑞5) joints. Therefore, the wrist no longer affects the positioning of the

arm, influencing exclusively the orientation and angular velocities of the

decoupling point. Becoming, in this way, a trade off of the change in the

control model of the TCP for the decoupling point instead.

To sum up, the proposed kinematic model modifies the kinematic behav-

ior of the robot by simplifying it. This simplification can be seen in both:

the closed set of solutions obtained for the robot (see Chapter 7), and the

comparison of singular configurations exposed above. The results show

that the decoupled kinematic model for non-spherical wrist manipulators

bounds the singularities to a closed joint dependent characterization.

In this way, the singular configurations are reduced to a limited set of

configurations, enabling the chance of predicting them beforehand which,

in turn, allows the utilization of advanced reactive control algorithms as

the d-APF controller proposed, as opposed to traditional models.

8.2 RTT ROS Controllers performance tests in simulation 107

9: Both terminology are obtained from

Figure 7.21.

10: Further detail of the measured values

to compute the results from Table 8.4 are

displayed at the end of this section

8.2 RTT ROS Controllers performance tests in

simulation

Figure 8.2: Cobot workcell layout with

the numbered core process steps.

Once the suitability and behavior of the proposed kinematic model

have been proven adequate, the first tests on the controller can be

executed. As hinted in the preamble of this chapter, the very first proofs

on the behavior of the controller were executed in simulation first,

to validate the suitability of its implementation without risking any

equipment integrity. In this first test, two parameters are tested: the

timing performance of the d-APF controller against the DLS-APF one,

and the timing performance and suitability of implantation of different

types of collaborative manufacturing processes.

For such an aim, a collaborative battery cells disassembly task has been

simulated for both robots in an environment as the one shown in Figure

8.2. The different processes to be executed in this collaborative battery

disassembly process are described in the flow chart from Figure 8.3. The

executed simulated tests consist of two different tests of 10 battery pack

disassembly processes, in total 80 pick and place operations (sorting

the related cells). From among this operations, 40 cycles are executed in

the presence of an obstacle simulating the operator (static and dynamic)

while the remaining 40 cycles are performed in the absence of obstacles.

The presence of operator in both states, static and dynamic, is simulated

with a green ball in Gazebo filtered with the HSV green filter as described

in Subsection 7.2.3. An example of the simulated tests during execution

for the SUPSI robot is shown in Figure 8.4 below.

Figure 8.3: Battery cell sorting after bat-

tery pack disassembly process.

Figure 8.4: Collision avoidance during

RTT ROS controllers simulated test with

the SUPSI robot: Left: DLS and APFs con-

troller case. Right: d-APF controller case

where at each control point the relative

obstacle (blue bars) and singularity risk

(green bars) values are displayed.

In this manner, the experimental process results displayed in Table

8.4 measures: the mean execution time of the ros_control::update()

component (controller), the mean timing performance of the APF RTT

component (component)
9
, the mean cycle time for each pick and place

task with obstacle (task obs.), and in the absence of obstacle (task no

obs.). Note that since the laboratory environment of the SUPSI robot is

different to the UR10e one, the collaborative disassembly cell could not

be reliably reproduced. For such reason, there are only displayed results

of the Component and the Controller for the UR10e robot.

All these results presented above are summed up in Table 8.4
10

for the

DLS-APF controller as Benchmark results, and the d-APF controller

results as d-APF. In general terms, the controller components present a

reduction on the requiered computational load, while the cycle times are

reduced. So the proposed controller is behaving as expected. In addition,

108 8 Performance Tests and Results

the obtained results display similarities between the implementation of

the controllers on each robot.

Table 8.4: Results summary of the RTT ROS Controllers simulated performance tests. The Component and Controller rows of the table

are measured in milliseconds (ms) since they represent control cycle loop execution times. Moreover, the Task with and without obstacles

rows represent the timing of a full pick and place cycle, therefore it is measured in seconds (s).

SUPSI robot study case

Static obstacle tests Dynamic obstacle tests

Parameter Benchmark d-APF Reduction Benchmark d-APF Reduction

Component 2.137𝑚𝑠 1.804𝑚𝑠 16% 2.183𝑚𝑠 1.804𝑚𝑠 17%

Controller 1.6562𝑚𝑠 1.794𝑚𝑠 −8% 1.555𝑚𝑠 1.626𝑚𝑠 −5%

Task no obs. 95.506𝑠 54.036𝑠 43% 93.998𝑠 56.339𝑠 40%

Task obs. 113.31𝑠 70.287𝑠 38% 99.124𝑠 59.877𝑠 39%

UR10e robot study case

Static obstacle tests Dynamic obstacle tests

Parameter Benchmark d-APF Reduction Benchmark d-APF Reduction

Component 1.3474𝑚𝑠 1.265𝑚𝑠 6% 1.3751𝑚𝑠 1.3239𝑚𝑠 3.7276%

Controller 2.0504𝑚𝑠 2.3839𝑚𝑠 −16% 2.0949𝑚𝑠 2.2558𝑚𝑠 −7%

Regarding the Component execution timings, it is worth noticing that the

Component performance has been diminished from a 16-17% of timing

reduction for the SUPSI robot to 3-6% of timing reduction in the UR10e.

This about 10% trimming in the required computational time could be a

consequence of the simulated scene. While, on the one hand, the SUPSI

robot utilizes two cameras, the UR10e only employs one. Therefore, the

computational stress that the simulation performance is suffering is less

than in the first case, leading to a reduction of the required overall time

to compute responses.

Despite this difference, it is relevant that in both scenarios the Component

requires less time to compute a response than the DLS-APF controller.

Moreover, in the SUPSI robot study case, the Component of the DLS-APF

controller cannot compute a response in less than 2ms (the required

control loop frequency). So it would not seem recommendable to apply

to a hard real time controller since some control references will not

considered an updated repulsive component due to the obstacle. Which

will not lead into a collision, but it will increase the risk for the operator

in the collaborative application.

The fact that the Controller component has to perform more operations to

compute a response due to the singularity repulsive component produces

an increase of the required time to compute a control response. Even

though the reduction is similar in both scenarios, it is more worrying the

fact that for the UR10e robot, the utilized time to compute a new control

reference is over 2ms. Bearing in mind the good performance in the

SUPSI robot, the fact that is a simulation test, and that in the following

section (Section 8.3) the real time suitability test are applied to this robot,

no drawbacks are highlighted yet for this behavior.

Relative to the pick and place tasks with and without obstacles the

required time to perform an operation is also reduced in comparison to

the DLS-APF controller. The first remarkable fact of the test on simulations

highlights a overall reduction of around a 40% in the time needed to

execute a full pick and place operation for both cases (static and dynamic

obstacles). This improvement in the manufacturing performance of the

simulated battery pack collaborative disassembly process can be due to

8.2 RTT ROS Controllers performance tests in simulation 109

two factors. Firstly, since the d-APF controller performs more efficiently

than the DLS-APF one, the computational load of the simulation engine

is lower so the simulation can be executed faster in time. Moreover, the

paths followed by the avoidance when using the proposed controller are

smoother while avoiding simultaneously the collision and the singularity.

Herein, the risk to be trapper into singular configurations is reduced and

the movements executed by the manipulator are more straight forwarded,

reducing the required time for each pick and place cycle.

The outperform of the d-APF controller over the DLS-APF control

approach is also appreciated in comparisson to the standalone manually

executed disassembly process. From empirical data measured on the

shop-floor manual process, a standard disassembly average cycle for

one battery lasts 454s. This performance makes a total of 60 batteries

process by one operator during a single regular working shift of 8 hours.

Introducing a single collaborative robot in the process generates at least

2 robot safety stops due to collisions (statistical data taken from over

6 months of data measurement). Every time one of these safety stops

happens, it takes roughly 20s to be operational again since the operator

has to rearm the robot and restart the program. In general, introducing a

cobot to this manufacturing process will increase the disassembly time

of a battery pack to 494s, meaning a 9% of productivity loss. Therefore,

introducing the advanced robot controller proposed in this thesis can

deal with this timing increase by reducing the non-critical safety stops

due to avoiding simultaneously the collision with dynamic obstacles and

singularities. Using the data from Table 8.4, it can be stated that a full

battery pack disassembly cycle requires around 439s to be completed.

This behavior implies a reduction of 11% in the required time to execute

a disassembly cycle in comparison to the original collaborative operation

(494s) due to partially optimized trajectories and the partial absence of

production stops.

Summarizing the results obtained in the simulated test, the most relevant

issue to highlight is that the controller behaves as expected, reducing the

required computational load to compute safe responses to avoid obstacles

in the case of the proposed d-APF controller. This improvement is also

appreciated in the collaborative application test where the required time

to disassembly a full pack has been roughly decreased an 11%. Lastly,

even though the Controller component works suitable for the SUPSI

robot in the application, the following section will test the performance

of the proposed controller and its real time suitability in the case of the

UR10e robot.

For further details in how the values from Table 8.4 are obtained, the

different testing results are gathered below in the following figures

from Figure 8.5 to 8.9. In Figure 8.5 the timing execution for the pick

and place tasks executed by the SUPSI robot with and without obstacle

are appreciated. Consequently the Component and Controller timing

performances are also presented for each controller and use case. This

way, the result for the static obstacle tests for the SUPSI and the UR10e

robot are collected in Figure 8.6 and 8.7, respectively. While the case for

the dynamic obstacle avoidance is presented in Figure 8.8 for the SUPSI

robot and in Figure 8.9 for the UR10e.

110 8 Performance Tests and Results

Figure 8.5: Results of the task execution with and without obstacle in the RTT ROS controllers simulated test: At the left hand side the

timing distribution for no obstacle pick and place cyles, and at the righ hand side the timing distribution for the obstacle avoidance cycles.

8.2 RTT ROS Controllers performance tests in simulation 111

Figure 8.6: Results of the timing performance of the Component and the Controller in the RTT ROS controllers simulated test for the

SUPSI robot (static obs.): On the top left corner Component timing performance of the DLS-DAPF controller, on the top right corner the

Component timing performance of the d-APF controller, on the bottom left corner the Controller timing performance for the DLS-DAPF

controller, and on the bottom right corner the Controller timing performance for the d-APF controller.

112 8 Performance Tests and Results

Figure 8.7: Results of the timing performance of the Component and the Controller in the RTT ROS controllers simulated test for the

UR10e robot (static obs.): On the top left corner Component timing performance of the DLS-DAPF controller, on the top right corner the

Component timing performance of the d-APF controller, on the bottom left corner the Controller timing performance for the DLS-DAPF

controller, and on the bottom right corner the Controller timing performance for the d-APF controller.

8.2 RTT ROS Controllers performance tests in simulation 113

Figure 8.8: Results of the timing performance of the Component and the Controller in the RTT ROS controllers simulated test for the

SUPSI robot (static obs.): On the top left corner Component timing performance of the DLS-DAPF controller, on the top right corner the

Component timing performance of the d-APF controller, on the bottom left corner the Controller timing performance for the DLS-DAPF

controller, and on the bottom right corner the Controller timing performance for the d-APF controller.

114 8 Performance Tests and Results

Figure 8.9: Results of the timing performance of the Component and the Controller in the RTT ROS controllers simulated test for the

UR10e robot (static obs.): On the top left corner Component timing performance of the DLS-DAPF controller, on the top right corner the

Component timing performance of the d-APF controller, on the bottom left corner the Controller timing performance for the DLS-DAPF

controller, and on the bottom right corner the Controller timing performance for the d-APF controller.

8.3 Real time suitability tests 115

11: Frequency corresponding to a loop

cycle of 2ms.

12: This adopted names match with the

ones of the previous section.

8.3 Real time suitability tests

The real time suitability test aims for testing if the controller can send

updated references to the robot in the required control loop cycle fre-

quency of 500Hz
11

. As seen in the previous section, the simulated case of

the UR10e robot, for the controller timing performance presents a timing

issue. Therefore, this tests is also employed to clear out the doubts about

the application of the proposed controller in a real scenario, since the

misbehavior could be due to internal non-manageable processes of the

simulation computer.

The executed test pretends to test the performance of the APF component

and the RTT ROS controller component for each of both RTT ROS

Controller implemented. As the main objective of the test is to check the

timing performance of the controller, in this occasion no specific task is

performed during the test. However, it is required for the user to force the

actuation of the repulsive components of the APF randomly, as well as the

execution of random trajectories for the robot. By introducing this random

errors into the proof, the timing efficiency of the controller can be tested

even in the scenario of non-handled disturbances. Hence, once again,

1000000 cycles have been executed to measure the timing performance of

the Controller component, while 5000 sampled are collected for the case

of the APF computational component.

The raw collected data are presented in Figure 8.10 where it can be

appreciated a histogram for the Component and the Controller
12

for

the DLS-DAPF controller at the left side of the picture and the d-APF

controller data at the right hand side. Furthermore, the performance of

each Orocos component has been analyze through a box plot in order

to better appreciate the distribution of the read data (see Figure 8.11).

In addition to the raw data, the Table 8.5 is included below where the

maximum (Max), minimum (Min), standard deviation (Std) and mean

(Mean) are presented for each controller component (Component and

Controller)
13

13: For each ROS Control-Orocos compo-

nent, the Benchmarking results are once

again referred to the DLS-DAPF Con-

troller, and the d-APF ones are related to

the proposed controller in this Ph.D..

Component Controller

Benchmark d-APF Benchmark d-APF

Mean 0.4457𝑚𝑠 0.3676𝑚𝑠 0.1010𝑚𝑠 0.1063𝑚𝑠

Std 0.1584𝑚𝑠 0.0828𝑚𝑠 0.0222𝑚𝑠 0.0230𝑚𝑠

Max 2.1414𝑚𝑠 1.9837𝑚𝑠 1.4349𝑚𝑠 1.3383𝑚𝑠

Min 0.2248𝑚𝑠 0.1795𝑚𝑠 0.0225𝑚𝑠 0.0233𝑚𝑠

Table 8.5: Results summary of the RTT

ROS Controllers real time suitability tests.

The Component and Controller rows of

the table are measured in milliseconds

(ms) since they represent control cycle

loop execution times. Moreover, the Task

with and without obstacles rows repre-

sent the timing of a full pick and place

cycle, therefore it is measured in seconds

(s)

First of all, after analyzing the results obtained from the real time execu-

tion of the controller in the UR10e robot (summary exposed in Table 8.5),

it seems clear that the misbehavior from the previous section was due to

non-controlled processes in the simulation computer. Regarding the APF

computation component, the proposed d-APF algorithm outperforms a

rough 17% over the benchmark controller. Consequently, the efficiency

of the controller component also behaves as expected, being a little

heavier in the computation of the output. The increase in the required

computational time is aligned with the simulation results being nearly a

5% of increment.

116 8 Performance Tests and Results

Figure 8.10: Real time suitability tests timing histograms: On the top left corner Component timing performance of the DLS-DAPF

controller, on the top right corner the Component timing performance of the d-APF controller, on the bottom left corner the Controller

timing performance for the DLS-DAPF controller, and on the bottom right corner the Controller timing performance for the d-APF

controller.

Figure 8.11: Real time suitability tests timing boxplots: At the left hand side the results for the APF Component computation timings,

and at the right hand side the results for the RTT Controller Component timings.

14: This conclusion is also supported by

the fact that it has been employed the

PREEMPT_RT kernel patch. It is a soft

real time patch, so little variability in the

execution is accepted.

More importantly, in contrast to the DLS-APF controller, the proposed

d-APF controller never violates the limit of 2ms for assuring an updated

reference when sending commands to the robot. However, as seen in

Figure 8.11, this violation is not recursively, so loosing the APF compu-

tational component one cycle out of 1000000 cycles, is not a big deal
14

.

Therefore, even though the d-APF controller outperforms the DLS-APF

one, both are suitable for its usage in soft real time controllers.

8.4 Holding position performance

The holding position performance test aims to check whether is suitable

the proposed controller to maintain a configuration without risking

the operator. Therefore, this tests executes a holding position operation

8.4 Holding position performance 117

where the operator forces the robot to be pushed away to avoid the

collision. The repulsive capabilities of the designed algorithm has been

proven for each RTT ROS Controller (the DLS-APF, and the d-APF ones)

with and without pivoting vector on. In this manner, the experimental

phase of this test consists of three steps as shown in Figure 8.12: i) let

the robot hold the desired position, ii) get closer to the robot to start the

repulsive components, and iii) leave the robot to be attracted to the held

position.

Figure 8.12: Sequence of a non pivoting

static collision avoidance (d-APF Con-

troller): The first frame is the initial state

of the repulsion, the second frame is a

point in between, and the last one repre-

sents when the repulsive vector is null

because the obstacle is far again.

Following the described process and registering the feedback of the joint

states topic, the behavior of the robot has been recorded. Even though

several tests have been executed, for the shake of clarity, Figure 8.13 only

displays the results for one trajectory for each of the four possible use

cases explained in the paragraph above. In addition to this results, Figure

8.14 shows the virtual behavior in the ROS Parameter Server through

the RViz visualization of the moment where the robot is repelling the

collision.

Figure 8.13: Collision and singularity avoidance test for holding a reference: At the left hand side the results without the pivoting vector

on, and at the right hand side the results with the pivoting vector on.

The results obtain from the experimentation show that after the repulsive

vector has stopped actuating, the robot recover the original position in

each situation. On the one hand, the test executed with the pivoting vector

off, displays a more agresive avoidance strategy. Indeed, the performance

of the collision avoidance of the d-APF controller seems softer and quicker

118 8 Performance Tests and Results

Figure 8.14: Virtualization environment of RViz during the collision avoidance: at the left hand side the response for the DLS-APF is

shown, while at the right hand side the response is the corresponding one due to the d-APF controller. The green vector is referred to the

collision avoidance repulsive vector, while the blue and green bars represent the collision and singularity risk indexes implemented.

than the response of the benchmarking one. It means that in the case

of the first controller, the robot reacts quicker and safer to a collision,

maintaining in both situations the desired position after the risk has

passed.

In the case of the pivoting active responses, a similar behavior can be

observed. However, the effect of the pivoting vector is clearly appreciated

at the right hand side of Figure 8.13 where a wider trajectory is exectued

to avoid the collision. In this occasion, the d-APF controller responds

quicker to the obstacle, and even, it can be appreciated the influence of the

singularity repulsive vector in the middle of the trajectory with the little

arc in the top of the trajectory. On the contrary, the DLS-APF controller

response is not only slower but wider too. The fact that the trajectory

is wider is a drawback because it could end up in undesired collateral

collision with other components of the scene, damaging them.

The wider and more jerky response of the DLS-APF controller is related to

both: the different utilized kinematic model and the singularity handling

technique. On the one hand, the more simplified kinematic model

proposed for the non-spherical wrist manipulators in this work makes

a smoother response whenever the obstacle comes closer to the robot.

In addition, the less aggressiveness of the response is also appreciated

for the proposed controller in the case of the pivoting vector. In the case

of the DLS-APF controller, prior to returning to the position the robot

is closed to a singularity obtaining a jerkier trajectory. In contrast, the

d-APF controller displays a little loop before turning back to the rest

position which is due to the avoidance of the singularity during the

obstacle avoidance in order to prevent the arm to be fully stretched.

For these reasons, in general, the behavior of the DLS-APF controller is

less desirable because it can react late to a risk in the environment or

add additional risks to the control response. Therefore, the proposed

d-APF controller seems to present a more smoother behavior in the

vicinity of a collision. As it can be observed, the proposed controller

avoids the singular configuration while presenting a less aggressive

response that can increase the confidence of the human-robot partner.

Thus, the presented behavior of avoiding the singularity instead of

working around the singular configurations handling the velocities, seem

8.5 Trajectory tracking performance 119

more efficient to be applied in regular industrial shared environments.

The following section tests the behavior of both controller for a less

controlled environment where the robot performs a part of the pick and

place cycle.

8.5 Trajectory tracking performance

The trajectory tracking performance tests pretends to study the behavior

of the proposed d-APF controller tested against the traditional DLS-APF

controller while performing the tracking of trajectories. In order to obtain

reliable results in the trajectory tracking with the proposed controller

enabled two types of tests are executed. First, a classical error position

trajectory tracking study is perform to check whether or not the robot

can follow a trajectory without any collision or singularity disturbance.

A repulsive scenario is then experimented to compare the behavior of

each controller according while tracking a trajectory instead of a static

spot. The following subsections explains each experimental phase, the

goal, and metrics employed, analyzing at the end the obtained results.

8.5.1 Without repulsion

The first check executed consist of a trajectory tracking error typical

study. Since a robot is a machine that in most situations moves from

one point to another to transport different types of workpieces, this

test pretends to test the accuracy of executing pick and place task with

the implemented controllers. In order to obtain reliable results, the test

executed in different situations the same trajectory at two different speeds:

at 30% of the maximum speed of the manipulator, and at full speed (100%).

The different scenarios studied correspond to the previous four tested for

the holding positions tests: the d-APF controller with and without the

pivoting vector on, and the same cases for the DLS-APF controller. The

results collected for each different velocity in the non-repulsive trajectory

tracking test are presented in Figure 8.15.

Figure 8.15: Trajectory tracking performance without repulsion: At the left side it can be found the trajectory tracking executed at 30% of

the maximum speed of the manipulator, while the rigth image represents the same trajectory tracking at a 100% speed.

120 8 Performance Tests and Results

At a first sight at Figure 8.15, whenever the lower the velocity is, the better

trajectory tracking is performed. For the case of a 30% of the maximum

speed of the manipulator there is not much to say since it seems to track

well the trajectory. Moreover, in both situations the robot is able to reach

the desired target configuration, so the observed behavior seems suitable

for its application to real collaborative applications where the robot

should carry the load from one place to another. Despite that success,

in the case of full speed, the biggest trajectory tracking error are at the

beginning and ending of the trajectory. This behavior means that during

the acceleration and deceleration processes the controller cannot follow

the planned velocity slope, resulting in a little deviation from the planned

trajectory. This means that even though the trajectory is deviated during

the acceleration and deceleration steps, the robot arrives to the desired

configuration to execute the pick and place task. In addition, to perform a

better analysis and not just some appreciations from the global trajectory

tracking task, Figures 8.16 and 8.17 represent the error while tracking the

trajectory for the slowest and the fastest velocities, respectively.

Figure 8.16: Error on position tracking at a 30% speed of the manipulator: Top figures are related to the error in the case of no pivoting

on in the controller, while the botton figures correspond to the pivoting on scenario. Likewise, the left hand side figures are referred to

the DLS-APF controller as well as the rigth hand side pictures are realted to the d-APF controller.

Regarding the results displayed in Figure 8.16 (referred to the tests at

30% of the maximum speed of the robot), the error visualized for each

of the study cases is similar to the prior commented. Firstly, it is worth

mentioning that once the robot has come through the initial steps of

the movement, the error while tracking the trajectory is practically zero

8.5 Trajectory tracking performance 121

Figure 8.17: Error on position tracking at a 100% speed of the manipulator: Top figures are related to the error in the case of no pivoting

on in the controller, while the botton figures correspond to the pivoting on scenario. Likewise, the left hand side figures are referred to

the DLS-APF controller as well as the rigth hand side pictures are realted to the d-APF controller.

(mean tracking error per axis around 0.001𝑟𝑎𝑑), so the cobot follows

the trajectory in the middle stages of the task. In addition, even though

during the acceleration and deceleration phases of the trajectory tracking

the position error increases, at the beginning and end steps of the task the

error tends to zero for the rest states in between pick and place operations.

Therefore, for a 30% of the velocity of the manipulator, both controllers

(the benchmarking and the d-APF ones) performs correctly trajectory

tracking task without remarkable differences from one another.

Nevertheless, this behavior of compensating the position tracking error is

not appreciated at Figure 8.17 where the position error collected data for

the 100% velocity test are shown. In this occasion, the acceleration error

is hold for the whole trajectory in every joint of the robot, being reduced

then during the deceleration process when the robot approaches to the

desired final state. In this situation, the average error in the tracking of the

trajectory is between 0.003-0.08rads. Even though the robot arrives with

low error to the desired configuration, the error during the execution of

the trajectory at full speed is considerable.

Since the position error is maintained over time, it is clear that the

origin of the error comes from a non tracked velocity profile during

the acceleration and deceleration steps of the robot movement. As the

presented results in Figure 8.17 a clear offset pattern, it is reasonable to

122 8 Performance Tests and Results

assume that the error comes from the implemented control architecture

instead from the low level PID controllers of the robot control box. Indeed,

it is believed that this error comes from the internal working behavior of

our trajectory tracking which is embedded into the MoveIt API suite.

In a regular MoveIt trajectory tracking configurations, the allowed joint

limits are narrowed to configure the trajectory tracking supervisor to be

strict and stop the robot movement whenever one of those close limits is

violated. However, in the proposed implementation, to allow the robot

to be pushed away from the trajectory, this limits have been consider-

ably widened. This requirement to make the proposed controller work

configures the MoveIt trajectory supervisor to behave less restrictively.

Therefore, the trajectory tracking for the controller in the regular ROS

native communication with MoveIt is decayed.

From among the results obtained in the analysis of the standalone

trajectory tracking tests, the most relevant fact is the deteriorated behavior

of the MoveIt supervisor for the trajectory tracking. It is true that in both

situations the robots always arrives to the desired state. However, the fact

that the trajectory tracking presents a bigger error than the robot motor

maximum precision (which corresponds to ±2
◦

for the position and

±11
◦/𝑠 for the velocity) is not a good performance indicator. Therefore,

the implemented controller can be utilized for basic pick and place task,

but it could not be applied to high precision trajectory tracking task due

to its unreliable behavior. Nevertheless, this behavior can be corrected

through the implementation of a complementary trajectory supervisor

to decouple the trajectory execution from MoveIt. Due to this reasons,

the controller is considered suitable for some type of collaborative

applications.

8.5.2 During obstacles repulsion

The previous section analyzes the performance of tracking an obstacle-

free trajectory. However, in a shared environment this ideal scenario

is hardly met. Therefore, this subsection studies the performance of

the trajectory tracking for pick and place operations while the robot is

avoiding the collision. Nevertheless, since the previous section displays

a greater position error while tracking the trajectory for both controllers,

this study is restricted just to the case of the 30% of the maximum

speed of the UR10e. In this way, this last testing section executes two

trajectory tracking tests one for the cases where the pivoting vector is

on and off, respectively, for each of the implemented controllers. The

executed analysis pretends to obtain a first reliable conclusion about

the viability of implementing the developed control architecture on

real collaborative scenarios. The sequence of movement executed while

avoiding the collisions is appreciated in Figure 8.18 for the case of two

repulsive responses during the trajectory execution with the d-APF

controller.

The measured data for each test are represented in Figure 8.19 where

the case for the switched off pivoting vector is observed at the left hand

side, and the remaining case is at the right of the picture. In the case of

no pivoting vector, the robot is subjected to only one repulsion process,

8.5 Trajectory tracking performance 123

Figure 8.18: Sequence of a pivoting dynamic collision avoidance (d-APF Controller): i) Initial position, ii) First repulsion, iii) Recovery the

trajectory tracking, iv) Second repulsion, and v) Final position.

while for the pivoting vector on case the robot suffers two repulsive

actions at different parts of the trajectory.

Figure 8.19: Collision and singularity avoidance test during trajectory tracking: At the left hand side the results without the pivoting

vector on, and at the right hand side the results with the pivoting vector on.

In this last test similar results as the ones observed for the case of the

position holding tests are appreciated. When the pivoting vector is not

activated, the response is more abrupt, while when it is on the response

corresponds to a wider modification of the trajectory. Furthermore, the

response for the case of the d-APF controller is also smoother than the one

for the reference controller (the DLS-APF one). This smoother reaction is

due to the employed kinematic model, which due to the simplification

of the kinematic model, more natural responses according to traditional

path plannings can be computed. This behavior is also appreciated in the

responses of both controller since the d-APF controller presents a response

that pushes away the manipulator further than the reference model. This

could be also an indication of a faster response of the proposed controller

that helps improving the safety for the operator because the robot reaches

more distant configurations from the operator.

Moreover, these slower reaction of the DLS-APF controller with respect

to the d-APF controller can also be influenced by the singularity handling

technique selected. On the one hand, the reference controller utilizes

the wDLS kinematic model continuously to compute a suitable response

124 8 Performance Tests and Results

for the repulsive vector of the APF. Meanwhile, the proposed control

solution uses a simpler kinematic model which computing each new

control reference is more efficient. This continuous limitation of the

velocity of the manipulator instead of letting the manipulator moving

free and avoid the singularities while avoiding the collisions, directly

affects the safety and performance of the application. Since the response

if more narrow and slow, it will take more time to avoid any thread of

the surroundings. Therefore the risk to collide with an operator or being

trapped into a singular configuration increases. What makes colliding

(with the robot arm or its load) of with the operator more possible when

the DLS-APF controller is working.

Since the d-APF controller responds smoother and faster to collision

pulling away the robot, the safety motor torques are less likely to be

triggered while avoiding obstacles from the environment. Therefore, the

implementation of the proposed control solution is considered more

suitable for real collaborative scenarios, obtaining a control system that

reacts safer and quicker to dangers of the environment.

8.6 Conclusions to Chapter 8

Positive results are extracted from the different tests executed. On the one

hand, when analyzing the proposed decoupled model for non-spherical

wrist cobot, it has been appreciated that the proposed model keeps the

structural singularities of the robot. In addition, the strong influence

of the reference system distribution is demonstrated, leading to a new

type of singularities. These singular configuration belong to the already

known internal singularities of the manipulators and are called model

singularities. Thus, they are bounded, due to the rotations and the

distribution of the reference frames, to the mathematical model of the

robot and the coupling of the different trigonometric functions.

The simplified kinematic model for manipulators combined with a

real time software architecture (detailed in Chapter 7) leads to the

development of a real time suitable controller. The real time performance

of the ROS-Orocos from the RTT ROS Controller running in parallel

has been tested for both simulated and real controller. From these tests,

an improvement of nearly a 17% is obtained for the component that

computes the APF repulsive velocity. On the contrary, this improvement

comes along with a reduction of a 5% of the efficiency for the Controller

component to compute a response. However, since both required times

are considerably below the 2ms of execution time, the overall real time

performance is considered suitable for its application to real time control

loops. In fact, the proposed architecture can run on a real time OS under

the frequency of 1KHz, so this control architecture can be transported to

other commercial cobot with faster interfaces.

Lastly, the performance of trajectory tracking and position holding tests

shows that the d-APF controller implemented responds smoother to the

possible collisions than the DLS-APF controller. However, the imple-

mented control architecture presents the drawback of a reduction in the

MoveIt supervisor strictness. However, the desired target configuration

is achieved even the the manipulator is operating at full speed. Moreover,

8.6 Conclusions to Chapter 8 125

the responses observed are smoother and faster achieving a position

for the robot manipulator where the robot is further from the operator

with the d-APF controller. In this manner, the robot does not only avoids

blockages due to singularities, but also creates a safer environment for

the operator. For all these reasons above, the proposed controller is

considered more suitable for its application to industrial collaborative

environment than the reference one.

Conclusion 9

9.1 General Conclusion 127

9.2 Research Outcomes 130

9.3 Future Work 130

9.1 General Conclusion

In general terms, this work proposed a suitable and novel control archi-

tecture to guarantee safety during collaborative applications without

disregarding the efficiency of the manufacturing process. For such an

aim, a d-APF controller has been proposed to react dynamically to the

collisions while evading the singular configurations. To do so, firstly it

was required to have a characterized set of solutions for the singular

configurations. Therefore, the first two contributions came up, a novel

kinematic model for non-spherical wrist robots and the singularity study.

From the first one, a more simplified kinematic model has been obtained

that allows more efficient computing an analytical set of closed solutions

for the IK. Moreover, regarding the singularity study, a closed set of

solutions for singular configurations has been extracted, allowed by the

Jacobian simplification of the prior novel kinematic model. These solu-

tions present the particularity of being a joint-dependant parametrization

of the configurations where the robot kinematic model can become sin-

gular. These results have been latter applied to the proposed d-APF

controller, which is by itself another relevant contribution of this work.

This novel controller allows the simultaneous avoidance of collisions

and blockages at the singular configurations, what enables keeping

manufacturing efficiency while maintaining safety the operator. In this

way, the proposed control approach outerform the traditional controllers

such as the DLS-APF controller not only in terms of specific control loop

cycle performance but also according to the efficiency of a whole set of

operations in collaborative manufacturing environments.

In order to achieve this behavior, as regarded in Chapter 4, it is proposed

a novel decoupled kinematic model for non-spherical wrist cobot. This

model simplifies the robot kinematics in position and velocities to over-

come the limitations of traditional kinematics models for non-spherical

wrist robots. The main drawback of traditional models consists of not be-

ing able to compute a closed set of either a set of IK solutions nor singular

configurations. By applying the novel wrist spherification technique to a

6 or greater DoF non-spherical wrist, a quasi-spherical wrist is obtained.

In other words, it is obtained a non-spherical wrist that behaves as an

spherical one. This formal contribution to the robot modeling theory has

been latter particularized for a UR10e and the SUPSI robot on Chapter 7.

Thanks to this implementation on each robot, a closed set of solutions

for both the inverse kinematics and the singularities are obtained. More-

over, the calculated solutions for the singular configurations describe a

characterization of the singular configurations dependant exclusively of

𝑞2, 𝑞3 and 𝑞5 joints.

In turn, the obtained joint dependant characterization enables the imple-

mentation of the other contribution of the thesis, the d-APF controller

(presented in Chapter 6). This controller consists of an advanced control

algorithms to repel simultaneously the robot from the collision and

128 9 Conclusion

the singular configurations. In this way, the obtained joint dependent

characterization is utilized to compute the distance to the singularity

through a singularity risk index to limit the joint velocities and a repulsive

component to push the robot away from the singular configurations.

This novel controller has been latter tested against the reference one

(the DLS-d-APF controller presented in Chapter 5). In this manner, the

reference controller from [18] has been modified to introduce a wDLS

kinematic model while computing the responses to dynamic obstacles

in the environment. This modification allows the reference controller

to generate a smoother response to the obstacle in the vicinities of the

singular configurations. Becoming a more challenging controller to test

against the novel d-APF controller.

The implementation of each controller for both robots is regarded in

Chapter 7 where the novel control software architecture to encapsulate

ROS Control based Controller into Orocos is first developed. This soft-

ware architecture allows the implementation of real time capable ROS

controllers without worrying about the programming steps of the real

time synchronization of different threads. To do so, a RTT Controller

Manager to embedded the ROS Control loop into a real time Orocos

component and a hardware interface bridge to expose the data between

the Orocos component and the ROS network are implemented. On top

of this generic control architecture, any RTT ROS Controller can be im-

plemented to run in real time. More specifically, the reference DLS-APF

controller and proposed d-APF are implemented. On the one hand, for

the DLS-APF implements the wDLS kinematic model inside an Orocos

component thanks to the Kinematics and Dynamics Library (KDL). On

the other hand, the novel kinematic decoupled model for non-spherical

wrist cobots is implemented inside the d-APF controller. This has been

possible through a combination of the joint dependent characterized

solutions as a measure of closeness to singularities and the simplified

Jacobian. In this manner, a more efficient control algorithm to avoid

simultaneously singularities and collisions has been obtained.

The different tests performed to check the suitability of the proposed

kinematic model and controller to real time simultaneous collision and

singularity avoidance shows a plausible improvement on the efficiency

of collaborative industrial operations. On one side, the d-APF controller

outruns the DLS-APF controller in terms of timing performance to

compute a new repulsive signal. In this sense, the proposed controller

is able to compute a new response around a 17% time faster than the

reference controller. This component runs in parallel to the controller

component from the Orocos generated architecture. On the contrary,

regarding this last controller component, it runs a rough 5% slower than

the controller component from the reference controller. However, since

the maximum required time to compute a new control signal is much

lower than 2𝑚𝑠 for both situations (even in the worst case scenario), the

controller assures performing the computation of a new control reference

in the desired 500Hz frequency of the robot controller. For this reason,

even when the required time for the controller increases to compute a

d-APF control signal, this additional time is not representative as the

controller guarantees the operation in real time for the specific UR10e

and SUPSI robot controller.

Moreover, proposed controller (d-APF) outperforms the reference one

9.1 General Conclusion 129

(DLS-APF) also in terms of simultaneous collision and singularity avoid-

ance. On the one hand, the smoother response of the d-APF controller

is the first indicator of a better performance of the kinematic model. In

this sense, the proposed controller relies on a simplified Jacobian which

does not limit continuously the velocity of the manipulator. Allowing a

more safer response since the distance with the operator is better kept.

In addition, the allowance of handling singular configurations instead of

repelling the manipulator from them of the reference controller, triggers

configurations where the arm is fully stretched. These configurations are

less likely desired, since the manipulator looses reaction capabilities to

foresighted events becoming closer to blockages due to singularities. In

this manner, this behavior leads to a safer and more efficient response

for the d-APF controller on cobot where the robot maximize the dis-

tance with the operator avoiding blocking configurations. Moreover, this

smoother reaction can also alleviate the confidence the operator has in a

collaborative machine, such as the collaborative manipulator, what could

also lead to an increase in manufacturing efficiency. So in general, the

proposed d-APF controller behaves better and smoother around singular

configurations than the reference one.

Furthermore, focusing the attention to the capabilities to perform pick and

place operations, the d-APF controller also displays a better performance

than the DLS-APF one. The required time to complete a collaborative

task is nearly an 11% reduced when using the d-APF controller than the

reference one. This behavior is due to the safety stops that are not avoided

when using traditional singualrity handling and collision avoidance

controller as the wDLS ones where the singularity is displaced from

one configurations to other. In this way, the process to disassembly in

simulation a full battery pack takes 494s as opposed to the 439s that

the controller requires when using the d-APF controller. In addition

to this reduction in the required time, it has also been studied the

capabilities to perform the tracking of trajectories. In this sense, the

proposed approach also performs a better trajectory tracking behavior

then the one from DLS-APF solution. In both scenarios the robot reaches

the desired target position with and without obstacle avoidance. However,

during the trajectory, a significant error is introduced into the tracking of

the trajectory due to the obstacle avoidance capabilities of the controller.

This error is a reasonable one since pulling the robot far away from its

original trajectory on purpose to avoid a collision increases considerably

the position and velocity errors of the controller. As this behavior increases

the safety for the operator, these errors are acceptable, narrowing down

the applications of the controller to task where the trajectory tracking is

not required but it is needed a precise placing or picking positions.

Hence, the proposed controller performs an adequate perception of the

robot surroundings, works efficiently in a frequency of 500Hz, making

it safe for the operator and other devices. It also increases the efficiency

of fully executed manual tasks as seen in the simulated tests, avoiding

non-critical safety stops that waste manufacturing time. Moreover, it

is even modular in capabilities that could be integrated for the robot.

Therefore, all the design requirements from Chapter 6 are gathered in

the implemented d-APF controller. So it can be stated that its application

is suitable for certain types of collaborative scenarios that do not involve

high precision robotic tasks.

130 9 Conclusion

9.2 Research Outcomes

The following list shows the contributions generated during the doctor-

ate.

▶ D. Rodríguez-Guerra, G. Sorrosal, I. Cabanes, and C. Calleja,

"Human-Robot Interaction Review: Challenges and Solutions for

Modern Industrial Environments". In IEEE Access 9 (2021) pp.

108557-108578, doi: 10.1109/ACCESS.2021.3099287.

▶ D. Rodríguez-Guerra, G. Sorrosal, I. Cabanes, C. Calleja, and A.

González "Identificación de los retos habilitantes para los esce-

narios industriales colaborativos". In XVI Simposio CEA de Control
Inteligente (2021).

▶ D. Rodríguez-Guerra, G. Sorrosal, I. Cabanes, Aitziber Mancisidor,

and C. Calleja, "Singularity Parametrization With a Novel Kinematic

Decoupled Model for Non-Spherical Wrist Robots". In ASME Journal
of Mechanism and Robotics (May 2023) 16/5: pp. 051003, doi: 10.

1115/1.4062586.

▶ D. Rodríguez-Guerra, G. Sorrosal, I. Cabanes, Aitziber Mancisidor,

and C. Calleja, "Decoupled kinematics for non-spherical wrist

manipulators". In Proceedings of the Sixth Iberian Robotics Conference
(ROBOT2023), Coimbra, Portugal, 22-24 November 2023, pp. XX-

XX., DOI (Accepted).

▶ D. Rodríguez-Guerra, A. Mosca, A. Valente, I. Cabanes, and E.

Carpanzano, "An advanced dual APF-Based controller for efficient

simultaneous collision and singularity avoidance for human-robot

collaborative assembly processes". In CIRP Annals (2023) 72/1: pp.

5-8, doi: 10.1016/j.cirp.2023.04.037.

▶ D. Rodríguez-Guera, A. Mosca, G. Sorrosal, I. Cabanes, A. Valente,

"Performance analysis of a dual APF-Based robotic controller on

real collaborative scenarios". In Journal of Intelligent and Robotic
Systems (JINT) (2023) VOL/NUMBER: pp. XX-XX, DOI (Work in

progress).

▶ G. Sorrosal, C. Calleja, D. Rodriguez-Guerra, A. González, E. Nieto,

and A. Pujana, "RIC, Robot Intelligent Control", In "ORVE - Oficina

de Registro virtual" (2023), Registered Software.

▶ G. Sorrosal, C. Calleja, D. Rodriguez-Guerra, A. González, and A.

Pujana, "DECC, Dynamic Efficient Collaboration Controller", In

"ORVE - Oficina de Registro virtual" (2024), Registered Software

(Work in progress).

9.3 Future Work

In order to keep up with the improvements developed in this work,

there are still some open research fields that can contribute to improve

the behavior of APF based robot controllers in general, and to the self

developed d-APF controller for non-spherical wrist cobots, in particular.

The following paragraphs regards different ideas to keep going with the

development of the obtained contributions.

Firstly, to avoid the seen misbehavior when the cobot operates at high

speeds, a self-developed trajectory supervisor should be designed and

implemented. The ideal behavior of this new supervisor would allow the

http://dx.doi.org/10.1109/ACCESS.2021.3099287
http://dx.doi.org/10.1115/1.4062586
http://dx.doi.org/10.1115/1.4062586
http://dx.doi.org/10.1016/j.cirp.2023.04.037

9.3 Future Work 131

integration of MoveIt planning capabilities; however, it should decouple

MoveIt trajectory tracking capabilities from the ROS controllers. In this

manner, a more versatile trajectory tracking controller could be obtained,

making the proposed approach suitable for high precision tasks too.

Moreover, it would be interesting to add some specific robot dynamics

to the tuning of the d-APF controller instead of relying on the Ruckig

library. The main problem with the ruckig library is that it requires

the physical limit of the actuators of the robot which is not always

given by the manufacturer. Therefore, it is interesting to model manually

the dynamics for the new proposed model for non-spherical wrist

manipulators, enabling a more specific dynamic behavior to responds to

obstacles in the environment. This manual description of the behavior

of the manipulator can lead to enabling of techniques such as Artificial

Intelligence based techniques to optimise the behavior of each repulsive

component of the d-APF. In this way, the influence of the collision and

singularity avoidance components will be better integrated and tuned

to obtain a smoother response that increase the trust the operator has

in the robot. This positive effect in the human-robot trust could lead to

additional increase of manufacturing efficiency.

Finally, any other improvement regarded other aspects of the collaborative

operation such as upgrades on the vision processing algorithms or other

cognitive capabilities are also welcome. In particular, it would be very

interesting to improve the vision algorithm with some kind of fusion

sensor technique or Neural Network (NN) based algorithm to increase

the efficiency and reliability of the scene segmentation. This way, with

a better understanding of the surrounding of the robot, collision false

positives could be avoided as well as enabling other type of approaching

strategies to interact with different workpieces.

Appendix

Bibliography

The following references are displayed in citation order.

[1] Kenneth Karlsson and Marie Jonsson. ‘Overview of SAAB in commercial aeronautics. Clean Sky 2

and ITD AIRFRAME Research and SAAB Aerostructures automation projects and strategy’. In: 2019

(cited on pages 4, 7, 9).

[2] Abdelfetah Hentout et al. ‘Human–robot interaction in industrial collaborative robotics: a literature

review of the decade 2008–2017’. In: Advanced Robotics 33 (15-16 2019), pp. 764–799. doi: 10.1080/

01691864.2019.1636714 (cited on pages 4, 7–9, 11).

[3] Iñaki Maurtua et al. ‘Human-robot collaboration in industrial applications: Safety, interaction and

trust’. In: International Journal of Advanced Robotic Systems 14 (4 2017), pp. 1–10. doi: 10.1177 /

1729881417716010 (cited on page 4).

[4] S. Robla-Gomez et al. ‘Working Together: A Review on Safe Human-Robot Collaboration in Industrial

Environments’. In: IEEE Access 5 (2017), pp. 26754–26773. doi: 10.1109/ACCESS.2017.2773127 (cited

on page 4).

[5] Valeria Villani et al. ‘Survey on Human-Robot Interaction for Robot Programming in Industrial

Applications’. In: IFAC-PapersOnLine 51 (11 2018), pp. 66–71. doi: 10.1016/j.ifacol.2018.08.236

(cited on pages 4, 11).

[6] Federico Vicentini. ‘Terminology in safety of collaborative robotics’. In: Robotics and Computer-Integrated
Manufacturing 63 (January 2019 2020). doi: 10.1016/j.rcim.2019.101921 (cited on page 4).

[7] Akira Kanazawa, Jun Kinugawa, and Kazuhiro Kosuge. ‘Adaptive Motion Planning for a Collaborative

Robot Based on Prediction Uncertainty to Enhance Human Safety and Work Efficiency’. In: IEEE
Transactions on Robotics 35 (4 2019), pp. 817–832. doi: 10.1109/TRO.2019.2911800 (cited on pages 4, 8,

11).

[8] Sami Haddadin, Alin Albu-Schäffer, and Gerd Hirzinger. ‘Soft-tissue injury in robotics’. In: Proceedings
- IEEE International Conference on Robotics and Automation (2010), pp. 3426–3433. doi: 10.1109/ROBOT.

2010.5509854 (cited on page 4).

[9] Alessandro De Luca et al. ‘Collision detection and reaction: A contribution to safe physical human-

robot interaction’. In: 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS
(2008), pp. 3356–3363. doi: 10.1109/BioRob.2012.6290917 (cited on pages 4, 8, 11).

[10] Sami Haddadin, Alessandro De Luca, and Alin Albu-Schäffer. ‘Robot collisions: A survey on

detection, isolation, and identification’. In: IEEE Transactions on Robotics 33 (6 2017), pp. 1292–1312. doi:

10.1109/TRO.2017.2723903 (cited on page 4).

[11] ISO. ISO/TS 15066:2016(en) Robots and robotic devices - Collaborative robots. 2016. url: https://www.iso.

org/obp/ui/#iso:std:iso:ts:15066:ed-1:v1:en (visited on 04/24/2023) (cited on page 4).

[12] A. Valente et al. ‘Deliberative robotics – a novel interactive control framework enhancing human-robot

collaboration’. In: CIRP Annals 71.1 (2022), pp. 21–24. doi: https://doi.org/10.1016/j.cirp.2022.

03.045 (cited on pages 4, 11).

[13] Andrea Bauer, Dirk Wollherr, and Martin Buss. ‘Human-robot collaboration: A survey’. In: International
Journal of Humanoid Robotics 5 (1 2008), pp. 47–66. doi: 10.1142/S0219843608001303 (cited on page 4).

[14] Przemyslaw A. Lasota, Terrence Fong, and Julie A. Shah. ‘A Survey of Methods for Safe Human-Robot

Interaction’. In: Foundations and Trends in Robotics 5 (3 2017), pp. 261–349. doi: 10.1561/2300000052

(cited on page 4).

https://doi.org/10.1080/01691864.2019.1636714
https://doi.org/10.1080/01691864.2019.1636714
https://doi.org/10.1177/1729881417716010
https://doi.org/10.1177/1729881417716010
https://doi.org/10.1109/ACCESS.2017.2773127
https://doi.org/10.1016/j.ifacol.2018.08.236
https://doi.org/10.1016/j.rcim.2019.101921
https://doi.org/10.1109/TRO.2019.2911800
https://doi.org/10.1109/ROBOT.2010.5509854
https://doi.org/10.1109/ROBOT.2010.5509854
https://doi.org/10.1109/BioRob.2012.6290917
https://doi.org/10.1109/TRO.2017.2723903
https://www.iso.org/obp/ui/#iso:std:iso:ts:15066:ed-1:v1:en
https://www.iso.org/obp/ui/#iso:std:iso:ts:15066:ed-1:v1:en
https://doi.org/https://doi.org/10.1016/j.cirp.2022.03.045
https://doi.org/https://doi.org/10.1016/j.cirp.2022.03.045
https://doi.org/10.1142/S0219843608001303
https://doi.org/10.1561/2300000052

[15] Ali Ahmad Malik, Tariq Masood, and Arne Bilberg. ‘Virtual reality in manufacturing: immersive

and collaborative artificial-reality in design of human-robot workspace’. In: International Journal of
Computer Integrated Manufacturing 33 (1 2020), pp. 22–37. doi: 10.1080/0951192X.2019.1690685

(cited on page 4).

[16] Matteo Ragaglia, Andrea Maria Zanchettin, and Paolo Rocco. ‘Safety-aware trajectory scaling for

Human-Robot Collaboration with prediction of human occupancy’. In: Proceedings of the 17th Interna-
tional Conference on Advanced Robotics, ICAR 2015 (2015), pp. 85–90. doi: 10.1109/ICAR.2015.7251438

(cited on page 4).

[17] Nikolaos Nikolakis, Vasilis Maratos, and Sotiris Makris. ‘A cyber physical system (CPS) approach

for safe human-robot collaboration in a shared workplace’. In: Robotics and Computer-Integrated
Manufacturing 56 (June 2017 2019), pp. 233–243. doi: 10.1016/j.rcim.2018.10.003 (cited on page 4).

[18] Fabrizio Flacco et al. ‘A Depth Space Approach for Evaluating Distance to Objects: with Application to

Human-Robot Collision Avoidance’. In: Journal of Intelligent and Robotic Systems: Theory and Applications
80 (2015), pp. 7–22. doi: 10.1007/s10846-014-0146-2 (cited on pages 5, 8, 10, 15, 22, 45, 47, 52, 55,

56, 128).

[19] Ignacio Trojaola et al. ‘An Innovative MIMO Iterative Learning Control Approach for the Position

Control of a Hydraulic Press’. In: IEEE Access 9 (2021), pp. 146850–146867. doi: 10.1109/ACCESS.2021.

3123668 (cited on page 7).

[20] Jorge Rodriguez et al. ‘Fault-Tolerant Control Study and Classification : Case Study of a Hydraulic-

Press Model Simulated in Real-Time’. In: ICFTCFD 2018 : 20th International Conference on Fault-Tolerant
Control and Fault Detection (2018) (cited on pages 7, 9).

[21] Jorge Rodriguez-Guerra et al. ‘A Methodology for Real-Time HiL Validation of Hydraulic-Press

Controllers Based on Novel Modeling Techniques’. In: IEEE Access 7 (2019), pp. 110541–110553. doi:

10.1109/ACCESS.2019.2934170 (cited on page 7).

[22] Fabio Pini, Francesco Leali, and Matteo Ansaloni. ‘A systematic approach to the engineering design

of a HRC workcell for bio-medical product assembly’. In: IEEE International Conference on Emerging
Technologies and Factory Automation, ETFA 2015-Octob (2015). doi: 10.1109/ETFA.2015.7301655 (cited

on pages 7, 9).

[23] Quality Inspection Org. Benefits of Semi-Automation. https://qualityinspection.org/semi-

automation/. Last accessed 2023-08-27. 2017 (cited on page 7).

[24] Universal Robots. ¿Cuáles son las diferencias entre un cobot y un robot industrial? https://blog.

universal-robots.com/es/cobots-vs-robots-industriales. Last accessed 2023-08-27. 2018

(cited on page 7).

[25] Jenay M Beer, Arthur D Fisk, and Wendy A Rogers. ‘Toward a Framework for Levels of Robot

Autonomy in Human-Robot Interaction’. In: Journal of Human-Robot Interaction 3 (2 2014), p. 74. doi:

10.5898/jhri.3.2.beer (cited on pages 7, 9).

[26] Panagiota Tsarouchi, Sotiris Makris, and George Chryssolouris. ‘Human–robot interaction review

and challenges on task planning and programming’. In: International Journal of Computer Integrated
Manufacturing 29 (8 2016), pp. 916–931. doi: 10.1080/0951192X.2015.1130251 (cited on pages 7–9,

11).

[27] Mohamad Bdiwi, Marko Pfeifer, and Andreas Sterzing. ‘A new strategy for ensuring human safety

during various levels of interaction with industrial robots’. In: CIRP Annals - Manufacturing Technology
66 (1 2017), pp. 453–456. doi: 10.1016/j.cirp.2017.04.009 (cited on page 7).

[28] Flacco Fabrizio and Alessandro De Luca. ‘Real-time computation of distance to dynamic obstacles

with multiple depth sensors’. In: IEEE Robotics and Automation Letters 2 (1 2017), pp. 56–63. doi:

10.1109/LRA.2016.2535859 (cited on pages 8, 14).

[29] ‘Dual arm robot in cooperation with humans for flexible assembly’. In: CIRP Annals - Manufacturing
Technology 66 (1 2017), pp. 13–16. doi: 10.1016/j.cirp.2017.04.097 (cited on pages 8, 10).

https://doi.org/10.1080/0951192X.2019.1690685
https://doi.org/10.1109/ICAR.2015.7251438
https://doi.org/10.1016/j.rcim.2018.10.003
https://doi.org/10.1007/s10846-014-0146-2
https://doi.org/10.1109/ACCESS.2021.3123668
https://doi.org/10.1109/ACCESS.2021.3123668
https://doi.org/10.1109/ACCESS.2019.2934170
https://doi.org/10.1109/ETFA.2015.7301655
https://qualityinspection.org/semi-automation/
https://qualityinspection.org/semi-automation/
https://blog.universal-robots.com/es/cobots-vs-robots-industriales
https://blog.universal-robots.com/es/cobots-vs-robots-industriales
https://doi.org/10.5898/jhri.3.2.beer
https://doi.org/10.1080/0951192X.2015.1130251
https://doi.org/10.1016/j.cirp.2017.04.009
https://doi.org/10.1109/LRA.2016.2535859
https://doi.org/10.1016/j.cirp.2017.04.097

[30] Ramy Meziane, Martin J.D. Otis, and Hassan Ezzaidi. ‘Human-robot collaboration while sharing

production activities in dynamic environment: SPADER system’. In: Robotics and Computer-Integrated
Manufacturing 48 (December 2015 2017), pp. 243–253. doi: 10.1016/j.rcim.2017.04.010 (cited on

pages 8, 10).

[31] Diego Rodriguez-Guerra et al. ‘Human-Robot Interaction Review: Challenges and Solutions for

Modern Industrial Environments’. In: IEEE Access 9 (2021), pp. 108557–108578. doi: 10.1109/ACCESS.

2021.3099287 (cited on pages 8, 10, 14).

[32] Emanuele Magrini et al. ‘Human-robot coexistence and interaction in open industrial cells’. In: Robotics
and Computer - Integrated Manufacturing 61 (June 2018 2020), p. 101846. doi: 10.1016/j.rcim.2019.

101846 (cited on page 8).

[33] Nima Najmaei and Mehrdad R. Kermani. ‘On Superquadric Human Modeling and Risk Assessment

for Safe Planning of Human-Safe Robotic Systems’. In: Journal of Mechanisms and Robotics 2.4 (Sept.

2010). 041008. doi: 10.1115/1.4002345 (cited on page 8).

[34] Andrea Maria Zanchettin et al. ‘Towards an optimal avoidance strategy for collaborative robots’. In:

Robotics and Computer-Integrated Manufacturing 59 (January 2019), pp. 47–55. doi: 10.1016/j.rcim.

2019.01.015 (cited on pages 8, 12, 14).

[35] Luca Bascetta et al. ‘Towards safe human-robot interaction in robotic cells: An approach based on

visual tracking and intention estimation’. In: IEEE International Conference on Intelligent Robots and
Systems (2011), pp. 2971–2978. doi: 10.1109/IROS.2011.6048287 (cited on pages 8, 10, 14).

[36] Alexander Winkler and Jozef Suchý. ‘Dynamic collision avoidance of industrial cooperating robots

using virtual force fields’. In: IFAC Proceedings Volumes (IFAC-PapersOnline) 45 (22 2012), pp. 265–270.

doi: 10.3182/20120905-3-HR-2030.00019 (cited on pages 8, 14).

[37] Universal Robots. UR: Products. 2019. url: https://www.universal-robots.com/es/productos/

(cited on pages 8, 15, 46).

[38] OMRON. Robots colaborativos. 2019. url:https://industrial.omron.es/es/products/collaborative-

robots?utm_source=newsletter&utm_medium=mail&utm_campaign=2019- 07- newsletter&

elqTrackId = a3af48d51a9d4aa3be12c0ec5c058997 & elq = d2e2fc397f7b4928aab86e7270824e20 &

elqaid=2966&elqat=1&elqCampaignId=3070 (cited on pages 8, 15).

[39] FANUC. FANUC - CR and CRX/i Collaborative Robots Brochure. 2023. url: https://www.fanuc.eu/es/

es/robots/p%c3%a1gina-filtro-robots/%d1%80obots-colaborativos (cited on pages 8, 15).

[40] Marc G. Carmichael, Dikai Liu, and Kenneth J. Waldron. ‘A framework for singularity-robust

manipulator control during physical human-robot interaction’. In: International Journal of Robotics
Research 36 (5-7 2017), pp. 861–876. doi: 10.1177/0278364917698748 (cited on pages 8, 15).

[41] Kevin M. Lynch and Frank C. Park. Modern Robotics: Mechanics, Planning and Control. Vol. 48. Cambridge

University Press, 2017 (cited on pages 9, 15–17, 19, 31, 37).

[42] Przemyslaw A. Lasota and Julie A. Shah. ‘Analyzing the effects of human-aware motion planning on

close-proximity human-robot collaboration’. In: Human Factors 57 (1 2015), pp. 21–33. doi: 10.1177/

0018720814565188 (cited on page 9).

[43] George Charalambous, Sarah Fletcher, and Philip Webb. ‘The Development of a Scale to Evaluate

Trust in Industrial Human-robot Collaboration’. In: International Journal of Social Robotics 8 (2 2016),

pp. 193–209. doi: 10.1007/s12369-015-0333-8 (cited on pages 9, 14).

[44] Luca Gualtieri et al. ‘The Opportunities and Challenges of SME Manufacturing Automation: Safety

and Ergonomics in Human–Robot Collaboration’. In: Industry 4.0 for SMEs: Challenges, Opportunities
and Requirements. Ed. by Dominik T. Matt, Vladimír Modrák, and Helmut Zsifkovits. Cham: Springer

International Publishing, 2020, pp. 105–144. doi: 10.1007/978-3-030-25425-4_4 (cited on page 9).

[45] Abdelfetah Hentout et al. ‘Key challenges and open issues of industrial collaborative robotics’. In:

RO-MAN 2018: Workshop on Human-Robot Interaction: From Service to Industry (August 2018) (cited on

pages 10, 11, 19).

https://doi.org/10.1016/j.rcim.2017.04.010
https://doi.org/10.1109/ACCESS.2021.3099287
https://doi.org/10.1109/ACCESS.2021.3099287
https://doi.org/10.1016/j.rcim.2019.101846
https://doi.org/10.1016/j.rcim.2019.101846
https://doi.org/10.1115/1.4002345
https://doi.org/10.1016/j.rcim.2019.01.015
https://doi.org/10.1016/j.rcim.2019.01.015
https://doi.org/10.1109/IROS.2011.6048287
https://doi.org/10.3182/20120905-3-HR-2030.00019
https://www.universal-robots.com/es/productos/
https://industrial.omron.es/es/products/collaborative-robots?utm_source=newsletter&utm_medium=mail&utm_campaign=2019-07-newsletter&elqTrackId=a3af48d51a9d4aa3be12c0ec5c058997&elq=d2e2fc397f7b4928aab86e7270824e20&elqaid=2966&elqat=1&elqCampaignId=3070
https://industrial.omron.es/es/products/collaborative-robots?utm_source=newsletter&utm_medium=mail&utm_campaign=2019-07-newsletter&elqTrackId=a3af48d51a9d4aa3be12c0ec5c058997&elq=d2e2fc397f7b4928aab86e7270824e20&elqaid=2966&elqat=1&elqCampaignId=3070
https://industrial.omron.es/es/products/collaborative-robots?utm_source=newsletter&utm_medium=mail&utm_campaign=2019-07-newsletter&elqTrackId=a3af48d51a9d4aa3be12c0ec5c058997&elq=d2e2fc397f7b4928aab86e7270824e20&elqaid=2966&elqat=1&elqCampaignId=3070
https://industrial.omron.es/es/products/collaborative-robots?utm_source=newsletter&utm_medium=mail&utm_campaign=2019-07-newsletter&elqTrackId=a3af48d51a9d4aa3be12c0ec5c058997&elq=d2e2fc397f7b4928aab86e7270824e20&elqaid=2966&elqat=1&elqCampaignId=3070
https://www.fanuc.eu/es/es/robots/p%c3%a1gina-filtro-robots/%d1%80obots-colaborativos
https://www.fanuc.eu/es/es/robots/p%c3%a1gina-filtro-robots/%d1%80obots-colaborativos
https://doi.org/10.1177/0278364917698748
https://doi.org/10.1177/0018720814565188
https://doi.org/10.1177/0018720814565188
https://doi.org/10.1007/s12369-015-0333-8
https://doi.org/10.1007/978-3-030-25425-4_4

[46] Jérémie Guiochet, Mathilde Machin, and Hélène Waeselynck. ‘Safety-critical advanced robots: A

survey’. In: Robotics and Autonomous Systems 94 (2017), pp. 43–52. doi: 10.1016/j.robot.2017.04.004

(cited on page 10).

[47] Iina Aaltonen, Timo Salmi, and Ilari Marstio. ‘Refining levels of collaboration to support the design

and evaluation of human-robot interaction in the manufacturing industry’. In: vol. 72. 2018, pp. 93–98.

doi: 10.1016/j.procir.2018.02.026 (cited on page 10).

[48] Alessandro De Luca et al. ‘Collision detection and safe reaction with the DLR-III lightweight

manipulator arm’. In: IEEE International Conference on Intelligent Robots and Systems (2006), pp. 1623–

1630. doi: 10.1109/IROS.2006.282053 (cited on page 10).

[49] Benjamin Navarro et al. ‘An ISO10218-compliant adaptive damping controller for safe physical

human-robot interaction’. In: Proceedings - IEEE International Conference on Robotics and Automation
2016-June (2016), pp. 3043–3048. doi: 10.1109/ICRA.2016.7487468 (cited on page 10).

[50] Alexandros Kouris, Fotios Dimeas, and Nikos Aspragathos. ‘Contact distinction in human-robot

cooperation with admittance control’. In: 2016 IEEE International Conference on Systems, Man, and
Cybernetics, SMC 2016 - Conference Proceedings (2017), pp. 1951–1956. doi: 10.1109/SMC.2016.7844525

(cited on page 10).

[51] Biao Jia et al. ‘Manipulating Highly Deformable Materials Using a Visual Feedback Dictionary’. In:

Proceedings - IEEE International Conference on Robotics and Automation (Section IV 2018), pp. 239–246.

doi: 10.1109/ICRA.2018.8461264 (cited on page 10).

[52] Azhar Aulia Saputra, Chin Wei Hong, and Naoyuki Kubota. ‘Real-time grasp affordance detection of

unknown object for robot-human interaction’. In: Conference Proceedings - IEEE International Conference
on Systems, Man and Cybernetics 2019-Octob (2019), pp. 3093–3098. doi: 10.1109/SMC.2019.8914202

(cited on page 10).

[53] J. Ernesto Solanes et al. ‘Human–robot collaboration for safe object transportation using force feedback’.

In: Robotics and Autonomous Systems 107 (2018), pp. 196–208. doi: 10.1016/j.robot.2018.06.003

(cited on page 10).

[54] Rahaf Rahal et al. ‘Caring about the Human Operator: Haptic Shared Control for Enhanced User

Comfort in Robotic Telemanipulation’. In: IEEE Transactions on Haptics 13 (1 2020), pp. 197–203. doi:

10.1109/TOH.2020.2969662 (cited on page 10).

[55] Nicola Maria Ceriani et al. ‘Reactive Task Adaptation Based on Hierarchical Constraints Classification

for Safe Industrial Robots’. In: IEEE/ASME Transactions on Mechatronics 20 (6 2015), pp. 2935–2949. doi:

10.1109/TMECH.2015.2415462 (cited on page 10).

[56] Loris Roveda et al. ‘Human-Robot Cooperative Interaction Control for the Installation of Heavy and

Bulky Components’. In: Proceedings - 2018 IEEE International Conference on Systems, Man, and Cybernetics,
SMC 2018 (2019), pp. 339–344. doi: 10.1109/SMC.2018.00067 (cited on pages 10, 13).

[57] Riccardo Caccavale et al. ‘Kinesthetic teaching and attentional supervision of structured tasks in

human–robot interaction’. In: Autonomous Robots 43 (6 2019), pp. 1291–1307. doi: 10.1007/s10514-

018-9706-9 (cited on page 10).

[58] Lennart Bochmann et al. ‘Human-robot Collaboration in Decentralized Manufacturing Systems: An

Approach for Simulation-based Evaluation of Future Intelligent Production’. In: Procedia CIRP 62

(2017), pp. 624–629. doi: 10.1016/j.procir.2016.06.021 (cited on page 10).

[59] J. Krüger, T. K. Lien, and A. Verl. ‘Cooperation of human and machines in assembly lines’. In: CIRP
Annals - Manufacturing Technology 58 (2 2009), pp. 628–646. doi: 10.1016/j.cirp.2009.09.009 (cited

on page 11).

[60] Riccardo Schiavi, Antonio Bicchi, and Fabrizio Flacco. ‘Integration of active and passive compliance

control for safe human-robot coexistence’. In: Proceedings - IEEE International Conference on Robotics and
Automation (2009), pp. 259–264. doi: 10.1109/ROBOT.2009.5152571 (cited on page 11).

[61] Ali Ahmad Malik and Arne Bilberg. ‘Developing a reference model for human–robot interaction’. In:

International Journal on Interactive Design and Manufacturing 13 (4 2019), pp. 1541–1547. doi: 10.1007/

s12008-019-00591-6 (cited on page 11).

https://doi.org/10.1016/j.robot.2017.04.004
https://doi.org/10.1016/j.procir.2018.02.026
https://doi.org/10.1109/IROS.2006.282053
https://doi.org/10.1109/ICRA.2016.7487468
https://doi.org/10.1109/SMC.2016.7844525
https://doi.org/10.1109/ICRA.2018.8461264
https://doi.org/10.1109/SMC.2019.8914202
https://doi.org/10.1016/j.robot.2018.06.003
https://doi.org/10.1109/TOH.2020.2969662
https://doi.org/10.1109/TMECH.2015.2415462
https://doi.org/10.1109/SMC.2018.00067
https://doi.org/10.1007/s10514-018-9706-9
https://doi.org/10.1007/s10514-018-9706-9
https://doi.org/10.1016/j.procir.2016.06.021
https://doi.org/10.1016/j.cirp.2009.09.009
https://doi.org/10.1109/ROBOT.2009.5152571
https://doi.org/10.1007/s12008-019-00591-6
https://doi.org/10.1007/s12008-019-00591-6

[62] Jim Mainprice and Dmitry Berenson. ‘Human-robot collaborative manipulation planning using early

prediction of human motion’. In: IEEE International Conference on Intelligent Robots and Systems (May

2013), pp. 299–306. doi: 10.1109/IROS.2013.6696368 (cited on pages 11, 14).

[63] Fabrizio Flacco et al. ‘A depth space approach to human-robot collision avoidance’. In: Proceedings -
IEEE International Conference on Robotics and Automation (2012), pp. 338–345. doi: 10.1109/ICRA.2012.

6225245 (cited on pages 12, 22, 51, 52, 55).

[64] Andrea Bonci et al. ‘Human-Robot Perception in Industrial Environments: A Survey’. In: Sensors 21.5

(2021). doi: 10.3390/s21051571 (cited on pages 12, 49).

[65] H.D. Cheng et al. ‘Color image segmentation: advances and prospects’. In: Pattern Recognition 34.12

(2001), pp. 2259–2281. doi: https://doi.org/10.1016/S0031-3203(00)00149-7 (cited on page 12).

[66] Islam I. Fouad, Sherine Rady, and Mostafa G. M. Mostafa. ‘Efficient image segmentation of RGB-D

images’. In: 2017 12th International Conference on Computer Engineering and Systems (ICCES). 2017,

pp. 353–358. doi: 10.1109/ICCES.2017.8275331 (cited on pages 12, 13).

[67] Michael Danielczuk et al. ‘Segmenting Unknown 3D Objects from Real Depth Images using Mask

R-CNN Trained on Synthetic Data’. In: May 2019, pp. 7283–7290. doi: 10.1109/ICRA.2019.8793744

(cited on page 12).

[68] Yanzhu Zhang, Xiaoyan Wang, and Biao Qu. ‘Three-Frame Difference Algorithm Research Based

on Mathematical Morphology’. In: Procedia Engineering 29 (2012). 2012 International Workshop on

Information and Electronics Engineering, pp. 2705–2709. doi: https://doi.org/10.1016/j.proeng.

2012.01.376 (cited on pages 12, 13).

[69] Mingliang Chen et al. ‘Spatiotemporal Background Subtraction Using Minimum Spanning Tree and

Optical Flow’. In: Computer Vision – ECCV 2014. Ed. by David Fleet et al. Cham: Springer International

Publishing, 2014, pp. 521–534 (cited on pages 12, 13).

[70] Tibor Trnovszký, Peter Sýkora, and Róbert Hudec. ‘Comparison of Background Subtraction Methods

on Near Infra-Red Spectrum Video Sequences’. In: Procedia Engineering 192 (2017). 12th international

scientific conference of young scientists on sustainable, modern and safe transport, pp. 887–892. doi:

https://doi.org/10.1016/j.proeng.2017.06.153 (cited on pages 12, 13).

[71] Jaeyong Ju et al. ‘Recognition of Human Group Activity for Video Analytics’. In: Advances in Multimedia
Information Processing – PCM 2015. Ed. by Yo-Sung Ho et al. Cham: Springer International Publishing,

2015, pp. 161–169 (cited on pages 12, 13).

[72] Yerania Campos, Humberto Sossa, and Gonzalo Pajares. ‘Spatio-temporal analysis for obstacle

detection in agricultural videos’. In: Applied Soft Computing 45 (2016), pp. 86–97. doi: https://doi.

org/10.1016/j.asoc.2016.03.016 (cited on pages 12, 13).

[73] Jamal Atman and Gert F. Trommer. ‘Laser-camera based 3D reconstruction of indoor environments’.

In: 2018 IEEE/ION Position, Location and Navigation Symposium (PLANS). 2018, pp. 254–260. doi:

10.1109/PLANS.2018.8373388 (cited on page 12).

[74] Yuan Been Chen and Oscal T.C. Chen. ‘Image segmentation method using thresholds automatically

determined from picture contents’. In: Eurasip Journal on Image and Video Processing 2009 (2009). doi:

10.1155/2009/140492 (cited on page 12).

[75] Sojung Park and Minhwan Kim. ‘Extracting Moving / Static Objects of Interest in Video’. In: Advances
in Multimedia Information Processing - PCM 2006. Ed. by Yueting Zhuang et al. Berlin, Heidelberg:

Springer Berlin Heidelberg, 2006, pp. 722–729 (cited on pages 12, 13).

[76] Xiuzhi Li and Chuanluo Xu. ‘Moving object detection in dynamic scenes based on optical flow and

superpixels’. In: 2015 IEEE International Conference on Robotics and Biomimetics (ROBIO). 2015, pp. 84–89.

doi: 10.1109/ROBIO.2015.7414628 (cited on page 13).

[77] Andrew B. Godbehere, Akihiro Matsukawa, and Ken Goldberg. ‘Visual tracking of human visitors

under variable-lighting conditions for a responsive audio art installation’. In: 2012 American Control
Conference (ACC). 2012, pp. 4305–4312. doi: 10.1109/ACC.2012.6315174 (cited on page 13).

https://doi.org/10.1109/IROS.2013.6696368
https://doi.org/10.1109/ICRA.2012.6225245
https://doi.org/10.1109/ICRA.2012.6225245
https://doi.org/10.3390/s21051571
https://doi.org/https://doi.org/10.1016/S0031-3203(00)00149-7
https://doi.org/10.1109/ICCES.2017.8275331
https://doi.org/10.1109/ICRA.2019.8793744
https://doi.org/https://doi.org/10.1016/j.proeng.2012.01.376
https://doi.org/https://doi.org/10.1016/j.proeng.2012.01.376
https://doi.org/https://doi.org/10.1016/j.proeng.2017.06.153
https://doi.org/https://doi.org/10.1016/j.asoc.2016.03.016
https://doi.org/https://doi.org/10.1016/j.asoc.2016.03.016
https://doi.org/10.1109/PLANS.2018.8373388
https://doi.org/10.1155/2009/140492
https://doi.org/10.1109/ROBIO.2015.7414628
https://doi.org/10.1109/ACC.2012.6315174

[78] Sundaram Muthu et al. ‘Motion Segmentation of RGB-D Sequences: Combining Semantic and Motion

Information Using Statistical Inference’. In: IEEE Transactions on Image Processing 29 (2020), pp. 5557–

5570. doi: 10.1109/TIP.2020.2984893 (cited on page 13).

[79] Mohammad Safeea, Pedro Neto, and Richard Bearee. ‘On-line collision avoidance for collaborative

robot manipulators by adjusting off-line generated paths: An industrial use case’. In: Robotics and
Autonomous Systems 119 (2019), pp. 278–288. doi: 10.1016/j.robot.2019.07.013 (cited on page 14).

[80] M. Jirgl, Z. Bradac, and P. Fiedler. ‘Human-in-the-Loop Issue in Context of the Cyber-Physical Systems’.

In: IFAC-PapersOnLine 51 (6 2018), pp. 225–230. doi: 10.1016/j.ifacol.2018.07.158 (cited on

page 14).

[81] Constantin-Bala Zamfirescu et al. ‘Human-centred Assembly: A Case Study for an Anthropocentric

Cyber-physical System’. In: Procedia Technology 15 (2014), pp. 90–98. doi: 10.1016/j.protcy.2014.09.

038 (cited on page 14).

[82] Azfar Khalid et al. ‘Security framework for industrial collaborative robotic cyber-physical systems’.

In: Computers in Industry 97 (2018), pp. 132–145. doi: 10.1016/j.compind.2018.02.009 (cited on

page 14).

[83] B Sadrfaridpour, J Burke, and Y Wang. ‘Human and Robot Collaborative Assembly Manufacturing:

Trust Dynamics and Control’. In: Proceedings of the Workshop on Human-Robot Collaboration Industrial
Manufacturing. RSS (2014), pp. 1–6 (cited on page 14).

[84] Angelo Campomaggiore et al. ‘A fuzzy inference approach to control robot speed in human-robot

shared workspaces’. In: ICINCO 2019 - Proceedings of the 16th International Conference on Informatics in
Control, Automation and Robotics 2 (Icinco 2019), pp. 78–87. doi: 10.5220/0007838700780087 (cited on

page 14).

[85] Matteo Ragaglia, Andrea Maria Zanchettin, and Paolo Rocco. ‘Trajectory generation algorithm for

safe human-robot collaboration based on multiple depth sensor measurements’. In: Mechatronics 55

(December 2017 2018), pp. 267–281. doi: 10.1016/j.mechatronics.2017.12.009 (cited on page 14).

[86] Stefan B. Liu and Matthias Althoff. ‘Online Verification of Impact-Force-Limiting Control for Physical

Human-Robot Interaction’. In: Institute of Electrical and Electronics Engineers Inc., 2021, pp. 777–783.

doi: 10.1109/IROS51168.2021.9636610 (cited on page 14).

[87] Mark Nicholas Finean, Wolfgang Merkt, and Ioannis Havoutis. ‘Simultaneous Scene Reconstruction

and Whole-Body Motion Planning for Safe Operation in Dynamic Environments’. In: Institute of

Electrical and Electronics Engineers Inc., 2021, pp. 3710–3717. doi: 10.1109/IROS51168.2021.9636860

(cited on page 14).

[88] Carlos Morato et al. ‘Toward safe human robot collaboration by using multiple kinects based real-time

human tracking’. In: Journal of Computing and Information Science in Engineering 14 (1 2014), pp. 1–9. doi:

10.1115/1.4025810 (cited on page 14).

[89] G. J. Garcia et al. ‘Visual servoing path tracking for safe human-robot interaction’. In: IEEE 2009
International Conference on Mechatronics, ICM 2009 (April 2009). doi: 10.1109/ICMECH.2009.4957114

(cited on pages 14, 15).

[90] Muhammad Usman Ashraf et al. ‘Proactive Intention-based Safety through Human Location Antici-

pation in HRI Workspace’. In: International Journal of Advanced Computer Science and Applications 8 (4

2017), pp. 378–384. doi: 10.14569/ijacsa.2017.080451 (cited on page 14).

[91] Daniel Sidobre and Kevin Desormeaux. ‘Smooth Cubic Polynomial Trajectories for Human-Robot

Interactions’. In: Journal of Intelligent and Robotic Systems: Theory and Applications 95 (3-4 2019), pp. 851–

869. doi: 10.1007/s10846-018-0936-z (cited on page 14).

[92] Amit Kumar Bedaka, Joel Vidal, and Chyi Yeu Lin. ‘Automatic robot path integration using three-

dimensional vision and offline programming’. In: International Journal of Advanced Manufacturing
Technology 102 (5-8 2019), pp. 1935–1950. doi: 10.1007/s00170-018-03282-w (cited on pages 14, 15).

[93] Sascha Kaden and Ulrike Thomas. ‘Maximizing robot manipulability along paths in collision-free

motion planning’. In: 2019 19th International Conference on Advanced Robotics, ICAR 2019 (2019), pp. 105–

110. doi: 10.1109/ICAR46387.2019.8981591 (cited on pages 14, 17).

https://doi.org/10.1109/TIP.2020.2984893
https://doi.org/10.1016/j.robot.2019.07.013
https://doi.org/10.1016/j.ifacol.2018.07.158
https://doi.org/10.1016/j.protcy.2014.09.038
https://doi.org/10.1016/j.protcy.2014.09.038
https://doi.org/10.1016/j.compind.2018.02.009
https://doi.org/10.5220/0007838700780087
https://doi.org/10.1016/j.mechatronics.2017.12.009
https://doi.org/10.1109/IROS51168.2021.9636610
https://doi.org/10.1109/IROS51168.2021.9636860
https://doi.org/10.1115/1.4025810
https://doi.org/10.1109/ICMECH.2009.4957114
https://doi.org/10.14569/ijacsa.2017.080451
https://doi.org/10.1007/s10846-018-0936-z
https://doi.org/10.1007/s00170-018-03282-w
https://doi.org/10.1109/ICAR46387.2019.8981591

[94] J. Sverdrup-Thygeson et al. ‘Kinematic singularity avoidance for robot manipulators using set-based

manipulability tasks’. In: 1st Annual IEEE Conference on Control Technology and Applications, CCTA 2017
2017-Janua (2017), pp. 142–149. doi: 10.1109/CCTA.2017.8062454 (cited on page 14).

[95] Matteo Saveriano and Dongheui Lee. ‘Distance based dynamical system modulation for reactive

avoidance of moving obstacles’. In: Proceedings - IEEE International Conference on Robotics and Automation
(May 2014), pp. 5618–5623. doi: 10.1109/ICRA.2014.6907685 (cited on page 15).

[96] Oussama Khatib. ‘Real-Time Obstacle Avoidance For Manipulators and Mobile Robots’. In: (1986),

pp. 500–505 (cited on page 15).

[97] Wenrui Wang et al. ‘An obstacle avoidance method for redundant manipulators based on artificial

potential field’. In: Proceedings of 2018 IEEE International Conference on Mechatronics and Automation,
ICMA 2018 (2018), pp. 2151–2156. doi: 10.1109/ICMA.2018.8484459 (cited on page 15).

[98] Jean Bosco Mbede, Xinhan Huang, and Min Wang. ‘Fuzzy motion planning among dynamic obstacles

using artificial potential fields for robot manipulators’. In: Robotics and Autonomous Systems 32 (1 2000),

pp. 61–72. doi: 10.1016/S0921-8890(00)00073-7 (cited on page 15).

[99] Wenrui Wang et al. ‘An improved artificial potential field method of trajectory planning and obstacle

avoidance for redundant manipulators’. In: International Journal of Advanced Robotic Systems 15 (5 2018),

pp. 1–13. doi: 10.1177/1729881418799562 (cited on page 15).

[100] Haibo Zhou et al. ‘Trajectory optimization of pickup manipulator in obstacle environment based

on improved artificial potential field method’. In: Applied Sciences (Switzerland) 10 (3 2020). doi:

10.3390/app10030935 (cited on page 15).

[101] Bakir Lacevic and Paolo Rocco. ‘Kinetostatic danger field - A novel safety assessment for human-robot

interaction’. In: IEEE/RSJ 2010 International Conference on Intelligent Robots and Systems, IROS 2010 -
Conference Proceedings (2010), pp. 2169–2174. doi: 10.1109/IROS.2010.5649124 (cited on page 15).

[102] Dae Hyung Park et al. ‘Movement reproduction and obstacle avoidance with dynamic movement

primitives and potential fields’. In: 2008 8th IEEE-RAS International Conference on Humanoid Robots,
Humanoids 2008 (2008), pp. 91–98. doi: 10.1109/ICHR.2008.4755937 (cited on page 15).

[103] Zhihao Liu et al. ‘Dynamic risk assessment and active response strategy for industrial human-robot

collaboration’. In: Computers and Industrial Engineering 141 (January 2020). doi: 10.1016/j.cie.2020.

106302 (cited on page 15).

[104] Yuyang Du et al. ‘Robotic manufacturing systems: A survey on technologies to improve the cog-

nitive level in HRI’. In: Procedia CIRP 107 (2022). Leading manufacturing systems transformation

– Proceedings of the 55th CIRP Conference on Manufacturing Systems 2022, pp. 1497–1502. doi:

https://doi.org/10.1016/j.procir.2022.05.181 (cited on page 15).

[105] Zhi Hao Kang, Ching An Cheng, and Han Pang Huang. ‘A singularity handling algorithm based on

operational space control for six-degree-of-freedom anthropomorphic manipulators’. In: International
Journal of Advanced Robotic Systems 16 (3 2019), pp. 1–16. doi: 10.1177/1729881419858910 (cited on

pages 15, 17, 20, 21, 64, 105).

[106] Tim Chen and J. C.Y. Chen. ‘A New Viewpoint on Control Algorithms for Anthropomorphic Robotic

Arms’. In: Journal of Intelligent and Robotic Systems: Theory and Applications 99 (3-4 2020), pp. 647–658.

doi: 10.1007/s10846-020-01149-5 (cited on page 15).

[107] KUKA. LBR iiwa. url: https://www.kuka.com/es- es/productos- servicios/sistemas- de-

robot/robot-industrial/lbr-iiwa (cited on page 15).

[108] Bruno Siciliano and Oussama Khatib. Handbook of Robotics. Springer, 2008 (cited on pages 15–17, 19, 31,

37).

[109] Bruno Siciliano et al. Robotics: Modeling, Planning and Control. 1st. Springer-Verlag London, 2009 (cited

on pages 15–17, 19, 31, 32, 37, 84, 86, 106).

[110] Xin-Jun Liu, Chao Wu, and Jinsong Wang. ‘A New Approach for Singularity Analysis and Closeness

Measurement to Singularities of Parallel Manipulators’. In: Journal of Mechanisms and Robotics 4.4 (Aug.

2012). 041001. doi: 10.1115/1.4007004 (cited on page 15).

https://doi.org/10.1109/CCTA.2017.8062454
https://doi.org/10.1109/ICRA.2014.6907685
https://doi.org/10.1109/ICMA.2018.8484459
https://doi.org/10.1016/S0921-8890(00)00073-7
https://doi.org/10.1177/1729881418799562
https://doi.org/10.3390/app10030935
https://doi.org/10.1109/IROS.2010.5649124
https://doi.org/10.1109/ICHR.2008.4755937
https://doi.org/10.1016/j.cie.2020.106302
https://doi.org/10.1016/j.cie.2020.106302
https://doi.org/https://doi.org/10.1016/j.procir.2022.05.181
https://doi.org/10.1177/1729881419858910
https://doi.org/10.1007/s10846-020-01149-5
https://www.kuka.com/es-es/productos-servicios/sistemas-de-robot/robot-industrial/lbr-iiwa
https://www.kuka.com/es-es/productos-servicios/sistemas-de-robot/robot-industrial/lbr-iiwa
https://doi.org/10.1115/1.4007004

[111] Mohammad H. FarzanehKaloorazi and Ilian A. Bonev. ‘Singularities of the typical collaborative robot

arm’. In: Proceedings of the ASME Design Engineering Technical Conference 5B-2018 (2018), pp. 1–7. doi:

10.1115/DETC2018-86305 (cited on pages 15, 103).

[112] Zĳia Li, Mathias Brandstötter, and Michael Hofbaur. ‘Analysis of kinematic singularities for a serial

redundant manipulator with 7 DOF’. In: ARK 2018 - 16th International Symposium on Advances in Robot
Kinematics (January 2018), pp. 179–186. doi: 10.1007/978-3-319-93188-3_21 (cited on pages 16, 18).

[113] Liguo Huo and Luc Baron. ‘The joint-limits and singularity avoidance in robotic welding’. In: Industrial
Robot 35 (5 2008), pp. 456–464. doi: 10.1108/01439910810893626 (cited on page 16).

[114] Mantian Li et al. ‘Design and analysis of a whole-body controller for a velocity controlled robot mobile

manipulator’. In: Science China Information Sciences 63 (7 2020), pp. 1–15. doi: 10.1007/s11432-019-

2741-6 (cited on page 16).

[115] Signe Moe et al. ‘Set-based tasks within the singularity-robust multiple task-priority inverse kinematics

framework: General formulation, stability analysis, and experimental results’. In: Frontiers Robotics AI
3 (APR 2016), pp. 1–18. doi: 10.3389/frobt.2016.00016 (cited on pages 16, 17, 19).

[116] Xuhao Wang et al. ‘Singularity analysis and treatment for a 7R 6-DOF painting robot with non-spherical

wrist’. In: Mechanism and Machine Theory 126 (June 2018), pp. 92–107. doi: 10.1016/j.mechmachtheory.

2018.03.018 (cited on pages 16, 18, 19).

[117] Stefano Chiaverini. ‘Singularity-robust task-priority redundancy resolution for real-time kinematic

control of robot manipulators’. In: IEEE Transactions on Robotics and Automation 13 (3 1997), pp. 398–410.

doi: 10.1109/70.585902 (cited on pages 17, 57, 59).

[118] Glyn James and Phil Dyke. Advanced Modern Engineering Mathematics. Ed. by Pearson Education

Limited. Fifth. Pearson (cited on pages 17, 19, 104).

[119] Khaled Elashry and Ruairi Glynn. ‘Robotic Fabrication in Architecture, Art and Design 2014’. In:

Robotic Fabrication in Architecture, Art and Design 2014 (March 2014). doi: 10.1007/978-3-319-04663-1

(cited on pages 17, 32).

[120] E. Kreyszig. Advanced Engineering Mathematics. John Wiley & Sons, 2010 (cited on page 18).

[121] Filip Marić et al. ‘A Riemannian Metric for Geometry-Aware Singularity Avoidance by Articulated

Robots’. In: (Mar. 2021). doi: 10.1016/j.robot.2021.103865 (cited on page 18).

[122] Vince Kurtz, Patrick M. Wensing, and Hai Lin. ‘Control Barrier Functions for Singularity Avoidance

in Passivity-Based Manipulator Control’. In: (Sept. 2021) (cited on page 18).

[123] Wankun Sirichotiyakul, Volkan Patoglu, and Aykut C. Satici. ‘Efficient Singularity-Free Workspace

Approximations Using Sum-of-Squares Programming’. In: Journal of Mechanisms and Robotics 12.6

(May 2020). 061004. doi: 10.1115/1.4046997 (cited on page 18).

[124] Morgan Quigley et al. ‘ROS: an open-source Robot Operating System’. In: Proc. of the IEEE Intl. Conf.
on Robotics and Automation (ICRA) Workshop on Open Source Robotics. 2009 (cited on page 24).

[125] David Coleman et al. Reducing the Barrier to Entry of Complex Robotic Software: a MoveIt! Case Study.

2014 (cited on page 24).

[126] N. Koenig and A. Howard. ‘Design and use paradigms for Gazebo, an open-source multi-robot

simulator’. In: 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat.
No.04CH37566). Vol. 3. 2004, 2149–2154 vol.3. doi: 10.1109/IROS.2004.1389727 (cited on page 24).

[127] Universal Robots and FZI. Universal_Robots_ROS_Driver repository package. 2021 (cited on pages 25, 87,

103).

[128] Konstantinos Chatzilygeroudis et al. iiwa_ros: A ROS Stack for KUKA’s IIWA robots using the Fast Research
Interface. 2019 (cited on page 25).

[129] Federico Reghenzani, Giuseppe Massari, and William Fornaciari. ‘The Real-Time Linux Kernel: A

Survey on PREEMPT_RT’. In: 52.1 (2019). doi: 10.1145/3297714 (cited on page 26).

[130] Cuong Trinh Duc. ‘Geometric Perspective on Kinematics and Singularities of Spatial Mechanisms’.

In: Mathematics Ph.D. for the Università degli studi di Genova (2018). doi: 10.15167/TRINH- DUC-

CUONG_PHD2018-05-04 (cited on page 32).

https://doi.org/10.1115/DETC2018-86305
https://doi.org/10.1007/978-3-319-93188-3_21
https://doi.org/10.1108/01439910810893626
https://doi.org/10.1007/s11432-019-2741-6
https://doi.org/10.1007/s11432-019-2741-6
https://doi.org/10.3389/frobt.2016.00016
https://doi.org/10.1016/j.mechmachtheory.2018.03.018
https://doi.org/10.1016/j.mechmachtheory.2018.03.018
https://doi.org/10.1109/70.585902
https://doi.org/10.1007/978-3-319-04663-1
https://doi.org/10.1016/j.robot.2021.103865
https://doi.org/10.1115/1.4046997
https://doi.org/10.1109/IROS.2004.1389727
https://doi.org/10.1145/3297714
https://doi.org/10.15167/TRINH-DUC-CUONG_PHD2018-05-04
https://doi.org/10.15167/TRINH-DUC-CUONG_PHD2018-05-04

[131] Keith L. Doty, Claudio Melchiorri, and Claudio Bonivento. ‘A Theory of Generalized Inverses

Applied to Robotics’. In: The International Journal of Robotics Research 12.1 (1993), pp. 1–19. doi:

10.1177/027836499301200101 (cited on pages 56, 57, 59).

[132] ‘Minimal Properties of Generalized Inverses’. In: Generalized Inverses: Theory and Applications. New

York, NY: Springer New York, 2003, pp. 104–151. doi: 10.1007/0-387-21634-0_5 (cited on page 56).

[133] pantor. pantor/ruckig. original-date: 2020-12-20T11:39:42Z. May 2021. url: https://github.com/

pantor/ruckig (visited on 05/05/2021) (cited on page 57).

[134] Sachin Chitta et al. ‘ros_control: A generic and simple control framework for ROS’. In: The Journal of
Open Source Software (2017). doi: 10.21105/joss.00456 (cited on pages 71, 73).

[135] OROCOS Project Org. What is OROCOS? 2021. url: https://docs.orocos.org/index.html (cited

on pages 71, 72, 75).

[136] G. Bradski. ‘The OpenCV Library’. In: Dr. Dobb’s Journal of Software Tools (2000) (cited on page 88).

[137] Gaël Guennebaud, Benoît Jacob, et al. Eigen v3. http://eigen.tuxfamily.org. 2010 (cited on page 88).

[138] Boost. Boost C++ Libraries. http://www.boost.org/. Last accessed 2015-06-30. 2015 (cited on page 88).

[139] R. Smits. KDL: Kinematics and Dynamics Library. http://www.orocos.org/kdl (cited on page 88).

[140] blodow (GitHub). Realtime URDF filter. https://github.com/blodow/realtime_urdf_filter. Last

accessed 2023-08-23. 2014 (cited on page 90).

[141] S. Garrido-Jurado et al. ‘Automatic generation and detection of highly reliable fiducial markers under

occlusion’. In: Pattern Recognition 47.6 (2014), pp. 2280–2292. doi: https://doi.org/10.1016/j.

patcog.2014.01.005 (cited on page 91).

[142] Fernando De Terán, Froilán M. Dopico, and D. Steven Mackey. ‘Spectral equivalence of matrix

polynomials and the Index Sum Theorem’. In: Linear Algebra and its Applications 459 (2014), pp. 264–333.

doi: https://doi.org/10.1016/j.laa.2014.07.007 (cited on page 104).

https://doi.org/10.1177/027836499301200101
https://doi.org/10.1007/0-387-21634-0_5
https://github.com/pantor/ruckig
https://github.com/pantor/ruckig
https://doi.org/10.21105/joss.00456
https://docs.orocos.org/index.html
http://www.boost.org/
http://www.orocos.org/kdl
https://github.com/blodow/realtime_urdf_filter
https://doi.org/https://doi.org/10.1016/j.patcog.2014.01.005
https://doi.org/https://doi.org/10.1016/j.patcog.2014.01.005
https://doi.org/https://doi.org/10.1016/j.laa.2014.07.007

Notation

The following listing describes all the symbols employed along these Ph.D. Thesis document. For any doubt

in the meaning of the equation expressions, please check the followings:

𝝉 Joint torques vector.

q̈ Joint efforts vector.

¥q𝑎𝑡𝑡 Joint acceleration vector of the attractive component of the APF.

¥q𝑟𝑒𝑝,𝑜𝑏𝑠 Joint accelerations vector of the repulsive component of the APF due to the obstacle.

¥q𝑟𝑒𝑝,𝑠𝑖𝑛𝑔 Joint accelerations vector of the repulsive component of the APF due to the singularity.

¥q𝑡𝑟𝑎 𝑗 Joint acceleration vector command of the computed trajectory.

¥q𝑡 Joint accelerations vector of the total component of the APF due to the attractive and repulsive

components.

¥q∗
𝑡 Compensated joint accelerations vector of the total component of the APF due to the attractive and

repulsive components.

¥q Joint accelerations vector.

¤q+′
Upper joint velocity limit vector.

¤q+
Upper joint velocity limit vector (given by the mechano-electrical limit of the design to be safe).

¤q−′
Lower joint velocity limit vector.

¤q−
Lower joint velocity limit vector (given by the mechano-electrical limit of the design to be safe).

¤q𝑎𝑡𝑡 Joint velocities vector of the attractive component of the APF.

¤q𝑟𝑒𝑝,𝑜𝑏𝑠 Joint velocities vector of the repulsive component of the APF due to the obstacle.

¤q𝑟𝑒𝑝,𝑠𝑖𝑛𝑔 Joint velocities vector of the repulsive component of the APF due to the singularity.

¤q𝑡𝑟𝑎 𝑗 Joint velocities vector command of the computed trajectory.

¤q𝑡 Joint velocities vector of the total component of the APF due to the attractive and repulsive components.

¤q∗
𝑡 Compensated joint velocities vector of the total component of the APF due to the attractive and

repulsive components.

¤q Joint velocities vector.

¤q
0

Joint velocities vector for auxiliary goals such as the singularity handling or the collision avoidance.

¤x0

𝐵
Cartesian linear and angular velocities vector of the decoupling point according to the world reference

frame.

¤x𝑒 Cartesian linear and angular velocities vector of the end effector.

� Damping coefficient of DLS inverse kinematic model.

�, �(q) Manipulability.∏
Product symbol (as capital pi notation).

𝜌 Maximum distance parameter of the APF controller.

𝜎ℎ𝑖𝑔ℎ𝑒𝑠𝑡 The biggest singular value of the Jacobian matrix determinant.

𝜎𝑖 , 𝜎𝑖(J) 𝑖-th singular value of the Jacobian matrix determinant.

𝜎𝑙𝑜𝑤𝑒𝑠𝑡 The smallest singular value of the Jacobian matrix determinant.

H
𝑐
𝑟 Homogeneous transformation matrix between the camera reference frame and the optical frame.

O𝑖 Origin of the 𝑖-th reference frame of the robot manipulator.

P The projection matrix.

p𝑐 Optical frame position of the camera.

p𝑑 Depth space position representation of point d.

p𝑟 Camera reference frame position.

p
0

𝛽 Relative position vector between the decopling point and the end effector expressed in the 𝛽 reference

system.

p
0

𝐵𝐸
Relative position vector between the decopling point and the end effector expressed in the world

reference system.

p
0

𝐵
Position vector of the decoupling point expressed in the world reference system.

p
0

𝐸
Position vector of the end effector expressed in the world reference system.

q𝑎𝑡𝑡 Joint positions vector of the attractive component of the APF.

q𝑟𝑒𝑝,𝑜𝑏𝑠 Joint positions vector of the repulsive component of the APF due to the obstacle.

q𝑟𝑒𝑝,𝑠𝑖𝑛𝑔 Joint positions vector of the repulsive component of the APF due to the singularity.

Q𝑡𝑟𝑎 𝑗 Compact expression for the commands of the computed trajectory.

q𝑡𝑟𝑎 𝑗 Joint positions vector command of the computed trajectory.

q𝑡 Joint positions vector of the total component of the APF due to the attractive and repulsive components.

q
∗
𝑡 Compensated joint positions vector of the total component of the APF due to the attractive and

repulsive components.

R
𝑐
𝑟 Rotation matrix of H

𝑐
𝑟 .

R
0

𝛽 Rotation matrix of the 𝛽-th reference system viewed from the 0-th (world) reference system.

R
0

𝐵
Rotation matrix of the 𝐵-th reference system viewed from the 0-th (world) reference system.

R
0

𝐸
Rotation matrix of the 𝐸-th reference system viewed from the 0-th (world) reference system.

R

𝑗

𝑖
Rotation matrix of the 𝑖-th reference system viewed from the 𝑗-th reference system.

t
𝑐
𝑟 Translation matrix of H

𝑐
𝑟 .

T

𝑗

𝑖
Homogeneous transformation matrix of the 𝑖-th point according to the 𝑗-th reference frame.

X𝑖 X direction of the principal axis for the 𝑖-th reference frame of the robot manipulator.

Y𝑖 Y direction of the principal axis for the 𝑖-th reference frame of the robot manipulator.

Z𝑖 Z direction of the principal axis for the 𝑖-th reference frame of the robot manipulator.

z𝛽 Unitary Joint 𝛽 auxiliary axis vector.

z𝑖−1 Unitary Joint 𝑖 axis vector.

𝑐𝑥 Optical center pixel 𝑥-coordinate.

𝑐𝑦 Optical center pixel 𝑦-coordinate.

𝐶𝑁 Condition Number.

𝑐𝑝𝑖 𝑖-th Control Point distributed along the robot structure.

𝐷 𝑓 𝑖𝑙𝑡𝑒𝑟,𝑖 Depth map after the Advanced Scene Segmentation algorithm is applied.

𝐷𝑖 Depth map with the raw data image taken by the camera or vision sensors.

𝑓𝑐𝑡𝑟𝑙 Frequency used by the ROS Control based controller to send new commands to the robot.

𝑓𝑝𝑒𝑟𝑐 Frequency of the set of sensors required to take a whole cycle of information of the robot environment.

𝑓𝑝𝑟𝑜𝑐 Frequency of the robot environment processing nodes.

𝑓𝑠𝑥 Focal length of the camera in the 𝑥-axis.

𝑓𝑠𝑦 Focal length of the camera in the 𝑦-axis.

ℎ Decoupling height.

𝑙 Decoupling length.

𝑛 Degrees of Freedom (DoFs of the cobot).

𝑟𝛽 Decoupling angle.

𝑟1 Constant distance between the elbow joint and the wrist in the kinematic decoupled model.

𝑟2 Constant distance between the wrist and the end effector in the kinematic decoupled model.

𝑥𝑐 Optical frame position of the camera 𝑥-coordinate.

𝑥𝑑 Depth space position representation of point d 𝑥-coordinate.

𝑦𝑐 Optical frame position of the camera 𝑦-coordinate.

𝑦𝑑 Depth space position representation of point d 𝑦-coordinate.

𝑧𝑐 Optical frame position of the camera 𝑧-coordinate.

𝑧𝑑 Depth space position representation of point d 𝑧-coordinate.

f(R0

𝐵
(q)) Compact form to express the orientation as Euler roll, pitch and yaw angles.

I𝑛 Unitary diagonal matrix of 𝑛-th dimension.

J Geometric Jacobian matrix.

J
†

Right-Pseudoinverse (geometric) Jacobian matrix.

J
𝑇

Transpose of the Geometric Jacobian matrix.

J𝑎 Analytical Jacobian matrix.

o
0

𝐵
Oreintation of the decoupling point according to the world refernce system.

o

𝑗

𝐾
Oreintation of the point K according to the 𝑗-th reference system.

q Joint positions vector.

x𝑒 Cartesian position and orientation vector of the end effector.

Glossary

A

AI Artificial Intelligence. 12, 49

APF Artificial Potential Field. v, vii, xvi, 3, 5, 8, 14–16, 20–22, 45, 47, 48, 50, 51, 53, 55–57, 59–61, 66, 67, 69–71,

77, 78, 80, 88, 89, 92, 93, 98, 99, 103, 107, 109, 115–119, 123, 124, 127–130

Artificial Potential Field is a technique first employed by Oussama Khatib on mobile robots that creates

repulsive and attractive virtual forces to command the robot and make them achieve their goals. The

aim of the repulsive virtual force is to repel from colliding with obstacles in the robot surrounding,

while the attractive virtual forces involves the movement towards the goal of the robot. One of the main

problems of these control techniques is the well-known local minima problem where the robot can get

stuck due to an equilibrium between the repulsive and attractive forces.. 3

C

CN Condition Number. 16, 17

Cobot cobot. v, xv, 5, 7–10, 15–17, 20, 21, 23, 25, 26, 31–33, 35–41, 45, 46, 59, 61, 62, 71, 76, 80, 81, 93, 99, 103,

106, 121, 124, 127, 129, 130

Control Point a Control Point (𝑐𝑝) is a virtually placed reference along the robot structure from which the

distances between the robot arm and the obstacle should be measured.. 51–53

D

d-APF dual Artificial Potential Field. v, vii, xv, xvi, 5, 21–25, 45, 59, 60, 63, 64, 66, 68–71, 88, 89, 92, 93, 95, 98,

99, 103, 106, 107, 109, 115–119, 121–125, 127–131

DC Direct Current. 26

decoupling point is the point in the structure of the robot where the motion of the wrist becomes decoupled

from the motion of the arm, allowing the positioning of the end effector just by positioning the wrist in

the desired place.. 32

DH Denavit Hartenberg. 17, 31, 39, 81, 82, 94, 95

DLS Damped Least Square. v, vii, xv, xvi, 5, 16, 17, 20, 22, 45, 47–51, 53–57, 59–62, 70, 71, 80, 88, 89, 92, 93,

98, 99, 103, 107, 109, 116–119, 123, 124, 127–129

DMP Dynamic Movement Primitive. 15

DoF Degree of Freedom. xv, 18, 19, 21, 26, 31, 35–37, 39–41, 64, 65, 98, 105, 127

F

FK Forward Kinematic. 15, 23, 31, 33–36, 39, 41, 80, 83, 94

G

GMR Gaussian Mixture Regression. 14

H

Hardware Interface a hardware interface provides a standardized way for software components to interact

with hardware devices such as sensors and actuators. Hardware interfaces define a set of functions or

messages that nodes can use to communicate with hardware devices, abstracting away the low-level

details of how the device works and providing a consistent interface for different hardware components.

By using a hardware interface, developers can write software that can work with different hardware

devices without having to write custom code for each one, making it easier to develop and maintain

complex robotic systems.. 71–73, 76–78, 87–89, 97, 98

HMM Hidden Markov Model. 14

HRC Human-Robot Collaboration. 8, 11

HRCp Human-Robot Cooperation. 11

HRCx Human-Robot Coexistence. 11

I

IK Inverse Kinematic. 8, 15, 16, 20, 21, 23, 31, 32, 34, 36–41, 54–56, 59, 62, 71, 80, 83–85, 94, 95, 127

industrial collaborative scenario is an industrial manufacturing shared environment between operators

and robots (preferibable collaborative robots) where at least one operator and a robot developed a tasks

together working simultaneously.. xv, 5, 7–11, 20, 23, 32, 60

J

joint space is defined by a vector whose components are the translational and angular displacements of each

joint of a robotic link. The common linear PID does not include any component of the robot dynamics

into its control law whenever it is used in joint space or task-space.. 14, 34, 55, 56, 62, 68, 69

K

KF Kalman Filter. 14

M

Manipulability manipulability. 16, 17, 31

N

node in ROS, a node is a process that performs a specific task and communicates with other nodes through

a communication system called the "ROS communication graph".. 25, 79, 80

non-spherical wrist also known as non-concatened wrist, refers to a type of robot which their last three

joints intersect two by two, but not all in the same spot.. v, 5, 7–9, 15, 16, 19–21, 23, 25, 31–33, 35–41, 45,

61, 62, 71, 81, 93, 94, 96, 99, 103, 106, 118, 124, 127, 128, 130, 131

null space it is known as null space the set of configurations where the robot present a null Jacobian

determinant. In other words, all the configurations that correspond to a singular configuration of the

robot compound the null space.. 15, 16, 20

O

obstacle in this context is employed to describe moving bodies in the surroundings of the cobot, which

generally corresponds with the human operator.. 20, 90, 98

ODE Ordinary Differential Equation. 17, 18, 31

OS Operating System. 26, 27, 71, 74, 124

OTG Online Trajectory Generator. 14, 63

Q

quasi-spherical wrist it is denoted as quasi-spherical wrist in this Ph.D. a non-spherical wrist from a robot

structure that kinematically behaves as if it is an spherical one.. v, 33, 127

R

ROS Robot Operating System. v, vii, xv–xvii, 24, 25, 56, 71–80, 87–91, 93–95, 97–99, 103, 106, 115, 117, 122, 124,

128, 131

ROS Parameter Server is a shared, centralized storage system that allows nodes to store and retrieve

parameters (i.e., key-value pairs) at runtime. The Parameter Server can be used to store configuration

settings, calibration data, and other information that nodes need to operate effectively, and can also be

accessed by multiple nodes at the same time. This makes it a convenient and useful tool for managing

and sharing information in a ROS system.. 46, 51, 79, 80, 88, 90, 117

S

scene in this context, the scene is composed of every static element surrounding the robot. They are usually

static elements such as the table where the robot is installed and the sensors that are stuck to a position,

among other devices and elements.. 14, 22, 24, 46, 53, 90

singular configuration in this document, the use of singular configuration, singularity and singular region

are used indistinctly. A singular configuration is a robot configuration where the determinant of their

Jacobian matrix becomes null (or enough close to zero), making the robot to compute excessive velocities

of forces for small movements. In general, it can be defined as Ψ = {q ∈ ℝ𝑛
: |J(q)| ≤ 𝑠0}, where 𝑠0 is a

close to zero threshold defined by the user.. 17, 20, 23, 31, 38, 40, 41, 59, 63, 85, 104, 127, 128

Singularity singularity. 59, 128

spherical wrist it is refer to a type of robot which their last three joint axis intersect on a common point. In

this manner, the reference system of those joints can be placed coincident in the same spot of the robot

structure while developing the kinematic model. Thus, the forward and inverse kinematic models are

simplified.. 15, 21, 23, 32, 33, 62

SVD Singular Value Decomposition. 17, 18, 31, 56, 104

T

task space also known as Cartesian space, is defined by the position and orientation of the end effector

of a robot. Joint space is defined by a vector whose components are the translational and angular

displacements of each joint of a robotic link.. 14, 16, 18, 34, 39, 54–56, 68, 69, 106

TCP Tool Center Point. 32–34, 39, 53, 54, 69, 82, 106

W

wDLS weighted Damped Least Square. 56, 57, 59, 123, 128, 129

workpiece in this context, a workpiece is any load the robot might interact with. They are usually static

components of the robot’s surroundings.. 34, 49, 90, 119, 131

wrist spherification technique developed in this Ph.D. where a point along a non-spherical (non-concatenated)

wrist cobot is selected to keep a constant distance between the last arm joint, the decoupled point, and

the end effector. The technique itselft is explained in Chapter 4.. v, 33, 45

	Cover
	Titlepage
	Abstract
	Acknowledgement
	Contents
	Motivation, State of the Art, Hypothesis and Methodology
	Introduction
	Motivation
	Thesis structure

	State of the Art and Objectives
	State of the Art
	Introduction
	Challenges of current collaborative scenarios
	Environment recognition and segmentation
	Advanced control algorithms to avoid collisions
	Non-spherical wrist robots current limitations on control algorithms
	Conclusion

	Hypothesis
	Objectives

	Research Challenges, Methods and Equipments
	Challenges of the Research
	Research Method Proposal
	Data Collection and Analysis
	Materials and Equipment
	Validation Environments
	Simulation Environments

	Kinematic Behavior of Non-Spherical Wrist Robots
	Non-Spherical Wrist Robots Decoupled Modeling
	Model Fundamentals
	Forward Kinematics
	Inverse Kinematics
	Differential velocity limitations
	Velocity behavior and implications
	Singularity general study

	Conclusion to Chapter 4

	Controller Design and Implementation
	Obstacle and Singularity Handling Reference Controller
	Design Basics
	Requirements
	Control Architecture

	APF Based Obstacle Avoidance Controller
	Advanced Scene Segmentation
	Distance to the Obstacle Computation
	Collision Risk Indexes Computation
	Repulsive Component Computation
	Damped Least-Square (DLS) Kinematic Model
	Dynamics Handling: Ruckig

	Conclusions to Chapter 5

	Dual Artificial Potential Field (d-APF) Based Controller
	Design Basics
	Requirements
	Control Architecture

	APF Based Obstacle Avoidance Component
	Decoupled Kinematic Model
	Dynamics Handling: Ruckig

	APF Based Singularity Avoidance Component
	Singularity Distance Computation
	Singularity Proximity Risk Index Computation
	Singularity Repulsive Component Computation

	Conclusions to Chapter 6

	Controllers Implementation
	Controllers Software Architecture
	Real time Management: Hardware Interface/Orocos encapsulation
	ROS network data structure

	UR10e particularization
	Kinematic behavioral study
	Hardware Interface and RTT ROS controller
	Vision algorithm

	SUPSI robot particularization
	Kinematic behavioral study
	Hardware Interface and RTT ROS controller
	Vision algorithm

	Conclusions to Chapter 7

	Tests, Results and Conclusion
	Performance Tests and Results
	Kinematic behavior implications
	RTT ROS Controllers performance tests in simulation
	Real time suitability tests
	Holding position performance
	Trajectory tracking performance
	Without repulsion
	During obstacles repulsion

	Conclusions to Chapter 8

	Conclusion
	General Conclusion
	Research Outcomes
	Future Work

	Appendix
	Bibliography
	Notation
	Glossary

