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a b s t r a c t 

Bootstrapping time series requires dealing with the dependence that may exist within the 

sample. Several strategies have been proposed, but their validity has only been proven for 

short memory series and there has been little progress in their theoretical properties under 

long memory, where strong persistence may invalidate conventional techniques. The first 

contribution is to review all these recent advances, paying particular attention to those ap- 

proaches that do not rely on parametric models and offering a guide for practitioners who 

wish to use them in semiparametric or nonparametric contexts. The second contribution is 

a Monte Carlo analysis of the applicability of these bootstrap techniques for approximating 

the distribution of low frequency estimators of the memory parameter based on spectral 

behaviour at frequencies close to the origin. 
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1. Introduction 

Bootstrapping is currently one of the most popular tools for approximating the distributional characteristics of certain 

statistics whose distribution is unknown or difficult to handle. Originally proposed for independent observations, bootstrap- 

ping has been extended to cope with the serial dependence usually found in time series, although the strong dependence 

in long memory series sometimes requires specific techniques to form a valid resampling strategy. This paper reviews the 

advances made so far in the application of bootstrapping in long memory series, focusing particularly on those bootstraps 

that have been theoretically justified. A guide is thus offered for practitioners on how to bootstrap long memory series using

techniques whose validity is supported by theory (with the concept of validity meaning here that the bootstrap distribution 

function converges to the asymptotic distribution function based on the original observations; see Cavaliere and Georgiev 

(2020) for alternative definitions). Additionally an extensive Monte Carlo study is included to analyse the performance of 

these techniques in approximating the distribution of some popular semiparametric estimators of the memory parameter. 

Traditional bootstrap strategies proposed for time series belong to one of two categories: the first consists of resampling 

residuals obtained from an estimated parametric model as if they were iid. The validity of this strategy relies on the correct

specification of the model to be estimated and on the consistency of the estimation method, conditions under which the 

residuals can be considered as approximately independent. The second category brings together non-parametric bootstrap 
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strategies that avoid the need to impose parametric restrictions. Two different non-parametric bootstraps are traditionally 

used in this group: the sieve bootstrap is based on resampling the residuals obtained by fitting an autoregressive model of

sufficiently large order that seeks to capture the first order dependence of the series; and the block bootstrap resamples

approximately independent blocks of observations where the serial dependence is embedded in each block. 

All these approaches have in common that the final resampling is implemented in approximately independent quantities, 

either residuals or blocks, which can be difficult to achieve in long memory series where the dependence remains signif- 

icant between observations which are far apart. Bootstrapping long memory series requires proper consideration of that 

dependence to guarantee its validity. For example, the validity of the block bootstrap relies on two conditions: the blocks of

observations must be approximately independent and the joint distribution of the observations inside the blocks must be 

approximately the same across blocks. Those conditions are satisfied in short memory time series, but the significant depen- 

dence between far-apart observations in long memory series may cause the block bootstrap to fail as the independence of 

the blocks in the bootstrap sample precludes mimicking the strong dependence in the underlying observations (see Lahiri, 

1993 or Kim and Nordman, 2011 ). A natural alternative way to deal with this serial dependence is to apply prior filters to ob-

tain approximately uncorrelated quantities for resampling. For example Andrews et al. (2006) propose resampling residuals 

obtained from the estimation of a stationary fractionally integrated ARMA (ARFIMA) model. Its validity relies on the cor- 

rect specification of the ARFIMA to be estimated. To avoid the potential effects of misspecification, non-parametric methods 

have become popular tools in bootstrap strategies. In this context Poskitt (2008) shows the validity of the sieve bootstrap

only for stationary and invertible ARFIMA models. More recently, a “de-colouring” approach has been proposed based on 

implementing the bootstrap not on the original observations yt but rather on fractionally differenced series (1 − L )
ˆ d yt for d̂ 

a consistent estimator of the memory parameter. The purpose of this filtering is to eliminate the strong persistence prior to

applying a resampling strategy. The final bootstrap series are obtained by “re-colouring” the resampled series by fractional 

integration. This strategy has broadened the range of processes and bootstraps that can be used, including stationary and 

non-stationary long memory and many of the conventional bootstrap techniques that have been shown to be valid in short 

memory series (see Poskitt et al., 2015; Kapetanios and Papailias, 2011 and Kapetanios et al., 2019 ). 

All the above approaches are developed in the time domain. Resampling methods in the frequency domain are also of 

special interest when dealing with time series as serial correlation of the observations is avoided, at least asymptotically, 

by using Fourier transforms. Franke and Härdle (1992) and Dahlhaus and Janas (1996) make use of this characteristic to

propose a valid bootstrap strategy for short memory series based on resampling periodogram ordinates studentised with a 

consistent estimator of the spectral density. Estimation of the spectral density function is well documented in short memory 

time series, but it is much more difficult under long memory, where traditional techniques usually fail (see Arteche, 2015 ).

Kim and Nordman (2013) focus on long memory series and suggest a parametric plug-in estimator of the spectral density to

normalise the periodogram, showing that a resampling of the studentised periodogram can be used to consistently estimate 

the distribution of the parametric Whittle estimator as long as the model is fully and correctly specified. In a regression

context, Hidalgo (2003) proposes a residual bootstrap in the frequency domain based on resampling discrete Fourier trans- 

forms of OLS residuals normalised with their modulus in order to approximate the distribution of the OLS estimator in 

linear regression models. He shows the validity of this strategy for stationary series, including long memory, but only in an

OLS linear regression context. 

Studentising the periodogram with an estimator of the spectral density function has the effect of generating asymptoti- 

cally iid quantities, which permits resampling over the whole frequency band. A different approach which does not rely on 

any estimation of the spectral density, is to directly resample the periodogram but only in a neighbourhood of the frequency

of interest. The rationale behind this approach is that the periodogram ordinates from dependent stationary series are not 

asymptotically identically distributed over the whole band of frequencies unless the series is white noise, as mean and 

variance are proportional to the spectral density function f (λ) . However, continuity of f (λ) in short memory series leads 

Paparoditis and Politis (1999) to treat periodogram ordinates as if they were identically distributed but only in a shrinking 

band of frequencies. They suggest resampling periodogram ordinates locally in a neighbourhood of the frequency of interest. 

This strategy is valid for short memory series but it may fail with long memory at frequencies close to the spectral pole.

To overcome this problem, Arteche (2020) proposes studentising the periodogram locally using an estimation of the form 

of the spectral density (apart from a constant) around the spectral pole. He shows that a local resampling scheme of the

locally studentised periodogram is valid for approximating the distribution of the periodogram at frequencies close to the 

origin, which are the frequencies that contain relevant information on the persistence of the series. 

The rest of the paper is organised as follows. Section 2 reviews the results to date on the application of bootstrapping

in long memory time series. It starts by outlining the different definitions of long memory under which the validity of

the bootstraps detailed in Section 2.2 and 2.3 has been proven. Section 2.2 focuses on bootstraps in the time domain and

Section 2.3 describes resampling strategies in the frequency domain. Section 3 analyses the performance of these bootstrap 

strategies in approximating the distribution of low frequency estimators of the memory parameter by means of an extensive 

Monte Carlo study. Section 4 concludes. 
2 
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2. Bootstrapping long memory: A review 

2.1. Long memory 

We consider linear processes of the form 

yt =
∞ ∑ 

j=0 

aj εt− j , 

where εt are iid variables with mean 0 and finite variance and a j are real-valued constants. When 

∑ ∞ 

j=0 a
2 
j 
< ∞ the process

is stationary. Long memory series are characterised by a significant dependence between far-apart observations such that 

the autocovariances satisfy 

γy (k ) = cov (yt , yt−k ) ∼ Gk2 d−1 as k → ∞ , (1) 

where G is a finite constant and d is the memory parameter that governs the strong persistence of yt . If 0 < d < 1 / 2 the

series is stationary but shows long memory such that the autocovariances are not summable. In that case the spectral 

density function (sdf) behaves as 

fy (λ) ∼ Cλ−2 d as λ → 0 , (2) 

where C is a positive finite constant. 

The concept of long memory is usually related to the concept of fractional integration although the two are not neces-

sarily equivalent: yt is integrated of order d (possibly fractional) denoted as yt ∼ I(d) if (1 − L )d yt = ut , where L is the lag

operator ( Lk yt = yt−k ) and ut ∼ I(0) , meaning in this case that ut is weak dependent with finite, positive and continuous

sdf over the whole frequency band [0 , π ] . If yt ∼ I(d) then fy satisfies (2) . The most widely used I(d) processes are the

Fractionally Integrated ARMA (ARFIMA) parametric models, which assume that ut is a stationary and invertible ARMA. The 

ARF IMA (p, d, q ) is defined as 

�p (L )(1 − L )d yt = �q (L ) εt , (3) 

where �p (L ) and �q (L ) are polynomials of order p and q respectively with all roots outside the unit circle and no roots in

common. In this case yt ∼ I(d) with ut ∼ ARMA (p, q ) . 

In the case of non-stationary long memory ( d ≥ 1 / 2 ) the parameterisation and mathematical treatment of I(d) processes

are more complicated. The most notable effects are that 
∑ ∞ 

j=0 a
2 
j 
= ∞ such that the variance of the process is not finite

and the sdf no longer exists, so the function in (2) can be considered as a pseudo-spectral density function. The modelling

of non-stationary long memory series has moved in two different directions: Type I and Type II long memory ( Robinson,

2005 ). They differ in their pre-sample treatments. Type I long memory processes are defined as 

yt = (1 − L )−q xt I (t ≥ 1) 

where I is the indicator function, q is a positive integer and xt is a stationary ARF IMA (p, b, q ) . With this definition yt ∼ I(d)

for d = b + q . Type II long memory processes are defined as 

yt = (1 − L )−d ut I (t ≥ 1) 

for ut ∼ I(0) , where it is assumed that the process is initialised at y0 = 0 . Note that Type II long memory processes are

never stationary, but only asymptotically stationary when d < 1 / 2 whereas Type I processes are stationary if q = 0 . 

The theoretical contributions of different bootstrap strategies are provided based on different specifications of the long 

memory property; either parametric as in formula (3) or semiparametric as in (1) and (2) . Their validity for approximating

the distribution of statistics that are functions of observations of long memory processes has been analysed in a number 

of papers cited in Sections 2.2 and 2.3. In what follows, consider the long memory time series YT = { y1 , ..., yT } and let
∗

t { y∗
1 
, ..., y∗

T 
} be the corresponding bootstrap sample. Denote by ST = S(y1 , ..., yT ) the statistic of interest, which is a suitable

smooth function of YT , and by S∗
T 

= S(y∗
1 
, ..., y∗

T 
) the statistic evaluated at the bootstrap sample. Let E(·) and E∗(·) denote the

expectations with respect to the pdf of YY and Y ∗
T respectively. Thus, ST is usually required to satisfy the following condition: 

Condition S: Let G be a compact subset of RT . Thus, for all YT , Y
∗
T ∈ G there exists a family of Borel measurable functions

Bt : R
T × R

T → [0 , ∞ ) satisfying 

lim sup 

T →∞ 

1 

T 

T ∑ 

t=1 

E
[
E∗(

Bt (YT , Y
∗

T )
2 
)]

< ∞ 

for which 

|| ST − S∗
T ||2 ≤ 1 

1+max { 0 ,d−1 / 2 } 
T ∑ 

Bt (YT , Y
∗

T ) | yt − y∗
T |2 . 
T
t=1 

3 
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This condition is satisfied by many common statistics such as the sample mean, autocovariances, autocorrelations, partial 

autocorrelations, discrete Fourier transforms, OLS regression coefficients and the Local Whittle estimator in the stationary 

case (see Poskitt, 2008 and Poskitt et al., 2015 ). However, the condition is considerably stronger when d ≥ 1 / 2 and no longer

allows for statistics such as the sample variance and sample autocorrelations, but still allows for the Local Whittle estimator 

(see Remark 15 in Kapetanios et al., 2019 ). Section 2.2 describes bootstrap methods for approximating the distribution of ST 

in the time domain and analyses their validity with long memory series. Alternative strategies developed in the frequency 

domain are discussed in Section 2.3 . 

2.2. Bootstrap in the time domain 

Andrews et al. (2006) were the first to show the theoretical advantages of bootstrap methods for long memory time 

series. They focus on stationary Gaussian time series with a spectral density function belonging to a parametric family 

satisfying 

fy (λ) = O
(| λ|−2 d−δ

)
as λ → 0 , ∀ δ > 0 and d ∈ (0 , 1 / 2) . 

This specification is slightly weaker than the usual f (λ) = O
(| λ|−2 d 

)
and is satisfied by the popular ARFIMA models in

Equation (3) . Once the model is estimated by maximum likelihood (ML) or by parametric Whittle estimation, a parametric 

bootstrap is proposed by simulating normal random variables with mean and covariance matrix obtained from the paramet- 

ric model and the unknown parameters replaced by their estimated values. This parametric bootstrap provides higher-order 

improvements of the bootstrap confidence intervals over the coverages obtained with confidence intervals based on the 

asymptotic distribution of the ML or Whittle estimated parameters (similarly for linear tests). In particular the bootstrap 

CIs have smaller coverage probability errors than the CIs based on the asymptotic distribution by a multiplicative factor of 

order o(T−1 / 2 ln T ) . Despite this significant improvement, this bootstrap suffers from three main limitations: 1) The results 

depend on the model being specified correctly and completely; 2) Gaussianity is required; 3) Only the parametric boot- 

strap is considered, with other residual-based strategies being ignored. Cavaliere et al. (2015, 2017) extend the analysis and 

propose instead a wild bootstrap of the centred residuals in an ARFIMA model estimated by minimising the conditional 

sum-of-squares where Gaussianity is not required. The advantage of the wild bootstrap over other resampling approaches is 

that conditional and unconditional heteroscedasticity of a quite general and unknown form can be addressed in the imple- 

mentation of tests for linear hypotheses on the long and short memory parameters of the model. 

Nonparametric bootstrap methods that do not rely on a parametric model avoid the restrictions needed for the para- 

metric bootstrap of Andrews et al. (2006) : they do not need a full parametrisation of the model and Gaussianity is not an

essential requirement. Two popular nonparametric strategies for time series, the Sieve bootstrap and the Block bootstrap, are 

described below and their applicability in long memory series is discussed. An additional strategy based on prior fractional 

differencing that is specifically designed for I(d) processes is also discussed. 

The Sieve Bootstrap (SBS) 

The sieve bootstrap (SBS) is based on approximating the data-generating process by an autoregression of order h, AR(h), 

where h increases with the sample size. Bootstrap samples are then drawn from the residuals obtained from the autore- 

gressive approximation. Poskitt (2008) ) proposes the following procedure for stationary long memory series: 

Step 1: Estimate the coefficient of an AR (h ) process fitted to the series YT . For practical purposes Burg’s algorithm is sug-

gested for the estimation of the coefficients and the selection of h is based on the minimisation of certain informa-

tion criteria such as AIC. With the estimates of the AR coefficients ˆ φ1 , ...,
ˆ φh the residuals are obtained: 

ˆ εt =
h ∑ 

j=0 

ˆ φ j yt− j , t = 1 , ..., T , 

with y1 − j = yT − j+1 , j = 1 , ..., h , as initial values. Construct the standardised residuals 

ˆ εs,t = ˆ εt − ε̄ 

S ˆ ε 
, where ε̄ = 1 

T 

T ∑ 

t=1 

ˆ εt and S ˆ ε =
√ 

1 

T 

T ∑ 

t=1 

(
ˆ εt − ε̄ 

)2 
. 

Step 2: Let ε+ 
t , t = 1 , ..., T be a random sample of independent, identically distributed (iid) values drawn from a distribution

placing a probability mass of 1 /T at each ˆ εs,t , t = 1 , ..., T . 

Step 3: Construct the bootstrap sample Y ∗
T 

= { y∗
1 
, ..., y∗

T 
} as 

h ∑ 

j=0 

ˆ φ j y
∗
t− j = ε∗

t = , t = 1 , ..., T , 

with y∗
1 − j 

= yτ− j+1 , j = 1 , ..., h , where τ has the discrete uniform distribution on the integers h,...,T, and ε∗
t = ˆ σε+ 

t 

where ˆ σ 2 is the estimated variance of the one-step-ahead prediction error obtained in Step 1 associated with the 

minimum mean square error predictor based on the infinite past. 
4 
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Step 4: Obtain S∗
T as in ST but with Y ∗

T instead of YT . 

Step 5: Repeat Steps 2, 3 and 4 B times to generate B independent bootstrap samples Y ∗
T,b 

and calculate S∗
T,b 

for b = 1 , ..., B .

Approximate the distribution of ST by the bootstrap distribution function 

F S∗
S∗

T 
,B (s ) = 1 

B 

B ∑ 

b=1 

I { S∗
T,b ≤ s } 

where I is the indicator function. 

Poskitt (2008) proves the validity of the SBS for linear stationary I(d) processes with | d| < 1 / 2 and statistics ST satisfying

Condition S. The proof is based on the Mallows distance defined as follows: the Mallows distance between two probability 

distributions FX and FY , denoted as η(FX , FY ) , is defined as η(FX , FY ) = inf { E|| X − Y ||2 }1 / 2 , where the infimum is taken over

all square integrable random variables X and Y with marginal distributions FX and FY . Convergence in probability of the 

Mallows distance to zero implies convergence in distribution and convergence of the first two moments (see Lemma 8.3 9 

in Bickel and Freedman, 1981 ). Poskitt (2008) shows that η(F S∗
S∗

T 
,B 

, FST 
) = o(1) a.s. as T → ∞ , and concludes that F S∗

S∗
T 
,B 

(s )

converges to the distribution of ST with probability one, thus justifying the validity of the SBS in stationary long memory 

series. 

The SBS strategy is based on a classical resampling of the standardized residuals in Step 2. This strategy is successful in

mimicking the second order structure of the series, but may fail if higher order dependence also needs to be mirrored by

the bootstrap samples. In that case, the wild bootstrap can be used in Step 2, as proposed by Fragkeskou and Paparoditis

(2018) for weak dependent series. However, its validity for long memory series has not yet been theoretically justified. 

The Block Bootstrap 

The main alternatives to the sieve bootstrap for time series are based on resampling blocks of observations. The blocks 

can be disjoint, leading to the non-overlapping block bootstrap (NBB), or can overlap to form the moving block bootstrap 

(MBB). Let l < T be an integer denoting the block length (either random or non-random) and let Bi = (yi , ..., yi + l−1 ) denote

a block with starting point 1 ≤ i ≤ T − l + 1 . A bootstrap series of length bl is defined as ( BI1 
, ..., BIb 

) where I1 , ..., Ib are iid

uniform variables on { 1 , ..., T − l + 1 } for the MBB and on { 1 + l(i − 1) ; i = 1 , .., b} for the NBB. Once the bootstrap series is

obtained, the bootstrap statistic and its distribution are obtained as in Steps 4 and 5 of the SBS. 

Approximate independence of the blocks is necessary for this resampling scheme to be successful. This may be far from 

being satisfied if the series have long memory. Lahiri (1993) was the first to analyse the applicability of the block bootstrap

in long memory series. He focused on processes that satisfied the asymptotic behaviour requirement of the autocorrelations 

in Equation (1) , showing that the MBB provides a valid approximation of the distribution of the normalized sample mean

only if this statistic is asymptotically normal. In any other case, the MBB sample mean is asymptotically normal irrespective 

of the non-normal asymptotic distribution of the normalised sample mean. One reason for this failure is that the blocks are

by construction independent in the bootstrap sample, which destroys the strong dependence that exists in the underlying 

observations. The effect is similar to the failure of Efron’s bootstrap based on iid resampling schemes to capture the under-

lying dependence in the joint distribution of the observations in weak dependent processes, which makes it fail even in the

simple case of the sample mean. Kim and Nordman (2011) extend Lahiri’s results to show that the NBB is also valid in -not

necessarily casual- linear long memory processes. In any case the conditional variance of the bootstrap mean has a slower 

growth rate than the variance of the average of the original observations (due to the aforementioned destruction of the 

strong dependence in the bootstrap samples), which entails a different normalisation for the bootstrap mean. In particular, 

for the bootstrap distribution to successfully mimic the distribution of the normalised sample mean the statistic must be 

multiplied by bd , where b represents the number of blocks. In contrast with other traditional bootstraps, the empirical im- 

plementation of this normalisation requires a prior estimation of d. Moreover, this strategy cannot be generalised to statistics 

other than the sample mean and its validity has only been shown in stationary long memory series. These limitations can

be overcome by the pre-filtering strategy approach proposed by Kapetanios and Papailias (2011) and discussed below. There 

are no more theoretical contributions on the application of the block bootstrap in long memory series. For their empirical 

performance see for example Butka and Beta (2014) and Butka and Puka (2014) . 

Pre-filtered bootstrap 

A natural strategy for dealing with the problems raised by strong persistence is to eliminate it prior to implementing a

bootstrap technique that is valid for weak dependent series. Poskitt et al. (2015) follows this idea and propose a modification

of the SBS consisting of pre-filtering the series with the fractional difference operator constructed using a consistent estima- 

tor of the memory parameter prior to the application of the previous sieve bootstrap. With this modification the pre-filtered 

sieve bootstrap (PFSBS) consists of the following steps: 

Step 0: Consider the fractional filter (1 − L )d = ∑ ∞ 

j=0 a j (d) L j and let ˆ d be a consistent estimator of d. Generate the filtered 

series 

ˆ ut =
t−1 ∑ 

j=0 

aj ( ˆ d ) yt− j . 

∗
teps 1, 2 and 3 of the sieve bootstrap applied to ˆ ut instead of yt . Obtain the sieve bootstrap sample ˆ ut . 

5 
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Step 4: Obtain the pre-filtered sieve bootstrap sample 

y∗
t =

t−1 ∑ 

j=0 

aj (− ˆ d ) ˆ u∗
t− j 

and calculate S∗
T 

as in ST but with Y ∗
T 

instead of YT . 

Step 5: Repeat Steps 1-4 B times to generate B independent bootstrap samples Y ∗
T,b 

and calculate S∗
T,b 

for b = 1 , ..., B .

Approximate the distribution of ST by the bootstrap distribution function 

F P S∗
S∗

T 
,B (s ) = 1 

B 

B ∑ 

b=1 

I { S∗
T,b ≤ s } . 

Poskitt et al. (2015) restrict the analysis to the stationary case ( d < 1 / 2 ) and show that the error of the PFSBS distribution

is arbitrarily close to the traditional rate obtained with weak dependant series and improves the rate of the error of the SBS

distribution as an approximation of the probability distribution of ST for d > 0 . In particular the error obtained with the SBS

is Op (T d′ −1+ β ) for any β > 0 and d′ = max { 0 , d} whereas the error of the PFSBS is Op (T−1+ β ) if ˆ d − d = Op (log 
−1 

T ) . 

More recently Kapetanios et al. (2019) extend the results in Poskitt et al. (2015) by showing that the benefits of the prior

fractional differencing in Step 0 remain valid with any bootstrap strategy whose properties are satisfied for weak dependent 

series, such as the block bootstrap or the spectral density-driven bootstrap of Krampe et al. (2018) . An additional benefit of

the pre-filtering strategy is that non-stationary long memory with d ≥ 1 / 2 is also allowed by considering Type II fractionally

integrated processes, in which case fractional differencing and integration in Steps 0 and 4 is complete, with no remaining 

terms. Kapetanios et al. (2019) show that the Mallows distance between the distribution of ST satisfying Condition S and the

bootstrap approximation based on pre-filtering goes to zero as the sample size increases as long as a consistent estimator of

d exists, which proves the validity of pre-filtering combined with any bootstrap strategy valid with weak dependent series. 

The accuracy of the pre-filtered bootstrap is analysed in Kapetanios et al. (2019) with a Monte Carlo analysis. It is con-

cluded that a combination of pre-filtering and the spectral density-driven bootstrap of Krampe et al. (2018) is recommend- 

able. After filtering as in Step 0 of the PFSBS, the pre-filtered spectral density-driven bootstrap (PFSDDB) is based on an

estimation of the coefficients c j of the Wold decomposition of ˆ ut and consists of the following steps: 

Step 1: Estimate consistently the spectral density function of ˆ ut obtained as in Step 0 of the PFSBS, ˆ f ˆ u (λ) , and compute

the Fourier coefficients of log ˆ f ˆ u (λ) as 

ˆ ak =
1 

2 π

∫ 2 π

0 

log ( ˆ f ˆ u (λ)) e−ikλd λ

for k = 0 , 1 , 2 , .... . 

Step 2: Compute ˆ σ 2 = 2 πe ˆ a0 and the coefficients 

ˆ ck +1 =
k ∑ 

j=0 

(
1 − j 

k + 1 

)
ˆ ak +1 − j ̂  c j 

for k = 0 , 1 , 2 , ... and starting value ˆ c0 = 1 . 

Step 3: Generate iid pseudo innovations { ε∗
t , t ∈ Z } with mean 0 and variance ˆ σ 2 . 

Step 4: Generate the bootstrap series ˆ u∗
t , t = 1 , ..., T as 

ˆ u∗
t =

∞ ∑ 

j=0 

ˆ c j ε
∗
t− j . 

Step 5: Obtain the pre-filtered SDD bootstrap sample 

y∗
t =

t−1 ∑ 

j=0 

aj (− ˆ d ) ˆ u∗
t− j 

and calculate S∗
T as in ST but with Y ∗

T instead of YT . 

Step 6: Repeat Steps 3, 4 and 5 B times to generate B independent bootstrap samples Y ∗
T,b 

and calculate S∗
T,b 

for b = 1 , ..., B .

Approximate the distribution of ST by the bootstrap distribution function 

F P SDD∗
S∗

T 
,B (s ) = 1 

B 

B ∑ 

b=1 

I { S∗
T,b ≤ s } . 

In the above algorithm the bootstrap series ˆ u∗
t in Step 4 is generated using the estimated coefficients of the moving

average representation. Alternatively, ˆ u∗
t can also be generated using the estimated coefficients of the autoregressive rep- 

resentation and modifying the algorithm appropriately, but no improvement has been shown with this modification (see 

Krampe et al., 2018 and Kapetanios et al., 2019 ). 
6 



J. Arteche Econometrics and Statistics 29 (2024) 1–15 

 

 

 

W  

 

 

 

 

 

 

 

 

 

 

 

 

 

2.3. Bootstrap in the frequency domain 

Efron’s iid bootstrap fails in dependent time series because the time dependence of the original observations is disman- 

tled in the bootstrap samples. Different strategies such as the sieve or the block bootstrap seek to mimic the dependence

of the original series in the bootstrap samples by finally resampling some functions of the series that are approximately 

independent, either residuals or blocks of observations. As an alternative, the frequency domain offers an advantageous con- 

text for the analysis of time series because the Fourier transform wipes out the serial dependence (at least asymptotically) 

turning autocorrelation into heteroscedasticity. The basic tool is the periodogram defined as 

Iy (λ) = | Wy (λ) |2 , Wy (λ) = 1 √ 

2 πT 

T ∑ 

t=1 

yt exp (−itλ) 

where Wy (λ) is the discrete Fourier transform (DFT) of yt , t = 1 , .., T at frequency λ. Considering Fourier frequencies

λ j = 2 π j/T , j = 1 , ..., � T / 2 , where � denotes “the entire part of”, one interesting property of Wy (λ j ) is that they are

asymptotically uncorrelated but possibly heteroscedastic, which avoids the problems caused by the existence of serial de- 

pendence. To avoid the heteroscedasticity of the raw DFT, Hidalgo (2003) proposes normalising the DFT and considers 

y (λ j ) / | Wy (λ j ) | , which can be regarded as a sequence of zero mean and asymptotically independent homoscedastic random

variables regardless of the (weak) dependence of the original series. Hidalgo (2003) uses this characteristic and proposes re- 

sampling the normalised DFT of the OLS residuals in a simple linear regression model, showing that the distribution of the

OLS estimator of the coefficient of the regression and the bootstrap approximation have the same limit distribution under 

stationary short and long memory in the disturbances and the regressor. However, only the OLS estimator is considered and 

no results on other interesting statistics are provided. 

Many interesting statistics ST can be written as functions of the periodogram. For example, the typical estimators of 

the autocovariances, of the spectral distribution function and even the parametric Whittle estimator can be expressed as 

weighted integrals of the periodogram. Estimators of this class are usually denoted as spectral mean estimators. Another 

important class of statistics is that of ratio statistics , which may be represented as ratios of spectral mean estimates and

the integrated periodogram. For example, the sample autocorrelation is a ratio statistic. Bootstrapping in the frequency do- 

main uses this characteristic and focuses on obtaining bootstrap samples of the periodogram, thus circumventing the need 

to generate bootstrap observations in the time domain, and therefore also avoiding the need to imitate the dependence 

structure of the underlying process. Franke and Härdle (1992) and Dahlhaus and Janas (1996) observe that periodogram 

ordinates of weak dependent series standardised by the spectral density are asymptotically iid and proposed a frequency 

domain bootstrap (FDB) strategy based on resampling periodogram ordinates studentised with a consistent estimator of the 

spectral density Iy (λ j ) / ˆ fy (λ j ) . Dahlhaus and Janas (1996) show the validity of this strategy for approximating the distribu-

tion of ratio statistics. However, it may fail when estimating certain spectral means (such as autocovariances) if the series is

not Gaussian. In any case the validity of this strategy depends on the consistency of the estimation of the spectrum, which

for short memory time series is simple and well documented but is especially difficult with long memory series, where tra-

ditional nonparametric techniques may fail ( Arteche, 2015 ). This is noted by Kim and Nordman (2013) , who propose using

a plug-in parametric estimator of the spectral density function belonging to a parametric class of functions that includes 

long memory. The parameters are estimated using the parametric Whittle estimator and the estimates are plugged into the 

parametric form of the spectral density to obtain the Studentised periodogram, which is (after scaling by their mean) the 

quantity finally resampled to get the bootstrap approximation of the distribution of the Whittle estimator. Kim and Nord- 

man (2013) show that this strategy leads to a consistent estimation of the distribution of the Whittle estimator if yT is a

stationary linear process with d ∈ [0 , 1 / 2) . 

The main disadvantage of the plug-in procedure in Kim and Nordman (2013) is that a complete parametric specification 

is required for the model on which the sdf is based. This limits its applicability for semiparametric estimators of d such

as those considered in Section 5. These estimators, like other low frequency statistics, only need bootstrap replicates of the 

periodogram ordinates around the origin, which are the frequencies where the strong persistence plays the main role and 

where the standardised periodogram cannot be considered to be either independent or identically distributed. In fact, peri- 

odogram ordinates of long memory series are not asymptotically independent around the spectral pole and show a marked 

structure (far from the periodogram of a white noise) that needs to be replicated by the bootstrap samples. Taking this

into account, Franco and Reisen (2004) and Silva et al. (2006) extend the proposal of Paparoditis and Politis (1999) to long

memory series and suggest a local bootstrap strategy based on resampling periodogram ordinates only among neighbour- 

ing frequencies, thus retaining the global structure of the periodogram. Considering blocks of near periodogram ordinates 

makes this strategy resemble the more conventional block bootstrap. However, the block bootstrap is designed to maintain 

the local structure by resampling blocks while assuming independence between blocks but the local bootstrap resamples 

periodogram ordinates within a block of neighbouring frequencies, keeping the global structure of the periodogram unal- 

tered. The benefits of this local bootstrap strategy have been justified only with simulations and no theoretical results have 

been offered unlike the results for weak dependent series in Paparoditis and Politis (1999) . Moreover, as noted by Silva et al.

(2006) , this local bootstrap performs well only if a very narrow interval around the frequency of interest is used (in fact,

Silva et al. (2006) propose resampling within a neighbourhood of only one or two frequencies), which induces problems in 

obtaining asymptotic results. 
7 
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To overcome these problems and extend the number of frequencies subject to resampling, Arteche and Orbe (2016) pro- 

pose that instead of the raw periodogram resampling should take place on the locally Studentised periodogram obtained 

by scaling the periodogram with a function that is proportional to the spectral density around the origin, namely λ−2 ˆ d 
j 

for

ˆ d a consistent estimator of d. This scaled periodogram shows a structure closer to the periodogram of a weak dependent 

series and the local bootstrap proposed by Paparoditis and Politis (1999) can retain the remaining structure of the locally 

studentised periodogram. The detailed procedure of this Frequency Domain Local Bootstrap (FDLB) is as follows: 

Step 1: Estimate d consistently, say ˆ d and construct the locally studentised periodogram 

ˆ v j = I(λ j ) λ
2 ˆ d 
j 

, for j = 1 , ..., � T / 2 , 
where � · denotes “the integer part of ”. 

Step 2: Select a resampling width kT ∈ N , kT ≤ � T / 2 . 
Step 3: Define i.i.d. discrete random variables J1 , ..., Jm 

taking values in the set �T = { 0 , ±1 , ..., ±kT }\{− j} with probability

pi , i ∈ �T (e.g. equal probability pi = 1 / #�T for all i ). 

Step 4: Generate B bootstrap series ˆ v∗
b j 

= ˆ v| j+ J j | for b = 1 , 2 , ..., B and j = 1 , ..., m . 

Step 5: Generate B bootstrap samples for the periodogram I∗
b j 

= λ−2 ˆ d 
j 

ˆ v∗
b j 

, for b = 1 , 2 , ..., B and j = 1 , ..., m . 

Step 6: Obtain S∗
T,b 

as ST with I∗
b j 

replacing I(λ j ) for b = 1 , 2 , ..., B . 

Step 7: The bootstrap distribution of ST is calculated as the empirical distribution of the B bootstrap replicates, 

F LB∗
ST,B 

(s ) = 1 

B 

B ∑ 

b=1 

I { S∗
T,b ≤ s } . 

Note that this procedure resembles the bootstrap strategies in the time domain based on pre-filtering the observations 

with the fractional difference operator in that the goal of Step 1 is similar to the goal of pre-filtering as it aims to ap-

proximate the behaviour of ˆ v j to the form of the periodogram of a weak dependent series where the local bootstrap has

been proven to perform well. Although this FDLB strategy has been shown to perform very well in the approximation of

the distribution of semiparametric estimators of d ( Arteche and Orbe, 2016; 2017 ), its theoretical properties have only re-

cently been analysed. Arteche (2020) considers linear long memory series with sdf satisfying Equation (2) , also allowing for

non-stationary long memory with −1 / 2 < d < 1 . He offers a bound for the Mallows distance between the distribution of the

periodogram and the bootstrap estimation using the previous FDLB strategy. This in turn is used to show that the Mallows

distance η(F LB∗
S∗

T 
(m ) ,B 

, FST (m ) ) = o(1) as T → ∞ for ST (m ) = ∑ m 

j=1 ψ j Iy (λ j ) under some assumptions on the weights ψ j and

for m diverging to ∞ but more slowly than T . For example, these assumptions are satisfied in two relevant cases: 1) when

d < 1 / 2 for ψ j = 2 π/T , in which case ST (m ) is the average periodogram and estimates the spectral distribution at λm 

, which

is used in the average-periodogram estimator of the memory parameter; 2) when d < 3 / 4 for ψ j = O (m−1 / 2 λ2 d 
j 

log m ) , with

the validity of the FDLB being justified in this case for the score of the LW estimator in those situations where it is asymp-

totically normally distributed (the score of the LW estimator, and thus the LW estimator itself, are not asymptotically normal 

for d ≥ 3 / 4 , see Phillips and Shimotsu (2004) and Shao and Wu (2007) . 

3. Semiparametric estimation of d: A Monte Carlo analysis 

One of the main applications of the different bootstrap strategies described above is to approximate the finite sample 

distribution of semiparametric estimators of d. Several papers propose the use of different bootstraps for that purpose, but 

most of them do not support their proposals with theoretical developments. The only theoretically supported strategies are 

those described above, at least to the author’s knowledge. This section complements previous results by analysing their 

performance in approximating the distribution of three popular semiparametric estimators of the memory parameter: the 

log-periodogram estimator (LPE), the local Whittle estimator (LWE) and the average periodogram estimator (APE). The boot- 

straps considered are the SBS, PFSBS, PFSDDB, the MBB based on pre-filtering (PFMBB) and the FDLB. 

3.1. Semiparametric or local estimation of d

Consider the following estimators of d: 

Log-periodogram regression 

The Log-Periodogram Estimator (LPE) ˆ dLP is obtained by a simple least squares regression in the linear model 

log Iy (λ j ) = a + dXj + uj , j = 1 , 2 , ..., m, (4) 

where Xj = −2 log λ j . The bandwidth m indicates the number of frequencies used in the estimation and is constrained to 

satisfy at least m−1 + mT−1 → 0 as T → ∞ such that even though m → ∞ the band of frequencies used in the estimation

degenerates to zero. The asymptotic properties of ˆ d are well established. In particular ˆ d is consistent for −1 / 2 < d ≤ 1 and

asymptotically normal for −1 / 2 < d < 3 / 4 such that 

√ 

m ( ˆ dLP − d)
d → N(0 ,

π2 

) as T → ∞ . 

24 
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See Robinson (1995a) ; Hurvich et al. (1998) ; Velasco (1999a, 20 0 0) and Kim and Phillips (2006) . Arteche and Orbe

(2005) propose a residual-based bootstrap and show that the bootstrap approximation of the LPE distribution is more accu- 

rate than the asymptotic distribution in small samples using an extensive Monte Carlo analysis. No theoretical justification 

has however been offered so far. 

Local Whittle estimator 

The Local Whittle Estimator (LWE) of the memory parameter d is obtained by minimising the function R (d) = 

log 

(
m−1 

∑ 

λ2 d 
j 

Iy (λ j ) j
)

− m−1 2 d
∑ 

log λ j . Its asymptotic properties are very similar to those of the LPE: if m satisfies at 

least m−1 + mT−1 → 0 as T → ∞ then 

ˆ dLW 

is consistent for −1 / 2 < d ≤ 1 and asymptotically normal for −1 / 2 < d < 3 / 4 

√ 

m ( ˆ dLW 

− d)
d → N(0 ,

1 

4 

) as T → ∞ . 

See Robinson (1995a) for the stationary case and Velasco (1999b) ; Phillips and Shimotsu (2004) and Shao and Wu (2007) for

the nonstationary case. The validity of the bootstrap strategies considered in this section for approximating the distribution 

of the LWE is theoretically justified in Poskitt (2008) ; Poskitt et al. (2015) ; Kapetanios et al. (2019) and Arteche (2020) . The

finite sample performance of the FDLB is also analysed in Arteche and Orbe (2016) , where its benefits are shown in terms

of coverage of confidence intervals over the asymptotic distribution. 

Average periodogram 

The Average Periodogram Estimator (APE) was proposed by Robinson (1994) and is defined as 

ˆ dAP =
1 

2 

{ 

1 −
log 

[
ˆ F (qλm 

) / ˆ F (λm 

)
]

log q 

} 

where ˆ F (λ) = 2 π

T 

� λT/ 2 π ∑ 

j=1 

Iy (λ j ) 

for q ∈ (0 , 1) a user-chosen number. For practical purposes we use q = 0 . 5 , as suggested by Lobato and Robinson (1996) .

Arteche (2020) provides some theoretical justification for the use of the FDLB to approximate the distribution of the APE 

in the stationary case 0 < d < 1 / 2 . Note however that the APE is asymptotically normal only for 0 < d < 1 / 4 , whereas the

asymptotic distribution is non-normal for d > 1 / 4 . In particular, Lobato and Robinson (1996) show that if 0 < d < 1 / 4 then,

as T → ∞ , 

√ 

m ( ˆ dAP − d)
d → N

(
0 ,

(1 + q−1 − 2 q−2 d ) 

log 
2 

q 

(1 / 2 − d)2 

1 − 4 d 

)
, (5) 

but the asymptotic distribution has a non-normal intractable form for 1 / 4 < d < 1 / 2 . It is thus useful to analyse whether

some of the bootstrap strategies discussed above, in particular the FDLB, can be successfully used to approximate the true 

distribution in all these situations, regardless of the tractability of the limiting distribution. 

3.2. Comparison criteria 

The performance of the asymptotic normal distribution and the different bootstrap strategies is analysed based on two 

different com parative measures: the root mean squared deviation of the bootstrap probability density function to the true 

density (obtained with Monte Carlo) and the coverage frequencies of confidence intervals obtained with the asymptotic dis- 

tribution and the bootstrap estimates in different models. Both measures are obtained with R replications of series obtained 

from the DGP described in the next section. 

The root mean squared deviation (RMSD) 

The root mean squared deviation (RMSD) is defined as 

RMSD (boot) =

√ √ √ √ 

1 

R 

R ∑ 

j=1 

(
pboot ( ˆ dj − d0 ) − pmc ( ˆ dj − d0 )

)2 

where boot represents one of the bootstrap strategies discussed above, pmc ( ˆ d j − d0 ) is the ordinate of a kernel based den-

sity estimate obtained with the R estimates ˆ dk − d0 , k = 1 , ..., R evaluated at ˆ d j − d0 and pboot ( ˆ d j − d0 ) is the average over

the R simulations of the ordinates of kernel density estimates obtained using the B bootstrap estimates ˆ db 
j 
− ˆ d j , b = 1 , ..., B

evaluated at ˆ d j − d0 (see Poskitt et al., 2015 ). The closer this value is to zero the better the performance of the bootstrap

considered is. 

Coverages of confidence intervals (CI) 

The CIs based on the asymptotic distribution for a confidence level 1 − α are of the form 

CI1 −α( ˆ da ) =
(

ˆ da +
√ ̂ v ar ( ˆ da ) zα/ 2 ; ˆ da +

√ ̂ v ar ( ˆ da ) z1 −α/ 2 

)

9 
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for a = LW, LP, AP , where zα is the 100 αth% percentile of a standard normal distribution N(0 , 1) . The variance of the ALPE is

obtained by plugging the estimate of d into the variance of the distribution in (5) . The variance of the LWE is estimated as 

̂ v ar ( ˆ dLW E ) =

⎛ ⎝ 4

m ∑ 

j=1 

[ 

log λ j −
1 

m 

m ∑ 

k =1 

log λk 

] 2 
⎞ ⎠ 

−1 

, 

as suggested by Hurvich and Chen (20 0 0) and Arteche (2006) , which gives much better results in terms of coverage of CIs

than the variance in the asymptotic distribution (see also Arteche and Orbe, 2016 . For the same reason the OLS variance is

used as ̂ v ar ( ˆ dLPE ) instead of the variance in the asymptotic distribution (see Arteche and Orbe, 2005 ). 

The coverages of CIs based on the asymptotic distribution are compared with the CIs obtained with the different boot- 

strap strategies. We construct percentile CIs of the form 

CI∗1 −α( ˆ da ) =
(

ˆ d∗
a | α/ 2 ; ˆ d∗

a | 1 −α/ 2 

)
where ˆ d∗

a | α denotes the Bα ordered value of the bootstrap estimates of d for a = LW, LP or AP . Arteche and Orbe (2005) con-

sidered alternative techniques, such as the percentile-t or the BCa when resampling the residuals of the LPE, and obtain 

that the percentile-t performs better than the others. Note however that the percentile −t only makes sense with the LPE 

because its variance changes with the bootstrap sample, whereas the variance of the LWE, ̂ v ar ( ˆ dLW E ) is invariant to the

sample. Regarding the APE, an expression for the variance is only available for 0 < d < 1 / 4 and even in that case the use of

the percentile −t should be avoided because the variance strongly depends on d (see MacKinnon (2006) . As a consequence 

only the LPE might benefit from using the percentile- t . However, symmetric and asymmetric versions of the percentile- t CIs 

have also been analysed and no improvement has been obtained over the percentile CI, because they have shown larger 

intervals without improving the coverage (results available on request). 

We consider coverage discrepancy plots as suggested by de de Peretti and Siani (2010) defined as follows. For a nominal

coverage x the coverage discrepancy is calculated as ˆ F (x ) − x , where ˆ F (x ) = R−1 
∑ R 

r=1 I (xs ≤ x ) for xs = 1 − 2 min (pv , 1 − pv )
and pv is the estimated probability distribution function at the true memory parameter d0 , either using the asymptotic 

distribution or any of the bootstrap strategies described above. ˆ F (x ) can thus be interpreted as the frequency of coverages

of the true d0 with CIs obtained with the estimated distribution used to get pv for a nominal confidence x . The closer the

discrepancy is to zero the better the strategy used to approximate the distribution of the estimator of d0 performs. 

We pay particular attention to the 95% CI, which is frequently used for interval estimation and inference. Not only is

the frequency of coverages important to assess the performance of a CI but its length is also a relevant measure of its

effectiveness (see de Peretti and Siani, 2010 ). Greater coverage is usually associated with wider intervals but in some cases

narrower intervals are accompanied by greater coverages, indicating higher precision in the estimation. That is, if two CIs 

have the same confidence level the shorter is preferable. 

3.3. Monte Carlo design 

The applicability of the previous bootstrap strategies is analysed by comparing their performance in R = 10 0 0 replications

of different ARFIMA models of the form 

(1 − φL )(1 − L )d Xt = ut , t = 1 , 2 , ..T , (6) 

where the ut are standard independent normal. Two different sample sizes ( T = 64 and T = 128 ) and three different band-

widths ( m = 3 , 8 , 15 for T = 64 and m = 5 , 15 , 30 for T = 128 ) are considered. Two different values of the autoregressive

parameter ( φ = 0 and φ = 0 . 6 ) and four values of the memory parameter ( d = −0 . 4 , 0 . 2 , 0 . 4 and 0.7) are analysed. The LWE

and the LPE are consistent and asymptotically normal for all four values of d, but the limiting distribution of the APE is only

normal for d = 0 . 2 . For d = 0 . 4 it has an intractable limiting distribution. We include the values d = −0 . 4 and d = 0 . 4 in

the analysis to establish whether the different bootstrap strategies can improve a perhaps wrongly assumed limiting normal 

distribution. The APE for the non-stationary value d = 0 . 7 is inconsistent and is thus not included in the analysis. 

All the pre-filtered bootstrap strategies are based on a preliminary estimation of d obtained by LWE with an initial band- 

width m1 . The order of the autorregression in the SBS and PFSBS is selected by minimising the AIC and the coefficients

estimated by Burg’s algorithm. Three different block lengths are used for the MBB: b1 =
⌊

T 1 / 5 
⌋

, b2 =
⌊

T 1 / 3 
⌋

and the opti- 

mal data-dependent block length proposed in Patton et al. (2009) , denoted as b∗. Finally, two different resampling widths

are considered for the FDLB: (k1 , k2 ) = (5 , 20) for T = 64 and (k1 , k2 ) = (10 , 40) for T = 128 . The number of bootstrap repli-

cations is 10 0 0. 

3.4. Results 

For the sake of brevity only the representative results for d = 0 . 2 are included in this section, for a sample size of T = 128 .

In this case the three estimators considered are consistent and asymptotically normal, and thus the use of the normal 

distribution is theoretically justified. The results for the rest of the models and sample sizes are available upon request but

the main conclusions are qualitatively similar. 
10 
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Table 1 

Ratio of RMSD for ARFIMA(1,0.2,0), T = 128 . 

m = 5 m = 15 m = 30 

m1 = 5 m1 = 15 m1 = 30 m1 = 5 m1 = 15 m1 = 30 m1 = 5 m1 = 15 m1 = 30 

LWE, φ = 0 

PFSBS 0.413 0.781 0.816 1.179 0.217 0.596 1.457 0.734 0.272 

PFSDDB 0.366 0.790 0.836 1.577 0.207 0.621 2.278 1.248 0.165 

PFMBB( b1 ) 0.416 0.746 0.799 1.738 0.414 0.721 2.637 1.029 0.437 

PFMBB( b2 ) 0.369 0.746 0.802 1.425 0.358 0.641 1.838 0.640 0.361 

PFMBB( b∗) 0.365 0.745 0.802 1.439 0.405 0.703 1.980 1.083 0.421 

FDLB( k1 ) 0.560 0.598 0.682 1.021 0.443 0.377 0.911 0.234 0.295 

FDLB( k2 ) 0.451 0.754 0.780 1.903 0.261 0.526 3.083 1.338 0.188 

LPE, φ = 0 

PFSBS 0.445 0.776 0.811 1.138 0.401 0.698 1.136 0.741 0.536 

PFSDDB 0.391 0.781 0.828 1.461 0.329 0.718 1.716 1.025 0.502 

PFMBB( b1 ) 0.263 0.719 0.769 1.565 0.422 0.796 2.029 0.862 0.494 

PFMBB( b1 ) 0.212 0.719 0.774 1.301 0.435 0.736 1.424 0.666 0.510 

PFMBB( b∗) 0.272 0.721 0.773 1.347 0.444 0.777 1.505 0.908 0.479 

FDLB( k1 ) 0.533 0.641 0.709 0.897 0.223 0.429 0.670 0.291 0.258 

FDLB( k2 ) 0.479 0.746 0.777 1.801 0.245 0.622 2.467 1.106 0.443 

APE, φ = 0 

PFSBS 0.722 0.885 0.895 1.797 1.058 1.127 2.390 1.689 1.121 

PFSDDB 0.721 0.894 0.916 2.114 1.067 1.148 3.349 2.470 1.046 

PFMBB( b1 ) 0.810 0.879 0.894 2.408 1.298 1.309 3.804 2.264 1.362 

PFMBB( b2 ) 0.778 0.878 0.896 2.036 1.232 1.233 2.937 1.636 1.278 

PFMBB( b∗) 0.785 0.877 0.894 1.983 1.302 1.302 2.941 2.263 1.364 

FDLB( k1 ) 0.622 0.724 0.779 1.644 0.974 0.983 1.974 0.909 0.972 

FDLB( k2 ) 0.743 0.869 0.872 2.468 1.045 1.080 4.458 2.681 0.955 

LWE, φ = 0 . 6 

PFSBS 0.168 0.983 1.322 0.807 0.718 0.421 0.959 0.996 0.976 

PFSDDB 0.091 0.997 1.402 0.923 0.913 0.348 0.913 1.011 1.011 

PFMBB( b1 ) 0.099 1.008 1.422 1.088 0.926 0.329 0.924 1.012 1.007 

PFMBB( b2 ) 0.122 1.012 1.408 1.021 0.887 0.349 0.945 1.020 1.011 

PFMBB( b∗) 0.087 1.012 1.405 1.009 0.875 0.329 0.927 1.011 1.011 

FDLB( k1 ) 0.357 0.785 1.226 0.987 0.918 0.391 0.962 1.023 1.008 

FDLB( k2 ) 0.802 1.066 1.341 1.086 0.974 0.376 0.945 1.011 1.016 

LPE, φ = 0 . 6 

PFSBS 0.376 0.835 1.027 0.862 0.696 0.514 0.954 0.951 0.874 

PFSDDB 0.381 0.840 1.086 0.928 0.808 0.451 0.921 0.993 0.926 

PFMBB( b1 ) 0.354 0.841 1.093 1.134 0.809 0.427 0.945 0.996 0.905 

PFMBB( b2 ) 0.360 0.846 1.084 1.080 0.790 0.454 0.959 0.995 0.905 

PFMBB( b∗) 0.344 0.844 1.084 1.036 0.778 0.434 0.946 0.991 0.919 

FDLB( k1 ) 0.458 0.621 0.898 0.997 0.790 0.471 0.999 1.011 0.954 

FDLB( k2 ) 0.776 0.887 1.023 1.137 0.890 0.459 0.966 1.003 0.942 

APE, φ = 0 . 6 

PFSBS 0.973 1.155 1.385 0.759 0.683 0.367 0.994 0.998 1.000 

PFSDDB 0.943 1.160 1.428 0.853 0.836 0.327 0.977 0.995 1.000 

PFMBB( b1 ) 0.948 1.170 1.444 1.100 0.833 0.312 0.973 0.995 1.000 

PFMBB( b2 ) 0.932 1.170 1.433 1.027 0.804 0.349 0.980 0.998 1.002 

PFMBB( b∗) 0.956 1.175 1.430 0.970 0.797 0.304 0.979 0.995 1.001 

FDLB( k1 ) 0.947 1.124 1.391 0.983 0.832 0.389 0.987 0.999 1.001 

FDLB( k2 ) 1.136 1.215 1.406 1.085 0.933 0.381 0.969 0.994 0.999 

Note: The numbers in each cell show the ratio of RMSD obtained with the different bootstrap strategies with respect to the sieve. b1 =
⌊

T 1 / 5 
⌋

, b2 = ⌊
T 1 / 3 

⌋
, b∗ is the optimal data-dependent block length of Patton et al. (2009) and (k1 , k2 ) = (10 , 40) . 

 

 

 

 

 

 

 

 

Table 1 shows ratios of the RMSD of the different bootstrap strategies over RMSD(SBS). In general the ratio is lower than

one, indicating that pre-filtering either in the time domain or in the frequency domain leads to bootstrap distributions that 

are closer to the true distribution than the approximation offered by the SBS. The main disadvantage of pre-filtering is that

user intervention is required for the selection of m1 . As a rule of thumb, a value m1 = m is a wise choice, especially when

φ = 0 , but when φ = 0 . 6 the bias in the estimation of d implied by the use of a large bandwidth means that a lower m1 

may lead to better results by avoiding the bias in the estimation of d used to pre-filter. No definitive suggestion can be

made as regards the selection of kT for the FDLB. Values of m1 and kT close to m leads to general good results and a large

kT is significantly more harmful than a lower one when m1 < m , especially when there is no short memory component. Less

information can be extracted for the selection of the block length in the PFMBB. The “optimal” b∗ is not uniformly superior 

to the other two lengths considered, which sometimes and with no prevalence may offer superior results. 

Figure 1 shows the coverage discrepancies in the illustrative case of an ARF IMA (1 , 0 . 2 , 0) with T = 128 and m = m1 = 15 .

For the sake of clarity of exposition and visibility only the results obtained with the asymptotic distribution and the boot-
11 
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Fig. 1. Coverage discrepancies for ARFIMA(1,0.2,0), T = 128 , m = m1 = 15 

 

 

 

 

 

strap strategies PFSDDB, PFMBB( b∗) and FDLB ( k2 ) are included. This set of resampling techniques suffices to illustrate the

advantages of bootstrapping over the asymptotic distribution. Bootstrapping tends to offer lower discrepancies except in 

the LPE case when φ = 0 , where the coverage with the asymptotic distribution tends to be better. Note that no theoretical

results exist as to the validity of these bootstraps with the LPE, although Arteche and Orbe (2005) show the benefits of al-

ternative residual resampling strategies not considered here. The poor performance of the asymptotic distribution of the APE 

is also noteworthy, even when d = 0 . 2 , which belongs to the interval of memory parameters where asymptotic normality

has been rigorously proved. In this case any of the bootstraps considered significantly improves coverage. When φ = 0 . 6 the
12 
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Fig. 2. 95% coverage discrepancies and CI lengths for ARFIMA(1,0.2,0), T = 128 , m = m1 = 15 Note: The red bars show the excess of coverage (in red left 

vertical axis) and the horizontal lines show the average lengths (right vertical axis). 
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bias in the estimation of the memory parameter naturally arises, significantly affecting the coverage, but the performance 

of the FDLB ( k2 ) is more robust to this biasing effect. 

Finally, Figure 2 focuses on the coverage of 95% CIs. The vertical bars show the excess of coverage (actual coverage

minus 0.95) with measures on the left vertical axis (in red) and the horizontal lines show the average lengths (over the

10 0 0 simulations) of the CIs (right vertical axis). The asymptotic distribution undercovers, with actual coverages below the 

nominal 0.95, but some of the bootstrap alternatives give closer-to-zero discrepancies even with shorter intervals in some 

cases, for example the FDLB( k1 ) in the LPE and the APE with φ = 0 . 

The results obtained in the rest of the models, sample sizes and bandwidths can be summarised as follows. When φ = 0

the asymptotic CIs of the LWE and the LPE (with large m ) give acceptable coverages but the undercoverage of the APE is

more significant, especially when d = 0 . 4 with a medium-large m . Note that the APE is not asymptotically normal in this

case, so the CIs obtained under the normal distribution are unfounded. Including the short memory component generates 

a bias in the estimation that affects the coverages of all the different CIs. However, bootstrapping can significantly improve 

coverage in those cases where the bias is significant (large m ) and the asymptotic CIs clearly undercover. In general, there is

no strategy that performs uniformly better than the others, but it is always possible to find a bootstrap leading to CIs with

coverages closer to the nominal confidence level. As commented above for the RMSD, pre-filtering is a beneficial approach 

and m1 = m seems a good option. Furthermore, the SBS (for intermediate m ) and the FDLB (for large m ) are in general the

strategies that lead to the coverages least affected by the bias induced by the short memory component. 

4. Conclusion 

Bootstrapping has become a popular technique for approximating the distribution of many statistics of time series. Its use 

with long memory has increased significantly in the last few years although there exist few theoretical justifications of its 

validity in the context of strong persistence. This paper reviews recent results on the theoretical properties of some bootstrap 

strategies applied to long memory time series, with particular attention on their use in approximating the distribution of 

low frequency estimators of the memory parameter. All the techniques described in this paper share the characteristic of not 

requiring full parametric restrictions, which makes them suitable for application with non-parametric and semi-parametric 

estimation techniques. 

A natural, successful strategy for dealing with strong persistence consists of decolouring the series before applying boot- 

strap techniques whose validity has been proven with short memory series. The main drawback of this approach is that a

prior estimation of the memory parameter is required, which in turn entails selecting a prior bandwidth m1 and makes the

whole procedure non-automatic, unlike other techniques not based on prior decolouring such as the sieve bootstrap. How- 

ever, simulations suggest that a bandwidth m1 = m is a sensible choice, leading to much better results for the prefiltered SBS

or SDDB than the sieve bootstrap in many situations. Other approaches, such as the block bootstrap or the FDLB, also require

selection of the block lengths or the resampling width for the FDLB. The simulations suggest that existing techniques for 

optimal selection of the block length such as the proposal by Patton et al. (2009) do not necessarily give better results than

other naive selections. Some ad hoc criteria for selecting the resampling width in the FDLB are proposed by Arteche and

Orbe (2016) , but there is no automatic criterion and further research on this topic and on the selection of the block length

in block bootstrapping in the context of long memory series is needed to extend their use among empirical researchers. 
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